These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists  

PubMed Central

The C-5 halogenation of the vanillyl moiety of resiniferatoxin, an ultrapotent agonist of vanilloid TRPV1 receptors, results in a potent antagonist for these receptors. Here, we have synthesized a series of halogenated derivatives of ‘synthetic capsaicin' (nonanoyl vanillamide=nordihydrocapsaicin) differing for the nature (iodine, bromine–chlorine) and the regiochemistry (C-5, C-6) of the halogenation.The activity of these compounds was investigated on recombinant human TRPV1 receptors overexpressed in HEK-293 cells. None of the six compounds exerted any significant agonist activity, as assessed by measuring their effect on TRPV1-mediated calcium mobilization. Instead, all compounds antagonized, to various extents, the effect of capsaicin in this assay.All 6-halo-nordihydrocapsaicins behaved as competitive antagonists against human TRPV1 according to the corresponding Schild's plots, and were more potent than the corresponding 5-halogenated analogues. The iodo-derivatives were more potent than the bromo- and chloro-derivatives.Using human recombinant TRPV1, 6-iodo-nordihydrocapsaicin (IC50=10 nM against 100 nM capsaicin) was about four times more potent than the prototypical TRPV1 antagonist, capsazepine, and was tested against capsaicin also on native TRPV1 in: (i) rat dorsal root ganglion neurons in culture; (ii) guinea-pig urinary bladder; and (iii) guinea-pig bronchi. In all cases, except for the guinea-pig bronchi, the compound was significantly more potent than capsazepine as a TRPV1 antagonist.In conclusion, 6-iodo-nordihydrocapsaicin, a stable and easily prepared compound, is a potent TRPV1 antagonist and a convenient replacement for capsazepine in most of the in vitro preparations currently used to assess the activity of putative vanilloid receptor agonists. PMID:12922928

Appendino, Giovanni; Harrison, Selena; De Petrocellis, Luciano; Daddario, Nives; Bianchi, Federica; Schiano Moriello, Aniello; Trevisani, Marcello; Benvenuti, Francesca; Geppetti, Pierangelo; Di Marzo, Vincenzo

2003-01-01

2

ThermoTRP Channels in Nociceptors: Taking a Lead from Capsaicin Receptor TRPV1  

PubMed Central

Nociceptors with peripheral and central projections express temperature sensitive transient receptor potential (TRP) ion channels, also called thermoTRP’s. Chemosensitivity of thermoTRP’s to certain natural compounds eliciting pain or exhibiting thermal properties has proven to be a good tool in characterizing these receptors. Capsaicin, a pungent chemical in hot peppers, has assisted in the cloning of the first thermoTRP, TRPV1. This discovery initiated the search for other receptors encoding the response to a wide range of temperatures encountered by the body. Of these, TRPV1 and TRPV2 encode unique modalities of thermal pain when exposed to noxious heat. The ability of TRPA1 to encode noxious cold is presently being debated. The role of TRPV1 in peripheral inflammatory pain and central sensitization during chronic pain is well known. In addition to endogenous agonists, a wide variety of chemical agonists and antagonists have been discovered to activate and inhibit TRPV1. Efforts are underway to determine conditions under which agonist-mediated desensitization of TRPV1 or inhibition by antagonists can produce analgesia. Also, identification of specific second messenger molecules that regulate phosphorylation of TRPV1 has been the focus of intense research, to exploit a broader approach to pain treatment. The search for a role of TRPV2 in pain remains dormant due to the lack of suitable experimental models. However, progress into TRPA1’s role in pain has received much attention recently. Another thermoTRP, TRPM8, encoding for the cool sensation and also expressed in nociceptors, has recently been shown to reduce pain via a central mechanism, thus opening a novel strategy for achieving analgesia. The role of other thermoTRP’s (TRPV3 and TRPV4) encoding for detection of warm temperatures and expressed in nociceptors cannot be excluded. This review will discuss current knowledge on the role of nociceptor thermoTRPs in pain and therapy and describes the activator and inhibitor molecules known to interact with them and modulate their activity. PMID:19305786

Mandadi, Sravan; Roufogalis, Basil D.

2008-01-01

3

Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain  

PubMed Central

Objective: The capsaicin receptor TRPV1 (transient receptor potential vanilloid type-1) may play an important role in visceral pain and hypersensitivity states. In irritable bