Science.gov

Sample records for cantilever cross-arch fixed

  1. The cantilever fixed partial denture--a literature review.

    PubMed

    Himmel, R; Pilo, R; Assif, D; Aviv, I

    1992-04-01

    The cantilever fixed partial denture (FPD) is a restoration with one or more abutments at one end and unsupported at the other end. Forces transmitted through the cantilevered pontics can cause tilting and rotational movements of the abutments. In a cross-arch unilateral cantilever FPD, the distal cantilevered unit is subjected to comparatively less force than the contralateral posterior abutment. The unilateral lack of terminal abutments causes lateral bending forces activate peripheral inhibitory feedback reactions from the periodontal and/or temporomandibular mechanoreceptors. The greatest strain in distal cantilevered FPDs is recorded mesial to the most distal retainer because most fractures occur in this location. To improve the prognosis of the FPD cantilever, the number of abutments should be increased and the number of pontics decreased. The abutment teeth need long roots and acceptable alveolar support. Prepared abutments require adequate length and parallel axial walls. An equilibrated and harmonious occlusion is necessary, as well as exemplary oral hygiene. A cantilevered FPD with adequate periodontal support can replace any tooth in the dental arch, but is especially useful as an alternative to a removable partial denture. The cantilevered FPD requires at least two abutment teeth. The only documented exception permitting a single abutment is the replacement of a maxillary lateral incisor with the canine as an abutment. An alternative to the cantilevered FPD is the osseointegrated implant. As osseointegrated implants become more popular, the need for the tooth-supported cantilevered FPD may decline, but it will remain an alternative treatment modality. PMID:1507130

  2. 41. Fixed Span, Floor Beam 1, showing the cantilever; looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Fixed Span, Floor Beam 1, showing the cantilever; looking N. (The splice between the original beam and the 1960 extension (widening) is between the two stringers to the left of the bottom chord tension members). - Pacific Shortline Bridge, U.S. Route 20,spanning Missouri River, Sioux City, Woodbury County, IA

  3. Assessment of Various Factors for Feasibility of Fixed Cantilever Bridge: A Review Study

    PubMed Central

    Sharma, Ashu; Rahul, G. R.; Poduval, Soorya T.; Shetty, Karunakar

    2012-01-01

    Cantilever fixed partial dentures are defined as having one or more abutments at one end of the prosthesis while the other end is unsupported. Much controversy without documentary evidence has surrounded this prosthesis. Despite negative arguments, the cantilever prosthesis has been used extensively by the clinicians. If used nonjudiciously without following proper guidelines these might lead to some complications. Although complications may be an indication that clinical failure has occurred, this is not typically the case. It is also possible that complications may reflect substandard care. Apart from the substandard care, the unique arrangement of the abutments and pontic also accounts for the prime disadvantage: the creation of a class I lever system. When the cantilevered pontic is placed under occlusal function, forces are placed on the abutments. There are various criteria and factors necessary for a successful cantilever fixed partial denture (FPD). The purpose of this paper is to discuss briefly various factors involved in the planning of a cantilever fixed partial denture. PMID:22461987

  4. Effect of cantilever length and alloy framework on the stress distribution in peri-implant area of cantilevered implant-supported fixed partial dentures.

    PubMed

    Suedam, Valdey; Moretti Neto, Rafael Tobias; Sousa, Edson Antonio Capello; Rubo, José Henrique

    2016-04-01

    Because many mechanical variables are present in the oral cavity, the proper load transfer between the prosthesis and the bone is important for treatment planning and for the longevity of the implant-supported fixed partial denture. Objectives To verify the stress generated on the peri-implant area of cantilevered implant-supported fixed partial dentures and the potential effects of such variable. Material and Methods A U-shaped polyurethane model simulating the mandibular bone containing two implants (Ø 3.75 mm) was used. Six groups were formed according to the alloy's framework (CoCr or PdAg) and the point of load application (5 mm, 10 mm and 15 mm of cantilever arm). A 300 N load was applied in pre-determined reference points. The tension generated on the mesial, lingual, distal and buccal sides of the peri-implant regions was assessed using strain gauges. Results Two-way ANOVA and Tukey statistical tests were applied showing significant differences (p<0.05) between the groups. Pearson correlation test (p<0.05) was applied showing positive correlations between the increase of the cantilever arm and the deformation of the peri-implant area. Conclusions This report demonstrated the CoCr alloy shows larger compression values compared to the PdAg alloy for the same distances of cantilever. The point of load application influences the deformation on the peri-implant area, increasing in accordance with the increase of the lever arm. PMID:27119758

  5. Effect of cantilever length and alloy framework on the stress distribution in peri-implant area of cantilevered implant-supported fixed partial dentures

    PubMed Central

    SUEDAM, Valdey; MORETTI, Rafael Tobias; SOUSA, Edson Antonio Capello; RUBO, José Henrique

    2016-01-01

    ABSTRACT Because many mechanical variables are present in the oral cavity, the proper load transfer between the prosthesis and the bone is important for treatment planning and for the longevity of the implant-supported fixed partial denture. Objectives To verify the stress generated on the peri-implant area of cantilevered implant-supported fixed partial dentures and the potential effects of such variable. Material and Methods A U-shaped polyurethane model simulating the mandibular bone containing two implants (Ø 3.75 mm) was used. Six groups were formed according to the alloy’s framework (CoCr or PdAg) and the point of load application (5 mm, 10 mm and 15 mm of cantilever arm). A 300 N load was applied in pre-determined reference points. The tension generated on the mesial, lingual, distal and buccal sides of the peri-implant regions was assessed using strain gauges. Results Two-way ANOVA and Tukey statistical tests were applied showing significant differences (p<0.05) between the groups. Pearson correlation test (p<0.05) was applied showing positive correlations between the increase of the cantilever arm and the deformation of the peri-implant area. Conclusions This report demonstrated the CoCr alloy shows larger compression values compared to the PdAg alloy for the same distances of cantilever. The point of load application influences the deformation on the peri-implant area, increasing in accordance with the increase of the lever arm. PMID:27119758

  6. Three-Dimensional Finite Element Analysis of Anterior Two-Unit Cantilever Resin-Bonded Fixed Dental Prostheses

    PubMed Central

    Shinya, Akikazu; Lassila, Lippo V. J.; Vallittu, Pekka K.; Kleverlaan, Cornelis J.; Feilzer, Albert J.; De Moor, Roeland J. G.

    2015-01-01

    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing a maxillary lateral incisor was created. Five framework materials were evaluated: direct fibre-reinforced composite (FRC-Z250), indirect fibre-reinforced composite (FRC-ES), gold alloy (M), glass ceramic (GC), and zirconia (ZI). Finite element analysis was performed and stress distribution was evaluated. A similar stress pattern, with stress concentrations in the connector area, was observed in RBFDPs for all materials. Maximal principal stress showed a decreasing order: ZI > M > GC > FRC-ES > FRC-Z250. The maximum displacement of RBFDPs was higher for FRC-Z250 and FRC-ES than for M, GC, and ZI. FE analysis depicted differences in location of the maximum stress at the luting cement interface between materials. For FRC-Z250 and FRC-ES, the maximum stress was located in the upper part of the proximal area of the retainer, whereas, for M, GC, and ZI, the maximum stress was located at the cervical outline of the retainer. The present study revealed differences in biomechanical behaviour between all RBFDPs. The general observation was that a RBFDP made of FRC provided a more favourable stress distribution. PMID:25879077

  7. Three-dimensional finite element analysis of anterior two-unit cantilever resin-bonded fixed dental prostheses.

    PubMed

    Keulemans, Filip; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K; Kleverlaan, Cornelis J; Feilzer, Albert J; De Moor, Roeland J G

    2015-01-01

    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing a maxillary lateral incisor was created. Five framework materials were evaluated: direct fibre-reinforced composite (FRC-Z250), indirect fibre-reinforced composite (FRC-ES), gold alloy (M), glass ceramic (GC), and zirconia (ZI). Finite element analysis was performed and stress distribution was evaluated. A similar stress pattern, with stress concentrations in the connector area, was observed in RBFDPs for all materials. Maximal principal stress showed a decreasing order: ZI>M>GC>FRC-ES>FRC-Z250. The maximum displacement of RBFDPs was higher for FRC-Z250 and FRC-ES than for M, GC, and ZI. FE analysis depicted differences in location of the maximum stress at the luting cement interface between materials. For FRC-Z250 and FRC-ES, the maximum stress was located in the upper part of the proximal area of the retainer, whereas, for M, GC, and ZI, the maximum stress was located at the cervical outline of the retainer. The present study revealed differences in biomechanical behaviour between all RBFDPs. The general observation was that a RBFDP made of FRC provided a more favourable stress distribution. PMID:25879077

  8. Inlay-retained cantilever fixed dental prostheses to substitute a single premolar: impact of zirconia framework design after dynamic loading.

    PubMed

    Shahin, Ramez; Tannous, Fahed; Kern, Matthias

    2014-08-01

    The purpose of this in-vitro study was to evaluate the influence of the framework design on the durability of inlay-retained cantilever fixed dental prostheses (IR-FDPs), made from zirconia ceramic, after artificial ageing. Forty-eight caries-free human premolars were prepared as abutments for all-ceramic cantilevered IR-FDPs using six framework designs: occlusal-distal (OD) inlay, OD inlay with an oral retainer wing, OD inlay with two retainer wings, mesial-occlusal-distal (MOD) inlay, MOD inlay with an oral retainer ring, and veneer partial coping with a distal box (VB). Zirconia IR-FDPs were fabricated via computer-aided design/computer-aided manufacturing (CAD/CAM) technology. The bonding surfaces were air-abraded (50 μm alumina/0.1 MPa), and the frameworks were bonded with adhesive resin cement. Specimens were stored for 150 d in a 37°C water bath during which they were thermocycled between 5 and 55°C for 37,500 cycles; thereafter, they were exposed to 600,000 cycles of dynamic loading with a 5-kg load in a chewing simulator. All surviving specimens were loaded onto the pontic and tested until failure using a universal testing machine. The mean failure load of the groups ranged from 260.8 to 746.7 N. Statistical analysis showed that both MOD groups exhibited significantly higher failure loads compared with the other groups (i.e. the three OD groups and the VB group) and that there was no significant difference in the failure load among the OD groups and the VB group. In conclusion, zirconia IR-FDPs with a modified design exhibited promising failure modes. PMID:24910293

  9. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    PubMed

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (p<0.05) (a dual wing + horizontal groove 222±9 N). The highest fracture strengths were observed with dual wing + occlusal rest FPDs: 250±10 N compared to inlay-retained FPDs (p<0.001) and wing-retained FPDs (p<0.001). FEA showed more favorable stress distributions within the tooth/restoration complex for dual wing retainers+ occlusal rest FPDs. There was stress concentration around connectors and retainers near connectors. A dual-wing retainer with occlusal rest is the optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs. PMID:23715455

  10. INFLUENCE OF DIFFERENT CANTILEVER EXTENSIONS AND GLASS OR POLYARAMID REINFORCEMENT FIBERS ON FRACTURE STRENGTH OF IMPLANT-SUPPORTED TEMPORARY FIXED PROSTHESIS

    PubMed Central

    Colán Guzmán, Paola; de Freitas, Fernando Furtado Antunes; Ferreira, Paulo Martins; de Freitas, César Antunes; Reis, Kátia Rodrigues

    2008-01-01

    In long-term oral rehabilitation treatments, resistance of provisional crowns is a very important factor, especially in cases of an extensive edentulous distal space. The aim of this laboratorial study was to evaluate an acrylic resin cantilever-type prosthesis regarding the flexural strength of its in-balance portion as a function of its extension variation and reinforcement by two types of fibers (glass and polyaramid), considering that literature is not conclusive on this subject. Each specimen was composed by 3 total crowns at its mesial portion, each one attached to an implant component (abutment), while the distal portion (cantilever) had two crowns. Each specimen was constructed by injecting acrylic resin into a two-part silicone matrix placed on a metallic base. In each specimen, the crowns were fabricated with either acrylic resin (control group) or acrylic resin reinforced by glass (Fibrante, Angelus) or polyaramide (Kevlar 49, Du Pont) fibers. Compression load was applied on the cantilever, in a point located 7, 14 or 21 mm from the distal surface of the nearest crown with abutment, to simulate different extensions. The specimen was fixed on the metallic base and the force was applied until fracture in a universal test machine. Each one of the 9 sub-groups was composed by 10 specimens. Flexural strength means (in kgf) for the distances of 7, 14 and 21 mm were, respectively, 28.07, 8.27 and 6.39 for control group, 31.89, 9.18 and 5.16 for Kevlar 49 and 30.90, 9.31 and 6.86 for Fibrante. Data analysis ANOVA showed statistically significant difference (p<0.05) only regarding cantilever extension. Tukey's test detected significantly higher flexural strength for the 7 mm-distance, followed by 14 and 21 mm. Fracture was complete only on specimens of non-reinforced groups. PMID:19089201

  11. Biomechanical load analysis of cantilevered implant systems.

    PubMed

    Osier, J F

    1991-01-01

    Historically, dental implants have been placed in areas where quality bone exists. The maxillary sinus areas and mandibular canal proximities have been avoided. From these placements, various cantilevered prosthetic applications have emerged. This analysis uses static engineering principles to define the loads (i.e., forces) placed upon the implants. These principles make use of Newton's first and third laws of mechanics by summing the forces and moments to zero. These summations then generate mathematical equations and their algebraic solutions. Three implant systems are analyzed. The first is a two-implant system. The second is a three-implant cross-arch stabilized system usually found in mandibular replacements of lower full dentures. The third is a five-implant system which is identical to the three-implant cantilevered system but which uses implants in the first molar area, thereby negating the cantilevered load magnification of the three-implant design. These analyses demonstrate that, in a cantilevered application, the implant closest to the point of load application (usually the most posterior implant) takes the largest compressive load. Implants opposite the load application (generally the anterior implant) are in tension. These loads on the implants are normally magnified over the biting force and can easily reach 2 1/2 to five times the biting load. PMID:1942131

  12. [Physiological behavior of Cantilever].

    PubMed

    Feeldman, I; Frugone, R; Vládilo, N T

    1990-11-01

    The prosthetic rehabilitation is common of the integral treatment of patients that integral treatment of patients that have lost one or several dental pieces as a consequence of periodontal diseases. It has been demonstrated that plural fixed prothesis to extention, plovide a distribution pattern and magnitude of favourable forces to the periodontal during the different functions of the stomathologic apparatus, that justify rehabilitation based to it patients periodontically affected. The physiological behaviour of cantilever was basically analized on report on different investigation studies performed on patients periodontically diminis hed treated with plural fixed prothesis of crossed are with two unit or bilateral vear cantilever units, dento supported or fixed in place on implants. It is important to emphasize that favourable results previously analized in base to this type of rehabilitation in its different varieties have been obtained through record done on patients in which considerations of indications, design and occlusion stability have been optimized. PMID:2075270

  13. Compliant cantilevered micromold

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.; Gonzales, Marcela G.; Keifer, Patrick N.; Garino, Terry Joseph

    2006-08-15

    A compliant cantilevered three-dimensional micromold is provided. The compliant cantilevered micromold is suitable for use in the replication of cantilevered microparts and greatly simplifies the replication of such cantilevered parts. The compliant cantilevered micromold may be used to fabricate microparts using casting or electroforming techniques. When the compliant micromold is used to fabricate electroformed cantilevered parts, the micromold will also comprise an electrically conducting base formed by a porous metal substrate that is embedded within the compliant cantilevered micromold. Methods for fabricating the compliant cantilevered micromold as well as methods of replicating cantilevered microparts using the compliant cantilevered micromold are also provided.

  14. Piezoelectric cantilever sensors

    NASA Technical Reports Server (NTRS)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  15. Use of Cantilever Mechanics for Impacted Teeth: Case Series

    PubMed Central

    Paduano, Sergio; Spagnuolo, Gianrico; Franzese, Gerardo; Pellegrino, Gioacchino; Valletta, Rosa; Cioffi, Iacopo

    2013-01-01

    This paper describes the orthodontic treatment, and the biomechanics of cantilevers for the impaction of permanent teeth in youngs, adolescents, and adults. In these case series, multibracket straightwire fixed appliances, together with cantilever mechanics, were used to treat the impaired occlusion. PMID:24511332

  16. Cantilevered carbon nanotube hygrometer

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Toshinori; Terada, Yuki; Takei, Kuniharu; Akita, Seiji; Arie, Takayuki

    2014-05-01

    We investigate the effects of humidity on the vibrations of carbon nanotubes (CNTs) using two types of CNT cantilevers: open-ended and close-ended CNT cantilevers. As the humidity increases, the resonant frequency of the open-ended CNT cantilever decreases due to the adsorption of water molecules onto the CNT tip, whereas that of the close-ended CNT cantilever increases probably due to the change in the viscosity of the air surrounding the CNT cantilever, which is negatively correlated with the humidity of air. Our findings suggest that a close-ended CNT cantilever is more suitable for a quick-response and ultrasensitive hygrometer because it continuously reads the viscosity change of moist air in the vicinity of the CNT.

  17. A Weed Cantilever

    ERIC Educational Resources Information Center

    Keller, Elhannan L.; Padalino, John

    1977-01-01

    Describes the Environmental Action Task activity, which may be used as a recreational game or an environmental perception experience, may be conducted indoors or out-of-doors, using weed stems (or spaghetti) and masking tape to construct a cantilever. Small groups of children work together to make the cantilever with the longest arm. Further…

  18. VIEW OF BRIDGE CANTILEVER THROUGH TRUSS CANTILEVER SECTION, LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BRIDGE CANTILEVER THROUGH TRUSS CANTILEVER SECTION, LOOKING WEST. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  19. VIEW OF BRIDGE CANTILEVER THROUGH TRUSS CANTILEVER PORTAL ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BRIDGE CANTILEVER THROUGH TRUSS CANTILEVER PORTAL ON WEST BANK SIDE LOOKING NORTHWEST. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  20. Measuring the cantilever-position-sensitive detector distance and cantilever curvature for cantilever sensor applications.

    PubMed

    Xu, Meng; Tian, Ye; Coates, M L; Beaulieu, L Y

    2009-09-01

    Measuring cantilever sensor deflections using an optical beam deflection system is more complicated than often assumed. The direction of the reflected beam is dependent on the surface normal of the cantilever, which in turn is dependent on the state of the cantilever. It is often assumed that the cantilever is both straight and perfectly level before the onset of sensing experiments although this assumption, especially the former, is rarely true. Failure to characterize the initial state of the cantilever can lead to irreproducibility in cantilever sensor measurements. We have developed three new methods for characterizing the initial state of the cantilever. In the first case we show how to define the initial angle of inclination beta of the chip on which the cantilever is attached. This method was tested using an aluminum block with a known angle of inclination. A new method for determining the initial distance L(o) between the cantilever and the position-sensitive detector (PSD) is also presented. This parameter which behaves as an amplification factor of the PSD signal is critical for obtaining precise cantilever sensor data. Lastly, we present a method for determining the initial curvature of the cantilever which often results from depositing the sensing platform on the lever. Experiments conducted using deflected cantilevers showed the model to be accurate. The characterization methods presented in this work are simple to use, easy to implement, and can be incorporated into most cantilever sensor setups. PMID:19791971

  1. Cantilever and implant biomechanics: a review of the literature. Part 1.

    PubMed

    Rodriguez, A M; Aquilino, S A; Lund, P S

    1994-03-01

    In Part 1 of this two-part literature review, the biomechanics of cantilever fixed partial dentures are reviewed. Theoretical constructs of implant biomechanics with special emphasis on implant-supported cantilevers are also discussed. Finally, an overview of the literature regarding occlusal forces generated by patients with implant-supported prostheses is presented. PMID:8061790

  2. 77 FR 826 - Cantilever Capital, LLC and Cantilever Group, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... COMMISSION Cantilever Capital, LLC and Cantilever Group, LLC; Notice of Application December 29, 2011. AGENCY...)(3) of the Act. Applicants: Cantilever Capital, LLC (``Cantilever'' or the ``Company'') and Cantilever Group, LLC (the ``Adviser''). Summary of Application: Cantilever, or any successor to...

  3. Gland With Cantilever Seal

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B.

    1989-01-01

    Single-piece gland forms tight seal on probe or tube containing liquid or gas at high pressure. Gland and probe align as assembled by simple torquing procedure. Disconnected easily and reused at same site. Made from any of wide variety of materials so compatible with application. Cantilever ring at top of gland bites into wall of tube or probe, sealing it. Wall of tube or probe must be thick enough to accommodate deformation without rupturing. Maximum deformation designed in coordination with seating and deformation of boss or conical seal.

  4. Cantilever clamp fitting

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  5. Cantilever epitaxial process

    DOEpatents

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  6. Vertical electrostatic force in MEMS cantilever IR sensor

    NASA Astrophysics Data System (ADS)

    Rezadad, Imen; Boroumand Azad, Javaneh; Smith, Evan M.; Alhasan, Ammar; Peale, Robert E.

    2014-06-01

    A MEMS cantilever IR detector that repetitively lifts from the surface under the influence of a saw-tooth electrostatic force, where the contact duty cycle is a measure of the absorbed IR radiation, is analyzed. The design is comprised of three parallel conducting plates. Fixed buried and surface plates are held at opposite potential. A moveable cantilever is biased the same as the surface plate. Calculations based on energy methods with position-dependent capacity and electrostatic induction coefficients demonstrate the upward sign of the force on the cantilever and determine the force magnitude. 2D finite element method calculations of the local fields confirm the sign of the force and determine its distribution across the cantilever. The upward force is maximized when the surface plate is slightly larger than the other two. The electrostatic repulsion is compared with Casimir sticking force to determine the maximum useful contact area. MEMS devices were fabricated and the vertical displacement of the cantilever was observed in a number of experiments. The approach may be applied also to MEMS actuators and micromirrors.

  7. Chemical sensor with oscillating cantilevered probe

    DOEpatents

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  8. Viscous drag measurements utilizing microfabricated cantilevers

    SciTech Connect

    Oden, P.I.; Chen, G.Y.; Steele, R.A.; Warmack, R.J.; Thundat, T.

    1996-06-01

    The influence of viscous drag forces on cantilevers is investigated using standard atomic force microscope (AFM) cantilevers. Viscosity effects on several geometrically different cantilevers manifest themselves as variations in resonance frequencies, quality factors, and cantilever response amplitudes. With this novel measurement, a single cantilever can be used to measure viscosities ranging from {eta}=10{sup {minus}2} to 10{sup 2} g/cms. {copyright} {ital 1996 American Institute of Physics.}

  9. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    SciTech Connect

    Acheli, A. Serhane, R.

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  10. High throughout reproducible cantilever functionalization

    DOEpatents

    Evans, Barbara R; Lee, Ida

    2014-11-25

    A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.

  11. High throughput reproducible cantilever functionalization

    SciTech Connect

    Evans, Barbara R; Lee, Ida

    2014-01-21

    A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.

  12. Micromachined Silicon Cantilever Magnetometry.

    NASA Astrophysics Data System (ADS)

    Chaparala, M. V.

    1998-03-01

    Magnetic torque measurements give us a simple and attractive method for characterizing the anisotropic properties of magnetic materials. Silicon torque and force magnetometers have many advantages over traditional torsion fiber torque magnetometers. We have fabricated micromachined silicon torque and force magnetometers employing both capacitive(``Capacitance platform magnetometer for thin film and small crystal superconductor studies'', M. Chaparala et al.), AIP Conf. Proc. (USA), AIP Conference Proceedings, no.273, p. 407 1993. and strain dependent FET detection(``Strain Dependent Characterstics of Silicon MOSFETs and their Applications'', M. Chaparala et al.), ISDRS Conf. Proc. 1997. schemes which realize some of these gains. We will present the pros and cons of each of the different detection schemes and the associated design constraints. We have developed a feedback scheme which enables null detection thus preserving the integrity of the sample orientation. We will present a method of separating out the torque and force terms in the measured signals and will discuss the errors associated with each of the designs. Finally, we present the static magnetic torque measurements on various materials with these devices, including equilibrium properties on sub microgram specimens of superconductors, and dHvA measurements near H_c2. We will also discuss their usefulness in pulsed magnetic fields(``Cantilever magnetometry in pulsed magnetic fields", M. J. Naughton et al.), Rev. of Sci. Instrum., vol.68, p. 4061 1997..

  13. Multidomain piezo-ceramic cantilever

    NASA Astrophysics Data System (ADS)

    Sedorook, David P.

    PZT-5H is a ferroelectric and piezoelectric material that has many applications that are the subjects of current research. As a ferroelectric, PZT-5H has a permanent electrical polarization that arises from ferroelectric domains. In this thesis, numerical simulations were conducted via the well know Finite Element Method of several types of piezoelectric cantilevers that were made of PIC-181, a high quality PZT-5H made in Germany. Single crystal cantilever models with multiple polarization vectors were investigated with Q factors ranging from Q = 50 to Q = 1200, where the acoustical displacements were calculated. Further, the displacements were calculated for a multidomain cantilever model with inversely poled domains and uniform electrode configuration as well as a single crystal cantilever model with uniformly poled crystal and bipolar electrode configuration. It was shown that cantilevers that are less oblong in shape could benefit from the bipolar electrode configuration in applications where size may be an important parameter, for instance in small flying robotic insects. From the experimental measurements of the resonance and anti-resonance frequencies in various PIC-181 samples, the radial and longitudinal components of speed of sound in material were calculated. Experimental results of longitudinal speed of sound differed from the accepted value of 4.6 km/s by 1.6 % error.

  14. Compact cantilever force probe for plasma pressure measurements

    SciTech Connect

    Nedzelskiy, I. S.; Silva, C.; Fernandes, H.; Duarte, P.; Varandas, C. A. F.

    2007-12-15

    A simple, compact cantilever force probe (CFP) has been developed for plasma pressure measurements. It is based on the pull-in phenomenon well known in microelectromechanical-system electrostatic actuators. The probe consists of a thin (25 {mu}m) titanium foil cantilever (38 mm of length and 14 mm of width) and a fixed electrode separated by a 0.75 mm gap. The probe is shielded by brass box and enclosed into boron nitride housing with a 9 mm diameter window for exposing part of cantilever surface to the plasma. When the voltage is applied between the cantilever and the electrode, an attractive electrostatic force is counterbalanced by cantilever restoring spring force. At some threshold (pull-in) voltage the system becomes unstable and the cantilever abruptly pulls toward the fixed electrode until breakdown occurs between them. The threshold voltage is sensitive to an additional externally applied force, while a simple detection of breakdown occurrence can be used to measure that threshold voltage value. The sensitivity to externally applied forces obtained during calibration is 0.28 V/{mu}N (17.8 V/Pa for pressure). However, the resolution of the measurements is {+-}0.014 mN ({+-}0.22 Pa) due to the statistical scattering in measured pull-in voltages. The diagnostic temporal resolution is {approx}10 ms, being determined by the dynamics of pull-in process. The probe has been tested in the tokamak ISTTOK edge plasma, and a plasma force of {approx}0.07 mN (plasma pressure {approx}1.1 Pa) has been obtained near the leading edge of the limiter. This value is in a reasonable agreement with the estimations using local plasma parameters measured by electrical probes. The use of the described CFP is limited by a heat flux of Q{approx}10{sup 6} W/m{sup 2} due to uncontrollable rise of the cantilever temperature ({delta}T{approx}20 deg. C) during CFP response time.

  15. Precise atomic force microscope cantilever spring constant calibration using a reference cantilever array

    SciTech Connect

    Gates, Richard S.; Reitsma, Mark G.

    2007-08-15

    A method for calibrating the stiffness of atomic force microscope (AFM) cantilevers is demonstrated using an array of uniform microfabricated reference cantilevers. A series of force-displacement curves was obtained using a commercial AFM test cantilever on the reference cantilever array, and the data were analyzed using an implied Euler-Bernoulli model to extract the test cantilever spring constant from linear regression fitting. The method offers a factor of 5 improvement over the precision of the usual reference cantilever calibration method and, when combined with the Systeme International traceability potential of the cantilever array, can provide very accurate spring constant calibrations.

  16. 16. PIER CAP DETAIL, SHOWING EXPANSION AND FIXED BEARING SHOES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. PIER CAP DETAIL, SHOWING EXPANSION AND FIXED BEARING SHOES, BOTTOM CHORD / END POST CONNECTION AND CANTILEVERED SIDEWALK. VIEW TO WEST. - Holbrook Bridge, Spanning Little Colorado River at AZ 77, Holbrook, Navajo County, AZ

  17. 22. VIEW OF FIXED SPAN SUBSTRUCTURE, EAST SPAN, SHOWING CANTILEVEREDBEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW OF FIXED SPAN SUBSTRUCTURE, EAST SPAN, SHOWING CANTILEVERED-BEAM SIDEWALK SUPPORTS, LONGITUDINAL GIRDER AND TRANSVERSE ROADBED BEAMS, LOOKING SOUTHEAST - Congress Street Bascule Bridge, Spanning Fort Point Channel at Congress Street, Boston, Suffolk County, MA

  18. Dual-Cantilever-Beam Accelerometer

    NASA Technical Reports Server (NTRS)

    Reynolds, Emmitt A.; Speckhart, Frank H.

    1988-01-01

    Sensitivity to velocity changes along beam axis reduced. Weighted-end cantilever beams of accelerometer deflected equally by acceleration in y direction. When acceleration to right as well as up or down, right beam deflected more, while left beam deflected less. Bridge circuit averages outputs of strain gauges measuring deflections, so cross-axis sensitivity of accelerometer reduced. New device simple and inexpensive.

  19. Cantilevered probe detector with piezoelectric element

    SciTech Connect

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  20. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  1. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  2. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  3. Design for minimizing fracture risk of all-ceramic cantilever dental bridge.

    PubMed

    Zhang, Zhongpu; Zhou, Shiwei; Li, Eric; Li, Wei; Swain, Michael V; Li, Qing

    2015-01-01

    Minimization of the peak stresses and fracture incidence induced by mastication function is considered critical in design of all-ceramic dental restorations, especially for cantilever fixed partial dentures (FPDs). The focus of this study is on developing a mechanically-sound optimal design for all-ceramic cantilever dental bridge in a posterior region. The topology optimization procedure in association with Extended Finite Element Method (XFEM) is implemented here to search for the best possible distribution of porcelain and zirconia materials in the bridge structure. The designs with different volume fractions of zirconia are considered. The results show that this new methodology is capable of improving FPD design by minimizing incidence of crack in comparison with the initial design. Potentially, it provides dental technicians with a new design tool to develop mechanically sound cantilever fixed partial dentures for more complicated clinical situation. PMID:26405963

  4. Nanomechanical humidity detection through porous alumina cantilevers

    PubMed Central

    Klimenko, Alexey; Lebedev, Vasiliy; Lukashin, Alexey; Eliseev, Andrey

    2015-01-01

    Summary We present here the behavior of the resonance frequency of porous anodic alumina cantilever arrays during water vapor adsorption and emphasize their possible use in the micromechanical sensing of humidity levels at least in the range of 10–22%. The sensitivity of porous anodic aluminium oxide cantilevers (Δf/Δm) and the humidity sensitivity equal about 56 Hz/pg and about 100 Hz/%, respectively. The approach presented here for the design of anodic alumina cantilever arrays by the combination of anodic oxidation and photolithography enables easy control over porosity, surface area, geometric and mechanical characteristics of the cantilever arrays for micromechanical sensing. PMID:26199836

  5. Dynamic response of cantilever retaining walls

    SciTech Connect

    Veletsos, A.S.; Younan, A.H.; Bandyopadhyay, K.

    1996-10-01

    A critical evaluation is made of the response to horizontal ground shaking of flexible cantilever retaining walls that are elastically constrained against rotation at their base. The retained medium is idealized as a uniform, linear, viscoelastic stratum of constant thickness and semi-infinite extent in the horizontal direction. The parameters varied include the flexibilities of the wall and its base, the properties of the retained medium, and the characteristics of the ground motion. In addition to long-period, effectively static excitations, both harmonic base motions and an actual earthquake record are considered. The response quantities examined include the displacements of the wall relative to the moving base, the wall pressures, and the associated shears and bending moments. The method of analysis employed is described only briefly, emphasis being placed on the presentation and interpretation of the comprehensive numerical solutions. It is shown that, for realistic wall flexibilities, the maximum wall forces are significantly lower than those obtained for fixed-based rigid walls and potentially of the same order of magnitude as those computed by the Mononobe-Okabe method.

  6. Prototype cantilevers for quantitative lateral force microscopy

    SciTech Connect

    Reitsma, Mark G.; Gates, Richard S.; Friedman, Lawrence H.; Cook, Robert F.

    2011-09-15

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The ''hammerhead'' cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever ''torque sensitivity'' to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements.

  7. Cantilevers orthodontics forces measured by fiber sensors

    NASA Astrophysics Data System (ADS)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  8. Oscillations of end loaded cantilever beams

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.

    2015-09-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.

  9. Resonance response of scanning force microscopy cantilevers

    SciTech Connect

    Chen, G.Y.; Warmack, R.J.; Thundat, T.; Allison, D.P. ); Huang, A. )

    1994-08-01

    A variational method is used to calculate the deflection and the fundamental and harmonic resonance frequencies of commercial V-shaped and rectangular atomic force microscopy cantilevers. The effective mass of V-shaped cantilevers is roughly half that calculated for the equivalent rectangular cantilevers. Damping by environmental gases, including air, nitrogen, argon, and helium, affects the frequency of maximum response and to a much greater degree the quality factor [ital Q]. Helium has the lowest viscosity, resulting in the highest [ital Q], and thus provides the best sensitivity in noncontact force microscopy. Damping in liquids is dominated by an increase in effective mass of the cantilever due to an added mass of the liquid being dragged with that cantilever.

  10. A cantilever array-based artificial nose

    PubMed

    Baller; Lang; Fritz; Gerber; Gimzewsk; Drechsler; Rothuizen; Despont; Vettiger; Battiston; Ramseyer; Fornaro; Meyer; Guntherodt

    2000-02-01

    We present quantitative and qualitative detection of analyte vapors using a microfabricated silicon cantilever array. To observe transduction of physical and chemical processes into nanomechanical motion of the cantilever, swelling of a polymer layer on the cantilever is monitored during exposure to the analyte. This motion is tracked by a beam-deflection technique using a time multiplexing scheme. The response pattern of eight cantilevers is analyzed via principal component analysis (PCA) and artificial neural network (ANN) techniques, which facilitates the application of the device as an artificial chemical nose. Analytes tested comprise chemical solvents, a homologous series of primary alcohols, and natural flavors. First differential measurements of surface stress change due to protein adsorption on a cantilever array are shown using a liquid cell. PMID:10741645

  11. Combined intrusion and retraction generated by cantilevers with helical coils.

    PubMed

    Melsen, B; Konstantellos, V; Lagoudakis, M; Planert, J

    1997-01-01

    Combined retraction and intrusion of the anterior teeth is often needed as part of orthodontic treatment. The use of a statically determinate force system has many advantages over statically indeterminate systems. In the case of the cantilevers the orthodontist can evaluate the line of action of the delivered force directly in the clinical situation. In the present paper the force system delivered by stainless steel and beta titanium cantilevers with an eccentrically placed helix was evaluated. The cantilever consisted of a straight piece of wire bent to form a helix with an external diameter of 3 mm. The wire was fixed into a bracket of sensor 1, touching sensor 2 of a test bench with a 1-point contact to. Activation was induced by rotating sensor 1 into which the wire was tightly fixed. This was done in 2 different modes, one in the direction in which the helix was bent and one in the opposite direction. With an interval of 5 degrees the force system generated with respect to sensor 1 and the direction of the force delivered to sensor 2 (the other bracket) were registered. The results were expressed graphically and the influence of material and activation mode were evaluated statistically by comparing the coefficient of regression. As expected, the influence of the material reflected the relative stiffness of the 2 alloys. As TMA is monocrystalline (i.e. consists of homogeneous crystals) the mode of activation did not reflect any significant Bauschinger effect as seen in the case of stainless steel. Analysis of the force direction confirmed that the suggested wire configuration is useful for delivery of a predetermined combination of horizontal and vertical force. This was confirmed by a finite element analysis. PMID:9282550

  12. Atomic Force Microscopy in Dynamic Mode with Displacement Current Detection in Double Cantilever Devices

    NASA Astrophysics Data System (ADS)

    Müller, Falk; Müller, Anne‑Dorothea; Hietschold, Michael; Gessner, Thomas

    2006-03-01

    A cantilever array for dynamic mode atomic force microscopy (AFM) is presented, the vertical displacement of which is analyzed by the detection of displacement currents in the electrodes. Each cantilever in the array consists of an actuation part that allows an independent vertical movement, and a sensor part. The lateral distance between the tips of the different cantilevers is fixed to 10 μm. When operated as an actuator, a voltage is applied between the silicon membrane and the underlaying electrode. Due to the resulting coulomb forces, the vertical position of the tip is controllable. The reaction time in this mode is shorter than the response time of a piezostack. The sensor part, on the other hand, allows the device to work in dynamic mode without a laser deflection system. The vertical resolution achieved is below 1 nm. The dependence of force distance curves on the excitation amplitude is shown.

  13. Self-reciprocating radioisotope-powered cantilever

    NASA Astrophysics Data System (ADS)

    Li, Hui; Lal, Amit; Blanchard, James; Henderson, Douglass

    2002-07-01

    A reciprocating cantilever utilizing emitted charges from a millicurie radioisotope thin film is presented. The actuator realizes a direct collected-charge-to-motion conversion. The reciprocation is obtained by self-timed contact between the cantilever and the radioisotope source. A static model balancing the electrostatic and mechanical forces from an equivalent circuit leads to an analytical solution useful for device characterization. Measured reciprocating periods agree with predicted values from the analytical model. A scaling analysis shows that microscale arrays of such cantilevers provide an integrated sensor and actuator platform.

  14. Cantilevers and tips for atomic force microscopy.

    PubMed

    Tortonese, M

    1997-01-01

    The cantilever and the tip are at the centerpiece of the AFM. Properties such as the cantilever stiffness and resonant frequency, tip shape and sharpness, and material characteristics determine the mode of operation of the AFM and the type of experiments and measurements that can be performed. The possibility of batch fabricating cantilevers has permitted the fabrication and characterization of specialized tips for a variety of experiments. We believe that the use of new materials and tip shapes will allow new applications for the AFM in the future. PMID:9086369

  15. Development of double-cantilever infrared detectors

    NASA Astrophysics Data System (ADS)

    Huang, Shusen

    Detection and imaging of infrared (IR) radiation are of great importance to a variety of military and civilian applications. Recent advances in microelectromechanical systems (MEMS) have led to the development of uncooled cantilever IR focal plane arrays (FPAs), which function based on the bending of bimaterial cantilevers upon the absorption of IR energy. In this dissertation, capacitive-based double-cantilever IR FPAs, which have a potential of reaching a noise-equivalent temperature difference (NETD) approaching the theoretical limit, i.e., <10 mK, are developed. Each pixel in the proposed double-cantilever IR FPAs consists of two facing bimaterial cantilevers: one bends upward and the other downward upon IR radiation, resulting in an extremely high sensitivity of the device. It is predicted that the NETD of the double-cantilever IR FPAs is about 60% of the current single-cantilever IR FPAs, which is a significant improvement of device performance. A surface micromachining module with polyimide as a sacrificial material is developed for the fabrication of both simplified single- and double-cantilever FPAs. It is found the as-fabricated FPAs are curved because of the imbalanced residual stresses (strains) in thin films developed in the fabrication processes. In this dissertation, therefore, the general relationship between the residual strain and the resultant elastic bending deformation is modeled. A thorough investigation of residual stresses in cantilever IR materials and structures is then conducted using the theory developed in this dissertation. Furthermore, thermal-cycling experiments reveal that the residual stresses in IR materials, i.e., plasma-enhanced chemical vapor deposited (PECVD) SiNx and electron beam (Ebeam) AI, can be significantly modified by thermal annealing. Therefore, an engineering approach to flattening IR FPAs is developed by using rapid thermal annealing (RTA). Finally, this dissertation demonstrates the thermal detection of cantilever

  16. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer.

    PubMed

    Inada, Natsumi; Asakawa, Hitoshi; Kobayashi, Taiki; Fukuma, Takeshi

    2016-01-01

    Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid. PMID:27335733

  17. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

    PubMed Central

    Inada, Natsumi; Kobayashi, Taiki; Fukuma, Takeshi

    2016-01-01

    Summary Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid. PMID:27335733

  18. Generation of squeezing: magnetic dipoles on cantilevers

    NASA Astrophysics Data System (ADS)

    Seok, Hyojun; Singh, Swati; Steinke, Steven; Meystre, Pierre

    2011-05-01

    We investigate the generation of motional squeezed states in a nano-mechanical cantilever. Our model system consists of a nanoscale cantilever - whose center-of-mass motion is initially cooled to its quantum mechanical ground state - magnetically coupled a classically driven mechanical tuning fork. We show that the magnetic dipole-dipole interaction can produce significant phonon squeezing of the center-of-mass motion of the cantilever, and evaluate the effect of various dissipation channels, including the coupling of the cantilever to a heat bath and phase and amplitude fluctuations in the oscillating field driving the tuning fork. US National Science Foundation, the US Army Research Office, DARPA ORCHID program through a grant from AFOSR.

  19. Demonstration of an electrostatic-shielded cantilever

    SciTech Connect

    Pingue, P.; Piazza, V.; Baschieri, P.; Ascoli, C.; Menozzi, C.; Alessandrini, A.; Facci, P.

    2006-01-23

    The fabrication and performances of cantilevered probes with reduced parasitic capacitance starting from a commercial Si{sub 3}N{sub 4} cantilever chip is presented. Nanomachining and metal deposition induced by focused ion beam techniques were employed in order to modify the original insulating pyramidal tip and insert a conducting metallic tip. Two parallel metallic electrodes deposited on the original cantilever arms are employed for tip biasing and as ground plane in order to minimize the electrostatic force due to the capacitive interaction between cantilever and sample surface. Excitation spectra and force-to-distance characterization are shown with different electrode configurations. Applications of this scheme in electrostatic force microscopy, Kelvin probe microscopy and local anodic oxidation is discussed.

  20. Piezoresistive Cantilever Performance—Part II: Optimization

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Rastegar, Ali J.; Pruitt, Beth L.

    2010-01-01

    Piezoresistive silicon cantilevers fabricated by ion implantation are frequently used for force, displacement, and chemical sensors due to their low cost and electronic readout. However, the design of piezoresistive cantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. We systematically analyzed the effect of design and process parameters on force resolution and then developed an optimization approach to improve force resolution while satisfying various design constraints using simulation results. The combined simulation and optimization approach is extensible to other doping methods beyond ion implantation in principle. The optimization results were validated by fabricating cantilevers with the optimized conditions and characterizing their performance. The measurement results demonstrate that the analytical model accurately predicts force and displacement resolution, and sensitivity and noise tradeoff in optimal cantilever performance. We also performed a comparison between our optimization technique and existing models and demonstrated eight times improvement in force resolution over simplified models. PMID:20333323

  1. Double sided surface stress cantilever sensor

    NASA Astrophysics Data System (ADS)

    Rasmussen, P. A.; Grigorov, A. V.; Boisen, A.

    2005-05-01

    Micromachined cantilevers, originally developed for use in atomic force microscopy, are gaining more and more interest as biochemical sensors, where the way in which the binding of chemical species changes the mechanical properties of the cantilever is utilized. Mass and stiffness changes are measured on resonating structures (Cherian and Thundat 2002 Appl. Phys. Lett. 80 2219-21 Gupta et al 2004 Appl. Phys. Lett. 84 1976-8), whereas changes in surface energy from the binding event are measured as static deflections of cantilevers (Savran et al 2004 Anal. Chem. 76 3194-8). The latter measurement type is referred to as a surface stress sensor and it is the description of a new and more sensitive cantilever surface stress measurement technique that is the topic of this paper.

  2. Cantilever based optical interfacial force microscope

    NASA Astrophysics Data System (ADS)

    Bonander, Jeremy R.; Kim, Byung I.

    2008-03-01

    We developed a cantilever based optical interfacial force microscopy (COIFM) that employs a microactuated silicon cantilever and optical detection method to establish the measurement of the single molecular interactions using the force feedback technique. Through the direct measurement of the COIFM force-distance curves, we have demonstrated that the COIFM is capable of unveiling structural and mechanical information on interfacial water at the single molecular level over all distances between two hydrophilic surfaces.

  3. Torsion and transverse bending of cantilever plates

    NASA Technical Reports Server (NTRS)

    Reissner, Eric; Stein, Manuel

    1951-01-01

    The problem of combined bending and torsion of cantilever plates of variable thickness, such as might be considered for solid thin high-speed airplane or missile wings, is considered in this paper. The deflections of the plate are assumed to vary linearly across the chord; minimization of the potential energy by means of the calculus of variations then leads to two ordinary linear differential equations for the bending deflections and the twist of the plate. Because the cantilever is analyzed as a plate rather than as a beam, the effect of constraint against axial warping in torsion is inherently included. The application of this method to specific problems involving static deflection, vibration, and buckling of cantilever plates is presented. In the static-deflection problems, taper and sweep are considered.

  4. 2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING 168 (1960 HOG KILL) IS BENEATH HOG RUN - Rath Packing Company, Cantilevered Hog Run, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  5. Cantilever and capacitor technique for measuring dilatation

    SciTech Connect

    Primak, W.; Monahan, E.

    1983-05-01

    The relationship of EerNisse's technique for measuring small dilatations caused by irradiation with short-range particles, which utilizes a metallized thin plate mounted as a cantilever below whose free end an electrode is placed (forming a capacitor), to a photoelastic technique and to an interferometric technique are derived. The effects of stray capacitance, the fringing field of the capacitor, the clamping stress on the cantilever plate, the electrical resistance of the metallic coating, the charging of the tank circuit of which the capacitor is an element, the flange bolting stress, and the beam heating are assessed, and examples of the manner in which they contaminate the data are given.

  6. Self-heating in piezoresistive cantilevers

    PubMed Central

    Doll, Joseph C.; Corbin, Elise A.; King, William P.; Pruitt, Beth L.

    2011-01-01

    We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature. PMID:21731884

  7. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  8. Note: Improved calibration of atomic force microscope cantilevers using multiple reference cantilevers

    SciTech Connect

    Sader, John E.; Friend, James R.

    2015-05-15

    Overall precision of the simplified calibration method in J. E. Sader et al., Rev. Sci. Instrum. 83, 103705 (2012), Sec. III D, is dominated by the spring constant of the reference cantilever. The question arises: How does one take measurements from multiple reference cantilevers, and combine these results, to improve uncertainty of the reference cantilever’s spring constant and hence the overall precision of the method? This question is addressed in this note. Its answer enables manufacturers to specify of a single set of data for the spring constant, resonant frequency, and quality factor, from measurements on multiple reference cantilevers. With this data set, users can trivially calibrate cantilevers of the same type.

  9. Forced Vibrations of a Cantilever Beam

    ERIC Educational Resources Information Center

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  10. Calibration of higher eigenmodes of cantilevers

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Kocun, Marta; Lysy, Martin; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger

    2016-07-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  11. Calibration of higher eigenmodes of cantilevers.

    PubMed

    Labuda, Aleksander; Kocun, Marta; Lysy, Martin; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger

    2016-07-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem. PMID:27475563

  12. Direct and alignment-insensitive measurement of cantilever curvature

    SciTech Connect

    Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.

    2013-07-15

    We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.

  13. Improved atomic force microscopy cantilever performance by partial reflective coating.

    PubMed

    Schumacher, Zeno; Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds. PMID:26199849

  14. Optical actuation of silicon cantilevers: modelling and experimental investigation

    NASA Astrophysics Data System (ADS)

    Jiang, Fei; Keating, Adrian; Martyuink, Mariusz; Silva, Dilusha; Faraone, Lorenzo; Dell, John M.

    2013-05-01

    This paper reports on the modeling and experimental investigation of optical excitation of silicon cantilevers. In this work, the silicon cantilevers fabricated have dimensions with width of 15 μm, thickness of 0.26 μm, and variable length from 50 to 120 μm. In order to investigate the effect of the laser modulation frequency and position on the temperature at the anchor edge and displacements at the tip of cantilevers, a transient thermal ANSYS simulation and a steady-state static thermal mechanical ANSYS simulation were undertaken using a structure consisting of silicon device layer, SiO2 sacrificial layer and silicon substrate. The dynamic properties of silicon cantilevers were undertaken by a series of experiments. The period optical driving signal with controlled modulation amplitude was provided by a 405 nm diode laser with a 2.9 μW/μm2 laser power and variable frequencies. The laser spot was located through the longitude direction of silicon cantilevers. In factor, simulation results well matched with experimental observation, including: 1) for untreated silicon cantilevers, the maximum of displacement is observed when the laser beam was located half a diameter way from the anchor on the silicon suspended cantilever side; 2) for the both cantilevers, maximum displacement occurs when the optical actuation frequency is equal to the resonant frequency of cantilevers. Understanding the optical excitation on silicon cantilevers, as waveguides, can potentially increase sensing detection sensitivity (ratio of transmission to cantilever deflection).

  15. Correction of Multiple Canine Impactions by Mixed Straightwire and Cantilever Mechanics: A Case Report

    PubMed Central

    Iodice, Giorgio; d'Antò, Vincenzo; Riccitiello, Francesco; Pellegrino, Gioacchino; Valletta, Rosa

    2014-01-01

    Background. This case report describes the orthodontic treatment of a woman, aged 17 years, with a permanent dentition, brachyfacial typology, Angle Class I, with full impaction of two canines (13,33), and a severe ectopy of the maxillary left canine. Her main compliant was the position of the ectopic teeth. Methods. Straightwire fixed appliances, together with cantilever mechanics, were used to correct the impaired occlusion and to obtain an ideal torque control. Results and Conclusion. The treatment objectives were achieved in 26 months of treatment. The impactions were fully corrected with an optimal torque. The cantilever mechanics succeeded in obtaining tooth repositioning in a short lapse of time. After treatment, the dental alignment was stable. PMID:25140261

  16. Closed-form solution for a cantilevered sectorial plate subjected to a tip concentrated force.

    PubMed

    Christy, Carl W; Weggel, David C; Smelser, R E

    2016-01-01

    A closed-form solution is presented for a cantilevered sectorial plate subjected to a tip concentrated force. Since the particular solution for this problem was not found in the literature, it is derived here. Deflections from the total solution (particular plus homogeneous solutions) are compared to those from a finite element analysis and are found to be in excellent agreement, producing an error within approximately 0.08 %. Normalized closed-form deflections and slopes at the fixed support, resulting from an approximate enforcement of the boundary conditions there, deviate from zero by <0.08 %. Finally, the total closed-form solutions for a cantilevered sectorial plate subjected to independent applications of a tip concentrated force, a tip bending moment, and a tip twisting moment, are compiled. PMID:27390653

  17. Intrinsic dissipation in atomic force microscopy cantilevers.

    PubMed

    Zypman, Fredy

    2011-07-01

    In this paper we build a practical modification to the standard Euler-Bernoulli equation for flexural modes of cantilever vibrations most relevant for operation of AFM in high vacuum conditions. This is done by the study of a new internal dissipation term into the Euler-Bernoulli equation. This term remains valid in ultra-high vacuum, and becomes particularly relevant when viscous dissipation with the fluid environment becomes negligible. We derive a compact explicit equation for the quality factor versus pressure for all the flexural modes. This expression is used to compare with corresponding extant high vacuum experiments. We demonstrate that a single internal dissipation parameter and a single viscosity parameter provide enough information to reproduce the first three experimental flexural resonances at all pressures. The new term introduced here has a mesoscopic origin in the relative motion between adjacent layers in the cantilever. PMID:21741914

  18. Linear and Nonlinear Photoinduced Deformations of Cantilevers

    NASA Astrophysics Data System (ADS)

    Corbett, D.; Warner, M.

    2007-10-01

    Glassy and elastomeric nematic networks with dye molecules present can be very responsive to illumination, huge reversible strains being possible. If absorption is appreciable, strain decreases with depth into a cantilever, leading to bend that is the basis of micro-opto-mechanical systems (MOMS). Bend actually occurs even when Beer’s law suggests a tiny penetration of light into a heavily dye-doped system. We model the nonlinear opto-elastic processes behind this effect. In the regime of cantilever thickness giving optimal bending for a given incident light intensity, there are three neutral surfaces. In practice such nonlinear absorptive effects are very important since heavily doped systems are commonly used.

  19. Cantilever mounted resilient pad gas bearing

    NASA Technical Reports Server (NTRS)

    Etsion, I. (Inventor)

    1978-01-01

    A gas-lubricated bearing is described, employing at least one pad mounted on a rectangular cantilever beam to produce a lubricating wedge between the face of the pad and a moving surface. The load-carrying and stiffness characteristics of the pad are related to the dimensions and modulus of elasticity of the beam. The bearing is applicable to a wide variety of types of hydrodynamic bearings.

  20. Understanding interferometry for micro-cantilever displacement detection

    PubMed Central

    Nörenberg, Tobias; Temmen, Matthias; Reichling, Michael

    2016-01-01

    Summary Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions. PMID:27547601

  1. Understanding interferometry for micro-cantilever displacement detection.

    PubMed

    von Schmidsfeld, Alexander; Nörenberg, Tobias; Temmen, Matthias; Reichling, Michael

    2016-01-01

    Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry-Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber-cantilever configurations. In the Fabry-Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz(0.5) under optimum conditions. PMID:27547601

  2. Exploiting cantilever curvature for noise reduction in atomic force microscopy.

    PubMed

    Labuda, Aleksander; Grütter, Peter H

    2011-01-01

    Optical beam deflection is a widely used method for detecting the deflection of atomic force microscope (AFM) cantilevers. This paper presents a first order derivation for the angular detection noise density which determines the lower limit for deflection sensing. Surprisingly, the cantilever radius of curvature, commonly not considered, plays a crucial role and can be exploited to decrease angular detection noise. We demonstrate a reduction in angular detection shot noise of more than an order of magnitude on a home-built AFM with a commercial 450 μm long cantilever by exploiting the optical properties of the cantilever curvature caused by the reflective gold coating. Lastly, we demonstrate how cantilever curvature can be responsible for up to 45% of the variability in the measured sensitivity of cantilevers on commercially available AFMs. PMID:21280834

  3. Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction

    NASA Astrophysics Data System (ADS)

    Chen, Li-Qun; Zhang, Guo-Ce; Ding, Hu

    2015-10-01

    Forced vibration is investigated for two elastically connected cantilevers, under harmonic base excitation. One of the cantilevers is with a tip magnet repelled by a magnet fixed on the base. The cantilevers are uniform viscoelastic beams constituted by the Kelvin model. The system is formulated as a set of two linear partial differential equations with nonlinear boundary conditions. The method of multiple scales is developed to analyze the effects of internal resonances on the steady-state responses to external excitations in the nonlinear boundary problem of the partial differential equations. In the presence of 2:1 internal resonance, both the first and the second primary resonances are examined in detail. The analytical frequency-amplitude response relationships are derived from the solvability conditions. It is found that the frequency-amplitude response curves reveal typical nonlinear phenomena such as jumping and hysteresis in both primary resonances as well as saturation in the second primary resonance. The frequency-amplitude response curves may be converted from hardening-type single-jumping to double-jumpings, and further to softening-type single-jumping by adjusting the distance between two magnets. It is also found that the unstable parts of the frequency-amplitude response curves correspond to quasi-periodic motions. The finite difference scheme is proposed to discretize both the temporal and the spatial variables, and thus the numerical solutions can be calculated. The analytical results are supported by the numerical solutions.

  4. Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide

    NASA Technical Reports Server (NTRS)

    Burcham, Kevin E.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    A micromachined cantilever beam accelerometer is described in which beam deflection is determined optically. A diving board structure is anisotropically etched into a silicon wafer. This diving board structure is patterned from the wafer backside so as to leave a small gap between the tip of the diving board and the opposite fixed edge on the front side of the wafer. In order to sense a realistic range of accelerations, a foot mass incorporated onto the end of the beam is found to provide design flexibility. A silicon nitride optical waveguide is then deposited by low pressure chemical vapor deposition (LPCVD) onto the sample. Beam deflection is measured by the decrease of light coupled across the gap between the waveguide sections. In order to investigate sensor response and simulate deflection of the beam, we utilized a separate beam and waveguide section which could be displaced from one another in a precisely controlled manner. Measurements were performed on samples with gaps of 4.0, 6.0, and 8.0 micron and the variation of the fraction of light coupled across the gap as a function of displacement and gap spacing was found to agree with overlap integral calculations.

  5. Improved assembly processes for the Quartz Digital Accelerometer cantilever

    SciTech Connect

    Romero, A.M.; Gebert, C.T.

    1990-07-01

    This report covers the development of improved assembly processes for the Quartz Digital Accelerometer cantilever. In this report we discuss improved single-assembly tooling, the development of tooling and processes for precision application of polyimide adhesive, the development of the wafer scale assembly procedure, and the application of eutectic bonding to cantilever assembly. 2 refs., 17 figs.

  6. 11. VIEW, LOOKING SOUTHEAST, ALONG CENTERLINE FROM SOUTH CANTILEVER TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW, LOOKING SOUTHEAST, ALONG CENTERLINE FROM SOUTH CANTILEVER TOWARD TOWARD NORTH PORTAL. Note vertical displacement in deck caused by partial collapse at point of connection between south cantilever arm and suspended span. - Smith River Bridge, CA State Highway 199 Spanning Smith River, Crescent City, Del Norte County, CA

  7. CLOSEUP VIEW OF BOTTOM OF MAIN BRIDGE CANTILEVER THROUGH TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW OF BOTTOM OF MAIN BRIDGE CANTILEVER THROUGH TRUSS SPAN SHOWING CANTILEVERED HIGHWAY FLOOR BRACKET LOOKING NORTHWEST AT PIER “II”. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  8. Fiber-optic, cantilever-type acoustic motion velocity hydrophone.

    PubMed

    Cranch, G A; Miller, G A; Kirkendall, C K

    2012-07-01

    The interaction between fluid loaded fiber-optic cantilevers and a low frequency acoustic wave is investigated as the basis for an acoustic vector sensor. The displacements of the prototype cantilevers are measured with an integrated fiber laser strain sensor. A theoretical model predicting the frequency dependent shape of acoustically driven planar and cylindrical fiber-optic cantilevers incorporating effects of fluid viscosity is presented. The model demonstrates good agreement with the measured response of two prototype cantilevers, characterized with a vibrating water column, in the regime of Re ≥ 1. The performance of each cantilever geometry is also analyzed. Factors affecting the sensor performance such as fluid viscosity, laser mode profile, and support motion are considered. The planar cantilever is shown to experience the largest acoustically induced force and hence the highest acoustic responsivity. However, the cylindrical cantilever exhibits the smoothest response in water, due to the influence of viscous fluid damping, and is capable of two axis particle velocity measurement. These cantilevers are shown to be capable of achieving acoustic resolutions approaching the lowest sea-state ocean noise. PMID:22779459

  9. Hysteresis of the resonance frequency of magnetostrictive bending cantilevers

    NASA Astrophysics Data System (ADS)

    Löffler, Michael; Kremer, Ramona; Sutor, Alexander; Lerch, Reinhard

    2015-05-01

    Magnetostrictive bending cantilevers are applicable for wirelessly measuring physical quantities such as pressure and strain. Exploiting the ΔE-effect, the resonance frequency of the cantilevers is shifted because of a change in the magnetic biasing field. The biasing field, in turn, depends on the applied pressure or strain, respectively. With a view to the application as a reliable sensor, maximum sensitivity but minimum hysteresis in the biasing field/resonance frequency dependence is preferred. In this contribution, monomorph bending cantilevers fabricated using magnetostrictive Fe49Co49V2 and Metglas 2605SA1 are investigated regarding their applicability for future sensors. For this purpose, the biasing field-dependent polarization of the magnetostrictive materials and bending of the cantilevers are determined. Furthermore, a setup to magnetically bias the cantilevers and determine the bending resonance frequency is presented. Here, the resonance frequency is identified by measuring the impulse response employing a laser Doppler vibrometer. The measurement results reveal that cantilevers made of Fe49Co49V2 possess a distinct hysteretic behaviour at low magnetic biasing field magnitudes. This is ascribed to the polarization and bending hysteresis. Cantilevers fabricated using Metglas 2605SA1 feature a lower resonance frequency shift compared to cantilevers with Fe49Co49V2, which would result in a lower sensitivity of the sensor. However, their resonance frequency hysteresis is almost negligible.

  10. Resonating cantilever mass sensor with mechanical on-plane excitation

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Abadal, Gabriel; Jordà, Xavier; Borrise, Xavier; Davis, Zachary; Barniol, Nuria

    2003-04-01

    The aim of this paper is to report the experimental setup designed, developed and tested in order to achieve the first vibrating mode of a lateral cantilever with mechanical excitation. The on-plane oscillating cantilever is the basis of a proposed mass sensor with an expected resolution in the atto-gram scale. In a first system design, the cantilever is driven electrostatically by an electrode, which is placed parallel to the cantilever. The cantilever is driven to its first resonant mode applying an AC voltage between the cantilever and a driver. Also, a DC voltage is applied to increase the system response. The signal read-out of the transducer is the capacitive current of the cantilever-driver system. The mass sensor proposed, based on this cantilever-driver structure (CDS), is integrated with a CMOS circuitry in order to minimize the parasitic capacitances, that in this case take special relevance because of the low level output current coming from the transducer. Moreover, the electrostatic excitation introduces a parasitic current that overlaps the current due to the resonance. The mechanical excitation is an alternative excitation method which aim is to eliminate the excitation current. Here we describe the experimental facilities developed to achieve mechanical excitation and report preliminary results obtained by this excitation technique. The results are complemented with dynamic simulations of an equivalent system model that are in accordance with the experimental values.

  11. Fabricating optical fibre-top cantilevers for temperature sensing

    NASA Astrophysics Data System (ADS)

    Li, J.; Albri, F.; Sun, J. N.; Miliar, M. M.; Maier, R. R. J.; Hand, D. P.; MacPherson, W. N.

    2014-03-01

    In this paper, we propose techniques to fabricate micro-cantilevers onto the end of standard single mode optical fibres using a combination of picosecond laser machining and focused ion beam milling techniques and demonstrate their use as temperature sensors. Using this approach the cantilever can be pre-aligned with the core of the fibre during fabrication, therefore offering a stable and straightforward means of optically addressing the cantilever. The cantilever is designed to measure deflection over a range of 10 µm using a simple readout technique. A phase recovery algorithm is employed to reduce the interrogation error to around 2-3 nm. Finally, a temperature cycling experiment demonstrates that the cantilever could be used as a temperature sensor from room temperature to 500 °C with an average rms temperature error from 20 °C to 500 °C of ˜±1.4 °C.

  12. Microfabricated cantilever-based detector for molecular beam experiments

    NASA Astrophysics Data System (ADS)

    Bachels, T.; Schäfer, R.

    1998-11-01

    A low cost detector for particles in molecular beam experiments is presented which can easily be mounted in a molecular beam apparatus. The detector is based on microfabricated cantilevers, which can be employed either as single sensors or as sensor arrays. The single cantilever technique has been used to measure the absolute number of atoms coming out of a pulsed laser vaporization cluster source. The particles are detected by the shift of the thermally excited resonance frequency of the cantilever due to the cluster deposition. We have determined with the single cantilever the ratio of neutral to ionized clusters and we have investigated the cluster generation at different source conditions. In addition to this, a microfabricated cantilever array has been used to measure molecular beam profiles, which opens new possibilities for molecular beam deflection experiments.

  13. Serial weighting of micro-objects with resonant microchanneled cantilevers.

    PubMed

    Ossola, Dario; Dörig, Pablo; Vörös, János; Zambelli, Tomaso; Vassalli, Massimo

    2016-10-14

    Atomic force microscopy (AFM) cantilevers have proven to be very effective mass sensors. The attachment of a small mass to a vibrating cantilever produces a resonance frequency shift that can be monitored, providing the ability to measure mass changes down to a few molecules resolution. Nevertheless, the lack of a practical method to handle the catch and release process required for dynamic weighting of microobjects strongly hindered the application of the technology beyond proof of concept measurements. Here, a method is proposed in which FluidFM hollow cantilevers are exploited to overcome the standard limitations of AFM-based mass sensors, providing high throughput single object weighting with picogram accuracy. The extension of the dynamic models of AFM cantilevers to hollow cantilevers was discussed and the effectiveness of mass weighting in air was validated on test samples. PMID:27608651

  14. Cantilever transducers as a platform for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Lavrik, Nickolay V.; Sepaniak, Michael J.; Datskos, Panos G.

    2004-07-01

    Since the late 1980s there have been spectacular developments in micromechanical or microelectro-mechanical (MEMS) systems which have enabled the exploration of transduction modes that involve mechanical energy and are based primarily on mechanical phenomena. As a result an innovative family of chemical and biological sensors has emerged. In this article, we discuss sensors with transducers in a form of cantilevers. While MEMS represents a diverse family of designs, devices with simple cantilever configurations are especially attractive as transducers for chemical and biological sensors. The review deals with four important aspects of cantilever transducers: (i) operation principles and models; (ii) microfabrication; (iii) figures of merit; and (iv) applications of cantilever sensors. We also provide a brief analysis of historical predecessors of the modern cantilever sensors.

  15. Pulling on super paramagnetic beads with micro cantilevers: single molecule mechanical assay application.

    PubMed

    Muñoz, Romina; Aguilar Sandoval, Felipe; Wilson, Christian A M; Melo, Francisco

    2015-07-01

    This paper demonstrates that it is possible to trap and release a super paramagnetic micro bead by fixing three super paramagnetic micro beads in a triangular array at the sensitive end of a micro cantilever, and by simply switching on/off an external magnetic field. To provide evidence of this principle we trap a micro bead that is attached to the free end of single DNA molecule and that has been previously fixed at the other end to a glass surface, using the standard sample preparation protocol of magnetic tweezers assays. The switching process is reversible which preserves the integrity of the tethered molecule, and a local force applied over the tethered bead excludes the neighbouring beads from the magnetic trap. We have developed a quadrature phase interferometer which is able to perform under fluid environments to accurately measure small deflections, which permits the exploration of DNA elasticity. Our results agree with measurements from magnetic tweezer assays performed under similar conditions. Furthermore, compared to the magnetic tweezer methodology, the combination of the magnetic trap with a suitable measurement system for cantilever deflection, allows for the exploration of a wide range of forces using a local method that has an improved temporal resolution. PMID:26200136

  16. Effect of cantilever nonlinearity in nanoscale tensile testing

    NASA Astrophysics Data System (ADS)

    Ding, Weiqiang; Guo, Zaoyang; Ruoff, Rodney S.

    2007-02-01

    Microcantilevers are widely used in micro-/nanoscale mechanics studies. The nonlinear response of a cantilever at large deflection is sometimes overlooked. A general study of cantilever beam nonlinearity under a variety of loading conditions was performed with analytical and finite element analyses. Analytical equations for the applied load and the cantilever deflection were obtained. The cantilever nonlinearity was found to increase with increasing cantilever deflection and/or angle of loading. Tensile tests were performed on templated carbon nanotubes (TCNTs) with a custom-made nanomanipulator inside a scanning electron microscope. Atomic force microscope (AFM) cantilevers were used to load the TCNTs and sense the force. During the tests the AFM cantilevers were loaded to relatively large deflections with nonvertical loads applied at the AFM tip. Based on the slope and the loading angle measurements, the breaking forces of the TCNTs were obtained through numerical integration of the analytical equations. A comparison was made between the load results obtained from linear and nonlinear analyses. The linear analysis was found to underestimate the applied load by up to 15%.

  17. In-situ piezoresponse force microscopy cantilever mode shape profiling

    SciTech Connect

    Proksch, R.

    2015-08-21

    The frequency-dependent amplitude and phase in piezoresponse force microscopy (PFM) measurements are shown to be a consequence of the Euler-Bernoulli (EB) dynamics of atomic force microscope (AFM) cantilever beams used to make the measurements. Changes in the cantilever mode shape as a function of changes in the boundary conditions determine the sensitivity of cantilevers to forces between the tip and the sample. Conventional PFM and AFM measurements are made with the motion of the cantilever measured at one optical beam detector (OBD) spot location. A single OBD spot location provides a limited picture of the total cantilever motion, and in fact, experimentally observed cantilever amplitude and phase are shown to be strongly dependent on the OBD spot position for many measurements. In this work, the commonly observed frequency dependence of PFM response is explained through experimental measurements and analytic theoretical EB modeling of the PFM response as a function of both frequency and OBD spot location on a periodically poled lithium niobate sample. One notable conclusion is that a common choice of OBD spot location—at or near the tip of the cantilever—is particularly vulnerable to frequency dependent amplitude and phase variations stemming from dynamics of the cantilever sensor rather than from the piezoresponse of the sample.

  18. Deflection of a flexural cantilever beam

    NASA Astrophysics Data System (ADS)

    Sherbourne, A. N.; Lu, F.

    The behavior of a flexural elastoplastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay (1962) is extended to include postyield behavior. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.

  19. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  20. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Ahmad, Mahmoud Al; Alshareef, H. N.

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.

  1. Voltage generation of piezoelectric cantilevers by laser heating

    PubMed Central

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y.; Gao, Xiaotong; Shih, Wei-Heng

    2012-01-01

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity. PMID:23258941

  2. Piezoresistive cantilever array sensor for consolidated bioprocess monitoring

    SciTech Connect

    Kim, Seonghwan Sam; Rahman, Touhidur; Senesac, Larry R; Davison, Brian H; Thundat, Thomas George

    2009-01-01

    Cellulolytic microbes occur in diverse natural niches and are being screened for industrial modification and utility. A microbe for Consolidated bioprocessing (CBP) development can rapidly degrade pure cellulose and then ferment the resulting sugars into fuels. To identify and screen for novel microbes for CBP, we have developed a piezoresistive cantilever array sensor which is capable of simultaneous monitoring of glucose and ethanol concentration changes in a phosphate buffer solution. 4-mercaptophenylboronic acid (4-MPBA) and polyethyleneglycol (PEG)-thiol are employed to functionalize each piezoresistive cantilever for glucose and ethanol sensing, respectively. Successful concentration measurements of glucose and ethanol with minimal interferences are obtained with our cantilever array sensor.

  3. Magnetic cantilever actuator with sharpened magnetic thin film ellipses

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Ger, Tzong-Rong; Lai, Mei-Feng; Chen, We-Yun; Huang, Hao-Ting; Chen, Jiann-Yeu; Wang, Pei-Jen; Wei, Zung-Hang

    2015-05-01

    A SiO2 cantilever covered by elliptical magnetic thin films was designed as an actuator. Under magnetic field, the elliptical magnetic film with sharp ends would exhibit single-domain structures and generate torque to push or pull the two arms of the cantilever. The cantilever could then stretch or compress and the displacement could be controlled by adjusting the magnitude and direction of the external magnetic field. The combination between micromagnetism of patterned films and actuator was successfully demonstrated. The magnetic actuator can be applied for future application in the biological field and would be valuable for microelectromechanical systems (MEMS).

  4. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    The atomic force microscope (AFM) tapping mode is a highly sensitive local probing technique that is very useful to study and measure surface properties down to the atomic scale. The tapping mode is mostly implemented using the resonance of the first bending mode of the cantilever and therefore provides sensitivity mainly along the direction of this oscillation. Driven by the semiconductor industry, there is an increasing need for accurate measurements of nanoscale structures for side wall characterization by AFM that requires additional sensitivity in the lateral direction. The conventional tapping mode has been augmented by various authors, for example by tilting the cantilever system (Cho et al 2011 Rev. Sci. Instrum. 82 023707) to access the sidewall or using a torsion mode (Dai et al 2011 Meas. Sci. Technol. 22 094009) of the cantilever to provide additional lateral sensitivity. These approaches however trade lateral sensitivity for vertical sensitivity or still lack sensitivity in the remaining lateral direction. We present an approach towards true 3D sensitivity for AFM cantilevers based on simultaneous excitation and optical detection of multiple cantilever resonance modes along three axes. Tuning the excitation of the cantilever to specific frequencies provides a mechanism to select only those cantilever modes that have the desired characteristics. Additionally, cantilever engineering has been used to design and create a substructure within the cantilever that has been optimized for specific resonance behavior around 4 MHz. In contrast to the conventional approach of using a piezo to actuate the cantilever modulation, we present results on photo-thermal excitation using an intensity modulated low-power laser source. By tightly focusing the excitation spot on the cantilever we were able to attain a deflection efficiency of 0.7 nm µW-1 for the first bending mode. The presented approach results in an efficient all optical excitation and deflection detection

  5. Cantilever arrays for multiplexed mechanical analysis of biomolecular reactions.

    PubMed

    Yue, Min; Stachowiak, Jeanne C; Majumdar, Arunava

    2004-09-01

    Microchips containing arrays of cantilever beams have been used to mechanically detect and quantitatively analyze multiple reactions of DNA hybridization and antigen-antibody binding simultaneously. The reaction-induced deflection of a cantilever beam reflects the interplay between strain energy increase of the beam and the free energy reduction of a reaction, providing an ideal tool for investigating the connection between mechanics and chemistry of biomolecular reactions. Since free energy reduction is common for all reactions, the cantilever array forms a universal platform for label-free detection of various specific biomolecular reactions. A few such reactions and their implications in biology and biotechnology are discussed. PMID:16783934

  6. Voltage generation of piezoelectric cantilevers by laser heating.

    PubMed

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-15

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity. PMID:23258941

  7. Voltage generation of piezoelectric cantilevers by laser heating

    NASA Astrophysics Data System (ADS)

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y.; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-01

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity.

  8. Self-sensing piezoresistive cantilever and its magnetic force microscopy applications.

    PubMed

    Takahashi, Hiroshi; Ando, Kazunori; Shirakawabe, Yoshiharu

    2002-05-01

    A newly developed Si self-sensing piezoresistive cantilever is presented. Si piezoresistive cantilevers for scanning microscopy are fabricated by Si micro-machining technique. The sensitivity of the piezoresistive cantilever is comparable to the current laser detecting system. Topographic images are successfully obtained with the piezoresistive cantilever and some comparisons are made with the laser detecting system. Furthermore, the magnetic film (Co-Cr-Pt) is coated on the tip of the piezoresistive cantilever for magnetic force microscopy (MFM) application. The magnetic images are successfully obtained with the self-sensing MFM piezoresistive cantilever. The self-sensing piezoresistive cantilevers have been successfully applied in scanning probe microscopy and MFM. PMID:12211485

  9. 20. DETAIL OF WEST ANCHOR SPAN, CANTILEVER ARMS AND WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL OF WEST ANCHOR SPAN, CANTILEVER ARMS AND WEST HALF OF SUSPENDED SPAN OF THROUGH TRUSS. VIEW TO NORTHEAST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  10. 29. DECK / WEB / LATERAL BRACING DETAIL OF CANTILEVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DECK / WEB / LATERAL BRACING DETAIL OF CANTILEVER ARM OF THROUGH TRUSS. VIEW TO WEST. - MacArthur Bridge, Spanning Mississippi River on Highway 34 between IA & IL, Burlington, Des Moines County, IA

  11. Wedged AFM-cantilevers for parallel plate cell mechanics.

    PubMed

    Stewart, Martin P; Hodel, Adrian W; Spielhofer, Andreas; Cattin, Cedric J; Müller, Daniel J; Helenius, Jonne

    2013-04-01

    The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties. PMID:23473778

  12. OBLIQUE VIEW OF THE NORTHEAST SIDE. NOTE THE CANTILEVERED CANOPY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF THE NORTHEAST SIDE. NOTE THE CANTILEVERED CANOPY OVER THE FRONT DOOR AND BELT COURSE OF THREE FLARED BANDS. VIEW FACING SOUTHEAST. - Hickam Field, Officers' Housing Type M, 113 Beard Avenue, Honolulu, Honolulu County, HI

  13. 57. VIEW WEST, DETAIL OF CANTILEVER SPAN SHOWING OVERHANG FRAMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. VIEW WEST, DETAIL OF CANTILEVER SPAN SHOWING OVERHANG FRAMING AND UNDERSIDE FRAMING - Route 1 Extension, Southbound Viaduct, Spanning Conrail Yards, Wilson Avenue, Delancy Street, & South Street on Routes 1 & 9 Southbound, Newark, Essex County, NJ

  14. 21. DETAIL OF WEST (AMERICAN) CANTILEVER AND ANCHOR ARMS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL OF WEST (AMERICAN) CANTILEVER AND ANCHOR ARMS OF MAIN SPAN, SHOWING PIER M. VIEW TO NORTH. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  15. 12. VIEW EAST ALONG DECK CENTERLINE, PRIOR TO CANTILEVERING SIDEWALK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW EAST ALONG DECK CENTERLINE, PRIOR TO CANTILEVERING SIDEWALK ON DOWNSTREAM SIDE File photo, Caltrans Office of Strutures Maintenance, March 1938. Photographer unknown. Photocopy of photograph - San Roque Canyon Bridge, State Highway 192, Santa Barbara, Santa Barbara County, CA

  16. 19. Cantilevered barn in Cades Cove looking SSW. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Cantilevered barn in Cades Cove looking SSW. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  17. 13. VIEW OF CANTILEVERED NORTHERN TRUSS SECTION (LOWER CENTER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF CANTILEVERED NORTHERN TRUSS SECTION (LOWER CENTER OF PHOTOGRAPH), SHOWING LINKAGES TO THE CENTRAL BRIDGE SUPERSTRUCTURE. FACING NORTHEAST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  18. 22. DETAIL OF EAST (CANADIAN) CANTILEVER AND ANCHOR ARMS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OF EAST (CANADIAN) CANTILEVER AND ANCHOR ARMS OF MAIN SPAN, SHOWING PIER C. VIEW TO NORTH. - Blue Water Bridge, Spanning St. Clair River at I-69, I-94, & Canadian Route 402, Port Huron, St. Clair County, MI

  19. 14. VIEW OF CANTILEVERED SOUTHERN TRUSS SECTION AND WOOD DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF CANTILEVERED SOUTHERN TRUSS SECTION AND WOOD DECK FROM THE CENTRAL BRIDGE SUPERSTRUCTURE SHOWN IN PA-474-13. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  20. 10. REPRESENTATIVE DETAIL VIEW OF CANTILEVERED DECK AND CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. REPRESENTATIVE DETAIL VIEW OF CANTILEVERED DECK AND CONSTRUCTION OF BRIDGE SUBSTRUCTURE - Central of Georgia Railway, Bay Street Viaduct, U.S. 17 & Bay Street, spanning Central of Georgia Railroad, Savannah, Chatham County, GA

  1. 4. SIDE VIEW OF BRIDGE, LOOKING SOUTHWEST, SHOWING ARCHES, CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SIDE VIEW OF BRIDGE, LOOKING SOUTHWEST, SHOWING ARCHES, CANTILEVERED WALKWAY, DECK BEAMS AND STREAMBED - Benson Street Concrete Bowstring Bridge, Spanning Mill Creek at Benson Street, Lockland, Hamilton County, OH

  2. UNDERSIDE. NOTE DOUBLE BEAMS CANTILEVERED FOR PEDESTRIAN WALKWAY. DATE ADDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UNDERSIDE. NOTE DOUBLE BEAMS CANTILEVERED FOR PEDESTRIAN WALKWAY. DATE ADDED TO BRIDGE UNKNOWN, BUT PROBABLY 1921-22 OR AFTER 1927. - Bath-Haverhill Bridge, Spanning Ammonoosuc River, bypassed section of Ammanoosuc Street (SR 135), Woodsville, Grafton County, NH

  3. 14. UNDERSIDE, SHOWING PIERS, CROSS BEAMS, AND CANTILEVERED EXTENSION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. UNDERSIDE, SHOWING PIERS, CROSS BEAMS, AND CANTILEVERED EXTENSION OF BRIDGE FOR ACCESS TO WAREHOUSE, LOOKING NORTH - Appomattox Bridge, U.S. Route 1 over Appomattox River, Petersburg, Petersburg, VA

  4. Parallel optical readout of cantilever arrays in dynamic mode.

    PubMed

    Koelmans, W W; van Honschoten, J; de Vries, J; Vettiger, P; Abelmann, L; Elwenspoek, M C

    2010-10-01

    Parallel frequency readout of an array of cantilevers is demonstrated using optical beam deflection with a single laser-diode pair. Multi-frequency addressing makes the individual nanomechanical response of each cantilever distinguishable within the received signal. Addressing is accomplished by exciting the array with the sum of all cantilever resonant frequencies. This technique requires considerably less hardware compared to other parallel optical readout techniques. Readout is demonstrated in beam deflection mode and interference mode. Many cantilevers can be readout in parallel, limited by the oscillators' quality factor and available bandwidth. The proposed technique facilitates parallelism in applications at the nano-scale, including probe-based data storage and biological sensing. PMID:20820095

  5. Low temperature scanning force microscopy using piezoresistive cantilevers

    NASA Astrophysics Data System (ADS)

    Meiser, P.; Koblischka, M. R.; Hartmann, U.

    2015-08-01

    A low temperature dynamic scanning force microscope has been constructed using commercially available piezoresistive cantilevers that can be coated with a ferromagnetic material for MFM application. The setup is able to work in a temperature range from room temperature down to 1.5 K. The performance of the piezoresistive cantilevers has been investigated under different working conditions. Topographic as well as magnetic images of a magnetite thin film sample have been taken at 50 and 4.2 K confirming the proper operation of the microscope at cryogenic temperatures. Furthermore, force-distance-curves taken on thin lead films at 4.2 K demonstrate the levitation forces between the magnetized cantilever tip and the superconducting films. Flux lines were generated by the magnetized cantilever tip itself when approaching the sample. It has also been shown that the microscope is sensitive to the detection of single magnetic flux lines penetrating the lead films.

  6. 12. VIEW, LOOKING NORTHWEST, ALONG CENTERLINE FROM NORTH CANTILEVER TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW, LOOKING NORTHWEST, ALONG CENTERLINE FROM NORTH CANTILEVER TOWER TOWARD SOUTH PORTAL. As with previous photo, note vertical displacement in deck. - Smith River Bridge, CA State Highway 199 Spanning Smith River, Crescent City, Del Norte County, CA

  7. 258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ANCHOR ARM AT PIERS E- AND E-2, SOUTH SIDE, FACING NORTH. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  8. Cantilever Arrays as a platform for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Datskos, Panos

    2005-03-01

    Since the late 1980's there have been spectacular developments in micro-mechanical or micro-electro-mechanical (MEMS) systems which have enabled exploration of new transduction modes that involve mechanical energy and are based primarily on mechanical phenomena. As a result, an innovative family of chemical and biological sensors has emerged. While MEMS represents a diverse family of designs, devices with simple cantilever configurations are especially attractive as transducers for chemical and biological sensors. In our presentation we deal with four important aspects of cantilever transducers: (i) operation principles and models, (ii) micro-fabrication, (iii) figures of merit, and (iv) applications of cantilever sensors. We also provide a brief analysis of historical predecessors of the modern cantilever sensors. Finally we have demonstrated that using large well designed arrays of differentially coated microcantilevers coupled artificial neural network techniques can provide information on the identity and amount of target chemicals. We will present our results and discuss future directions.

  9. 278. Frank Deras Jr., Photographer April 1999 VIEW OF CANTILEVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    278. Frank Deras Jr., Photographer April 1999 VIEW OF CANTILEVER TRUSS, THROUGH TRUSS, AND DECK TRUSS SPANS, SOUTH SIDE, FACING NORTHEAST. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  10. A new cantilever system for gas and liquid sensing.

    PubMed

    Vidic, A; Then, D; Ziegler, Ch

    2003-01-01

    A novel setup for gas and liquid sensing was developed and tested. It is based on both detection of frequency shift and of bending of micro-cantilevers to measure mass changes as well as viscosity changes. To drive the cantilevers new electrostatic and magnetic actuations were invented with a closed feed-back loop which forces the cantilever to oscillate always at its resonance frequency. The oscillation is detected via the beam-deflection technique. By measuring the DC signal of the photodiode the static bending of the cantilever can be monitored simultaneously. The closed feed-back loop propagates a very stable oscillation at the resonance frequency and gives a strong increase in the quality factor compared to a system without such feed-back loop. Furthermore, it is possible to operate this cantilever transducer system in liquids. These cantilever sensors hence, show the potential for use in easy-to-use and highly sensitive sensor systems for gas and liquid phase chemical and biochemical sensing. PMID:12801696

  11. Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy.

    PubMed

    Coutu, Ronald A; Medvedev, Ivan R; Petkie, Douglas T

    2016-01-01

    In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever's anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom built, low-volume, vacuum chamber. The resulting cantilever sensors exhibited improved signal to noise ratios, sensitivities and normalized noise equivalent absorption (NNEA) coefficients of approximately 4.28 × 10(-10) cm(-1)·WHz(-1/2). This reported NNEA represents approximately a 70% improvement over previously fabricated and tested SOI cantilever sensors for THz PA spectroscopy. PMID:26907280

  12. Piezoresistive cantilever force-clamp system

    SciTech Connect

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.; Goodman, Miriam B.

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  13. Active control of cantilever-beam vibration

    NASA Astrophysics Data System (ADS)

    Serbyn, M. Roman

    2002-11-01

    A bang-bang control system previously developed for the stabilization of a rigid platform [ISA Trans. 21, 55-59 (1982)] has been adapted to the problem of reducing flexural vibrations of a beam. The electromechanical system develops an appropriate control signal for the actuator from samples of the disturbance by analog and digital signal processing using integrated circuits. The effectiveness of this approach is predicated upon the sampling rate being much higher than the maximum vibration frequency to be silenced. It is also robust with respect to the waveform of the disturbance. Noise reductions of 10-20 dB have been achieved, depending on the bandwidth of the noise. The cantilever, chosen because of its mechanical and theoretical simplicity, provides a good foundation for the study of more complex structures, like airfoils and nonrigid platforms. In both experimental and analytical investigations the emphasis has been on the optimization of control parameters, particularly with regard to the application of the cancellation signal. Reduction in size and cost of the control unit is possible by incorporating the latest technological advances in electronic and electromechanical devices, such as FPGA boards and MEMS components.

  14. Piezoresistive cantilever force-clamp system

    PubMed Central

    Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.

    2011-01-01

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode. PMID:21529009

  15. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  16. Improved single molecule force spectroscopy using micromachined cantilevers.

    PubMed

    Bull, Matthew S; Sullan, Ruby May A; Li, Hongbin; Perkins, Thomas T

    2014-05-27

    Enhancing the short-term force precision of atomic force microscopy (AFM) while maintaining excellent long-term force stability would result in improved performance across multiple AFM modalities, including single molecule force spectroscopy (SMFS). SMFS is a powerful method to probe the nanometer-scale dynamics and energetics of biomolecules (DNA, RNA, and proteins). The folding and unfolding rates of such macromolecules are sensitive to sub-pN changes in force. Recently, we demonstrated sub-pN stability over a broad bandwidth (Δf = 0.01-16 Hz) by removing the gold coating from a 100 μm long cantilever. However, this stability came at the cost of increased short-term force noise, decreased temporal response, and poor sensitivity. Here, we avoided these compromises while retaining excellent force stability by modifying a short (L = 40 μm) cantilever with a focused ion beam. Our process led to a ∼10-fold reduction in both a cantilever's stiffness and its hydrodynamic drag near a surface. We also preserved the benefits of a highly reflective cantilever while mitigating gold-coating induced long-term drift. As a result, we extended AFM's sub-pN bandwidth by a factor of ∼50 to span five decades of bandwidth (Δf ≈ 0.01-1000 Hz). Measurements of mechanically stretching individual proteins showed improved force precision coupled with state-of-the-art force stability and no significant loss in temporal resolution compared to the stiffer, unmodified cantilever. Finally, these cantilevers were robust and were reused for SFMS over multiple days. Hence, we expect these responsive, yet stable, cantilevers to broadly benefit diverse AFM-based studies. PMID:24670198

  17. SiC-Based Miniature High-Temperature Cantilever Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate

  18. Defect reduction in gallium nitride using cantilever epitaxy.

    SciTech Connect

    Mitchell, Christine Charlotte

    2003-08-01

    Cantilever epitaxy (CE) has been developed to produce GaN on sapphire with low dislocation densities as needed for improved devices. The basic mechanism of seeding growth on sapphire mesas and lateral growth of cantilevers until they coalesce has been modified with an initial growth step at 950 C. This step produces a gable with (11{bar 2}2) facets over the mesas, which turns threading dislocations from vertical to horizontal in order to reduce the local density above mesas. This technique has produced material with densities as low as 2-3x10{sup 7}/cm{sup 2} averaged across extended areas of GaN on sapphire, as determined with AFM, TEM and cathodoluminescence (CL). This density is about two orders of magnitude below that of conventional planar growths; these improvements suggest that locating wide-area devices across both cantilever and mesa regions is possible. However, the first implementation of this technique also produced a new defect: cracks at cantilever coalescences with associated arrays of lateral dislocations. These defects have been labeled 'dark-block defects' because they are non-radiative and appear as dark rectangles in CL images. Material has been grown that does not have dark-block defects. Examination of the evolution of the cantilever films for many growths, both partial and complete, indicates that producing a film without these defects requires careful control of growth conditions and crystal morphology at multiple steps. Their elimination enhances optical emission and uniformity over large (mm) size areas.

  19. Energy harvesting of two cantilever beams structure: interfacing circuit discussion

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yin; Vasic, Dejan

    2015-03-01

    Today research on supplying of low power consumption device is highly focused on piezoelectric energy harvesting from ambient vibration. The most popular structure is a cantilever beam with piezoelectric patch to convert mechanical energy into electric energy. In the past researches, the theoretical analysis and interfacing circuit design of single cantilever beam structure is highly developed. In this study, the electrical interfacing circuit of two (or more) piezoelectric generators connected to only one load is proposed and discussed. The nonlinear synchronized switching technique SSHI (Synchronized Switching Harvesting in Inductor) is examined to increase the power efficiency effectively of each piezoelectric generator. In the multiple cantilever beam or flag structure application, the structure may be composed of many piezoelectric patches and the interfacing circuit becomes more complicated and important. From the theoretical analysis and the governing equation, the equivalent circuit of two cantilever beam will be proposed and simulated with the optimized synchronous electric charge extraction (OSECE) nonlinear technique to optimize the interfacing circuit and increase the power efficiency by using the Matlab and PSIM software. The experiments will also show the good agreement with the theoretical analysis. The interfacing circuit design concept in the two cantilever beams structure can be further used in the multi-piezoelectric patches energy harvesting system such as piezoelectric flag to optimize the circuit and increase the power efficiency.

  20. Cantilever Type Lead Zirconate Titanate Microactuator Utilizing Ruthenium Oxide

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Ho; Jeon, Min-Seok; Hong, Kyung-Il; Lee, Jin-Won; Kim, Chang-Kyung; Choi, Duck-Kyun

    2000-05-01

    A new and simple cantilever type Pb(Zr, Ti)O3 [PZT] microactuator was fabricated by adopting RuO2. The RuO2 has reasonably good conductivity and stiffness and it can replace the double layer of electrode and supporting layer to a single layer in a cantilever beam. The RuO2, PZT and Al thin films were deposited on the Si substrate. The patterning of the Al was carried out by a lithography process and etched with a chemical wet etchant. The etching of PZT and RuO2 were performed by a reactive ion etching system. The Si was etched isotropically to form a cantilever beam. The fabricated cantilever beam consists of Al, PZT and RuO2, and the thicknesses of the films are 0.40, 0.25 and 0.70 μm, respectively. The beams were from 140 μm to 275 μm in length and all of them were 60 μm wide. Driving tilt angles of the cantilever beams were almost proportional to the applied voltages.

  1. Tuning the Spring Constant of Cantilever-free Probe Arrays

    NASA Astrophysics Data System (ADS)

    Eichelsdoerfer, Daniel J.; Brown, Keith A.; Boya, Radha; Shim, Wooyoung; Mirkin, Chad A.

    2013-03-01

    The versatility of atomic force microscope (AFM) based techniques such as scanning probe lithography is due in part to the utilization of a cantilever that can be fabricated to match a desired application. In contrast, cantilever-free scanning probe lithography utilizes a low cost array of probes on a compliant backing layer that allows for high throughput nanofabrication but lacks the tailorability afforded by the cantilever in traditional AFM. Here, we present a method to measure and tune the spring constant of probes in a cantilever-free array by adjusting the mechanical properties of the underlying elastomeric layer. Using this technique, we are able to fabricate large-area silicon probe arrays with spring constants that can be tuned in the range from 7 to 150 N/m. This technique offers an advantage in that the spring constant depends linearly on the geometry of the probe, which is in contrast to traditional cantilever-based lithography where the spring constant varies as the cube of the beam width and thickness. To illustrate the benefit of utilizing a probe array with a lower spring constant, we pattern a block copolymer on a delicate 50 nm thick silicon nitride window.

  2. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177

  3. Efficiency enhancement of a cantilever-based vibration energy harvester.

    PubMed

    Kubba, Ali E; Jiang, Kyle

    2013-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177

  4. Cantilever with immobilized antibody for liver cancer biomarker detection

    NASA Astrophysics Data System (ADS)

    Shuaipeng, Wang; Jingjing, Wang; Yinfang, Zhu; Jinling, Yang; Fuhua, Yang

    2014-10-01

    A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus the adsorption of the cancer biomarker takes place only in the local region of the cantilever instead of the whole lever, and the effect of adsorption-induced k variation can be dramatically reduced. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and a portable system. In addition, an analytical model has been established to eliminate the effect of the adsorption-induced lever stiffness change and has been applied to the precise mass detection of the cancer biomarker AFP; the experimentally detected AFP antigen mass by the sensor (7.6 pg/mL) is quite close to the calculated one (5.5 pg/mL), two orders of magnitude better than those of the fully antibody-immobilized cantilever sensor. These approaches can promote real applications of the cantilever sensors in cancer diagnosis.

  5. Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy

    PubMed Central

    Coutu, Ronald A.; Medvedev, Ivan R.; Petkie, Douglas T.

    2016-01-01

    In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom built, low-volume, vacuum chamber. The resulting cantilever sensors exhibited improved signal to noise ratios, sensitivities and normalized noise equivalent absorption (NNEA) coefficients of approximately 4.28 × 10−10 cm−1·WHz−1/2. This reported NNEA represents approximately a 70% improvement over previously fabricated and tested SOI cantilever sensors for THz PA spectroscopy. PMID:26907280

  6. Experimental investigation of fatigue in a cantilever energy harvesting beam

    NASA Astrophysics Data System (ADS)

    Avvari, Panduranga Vittal; Yang, Yaowen; Liu, Peiwen; Soh, Chee Kiong

    2015-03-01

    Over the last decade, cantilever energy harvesters gained immense popularity owing to the simplicity of the design and piezoelectric energy harvesting (PEH) using the cantilever design has undergone considerable evolution. The major drawback of a vibrating cantilever beam is its vulnerability to fatigue over a period of time. This article brings forth an experimental investigation into the phenomenon of fatigue of a PEH cantilever beam. As there has been very little literature reported in this area, an effort has been made to scrutinize the damage due to fatigue in a linear vibrating cantilever PEH beam consisting of an aluminum substrate with a piezoelectric macro-fiber composite (MFC) patch attached near the root of the beam and a tip mass attached to the beam. The beam was subjected to transverse vibrations and the behavior of the open circuit voltage was recorded with passing time. Moreover, electro-mechanical admittance readings were obtained periodically using the same MFC patch as a Structural health monitoring (SHM) sensor to assess the health of the PEH beam. The results show that with passing time the PEH beam underwent fatigue in both the substrate and MFC, which is observed in a complimentary trend in the voltage and admittance readings. The claim is further supported using the variation of root mean square deviation (RMSD) of the real part of admittance (conductance) readings. Thus, this study concludes that the fatigue issue should be addressed in the design of PEH for long term vibration energy harvesting.

  7. Nonlinear resonances of a single-wall carbon nanotube cantilever

    NASA Astrophysics Data System (ADS)

    Kim, I. K.; Lee, S. I.

    2015-03-01

    The dynamics of an electrostatically actuated carbon nanotube (CNT) cantilever are discussed by theoretical and numerical approaches. Electrostatic and intermolecular forces between the single-walled CNT and a graphene electrode are considered. The CNT cantilever is analyzed by the Euler-Bernoulli beam theory, including its geometric and inertial nonlinearities, and a one-mode projection based on the Galerkin approximation and numerical integration. Static pull-in and pull-out behaviors are adequately represented by an asymmetric two-well potential with the total potential energy consisting of the CNT elastic energy, electrostatic energy, and the Lennard-Jones potential energy. Nonlinear dynamics of the cantilever are simulated under DC and AC voltage excitations and examined in the frequency and time domains. Under AC-only excitation, a superharmonic resonance of order 2 occurs near half of the primary frequency. Under both DC and AC loads, the cantilever exhibits linear and nonlinear primary and secondary resonances depending on the strength of the excitation voltages. In addition, the cantilever has dynamic instabilities such as periodic or chaotic tapping motions, with a variation of excitation frequency at the resonance branches. High electrostatic excitation leads to complex nonlinear responses such as softening, multiple stability changes at saddle nodes, or period-doubling bifurcation points in the primary and secondary resonance branches.

  8. Palpationlike soft-material elastic modulus measurement using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Szewczyk, Steven T.; Shih, Wan Y.; Shih, Wei-Heng

    2006-04-01

    We have developed an all-electrical piezoelectric cantilever sensor that can self-excite and self-detect for tissue elastic modulus measurement. An all-electrical piezoelectric cantilever is consisted of a sandwich of piezoelectric layer, e.g., lead zirconate titanate (PZT), a nonpiezoelectric layer, e.g., stainless steel, and a second piezoelectric layer. The top piezoelectric layer serves as the driving layer (self-exciting) and the second piezoelectric layer as the sensing layer (self-sensing). The driving and sensing piezoelectric layers may be of different lengths. Applying a dc voltage across the driving PZT layer causes the piezoelectric cantilever to bend. The resultant bending stress in the sensing PZT layer generates a piezoelectric voltage across the sensing PZT layer that rises rapidly to a maximum before it decays with time. The maximum induced voltage was used to measure the axial displacement of the piezoelectric cantilever. With its force generation and displacement sensing capability, we show that an all-electrical piezoelectric cantilever can measure the elastic modulus of tissues both under the regular compression geometry and the flat-punch indentation geometry. In addition, the sensor can map the local elastic modulus variations of tissues much like palpation.

  9. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  10. Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels.

    PubMed

    Quist, Arjan; Chand, Ami; Ramachandran, Srinivasan; Cohen, Dan; Lal, Ratnesh

    2006-11-01

    Microfluidic channels are microreactors with a wide range of applications, including molecular separations based upon micro/nanoscale physicochemical properties, targeting and delivery of small amount of fluids and molecules, and patterned/directed growth. Their successful applications would require a detailed understanding of phenomena associated with the microscale flow of liquids through these channels, including velocity, viscosity and miscibility. Here we demonstrate a highly sensitive piezoresistive cantilever to measure flow properties in microfluidic channels. By milling down the legs of the piezoresistive cantilevers, we have achieved significantly higher mechanical sensitivity and a smaller spring constant, as determined by AFM. These cantilevers were used in microchannels to measure the viscosity and flow rate of ethylene glycol mixtures in water over a range of concentrations, as well as of low viscosity biologically relevant buffers with different serum levels. The sensor can be used alone or can be integrated in AFM systems for multidimensional study in micro and nanochannels. PMID:17066169

  11. Shear force microscopy using piezoresistive cantilevers in surface metrology

    NASA Astrophysics Data System (ADS)

    Gotszalk, Teodor; Kopiec, Daniel; Sierakowski, Andrzej; Janus, Paweł; Grabiec, Piotr; Rangelow, Ivo W.

    2014-09-01

    In this article we describe application of piezoresistive cantilevers in surface investigations carried out with the use of shear force microscopy (ShFM). The novel piezoresistive cantilevers integrate a Wheatstone piezoresistive bridge was used to detect the cantilever deflection, thermal deflection detector and planar tip protruding out of the spring beam. Because the planar tip deflection can be detected and controlled electronically the described technology is very flexible and can be applied in many surface investigations. In this article we will present operation theory of the described solution, experimental setup, methods for calibration of the tip deflection detection and actuation The analysis will be illustrated with example results of topography measurements performed using the described technology.

  12. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  13. Liquid-phase chemical sensing using lateral mode resonant cantilevers.

    PubMed

    Beardslee, L A; Demirci, K S; Luzinova, Y; Mizaikoff, B; Heinrich, S M; Josse, F; Brand, O

    2010-09-15

    Liquid-phase operation of resonant cantilevers vibrating in an out-of-plane flexural mode has to date been limited by the considerable fluid damping and the resulting low quality factors (Q factors). To reduce fluid damping in liquids and to improve the detection limit for liquid-phase sensing applications, resonant cantilever transducers vibrating in their in-plane rather than their out-of-plane flexural resonant mode have been fabricated and shown to have Q factors up to 67 in water (up to 4300 in air). In the present work, resonant cantilevers, thermally excited in an in-plane flexural mode, are investigated and applied as sensors for volatile organic compounds in water. The cantilevers are fabricated using a complementary metal oxide semiconductor (CMOS) compatible fabrication process based on bulk micromachining. The devices were coated with chemically sensitive polymers allowing for analyte sorption into the polymer. Poly(isobutylene) (PIB) and poly(ethylene-co-propylene) (EPCO) were investigated as sensitive layers with seven different analytes screened with PIB and 12 analytes tested with EPCO. Analyte concentrations in the range of 1-100 ppm have been measured in the present experiments, and detection limits in the parts per billion concentration range have been estimated for the polymer-coated cantilevers exposed to volatile organics in water. These results demonstrate significantly improved sensing properties in liquids and indicate the potential of cantilever-type mass-sensitive chemical sensors operating in their in-plane rather than out-of-plane flexural modes. PMID:20715842

  14. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices. PMID:25643594

  15. Lead zirconate titanate cantilever for noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Miyahara, Y.; Fujii, T.; Watanabe, S.; Tonoli, A.; Carabelli, S.; Yamada, H.; Bleuler, H.

    1999-02-01

    Noncontact atomic force microscopy with frequency modulation detection is a promising technique for surface observation with true atomic resolution. The piezoelectric material itself can be an actuator and sensor of the oscillating probe simultaneously, without the need for additional electro-mechanical transducers or other measurement systems. A vertical resolution of 0.01 nm rms has been achieved using a microfabricated cantilever with lead zirconate titanate thin film in noncontact mode frequency modulation detection. The cantilever also has a sharpened pyramidal stylus with a radius of about 10 nm for noncontact atomic force microscopy.

  16. 13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF SOUTH PIER TOP (WEST SIDE) AND CANTILEVERED SIDEWALK. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ

  17. VIEW OF CANTILEVER THROUGH TRUSS BRIDGE PORTALS AT JUNCTION BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CANTILEVER THROUGH TRUSS BRIDGE PORTALS AT JUNCTION BETWEEN SIMPLE THROUGH TRUSS SPAN LOOKING SOUTHEAST TOWARD WEST BANK. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  18. 69. COMPLETED 'A' FRAME STRUCTURE LOOKING NORTHWEST SHOWING CANTILEVERED WALKWAYS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. COMPLETED 'A' FRAME STRUCTURE LOOKING NORTHWEST SHOWING CANTILEVERED WALKWAYS, 'CROWS NEST', CAMERA TOWER, COUNTERWEIGHT CAR AND ROADWAY ARCH, April 30, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  19. Strategy Guideline: Quality Management in Existing Homes - Cantilever Floor Example

    SciTech Connect

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented.

  20. Cantilever springs maintain tension in thermally expanded wires

    NASA Technical Reports Server (NTRS)

    Terselic, R. A.

    1965-01-01

    Two deflected cantilever springs strung with wire provide force displacement compensation to maintain tension in the wires as they undergo thermal expansion. This method of maintaining tension in thermally expanded wires is used in electric space heaters and residential heat exchangers.

  1. 4. WIDEANGLE VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CANTILEVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WIDE-ANGLE VIEW OF THE EASTERN BRIDGE ELEVATION, SHOWING CANTILEVERED SOUTHERN (LEFT) AND NORTHERN (RIGHT) TRUSS SECTIONS. THE CENTRAL TRUSS SECTION IS OBSCURED BY TREES AT CENTER OF PHOTOGRAPH. FACING WEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA

  2. 56. VIEW SOUTH, WEST SIDE AT CANTILEVER SPAN (SPAN 70) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. VIEW SOUTH, WEST SIDE AT CANTILEVER SPAN (SPAN 70) SHOWING FACADE, DOUBLE CROSS BRACING AT COLUMNS, AND CONCRETE BASE - Route 1 Extension, Southbound Viaduct, Spanning Conrail Yards, Wilson Avenue, Delancy Street, & South Street on Routes 1 & 9 Southbound, Newark, Essex County, NJ

  3. CLOSEUP VIEW OF BOTTOM OF MAIN BRIDGE CANTILEVER THROUGH TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW OF BOTTOM OF MAIN BRIDGE CANTILEVER THROUGH TRUSS SPAN SHOWING RAILROAD PORTION OF FLOOR BEAMS AND OTHER STRUCTURAL COMPONENTS AND LOOKING NORTHWEST. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  4. Bridge Types: Suspension Bridge Spans, Section AA; Cantilever Truss Spans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge Types: Suspension Bridge Spans, Section A-A; Cantilever Truss Spans, Section B-B; Through Truss Spans, Section C-C; Deck Truss Spans, Section D-D - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  5. Electro-opto-mechanical cantilever-based logic gates

    NASA Astrophysics Data System (ADS)

    Rehder, G.; Alayo, M. I.; Medina, H. B.; Carreño, M. N. P.

    2007-01-01

    In this work we describe the fabrication and characterization of micro-opto-electro-mechanical AND, OR and XOR logic gates based in a combination of optical and micro-electro-mechanical devices. These structures consist of silicon oxynitride-based optical waveguides, through which a light beam of 633-nm can be conducted, and mobile thermo-electro actuated cantilevers, which form part of the waveguide and can work as ON-OFF switches for the laser. These switches are combined to form AND, OR and XOR gates, allowing the laser light to pass or blocking the laser light when activated electrically. The cantilevers are fabricated by freeing regions of the waveguide, which is done by front side micromachining the silicon wafer used as substrate. Also, they are actuated electrically through the heating of a metallic resistance positioned in the device, where the applied current heats the cantilevers and, due to the difference in thermal expansion coefficients of the constituent materials, it is possible to produce a controlled motion proportional to the heating current. Therefore, the switches can be electrically polarized in on/off cycles allowing or blocking the light through the waveguide, similar to logic "1's" and "0's". These switches are adequately arranged to produce an output that is similar to the conventional digital logic gates through electric control (input) of cantilever-based ON-OFF switches.

  6. CLOSEUP VIEW OF PORTION OF MAIN BRIDGE CANTILEVER THROUGH TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP VIEW OF PORTION OF MAIN BRIDGE CANTILEVER THROUGH TRUSS SPAN LOOKING UP AND NORTHEAST. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  7. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  8. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    PubMed

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  9. 254. Frank Deras Jr., Photographer July 1998 VIEW OF CANTILEVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    254. Frank Deras Jr., Photographer July 1998 VIEW OF CANTILEVER TRUSS, THROUGH TRUSS, AND DECK TRUSS SPANS FROM YERBA BUENA ISLAND TO OAKLAND, SOUTH SIDE (2 OF 3 PANORAMA), FACING NORTH. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  10. A micro-SPM head array with exchangeable cantilevers

    NASA Astrophysics Data System (ADS)

    Gao, S.; Wolff, H.; Herrmann, K.; Brand, U.; Hiller, K.; Hahn, S.; Sorger, A.; Mehner, J.

    2012-04-01

    In this paper a MEMS based micro-SPM head array is proposed to enhance the performance of the currently available nano-measuring machines and effectively reduce the measurement time for large specimen. It consists of 1 × N ( N = 7 in our case) micro-SPM heads/units, realized in one chip by MEMS technique. And it can be easily extended to a micro- SPM head matrix. The main part of the micro-SPM head is the MEMS-positioning stage, which is realized on the basis of an electrostatic lateral comb-drive actuator. In order to take the advantage of the high lateral resolution of conventional cantilevers, a flexible cantilever gripper was designed to be integrated into the MEMS-positioning stage within the SPM head. Conventional cantilevers can be mechanically mounted onto the MEMS-positioning stage or dismantled from the MEMS-positioning stage after the tip is worn out. In this way, the well-designed and calibrated MEMS-positioning stage can be repeatedly and efficiently utilized. The structure design and simulation of mechanical and electrical performances of the mico-SPM head will be detailed in this paper. First experimental results proved the feasibility of the cantilever gripper design.

  11. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    SciTech Connect

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-09-15

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  12. Calibrating laser beam deflection systems for use in atomic force microscopes and cantilever sensors

    SciTech Connect

    Beaulieu, L.Y.; Godin, Michel; Laroche, Olivier; Tabard-Cossa, Vincent; Gruetter, Peter

    2006-02-20

    Most atomic force microscopes and cantilever-based sensors use an optical laser beam detection system to monitor cantilever deflections. We have developed a working model that accurately describes the way in which a position sensitive photodetector interprets the deflection of a cantilever in these instruments. This model exactly predicts the numerical relationship between the measured photodetector signal and the actual cantilever deflection. In addition, the model is used to optimize the geometry of such laser deflection systems, which greatly simplifies the use of any cantilever-based instrument that uses a laser beam detection system.

  13. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays.

    PubMed

    Sathishkumar, P; Punyabrahma, P; Mrinalini, R Sri Muthu; Jayanth, G R

    2015-09-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array. PMID:26429493

  14. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    NASA Astrophysics Data System (ADS)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-09-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  15. Vortex-Induced Vibration of a Flexible Cantilever

    NASA Astrophysics Data System (ADS)

    Fujarra, A. L. C.; Pesce, C. P.; Flemming, F.; Williamson, C. H. K.

    2001-04-01

    This study is concerned with the vortex-induced vibrations of a flexible cantilever in a fluid flow. Our cantilever comprises a leaf spring encased within a rubber flexible cylinder, restricting the vibrations of the body in a water channel flow to principally transverse motion. It is found that the transverse amplitude response of the cantilever has a marked similarity with transverse vibrations of an elastically mounted rigid cylinder, in that there is a clear initial branch extending to high amplitudes, with a jump to a lower branch response, as normalized velocity is increased. The continuous initial branch suggests that a distinct upper branch does not exist for the cantilever, as is found for a rigid cylinder under similar conditions of low mass and damping. Good agreement is found between the response amplitude and frequency for two identical cantilevers, one set up by Pesce and Fujarra, where strain is measured to infer the body dynamics, and the other arrangement by Flemming and Williamson, where the tip motion is measured using optical techniques. An interesting large-amplitude response mode is found at higher normalized velocities (U*>12) outside the principal synchronization regime (typically U*=4-8), which is observed for an increasing velocity, or may be triggered by manual streamwise disturbances of the body. This vibration mode is due to a coupled streamwise-transverse motion, where the streamwise amplitude becomes non-negligible, and may be related to a further vibration mode at high normalized speed, found for a vibrating pivoted rod, by Kitagawa et al. (1999).

  16. Sobol method application in dimensional sensitivity analyses of different AFM cantilevers for biological particles

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Taheri, M.; Ghahnaviyeh, S. D.

    2015-08-01

    Due to the more delicate nature of biological micro/nanoparticles, it is necessary to compute the critical force of manipulation. The modeling and simulation of reactions and nanomanipulator dynamics in a precise manipulation process require an exact modeling of cantilevers stiffness, especially the stiffness of dagger cantilevers because the previous model is not useful for this investigation. The stiffness values for V-shaped cantilevers can be obtained through several methods. One of them is the PBA method. In another approach, the cantilever is divided into two sections: a triangular head section and two slanted rectangular beams. Then, deformations along different directions are computed and used to obtain the stiffness values in different directions. The stiffness formulations of dagger cantilever are needed for this sensitivity analyses so the formulations have been driven first and then sensitivity analyses has been started. In examining the stiffness of the dagger-shaped cantilever, the micro-beam has been divided into two triangular and rectangular sections and by computing the displacements along different directions and using the existing relations, the stiffness values for dagger cantilever have been obtained. In this paper, after investigating the stiffness of common types of cantilevers, Sobol sensitivity analyses of the effects of various geometric parameters on the stiffness of these types of cantilevers have been carried out. Also, the effects of different cantilevers on the dynamic behavior of nanoparticles have been studied and the dagger-shaped cantilever has been deemed more suitable for the manipulation of biological particles.

  17. Measurements of the solidification process of resins from cantilever beams resonances

    NASA Astrophysics Data System (ADS)

    Arenas, Gustavo F.; Duchowicz, Ricardo

    2013-01-01

    In this work, we introduce a technique to infer elastic and mechanical properties of light-curing resins by using cantilever beams. The methodology includes vibration resonance measurements performed with a fiber optic Fizeau interferometer. As is known, the natural resonance frequency of cantilever beams depends strongly on any variation in its physical properties and geometry. Following this idea, square shaped solid aluminum beams with a short transverse deep crack drilled near its fixed end were studied. The slot was filled with photo-curing resins and resonance frequency was monitored as polymerization proceeded. In order to track resonance peaks, we adopted a simple electromagnetic actuator to force the beam into oscillations of variable frequencies. Beams were scanned periodically around its natural resonance as photo-curing was carried out. Due to the small vibrations amplitude present at the free end of beams (tens of microns typically), we used a Fizeau interferometric fiber optic sensor placed near the free end. Its extremely high sensitivity and resolution are its outstanding features, yielding a non-invasive sensor that ensures natural evolution and distortionless amplitude and frequency measurements. Results show that liquid resin in the slot did not produce changes on beam resonance prior to curing. On the other hand, photo-polymerization partially recovered original properties of the beam in a few tens of seconds, suggesting that vitrification of resins is completely achieved while photoreaction is still occurring. Moreover, additional information of volumetric shrinkage of polymers can be extracted from these measurements. In summary, this powerful and simple technique enables to evaluate the static resonance of beams as well as polymer shrinkage and solidification time evolution in one single measurement.

  18. Topography imaging with a heated atomic force microscope cantilever in tapping mode

    SciTech Connect

    Park, Keunhan; Lee, Jungchul; Zhang, Zhuomin M.; King, William P.

    2007-04-15

    This article describes tapping mode atomic force microscopy (AFM) using a heated AFM cantilever. The electrical and thermal responses of the cantilever were investigated while the cantilever oscillated in free space or was in intermittent contact with a surface. The cantilever oscillates at its mechanical resonant frequency, 70.36 kHz, which is much faster than its thermal time constant of 300 {mu}s, and so the cantilever operates in thermal steady state. The thermal impedance between the cantilever heater and the sample was measured through the cantilever temperature signal. Topographical imaging was performed on silicon calibration gratings of height 20 and 100 nm. The obtained topography sensitivity is as high as 200 {mu}V/nm and the resolution is as good as 0.5 nm/Hz{sup 1/2}, depending on the cantilever power. The cantilever heating power ranges 0-7 mW, which corresponds to a temperature range of 25-700 deg. C. The imaging was performed entirely using the cantilever thermal signal and no laser or other optics was required. As in conventional AFM, the tapping mode operation demonstrated here can suppress imaging artifacts and enable imaging of soft samples.

  19. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers

    SciTech Connect

    Long, Christian J.; Cannara, Rachel J.

    2015-07-15

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

  20. Large and small deflections of a cantilever beam

    NASA Astrophysics Data System (ADS)

    Beléndez, Tarsicio; Neipp, Cristian; Beléndez, Augusto

    2002-05-01

    The classical problem of the deflection of a cantilever beam of linear elastic material, under the action of an external vertical concentrated load at the free end, is analysed. We present the differential equation governing the behaviour of this physical system and show that this equation, although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. In this sense, this system is similar to another well known physical system: the simple pendulum. An approximation of the behaviour of a cantilever beam for small deflections was obtained from the equation for large deflections, and we present various numerical results for both cases. Finally, we compare the theoretical results with the experimental results obtained in the laboratory.

  1. Cantilever spring constant calibration using laser Doppler vibrometry

    SciTech Connect

    Ohler, Benjamin

    2007-06-15

    Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offers considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.

  2. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  3. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    NASA Astrophysics Data System (ADS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-10-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  4. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  5. Limit cycle oscillation of a fluttering cantilever plate

    NASA Technical Reports Server (NTRS)

    Dowell, Earl; Ye, Weiliang

    1991-01-01

    A response of a cantilever plate in high supersonic flow to a disturbance is considered. The Rayleigh-Ritz method is used to solve the nonlinear oscillation of a fluttering plate. It is found that the length-to-width ratio for a cantilever plate has a great effect on flutter amplitude of the limit cycle. For small length-to-width ratio, the dominant chordwise modes are translation and rotation. It is suggested that higher bending modes must be included to obtain an accurate prediction of the flutter onset and limit cycle oscillation. For large length-to-width ratio, significant chordwise bending is apparent in the flutter motion, with the trailing edge area having the largest motion.

  6. Laser Actuation of Cantilevers for Picometre Amplitude Dynamic Force Microscopy

    PubMed Central

    Evans, Drew R.; Tayati, Ponlawat; An, Hongjie; Lam, Ping Koy; Craig, Vincent S. J.; Senden, Tim J.

    2014-01-01

    As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains. PMID:24993548

  7. Laser actuation of cantilevers for picometre amplitude dynamic force microscopy.

    PubMed

    Evans, Drew R; Tayati, Ponlawat; An, Hongjie; Lam, Ping Koy; Craig, Vincent S J; Senden, Tim J

    2014-01-01

    As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains. PMID:24993548

  8. Selective enhancement of individual cantilever high resonance modes.

    PubMed

    Penedo, Marcos; Hormeño, Silvia; Prieto, Patricia; Alvaro, Raquel; Anguita, José; Briones, Fernando; Luna, Mónica

    2015-12-01

    Multifrequency atomic force microscopy (AFM) in liquid media where several eigenmodes or harmonics are simultaneously excited is improving the performance of the scanning probe techniques in biological studies. As a consequence, an important effort is being made to search for a reliable, efficient and strong cantilever high mode excitation method that operates in liquids. In this work we present (theoretical and experimentally) a technique for improving the efficiency of the most common excitation methods currently used in AFM operated in liquids: photothermal, torque (MAC Mode™) and magnetostriction. By etching specific areas of the cantilever coating, the oscillation amplitude (both flexural and torsional) of each specific eigenmode increases, leading to an improvement in signal to noise ratio of the multifrequency techniques. As an alternative, increment in high mode oscillation amplitude is also obtained by Ga(+) ion implantation in the specific areas of the magnetic material. PMID:26559931

  9. Selective enhancement of individual cantilever high resonance modes

    NASA Astrophysics Data System (ADS)

    Penedo, Marcos; Hormeño, Silvia; Prieto, Patricia; Alvaro, Raquel; Anguita, José; Briones, Fernando; Luna, Mónica

    2015-12-01

    Multifrequency atomic force microscopy (AFM) in liquid media where several eigenmodes or harmonics are simultaneously excited is improving the performance of the scanning probe techniques in biological studies. As a consequence, an important effort is being made to search for a reliable, efficient and strong cantilever high mode excitation method that operates in liquids. In this work we present (theoretical and experimentally) a technique for improving the efficiency of the most common excitation methods currently used in AFM operated in liquids: photothermal, torque (MAC Mode™) and magnetostriction. By etching specific areas of the cantilever coating, the oscillation amplitude (both flexural and torsional) of each specific eigenmode increases, leading to an improvement in signal to noise ratio of the multifrequency techniques. As an alternative, increment in high mode oscillation amplitude is also obtained by Ga+ ion implantation in the specific areas of the magnetic material.

  10. Accurate Method for Determining Adhesion of Cantilever Beams

    SciTech Connect

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  11. Vibration of skewed cantilever plates and helicoidal shells

    NASA Technical Reports Server (NTRS)

    Beres, D. P.; Bailey, C. D.

    1975-01-01

    Theoretical vibration frequencies and mode shapes are obtained for skewed plates and helicoidal shells with a cantilever boundary. Using Hamilton's law of varying action, a power series solution is developed to obtain converged numerical results for the five lowest frequencies. Effects of geometrical variables such as aspect ratio, sweep angle and shell radius to thickness ratio are investigated. Accuracy of the solution method is substantiated by comparison with existing skewed plate spherical cap, and conical shell results.

  12. A counterfort versus a cantilever retaining wall - a seismic equivalence

    NASA Astrophysics Data System (ADS)

    Chugh, Ashok K.

    2005-08-01

    A procedure is presented to develop geometric dimensions and material property values for a model cantilever wall from those of a prototype counterfort wall such that the model wall will simulate the response of the prototype wall for seismic loads. The equivalency criteria are given. A sample problem is included to illustrate the use of the proposed procedure. Accuracy of results is discussed. Published in 2005 by John Wiley & Sons, Ltd.

  13. Accurate method for determining adhesion of cantilever beams

    SciTech Connect

    de Boer, M.P.; Michalske, T.A.

    1999-07-01

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying. {copyright} {ital 1999 American Institute of Physics.}

  14. MEMS cantilever sensor for THz photoacoustic chemical sensing and pectroscopy

    NASA Astrophysics Data System (ADS)

    Glauvitz, Nathan E.

    Sensitive Microelectromechanical System (MEMS) cantilever designs were modeled, fabricated, and tested to measure the photoacoustic (PA) response of gasses to terahertz (THz) radiation. Surface and bulk micromachining technologies were employed to create the extremely sensitive devices that could detect very small changes in pressure. Fabricated devices were then tested in a custom made THz PA vacuum test chamber where the cantilever deflections caused by the photoacoustic effect were measured with a laser interferometer and iris beam clipped methods. The sensitive cantilever designs achieved a normalized noise equivalent absorption coefficient of 2.83x10-10 cm-1 W Hz-½ using a 25 microW radiation source power and a 1 s sampling time. Traditional gas phase molecular spectroscopy absorption cells are large and bulky. The outcome of this research resulted was a photoacoustic detection method that was virtually independent of the absorption path-length, which allowed the chamber dimensions to be greatly reduced, leading to the possibility of a compact, portable chemical detection and spectroscopy system

  15. Analysis of AFM cantilever dynamics close to sample surface

    NASA Astrophysics Data System (ADS)

    Habibnejad Korayem, A.; Habibnejad Korayem, Moharam; Ghaderi, Reza

    2013-07-01

    For imaging and manipulation of biological specimens application of atomic force microscopy (AFM) in liquid is necessary. In this paper, tapping-mode AFM cantilever dynamics in liquid close to sample surface is modeled and simulated by well defining the contact forces. The effect of cantilever tilting angle has been accounted carefully. Contact forces have some differences in liquid in comparison to air or vacuum in magnitude or formulation. Hydrodynamic forces are also applied on the cantilever due to the motion in liquid. A continuous beam model is used with its first mode and forward-time simulation method for simulation of its hybrid dynamics and the frequency response and amplitude versus separation diagrams are extracted. The simulation results show a good agreement with experimental results. The resonance frequency in liquid is so small in comparison to air due to additional mass and also additional damping due to the viscosity of the liquid around. The results show that the effect of separation on free vibration amplitude is great. Its effect on resonance frequency is considerable too.

  16. Contractile cell forces deform macroscopic cantilevers and quantify biomaterial performance.

    PubMed

    Allenstein, U; Mayr, S G; Zink, M

    2015-07-01

    Cells require adhesion to survive, proliferate and migrate, as well as for wound healing and many other functions. The strength of contractile cell forces on an underlying surface is a highly relevant quantity to measure the affinity of cells to a rigid surface with and without coating. Here we show with experimental and theoretical studies that these forces create surface stresses that are sufficient to induce measurable bending of macroscopic cantilevers. Since contractile forces are linked to the formation of focal contacts, results give information on adhesion promoting qualities and allow a comparison of very diverse materials. In exemplary studies, in vitro fibroblast adhesion on the magnetic shape memory alloy Fe-Pd and on the l-lysine derived plasma-functionalized polymer PPLL was determined. We show that cells on Fe-Pd are able to induce surface stresses three times as high as on pure titanium cantilevers. A further increase was observed for PPLL, where the contractile forces are four times higher than on the titanium reference. In addition, we performed finite element simulations on the beam bending to back up the calculation of contractile forces from cantilever bending under non-homogenous surface stress. Our findings consolidate the role of contractile forces as a meaningful measure of biomaterial performance. PMID:26027952

  17. A cantilever-free approach to dot-matrix nanoprinting

    PubMed Central

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Rasin, Boris; Radha, Boya; Liao, Xing; Schmucker, Abrin L.; Liu, Guoliang; Mirkin, Chad A.

    2013-01-01

    Scanning probe lithography (SPL) is a promising candidate approach for desktop nanofabrication, but trade-offs in throughput, cost, and resolution have limited its application. The recent development of cantilever-free scanning probe arrays has allowed researchers to define nanoscale patterns in a low-cost and high-resolution format, but with the limitation that these are duplication tools where each probe in the array creates a copy of a single pattern. Here, we report a cantilever-free SPL architecture that can generate 100 nanometer-scale molecular features using a 2D array of independently actuated probes. To physically actuate a probe, local heating is used to thermally expand the elastomeric film beneath a single probe, bringing it into contact with the patterning surface. Not only is this architecture simple and scalable, but it addresses fundamental limitations of 2D SPL by allowing one to compensate for unavoidable imperfections in the system. This cantilever-free dot-matrix nanoprinting will enable the construction of surfaces with chemical functionality that is tuned across the nano- and macroscales. PMID:23861495

  18. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    PubMed

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-01

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves. PMID:21853192

  19. Ultrasensitive magnetometry and magnetic resonance imaging using cantilever detection

    NASA Astrophysics Data System (ADS)

    Rugar, Daniel

    2009-03-01

    Micromachined cantilevers make remarkable magnetometers for nanoscale measurements of magnetic materials and for magnetic resonance imaging (MRI). We present various applications of cantilever magnetometry at low temperature using cantilevers capable of attonewton force sensitivity. Small, unexpected magnetic effects can be seen, such as anomalous damping in magnetic field. A key application is magnetic resonance force microscopy (MRFM) of both electron and nuclear spins. In recent experiments with MRFM-based NMR imaging, 3D spatial resolution better than 10 nm was achieved for protons in individual virus particles. The achieved volumetric resolution represents an improvement of 100 million compared to the best conventional MRI. The microscope is sensitive enough to detect NMR signals from adsorbed layers of hydrocarbon contamination, hydrogen in multiwall carbon nanotubes and the phosphorus in DNA. Operating with a force noise on the order of 6 aN per root hertz with a magnetic tip that produces a field gradient in excess of 30 gauss per nanometer, the magnetic moment sensitivity is ˜0.2 Bohr magnetons. The corresponding field sensitivity is ˜3 nT per root hertz. To our knowledge, this combination of high field sensitivity and nanometer spatial resolution is unsurpassed by any other form of nanometer-scale magnetometry.

  20. A cantilever-free approach to dot-matrix nanoprinting.

    PubMed

    Brown, Keith A; Eichelsdoerfer, Daniel J; Shim, Wooyoung; Rasin, Boris; Radha, Boya; Liao, Xing; Schmucker, Abrin L; Liu, Guoliang; Mirkin, Chad A

    2013-08-01

    Scanning probe lithography (SPL) is a promising candidate approach for desktop nanofabrication, but trade-offs in throughput, cost, and resolution have limited its application. The recent development of cantilever-free scanning probe arrays has allowed researchers to define nanoscale patterns in a low-cost and high-resolution format, but with the limitation that these are duplication tools where each probe in the array creates a copy of a single pattern. Here, we report a cantilever-free SPL architecture that can generate 100 nanometer-scale molecular features using a 2D array of independently actuated probes. To physically actuate a probe, local heating is used to thermally expand the elastomeric film beneath a single probe, bringing it into contact with the patterning surface. Not only is this architecture simple and scalable, but it addresses fundamental limitations of 2D SPL by allowing one to compensate for unavoidable imperfections in the system. This cantilever-free dot-matrix nanoprinting will enable the construction of surfaces with chemical functionality that is tuned across the nano- and macroscales. PMID:23861495

  1. Dynamic modelling and experimental study of cantilever beam with clearance

    NASA Astrophysics Data System (ADS)

    Li, B.; Jin, W.; Han, L.; He, Z.

    2012-05-01

    Clearances occur in almost all mechanical systems, typically such as the clearance between slide plate of gun barrel and guide. Therefore, to study the clearances of mechanisms can be very important to increase the working performance and lifetime of mechanisms. In this paper, rigid dynamic modelling of cantilever with clearance was done according to the subject investigated. In the rigid dynamic modelling, clearance is equivalent to the spring-dashpot model, the impact of beam and boundary face was also taken into consideration. In ADAMS software, the dynamic simulation was carried out according to the model above. The software simulated the movement of cantilever with clearance under external excitation. Research found: When the clearance is larger, the force of impact will become larger. In order to study how the stiffness of the cantilever's supporting part influences natural frequency of the system, A Euler beam which is restricted by a draught spring and a torsion spring at its end was raised. Through numerical calculation, the relationship between natural frequency and stiffness was found. When the value of the stiffness is close to the limit value, the corresponding boundary condition is illustrated. An ADAMS experiment was carried out to check the theory and the simulation.

  2. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  3. Effect of veneering material on the deformation suffered by implant-supported fixed prosthesis framework

    PubMed Central

    GRANDO, Antônio Francisco; REZENDE, Carlos Eduardo Edwards; SOUSA, Edson Antônio Capello; RUBO, José Henrique

    2014-01-01

    Knowing how stresses are dissipated on the fixed implant-supported complex allows adequate treatment planning and better choice of the materials used for prosthesis fabrication. Objectives The aim of this study was to evaluate the deformation suffered by cantilevered implant-supported fixed prostheses frameworks cast in silver-palladium alloy and coated with two occlusal veneering materials: acrylic resin or porcelain. Material and Methods Two strain gauges were bonded to the inferior surface of the silver-palladium framework and two other were bonded to the occlusal surface of the prosthesis framework covered with ceramic and acrylic resin on each of its two halves. The framework was fixed to a metallic master model and a 35.2 N compression force was applied to the cantilever at 10, 15 and 20 mm from the most distal implant. The measurements of deformation by compression and tension were obtained. The statistical 2-way ANOVA test was used for individual analysis of the experiment variables and the Tukey test was used for the interrelation between all the variables (material and distance of force application). Results The results showed that both variables had influence on the studied factors (deformation by compression and tension). Conclusion The ceramic coating provided greater rigidity to the assembly and therefore less distortion compared with the uncoated framework and with the resin-coated framework. The cantilever arm length also influenced the prosthesis rigidity, causing higher deformation the farther the load was applied from the last implant. PMID:25025562

  4. Cantilever Wings for Modern Aircraft: Some Aspects of Cantilever Wing Construction with Special Reference to Weight and Torsional Stiffness

    NASA Technical Reports Server (NTRS)

    Stieger, H J

    1929-01-01

    In the foregoing remarks I have made an attempt to touch on some of the structural problems met with in cantilever wings, and dealt rather fully with a certain type of single-spar construction. The experimental test wing was a first attempt to demonstrate the principles of this departure from orthodox methods. The result was a wing both torsionally stiff and of light weight - lighter than a corresponding biplane construction.

  5. Nondestructive experimental determination of bimaterial rectangular cantilever spring constants in water

    SciTech Connect

    Snow, David E.; Kim, Dae Jung; Hope-Weeks, Louisa J.; Weeks, Brandon L.; Pitchimani, Rajasekar

    2008-08-15

    In order to address the issue of spring constant calibration in viscous fluids such as water, a new method is presented that allows for the experimental calibration of bimaterial cantilever spring constants. This method is based on modeling rectangular cantilever beam bending as a function of changing temperature. The temperature change is accomplished by heating water as it flows around the cantilever beams in an enclosed compartment. The optical static method of detection is used to measure the deflection of cantilever at the free end. Experimentally determined results are compared to Sader's method and to the Thermotune method most commonly used in cantilever calibrations. Results indicate that the new bimaterial thermal expansion method is accurate within 15%-20% of the actual cantilever spring constant, which is comparable to other nondestructive calibration techniques.

  6. Nondestructive experimental determination of bimaterial rectangular cantilever spring constants in water.

    PubMed

    Snow, David E; Weeks, Brandon L; Kim, Dae Jung; Pitchimani, Rajasekar; Hope-Weeks, Louisa J

    2008-08-01

    In order to address the issue of spring constant calibration in viscous fluids such as water, a new method is presented that allows for the experimental calibration of bimaterial cantilever spring constants. This method is based on modeling rectangular cantilever beam bending as a function of changing temperature. The temperature change is accomplished by heating water as it flows around the cantilever beams in an enclosed compartment. The optical static method of detection is used to measure the deflection of cantilever at the free end. Experimentally determined results are compared to Sader's method and to the Thermotune method most commonly used in cantilever calibrations. Results indicate that the new bimaterial thermal expansion method is accurate within 15%-20% of the actual cantilever spring constant, which is comparable to other nondestructive calibration techniques. PMID:19044356

  7. Piezoelectric energy harvester operated by noncontact mechanical frequency up-conversion using shell cantilever structure

    NASA Astrophysics Data System (ADS)

    Jang, Munseon; Song, Seunghwan; Park, Yong-Hee; Yun, Kwang-Seok

    2015-06-01

    In this study, we propose and demonstrate a piezoelectric energy harvester with a shell cantilever for mechanical frequency up-conversion to generate electric power in a low-frequency vibration environment. The proposed device is composed of a clamped semicylindrical shell cantilever as a driving beam and a piezoelectric cantilever attached to the proof mass of the shell cantilever as a generating beam. The shell cantilever bends downward when the external acceleration is over the threshold value for buckling transition. When the acceleration direction is reversed, the shell cantilever makes abrupt stop at its initial position, inducing impact-like force on the generating beam and resulting in free vibration at high resonance frequencies. Experimental results show that a maximum power of 101 µW at 20 Hz can be obtained.

  8. Using the Finite Elements Method (FEM) for Nanotechnology Education. A rectangular cantilever as a mass sensor

    NASA Astrophysics Data System (ADS)

    Aya Baquero, H.

    2015-01-01

    The Finite Element Method FEM can be used in the context of physics engineering education, particularly in nanotechnology training. Cantilevers and cantilevers arrays have been implemented as sensors within lots of applications. In the present paper, FEM was used to assess validity of basic models where cantilevers are used as mass sensors. Resonance frequency of a cantilever transversal vibration was found; this was a silicon one-side clamped cantilever. A number of minor mass elements Am was added on the cantilever's free side. Then in each case, a new resonance frequency was found; this led to obtain the Am values from shifts of resonance frequencies. Finally, those values were compared with CAD model values.

  9. Performance of pre-deformed flexible piezoelectric cantilever in energy harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Pengyingkai; Sui, Li; Shi, Gengchen; Liu, Guohua

    2016-05-01

    This paper proposes a novel structure for pre-rolled flexible piezoelectric cantilevers that use wind energy to power a submunition electrical device. Owing to the particular installation position and working environment, the submunition piezoelectric cantilever should be rolled when not working, but this pre-rolled state can alter the energy harvesting performance. Herein, a working principle and installation method for piezoelectric cantilevers used in submunitions are introduced. To study the influence of the pre-rolled state, pre-rolled piezoelectric cantilevers of different sizes were fabricated and their performances were studied using finite element analysis simulations and experiments. The simulation results show that the resonance frequency and stiffness of the pre-rolled structure is higher than that of a flat structure. Results show that, (1) for both the pre-rolled and flat cantilever, the peak voltage will increase with the wind speed. (2) The pre-rolled cantilever has a higher critical wind speed than the flat cantilever. (3) For identical wind speeds and cantilever sizes, the peak voltage of the flat cantilever (45 V) is less than that of the pre-rolled cantilever (56 V). (4) Using a full-bridge rectifier, the output of the pre-rolled cantilever can sufficiently supply a 10 μF capacitor, whose output voltage may be up to 23 V after 10 s. These results demonstrate that the pre-rolled piezoelectric cantilever and its installation position used in this work are more suitable for submunition, and its output sufficiently meets submunition requirements.

  10. Note: Lateral force microscope calibration using multiple location pivot loading of rectangular cantilevers

    SciTech Connect

    Chung, Koo-Hyun; Reitsma, Mark G.

    2010-02-15

    This note outlines a calibration method for atomic force microscope friction measurement that uses the ''pivot'' method of [Bogdanovic et al., Colloids Surf. B 19, 397 (2000)] to generate optical lever sensitivities for known torque applied to rectangular cantilevers. We demonstrate the key calibration parameter to be a linear function of the position at which it is determined along the length of the cantilevers. In this way the optical lever system can be calibrated for cantilever torque by applying loads at locations along the length of a cantilever, away from the integrated tip, so that issues such as tip damage or interference can be avoided.

  11. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    SciTech Connect

    Xu, J.; Tang, J.

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  12. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  13. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  14. Simultaneous position and mass determination of a nanoscale-thickness cantilever sensor in viscous fluids

    NASA Astrophysics Data System (ADS)

    Hong, Seongkyeol; Kim, Deokman; Park, Junhong; Jang, Jaesung

    2015-02-01

    We report simultaneous determination of the mass and position of micro-beads attached to a nanoscale-thickness cantilever sensor by analyzing wave propagations along the cantilever while taking into account viscous and inertial loading due to a surrounding fluid. The fluid-structure interaction was identified by measuring the change in the wavenumber under different fluid conditions. The predicted positions and masses agreed with actual measurements. Even at large mass ratios (6%-21%) of the beads to the cantilever, this wave approach enabled accurate determination of the mass and position, demonstrating the potential for highly accurate cantilever sensing of particle-based bio-analytes such as bacteria.

  15. Improving the quality factor of cantilevers in viscous fluids by the adaptation of their interface

    NASA Astrophysics Data System (ADS)

    Linden, J.; Oesterschulze, E.

    2012-03-01

    The adaptation of the fluid-microresonator interface enables the operation of cantilevers with high quality factor in viscous fluids. Partial wetting was proposed to implement the adapted interface by meniscus formation. An excellent quality factor of 79 was achieved in water applying the concept of partial wetting to thin film silicon nitride cantilevers. Compared to the quality factor calculated from Sader's theory of the hydrodynamic damping of fully immersed cantilevers, this is an improvement by more than one decade. As a first application the partially wetted cantilevers were employed as mass sensors in water revealing a sensitivity of 2.77 fg/Hz.

  16. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-11-01

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  17. Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers

    SciTech Connect

    Ergincan, O. Palasantzas, G.; Kooi, B. J.

    2014-02-15

    The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.

  18. Self-driving capacitive cantilevers for high-frequency atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Yang, Benjamin H.; Westervelt, R. M.

    2012-01-01

    We demonstrate a simple way to actuate an atomic force microscope cantilever at high frequencies by electrically driving a thin-film capacitor on its surface. Capacitive driving directly actuates the vibrational mode of the cantilever, removing the effects of unwanted mechanical modes present in conventional driving systems and removing the need for a drive piezoelectric. Practical vibration amplitudes are attainable at drive voltages <5 V. We capacitively drive the first mechanical resonance of a tapping mode cantilever (243 kHz) and a high-frequency cantilever (1.5 MHz) with vibration amplitudes in agreement with our model of capacitive driving.

  19. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields. PMID:24784614

  20. A barometric pressure sensor based on the air-gap scale effect in a cantilever

    NASA Astrophysics Data System (ADS)

    Minh-Dung, Nguyen; Takahashi, Hidetoshi; Uchiyama, Takeshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-09-01

    The most common structure for a conventional barometric pressure sensor consists of a vacuum-sealed cavity and a diaphragm. However, we hypothesize that a simple structure with an unsealed cavity and an ultra-thin cantilever can provide more sensitive measurements. We produced a 300-nm-thick cantilever with a small spring constant, which made the cantilever sensitive to low pressures. We demonstrated that miniaturizing the air-gap of the cantilever enables the sensor to measure barometric pressure changes at a low pressure change rate with a high resolution, which was 1 Pa at 0.05 Hz, and for a gap size of 1.7 μm.

  1. Probing model tumor interfacial properties using piezoelectric cantilevers.

    PubMed

    Yegingil, Hakki; Shih, Wan Y; Shih, Wei-Heng

    2010-09-01

    Invasive malignant breast cancers are typically branchy and benign breast tumors are typically smooth. It is of interest to characterize tumor branchiness (roughness) to differentiate invasive malignant breast cancer from noninvasive ones. In this study, we examined the shear modulus (G) to elastic modulus (E) ratio, G/E, as a quantity to describe model tumor interfacial roughness using a piezoelectric cantilever capable of measuring both tissue elastic modulus and tissue shear modulus. The piezoelectric cantilever used had two lead zirconate titanate layers to facilitate all-electrical elastic (shear) modulus measurements using one single device. We constructed model tissues with tumors by embedding one-dimensional (1D) corrugated inclusions and three-dimensional (3D) spiky-ball inclusions made of modeling clay in gelatin. We showed that for smooth inclusions, G/E was 0.3 regardless of the shear direction. In contrast, for a 1D corrugated rough inclusion G/E was 0.3 only when the shear was parallel to corrugation and G/E increased with an increasing angle between the shear direction and the corrugation. When the shear was perpendicular to corrugation, G/E became >0.7. For 3D isotropic spiky-ball inclusions we showed that the G/E depended on the degree of the roughness. Using the ratio s/r of the spike length (s) to the overall inclusion radius (r) as a roughness parameter, we showed that for inclusions with s/r larger than or equal to 0.28, the G/E ratio over the inclusions was larger than 0.7 whereas for inclusions with s/r less than 0.28, the G/E decreased with decreasing s/r to around 0.3 at s/r=0. In addition, we showed that the depth limit of the G/E measurement is twice the width of the probe area of the piezoelectric cantilever. PMID:20887005

  2. Cantilevers with integrated organic LEDs for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    An, Kwang Hyup; O'Connor, Brendan; Zhao, Yiying; Loh, William; Pipe, Kevin P.; Shtein, Max

    2007-02-01

    Organic thin films which are based on Van der Waals-bonded molecular organic compounds can be deposited onto a variety of substrates including scanning probe cantilevers without the lattice-matching constraints of conventional covalently-bonded semiconductors. Here we demonstrate organic light-emitting devices (OLEDs) fabricated on scanning probe cantilevers using thermal evaporation of molecular organic compounds and metallic electrodes. Ion beam lithography was used to define the emissive region in the shape of a ring having a diameter of 5 micrometers. The width of the ring emission was less than a micron as measured in the far field. Stable light emission was observed from the device at forward bias, with a current-voltage response similar to that of archetypal OLEDs. Such a probe can enable a new form of electrically-pumped SNOM compatible with existing atomic force microscopy tools and techniques. The emission wavelength can be tuned across the entire visible spectrum, including white light emission, by altering the composition of the emissive layer with a wide range of luminescent dyes. Should the ring-shaped light emission be used for imaging, the sample image can be deconvolved using a ring filter to achieve high resolution. The OLED probe can also be used to transfer excitons through the cathode to a sample via plasmon-assisted energy transfer; such a probe would be valuable for studying exciton dynamics in organic or organic/inorganic hybrid photovoltaic devices. By demonstrating the first active organic device on a scanning probe cantilever, this work opens the door to a wide range of new scanning probe techniques based on this class of materials for areas such as biological imaging.

  3. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  4. Integrated optical dual-cantilever arrays in silica on silicon.

    PubMed

    Cooper, Peter A; Carpenter, Lewis G; Mennea, Paolo L; Holmes, Christopher; Gates, James C; Smith, Peter G R

    2014-12-29

    A dual cantilever device has been demonstrated which can operate as a force sensor or variable attenuator. The device is fabricated using physical micromachining techniques that do not require cleanroom class facilities. The response of the device to mechanical actuation is measured, and shown to be well described by conventional fiber optic angular misalignment theory. The device has the potential to be utilized within integrated optical components for sensors or attenuators. An array of devices was fabricated with potential for parallel operation. PMID:25607148

  5. Influence of rotation and pretwist on cantilever fan blade flutter

    NASA Technical Reports Server (NTRS)

    Sisto, F.; Chang, A. T.

    1985-01-01

    The fundamental and lowest frequency natural modes in a cantilever fan blade exhibit significant amounts of flexure and torsion coupled by pretwist and operation in a rotational force field. Consequently the flutter estimation of such blades requires an accurate structural description that incorporates these two effects, amongst others. A beam-type finite element model is used in this study with up to six spanwise elements, each element being pretwisted. Coalescence-type flutter is found with subsonic aerodynamics. Evidence of the aerodynamic resonance phenomenon is exhibited and the importance of including radially varying aerodynamic forces is brought out.

  6. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    NASA Technical Reports Server (NTRS)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  7. On numerical nonlinear analysis of highly flexible spinning cantilevers

    NASA Technical Reports Server (NTRS)

    Utku, S.; El-Essawi, M.; Salama, M.

    1981-01-01

    The general nonlinear discretized equations of motion of spinning elastic solids and structures are derived as a set of nonlinear ordinary differential equations for the case when the strain-displacement and velocity-displacement relations are nonlinear up to the second order. It is shown that the cost of generation of such equations is proportional to the fourth power of the number of degrees of freedom. A computer program is written to automatically generate the equations for the case of spinning cantilevers with initial imperfections. The types and the number of the coordinate functions used in the trial solution are parameters of the program.

  8. Vibrations of twisted cantilever plates - A comparison of theoretical results

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Leissa, A. W.; Macbain, J. C.

    1985-01-01

    As a result of significant differences in the published results for various methods of analysis involving the use of finite element techniques, there are now some questions regarding the adequacy of these methods to predict accurately the vibratory characteristics of highly twisted cantilever plates. In an attempt to help in a resolution of the arising problems, a joint government/industry/university research effort was initiated. The primary objective of the present paper is to summarize the theoretical methods used in the study and show samples of the obtained results. The study provided 19 sets of theoretical results which are derived from beam theory, shell theory, and finite element methods.

  9. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  10. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    PubMed Central

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  11. [Advantages of fixed combinations].

    PubMed

    Lachkar, Y

    2008-07-01

    Fixed combinations are indicated in the treatment of glaucoma and ocular hypertension when monotherapy does not sufficiently reduce IOP. Fixed combinations show better efficacy than the instillation of each separate component and are at least equivalent to the administration of both components in a separate association. They simplify treatment, increase compliance and quality of life, and decrease exposure to preservatives. Although they are less aggressive for patients when a new drug needs to be added, the use of fixed combinations should not decrease the follow-up. PMID:18957922

  12. Band-pass design optimization of piezoelectric cantilever bimorph energy harvester

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Williams, Keith A.

    2011-03-01

    Piezoelectric energy harvesting has become a feasible method for powering micro portable electronics and wireless sensor networks by converting ambient vibration energy into electrical energy. As a thumb of rule, it is critical to tune the resonant frequency of the generator to the frequency of the environmental vibrations in order to induce the maximum structural deformation and then the maximum converted electrical energy through piezoelectric effect. However, it is well-known that the ambient vibrations are not usually fixed in only one single frequency and could span over a limited frequency band. In this paper, a band-pass design optimization of piezoelectric cantilever bimorph (PCB) energy harvester is presented based on the system transfer function of the PCB generator presented in a previous literature. For such an energy harvester, a group of PCB with dimensions appropriately selected can be integrated into a band-pass energy harvester working over a limited frequency band if the dimensions of piezoelectric bimorphs and proof masses are appropriately chosen. Further, the finite element analysis (FEA) of such a band-pass energy harvester is performed in ANSYS to validate the theoretical proposal. The result shows that the band-pass design optimization leads to a piezoelectric generator working over a certain frequency band while keeping outputting the relatively stable open-circuit voltage.

  13. Structure–performance relationships for cantilever-type piezoelectric energy harvesters

    SciTech Connect

    Cho, Kyung-Hoon E-mail: spriya@vt.edu; Park, Hwi-Yeol; Heo, Jin S.; Priya, Shashank E-mail: spriya@vt.edu

    2014-05-28

    This study provides comprehensive analysis of the structure–performance relationships in cantilever-type piezoelectric energy harvesters. It provides full understanding of the effect of all the practical global control variables on the harvester performance. The control variables considered for the analysis were material parameters, areal and volumetric dimensions, and configuration of the inactive and active layers. Experimentally, the output power density of the harvester was maximum when the shape of the beam was close to a square for a constant bending stiffness and a fixed beam area. Through analytical modeling of the effective stiffness for the piezoelectric bimorph, the conditions for enhancing the bending stiffness within the same beam volume as that of a conventional bimorph were identified. The harvester configuration with beam aspect ratio of 0.86 utilizing distributed inactive layers exhibited an giant output power of 52.5 mW and power density of 28.5 mW cm{sup −3} at 30 Hz under 6.9 m s{sup −2} excitation. The analysis further indicates that the trend in the output power with varying damping ratio is dissimilar to that of the efficiency. In order to realize best performance, the harvester should be designed with respect to maximizing the magnitude of output power.

  14. Transmission electron microscopy of deformed Ti-6Al-4 V micro-cantilevers

    NASA Astrophysics Data System (ADS)

    Ding, Rengen; Gong, Jicheng; Wilkinson, Angus J.; Jones, Ian P.

    2012-09-01

    Single α-β colony micro-cantilevers were machined from a polycrystalline commercial Ti-6Al-4 V sample using a focussed ion beam. Each cantilever contained several alpha lamellae separated by thin fillets of beta. A nanoindenter was used to perform micro-bending tests. The a3 prismatic slip system was selectively activated in the cantilevers by controlling the crystal orientation along the micro-cantilever. Specimens for transmission electron microscopy (TEM) were prepared using a dual-beam focussed ion beam from a series of micro-cantilevers deformed to various extents. Bright field scanning transmission electron microscopy (BF-STEM) was used to investigate the processes of slip nucleation, propagation and transmission through the α/β interface. The cantilevers had an equilateral triangular cross-section with the bar at the top and the apex at the bottom. The compressive stresses developed near the apex were thus twice the tensile stresses near the top. Dislocations initiate first from the bottom and then from the top and move toward the neutral line. Even in the sample with a small deflection, i.e. 0.5 µm, dislocations were observed at the bottom of the cantilever, but dislocations were not observed at the top until the deflection reached 3 µm. Pile-ups pushed the dislocations past the neutral line when the micro-cantilevers were deflected to more than 4 µm.

  15. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass

    DOE PAGESBeta

    Lee, Ida; Evans, Barbara R.; Foston, Marcus B.; Ragauskas, Arthur J.

    2015-05-08

    A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.

  16. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  17. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  18. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  19. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  20. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  1. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  2. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  3. Analysis of grating inscribed micro-cantilever for high resolution AFM probe

    NASA Astrophysics Data System (ADS)

    Balajee, N.; Mahapatra, D. R.; Hegde, G. M.

    2013-06-01

    We present a mathematical modelling and analysis of reflection grating etched Si AFM cantilever deflections under different loading conditions. A simple analysis of the effect of grating structures on cantilever deflection is carried out with emphasis on optimizing the beam and gratings such that maximum amount of diffracted light remains within the detector area.

  4. Decoupled cantilever arms for highly versatile and sensitive temperature and heat flux measurements.

    PubMed

    Burg, Brian R; Tong, Jonathan K; Hsu, Wei-Chun; Chen, Gang

    2012-10-01

    Microfabricated cantilever beams have been used in microelectromechanical systems for a variety of sensor and actuator applications. Bimorph cantilevers accurately measure temperature change and heat flux with resolutions several orders of magnitude higher than those of conventional sensors such as thermocouples, semiconductor diodes, as well as resistance and infrared thermometers. The use of traditional cantilevers, however, entails a series of important measurement limitations, because their interactions with the sample and surroundings often create parasitic deflection forces and the typical metal layer degrades the thermal sensitivity of the cantilever. The paper introduces a design to address these issues by decoupling the sample and detector section of the cantilever, along with a thermomechanical model, the fabrication, system integration, and characterization. The custom-designed bi-arm cantilever is over one order of magnitude more sensitive than current commercial cantilevers due to the significantly reduced thermal conductance of the cantilever sample arm. The rigid and immobile sample section offers measurement versatility ranging from photothermal absorption, near-field thermal radiation down to contact, conduction, and material thermal characterization measurements in nearly identical configurations. PMID:23126793

  5. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass

    SciTech Connect

    Lee, Ida; Evans, Barbara R; Foston, Marcus B; Ragauskas, Arthur J

    2015-01-01

    A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.

  6. Instability of a cantilevered flexible plate in viscous channel flow

    NASA Astrophysics Data System (ADS)

    Balint, T. S.; Lucey, A. D.

    2005-10-01

    The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.

  7. The stress intensity factor for the double cantilever beam

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1983-01-01

    Fourier transforms and the Wiener-Hopf technique are used in conjunction with plane elastostatics to examine the singular crack tip stress field in the double cantilever beam (DCB) specimen. In place of the Dirac delta function, a family of functions which duplicates the important features of the concentrated forces without introducing unmanageable mathematical complexities is used as a loading function. With terms of order h-squared/a-squared retained in the series expansion, the dimensionless stress intensity factor is found to be K (h to the 1/2)/P = 12 to the 1/2 (a/h + 0.6728 + 0.0377 h-squared/a-squared), in which P is the magnitude of the concentrated forces per unit thickness, a is the distance from the crack tip to the points of load application, and h is the height of each cantilever beam. The result is similar to that obtained by Gross and Srawley by fitting a line to discrete results from their boundary collocation analysis.

  8. Surface effect on the nonlinear forced vibration of cantilevered nanobeams

    NASA Astrophysics Data System (ADS)

    Dai, H. L.; Zhao, D. M.; Zou, J. J.; Wang, L.

    2016-06-01

    The nonlinear forced vibration behavior of a cantilevered nanobeam is investigated in this paper, essentially considering the effect due to the surface elastic layer. The governing equation of motion for the nano-cantilever is derived, with consideration of the geometrical nonlinearity and the effects of additional flexural rigidity and residual stress of the surface layer. Then, the nonlinear partial differential equation (PDE) is discretized into a set of nonlinear ordinary differential equations (ODEs) by means of the Galerkin's technique. It is observed that surface effects on the natural frequency of the nanobeam is of significance, especially for the case when the aspect ratio of the nanobeam is large. The nonlinear resonant dynamics of the nanobeam system is evaluated by varying the excitation frequency around the fundamental resonance, showing that the nanobeam would display hardening-type behavior and hence the frequency-response curves bend to the right in the presence of positive residual surface stress. However, with the negative residual surface stress, this hardening-type behavior can be shifted to a softening-type one which becomes even more evident with increase of the aspect ratio parameter. It is also demonstrated that the combined effects of the residual stress and aspect ratio on the maximum amplitude of the nanobeam may be pronounced.

  9. Systematic design of cantilever beams for muscle research.

    PubMed

    McLaughlin, R J

    1977-05-01

    Experimental studies of muscle contraction often involve difficult problems in the design of cantilever beams for movable levers, transducers, or mechanical supports. Equations are presented for the calculation of mass, inertia, stress distribution, strain, deflection curve, compliance, and resonant frequency of uniform or nonuniform cantilever beams made of structural materials of different density or elastic modulus. Formulas are listed for solid, thick-wall, and thin-wall uniform beams of rectangular and circular cross section. Physical properties including density, elastic and torsional moduli, stress and strain limits, thermal expansion coefficients, Poisson's ratio, and certain elastic-modulus-to-density ratios are tabulated for structural materials including common metals, glass, plastic, and wood. A graphical design procedure is presented based on a chart containing loci of constant beam parameter values as a function of beam length and height or diameter, for the simple geometries. The choice of structural material is discussed for design problems with typical constraints, and examples are given of the design of beams of nonuniform cross section. Methods for extending the design chart to other geometries and materials are included. PMID:863848

  10. Massively Multiplexed Cantilever-free Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Boya, Radha; Schmucker, Abrin L.; Liu, Guoliang; Mirkin, Chad A.

    2013-03-01

    Cantilever-free scanning probe lithography has emerged as a low-cost technique for rapidly patterning nanoscale materials. In this architecture, an array of probes is fabricated on a soft backing layer that provides mechanical compliance to each probe while an underlying hard surface maintains the structural integrity of the array. One drawback of this technique is that each probe in the array acts simultaneously and thus generates a copy of the same pattern. Here, we discuss recent efforts to incorporate heaters into these probe arrays so that when a given heater is activated, the thermal expansion of the elastomer actuates a single tip. We find thermal actuation to be powerful enough to actuate individual tips over 4 μm with minimal crosstalk, fast enough to actuate on relevant time scales (20 ms), and scalable by virtue of being electrically addressable. Furthermore, tuning the individual heaters allows for variability in the arrays to be compensated for precisely, resulting in high quality nanopatterning. The addition of tunable actuators transforms cantilever-free scanning probe lithography into a technique capable of true desktop nanofabrication.

  11. Assessment of insulated conductive cantilevers for biology and electrochemistry

    NASA Astrophysics Data System (ADS)

    Frederix, Patrick L. T. M.; Gullo, Maurizio R.; Akiyama, Terunobu; Tonin, Andreas; de Rooij, Nicolaas F.; Staufer, Urs; Engel, Andreas

    2005-08-01

    This paper describes the characterization and application of electrically insulated conductive tips mounted on a cantilever for use in an atomic force microscope and operated in liquid. These multifunctional probes were microfabricated and designed for measurements on biological samples in buffer solution, but they can also be employed for electrochemical applications, in particular scanning electrochemical microscopy. The silicon nitride based cantilevers had a spring constant <=0.1 N m-1 and a conductive tip, which was insulated except at the apex. The conductive core of the tip consisted of a metal, e.g. platinum silicide, and exhibited a typical radius of 15 nm. The mechanical and electrical characterization of the probe is presented and discussed. First measurements on the hexagonally packed intermediate layer of Deinococcus radiodurans demonstrated the possibility to adjust the image contrast by applying a voltage between a support and the conductive tip and to measure variations of less than 1 pA in faradaic current with a lateral resolution of 7.8 nm.

  12. Performance characteristics of valveless and cantilever-valve micropump

    NASA Astrophysics Data System (ADS)

    Shukur, A. F. M.; Sabani, N.; Taib, B. N.; Azidin, M. A. M.; Shahimin, M. M.

    2013-12-01

    This paper presents comparison between two classes of micropump which are valveless micropump and cantilever-valve micropump. These micropumps consist of basic components which are diaphragm, pumping chamber, actuation mechanism, inlet and outlet. Piezoelectric actuation is carried out by applying pressure on the micropump diaphragm to produce deflection. The micropumps studied in this paper had been designed with specific diaphragm thickness and diameter; while varying the materials, pressure applied and liquid types used. The outer dimension for both micropumps is 4mm × 4mm × 0.5mm with diameter and thickness of the diaphragm are 3.8mm and 20μm respectively. Valveless micropump was shown in this paper to have better performance in mechanical and fluid analysis in terms of maximum deflection and maximum flow rate at actuation pressure 30kPa vis-à-vis cantilever-valve micropump. Valveless micropump was shown in this study to have maximum diaphragm deflection of 183.06μm and maximum flow rate with 191.635μL/s at actuation pressure 30kPa using silicon dioxide as material.

  13. Simultaneous normal and torsional force measurement by cantilever surface contour analysis

    NASA Astrophysics Data System (ADS)

    Kumanchik, Lee; Schmitz, Tony; Pratt, Jon

    2011-05-01

    This study presents an alternative to the current Hooke's law-based force relation between rectangular cantilever deflection and applied force. In the new approach, a transduction constant is presented that (1) includes no cross-talk between torsion and normal force components, (2) is independent of the load application point, and (3) does not depend on the cantilever beam length. Rather than measuring the cantilever deformation at a single point (such as the tip location), it is measured at multiple adjacent points using scanning white light interferometry to provide a three-dimensional description of the cantilever deformation during loading. This measurement, processed by a force relation based on a superposition of deflections derived from Euler-Bernoulli bending theory and St Venant's torsion theory, provides the vertical, axial, and torsional force components simultaneously. Experimental results are compared to force predictions for the vertical and torsional components using macro-scale cantilevers under mass loading. An uncertainty analysis is also provided.

  14. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.

    2015-06-01

    Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.

  15. Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss

    SciTech Connect

    Schmidsfeld, A. von Reichling, M.

    2015-09-21

    In a non-contact atomic force microscope, based on interferometric cantilever displacement detection, the optical return loss of the system is tunable via the distance between the fiber end and the cantilever. We utilize this for tuning the interferometer from a predominant Michelson to a predominant Fabry-Pérot characteristics and introduce the Fabry-Pérot enhancement factor as a quantitative measure for multibeam interference in the cavity. This experimentally easily accessible and adjustable parameter provides a control of the opto-mechanical interaction between the cavity light field and the cantilever. The quantitative assessment of the light pressure acting on the cantilever oscillating in the cavity via the frequency shift allows an in-situ measurement of the cantilever stiffness with remarkable precision.

  16. Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers.

    PubMed

    Ganser, Christian; Fritz-Popovski, Gerhard; Morak, Roland; Sharifi, Parvin; Marmiroli, Benedetta; Sartori, Barbara; Amenitsch, Heinz; Griesser, Thomas; Teichert, Christian; Paris, Oskar

    2016-01-01

    We use a soft templating approach in combination with evaporation induced self-assembly to prepare mesoporous films containing cylindrical pores with elliptical cross-section on an ordered pore lattice. The film is deposited on silicon-based commercial atomic force microscope (AFM) cantilevers using dip coating. This bilayer cantilever is mounted in a humidity controlled AFM, and its deflection is measured as a function of relative humidity. We also investigate a similar film on bulk silicon substrate using grazing-incidence small-angle X-ray scattering (GISAXS), in order to determine nanostructural parameters of the film as well as the water-sorption-induced deformation of the ordered mesopore lattice. The strain of the mesoporous layer is related to the cantilever deflection using simple bilayer bending theory. We also develop a simple quantitative model for cantilever deflection which only requires cantilever geometry and nanostructural parameters of the porous layer as input parameters. PMID:27335753

  17. Note: Calibration of atomic force microscope cantilevers using only their resonant frequency and quality factor

    SciTech Connect

    Sader, John E.; Friend, James R.

    2014-11-15

    A simplified method for calibrating atomic force microscope cantilevers was recently proposed by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012); Sec. III D] that relies solely on the resonant frequency and quality factor of the cantilever in fluid (typically air). This method eliminates the need to measure the hydrodynamic function of the cantilever, which can be time consuming given the wide range of cantilevers now available. Using laser Doppler vibrometry, we rigorously assess the accuracy of this method for a series of commercially available cantilevers and explore its performance under non-ideal conditions. This shows that the simplified method is highly accurate and can be easily implemented to perform fast, robust, and non-invasive spring constant calibration.

  18. Finite element modeling of atomic force microscopy cantilever dynamics during video rate imaging

    SciTech Connect

    Howard-Knight, J. P.; Hobbs, J. K.

    2011-04-01

    A dynamic finite element model has been constructed to simulate the behavior of low spring constant atomic force microscope (AFM) cantilevers used for imaging at high speed without active feedback as in VideoAFM. The model is tested against experimental data collected at 20 frame/s and good agreement is found. The complex dynamics of the cantilever, consisting of traveling waves coming from the tip sample interaction, reflecting off the cantilever-substrate junction, and interfering with new waves created at the tip, are revealed. The construction of the image from this resulting nonequilibrium cantilever deflection is also examined. Transient tip-sample forces are found to reach values up to 260 nN on a calibration grid sample, and the maximum forces do not always correspond to the position of steepest features as a result of energy stored in the cantilever.

  19. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.

    2016-07-01

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  20. Low frequency driven oscillations of cantilevers in viscous fluids at very low Reynolds number

    NASA Astrophysics Data System (ADS)

    Cranch, G. A.; Lane, J. E.; Miller, G. A.; Lou, J. W.

    2013-05-01

    The motion of submerged cantilevers driven by viscous fluids is experimentally investigated and a previously published theoretical model is verified over a broad range of Reynolds number covering 4×10-3≤Re≤2000 at frequencies up to 1 kHz. Both planar and cylindrical cantilevers are implemented using short length (few centimeters) fiber lasers, which are also used to measure the deflections. The driving forces are analyzed in detail illustrating how the dominant force transitions from a pressure related force to a viscous force depending on the Reynolds number of the fluid flow around the cantilever. Simplified, approximate expressions for the tip displacement of cantilevers oscillating in the highly viscous regime are also presented. These results will enable accurate, a priori, calculation of the motion of driven cantilevers over a range of dimensions, geometries, and fluid properties.

  1. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.

    PubMed

    Farokh Payam, Amir; Fathipour, Morteza

    2015-03-01

    The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler-Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical. PMID:25562584

  2. A cantilever based optical fiber acoustic sensor fabricated by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yuan, Lei; Huang, Jie; Xiao, Hai

    2016-04-01

    In this paper, we present a pure silica micro-cantilever based optical fiber sensor for acoustic wave detection. The cantilever is directly fabricated by fs laser micromachining on an optical fiber tip functioning as an inline Fabry-Perot interferometer (FPI). The applied acoustic wave pressurizes the micro-cantilever beam and the corresponding dynamic signals can be probed by the FPI. The thickness, length, and width of the micro-cantilever beam can be flexibly designed and fabricated so that the sensitivity, frequency response, and the total measurement range can be varied to fit many practical applications. Experimental results will be presented and analyzed. Due to the assembly free fabrication of the fs-laser, multiple micro-cantilever beams could be potentially fabricated in/on a single optical fiber for quasi-distributed acoustic mapping with high spatial resolution.

  3. Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers

    PubMed Central

    Ganser, Christian; Fritz-Popovski, Gerhard; Morak, Roland; Sharifi, Parvin; Marmiroli, Benedetta; Sartori, Barbara; Amenitsch, Heinz; Griesser, Thomas; Teichert, Christian

    2016-01-01

    Summary We use a soft templating approach in combination with evaporation induced self-assembly to prepare mesoporous films containing cylindrical pores with elliptical cross-section on an ordered pore lattice. The film is deposited on silicon-based commercial atomic force microscope (AFM) cantilevers using dip coating. This bilayer cantilever is mounted in a humidity controlled AFM, and its deflection is measured as a function of relative humidity. We also investigate a similar film on bulk silicon substrate using grazing-incidence small-angle X-ray scattering (GISAXS), in order to determine nanostructural parameters of the film as well as the water-sorption-induced deformation of the ordered mesopore lattice. The strain of the mesoporous layer is related to the cantilever deflection using simple bilayer bending theory. We also develop a simple quantitative model for cantilever deflection which only requires cantilever geometry and nanostructural parameters of the porous layer as input parameters. PMID:27335753

  4. Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2015-12-01

    Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device.

  5. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.

    PubMed

    Killgore, Jason P; Tung, Ryan C; Hurley, Donna C

    2014-08-29

    Combining heated-tip atomic force microscopy (HT-AFM) with quantitative methods for determining surface mechanical properties, such as contact resonance force microscopy, creates an avenue for nanoscale thermomechanical property characterization. For nanomechanical methods that employ an atomic force microscope cantilever's vibrational modes, it is essential to understand how the vibrations of the U-shaped HT-AFM cantilever differ from those of a more traditional rectangular lever, for which analytical techniques are better developed. Here we show, with a combination of finite element analysis (FEA) and experiments, that the HT-AFM cantilever exhibits many more readily-excited vibrational modes over typical AFM frequencies compared to a rectangular cantilever. The arms of U-shaped HT-AFM cantilevers exhibit two distinct forms of flexural vibrations that differ depending on whether the two arms are vibrating in-phase or out-of-phase with one another. The in-phase vibrations are qualitatively similar to flexural vibrations in rectangular cantilevers and generally show larger sensitivity to surface stiffness changes than the out-of-phase vibrations. Vibration types can be identified from their frequency and by considering vibration amplitudes in the horizontal and vertical channels of the AFM at different laser spot positions on the cantilever. For identifying contact resonance vibrational modes, we also consider the sensitivity of the resonant frequencies to a change in applied force and hence to tip-sample contact stiffness. Finally, we assess how existing analytical models can be used to accurately predict contact stiffness from contact-resonance HT-AFM results. A simple two-parameter Euler-Bernoulli beam model provided good agreement with FEA for in-phase modes up to a contact stiffness 500 times the cantilever spring constant. By providing insight into cantilever vibrations and exploring the potential of current analysis techniques, our results lay the groundwork

  6. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Du, Xu; Wang, Xin; Ikehara, Tsuyoshi; Maeda, Ryutaro

    2016-01-01

    Two geometrically different cantilevers, with primary frequencies of 182.506 kHz (u-shaped cantilever for sensing) and 372.503 kHz (rectangular cantilever for detecting), were coupled by two symmetrical coupling overhangs for oscillation-based mass sensing verification with phase-locking. Based on a lumped element model, a theoretical expression, containing a nonlinear spring constant and a term corresponding to the effect of the coupling spring, was proposed to consider the factors influencing the entrainment range, which is defined as a plateau with a frequency ratio (resonant frequency of rectangular cantilever to that of u-shaped cantilever) of 2.000 in present study. A picogram order mass sensing by applying a polystyrene microsphere as a small mass perturbation onto the tip of the u-shaped cantilever was demonstrated. By varying driving voltages, two entrainment regions with and without microsphere were experimentally measured and comparatively shown. At a driving voltage of 1 Vpp, when the u-shaped cantilever was excited at its shifted frequency of 180.29 kHz, the frequency response of the coupled rectangular cantilever had a peak at double the shifted frequency of 360.58 kHz of the u-shaped cantilever. The frequency shift for picogram mass sensing was thus doubled from 2560 Hz to 5133 Hz due to phase-locking. A mass of 3.732 picogram was derived based on the doubled frequency shift corresponding to a calculated mass of 3.771 picogram from measured diameter and reported density. Both experimental demonstration and theoretical discussions from the viewpoint of entrainment range elicits the possibility of increasing the mass sensitivity via phase-locking in the coupled silicon micro-cantilevers.

  7. Fast nanotopography imaging using a high speed cantilever with integrated heater-thermometer

    NASA Astrophysics Data System (ADS)

    Lee, Byeonghee; Somnath, Suhas; King, William P.

    2013-04-01

    This paper presents a high speed tapping cantilever with an integrated heater-thermometer for fast nanotopography imaging. The cantilever is much smaller and faster than previous heated cantilevers, with a length of 35 μm and a resonant frequency of 1.4 MHz. The mechanical response time is characterized by scanning over a backward-facing step of height 20 nm. The mechanical response time is 77 μs in air and 448 μs in water, which compares favorably to the fastest commercial cantilevers that do not have integrated heaters. The doped silicon cantilever is designed with an integrated heater that can heat and cool in about 10 μs and can operate in both air and water. We demonstrate standard laser-based topography imaging along with thermal topography imaging, when the cantilever is actuated via the piezoelectric shaker in an atomic force microscope system and when it is actuated by Lorentz forces. The cantilever can perform thermal topography imaging in tapping mode with an imaging resolution of 7 nm at a scan speed of 1.46 mm s-1.

  8. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy.

    PubMed

    Somnath, Suhas; Collins, Liam; Matheson, Michael A; Sukumar, Sreenivas R; Kalinin, Sergei V; Jesse, Stephen

    2016-10-14

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip-sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques. PMID:27607339

  9. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array

    PubMed Central

    McKendry, Rachel; Zhang, Jiayun; Arntz, Youri; Strunz, Torsten; Hegner, Martin; Lang, Hans Peter; Baller, Marko K.; Certa, Ulrich; Meyer, Ernst; Güntherodt, Hans-Joachim; Gerber, Christoph

    2002-01-01

    We report a microarray of cantilevers to detect multiple unlabeled biomolecules simultaneously at nanomolar concentrations within minutes. Ligand-receptor binding interactions such as DNA hybridization or protein recognition occurring on microfabricated silicon cantilevers generate nanomechanical bending, which is detected optically in situ. Differential measurements including reference cantilevers on an array of eight sensors can sequence-specifically detect unlabeled DNA targets in 80-fold excess of nonmatching DNA as a background and discriminate 3′ and 5′ overhangs. Our experiments suggest that the nanomechanical motion originates from predominantly steric hindrance effects and depends on the concentration of DNA molecules in solution. We show that cantilever arrays can be used to investigate the thermodynamics of biomolecular interactions mechanically, and we have found that the specificity of the reaction on a cantilever is consistent with solution data. Hence cantilever arrays permit multiple binding assays in parallel and can detect femtomoles of DNA on the cantilever at a DNA concentration in solution of 75 nM. PMID:12119412

  10. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape

    SciTech Connect

    Sader, John E.; Sanelli, Julian A.; Adamson, Brian D.; Bieske, Evan J.; Monty, Jason P.; Marusic, Ivan; Wei Xingzhan; Mulvaney, Paul; Crawford, Simon A.; Friend, James R.

    2012-10-15

    The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

  11. A complete analysis of the laser beam deflection systems used in cantilever-based systems.

    PubMed

    Beaulieu, L Y; Godin, Michel; Laroche, Olivier; Tabard-Cossa, Vincent; Grütter, Peter

    2007-01-01

    A working model has been developed which can be used to significantly increase the accuracy of cantilever deflection measurements using optical beam techniques (used in cantilever-based sensors and atomic force microscopes), while simultaneously simplifying their use. By using elementary geometric optics and standard vector analysis it is possible, without any fitted or adjustable parameters, to completely and accurately describe the relationship between the cantilever deflection and the signal measured by a position sensitive photo-detector. By arranging the geometry of the cantilever/optical beam, it is possible to tailor the detection system to make it more sensitive at different stages of the cantilever deflection or to simply linearize the relationship between the cantilever deflection and the measured detector signal. Supporting material and software has been made available for download at http://www.physics.mun.ca/beauliu_lab/papers/cantilever_analysis.htm so that the reader may take full advantage of the model presented herein with minimal effort. PMID:17174033

  12. Force sensing submicrometer thick cantilevers with ultra-thin piezoresistors by rapid thermal diffusion

    NASA Astrophysics Data System (ADS)

    Gel, M.; Shimoyama, I.

    2004-03-01

    One of the most important requirements for a cantilever-type sensor to obtain high force sensitivity is small thickness. By using current micromachining technology it is possible to produce cantilevers of submicrometer thickness. Where self-sensing piezoresistive cantilevers with submicrometer thickness are concerned, it is necessary to use a technology which can create ultra-thin (<100 nm) piezoresistors on a cantilever surface. This work demonstrates for the first time the application of a relatively simple, rapid thermal diffusion method by using spin-on glass film to fabricate sub-100 nm piezoresistors on an ultra-thin single-crystal silicon cantilever. Compared to other shallow junction fabrication methods, which involve implantation or deposition of a doped layer, this method is advantageous since no damage is created in the crystal structure and no toxic gas or hazardous material is used during the process. Besides, this technique can be applied by using low-cost rapid annealers, which can be readily found in most laboratories. By using this method, piezoresistive cantilevers with stiffness in the range of 0.001 N m-1 with sub-100 nm thick piezoresistors are fabricated, and a complete characterization of the fabricated cantilevers is performed.

  13. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  14. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    DOE PAGESBeta

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  15. Ultra large deflection of thin PZT/aluminium cantilever beam

    NASA Astrophysics Data System (ADS)

    Seveno, Raynald; Guiffard, Benoit; Regoin, Jean-Pierre

    2015-04-01

    Flexible piezoelectric cantilever beam has been realized by depositing lead zirconate titanate (PZT) thin film (4.5 μm) by chemical solution deposition (CSD) onto very thin aluminium foil (16 μm). The tip deflection of the beam has been measured as a function of the frequency of the applied sinusoidal voltage to the PZT film for different amplitudes. Resonance curves have been compared to a classical model of an oscillating system under sinusoidal stress with a very good agreement. Despite of weak ferroelectric properties (remnant polarization: 13 μC/cm2), ultra-large deflection amplitudes have been measured under very moderate applied voltage values: 750 μm@10 V for quasi-static mode and 5 mm@10 V at the resonance frequency ( 12 Hz), which makes this PZT/aluminium composite film very promising for highly flexible actuation applications where large displacements are wanted.

  16. Integrated Cantilever Magnetometry of (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Meinel, I.; Myers, R. C.; Stephens, J.; Johnston-Halperin, E.; Hanson, M.; Gossard, A. C.; Awschalom, D. D.

    2002-03-01

    Ferromagnetic semiconductors can be used to manipulate the spin dependent properties of adjacent semiconductor layers, ranging from carrier spin polarization in the conduction and valence bands to polarization of the nuclei. Here we investigate the magnetic properties of (Ga,Mn)As grown by MBE on GaAs and patterned into 100 nm thick micromechanical cantilevers. The low spring constants(J. G. E. Harris et al., Phys. Rev. Lett. 86, 4644 (2001).) enable the study of submonolayer ferromagnets, e. g. 0.25 ML MnAs. In addition, optical fibers are used to photo-excite carriers in the adjacent GaAs. These photo-electrons spontanously spin-polarize along the magnetization of the ferromagnet and dynamically orient the nuclei. The ability to independently study the ferromagnet and its influence on the adjacent semiconductor provides an avenue for mechanical detection of optically induced nuclear polarization.

  17. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    SciTech Connect

    Yun, Minhyuk; Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin; Kim, Seonghwan; Chae, Inseok; Thundat, Thomas

    2012-05-14

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  18. Strain energy release rate distributions for double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A 24-ply composite double cantilever-beam specimen under mode I (opening) loading has been analyzed by a 3D FEM code that calculated along a straight delamination starter for several different specimen materials. An isotropic specimen was found to have a strain-energy release rate distribution which varied along its delamination front due to the boundary-layer effect and another effect associated with the anticlastic curvature of the bent specimen arms. A 0-deg graphite-reinforced epoxy specimen had a nearly-uniform strain-energy release rate distribution which dropped only near the edge, due to the boundary-layer effect, and a +/- 45-deg graphite/epoxy specimen exhibited a pronounced strain-energy release rate variation across the specimen width.

  19. Behavior of a Cantilever Plate Under Rapid-heating Conditions

    NASA Technical Reports Server (NTRS)

    Vosteen, Louis F; Fuller, Kenneth E

    1955-01-01

    The temperature distributions encountered in thin solid wings subjected to aerodynamic heating induce thermal stresses that may effectively reduce the stiffness of the wing. The effects of this reduction in stiffness were investigated experimentally by rapidly heating the edges of a cantilever plate. The midplane thermal stresses imposed by the nonuniform temperature distribution caused the plate to buckle torsionally, increased the deformations of the plate under a constant applied torque, and reduced the frequency of the first two natural modes of vibration. By using small-deflection theory and employing energy methods, the effect of nonuniform heating on the plate stiffness was calculated. The theory predicts the general effects of the thermal stresses, but becomes inadequate as the temperature difference increases and plate deflections become large.

  20. Vibration Characteristics of Partially Covered Double-Sandwich Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Chen, Qinghua; Levy, Cesar

    1996-01-01

    The differential equations of motion together with the boundary conditions for a partially covered, double-sandwich cantilever beam are derived. Bending and extension, rotational and longitudinal inertia of damping layers, and shear deformation and rotational and longitudinal inertia of the constraining layers and the primary beam are included in the equations. The theory is applicable for long as well as short, soft, or stiff damping layer, double-sandwich beams. Also, the effects of different parameters on the system loss factor and resonance frequency are discussed. Differences are found to exist with the previous beam model (called the Euler beam model) when the damping layers are stiff, when the thickness of the damping layer is large compared to the primary-beam thickness, and in the case of higher modes of vibration.

  1. Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids

    NASA Astrophysics Data System (ADS)

    Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio

    2012-06-01

    In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.

  2. The frequencies of cantilever wings in beam and torsional vibrations

    NASA Technical Reports Server (NTRS)

    Burgess, C P

    1940-01-01

    Methods are described for calculating the period and frequency of vibration of cantilever wings and similar structures in which the weight and moment of inertia vary along the span. Both the beam and torsional frequencies may be calculated by these methods. The procedure is illustrated by examples. It is shown that a surprisingly close approximation to the beam frequency may be obtained by a very brief calculation in which the curvature of the wing in vibration is assumed to be constant. A somewhat longer computation permits taking account of the true curvature of the beam by a series of successive approximations which are shown to be strongly convergent. Analogous methods are applied to calculations of the torsional frequency. For the first approximation it is assumed that the angle of twist varies linearly alone the semispan. True variation of the twist is computed by successive approximations which are strongly convergent, as in the case of beam vibrations.

  3. Bending stresses due to torsion in cantilever box beams

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    The paper beings with a brief discussion on the origin of the bending stresses in cantilever box beams under torsion. A critical survey of existing theory is followed by a summary of design formulas; this summary is based on the most complete solution published but omits all refinements considered unnecessary at the present state of development. Strain-gage tests made by NACA to obtained some experimental verification of the formulas are described next. Finally, the formulas are applied to a series of box beams previously static-tested by the U.S. Army Air Corps; the results show that the bending stresses due to torsion are responsible to a large extent for the free-edge type of failure frequently experienced in these tests.

  4. A micromachined carbon nanotube film cantilever-based energy cell.

    PubMed

    Gong, Zhongcheng; He, Yuan; Tseng, Yi-Hsuan; O'Neal, Chad; Que, Long

    2012-08-24

    This paper reports a new type of energy cell based on micromachined carbon nanotube film (CNF)-lead zirconate titanate cantilevers that is fabricated on silicon substrates. Measurements found that this type of micro-energy cell generates both AC voltages due to the self-reciprocation of the microcantilevers and DC voltages due to the thermoelectric effect upon exposure to light and thermal radiation, resulting from the unique optical and thermal properties of the CNF. Typically the measured power density of the micro-energy cell can be from 4 to 300 μW cm(-2) when it is exposed to sunlight under different operational conditions. It is anticipated that hundreds of integrated micro-energy cells can generate power in the range of milliwatts, paving the way for the construction of self-powered micro- or nanosystems. PMID:22842491

  5. Magnetostrictive bending of a cantilevered film-substrate system

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.

    1997-04-01

    Curvatures produced by magnetization of the film in a system of a magnetic film bonded to a much thicker substrate are calculated for a model of a cantilevered system clamped flat at the clamped end. The curvatures are found by minimizing the total energy of the system, which includes magnetoelastic and elastic energy, with respect to a constant curvature in the length, but a variable curvature in the width that vanishes at the clamped end. Application to a measured system is made and the value of a magnetoelastic coefficient for a clamped system is compared with the value for a free system, when both are calculated from the measured deflections. Criticisms are made of previous erroneous derivations of the curvature of the free system, including one by the author.

  6. Strain engineering of diamond silicon vacancy centers in MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Meesala, Srujan; Sohn, Young-Ik; Atikian, Haig; Holzgrafe, Jeffrey; Zhang, Mian; Burek, Michael; Loncar, Marko

    2016-05-01

    The silicon vacancy (SiV) center in diamond has recently attracted attention as a solid state quantum emitter due to its attractive optical properties. We fabricate diamond MEMS cantilevers, and use electrostatic actuation to apply controlled strain fields to single SiV centers implanted in these devices. The strain response of the four electronic transitions of the SiV at 737 nm is measured via cryogenic (4 K) photoluminescence excitation. We demonstrate over 300 GHz of tuning for the mean transition frequency between the ground and excited states, and over 100 GHz of tuning for the orbital splittings within the ground and excited states. The interaction Hamiltonian for strain fields is inferred, and large strain susceptibilities of the order 1 PHz/strain are measured. We discuss prospects to utilize our device to reduce phonon-induced decoherence in SiV spin qubits, and to exploit the large strain susceptibilities for hybrid quantum systems based on nanomechanical resonators.

  7. Interdisciplinary cantilever physics: Elasticity of carrot, celery, and plasticware

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.

    2014-05-01

    This article presents several simple cantilever-based experiments using common household items (celery, carrot, and a plastic spoon) that are appropriate for introductory undergraduate laboratories or independent student projects. By applying Hooke's law and Euler beam theory, students are able to determine Young's modulus, fracture stress, yield stress, strain energy, and sound speed of these apparently disparate materials. In addition, a cellular foam elastic model is introduced—applicable to biologic materials as well as an essential component in the development of advanced engineering composites—that provides a mechanism to determine Young's modulus of the cell wall material found in celery and carrot. These experiments are designed to promote exploration of the similarities and differences between common inorganic and organic materials, fill a void in the typical undergraduate curriculum, and provide a foundation for more advanced material science pursuits within biology, botany, and food science as well as physics and engineering.

  8. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary

    NASA Astrophysics Data System (ADS)

    Chen, Liqun; Lim, C. W.; Hu, Qingquan; Ding, Hu

    2009-09-01

    Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach. The asymptotic solution is sought for a beam equation with a nonlinear boundary condition. The steady-state responses are determined in primary resonance and subharmonic resonance. The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition. Multivaluedness occurs in the relations as a consequence of the nonlinearity. The stability of steady-state responses is analyzed by use of the Lyapunov linearized stability theory. The stability analysis predicts the jumping phenomenon for certain parameters. The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales. The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.

  9. Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example

    SciTech Connect

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

  10. Modeling bicortical screws under a cantilever bending load.

    PubMed

    James, Thomas P; Andrade, Brendan A

    2013-12-01

    Cyclic loading of surgical plating constructs can precipitate bone screw failure. As the frictional contact between the plate and the bone is lost, cantilever bending loads are transferred from the plate to the head of the screw, which over time causes fatigue fracture from cyclic bending. In this research, analytical models using beam mechanics theory were developed to describe the elastic deflection of a bicortical screw under a statically applied load. Four analytical models were developed to simulate the various restraint conditions applicable to bicortical support of the screw. In three of the models, the cortical bone near the tip of the screw was simulated by classical beam constraints (1) simply supported, (2) cantilever, and (3) split distributed load. In the final analytical model, the cortices were treated as an elastic foundation, whereby the response of the constraint was proportional to screw deflection. To test the predictive ability of the new analytical models, 3.5 mm cortical bone screws were tested in a synthetic bone substitute. A novel instrument was developed to measure the bending deflection of screws under radial loads (225 N, 445 N, and 670 N) applied by a surrogate surgical plate at the head of the screw. Of the four cases considered, the analytical model utilizing an elastic foundation most accurately predicted deflection at the screw head, with an average difference of 19% between the measured and predicted results. Determination of the bending moments from the elastic foundation model revealed that a maximum moment of 2.3 N m occurred near the middle of the cortical wall closest to the plate. The location of the maximum bending moment along the screw axis was consistent with the fracture location commonly observed in clinical practice. PMID:24105350

  11. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  12. Fixing Dataset Search

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.

  13. A Compact 2 Degree-of-Freedom Energy Harvester with Cut-Out Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Tang, Lihua; Yang, Yaowen; Kiong Soh, Chee

    2012-04-01

    In this work, a novel 2 degree-of-freedom (DOF) vibration energy harvester is proposed. The harvester comprises one main cantilever beam and one secondary cantilever beam cut out within the main beam. By varying the proof masses, the first two resonances can be tuned close to each other, while maintaining significant magnitudes, thus providing a useful wide bandwidth for energy harvesting. Unlike previous 2-DOF harvesters, the proposed harvester is compact and utilizes the beam more efficiently by generating energy from both the main and secondary cantilevers. Therefore, the proposed harvester is more adaptive and functional in practical random or frequency-variant vibrational circumstances.

  14. A Compact, Low-Power Cantilever-Based Sensor Array for Chemical Detection

    SciTech Connect

    Loui, A; Ratto, T; Wilson, T; Mukerjee, E; Hu, Z; Sulchek, T; Hart, B

    2007-02-22

    A compact and low-power cantilever-based sensor array has been developed and used to detect various vapor analytes. This device employs sorptive polymers that are deposited onto piezoresistive cantilevers. We have successfully detected several organic vapors, representing a breadth of chemical properties and over a range of concentrations. Comparisons of the polymer/vapor partition coefficient to the cantilever deflection responses show that a simple linear relationship does not exist, emphasizing the need to develop an appropriate functional model to describe the chemical-to-mechanical transduction that is unique to this sensing modality.

  15. Resonant interaction of trapped cold atoms with a magnetic cantilever tip

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Valencia, Jose; Geraci, Andrew; Eardley, Matthew; Kitching, John

    2015-05-01

    We report the resonant coupling of laser cooled trapped Rb atoms to a micro-cantilever with a magnetic tip. An atom chip is used to trap, cool, and transport the atoms to the tip of the cantilever. The capacitively-driven cantilever oscillation produces Zeeman state transitions which result in a loss of population in the trap. In a suitably scaled setup, mechanical resonators could be used to probe and manipulate atomic spins with nanometer spatial resolution and single-spin sensitivity; this technique may enable new approaches in neutral-atom quantum computation, quantum simulation, or precision sensing.

  16. Feedback cooling of cantilever motion using a quantum point contact transducer

    SciTech Connect

    Montinaro, M.; Mehlin, A.; Solanki, H. S.; Peddibhotla, P.; Poggio, M.; Mack, S.; Awschalom, D. D.

    2012-09-24

    We use a quantum point contact (QPC) as a displacement transducer to measure and control the low-temperature thermal motion of a nearby micromechanical cantilever. The QPC is included in an active feedback loop designed to cool the cantilever's fundamental mechanical mode, achieving a squashing of the QPC noise at high gain. The minimum achieved effective mode temperature of 0.2 K and the displacement resolution of 10{sup -11} m/{radical}(Hz) are limited by the performance of the QPC as a one-dimensional conductor and by the cantilever-QPC capacitive coupling.

  17. Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant

    SciTech Connect

    Mostafa, Salwa; Lee, Ida; Islam, Syed K; Eliza, Sazia A.; Shekhawat, Gajendra; Dravid, Vinayak; Tulip, Fahmida S

    2011-01-01

    In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/ L.

  18. Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces

    SciTech Connect

    Wagner, Ryan; Raman, Arvind; Proksch, Roger

    2013-12-23

    Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.

  19. Static deflection analysis of non prismatic multilayer p-NEMS cantilevers under electrical load

    NASA Astrophysics Data System (ADS)

    Pavithra, M.; Muruganand, S.

    2016-04-01

    Deflection of Euler-Bernoulli non prismatic multilayer piezoelectric nano electromechanical (p-NEMS) cantilever beams have been studied theoretically for various profiles of p-NEMS cantilevers by applying the electrical load. This problem has been answered by applying the boundary conditions derived by simple polynomials. This method is applied for various profiles like rectangular and trapezoidal by varying the thickness of the piezoelectric layer as well as the material. The obtained results provide the better deflection for trapezoidal profile with ZnO piezo electric layer of suitable nano cantilevers for nano scale applications.

  20. Transient eigenmodes analysis of single-impact cantilever dynamics combining Fourier and wavelet transforms.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2015-05-01

    The transient eigenmode structure of an interacting cantilever during a single impact on different surfaces evidences the excitation of higher flexural modes and low frequency oscillations. The frequency shift of the fundamental mode after the tip comes into contact with the sample surface allows calculating the tip-sample interaction stiffness and evidences the role of capillary condensation and surface wettability on the cantilever dynamics. Wavelet transforms are used to trace the origin of spectral features in the cantilever spectra and calculate force gradients of the tip-sample interaction. PMID:25837684

  1. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning

    NASA Astrophysics Data System (ADS)

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu; Shindo, Yasuhide; Narita, Fumio

    2015-12-01

    This work deals with the dynamic bending and energy harvesting characteristics of giant magnetostrictive cantilevers with resonant tuning both numerically and experimentally. The giant magnetostrictive cantilever is fabricated using a thin Terfenol-D layer, SUS layer, movable proof mass, etc, and, is designed to automatically adjust its own resonant frequency to match the external vibration frequency in real time. Three-dimensional finite element analysis was conducted, and the resonant frequency, induced voltage and stress in the magnetostrictive cantilevers were predicted. The resonant frequency and induced voltage were also measured, and comparison was made between simulation and experiment. The time-varying behavior and self-tuning ability are discussed in detail.

  2. Label-free protein assay based on a nanomechanical cantilever array

    NASA Astrophysics Data System (ADS)

    Arntz, Y.; Seelig, J. D.; Lang, H. P.; Zhang, J.; Hunziker, P.; Ramseyer, J. P.; Meyer, E.; Hegner, M.; Gerber, Ch

    2003-01-01

    We demonstrate continuous label-free detection of two cardiac biomarker proteins (creatin kinase and myoglobin) using an array of microfabricated cantilevers functionalized with covalently anchored anti-creatin kinase and anti-myoglobin antibodies. This method allows biomarker proteins to be detected via measurement of surface stress generated by antigen-antibody molecular recognition. Reference cantilevers are used to eliminate thermal drifts, undesired chemical reactions and turbulences from injections of liquids by calculating differential deflection signals with respect to sensor cantilevers. The sensitivity achieved for myoglobin detection is below 20 µg ml-1. Both myoglobin and creatin kinase could be detected independently using cantilevers functionalized with the corresponding antibodies, in unspecific protein background. This approach permits the use of up to seven different antigen-antibody reactions simultaneously, including an additional thermomechanical and chemical in situ reference. Applications lie in the field of early and rapid diagnosis of acute myocardial infarction.

  3. Small cantilevers for atomic force microscopy and force spectroscopy of biological molecules

    NASA Astrophysics Data System (ADS)

    Viani, M. B.; Schaffer, T. E.; Chand, A.; Smith, B. L.; Hansma, P. K.; Wendman, M.

    1998-03-01

    Small cantilevers offer new possibilities for high speed/low noise atomic force microscopy of soft, biological samples. We have used a novel process to fabricate metallic cantilevers that should maximize reflectivity and minimize thermal bending. We have fabricated and measured the properties of aluminum, nickel, silver, and 14-karat gold cantilevers that are 3-12 um long, 1-4 um wide, and 60-300 nm thick and have resonant frequencies of 0.5-2 MHz and spring constants of 0.1-3 N/m. We also have fabricated small cantilevers with ultra-low spring constants (1-10 mN/m) out of silicon nitride and used them for force spectroscopy of DNA. This work was supported by grant numbers NSF-DMR9622169 and NSF-DMR9632716 from the Materials Research Division of the National Science Foundation and by grant number DAAH04-96-1-004 from the Army Research Office.

  4. Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy

    SciTech Connect

    Boubekri, R.; Cambril, E.; Couraud, L.; Bernardi, L.; Madouri, A.; Portail, M.; Chassagne, T.; Moisson, C.; Zielinski, M.; Jiao, S.; Michaud, J.-F.; Alquier, D.; Bouloc, J.; Nony, L.; Bocquet, F.; Loppacher, C.

    2014-08-07

    Cantilevers with resonance frequency ranging from 1 MHz to 100 MHz have been developed for dynamic atomic force microscopy. These sensors are fabricated from 3C-SiC epilayers grown on Si(100) substrates by low pressure chemical vapor deposition. They use an on-chip method both for driving and sensing the displacement of the cantilever. A first gold metallic loop deposited on top of the cantilever is used to drive its oscillation by electrothermal actuation. The sensing of this oscillation is performed by monitoring the resistance of a second Au loop. This metallic piezoresistive detection method has distinct advantages relative to more common semiconductor-based schemes. The optimization, design, fabrication, and characteristics of these cantilevers are discussed.

  5. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    SciTech Connect

    Siwak, N. P.; Fan, X. Z.; Ghodssi, R.; Kanakaraju, S.; Richardson, C. J. K.

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  6. Synthetic sialylglycopolymer receptor for virus detection using cantilever-based sensors.

    PubMed

    Gorelkin, P V; Erofeev, A S; Kiselev, G A; Kolesov, D V; Dubrovin, E V; Yaminsky, I V

    2015-09-01

    We describe the rapid, label-free detection of Influenza A viruses using a cantilever transducer modified with a synthetic sialylglycopolymer receptor layer. Surface stresses induced by viruses binding to the receptor layer were used as the analytical signal. The synthetic sialylglycopolymer receptor layer can be used in nanoscale strain-gauge cantilever transducers for highly sensitive virus detection. Strain-gage transducers using such sensor layers exhibit long lifetimes, high sensitivities, and possible regeneration. Nanomechanical cantilever systems using optical detectors were used for the surface stress measurements. We demonstrated the positive, label-free detection of Influenza A at concentrations below 10(6) viruses per ml. In contrast to hemagglutination assays, cantilever sensors are label free, in situ, and rapid (less than 30 min), and they require minimal or nearly no sample preparation. PMID:26215598

  7. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    NASA Astrophysics Data System (ADS)

    Siwak, N. P.; Fan, X. Z.; Kanakaraju, S.; Richardson, C. J. K.; Ghodssi, R.

    2014-10-01

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  8. Self-actuated, self-sensing cantilever for fast CD measurement

    NASA Astrophysics Data System (ADS)

    Ahmad, Ahmad; Ivanov, Tzvetan; Reum, Alexander; Guliyev, Elshad; Angelov, Tihomir; Schuh, Andreas; Kaestner, Marcus; Atanasov, Ivaylo; Hofer, Manuel; Holz, Mathias; Rangelow, Ivo W.

    2015-03-01

    The conventional optical lever detection technique involves optical components and its precise mechanical alignment. An additional technical limit is the weight of the optical system, in case a top-scanner is used in high speed and high precision metrology. An alternative represents the application of self-actuated AFM cantilevers with integrated 2DEG piezoresistive deflection sensors. A significant improvement in performance of such cantilevers with respect to deflection sensitivity and temperature stability has been achieved by using an integrated Wheatstone bridge configuration. Due to employing effective cross-talk isolation and temperature drift compensation the performance of these cantilevers was significantly improved. In order to enhance the speed of AFM measurements we are presenting a fast cantilever-approach technology, Q-factor-control and novel adaptive scanning speed procedure. Examples of AFM measurements with high scanning speed (up to 200 lines/s) committed to advanced lithography process development are shown.

  9. Intermittent contact interaction between an atomic force microscope cantilever and a nanowire

    NASA Astrophysics Data System (ADS)

    Knittel, I.; Ungewitter, L.; Hartmann, U.

    2012-05-01

    We investigate in theory and experiment the intermittent contact interaction between an atomic force microscope (AFM) cantilever and a nanowire under ambient conditions. The nanowire is modeled as a spring reacting instantaneously to any change of the force between the wire and the cantilever. This implies that the cantilever is subject to an "effective" force-distance relation, containing not only the surface forces but also the deflection of the nanowire. Experimentally, CVD-grown tin oxide nanowires and lithographically structured silicon nanowire arrays were investigated by intermittent contact AFM. By comparison of experimental and simulated distance-dependent resonance curves it is found that the nanowires behave like "fast nanosprings" and that the adhesion force is one of the key factors determining distance-dependent resonance curves. The results are fully applicable to a scenario in which a cantilever equipped by a nanowire interacts with a surface.

  10. A direct micropipette-based calibration method for atomic force microscope cantilevers

    PubMed Central

    Liu, Baoyu; Yu, Yan; Yao, Da-Kang; Shao, Jin-Yu

    2009-01-01

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundreds of newtons per meter. Under appropriate loading conditions, this new method yields measurement accuracy and precision both within 10%, with higher performance for softer cantilevers. Furthermore, this method may greatly enhance the accuracy and precision of calibration for colloidal probes. PMID:19566228

  11. Cell force measurements in 3D microfabricated environments based on compliant cantilevers.

    PubMed

    Marelli, Mattia; Gadhari, Neha; Boero, Giovanni; Chiquet, Matthias; Brugger, Jürgen

    2014-01-21

    We report the fabrication, functionalization and testing of microdevices for cell culture and cell traction force measurements in three-dimensions (3D). The devices are composed of bent cantilevers patterned with cell-adhesive spots not lying on the same plane, and thus suspending cells in 3D. The cantilevers are soft enough to undergo micrometric deflections when cells pull on them, allowing cell forces to be measured by means of optical microscopy. Since individual cantilevers are mechanically independent of each other, cell traction forces are determined directly from cantilever deflections. This proves the potential of these new devices as a tool for the quantification of cell mechanics in a system with well-defined 3D geometry and mechanical properties. PMID:24217771

  12. Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance

    NASA Astrophysics Data System (ADS)

    Xu, J.; Tang, J.

    2015-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. Simple piezoelectric cantilever for energy harvesting is uni-directional and has bandwidth limitation. In this research we explore utilizing internal resonances to harvest vibratory energy due to excitations from an arbitrary direction with the usage of a single piezoelectric cantilever. Specifically, it is identified that by attaching a pendulum to the piezoelectric cantilever, 1:2 internal resonances can be induced based on the nonlinear coupling. The nonlinear effect induces modal energy exchange between beam bending motion and pendulum motions in 3-dimensional space, which ultimately yield multidirectional energy harvesting by a single cantilever. Systematic analysis and experimental investigation are carried out to demonstrate this new concept.

  13. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    ERIC Educational Resources Information Center

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  14. Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen

    NASA Technical Reports Server (NTRS)

    Schapery, R. A.; Davidson, B. D.

    1988-01-01

    The problem of an orthotropic cantilevered plate subjected to a uniformly distributed end load is solved by the Rayleigh-Ritz energy method. The result is applied to laminated composite, double cantilevered specimens to estimate the effect of crack tip constraint on the transverse curvature, deflection and energy release rate. The solution is also utilized to determined finite width correction factors for fracture energy characterization tests in which neither plane stress nor plane strain conditions apply.

  15. Quantitative measurement of in-plane cantilever torsion for calibrating lateral piezoresponse force microscopy.

    SciTech Connect

    Choi, H.; Hong, S.; No, K.

    2011-01-01

    A simple quantitative measurement procedure of in-plane cantilever torsion for calibrating lateral piezoresponse force microscopy is presented. This technique enables one to determine the corresponding lateral inverse optical lever sensitivity (LIOLS) of the cantilever on the given sample. Piezoelectric coefficient, d{sub 31} of BaTiO{sub 3} single crystal (-81.62 {+-} 40.22 pm/V) which was calculated using the estimated LIOLS was in good agreement with the reported value in literature.

  16. Investigation of polymer derived ceramics cantilevers for application of high speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Chia-Yun

    High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques

  17. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  18. Sensing cantilever beam bending by the optical lever technique and its application to surface stress.

    PubMed

    Evans, Drew R; Craig, Vincent S J

    2006-03-23

    Cantilever beams, both microscopic and macroscopic, are used as sensors in a great variety of applications. An optical lever system is commonly employed to determine the deflection and thereby the profile of the cantilever under load. The sensitivity of the optical lever must be calibrated, and this is usually achieved by application of a known load or deflection to the free end of the cantilever. When the sensing operation involves a different type of load or a combination of types of loadings, the calibration and the deflection values derived from it become invalid. Here we develop a master equation that permits the true deflection of the cantilever to be obtained simply from the measurement of the apparent deflection for uniformly distributed loadings and end-moment loadings. These loadings are relevant to the uniform adsorption or application of material to the cantilever or the application of a surface stress to the cantilever and should assist experimentalists using the optical lever, such as in the atomic force microscope, to measure cantilever deflections in a great variety of sensing applications. We then apply this treatment to the experimental evaluation of surface stress. Three forms of Stoney's equation that relate the apparent deflection to the surface stress, which is valid for both macroscopic and microscopic experiments, are derived. Analysis of the errors arising from incorrect modeling of the loading conditions of the cantilever currently applied in experiments is also presented. It is shown that the reported literature values for surface stress in microscopic experiments are typically 9% smaller than their true value. For macroscopic experiments, we demonstrate that the added mass of the film or coating generally dominates the measured deflection and must be accounted for accurately if surface stress measurements are to be made. Further, the reported measurements generally use a form of Stoney's equation that is in error, resulting in an

  19. Soft-materials elastic and shear moduli measurement using piezoelectric cantilevers

    NASA Astrophysics Data System (ADS)

    Markidou, Anna; Shih, Wan Y.; Shih, Wei-Heng

    2005-06-01

    We have developed a soft-material elastic modulus and shear modulus sensor using piezoelectric cantilevers. A piezoelectric cantilever is consisted of a highly piezoelectric layer, e.g., lead-zirconate-titanate bonded to a nonpiezoelectric layer, e.g., stainless steel. Applying an electric field in the thickness direction causes a piezoelectric cantilever to bend, generating an axial displacement or force. When a piezoelectric cantilever is in contact with an object, this electric field-generated axial displacement is reduced due to the resistance by the object. With a proper design of the piezoelectric cantilever's geometry, its axial displacements with and without contacting the object could be accurately measured. From these measurements the elastic modulus of the object can be deduced. In this study, we tailored the piezoelectric cantilevers for measuring the elastic and shear moduli of tissue-like soft materials with forces in the submilli Newton to milliNewton range. Elastic moduli and shear moduli of soft materials were measured using piezoelectric cantilevers with a straight tip and an L-shaped tip, respectively. Using gelatin and commercial rubber material as model soft tissues, we showed that a piezoelectric cantilever 1.5-2cm long could measure the elastic modulus and the shear modulus of a small soft material sample (1-3mm wide) in the small strain range (<1%). For samples 5mm high, the resultant compressive (shear) strains were less than 0.5% (1%). The measurements were validated by (1) comparing the measured Young's modulus of the commercial rubber sample with its known value and (2) by measuring both the Young's modulus and shear modulus on the samples and confirming the thus deduced Poisson's ratios with the separately measured Poisson's ratios.

  20. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  1. Model-based Processing of Micro-cantilever Sensor Arrays

    SciTech Connect

    Tringe, J W; Clague, D S; Candy, J V; Lee, C L; Rudd, R E; Burnham, A K

    2004-11-17

    We develop a model-based processor (MBP) for a micro-cantilever array sensor to detect target species in solution. After discussing the generalized framework for this problem, we develop the specific model used in this study. We perform a proof-of-concept experiment, fit the model parameters to the measured data and use them to develop a Gauss-Markov simulation. We then investigate two cases of interest: (1) averaged deflection data, and (2) multi-channel data. In both cases the evaluation proceeds by first performing a model-based parameter estimation to extract the model parameters, next performing a Gauss-Markov simulation, designing the optimal MBP and finally applying it to measured experimental data. The simulation is used to evaluate the performance of the MBP in the multi-channel case and compare it to a ''smoother'' (''averager'') typically used in this application. It was shown that the MBP not only provides a significant gain ({approx} 80dB) in signal-to-noise ratio (SNR), but also consistently outperforms the smoother by 40-60 dB. Finally, we apply the processor to the smoothed experimental data and demonstrate its capability for chemical detection. The MBP performs quite well, though it includes a correctable systematic bias error. The project's primary accomplishment was the successful application of model-based processing to signals from micro-cantilever arrays: 40-60 dB improvement vs. the smoother algorithm was demonstrated. This result was achieved through the development of appropriate mathematical descriptions for the chemical and mechanical phenomena, and incorporation of these descriptions directly into the model-based signal processor. A significant challenge was the development of the framework which would maximize the usefulness of the signal processing algorithms while ensuring the accuracy of the mathematical description of the chemical-mechanical signal. Experimentally, the difficulty was to identify and characterize the non

  2. Nanomechanical cantilever sensors as a novel tool for real-time monitoring and characterization of surface layer formation.

    PubMed

    Koeser, Joachim; Bammerlin, Martin; Battiston, Felice Mauro; Hubler, Urs

    2010-04-01

    Nanomechanical cantilevers are small and thin, microfabricated silicon beams. They serve as extremely sensitive mechanical sensors, which transform processes occurring at their surface into a mechanical response. This unique signal transduction principle allows to measure surface stress occurring at the cantilever surface by monitoring the bending of the cantilever (static mode) while at the same time observing changes in the oscillation properties of the cantilever related to changes in mass load on the cantilever (dynamic mode). The suitability of nanomechanical cantilevers for chemical sensing, e.g., the extremely sensitive detection of heavy metals, and as biosensors, e.g., for DNA and protein detection, are well established. Arrays of cantilever sensors can be employed for the parallel detection of multiple molecules of interest. This publication will focus on more recent applications of cantilever sensors in surface and materials sciences using a commercially available cantilever sensor platform. Examples for the real-time monitoring of self-assembled monolayer (SAM) formation, the detection of cholesterol interaction with hydrophobic surface layers and the use of cantilever sensors to study layer-by-layer (LbL) build-up processes in real-time are presented. PMID:20355466

  3. Effect of cantilever length on stress distribution around implants in mandibular overdentures supported by two and three implants

    PubMed Central

    Ebadian, Behnaz; Mosharraf, Ramin; Khodaeian, Niloufar

    2016-01-01

    Objective: There is no definitive study comparing stress distribution around two versus three implants in implant-retained overdentures with different cantilever length. The purpose of this finite element study was to evaluate stress pattern around the implants of the 2 or 3 implant- supported mandibular overdenture with different cantilevered length. Materials and Methods: The models used in this study were 2 and 3 implant-supported overdenture with bar and clip attachment system on an edentulous mandibular arch. Each model was modified according to cantilever length (0 mm, 7 mm, and 13 mm); thus, 6 models were obtained. The vertical load of 15 and 30 pounds were applied unilaterally to the first molar and 15 pounds to the first premolar, and the stress in bone was analyzed. Results: With increasing cantilever length, no similar stress pattern changes were observed in different areas, but in most instances, an increase in cantilever length did not increase the stress around the implant adjacent to cantilever. Conclusions: Within the limitations of this study, it can be concluded that increasing of cantilever length in mandibular overdentures retained by 2–3 implants did not cause distinct increasing in stress, especially around the implant adjacent to cantilever, it may be helpful to use cantilever in cases of mandibular overdenture supported by splinted implants with insufficient retention and stability. Based on the findings of this study, optimal cantilever length in mandibular overdenture cannot be determined. PMID:27403049

  4. Force spectroscopy with a large dynamic range using small cantilevers and an array detector

    NASA Astrophysics Data System (ADS)

    Schäffer, Tilman E.

    2002-04-01

    The important characteristics of a detector for force spectroscopy measurements are sensitivity, linearity and dynamic range. The commonly used two-segment detector that measures the position of a light beam reflected from the force-sensing cantilever in an atomic force microscope becomes nonlinear when the beam shifts significantly onto one of the segments. For a detection setup optimized for high sensitivity, such as needed for the use with small cantilevers, it is shown both experimentally and theoretically that the dynamic range extends to an upper detection limit of only about 115 nm in cantilever deflection if <10% nonlinearity is required. A detector is presented that circumvents that limitation. This detector is based on a linear arrangement of multiple photodiode segments that are read out individually. With such an array detector, the irradiance distribution of the reflected beam is measured. The reflected beam not only shifts in position but also deforms when the cantilever deflects because the bent cantilever acts as a curved mirror. The mean of the distribution, however, is a linear function of cantilever deflection in both theory and experiment. An array detector is consequently well suited for force measurements for which both high sensitivity and a large dynamic range are required.

  5. Cancelation of thermally induced frequency shifts in bimaterial cantilevers by nonlinear optomechanical interactions

    NASA Astrophysics Data System (ADS)

    Vy, Nguyen Duy; Tri Dat, Le; Iida, Takuya

    2016-08-01

    Bimaterial cantilevers have recently been used in, for example, the calorimetric analysis with picowatt resolution in microscopic space based on state-of-the-art atomic force microscopes. However, thermally induced effects usually change physical properties of the cantilevers, such as the resonance frequency, which reduce the accuracy of the measurements. Here, we propose an approach to circumvent this problem that uses an optical microcavity formed between a metallic layer coated on the back of the cantilever and one coated at the end of an optical fiber irradiating the cantilever. In addition to increasing the sensitivity, the optical rigidity of this system diminishes the thermally induced frequency shift. For a coating thickness of several tens of nanometers, the input power is 5-10 μW. These values can be evaluated from parameters derived by directly irradiating the cantilever in the absence of the microcavity. The system has the potential of using the cantilever both as a thermometer without frequency shifting and as a sensor with nanometer-controlled accuracy.

  6. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    NASA Astrophysics Data System (ADS)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  7. Evaluation of bimaterial cantilever beam for heat sensing at atmospheric pressure.

    PubMed

    Toda, Masaya; Ono, Takahito; Liu, Fei; Voiculescu, Ioana

    2010-05-01

    The bimaterial cantilever beam is an important basic structure of microelectromechanical system thermal devices. The research described in this paper is a study of the deflection of the bimaterial cantilever beam operated in the air and irradiated with a laser beam at the free end. The bimaterial cantilever beam is a composite structure formed by layers of silicon nitride and gold. The temperature variations produce the deflection of the cantilever beam end due to different values of the thermal expansion coefficients of silicon nitride and gold. The deflection was experimentally measured in vacuum and atmospheric pressure when a laser beam was irradiated at the free end. A formula for the calculation of the deflection as a function of incident power applied at the free end of the cantilever beam operated in air was also demonstrated. The predicted values of the deflection calculated using this formula and the experimental values of the deflection were compared, and the results were in good agreement. A systematic investigation of the cantilever beam deflection in vacuum and atmospheric pressure as a function of the heat applied at the free end is important for chemical and biological applications. PMID:20515169

  8. Calibration Technique Using Nonlinear Region in Cantilever Magnetometry Experiments and Presence of Universal Curve

    NASA Astrophysics Data System (ADS)

    Torizuka, Kiyoshi; Tajima, Hiroyuki; Yoshida, Gosuke; Inoue, Munenori

    2013-06-01

    We have presented a calibration technique for commercially available atomic force microscopy (AFM) cantilevers used in torque magnetometry experiments. The absolute values (J/rad) of the torque can be derived against the output signal, which is the change in piezoresistivity due to the deflection of the cantilever beam. The calibration has been performed using the susceptibility of a graphite plane. The linearity between the output signal and the torque is confirmed up to +/-1×10-8 J/rad of the torque. More importantly, since the nonlinear response of the cantilever is reproducible, we have also utilized the nonlinear region, so that the calibration range has been pushed up to +/-4 ×10-8 J/rad. In the nonlinear range, an important finding is that any curve (torque vs output signal curve) that is cantilever-dependent reduces to a single universal curve, after multiplying an appropriate factor. This factor is cantilever-dependent, but can be derived by rotating the sample-mounted cantilever in a zero magnetic field. We have also proposed a simple model regarding the presence of this universal curve.

  9. A method for atomic force microscopy cantilever stiffness calibration under heavy fluid loading

    SciTech Connect

    Kennedy, Scott J.; Cole, Daniel G.; Clark, Robert L.

    2009-12-15

    This work presents a method for force calibration of rectangular atomic force microscopy (AFM) microcantilevers under heavy fluid loading. Theoretical modeling of the thermal response of microcantilevers is discussed including a fluid-structure interaction model of the cantilever-fluid system that incorporates the results of the fluctuation-dissipation theorem. This model is curve fit to the measured thermal response of a cantilever in de-ionized water and a cost function is used to quantify the difference between the theoretical model and measured data. The curve fit is performed in a way that restricts the search space to parameters that reflect heavy fluid loading conditions. The resulting fitting parameters are used to calibrate the cantilever. For comparison, cantilevers are calibrated using Sader's method in air and the thermal noise method in both air and water. For a set of eight cantilevers ranging in stiffness from 0.050 to 5.8 N/m, the maximum difference between Sader's calibration performed in air and the new method performed in water was 9.4%. A set of three cantilevers that violate the aspect ratio assumption associated with the fluid loading model (length-to-width ratios less than 3.5) ranged in stiffness from 0.85 to 4.7 N/m and yielded differences as high as 17.8%.

  10. Characterization of Contact Structure for Woven Electronic Textile Using Conductive Polymer Micro-Cantilever Array

    NASA Astrophysics Data System (ADS)

    Yamashita, Takahiro; Khumpuang, Sommawan; Miyake, Koji; Itoh, Toshihiro

    Conductive polymer coated micro-cantilever array made by reel-to-reel continuous fiber process as the electrical contact components for woven electronic textile was investigated. We report the novel cantilever releasing method using air injection and the results of patternable CYTOP and organic conductive polymer using nanoimprinting method. The conductive organic material used in this study is PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate)). Micro-cantilever contact array is realized to compose the electrical circuit through the large area woven textile. The contact resistance of 480 Ω is hold on for over 500 times. Contact resistance measurements revealed that an electric current begins to flow with smaller contact force for PEDOT:PSS coated cantilever array structure than for PEDOT:PSS film structure. There is no appreciable wear on cantilever surface due to its movability after 103 cycles contact test with 0.5 N contact force. Based on these results, PEDOT:PSS coated micro-cantilever array have excellent potential as electrical contact components between weft and warp for woven electronic textile.

  11. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    SciTech Connect

    Zhang, Kewei Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  12. Atomic force microscope cantilever spring constant evaluation for higher mode oscillations: A kinetostatic method

    SciTech Connect

    Tseytlin, Yakov M.

    2008-02-15

    Our previous study of the particle mass sensor has shown a large ratio (up to thousands) between the spring constants of a rectangular cantilever in higher mode vibration and at the static bending or natural mode vibration. This has been proven by us through the derived nodal point position equation. That solution is good for a cantilever with the free end in noncontact regime and the probe shifted from the end to an effective section and contacting a soft object. Our further research shows that the same nodal position equation with the proper frequency equations may be used for the same spring constant ratio estimation if the vibrating at higher mode cantilever's free end has a significant additional mass clamped to it or that end is in permanent contact with an elastic or hard measurand object (reference cantilever). However, in the latter case, the spring constant ratio is much smaller (in tens) than in other mentioned cases at equal higher (up to fourth) vibration modes. We also present the spring constant ratio for a vibrating at higher eigenmode V-shaped cantilever, which is now in wide use for atomic force microscopy. The received results on the spring constant ratio are in good (within a few percent) agreement with the theoretical and experimental data published by other researchers. The knowledge of a possible spring constant transformation is important for the proper calibration and use of an atomic force microscope with vibrating cantilever in the higher eigenmodes for measurement and imaging with enlarged resolution.

  13. Nanometer displacement measurement of a multiwalled carbon nanotube cantilever under aqueous conditions

    NASA Astrophysics Data System (ADS)

    Kwon, Soongeun; Lee, Hyung Woo; Park, Hyojun; Kim, Soohyun

    2010-08-01

    In this study, we report nanometer displacement measurement of an individual multiwalled nanotube (MWNT) in liquid, based on the high accuracy localization of individual fluorescent nanoparticles. In order to visualize a MWNT cantilever in liquid, a fluorescent polystyrene nanoparticle with an amine conjugate was selectively attached at the end of a nanotube by noncovalent hydrogen bonding between amine and carboxylic groups. Physical absorption of ethylenediamine gas vapor onto an as-fabricated MWNT cantilever renders the nanotube hydrophilic, enabling manipulation of the MWNT cantilever in liquid without bending or breaking. A fluorescent nanoparticle was localized by a two-dimensional Gaussian fit for the fluorescence intensity of the particle. During the manipulation of the nanotube cantilever in liquid, the displacement was determined by the positional change of the localized nanoparticle. The measurement technique was evaluated by measuring the displacement of a MWNT cantilever subjected to controlled manipulation such as a single line scan, step and stair response. The positional accuracy of the measurement was experimentally found to be 7 nm. The fluorescence measurement of a hydrophilic MWNT cantilever can be further used in biological applications such as biochemical sensors and single molecule force spectroscopy.

  14. Control of curvature in highly compliant probe cantilevers during carbon nanotube growth.

    PubMed

    Chen, I-Chen; Chen, Li-Han; Orme, Christine A; Jin, Sungho

    2007-10-01

    Direct growth of a sharp carbon nanotube (CNT) probe on a very thin and highly flexible cantilever by plasma-enhanced chemical vapor deposition (PECVD) is desirable for atomic force microscopy (AFM) of nanoscale features on soft or fragile materials. Plasma-induced surface stresses in such fabrication processes, however, tend to cause serious bending of these cantilevers, which makes the CNT probe unsuitable for AFM measurements. Here, we report a new tunable CNT growth technique that controls cantilever bending during deposition, thereby enabling the creation of either flat or deliberately curved AFM cantilevers containing a CNT probe. By introducing hydrogen gas to the (acetylene + ammonia) feed gas during CNT growth and adjusting the ammonia to hydrogen flow ratio, the cantilever surface stress can be altered from compressive to tensile stress, and in doing so controlling the degree of cantilever bending. The CNT probes grown under these conditions have high aspect ratios and are robust. Contact-mode imaging has been demonstrated using these probe tips. Such CNT probes can be useful for bio-imaging involving DNA and other delicate biological features in a liquid environment. PMID:17887798

  15. In situ cell detection using piezoelectric lead zirconate titanate-stainless steel cantilevers

    NASA Astrophysics Data System (ADS)

    Yi, Jeong W.; Shih, Wan Y.; Mutharasan, R.; Shih, Wei-Heng

    2003-01-01

    We have investigated piezoelectric lead zirconate titanate (PZT)-stainless steel cantilevers as real-time in-water cell detectors using yeast cells as a model system. Earlier studies have shown that mass changes of a cantilever can be detected by monitoring the resonance frequency shift. In this study, two PZT-stainless steel cantilevers with different sensitivities were used to detect the presence of yeast cells in a suspension. The stainless steel cantilever tip was coated with poly-L-lysine that attracted yeast cells from the suspension, and immobilized them on the cantilever surface. After immersing the poly-L-lysine coated tip in a yeast suspension, the flexural resonance frequency of the cantilever was monitored with time. The flexural resonance frequency decreased with time in agreement with the optical micrographs that showed increasing amount of adsorbed yeast cells with time. The resonance frequency shifts are further shown to be consistent with both the mass of immobilized cells on the poly-L-lysine coated stainless steel surface and that deduced from the optical micrographs. Furthermore, under the present experimental conditions where the cell diffusion distance is smaller than the linear dimension of the adsorption area, it is shown that the rate of resonance frequency shift is linear with the cell concentration and the rate of resonance frequency shift can be used to quantify the cell concentration.

  16. Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure

    NASA Astrophysics Data System (ADS)

    Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.

  17. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.

    PubMed

    Cho, Hyunok; Park, Jongcheol; Park, Jae Yeong

    2016-05-01

    A piezoelectric vibration energy harvester with interdigital shaped cantilever was developed by using silicon bulk micromachining technology. The proposed energy harvester was designed to obtain multi degree-of-freedom (m-DOF). Most of the piezoelectric vibration energy harvesters are comprised of mass-loaded cantilever beams having several resonant frequencies. The second resonant frequency of such a device has lower amplitude compared to its first resonant frequency (fundamental frequency). Therefore, the interdigital shaped cantilever has been proposed for multiple fundamental resonant frequencies. The fabricated piezoelectric vibration energy harvester is composed of main cantilever (MC), sub-main cantilever (SMC), and secondary cantilevers (SC). MC surrounds SMC and SC which have same dimension of 5600 x 800 x 10 μm3. The fabricated piezoelectric energy harvester can generate 51.4 mV(p-p) and 11 mV(p-p) of output voltages at 24.2 Hz and 33 Hz of its resonant frequencies by MC. Moreover, it can generate 8 mV(p-p) and 6.6 mV(p-p) of output voltages at 24.2 Hz and 33.2 Hz of its resonant frequencies by SMC; and 364 mV(p-p) of output voltage at 33.6 Hz of its resonant frequency by SC. PMID:27483909

  18. Investigation of adhesion during operation of MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2004-01-01

    Reliability of MEMS is a major concern for the commercialization of laboratory prototypes. Surface adhesion or stiction strongly affects the reliability of MEMS devices which have sliding or rubbing contacts. Determination of adhesion energies, adhesion forces, and pull-off forces are important for predicting stiction in MEMS. We present an experimental technique to estimate the pull-off forces for MEMS surfaces. Polysilicon microcantilevers were electrostatically actuated using gradually varying voltages. A hysteresis was observed in the voltage at which the tip of the cantilevers made and broke contact with the substrate. Pull-off forces were estimated from the hysteresis in the voltage values using a strain energy formulation. The pull-off forces for microcantilevers dried out of isopropyl alcohol and repaired using laser irradiation were estimated to be in the range of 45-121 nN. The role of adhered length, variable external loading, and actuating signal on in-use stiction is also investigated. From our experimental results, we demonstrate an empirical approach to predict in-use stiction of microcantilevers.

  19. Investigation of adhesion during operation of MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-12-01

    Reliability of MEMS is a major concern for the commercialization of laboratory prototypes. Surface adhesion or stiction strongly affects the reliability of MEMS devices which have sliding or rubbing contacts. Determination of adhesion energies, adhesion forces, and pull-off forces are important for predicting stiction in MEMS. We present an experimental technique to estimate the pull-off forces for MEMS surfaces. Polysilicon microcantilevers were electrostatically actuated using gradually varying voltages. A hysteresis was observed in the voltage at which the tip of the cantilevers made and broke contact with the substrate. Pull-off forces were estimated from the hysteresis in the voltage values using a strain energy formulation. The pull-off forces for microcantilevers dried out of isopropyl alcohol and repaired using laser irradiation were estimated to be in the range of 45-121 nN. The role of adhered length, variable external loading, and actuating signal on in-use stiction is also investigated. From our experimental results, we demonstrate an empirical approach to predict in-use stiction of microcantilevers.

  20. Advanced structural optimization of a heliostat with cantilever arms

    NASA Astrophysics Data System (ADS)

    Bogdanov, Dimitar; Zlatanov, Hristo

    2016-05-01

    The weight of the support structure of heliostats, CPV and PV trackers is important cost element of a solar plant and reducing it will improve the economic viability of a solar project. Heliostats with rectangular area (1 to 5 in 1 m² steps; 5 to 150 in 5 m² steps) and aspect ratios (0.5, 1.0, 1.2, 1.5, 2.0) were investigated under various winds speeds (0, 5 to 100 in 5 m/s steps), wind direction (0 to 180° in 15° steps) and elevation positions (0 to 90° in 10° steps). Each load case was run with three different cantilever arms. The inclination angle of the chords and bracings was chosen so as to fulfill the geometrical boundary condition. Stress and buckling validations were performed according to Eurocode. The results of research carried out can be used to determine the specific weight of a heliostat in kg/m² as a function of the wind speed, tracker area and tracker aspect ratio. Future work should investigate the impact of using cold formed structural hollow sections and cross sections with thinner wall thickness which is not part of EN 10210.

  1. Factors influencing elastic stresses in double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1986-01-01

    An elastic stress analysis was conducted for a double cantilever beam (DCB) specimen using finite-element methods. The purpose of this study was to identify the important parameters that influence stresses ahead of the delamination front. The study focused on an aluminum DCB specimen, typical of adhesively-bonded joints, and on a graphite/epoxy specimen representing a cocured composite. Opening mode sigma sub y stresses ahead of the crack tip were calculated and compared with those for a monolithic reference specimen. Beyond the singularity-dominated region very near the crack tip, the sigma sub y distribution was elevated compared to the monolithic case. Both the adhesive thickness and the adherend transverse (thickness-direction) stiffness were found to influence the elevation of sigma sub y. In contrast, adherend thickness and longitudinal stiffness has very little effect on this stress distribution. Estimates for adhesive yielding beyond the aluminum DCB crack tip showed that both the area and height of the plastic zone increased to a peak value for increasing adhesive thicknesses. Results from this study would provide insight for comparing data from different DCB specimens and for designing new DCB specimens.

  2. Investigation of fiber bridging in double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Managalgiri, P. D.

    1986-01-01

    The possibility to eliminate fiber bridging or at least to reduce it, and to evaluate an alternative approach for determination of in situ mode 7 fracture toughness values of composite matrix materials were investigated. Double cantilever beam (DCB) specimens were made using unidirectional lay-ups of T6C/Hx205 composite material in which the delaminating halves were placed at angles of 0, 1.5, and 3 degrees to each other. The small angles between the delaminating plies were used to avoid fiber nesting without significantly affecting mode I teflon insert. The DCB specimens were fabricated and it was found that: (1) the extent which fiber bridging and interlaminar toughness increase with crack length can be reduced by slight cross ply at the delamination plane to reduce fiber nesting; (2) some fiber bridging may occur even in the absence of fiber nesting; (3) the first values of toughness measured ahead of the thin teflon insert are very close to the toughness of the matrix material with no fiber bridging; (4) thin adhesive bondline of matrix material appears to give toughness values equal to the interlaminar toughness of the composite matrix without fiber bridging.

  3. Factors influencing elastic stresses in double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1988-01-01

    An elastic stress analysis was conducted for a double cantilever beam (DCB) specimen using finite-element methods. The purpose of this study was to identify the important parameters that influence stresses ahead of the delamination front. The study focused on an aluminum DCB specimen, typical of adhesively-bonded joints, and on a graphite/epoxy specimen representing a cocured composite. Opening mode sigma sub y stresses ahead of the crack tip were calculated and compared with those for a monolithic reference specimen. Beyond the singularity-dominated region very near the crack tip, the sigma sub y distribution was elevated compared to the monolithic case. Both the adhesive thickness and the adherend transverse (thickness-direction) stiffness were found to influence the elevation of sigma sub y. In contrast, adherend thickness and longitudinal stiffness has very little effect on this stress distribution. Estimates for adhesive yielding beyond the aluminum DCB crack tip showed that both the area and height of the plastic zone increased to a peak value for increasing adhesive thicknesses. Results from this study would provide insight for comparing data from different DCB specimens and for designing new DCB specimens.

  4. Interaction of a vortex dipole with a deformable cantilevered plate

    NASA Astrophysics Data System (ADS)

    Zivkov, Eugene; Yarusevych, Serhiy; Peterson, Sean

    2014-11-01

    The coupled interaction of a vortex dipole impacting the tip of a deformable cantilevered plate is investigated both numerically and experimentally. Numerically, a strongly coupled fluid-structure interaction code is used to simulate the impact at three dipole Reynolds numbers, Re = 500, 1500, and 3000. These Reynolds numbers are representative of flows over small-scale energy harvesting devices, and the plate properties model an ionic polymer-metal composite. Of particular interest is the vortex dynamics and the attendant plate response, with the underlying implications to energy harvesting. As the dipole approaches the plate, secondary vortical structures are generated at the plate, with finer structures present at higher Reynolds number. The dipole breaks up after the initial impact, which is followed by complex vortex interactions of secondary structures. The initial impact produces the largest plate deflection, followed by a more complex response attributed to plate interaction with multiple secondary vortices. The plate response to the initial impact is not strongly dependent upon the Reynolds number. However, the secondary vortex dynamics, and the associated plate loadings, exhibit strong Reynolds number dependence. To validate the numerical results, a similar dipole-plate interaction is modelled experimentally and characterized using flow visualization and time resolved, planar particle image velocimetry.

  5. Droplet Impacting a Cantilever: A Leaf-Raindrop System

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Mates, Joseph E.; Megaridis, Constantine M.; Jung, Sunghwan

    2015-04-01

    Previous studies show that air pollution and wind erosion, which damage a leaf's epicuticular wax layer, can change leaf surface properties from hydrophobic to hydrophilic. However, the dynamic response of a damaged leaf to a raindrop impact has not been investigated and could clarify the direct influence of changes in wettability on early leaf abscission. In this article, we investigate how leaves with different surface properties respond to falling raindrops, viewing this as a unique system of coupled elasticity and drop dynamics. An elastic beam with tunable surface wettability properties is used as a simple leaf model. We find that wettable beams experience much higher torque and bending energy than nonwettable beams. This is because a drop sticks to a wettable beam, while a drop falls off a nonwettable beam. An analytical model using momentum balance and simple cantilever beam theory quantifies the bending energy and torque experienced by wettable and nonwettable beams. The results elucidate the potential damage caused by raindrops impacting a leaf as a function of its surface wettability and are correlated with environmental factors contributing to premature changes of leaf surface properties.

  6. Graphene bimetallic-like cantilevers: probing graphene/substrate interactions.

    PubMed

    Conley, Hiram; Lavrik, Nickolay V; Prasai, Dhiraj; Bolotin, Kirill I

    2011-11-01

    The remarkable mechanical properties of graphene, the thinnest, lightest, and strongest material in existence, are desirable in applications ranging from composite materials to sensors and actuators. Here, we demonstrate that these mechanical properties are strongly affected by the interaction with the substrate onto which graphene is deposited. By measuring the temperature-dependent deflection of graphene/substrate "bimetallic" cantilevers we determine strain, thermal expansion coefficient, and the adhesion force acting on graphene films attached to a substrate. Graphene deposited on silicon nitride (SiN(x)) is under much larger strain, ε(g) ∼ 1.5 × 10(-2), compared to graphene on gold (Au), ε(g) < 10(-3). The thermal expansion coefficient α(g) of graphene attached to SiN(x) is found to be negative, in the range from (- 5... - 1) × 10(-6)K(-1) and smaller in magnitude than α(g) of suspended graphene. We also estimate the interfacial shear strength of the graphene/SiN(x) interface to be ∼1 GPa at room temperature. PMID:21970515

  7. Fixed and Sunk Costs Revisited.

    ERIC Educational Resources Information Center

    Wang, X. Henry; Yang, Bill Z.

    2001-01-01

    Attempts to clarify the concepts of, and the link between, fixed costs and sunk costs. Argues that the root of confusion is the inconsistency in defining the term fixed costs. Consistently defines fixed and sunk costs, and describes how instructors must teach under these definitions. (RLH)

  8. Modeling and fabrication of scale-like cantilever for cell capturing

    NASA Astrophysics Data System (ADS)

    Liu, Boyin; Fu, Jing; Muradoglu, Murat

    2013-12-01

    The micro-domain provides excellent conditions for performing biological experiments on small populations of cells and has given rise to the proliferation of so-called lab-on-a-chip devices. In order to fully utilize the benefits of cell assays, means of retaining cells at defined locations over time are required. Here, the creation of scale-like cantilevers, inspired by biomimetics, on planar silicon nitride (Si3N4) film using focused ion beam machining is described. Using SEM imaging, regular tilting of the cantilever with almost no warping of the cantilever was uncovered. Finite element analysis showed that the scale-like cantilever was best at limiting stress concentration without difficulty in manufacture and having stresses more evenly distributed along the edge. It also had a major advantage in that the degree of deflection could be simply altered by changing the central angle. From a piling simulation conducted, it was found that a random delivery of simulated particles on to the scale-like obstacle should create a triangular collection. In the experimental trapping of polystyrene beads in suspension, the basic triangular piling structure was observed, but with extended tails and a fanning out around the obstacle. This was attributed to the aggregation tendency of polystyrene beads that acted on top of the piling behavior. In the experiment with bacterial cells, triangular pile up behind the cantilever was absent and the bacteria cells were able to slip inside the cantilever's opening despite the size of the bacteria being larger than the gap. Overall, the fabricated scale-like cantilever architectures offer a viable way to trap small populations of material in suspension.

  9. Increased tooth mobility because of loss of alveolar bone support: a hazard for zirconia two-unit cantilever resin-bonded FDPs in vitro?

    PubMed

    Sterzenbach, Guido; Tunjan, Rene; Rosentritt, Martin; Naumann, Michael

    2014-02-01

    This study evaluates in vitro the impact of increased abutment tooth mobility on survival of zirconia-based two-unit cantilever resin-bonded fixed dental prosthesis (RB-FDP) by long-term dynamic loading in a chewing simulator. Human maxillary central incisors (n = 32) were endodontically treated and alveolar bone loss was simulated: 0% (group B), 25% (group C), and 50% (group D). RB-FDPs were adhesively luted. Zirconia full crown two-unit FDPs served as control (group A). Specimens were exposed to simulated clinical function by two subsequent sequences of thermal-cycling (2 × 3.000) parallel to mechanical loading (1.2 × 10(6) load cycles) (TCML; first sequence: load 1-25 N; second sequence: load 1-50 N). Tooth mobility increased significantly as the simulated bone level decreased (p < 0.001). Log-rank tests revealed no significant differences between experimental groups (p = 0.479). The results support the assumption that zirconia-based two-unit cantilever RB-FDPs may be an appropriate treatment option, even if abutment tooth mobility increase because of alveolar bone loss. However, debonding of zirconia-based two-unit RB-FDPs will be a likely event, whereas fatal failures of the abutment teeth may not occur. PMID:23997026

  10. Calibration of the effective spring constant of ultra-short cantilevers for a high-speed atomic force microscope

    NASA Astrophysics Data System (ADS)

    Song, Yun-Peng; Wu, Sen; Xu, Lin-Yan; Zhang, Jun-Ming; Dorantes-Gonzalez, Dante J.; Fu, Xing; Hu, Xiao-Dong

    2015-06-01

    Ultra-short cantilevers are a new type of cantilever designed for the next generation of high-speed atomic force microscope (HS-AFM). Ultra-short cantilevers have smaller dimensions and higher resonant frequency than conventional AFM cantilevers. Moreover, their geometry may also be different from the conventional beam-shape or V-shape. These changes increase the difficulty of determining the spring constant for ultra-short cantilevers, and hence limit the accuracy and precision of force measurement based on a HS-AFM. This paper presents an experimental method to calibrate the effective spring constant of ultra-short cantilevers. By using a home-made AFM head, the cantilever is bent against an electromagnetic compensation balance under servo control. Meanwhile the bending force and the cantilever deflection are synchronously measured by the balance and the optical lever in the AFM head, respectively. Then the effective spring constant is simply determined as the ratio of the force to the corresponding deflection. Four ultra-short trapezoid shape cantilevers were calibrated using this method. A quantitative uncertainty analysis showed that the combined relative standard uncertainty of the calibration result is less than 2%, which is better than the uncertainty of any previously reported techniques.

  11. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    PubMed Central

    Nordström, Maria; Keller, Stephan; Lillemose, Michael; Johansson, Alicia; Dohn, Søren; Haefliger, Daniel; Blagoi, Gabriela; Havsteen-Jakobsen, Mogens; Boisen, Anja

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the buffer solution. Moreover, we show that the SU-8 cantilever surface can be functionalised directly with receptor molecules for analyte detection, thereby avoiding gold-thiol chemistry.

  12. Apparatus for fixing latency

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Moon, Justin; Koehler, Roger O.

    2009-09-08

    An apparatus for fixing computational latency within a deterministic region on a network comprises a network interface modem, a high priority module and at least one deterministic peripheral device. The network interface modem is in communication with the network. The high priority module is in communication with the network interface modem. The at least one deterministic peripheral device is connected to the high priority module. The high priority module comprises a packet assembler/disassembler, and hardware for performing at least one operation. Also disclosed is an apparatus for executing at least one instruction on a downhole device within a deterministic region, the apparatus comprising a control device, a downhole network, and a downhole device. The control device is near the surface of a downhole tool string. The downhole network is integrated into the tool string. The downhole device is in communication with the downhole network.

  13. [Fixed-dose combination].

    PubMed

    Nagai, Yoshio

    2015-03-01

    Many patients with type 2 diabetes mellitus(T2DM) do not achieve satisfactory glycemic control by monotherapy alone, and often require multiple oral hypoglycemic agents (OHAs). Combining OHAs with complementary mechanisms of action is fundamental to the management of T2DM. Fixed-dose combination therapy(FDC) offers a method of simplifying complex regimens. Efficacy and tolerability appear to be similar between FDC and treatment with individual agents. In addition, FDC can enhance adherence and improved adherence may result in improved glycemic control. Four FDC agents are available in Japan: pioglitazone-glimepiride, pioglitazone-metformin, pioglitazone-alogliptin, and voglibose-mitiglinide. In this review, the advantages and disadvantages of these four combinations are identified and discussed. PMID:25812374

  14. Fixed Access Network Sharing

    NASA Astrophysics Data System (ADS)

    Cornaglia, Bruno; Young, Gavin; Marchetta, Antonio

    2015-12-01

    Fixed broadband network deployments are moving inexorably to the use of Next Generation Access (NGA) technologies and architectures. These NGA deployments involve building fiber infrastructure increasingly closer to the customer in order to increase the proportion of fiber on the customer's access connection (Fibre-To-The-Home/Building/Door/Cabinet… i.e. FTTx). This increases the speed of services that can be sold and will be increasingly required to meet the demands of new generations of video services as we evolve from HDTV to "Ultra-HD TV" with 4k and 8k lines of video resolution. However, building fiber access networks is a costly endeavor. It requires significant capital in order to cover any significant geographic coverage. Hence many companies are forming partnerships and joint-ventures in order to share the NGA network construction costs. One form of such a partnership involves two companies agreeing to each build to cover a certain geographic area and then "cross-selling" NGA products to each other in order to access customers within their partner's footprint (NGA coverage area). This is tantamount to a bi-lateral wholesale partnership. The concept of Fixed Access Network Sharing (FANS) is to address the possibility of sharing infrastructure with a high degree of flexibility for all network operators involved. By providing greater configuration control over the NGA network infrastructure, the service provider has a greater ability to define the network and hence to define their product capabilities at the active layer. This gives the service provider partners greater product development autonomy plus the ability to differentiate from each other at the active network layer.

  15. Integrated motion measurement illustrated by a cantilever beam

    NASA Astrophysics Data System (ADS)

    Örtel, T.; Wagner, J. F.; Saupe, F.

    2013-01-01

    The combination of inertial sensors and satellite navigation receivers like those of GPS (Global Positioning System) represents a very typical integrated navigation system. Integrated navigation is the most common example of integrated motion measurement determining the translational and angular position, velocity, and acceleration of a vehicle. Traditionally, this object is assumed to be a rigid body and the signals of its closely spaced sensors are referenced to a single point of the structure. During periods of low vehicle dynamics such common navigation systems typically show stability problems due to a loss of observability of some of the motion variables. The range of applications for integrated navigation systems can be expanded due to the continuously increasing performance of data processing and cheap sensors. Further, it can be shown that the stability of such a navigation system (i. e. of the motion observer employed for the system, typically a Kalman filter) can be sustained by distributing appropriately additional sensors over the vehicle structures at distinct locations. This comprises the compensation of drift effects of the system by adding sensors that are drift-free and the guarantee of the observability of all estimated motion components. Large structures like airplanes, space stations, skyscrapers, and tower cranes with distributed sensors, however, have to take the flexibility of the structure into account. This includes an appropriate kinematical model of the structure. In this case, the theory of integrated systems has to be expanded to flexible structures. On the other hand, the additional system information obtained can be used not only for vehicle guidance but also for structural control. Within this work individual kinematical models especially of a cantilever beam, idealizing e.g. the wing of an airplane, are developed and investigated with regard to the observability of the motion variables to guarantee a stable integrated system

  16. MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

    SciTech Connect

    Kang, Kyung

    2011-01-01

    Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to the reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (Kd) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA

  17. Performance of a cantilever piezoelectric energy harvester impacting a bump stop

    NASA Astrophysics Data System (ADS)

    Mak, Kuok H.; McWilliam, Stewart; Popov, Atanas A.; Fox, Colin H. J.

    2011-12-01

    Piezoelectric cantilever beam energy harvesters are commonly used to convert ambient vibration into electrical energy. In practical applications, energy harvesters are subjected to large shocks which can shorten the service life by causing mechanical failure. In this work, a bump stop is introduced into the design of a piezoelectric cantilever beam energy harvester to limit the maximum displacement of the cantilever and prevent excessively high bending stresses developing as a result of shocks. In addition to limiting the maximum displacement of the beam, it is inevitable that the deflected shape of the beam and the electrical output are modified. A theoretical model for a piezoelectric cantilever beam harvester impacting against a stop is derived, which aims to develop an understanding of the vibration characteristics of the cantilever and quantify how the electrical output of the harvester is affected by the stop. An experiment is set up to measure the dynamics and the electrical output of a bimorph energy harvester and to validate the theoretical model. Numerical simulation results are presented for energy harvesters with different initial gaps and different stop locations, and it is found that the reduction in maximum bending stress is at the expense of the electrical power of the harvester.

  18. A resonant frequency switching scheme of a cantilever based on polyvinylidene fluoride for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Jo, Sung-Eun; Kim, Myoung-Soo; Kim, Yong-Jun

    2012-01-01

    A mismatch between the ambient frequency and the resonant frequency of the vibrational energy harvester causes decrease of the energy transduction efficiency. Therefore, there is a great demand for the resonant frequency tuning of the vibrational energy harvester. In this paper, a flexible PVDF (polyvinylidene fluoride) cantilever, which can switch its resonant frequency automatically and maintain the switched resonant frequency without energy consumption, is proposed. The proposed energy harvester is composed of cantilever couples which are similar with a seesaw structure. When the proposed energy harvester is excited by an external vibration and the excited frequency fluctuates, the cantilever couples can be horizontally moved by using the large deflection of a flexible cantilever. So the beam length of each cantilever which corresponds to each arm of the seesaw structure can be changed and the resonant frequency of the proposed energy harvester can be switched in real time. The proposed energy harvester was realized by application of a piezoelectric polymer, PVDF. Also, it was confirmed that the proposed energy harvester can switch its resonant frequency in several seconds without an additional energy source.

  19. Development of the magnetic force-induced dual vibration energy harvester using a unimorph cantilever

    NASA Astrophysics Data System (ADS)

    Umaba, M.; Nakamachi, E.; Morita, Y.

    2015-12-01

    In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever, the pendulum and a pair of permanent magnets. One magnet was attached at the edge of cantilever, and the counterpart magnet at the edge of pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous existence of vibration, is converted to the electric energy via the piezoelectric unimorph cantilever vibration. At first, we studied the energy convert mechanism and analyze the performance of novel energy harvester, where the resonance free vibration of unimorph piezoelectric cantilever generated a high electric power. Next, we equipped the counterpart permanent magnet at the edge of pendulum, which vibrates with a very low frequency caused by the human walking. Then the counterpart magnet was set at the edge of unimorph piezoelectric cantilever, which vibrated with a high frequency. This low-to-high frequency convert "dual vibration system" can be characterized as an enhanced energy harvester. We examined and obtained average values of voltage and power in this system, as 8.31 mV and 0.33 μW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.

  20. Calibration of the lateral spring constant of atomic force microscope cantilevers

    NASA Astrophysics Data System (ADS)

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-10-01

    Atomic force microscope (AFM) is very useful in nano-scale force measurement. Lateral force is typically used in nanoscratch and surface friction measurement based on AFM. As one of the most important parameters to obtain lateral force, the lateral spring constant of AFM cantilever probe is of great significance and needs to be quantitative calibrated. Lateral torsion and lateral force of the cantilever are two parameters need to be measured in lateral spring constant calibration. In this article, we develop a calibration system and introduce a calibration method using an AFM head and an electromagnetic balance. An aluminium column with a known angel on top is placed on the weighing pan of the balance. The cantilever is precisely positioned in the AFM head, then approaches and bends on the aluminium column. During this procedure, the bending force and the lateral torsion of the cantilever are synchronously measured by the balance and an optical lever system, respectively. Then the lateral spring constant is calculated with a formula. By using this method, three kinds of rectangular cantilever are calibrated. The relative standard deviations of the calibration results are smaller than 2%.

  1. Measurement and reliability issues in resonant mode cantilever for bio-sensing application in fluid medium

    NASA Astrophysics Data System (ADS)

    Kathel, G.; Shajahan, M. S.; Bhadra, P.; Prabhakar, A.; Chadha, A.; Bhattacharya, E.

    2016-09-01

    Cantilevers immersed in liquid experience viscous damping and hydrodynamic loading. We report on the use of such cantilevers, operating in the dynamic mode with, (i) frequency sweeping and (ii) phase locked loop methods. The solution to reliability issues such as random drift in the resonant peak values, and interference of spurious modes in the resonance frequency spectrum, are explained based on the actuation signal provided and laser spot size. The laser beam spot size and its position on the cantilever were found to have an important role, on the output signal and resonance frequency. We describe a method to distinguish the normal modes from the spurious modes for a cantilever. Uncertainties in the measurements define the lower limit of mass detection (m min). The minimum detection limits of the two measurement methods are investigated by measuring salt adsorption from phosphate buffer solution, as an example, a mass of 14 pg was measured using the 14th transverse mode of a 500~μ m  ×  100 μm  ×  1 μm silicon cantilever. The optimized measurement was used to study the interaction between antibody and antigen.

  2. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    NASA Astrophysics Data System (ADS)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  3. Fabrication and characterization of large arrays of mesoscopic gold rings on large-aspect-ratio cantilevers

    SciTech Connect

    Ngo, D. Q.; Petković, I. Lollo, A.; Castellanos-Beltran, M. A.; Harris, J. G. E.

    2014-10-15

    We have fabricated large arrays of mesoscopic metal rings on ultrasensitive cantilevers. The arrays are defined by electron beam lithography and contain up to 10{sup 5} rings. The rings have a circumference of 1 μm, and are made of ultrapure (6N) Au that is deposited onto a silicon-on-insulator wafer without an adhesion layer. Subsequent processing of the SOI wafer results in each array being supported at the end of a free-standing cantilever. To accommodate the large arrays while maintaining a low spring constant, the cantilevers are nearly 1 mm in both lateral dimensions and 100 nm thick. The extreme aspect ratio of the cantilevers, the large array size, and the absence of a sticking layer are intended to enable measurements of the rings' average persistent current in the presence of relatively small magnetic fields. We describe the motivation for these measurements, the fabrication of the devices, and the characterization of the cantilevers' mechanical properties. We also discuss the devices' expected performance in measurements of .

  4. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor.

    PubMed

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald; Mühl, Thomas

    2016-01-01

    Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  5. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

    PubMed Central

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald

    2016-01-01

    Summary Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  6. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.

    PubMed

    Qureshi, Awais; Li, Bing; Tan, K T

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  7. Damping analysis of a flexible cantilever beam containing an internal fluid channel: Experiment, modeling and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Masoumi, Masoud; Gaucher-Petitdemange, Matthias

    2015-03-01

    Passive structural damping treatments have been applied with the use of high-viscosity fillings (in practice) and have been the focus of numerous research studies and papers. However, internal viscoelastic fluid leading to passive damping of flexible cantilever beams, has not yet been investigated in the literature. Although structures containing internal fluid channels provide multifunctional solutions to many engineering issues, they also raise damping control requests caused by unacceptable vibrations due to ambient environmental changes. In this paper, we examine ambient effects on damping properties of flexible cantilever beams, each conveying an internal high-viscosity fluid channel. Experiments are conducted to investigate how the internal fluids provide damping to the system under varied temperatures, frequencies and base-acceleration levels. While the vibration analysis of pipes conveying internal flow has been extensively studied, internal high-viscosity fluids in relation to passive damping of flexible cantilever beams and their ambient, environment-dependent behaviors have not been well-investigated. Originally motivated by research, which uses internal fluid channels to provide the cooling of multifunctional composite structures, we aim to research the damping behaviors of cantilever beams. We will conduct an experimental study and modeling analysis, examining the vibrations and frequency responses of the cantilever beams when filled with three types of internal fluids.

  8. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection.

    PubMed

    Nugaeva, Natalia; Gfeller, Karin Y; Backmann, Natalija; Lang, Hans Peter; Düggelin, Marcel; Hegner, Martin

    2005-12-15

    We demonstrate the use of micromechanical cantilever arrays for selective immobilization and fast quantitative detection of vital fungal spores. Micro-fabricated uncoated as well as gold-coated silicon cantilevers were functionalized with concanavalin A, fibronectin or immunoglobulin G. In our experiments two major morphological fungal forms were used--the mycelial form Aspergillus niger and the unicellular yeast form Saccharomyces cerevisiae, as models to explore a new method for growth detection of eukaryotic organisms using cantilever arrays. We exploited the specific biomolecular interactions of surface grafted proteins with the molecular structures on the fungal cell surface. It was found that these proteins have different affinities and efficiencies to bind the spores. Maximum spore immobilization, germination and mycelium growth was observed on the immunoglobulin G functionalized cantilever surfaces. We show that spore immobilization and germination of the mycelial fungus A. niger and yeast S. cerevisiae led to shifts in resonance frequency within a few hours as measured by dynamically operated cantilever arrays, whereas conventional techniques would require several days. The biosensor could detect the target fungi in a range of 10(3) - 10(6) CFUml(-1). The measured shift is proportional to the mass of single fungal spores and can be used to evaluate spore contamination levels. Applications lie in the field of medical and agricultural diagnostics, food- and water-quality monitoring. PMID:16257652

  9. Calibration of the torsional and lateral spring constants of cantilever sensors.

    PubMed

    Parkin, John D; Hähner, Georg

    2014-06-01

    A method suitable for the calibration of the spring constants of all torsional and lateral eigenmodes of micro- and nanocantilever sensors is described. Such sensors enable nanomechanical measurements and the characterization of nanomaterials, for example with atomic force microscopy. The method presented involves the interaction of a flow of fluid from a microchannel with the cantilever beam. Forces imparted by the flow cause the cantilever to bend and induce a measurable change of the torsional and lateral resonance frequencies. From the frequency shifts the cantilever spring constants can be determined. The method does not involve physical contact between the cantilever or its tip and a hard surface. As such it is non-invasive and does not risk damage to the cantilever. Experimental data is presented for two rectangular microcantilevers with fundamental flexural spring constants of 0.046 and 0.154 N m(-1). The experimentally determined torsional stiffness values are compared with those obtained by the Sader method. We demonstrate that the torsional spring constants can be readily calibrated using the method with an accuracy of around 15%. PMID:24807706

  10. Fabrication and characterization of large arrays of mesoscopic gold rings on large-aspect-ratio cantilevers.

    PubMed

    Ngo, D Q; Petković, I; Lollo, A; Castellanos-Beltran, M A; Harris, J G E

    2014-10-01

    We have fabricated large arrays of mesoscopic metal rings on ultrasensitive cantilevers. The arrays are defined by electron beam lithography and contain up to 10(5) rings. The rings have a circumference of 1 μm, and are made of ultrapure (6N) Au that is deposited onto a silicon-on-insulator wafer without an adhesion layer. Subsequent processing of the SOI wafer results in each array being supported at the end of a free-standing cantilever. To accommodate the large arrays while maintaining a low spring constant, the cantilevers are nearly 1 mm in both lateral dimensions and 100 nm thick. The extreme aspect ratio of the cantilevers, the large array size, and the absence of a sticking layer are intended to enable measurements of the rings' average persistent current ⟨I⟩ in the presence of relatively small magnetic fields. We describe the motivation for these measurements, the fabrication of the devices, and the characterization of the cantilevers' mechanical properties. We also discuss the devices' expected performance in measurements of ⟨I⟩. PMID:25362443

  11. Modal flexibility-based damage detection of cantilever beam-type structures using baseline modification

    NASA Astrophysics Data System (ADS)

    Sung, S. H.; Koo, K. Y.; Jung, H. J.

    2014-09-01

    This paper presents a new damage detection approach for cantilever beam-type structures using the damage-induced inter-storey deflection (DIID) estimated by modal flexibility matrix. This approach can be utilized for damage detection of cantilever beam-type structures such as super high-rise buildings, high-rise apartment buildings, etc. Analytical studies on the DIID of cantilever beam-type structures have shown that the DIID abruptly occurs from damage location. Baseline modification concept was newly introduced to detect multiple damages in cantilever beam-type structures by changing the baseline to the prior damage location. This approach has a clear theoretical base and directly identifies damage location(s) without the use of a finite element (FE) model. For validating the applicability of the proposed approach to cantilever beam-type structures, a series of numerical and experimental studies on a 10-storey building model were carried out. From the tests, it was found that the damage locations can be successfully identified by the proposed approach for multiple damages as well as a single damage. In order to confirm the superiority of the proposed approach, a comparative study was carried out on two well-known damage metrics such as modal strain-based damage index approach and uniform load surface curvature approach.

  12. Surface-patterned SU-8 cantilever arrays for preliminary screening of cardiac toxicity.

    PubMed

    Kim, Jong Yun; Choi, Young-Soo; Lee, Bong-Kee; Lee, Dong-Weon

    2016-06-15

    Arrays of a μgrooved SU-8 cantilever were utilized to analyze changes in the contraction force and beating frequency of cardiomyocytes in vitro. The longitudinally patterned μgrooves facilitates alignment of cardiomyocytes on top of the SU-8 cantilever, which increases the contraction force of cardiomyocytes by a factor of about 2.5. The bending displacement of the SU-8 cantilever was precisely measured in nanoscale using a laser-based measurement system combined with a motorized xyz stage. The cantilever displacement due to contraction of the cardiomyocytes showed the maximum on day 8 after their cultivation. Following preliminary experiments, Isoproterenol, Verapamil, and Astemizole were used to investigate the effect of drug toxicity on the physiology of cardiomyocytes. The experimental results indicated that 1 µM of Isoproterenol treatment increased contraction force and beating frequencies of cardiomyocytes by 30% and 200%, respectively, whereas 500 nM of Verapamil treatment decreased contraction force and beating frequencies of cardiomyocytes by 56% and 42%, respectively. A concentration of less than 5 nM of the hERG channel suppression drug Astemizole did not change the contraction forces in the displacement but slightly decreased the beating frequencies. However, irregular or abnormal heartbeats were observed at Astemizole concentrations of 5 nM and higher. We experimentally conformed that the proposed SU-8 cantilever arrays combined with the laser-based measurement systems has the great potential for a high-throughput drug toxicity screening system in future. PMID:26878482

  13. Effect of flexural modes on squeeze film damping in MEMS cantilever resonators

    NASA Astrophysics Data System (ADS)

    Pandey, Ashok Kumar; Pratap, Rudra

    2007-12-01

    We present an analytical model that gives the values of squeeze film damping and spring coefficients for MEMS cantilever resonators taking into account the effect of flexural modes of the resonator. We use the exact mode shapes of a 2D cantilever plate to solve for pressure in the squeeze film and then derive the equivalent damping and spring coefficient relations from the back force calculations. The relations thus obtained can be used for any flexural mode of vibration of the resonators. We validate the analytical formulae by comparing the results with numerical simulations carried out using coupled finite element analysis in ANSYS, as well as experimentally measured values from MEMS cantilever resonators of various sizes vibrating in different modes. The analytically predicted values of damping are, in the worst case, within less than 10% of the values obtained experimentally or numerically. We also compare the results with previously reported analytical formulae based on approximate flexural mode shapes and show that the current results give much better estimates of the squeeze film damping. From the analytical model presented here, we find that the squeeze film damping drops by 84% from the first mode to the second mode in a cantilever resonator, thus improving the quality factor by a factor of 6 to 7. This result has significant implications in using cantilever resonators for mass detection where a significant increase in the quality factor is obtained by using a vacuum.

  14. Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Takei, Ryohei; Makimoto, Natsumi; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-06-01

    We report the design of piezoelectric MEMS cantilevers formed on a silicon-on-insulator wafer to efficiently harvest electrical power from harmonic vibration with a frequency of approximately 30 Hz. Numerical simulation indicates that a >4-µm-thick top silicon layer and >3-µm-thick piezoelectric film are preferable to maximize the output electrical power. An in-plane structure of the cantilever is also designed retaining the footprint of the cantilever. The simulation results indicate that the output power is maximized when the length ratio of the proof mass to the cantilever beam is 1.5. To ensure the accuracy of the simulation, we fabricated and characterized cantilevers with a 10-µm-thick top silicon layer and a 1.8-µm-thick piezoelectric film, resulting in 0.21 µW at a vibration of 0.5 m/s2 and 25.1 Hz. The measured output power is in agreement with the simulated value, meaning that the design is significantly reliable for low-frequency vibration energy harvesters.

  15. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-08-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  16. A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers

    SciTech Connect

    Quintanilla, M. A. S.; Goddard, D. T.

    2008-02-15

    A calibration method is described for colloidal probe cantilevers that enables friction force measurements obtained using lateral force microscopy (LFM) to be quantified. The method is an adaptation of the lever method of Feiler et al. [A. Feiler, P. Attard, and I. Larson, Rev. Sci. Instum. 71, 2746 (2000)] and uses the advantageous positioning of probe particles that are usually offset from the central axis of the cantilever. The main sources of error in the calibration method are assessed, in particular, the potential misalignment of the long axis of the cantilever that ideally should be perpendicular to the photodiode detector. When this is not taken into account, the misalignment is shown to have a significant effect on the cantilever torsional stiffness but not on the lateral photodiode sensitivity. Also, because the friction signal is affected by the topography of the substrate, the method presented is valid only against flat substrates. Two types of particles, 20 {mu}m glass beads and UO{sub 3} agglomerates attached to silicon tapping mode cantilevers were used to test the method against substrates including glass, cleaved mica, and UO{sub 2} single crystals. Comparisons with the lateral compliance method of Cain et al. [R. G. Cain, S. Biggs, and N. W. Page, J. Colloid Interface Sci. 227, 55 (2000)] are also made.

  17. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    PubMed Central

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  18. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-04-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  19. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration.

    PubMed

    Slattery, Ashley D; Blanch, Adam J; Quinton, Jamie S; Gibson, Christopher T

    2013-08-01

    Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to

  20. Role of implant configurations supporting three-unit fixed partial denture on mandibular bone response: biological-data-based finite element study.

    PubMed

    Yoda, N; Liao, Z; Chen, J; Sasaki, K; Swain, M; Li, Q

    2016-09-01

    Implant-supported fixed partial denture with cantilever extension can transfer the excessive load to the bone around implants and stress/strain concentration potentially leading to bone resorption. This study investigated the effects of implant configurations supporting three-unit fixed partial denture (FPD) on the stress and strain distribution in the peri-implant bone by combining clinically measured time-dependent loading data and finite element (FE) analysis. A 3-dimensional mandibular model was constructed based on computed tomography (CT) images. Four different configurations of implants supporting 3-unit FPDs, namely three implant-supported FPD, conventional three-unit bridge FPD, distal cantilever FPD and mesial cantilever FPD, were modelled. The FPDs were virtually inserted to the molar area in the mandibular FE models. The FPDs were loaded according to time-dependent in vivo-measured 3-dimensional loading data during chewing. The von Mises stress (VMS) and equivalent strain (EQS) in peri-implant bone regions were evaluated as mechanical stimuli. During the chewing cycles, the regions near implant necks and bottom apexes experienced high VMS and EQS than the middle regions in all implant-supported FPD configurations. Higher VMS and EQS values were also observed at the implant neck region adjacent to the cantilever extension in the cantilevered configurations. The patient-specific dynamic loading data and CT-based reconstruction of full 3D mandibular allowed us to model the biomechanical responses more realistically. The results provided data for clinical assessment of implant configuration to improve longevity and reliability of the implant-supported FPD restoration. PMID:27224022

  1. Self-sensing atomic force microscopy cantilevers based on tunnel magnetoresistance sensors

    NASA Astrophysics Data System (ADS)

    Tavassolizadeh, Ali; Meier, Tobias; Rott, Karsten; Reiss, Günter; Quandt, Eckhard; Hölscher, Hendrik; Meyners, Dirk

    2013-04-01

    Here, we introduce self-sensing cantilevers for atomic force microscopy (AFM) based on tunnel magnetoresistance (TMR) sensors. These TMR sensors are integrated into the AFM cantilevers and consist of a magnetically stable layer and a sensing magnetostrictive CoFeB layer separated by a MgO tunneling barrier and can be as small as 10 μm × 10 μm. Their TMR values and resistance-area products are about 121% and 61 kΩμm2, respectively. A comparison of AFM data simultaneously obtained with a self-sensing cantilever with a 37 μm × 37 μm large TMR sensor and the conventional optical beam deflection method revealed the same data quality.

  2. Parallel SPM cantilever arrays for large area surface metrology and lithography

    NASA Astrophysics Data System (ADS)

    Gotszalk, Teodor; Ivanov, Tzvetan; Rangelow, Ivo W.

    2014-04-01

    In this paper technology of scanning probe microscopy (SPM) surface metrology using arrays of piezoresistive thermally actuated cantilevers is discussed. The cantilever architecture presented here makes it possible to image surface topography using sensors operating in parallel. In this way the throughput of the sample imaging is increased, which is of crucial importance in measurements of large area samples. Application of piezoresistive detection scheme makes it possible to investigate quantitatively the interaction between the microprobe and the imaged surface. Integration of the thermal deflection actuator with the spring beam decreases the response time and enables fast and high resolution control of the tip sample distance. The results of topography parallel measurement using 1×4 cantilever array will be presented.

  3. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    NASA Astrophysics Data System (ADS)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E.

    2014-09-01

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5-10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100-500 Hz for scan areas of several micrometers in size.

  4. A new method to measure the oscillation of a cylindrical cantilever: ``The laser reflection detection system''

    NASA Astrophysics Data System (ADS)

    Antognozzi, M.; Haschke, H.; Miles, M. J.

    2000-04-01

    A new optical detection system for measuring the oscillation of cylindrical cantilevers has been designed. A laser beam is directed perpendicularly to the oscillating plane and is focused on the curved surface of the vibrating probe. The surface reflects the light and a second lens refocuses it onto a two-segment photodiode. The sensitivity of this method lies in the fact that a small displacement of the probe produces a large angular deflection of the reflected laser. Applications of this new system are presented in order to demonstrate its reliability, accuracy, sensitivity, and the possible use in a shear force microscope. All the results are finally analyzed by modeling the motion of the cantilevers using harmonic oscillator theory and the continuous model for oscillating bars. The agreement between experimental data and models is well inside the experimental errors confirming the possibility of using this system to accurately study the dynamics of cylindrical cantilevers.

  5. Nanomechanical actuation of a silicon cantilever using an azo dye, self-assembled monolayer.

    PubMed

    Rastegar, A Joseph; Vosgueritchian, Michael; Doll, Joseph C; Mallon, Joseph R; Pruitt, Beth L

    2013-06-11

    The emerging fields of nanomotors and optomechanics are based on the harnessing of light to generate force. However, our ability to detect small surface stresses is limited by temperature drift, environmental noise, and low-frequency flicker electronic noise. To address these limitations, we functionalized microfabricated silicon cantilevers with an azo dye, silane-based self-assembled monolayer and modulated the surface stress by exciting the optical switch with a 405-nm laser. Atomic force microscopy, contact angle analysis, ellipsometry, and X-ray photoelectron spectroscopy verified successful assembly of molecules on the cantilever. Ultraviolet and visible spectra demonstrate optical switching of the synthesized molecule in solution. By turning the laser on and off at a specific rate (e.g., 1 Hz), the cantilever deflection can be measured via Fourier techniques, thus separating the signal of interest from the noise. This technique empowers the design of highly sensitive surface stress measurements. PMID:23663108

  6. Lateral force microscope calibration using a modified atomic force microscope cantilever

    SciTech Connect

    Reitsma, M. G.

    2007-10-15

    A proof-of-concept study is presented for a prototype atomic force microscope (AFM) cantilever and associated calibration procedure that provide a path for quantitative friction measurement using a lateral force microscope (LFM). The calibration procedure is based on the method proposed by Feiler et al. [Rev. Sci. Instrum. 71, 2746 (2000)] but allows for calibration and friction measurements to be carried out in situ and with greater precision. The modified AFM cantilever is equipped with lateral lever arms that facilitate the application of normal and lateral forces, comparable to those acting in a typical LFM friction experiment. The technique allows the user to select acceptable precision via a potentially unlimited number of calibration measurements across the full working range of the LFM photodetector. A microfabricated version of the cantilever would be compatible with typical commercial AFM instrumentation and allow for common AFM techniques such as topography imaging and other surface force measurements to be performed.

  7. The Jd number: An empirical constant for predicting dual cantilever flutter velocity

    NASA Astrophysics Data System (ADS)

    Hobeck, J. D.; Inman, D. J.

    2015-06-01

    In this letter, the authors present a semi-empirical relationship used to predict the velocity at which two adjacent identical cantilevers placed in steady cross-flow begin to experience persistent large amplitude vibrations at a particular combination of flow velocity and separation distance. This recently discovered flow-induced vibration phenomenon is called dual cantilever flutter (DCF). The only DCF models available can be used to predict time-series dynamics; however, they are complex and require extensive model updating procedures. The model proposed in this letter requires known parameters and only a single nondimensional empirical value called the Jd number. The Jd number was found to be an approximately constant single value for four case studies, each performed with a different cantilever design. Derivation of the Jd number and the flutter prediction model are discussed and experimentally validated.

  8. Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors

    PubMed Central

    Contreras, Javier; Costa, Daniel; Pereira, Sonia; Fortunato, Elvira; Martins, Rodrigo; Wierzbicki, Rafal; Heerlein, Holger; Ferreira, Isabel

    2010-01-01

    The movement of a micro cantilever was detected via a self constructed portable data acquisition prototype system which integrates a linear array of 32 1D amorphous silicon position sensitive detectors (PSD). The system was mounted on a microscope using a metal structure platform and the movement of the 30 μm wide by 400 μm long cantilever was tracked by analyzing the signals acquired by the 32 sensor array electronic readout system and the relevant data algorithm. The obtained results show a linear behavior of the photocurrent relating X and Y movement, with a non-linearity of about 3%, a spatial resolution of less than 2 μm along the lateral dimension of the sensor as well as of less than 3 μm along the perpendicular dimension of the sensor, when detecting just the micro-cantilever, and a spatial resolution of less than 1 μm when detecting the holding structure. PMID:22163648

  9. Effect of Centrifugal Force on the Elastic Curve of a Vibrating Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Simpkinson, Scott H; Eatherton, Laurel J; Millenson, Morton B

    1948-01-01

    A study was made to determine the effect of rotation on the dynamic-stress distribution in vibrating cantilever beams. The results of a mathematical analysis are presented together with experimental results obtained by means of stroboscopic photographs and strain gages. The theoretical analysis was confined to uniform cantilever beams; the experimental work was extended to include a tapered cantilever beam to simulate an aircraft propeller blade. Calculations were made on nondimensional basis for second and third mode vibration; the experiments were conducted on beams of various lengths, materials, and cross sections for second-mode vibration. From this investigation it was concluded that high vibratory-stress positions are unaffected by the addition of centrifugal force. Nonrotating vibration surveys of blades therefore are valuable in predicting high vibratory-stress locations under operating conditions.

  10. Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement.

    PubMed

    Paolino, P; Bellon, L

    2009-10-01

    We measure the mechanical thermal noise of soft silicon atomic force microscope cantilevers. Using an interferometric setup, we obtain a resolution down to 10(-14) m Hz(-1/2) on a wide spectral range (3-10(5) Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectra for uncoated cantilevers versus a 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model. PMID:19738311

  11. Method and apparatus for sensing the natural frequency of a cantilevered body

    DOEpatents

    Duncan, Michael G.

    2000-01-01

    A method and apparatus for measuring the natural resonant frequency of a spring element by monitoring a phase difference between an output signal from the spring element and an input signal to the spring element and by adjusting frequency of the input signal until a detected phase difference signals that the natural resonant frequency has been reached. The method and apparatus are applied to a micro-cantilevered elements used to measure gas compositions and concentrations. Such elements are provided with coatings that absorb gas to cause deflections and changes in the mass or spring constant of the cantilevered element. These changes correspond to changes in the natural resonant frequency of the cantilevered element which are measured using the method and apparatus described herein.

  12. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  13. Design optimization of piezoresistive cantilevers for force sensing in air and water

    PubMed Central

    Doll, Joseph C.; Park, Sung-Jin; Pruitt, Beth L.

    2009-01-01

    Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems. PMID:19865512

  14. Method and apparatus for sensing the natural frequency of a cantilevered body

    SciTech Connect

    Duncan, M.G.

    2000-03-28

    A method and apparatus for measuring the natural resonant frequency of a spring element by monitoring a phase difference between an output signal from the spring element and an input signal to the spring element and by adjusting frequency of the input signal until a detected phase difference signals that the natural resonant frequency has been reached. The method and apparatus are applied to a micro-cantilevered elements used to measure gas compositions and concentrations. Such elements are provided with coatings that absorb gas to cause deflections and changes in the mass or spring constant of the cantilevered element. These changes correspond to changes in the natural resonant frequency of the cantilevered element which are measured using the method and apparatus described herein.

  15. Fabrication of high-density cantilever arrays and through-wafer interconnects

    SciTech Connect

    A. Harley, J.; Abdollahi-Alibeik, S.; Chow, E. M.; Kenney, T. W.; McCarthy, A. M.; McVittie, J. P.; Partridge; Quate, C. F.; Soh, H. T.

    1998-11-03

    Processes to fabricate dense, dry released microstructures with electrical connections on the opposite side of the wafer are described. A 10 x 10 array of silicon and polysilicon cantilevers with high packing density (5 tips/mm2) and high uniformity (<10 µm length variation across the wafer) are demonstrated. The cantilever release process uses a deep SF6/C4F8, plasma etch followed by a HBr plasma etch to accurately release cantilevers. A process for fabricating electrical contacts through the backside of the wafer is also described. Electrodeposited resist, conformal CVD metal deposition and deep SF6/C4F8 plasma etching are used to make 30 µm/side square vias each of which has a resistance of 50 m(omega).

  16. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    SciTech Connect

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E.

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  17. Development of a robust rotational-angle optical fiber sensor using different-material cantilevers

    NASA Astrophysics Data System (ADS)

    Sun, Hai-Tao; Sheng, Hao-Jan; Liu, Wen-Fung

    2015-02-01

    A rotational-angle sensor composed of two Fiber Bragg gratings glued axially on a cylindrical cantilever beam to be bent by the resultant repulsion force of three magnets is designed and proposed for detecting the rotary random position of a rotor. By means of using three different materials on cantilever beams for checking each feature's effect on this fiber optic sensor, it has been experimentally confirmed that a nearly identical performance is achieved among them. From these experimental results, a maximum deviation of 1.3 deg is obtained and it is in good agreement with the theoretical prediction. As a whole, the cantilever design exploited in this proposed optical fiber sensor configuration is independent of the intrinsic materials used. This sensor can provide a robust kind of technique for accurately measuring the rotational angle or rotational rate of a rotor in an arbitrary rotational direction for a wide range of industrial applications.

  18. Fast atomic force microscopy with self-transduced, self-sensing cantilever

    NASA Astrophysics Data System (ADS)

    Ahmad, Ahmad; Ivanov, Tzvetan; Angelov, Tihomir; Rangelow, Ivo W.

    2015-07-01

    The conventional optical lever detection technique involves optical components and their precise mechanical alignment. An additional technical limit is the weight of the optical system in cases where a top-scanner is used with high-speed and high-precision metrology. An alternative represents the application of self-actuated atomic force microscopy (AFM) cantilevers with integrated two-dimensional electron gas (2-DEG) piezoresistive deflection sensors. A significant improvement in the performance of such cantilevers with respect to deflection sensitivity and temperature stability has been achieved by using an integrated Wheatstone bridge configuration. Due to employing effective crosstalk isolation and temperature drift compensation, the performance of these cantilevers was significantly improved. In order to enhance the speed of AFM measurements, we present an adaptive scanning speed procedure. Examples of AFM measurements with a high scanning speed (up to 200 lines/s) committed to advanced lithography process development are shown.

  19. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    PubMed Central

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s).

  20. Design and experimental evaluation of flextensional-cantilever based piezoelectric transducers for flow energy harvesting

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Colonius, Tim

    2016-04-01

    Cantilever type piezoelectric harvesters, such as bimorphs, are typically used for vibration induced energy harvesting. However, a major drawback of a piezoelectric bimorph is its brittle nature in harsh environments, precipitating short life-times as well as output power degradation. The emphasis in this work is to design robust, highly efficient piezoelectric harvesters that are capable of generating electrical power in the milliwatt range. Various harvesters were modeled, designed and prototyped, and the flextensional actuator based harvester, where the metal cantilever is mounted and coupled between two flextensional actuators, was found to be a viable alternative to the cantilever type piezoelectric harvesters. Preliminary tests show that these devices equipped with 5x5x36 mm two piezoelectric PZT stacks can produce greater than 50 mW of power under air flow induced vibrations.

  1. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-02-01

    The study presented in this paper introduces a new intelligent methodology to mitigate the vibration response of flexible cantilever plates. The use of the piezoelectric sensor/actuator pairs for active control of plates is discussed. An intelligent neural network based controller is designed to control the optimal voltage applied on the piezoelectric patches. The control technique utilizes a neurocontroller along with a Kalman Filter to compute the appropriate actuator command. The neurocontroller is trained based on an algorithm that incorporates a set of emulator neural networks which are also trained to predict the future response of the cantilever plate. Then, the neurocontroller is evaluated by comparing the uncontrolled and controlled responses under several types of dynamic excitations. It is observed that the neurocontroller reduced the vibration response of the flexible cantilever plate significantly; the results demonstrated the success and robustness of the neurocontroller independent of the type and distribution of the excitation force.

  2. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  3. Development of Robust and Standardized Cantilever Sensors Based on Biotin/Neutravidin Coupling for Antibody Detection

    PubMed Central

    Zhang, Jiayun; Lang, Hans Peter; Battiston, Felice; Backmann, Natalija; Huber, Francois; Gerber, Christoph

    2013-01-01

    A cantilever-based protein biosensor has been developed providing a customizable multilayer platform for the detection of antibodies. It consists of a biotin-terminated PEG layer pre-functionalized on the gold-coated cantilever surface, onto which NeutrAvidin is adsorbed through biotin/NeutrAvidin specific binding. NeutrAvidin is used as a bridge layer between the biotin-coated surface and the biotinylated biomolecules, such as biotinylated bovine serum albumin (biotinylated BSA), forming a multilayer sensor for direct antibody capture. The cantilever biosensor has been successfully applied to the detection of mouse anti-BSA (m-IgG) and sheep anti-BSA(s-IgG) antibodies. As expected, the average differential surface stress signals of about 5.7 ± 0.8 × 10−3 N/m are very similar for BSA/m-IgG and BSA/s-IgG binding, i.e., they are independent of the origin of the antibody. A statistic evaluation of 112 response curves confirms that the multilayer protein cantilever biosensor shows high reproducibility. As a control test, a biotinylated maltose binding protein was used for detecting specificity of IgG, the result shows a signal of bBSA layer in response to antibody is 5.8 × 10−3 N/m compared to bMBP. The pre-functionalized biotin/PEG cantilever surface is found to show a long shelf-life of at least 40 days and retains its responsivity of above 70% of the signal when stored in PBS buffer at 4 °C. The protein cantilever biosensor represents a rapid, label-free, sensitive and reliable detection technique for a real-time protein assay. PMID:23604028

  4. Propped Cantilever Mesh Convergence Study Using Hexahedral Elements

    SciTech Connect

    Chi-Fung Tso; David Molitoris; Spencer Snow; Alex Norman

    2001-10-01

    The Task Group on Computational Modelling for Explicit Analyses in the ASME Boiler and Pressure Vessel Code committee was set up in August 2008 to develop a quantitative finite element modelling guidance document for the explicit dynamic analysis of energy-limited events. This guidance document will be referenced in the ASME Boiler and Pressure Vessel Code Section III Division 3 and NRC Regulatory Guide 7.6 as a means by which the quality of a finite element model may be judged. In energy limited events, which the guidance document will address, ductile metallic materials will suffer significant plastic strains to take full advantage of their energy absorption capacity. Accuracy of the analyses in predicting large strains is therefore essential. One of the issues that this guidance document will address is the issue of the quality of a finite element mesh, and in particular, mesh refinement to obtain a convergent solution. That is, for a given structure under a given loading using a given type of element, what is the required mesh density to achieve sufficiently accurate results. One portion of the guidance document will be devoted to a series of element convergence studies that can aid designers in establishing the mesh refinement requirements necessary to achieve accurate results for a variety of different elements types in regions of high plastic strain. These convergence studies will also aid reviewers in evaluating the quality of a finite element model and the apparent accuracy of its results. The first convergence study consists of an elegantly simple problem of a cantilevering beam, simply supported at one end and built in at the other, loaded by a uniformly-distributed load that is ramped up over a finite time to a constant value. Three different loads were defined, with the smallest load to cause stresses that are entirely elastic and the largest load to cause large plastic deformations. Material properties, loading rates and boundary conditions were also

  5. Study on the design method of the jack-up's x-type cantilever allowable load nephogram

    NASA Astrophysics Data System (ADS)

    Zhu, Yazhou; Sun, Chengmeng; Qin, Hongde; Jiang, Bin; Fan, Yansong

    2014-09-01

    The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical reference which can evaluate the jack-up's drilling ability, design the cantilever structure and instruct a jack-up manager to make the operations safe. The intent of this paper is to explore the interrelationships between the cantilever position, drilling floor and the loads including wind force, the stand set-back weight etc., through analyzing the structure and load characteristics of the x-type cantilever and the simplified mechanics model with the restriction of the maximum moment capacity of the cantilever single side beam. Referring to several typical position designs load values, the cantilever allowable load nephogram is obtained by using the suitable interpolation method. The paper gives a method for cantilever allowable load design, which is proved reliable and effective by the calculation example.

  6. Large Deflection of Ideal Pseudo-Elastic Shape Memory Alloy Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Cui, Shitang; Hu, Liming; Yan, Jun

    This paper deals with the large deflections of pseudo-elastic shape memory alloy cantilever beams subjected to a concentrated load at the free end. Because of the large deflections, geometry nonlinearity arises and this analysis employs the nonlinear bending theory. The exact expression of curvature is used in the moment-curvature relationship. As a vertical force at the tip of cantilever, curvature and bending moment distribution expressions are deduced. The curvature changed distinctly when the surface material undergoes phase transformation. The length of phase transformation region was affected greatly with the force at the free end.

  7. Detecting the golgi protein 73 of liver cancer with micro cantilever

    NASA Astrophysics Data System (ADS)

    Thanh Tuyen Le, Thi; Pham, Van Tho; Nhat Khoa Phan, Thanh; Binh Pham, Van; Thao Le, Van; Hien Tong, Duy

    2014-12-01

    Golgi protein 73 (GP73) is a potential serum biomarker used in diagnosing human hepatocellular carcinoma (HCC). Compared to alpha-fetoprotein, detection of GP73 is expected to give better sensitivity and specificity and thus offers a better method for diagnosis of HCC at an early stage. In this paper, silicon nitride microcantilever was used to detect GP73. The cantilever was modified through many steps to contain antibody of GP73. The result shows that the cantilever can be used as a label-free sensor to detect this kind of biomarker.

  8. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.

    PubMed

    Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang

    2013-12-01

    We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions. PMID:24514521

  9. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  10. Finite-element method for a uniformly loaded cantilever beam with general cross section

    SciTech Connect

    Lin, S.C.

    1987-05-01

    The Michell (1901) theory for the analysis of beam-type structures is combined with that of Friedrich and Lin (1984) to obtain a finite element solution for a uniformly loaded cantilever beam with general cross section. A plane-strain problem established with internal body and boundary forces that were computed from the warping displacement is solved by means of the regular two-dimensional finite element program, on the same model used for warping displacement calculation. Numerical examples are given for cantilever beams with circular and thin-rectangular cross section. 6 references.

  11. Study of Effects of Sweep on the Flutter of Cantilever Wings

    NASA Technical Reports Server (NTRS)

    Barmby, J G; Cunningham, H J; Garrick, I E

    1951-01-01

    An experimental and analytical investigation of the flutter of sweptback cantilever wings is reported. The experiments employed groups of wings swept back by rotating and by shearing. The angle of sweep range from 0 degree to 60 degrees and Mach numbers extended to approximately 0.85. A theoretical analysis of the air forces on an oscillating swept wing of high length-chord ratio is developed, and the approximations inherent in the assumptions are discussed. Comparison with experiment indicates that the analysis developed in the present report is satisfactory for giving the main effects of sweep, at least for nearly uniform cantilever wings of high and moderate length-chord ratios.

  12. Forced response of a cantilever beam with a dry friction damper attached. I - Theory. II - Experiment

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Schwartz, H. B.

    1983-01-01

    A theoretical and experimental study of the forced vibration response of a cantilevered beam with Coulomb damping nonlinearity is described. Viscous damping in the beam is neglected. Beam and dry friction damper configurations of interest for applications to turbine blade vibrations are considered. It is shown that the basic phenomena found by Dowell (1983) for a simply supported beam with an attached dry friction damper of specific geometry also apply to a cantilevered beam and a more general representation of the dry friction damper and its associated mass and stiffness.

  13. Resonant interaction of trapped cold atoms with a magnetic cantilever tip

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Valencia, Jose; Geraci, Andrew A.; Eardley, Matthew; Moreland, John; Hollberg, Leo; Kitching, John

    2015-06-01

    Magnetic resonance in an ensemble of laser-cooled trapped Rb atoms is excited using a microcantilever with a magnetic tip. The cantilever is mounted on a multilayer chip designed to capture, cool, and magnetically transport cold atoms. The coupling is observed by measuring the loss from a magnetic trap as the oscillating cantilever induces Zeeman-state transitions in the atoms. Interfacing cold atoms with mechanical devices could enable probing and manipulating atomic spins with nanometer spatial resolution and single-spin sensitivity, leading to new capabilities in quantum computation, quantum simulation, and precision sensing.

  14. Designer cantilevers for even more accurate quantitative measurements of biological systems with multifrequency AFM

    NASA Astrophysics Data System (ADS)

    Contera, S.

    2016-04-01

    Multifrequency excitation/monitoring of cantilevers has made it possible both to achieve fast, relatively simple, nanometre-resolution quantitative mapping of mechanical of biological systems in solution using atomic force microscopy (AFM), and single molecule resolution detection by nanomechanical biosensors. A recent paper by Penedo et al [2015 Nanotechnology 26 485706] has made a significant contribution by developing simple methods to improve the signal to noise ratio in liquid environments, by selectively enhancing cantilever modes, which will lead to even more accurate quantitative measurements.

  15. Self-excited coupled cantilevers for mass sensing in viscous measurement environments

    NASA Astrophysics Data System (ADS)

    Yabuno, Hiroshi; Seo, Yasuhiro; Kuroda, Masaharu

    2013-08-01

    The eigenstate shift in two nearly identical and weakly coupled cantilevers provides a means to realize much higher-sensitivity mass detection compared with the eigenfrequency shift approach. We propose using self-excited oscillations for eigenstate detection without using frequency response or resonance curve normally used in conventional methods. Mass sensing thus becomes possible even in high-viscosity environments, where the peak of the frequency response curve is ambiguous or does not exist. The feedback control method is theoretically clarified to produce self-excited oscillation and the validity of the proposed method is investigated experimentally using macroscale coupled cantilevers.

  16. Performance evaluation and parametric analysis on cantilevered ramp injector in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Shi-bin; Yan, Li; Wang, Zhen-guo

    2013-03-01

    The cantilevered ramp injector is one of the most promising candidates for the mixing enhancement between the fuel and the supersonic air, and its parametric analysis has drawn an increasing attention of researchers. The flow field characteristics and the drag force of the cantilevered ramp injector in the supersonic flow with the freestream Mach number 2.0 have been investigated numerically, and the predicted injectant mole fraction and static pressure profiles have been compared with the available experimental data in the open literature. At the same time, the grid independency analysis has been performed by using the coarse, the moderate and the refined grid scales, and the influence of the turbulence model on the flow field of the cantilevered ramp injector has been carried on as well. Further, the effects of the swept angle, the ramp angle and the length of the step on the performance of the cantilevered ramp injector have been discussed subsequently. The obtained results show that the grid scale has only a slight impact on the flow field of the cantilevered ramp injector except in the region near the fuel injector, and the predicted results show reasonable agreement with the experimental data. Additionally, the turbulence model makes a slight difference to the numerical results, and the results obtained by the RNG k-ɛ and SST k-ω turbulence models are almost the same. The swept angle and the ramp angle have the same impact on the performance of the cantilevered ramp injector, and the kidney-shaped plume is formed with shorter distance with the increase of the swept and ramp angles. At the same time, the shape of the injectant mole fraction contour at X/H=6 goes through a transition from a peach-shaped plume to a kidney-shaped plume, and the cantilevered ramp injector with larger swept and ramp angles has the higher mixing efficiency and the larger drag force. The length of the step has only a slight impact on the drag force performance of the cantilevered

  17. Optical detection system for probing cantilever deflections parallel to a sample surface.

    PubMed

    Labuda, A; Brastaviceanu, T; Pavlov, I; Paul, W; Rassier, D E

    2011-01-01

    To date, commercial atomic force microscopes have been optimized for measurements of forces perpendicular to the sample surface. In many applications, sensitive parallel force measurements are desirable. These can be obtained by positioning the cantilever with its long axis perpendicular to the sample: the so-called pendulum geometry. We present a compact optical beam deflection system which solves the geometrical constraint problems involved in focusing a light beam onto a cantilever in the pendulum geometry. We demonstrate the performance of the system on measurements of forces imparted by a muscle myofibril, which is in-plane to a high-magnification objective of an optical microscope. PMID:21280831

  18. In vacuo elastodynamics of a flexible cantilever for wideband energy harvesting

    NASA Astrophysics Data System (ADS)

    Tan, D.; Erturk, A.

    2016-04-01

    We explore the potential for bandwidth enhancement by merely exploiting the hardening nonlinearity of a flexible cantilever. To date, this cubic hardening behavior has been minor due to dissipative effects, especially fluid drag. The goal here is to minimize the fluid damping and thereby achieve the jump phenomenon. A vacuum setup that is compatible with the armature of a long-stroke shaker is employed. Experiments are conducted for a range of air pressure and base excitation levels. The overall nonlinear non-conservative elastodynamics of the cantilever is also modeled and experimentally validated by empirically accounting for fluid damping.

  19. Theoretical free vibration analysis of rectangular cantilever plates with rigid point supports

    NASA Astrophysics Data System (ADS)

    Saliba, H. T.

    1993-07-01

    The practical engineering problem of cantilever plates with rigid point supports is dealt with in this paper. A highly accurate, economical and practical solution is outlined for the transverse free vibration analysis of these plates. The accuracy of the solution is discussed. It is also shown how well the solution lends itself to the optimization of point support locations. Numerical results are compared with experimental values to show the excellent agreement between the two sets of results. Examples of experimental and theoretical mode shapes are also provided for a square cantilever plate with four rigid point supports. Excellent agreement is observed here as well.

  20. Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Xu, Chundong; Ren, Bo; Liang, Zhu; Chen, Jianwei; Zhang, Haiwu; Yue, Qingwen; Xu, Qing; Zhao, Xiangyong; Luo, Haosu

    2012-11-01

    Cantilever driving low frequency piezoelectric energy harvester (CANDLE) has been found as a promising structure for vibration energy harvesting. This paper presents the nonlinear output properties of the CANDLE to optimize the performance of the device. Simulation results of the finite element method illustrate that nonlinear contacts between the cymbal transducers and the cantilever beam are main reasons of the nonlinear output. However, high excitation acceleration of the nonlinear leap point limits the application of the device. Based on the simulation results and theory analysis, the excitation acceleration is reduced to 30 m/s2 by increasing the proof mass.

  1. Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques

    NASA Astrophysics Data System (ADS)

    Schröter, M.-A.; Ritter, M.; Holschneider, M.; Sturm, H.

    2016-03-01

    We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images.

  2. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    PubMed Central

    Noeth, Nadine; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN) and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system. PMID:24366179

  3. Dynamics of a long tubular cantilever conveying fluid downwards, which then flows upwards around the cantilever as a confined annular flow

    NASA Astrophysics Data System (ADS)

    Paı¨Doussis, M. P.; Luu, T. P.; Prabhakar, S.

    2008-01-01

    A theoretical model is developed for the dynamics of a hanging tubular cantilever conveying fluid downwards; the fluid, after exiting from the free end, is pushed upwards in the outer annular region contained by the cantilever and a rigid cylindrical channel. This configuration thus resembles that of a drill-string with a floating fluid-powered drill-bit. The linear equation of motion is solved by means of a hybrid Galerkin Fourier method, as well as by a conventional Galerkin method. Calculations are conducted for a very slender system with parameters appropriate for a drill-string, for different degrees of confinement of the outer annular channel; and also for another, bench-top-size experiment. For wide annuli, the dynamics is dominated by the internal flow and, for low flow velocities, the flow increases the damping associated with the presence of the annular fluid. For narrow annuli, however, the annular flow is dominant, tending to destabilize the system, giving rise to flutter at remarkably low flow velocities. The mechanisms underlying the dynamics are also considered, in terms of energy transfer from the fluid to the cantilever and vice versa, as are possible applications of this work.

  4. The Resin-Bonded Fixed Partial Denture as the First Treatment Consideration to Replace a Missing Tooth.

    PubMed

    Kuijs, Ruud; van Dalen, Andy; Roeters, Joost; Wismeijer, Daniel

    2016-01-01

    The resin-bonded fixed partial denture (RB-FPD) is the first restorative treatment option to be considered in cases where one or more teeth are missing. The indications for implants, conventional FPDs, and adhesive FPDs, considering the general and dental conditions of the patient, are discussed in this article. When the RB-FPD is the chosen option, a direct or indirect technique, a cantilever-type or fixed-fixed design, and materials to be used need to be selected. The choice will depend on a variety of factors, such as interproximal space at the connector area, anterior or posterior location, the skills of the dentist, esthetics, and the patient's wishes. The RB-FPD can be made using various techniques and materials. PMID:27479338

  5. Fabrication of cantilever based mass sensors integrated with CMOS using direct write laser lithography on resist

    NASA Astrophysics Data System (ADS)

    Forsén, E.; Nilsson, S. G.; Carlberg, P.; Abadal, G.; Pérez-Murano, F.; Esteve, J.; Montserrat, J.; Figueras, E.; Campabadal, F.; Verd, J.; Montelius, L.; Barniol, N.; Boisen, A.

    2004-10-01

    A CMOS compatible direct write laser lithography technique has been developed for cantilever fabrication on pre-fabricated standard CMOS. We have developed cantilever based sensors for mass measurements in vacuum and air. The cantilever is actuated into lateral vibration by electrostatic excitation and the resonant frequency is detected by capacitive readout. The device is integrated on standard CMOS circuitry. In the work a new direct write laser lithography (DWL) technique is introduced. This laser lithography technique is based on direct laser writing on substrates coated with a resist bi-layer consisting of poly(methyl methacrylate) (PMMA) on lift-off resist (LOR). Laser writing evaporates the PMMA, exposing the LOR. A resist solvent is used to transfer the pattern down to the substrate. Metal lift-off followed by reactive ion etching is used for patterning the structural poly-Si layer in the CMOS. The developed laser lithography technique is compatible with resist exposure techniques such as electron beam lithography. We demonstrate the fabrication of sub-micrometre wide suspended cantilevers as well as metal lift-off with feature line widths down to approximately 500 nm.

  6. Large deflections and vibration of a tapered cantilever pulled at its tip by a cable

    NASA Astrophysics Data System (ADS)

    Holland, David B.; Virgin, Lawrence N.; Plaut, Raymond H.

    2008-02-01

    The behavior of a slender, tapered, cantilever beam loaded through a cable attached to its free end is described. Large static deflections are computed (based on an elastica description) together with natural frequencies and mode shapes for small-amplitude vibrations about equilibrium. Experimental results exhibit good agreement with the theoretical results.

  7. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    PubMed Central

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-01-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769

  8. Measurements of laboratory turbulence with the 2d-Laser Cantilever Anemometer

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Peinke, Joachim; Hoelling, Michael

    2013-11-01

    A newly developed anemometer, the 2d-Laser Cantilever Anemometer, was used to measure the two-dimensional wind speed vector in laboratory-generated turbulence. The anemometer provides a temporal and spatial resolution comparable or even higher to those of commercial hot-wires and thus is an excellent alternative for high-resolution measurements. The 2d-Laser Cantilever Anemometer uses a previously unseen measurement technique in the range of anemometers. The principle is adopted from atomic force microscopes (AFM). A tiny micro-structured cantilever is brought into the airflow, where it experiences a drag force due to the moving fluid. The resulting deflection is measured using the laser pointer principle. Unlike the measuring principle of hot-wires this technique can be applied in challenging environments such as in liquids or very close to walls. Our comparing measurements with the 2d-Laser Cantilever Anemometer and an x-wire were carried out in the wake of rigid bodies and grids. The results show a great agreement with regards to the increment statistics on various scales, power spectra and turbulence intensity, thus proving the new anemometer.

  9. Comment on ‘Longest reach of a cantilever with a tip load’

    NASA Astrophysics Data System (ADS)

    Batista, Milan

    2016-09-01

    In this contribution, the longest horizontal reach of a cantilever subject to a dead load is analysed in terms of Jacobi elliptical functions. The problem is reduced to finding the solution of a system of transcendental equations. Several analytical results that cannot be obtained using pure numerical methods are discussed.

  10. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves.

    PubMed

    Al-Musawi, R S J; Brousseau, E B; Geng, Y; Borodich, F M

    2016-09-23

    Atomic force microscope (AFM) tip-based nanomachining is currently the object of intense research investigations. Values of the load applied to the tip at the free end of the AFM cantilever probe used for nanomachining are always large enough to induce plastic deformation on the specimen surface contrary to the small load values used for the conventional contact mode AFM imaging. This study describes an important phenomenon specific for AFM nanomachining in the forward direction: under certain processing conditions, the deformed shape of the cantilever probe may change from a convex to a concave orientation. The phenomenon can principally change the depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen may increase by 50% on average following such a change in the deformed shape of the cantilever. It is argued that this phenomenon can take place even when the AFM-based tool is operated in the so-called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe bending, the analysis of experimental signals monitored during the backward and forward AFM tip-based machining and the inspection of the topography of produced grooves. PMID:27532247

  11. Flap/Lag/Torsion Dynamics of a Uniform, Cantilever Rotor Blade in Hover

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    The dynamic stability of the flap/lag/torsion motion of a uniform, cantilever rotor blade in hover is calculated. The influence of blade collective pitch, lag frequency, torsional flexibility, structural coupling, and precone angle on the stability is examined. Good agreement is found with the results of an independent analytical investigation.

  12. Flexural Vibration Test of a Cantilever Beam with a Force Sensor: Fast Determination of Young's Modulus

    ERIC Educational Resources Information Center

    Digilov, Rafael M.

    2008-01-01

    We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…

  13. Solid-State Lighting: Cantilever Epitaxy Process Wins R&D 100 Award

    SciTech Connect

    2012-04-19

    Sandia National Laboratories received an R&D 100 Award from R&D Magazine for development of a new process for growing gallium nitride on an etched sapphire substrate. The process, called cantilever epitaxy, promises to make brighter and more efficient green, blue, and white LEDs.

  14. A case study of analysis methods for large deflections of a cantilever beam

    NASA Technical Reports Server (NTRS)

    Craig, L. D.

    1994-01-01

    A load case study of geometric nonlinear large deflections of a cantilever beam is presented. The bending strain must remain elastic. Closed form solution and finite element methods of analysis are illustrated and compared for three common load cases. A nondimensional nomogram for each case is presented in the summary.

  15. Comparison of Theory with Experimental Data For a Partially Covered Double-Sandwich Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Chen, Qinghua; Levy, Cesar

    1998-01-01

    In this paper, vibration characteristics of a partially covered, double-sandwich cantilever beam are evaluated experimentally and compared to the theoretical results of Levy and Chen for partially covered beams with and without end mass. The results obtained indicate that the theoretical models serve very well in providing the frequency factors and loss factors for the system being investigated.

  16. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    PubMed

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. PMID:26303510

  17. Free vibration analysis of cantilever plate partially submerged into a fluid

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Yang, Dong-Ho

    2013-07-01

    The free flexural vibration of a cantilever plate partially submerged in a fluid is investigated. The fluid is assumed to be inviscid and irrotational. The virtual mass matrix is derived by solving the boundary-value problem related to the fluid motion using elliptical coordinates. The introduction of the elliptical coordinates naturally leads to the use of the Mathieu function. Hence, the virtual mass matrix which reflects the effect of the fluid on the natural vibration characteristics is expressed in analytical form in terms of the Mathieu functions. The virtual mass matrix is then combined with the dynamic model of a thin rectangular plate obtained by using the Rayleigh-Ritz method. This combination is used to analyze the natural vibration characteristics of a partially submerged cantilever plate qualitatively. Also, the non-dimensionalized added virtual mass incremental factors for a partially submerged cantilever plate are presented to facilitate the easy estimation of natural frequencies of a partially submerged cantilever plate. It is found that the numerical results are in good agreement with the previous results, thus validating the proposed approach.

  18. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    PubMed

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-01-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers. PMID:26510769

  19. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging.

    PubMed

    Dukic, Maja; Adams, Jonathan D; Fantner, Georg E

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  20. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  1. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-11-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  2. Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry.

    PubMed

    Gysin, Urs; Rast, Simon; Aste, Andreas; Speliotis, Thanassis; Werle, Christoph; Meyer, Ernst

    2011-07-15

    Magnetic properties of nanomagnetic and biomagnetic systems are investigated using cantilever magnetometry. In the presence of a magnetic field, magnetic films or particles deposited at the free end of a cantilever give rise to a torque on the mechanical sensor, which leads to frequency shifts depending on the applied magnetic field. From the frequency response, the magnetic properties of a magnetic sample are obtained. The magnetic field dependences of paramagnetic and ferromagnetic thin films and particles are measured in a temperature range of 5-320 K at a pressure below 10(-6) mbar. We present magnetic properties of the ferromagnetic materials Fe, Co and Ni at room temperature and also for the rare earth elements Gd, Dy and Tb at various temperatures. In addition, the magnetic moments of magnetotactic bacteria are measured under vacuum conditions at room temperature. Cantilever magnetometry is a highly sensitive tool for characterizing systems with small magnetic moments. By reducing the cantilever dimensions the sensitivity can be increased by an order of magnitude. PMID:21659684

  3. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers

    NASA Astrophysics Data System (ADS)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-01

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson’s ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  4. Reduction of nonspecific protein adsorption on cantilever biosensors caused by transverse resonant mode vibration.

    PubMed

    Johnson, Blake N; Mutharasan, Raj

    2014-03-01

    We examine if vibration of millimeter-sized cantilever sensors can release nonspecifically adsorbed proteins. Integrated electrochemical and mass-change measurement as well as fluorescence assays showed transverse surface vibration released nonspecifically bound proteins in samples prepared at 0.2-3.6 mg bovine serum albumin (BSA) per mL. Extent of release was directly related to magnitude of excitation voltage (Vex) applied to the self-actuating lead zirconate titanate (PZT) cantilever over three log units (0, 10 mV, 100 mV, and 1 V). Vibration-induced release was not instantaneous, but had an apparent first-order rate constant (kapp) which ranged from 0.02-0.1 min(-1). Results suggest significant serum albumin protein release could be achieved using excitation voltages of 1 V in millimeter-sized cantilever sensors. Complementary experiments with thiolated DNA, which binds to surface gold 〈111〉 sites with ∼ four times higher binding energy than BSA, showed negligible release under the same vibration magnitude. The results of the study suggest a direct correlation between surface-adsorbate binding energy and the effectiveness of vibration-induced release. We suggest that the release mechanism includes contributions from surface strain energy, body force, and acoustic streaming-associated hydrodynamic effects. The primary contribution of this study suggests that surface vibration of cantilever sensors may be useful in reducing nonspecific adsorption, especially for biosensing of analytes present in a complex background. PMID:24416758

  5. Experimental free vibration analysis of rectangular cantilever plates with rigid point supports

    NASA Astrophysics Data System (ADS)

    Saliba, H. T.

    1994-04-01

    This paper deals with the practical engineering problem of cantilever plates with rigid point supports. A highly accurate, experimental procedure is outlined for the transverse free vibration analysis of these plates. The modal properties of these plates are obtained from the experimental data. In this analysis, a frequency domain mathematical model is used along with frequency response function (FRF) measurements obtained from the plate.

  6. Femtogram Mass Biosensor Using Self-Sensing Cantilever for Allergy Check

    NASA Astrophysics Data System (ADS)

    Sone, Hayato; Ikeuchi, Ayumi; Izumi, Takashi; Okano, Haruki; Hosaka, Sumio

    2006-03-01

    A self-sensing mass biosensor with a femtogram mass sensitivity has been developed using a piezoresistive microcantilever. The mass change due to antigen and antibody adsorption on the cantilever in water was detected by the resonance frequency shift of the cantilever. We constructed a prototype harmonic vibration sensor using a commercial piezoresistive cantilever, Wheatstone bridge circuits, a positive feedback controller, an exciting piezoactuator and a phase-locked loop (PLL) demodulator. As experimental results, a mass sensitivity of about 190 fg/Hz, and a mass resolution of about 500 fg were obtained in water. The mass sensitivity is 100 times higher than that of a quartz crystal oscillation method. We demonstrated that the sensor can detect the reaction between an antibody of immunoglobulin (IgG) and an antigen of egg albumen (OVA). We confirmed that the binding ratio between the antibody and the antigen was about 1 : 2. The detection method is available for allergy check because the measured reaction ratio occurring on the cantilever concurs with the theoretical method.

  7. Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Seshia, A. A.

    2014-11-01

    In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.

  8. A case study of analysis methods for large deflections of a cantilever beam

    NASA Astrophysics Data System (ADS)

    Craig, L. D.

    1994-05-01

    A load case study of geometric nonlinear large deflections of a cantilever beam is presented. The bending strain must remain elastic. Closed form solution and finite element methods of analysis are illustrated and compared for three common load cases. A nondimensional nomogram for each case is presented in the summary.

  9. Quick and easy microfabrication of T-shaped cantilevers to generate arrays of microtissues.

    PubMed

    Kalman, Benoît; Picart, Catherine; Boudou, Thomas

    2016-06-01

    Over the past decade, a major effort was made to miniaturize engineered tissues, as to further improve the throughput of such approach. Most existing methods for generating microtissues thus rely on T-shaped cantilevers made by soft lithography and based on the use of negative SU-8 photoresist. However, photopatterning T-shaped microstructures with these negative photoresists is fastidious and time-consuming. Here we introduce a novel method to quickly generate T-shaped cantilevers dedicated to generation of cellular microtissues, based on the use of positive photoresist. With only two layers of photoresist and one photomask, we were able to fabricate arrays of microwells in less than 3 h, each containing two T-shaped cantilevers presenting either a rectangular or a circular geometry. As a proof of concept, these arrays were then replicated in poly(dimethylsiloxane) and microtissues composed of NIH 3T3 fibroblasts encapsulated in collagen I were generated, while the two cantilevers simultaneously constrain and report forces generated by the microtissues. Immunostainings showed longitudinally aligned and elongated fibroblasts over the whole microtissue after 8 days of culture. The method described here opens the potential to quick prototyping platforms for high-throughput, low-volume screening applications. PMID:27165103

  10. Stress distribution in implant-supported prostheses using different connection systems and cantilever lengths: digital photoelasticity.

    PubMed

    Goiato, Marcelo Coelho; Shibayama, Ricardo; Gennari Filho, Humberto; de Medeiros, Rodrigo Antonio; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline; de Araújo, Cleudmar Amaral

    2016-01-01

    Photoelastic analysis was used to evaluate the biomechanical behaviour of implant-supported, double-screwed crowns with different connection systems and cantilever lengths. Three models were made in PL-2 photoelastic resin and divided into six groups, on the basis of the implant connection system (external hexagon [EH] or Morse taper [MT]), type of abutment (Mini Pilar [Neodent, Curitiba, Paraná, Brazil] or "UCLA") and number of crowns in the cantilever (one or two). The implant-prosthesis unit was placed in a circular polariscope. Occlusal surfaces of the crowns were subjected to 100-N loads in the axial and oblique (45°) directions in a universal testing machine (EMIC). Generated stresses were recorded and analysed qualitatively in a graphics program (Adobe Photoshop). Under axial loading, all of the groups had similar numbers of fringes, which were increased when the crowns were subjected to oblique loading. The highest number of fringes was found during oblique loading in the EH + Mini Pilar group. In conclusion, although the type of implant connection system did not have a direct influence on the stress distribution for axial loading, the cantilever length did have a direct influence on stress distribution. Models with two crowns in the cantilever showed more stress, with a greater concentration of force on the cervical part of the implant. PMID:26783652

  11. Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design

    NASA Astrophysics Data System (ADS)

    Du, Sijun; Jia, Yu; Seshia, Ashwin

    2015-12-01

    A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.

  12. High-Gradient Nanomagnets on Cantilevers for Sensitive Detection of Nuclear Magnetic Resonance

    PubMed Central

    Longenecker, Jonilyn G.; Mamin, H. J.; Senko, Alexander W.; Chen, Lei; Rettner, Charles T.; Rugar, Daniel; Marohn, John A.

    2012-01-01

    Detection of magnetic resonance as a force between a magnetic tip and nuclear spins has previously been shown to enable sub-10 nm resolution 1H imaging. Maximizing the spin force in such a magnetic resonance force microscopy (MRFM) experiment demands a high field gradient. In order to study a wide range of samples, it is equally desirable to locate the magnetic tip on the force sensor. Here we report the development of attonewton-sensitivity cantilevers with high gradient cobalt nanomagnet tips. The damage layer thickness and saturation magnetization of the magnetic material were characterized by X-ray photoelectron spectroscopy and superconducting quantum interference device magnetometry. The coercive field and saturation magnetization of an individual tip were quantified in situ using frequency-shift cantilever magnetometry. Measurements of cantilever dissipation versus magnetic field and tip-sample separation were conducted. MRFM signals from protons in a polystyrene film were studied versus rf irradiation frequency and tip-sample separation, and from this data the tip field and tip-field gradient were evaluated. Magnetic tip performance was assessed by numerically modeling the frequency dependence of the magnetic resonance signal. We observed a tip-field gradient ∂Bztip∕∂z estimated to be between 4.4 and 5.4 MT m−1, which is comparable to the gradient used in recent 4 nm resolution 1H imaging experiments and larger by nearly an order of magnitude than the gradient achieved in prior magnet-on-cantilever MRFM experiments. PMID:23033869

  13. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Zhang, Xian-min; Wu, Hong-xin; Zhang, Hong-hua

    2007-04-01

    Some flexible appendages of spacecraft are cantilever plate structures, such as sun plate and satellite antenna. Thus, vibration problem will be caused by parameter uncertainties and environmental disturbances. In this paper, piezoelectric ceramics patches are used as sensors and actuators to suppress the vibration of the smart flexible clamped plate. Firstly, modal equations and piezoelectric control equations of cantilever plate are derived. Secondly, an optimal placement method for the locations of piezoelectric actuators and sensors is developed based on the degree of observability and controllability indices for cantilever plate. The bending and torsional modes are decoupled by the proposed method using bandwidth Butterworth filter. Thirdly, an efficient control method by combining positive position feedback and proportional-derivative control is proposed for vibration reduction. The analytical results for modal frequencies, transient responses and control responses are carried out. Finally, an experimental setup of piezoelectric smart plate is designed and built up. The modal frequencies and damping ratios of the plate setup are obtained by identification method. Also, the experimental studies on vibration control of the cantilever plate including bending modes and torsional modes are conducted. The analytical and experimental results demonstrate that the presented control method is feasible, and the optimal placement method is effective.

  14. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    SciTech Connect

    Johnson, Raegan Lynn

    2005-08-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  15. Laboratory tests on mercury emission monitoring with resonating gold-coated silicon cantilevers.

    PubMed

    Drelich, Jaroslaw; White, Calvin L; Xu, Zhenghe

    2008-03-15

    To measure extremely low concentrations of mercury vapor in gases as encountered in flue gases of coal-fired power plants, accurate and reliable online and/or portable mercury detection systems are needed. As discussed in this communication, resonating silicon-based cantilevers coated with thin films of gold change their resonant frequency when exposed to mercury vapors and could serve as the basis for such sensing devices. Two different types of commercial AFM cantilevers, which differed by physical dimensions and surface finish, were coated with a 10 nm film of gold and were tested in streams of argon containing mercury. The argon flow rates ranged from 5.7 to 57.4 ml/min, carrying mercury vapors at concentrations between 37 and 700 microg/m3. The results show that smaller cantilevers (approximately 140 microm x 40 microm x 4 microm) with a resonant frequency of 270-275 kHz were sensitive to less than 10 picograms of mercury, whereas larger cantilevers (approximately 245 microm x 50 microm x 7 microm) with a resonant frequency of 155-165 kHz have a sensitivity about 10 times lower. The results indicate that the kinetics of mercury capture by the gold coating follows a simple power law-correlation with the mass change (delta m) being proportional to t(n), where t is the capture time and n depends strongly on the concentration of mercury in the gas. It is also demonstrated that the mercury can be stripped off the gold coating by heating to 350 degrees C, which would allowthe cantilevers to be regenerated and reused. PMID:18409639

  16. Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs.

    PubMed

    Cumpson, P J Peter J; Zhdan, Peter; Hedley, John

    2004-08-01

    Calibration of the spring constant of atomic force microscope (AFM) cantilevers is necessary for the measurement of nanonewton and piconewton forces, which are critical to analytical applications of AFM in the analysis of polymer surfaces, biological structures and organic molecules. We have developed a compact and easy-to-use reference standard for this calibration. The new artifact consists of an array of 12 dual spiral-cantilever springs, each supporting a mirrored polycrystalline silicon disc of 160 microm in diameter. These devices were fabricated by a three-layer polysilicon surface micromachining method, including a reflective layer of gold on chromium. We call such an array a Microfabricated Array of Reference Springs (MARS). These devices have a number of advantages. Cantilever calibration using this device is straightforward and rapid. The devices have very small inertia, and are therefore resistant to shock and vibration. This means they need no careful treatment except reasonably clean laboratory conditions. The array spans the range of spring constant from around 0.16 to 11 N/m important in AFM, allowing almost all contact-mode AFM cantilevers to be calibrated easily and rapidly. Each device incorporates its own discrete gold mirror to improve reflectivity. The incorporation of a gold mirror both simplifies calibration of the devices themselves (via Doppler velocimetry) and allows interferometric calibration of the AFM z-axis using the apparent periodicity in the force-distance curve before contact. Therefore, from a single force-distance curve, taking about one second to acquire, one can calibrate the cantilever spring constant and, optionally, the z-axis scale. These are all the data one needs to make accurate and reliable force measurements. PMID:15231316

  17. Length and Width Effects of Metal Films on Stress-Induced Bending of Surface Micromachined Cantilever Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan

    2012-02-01

    In this study, the length and width effects of metal films on the stress-induced bending of a surface micromachined cantilever curved grating are systematically investigated. A characterization of cantilever curved gratings with various lengths and widths was conducted to observe out-of-plane deformation. A finite element model was established to analyze the deformation. Finite element analysis and experimental results indicate that the commonly used beam theory formula for predicting the deformation of surface micromachined cantilever curved gratings is not valid for these devices. Experiments show that the shape of a cantilever curved grating and residual stress have a close relationship. As the length increases, the residual stress of the metal increases, resulting in a larger out-of-plane deformation of the cantilever curved grating. The tip deflection gradually decreases as the length-to-width ratio of the cantilever curved grating increases. A more reliable shape design of metal films on the stress-induced bending of surface micromachined cantilever curved gratings can thus be achieved.

  18. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.

    PubMed

    Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan

    2014-01-21

    Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers. PMID:24291805

  19. Optical and mechanical detection of near-field light by atomic force microscopy using a piezoelectric cantilever

    NASA Astrophysics Data System (ADS)

    Satoh, Nobuo; Kobayashi, Kei; Watanabe, Shunji; Fujii, Toru; Matsushige, Kazumi; Yamada, Hirofumi

    2016-08-01

    In this study, we developed an atomic force microscopy (AFM) system with scanning near-field optical microscopy (SNOM) using a microfabricated force-sensing cantilever with a lead zirconate titanate (PZT) thin film. Both optical and mechanical detection techniques were adopted in SNOM to detect scattered light induced by the interaction of the PZT cantilever tip apex and evanescent light, and SNOM images were obtained for each detection scheme. The mechanical detection technique did allow for a clear observation of the light scattered from the PZT cantilever without the interference observed by the optical detection technique, which used an objective lens, a pinhole, and a photomultiplier tube.

  20. Funding human services: fixed utility versus fixed budget.

    PubMed

    McCready, D J; Rahn, S L

    1986-01-01

    It is argued in this paper that government allocations for human services based on inputs rather than outcomes, reduce efficiency in social and health service provision. An alternative system of budgeting or contracting on the basis of cost-per-closed case and case outcome is discussed. An interdependency between fixed budget and fixed utility models of allocation is affirmed. The locus of decision-making for operationalizing this interdependency is seen as the program and budget review panel to which operating agencies and government departments must submit financial and program accounting information from year to year. In isolation, the fixed budget approach degenerates into routine allocation or contract renewal with a focus on such input and output variables as volume of service and unit cost, and the fixed utility approach, into political stalemate. Simulated examples are given to demonstrate how allocation on the basis of inputs and outputs alone provides an incentive to inefficiency, and a fixed utility orientation to efficiency. PMID:10311890

  1. Mass determination and sensitivity based on resonance frequency changes of the higher flexural modes of cantilever sensors

    SciTech Connect

    Parkin, John D.; Haehner, Georg

    2011-03-15

    Micro- and nanocantilevers are increasingly employed as mass sensors. Most studies consider the first flexural mode and adsorbed masses that are either discretely attached or homogeneously distributed along the entire length of the cantilever. We derive general expressions that allow for the determination of the total attached mass with any mass distribution along the cantilever length and all flexural modes. The expressions are valid for all cantilevers whose flexural deflection can be described by a one-dimensional function. This approach includes the most common types of microcantilevers, namely, rectangular, picket, and V-shaped. The theoretical results are compared with experimental data up to the fourth flexural mode obtained from thermal noise spectra of rectangular and V-shaped cantilevers.

  2. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  3. Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe

    NASA Astrophysics Data System (ADS)

    Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar

    2016-04-01

    In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d15 has much higher value than coupling coefficients d31 and d33, hence in the present work the micro cantilever beam actuated by d15 effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done. The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.

  4. Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory.

    PubMed

    Lee, Haw-Long; Chang, Win-Jin

    2016-01-01

    The modified couple stress theory is adopted to study the sensitivity of a rectangular atomic force microscope (AFM) cantilever immersed in acetone, water, carbon tetrachloride (CCl4), and 1-butanol. The theory contains a material length scale parameter and considers the size effect in the analysis. However, this parameter is difficult to obtain via experimental measurements. In this study, a conjugate gradient method for the parameter estimation of the frequency equation is presented. The optimal method provides a quantitative approach for estimating the material length scale parameter based on the modified couple stress theory. The results show that the material length scale parameter of the AFM cantilever immersed in acetone, CCl4, water, and 1-butanol is 0, 25, 116.3, and 471 nm, respectively. In addition, the vibration sensitivities of the AFM cantilever immersed in these liquids are investigated. The results are useful for the design of AFM cantilevers immersed in liquids. PMID:26402914

  5. Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers

    SciTech Connect

    Jarząbek, D. M.

    2015-01-15

    A direct method for the evaluation of the torsional spring constants of the atomic force microscope cantilevers is presented in this paper. The method uses a nanoindenter to apply forces at the long axis of the cantilever and in the certain distance from it. The torque vs torsion relation is then evaluated by the comparison of the results of the indentations experiments at different positions on the cantilever. Next, this relation is used for the precise determination of the torsional spring constant of the cantilever. The statistical analysis shows that the standard deviation of the calibration measurements is equal to approximately 1%. Furthermore, a simple method for calibration of the photodetector’s lateral response is proposed. The overall procedure of the lateral calibration constant determination has the accuracy approximately equal to 10%.

  6. Stability considerations and implementation of cantilevers allowing dynamic force microscopy with optimal resolution: the qPlus sensor

    NASA Astrophysics Data System (ADS)

    Giessibl, F. J.; Hembacher, S.; Herz, M.; Schiller, Ch; Mannhart, J.

    2004-02-01

    In frequency modulation atomic force microscopy, the stiffness, quality factor and oscillation amplitude of the cantilever are important parameters. While the first atomic resolution results were obtained with amplitudes of a few hundred ångstrom, it has subsequently been shown that smaller amplitudes should result in a better signal-to-noise ratio and an increased sensitivity to the short-range components of the tip-sample interaction. Stable oscillation at small amplitudes is possible if the product of stiffness and amplitude and the energy stored in the oscillating cantilever are large enough. For small amplitudes, stability can be achieved by using stiff cantilevers. Here, we discuss the physical requirements for small amplitude operation and present design criteria and technical details of the qPlus sensor, a self-sensing cantilever with large stiffness that allows small amplitude operation.

  7. 3D finite element analysis of electrostatic deflection and shielding of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: II. Rectangular shaped cantilevers with asymmetric pyramidal tips.

    PubMed

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    This paper deals with an application of 3D finite element analysis to the electrostatic interaction between (i) a commercial rectangular shaped cantilever (with an integrated anisotropic pyramidal tip) and a conductive sample, when a voltage difference is applied between them, and (ii) a focused ion beam (FIB) modified cantilever in order to realize a probe with reduced parasitic electrostatic force. The 3D modelling of their electrostatic deflection was realized by using multiphysics finite element analysis software and applied to the real geometry of the cantilevers and probes as used in conventional electric and Kelvin force microscopy to evaluate the contribution of the various part of a cantilever to the total force, and derive practical criteria to optimize the probe performances. We report also on the simulation of electrostatic shielding of nanometric features, in order to quantitatively evaluate an alternative way of reducing the systematic error caused by the cantilever-to-sample capacitive coupling. Finally, a quantitative comparison between the performances of rectangular and triangular cantilevers (part I of this work) is reported. PMID:21832618

  8. Biomechanical aspects of the optimal number of implants to carry a cross-arch full restoration.

    PubMed

    Brunski, John B

    2014-01-01

    A proper definition of the 'optimal' number of implants to support a full arch prosthesis should go beyond solely a listing of the number of implants used in a treatment plan; it should be based upon a biomechanical analysis that takes into account several factors: the locations of the implants in the jaw; the quality and quantity of bone into which they are placed; the loads (forces and moments) that develop on the implants; the magnitudes of stress and strain that develop in the interfacial bone as well as in the implants and prosthesis; and the relationship of the stresses and strains to limits for the materials involved. Overall, determining an 'optimal' number of implants to use in a patient is a biomechanical design problem. This paper discusses some of the approaches that are already available to aid biomechanically focused clinical treatment planning. A number of examples are presented to illustrate how relatively simple biomechanical analyses - e.g. the Skalak model - as well as more complex analyses (e.g. finite element modelling) can be used to assess the pros and cons of various arrangements of implants to support fullarch prostheses. Some of the examples considered include the use of 4 rather than 6 implants to span the same arc-length in a jaw, and the pros and cons of using tilted implants as in the 'all-on-4' approach. In evaluating the accuracy of the various biomechanical analyses, it is clear that our current prediction methods are not always perfectly accurate in vivo, although they can provide a reasonably approximate analysis of a treatment plan in many situations. In the current era of cone beam computerised tomography (CT) scans of patients in the dental office, there is significant promise for finite element analyses (FEA) based on anatomically-accurate input data. However, at the same time it has to be recognised that effective use of FEA software requires a reasonable engineering background, especially insofar as interpretations of the clinical significance of stresses and strains in bone and prosthetic materials. PMID:24977245

  9. Evidence of the big fix

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2014-06-01

    We give an evidence of the Big Fix. The theory of wormholes and multiverse suggests that the parameters of the Standard Model are fixed in such a way that the total entropy at the late stage of the universe is maximized, which we call the maximum entropy principle. In this paper, we discuss how it can be confirmed by the experimental data, and we show that it is indeed true for the Higgs vacuum expectation value vh. We assume that the baryon number is produced by the sphaleron process, and that the current quark masses, the gauge couplings and the Higgs self-coupling are fixed when we vary vh. It turns out that the existence of the atomic nuclei plays a crucial role to maximize the entropy. This is reminiscent of the anthropic principle, however it is required by the fundamental law in our case.

  10. Large deflections of a cantilever beam subjected to a follower force

    NASA Astrophysics Data System (ADS)

    Shvartsman, B. S.

    2007-07-01

    The large-deflection problem of a non-uniform spring-hinged cantilever beam under a tip-concentrated follower force is considered. The angle of inclination of the force with respect to the deformed axis of the beam remains unchanged during deformation. The mathematical formulation of this problem yields a nonlinear two-point boundary-value problem which is reduced to an initial-value problem by change of variables. The resulting problem can be solved without iterations. It is shown that there exist no critical loads in the Euler sense (divergence) for any flexural-stiffness distribution and angle of inclination of the follower force. The load-displacement characteristics of a uniform cantilever under a follower force normal to the deformed beam axis are presented.

  11. The complete process of large elastic-plastic deflection of a cantilever

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, Wu; Tongxi, Yu

    1986-11-01

    An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.

  12. Asymmetric post-flutter oscillations of a cantilever due to a dynamic follower force

    NASA Astrophysics Data System (ADS)

    Zamani, Vahid; Kharazmi, Ehsan; Mukherjee, Ranjan

    2015-03-01

    Flutter instability of a cantilever beam subjected to a follower force of constant magnitude is well understood: the beam oscillates with increasing amplitude when the force is larger than the critical load. Post-flutter analysis, similar to previous efforts, shows that the addition of damping results in steady-state oscillations. These oscillations are symmetric, but addition of a slope-dependent term to the magnitude of the follower force results in asymmetry. These asymmetric oscillations are investigated in this paper: the Ritz-Galerkin method is used to obtain a finite degree-of-freedom model of the cantilever and the method of multiple scales is used to analytically predict the amplitude and asymmetry of the oscillations. Numerical simulation results indicate a close match with analytically predicted results.

  13. Device for filamentous fungi growth monitoring using the multimodal frequency response of cantilevers

    NASA Astrophysics Data System (ADS)

    Maloney, N.; Lukacs, G.; Ball, S. L.; Hegner, M.

    2014-01-01

    Filamentous fungi cause opportunistic infections in hospital patients. A fast assay to detect viable spores is of great interest. We present a device that is capable of monitoring fungi growth in real time via the dynamic operation of cantilevers in an array. The ability to detect minute frequency shifts for higher order flexural resonance modes is demonstrated using hydrogel functionalised cantilevers. The use of higher order resonance modes sees the sensor dependent mass responsivity enhanced by a factor of 13 in comparison to measurements utilizing the fundamental resonance mode only. As a proof of principle measurement, Aspergillus niger growth is monitored using the first two flexural resonance modes. The detection of single spore growth within 10 h is reported for the first time. The ability to detect and monitor the growth of single spores, within a small time frame, is advantageous in both clinical and industrial settings.

  14. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Ou, Yi; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Wen

    2015-07-01

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  15. Cantilever measurements of surface stress, surface reconstruction, film stress and magnetoelastic stress of monolayers

    PubMed Central

    Sander, Dirk; Tian, Zhen; Kirschner, Jürgen

    2008-01-01

    We review the application of cantilever-based stress measurements in surface science and magnetism. The application of thin (thickness appr. 0.1 mm) single crystalline substrates as cantilevers has been used successfully to measure adsorbate-induced surface stress changes, lattice misfit induced film stress, and magneto-elastic stress of ferromagnetic monolayers. Surface stress changes as small as 0.01 N/m can be readily measured, and this translates into a sensitivity for adsorbate-coverage well below 0.01 of one layer. Stress as large as several GPa, beyond the elasticity limits of high strength materials, is measured, and it is ascribed to the lattice misfit between film and substrate. Our results point at the intimate relation between surface stress and surface reconstruction, stress-induced structural changes in epitaxially strained films, and strain-induced modifications of the magneto-elastic coupling in ferromagnetic monolayers.

  16. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors

    NASA Astrophysics Data System (ADS)

    Longo, G.; Alonso-Sarduy, L.; Rio, L. Marques; Bizzini, A.; Trampuz, A.; Notz, J.; Dietler, G.; Kasas, S.

    2013-07-01

    The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.

  17. An analytical investigation of delamination front curvature in double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Davidson, B. D.

    1990-01-01

    An analytical investigation is conducted to determine the shape of a growing delamination and the distribution of the energy release rate along the delamination front in a laminated composite double cantilever beam specimen. Distributions of the energy release rate for specimens with straight delamination fronts and delamination front contours for delaminations whose growth is governed by the fracture criterion that G = Gc at all points are predicted as a function of material properties and delamination length. The predicted delamination front contours are utilized to ascertain the effect of the changing shape of the delamination front on the value of the critical strain energy release rate as computed from double cantilever beam fracture toughness test data.

  18. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    SciTech Connect

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  19. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.

    PubMed

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M

    2016-09-21

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model. PMID:27420398

  20. Measuring the resonant vibration of a sessile droplet using MEMS based cantilevers

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Vinh; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-11-01

    We directly measure the normal force distribution on the contact area during the 1st mode resonant vibration of a droplet using an array of MEMS based cantilever. The measurement result shows that the normal force change is the largest at the periphery of the contact area. The ratio between the amplitude of the normal force change at the periphery of the contact area over that at the center of the contact area was approximately 20 times, in the case of 1.8 μL water droplet whose equilibrium contact angle is 140 degrees. We also demonstrate a method to estimate viscosity based on the measurement of the droplet vibration using MEMS cantilevers. The proposed method is able to estimate viscosity using less than 3 μL sample and has a simple operating principle. We believe that this method is suitable for point-of-care testing and characterization of chemical and biological solutions.

  1. High-speed force mapping on living cells with a small cantilever atomic force microscope.

    PubMed

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E

    2014-07-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10-100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed. PMID:25085142

  2. High-speed force mapping on living cells with a small cantilever atomic force microscope

    NASA Astrophysics Data System (ADS)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-07-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10-100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  3. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  4. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    PubMed Central

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  5. Resonant ultrasound spectroscopy for a sample with cantilever boundary condition using Rayleigh-Ritz method

    NASA Astrophysics Data System (ADS)

    Farzbod, Farhad

    2013-07-01

    Resonant ultrasound spectroscopy (RUS) involves probing material properties by exciting and detecting resonant vibrational modes in a sample of interest. The desired material property is obtained by comparing theoretical and experimental results. Typically, the sample is considered to be freestanding with stress free boundary conditions. However in many situations of current interest, realizing a truly free sample is difficult. Here as an alternative, we consider a cantilever having a zero displacement boundary condition at one end of the sample. The eigenfrequencies and eigenmodes are obtained using a solution method that considers the exact equations of motion for an elastic sample. The solution is validated by comparing computed eigenfrequencies to a limiting case involving a long, thin sample. Additionally, a proof of principle experiment using laser-resonant ultrasound spectroscopy has been conducted on a copper cantilever.

  6. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy.

    PubMed

    Ghoraishi, M S; Hawk, J E; Phani, Arindam; Khan, M F; Thundat, T

    2016-01-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20-100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures. PMID:27046089

  7. All-optical background subtraction readout method for bimaterial cantilever array sensing.

    PubMed

    Gong, Cheng; Zhao, Yuejin; Dong, Liquan; Yu, Xiaomei; Chen, Ping; Liu, Weiwei

    2015-08-10

    Optical readout method plays a critical role in bimaterial cantilever array sensing system. The common optical readout methods are based on spectral plane filtering. In the paper an all-optical background subtraction readout approach inspired by total reflection and optical lever principle is presented for the bimaterial cantilever array sensing. Comparing with the spectral plane filtering methods the proposed approach eliminates digital subtraction operation by using optical total reflection instead of digital subtraction and avoids spectral filtering operation. An all-optical background subtraction directly-view infrared sensing system was developed to evaluate the approach. The infrared target can be directly acquired by the visible light CCD. The experimental results and analysis show its unique advantages. PMID:26367910

  8. Cantilever-based FBG sensor for temperature-independent acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjun; Dong, Xinyong; Jin, Yongxing; Zhao, Chun-Liu

    2009-11-01

    A novel accelerometer based on a strain-chirped optical fiber Bragg grating (FBG) is proposed. The FBG is glued in a slanted direction onto the lateral side of a right-angled triangle cantilever beam with a mass bonded on its free end. Vertical acceleration applied to the cantilever beam leads to a uniform bending along the beam length. As a result, the FBG is chirped and its reflection bandwidth changes linearly with the applied acceleration. A high sensitivity of 0.679 nm/g has been achieved in the experiment. The experimental results of the sensor are compared with the results of a conventional accelerometer for the dynamic measurements. This sensor is temperature insensitive, owning to the temperature-independence nature of reflection bandwidth of the FBG.

  9. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    SciTech Connect

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-10-15

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air.

  10. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers.

    PubMed

    Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso

    2015-12-01

    We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations. PMID:26684144

  11. Modeling rectangular cantilevers during torsion and deflection for application to frictional force microscopy.

    PubMed

    Hayden, Victor C; Beaulieu, Luc Y

    2009-06-01

    A numerical and experimental analysis of the optical beam deflection system used to monitor microcantilevers subjected to simultaneous deflection and twisting such as in lateral or frictional force microscopy was performed. This study focused on two optical beam deflection orientations where in the first case the optical beam and the detector are at a right angle to the length of the cantilever and the second case, which is the more standard orientation, the optical beam is parallel to the length of the lever. This study finds that it is possible to model the twist and the deflection separately and treat each motion independently. Simulations have shown that the above-mentioned systems are equivalent in accuracy and sensitivity for monitoring the simultaneous twist and deflection of cantilevers. PMID:19460183

  12. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry.

    PubMed

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Rüdiger; Helm, Mark

    2007-10-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air. PMID:17979440

  13. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers

    NASA Astrophysics Data System (ADS)

    Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso

    2015-12-01

    We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.

  14. Electrostatic cantilever resonators under a double-sided pull-pull drive scheme

    NASA Astrophysics Data System (ADS)

    Yan, Xiaojun; Qi, Mingjing; Wu, Xiaoming; Wang, Pengbo; Pu, Juan; Lin, Liwei

    2014-03-01

    Electrostatically-driven, cantilever-shaped resonators under a pair of parallel-plate electrodes with the ‘pull-pull drive’ scheme have been demonstrated and characterized. Theoretical analyses have been established based on the force balance among the electrostatic excitation, the mechanical elastic restoring force and air damping reactions. It is found that the ‘pull-pull drive’ setup can exhibit nonlinear characteristic in the output response, and consequently achieve about 3.8 times the maximum resonance amplitude as compared with the conventional single electrode setup. Furthermore, by adjusting the position of the cantilever between the parallel-plate electrodes, the magnitude of pull-in voltage as well as the maximum resonance amplitude can be changed. As such, the ‘pull-pull drive’ scheme provides an easy and alternative way to increase the response of the electrostatically-actuated resonators for various potential applications in resonator-based sensors and actuators.

  15. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-04-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20–100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

  16. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    PubMed Central

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-01-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20–100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures. PMID:27046089

  17. High sensitivity resonance frequency measurements of individualmicro-cantilevers using fiber optical interferometry

    SciTech Connect

    Duden, Thomas; Radmilovic, Velimir

    2009-03-04

    We describe a setup for the resonance frequency measurement of individual microcantilevers. The setup displays both high spatial selectivity and sensitivity to specimen vibrations by utilizing a tapered uncoated fiber tip. The high sensitivity to specimen vibrations is achieved by the combination of optical Fabry-Perot interferometry and narrow band RF detection. Wave fronts reflected on the specimen and on the fiber tip end face interfere, thus no reference plane on the specimen is needed, as demonstrated with the example of freestanding silicon nitride micro-cantilevers. The resulting system is integrated in a DB-235 dual beam FIB system, thereby allowing the measurement of micro-cantilever responses during observation in SEM mode. The FIB was used to modify the optical fiber tip. At this point of our RF system development, the microcantilevers used to characterize the detector were not modified in situ.

  18. High-speed force mapping on living cells with a small cantilever atomic force microscope

    SciTech Connect

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  19. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator.

    PubMed

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 10(6) times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  20. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    NASA Astrophysics Data System (ADS)

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-04-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively.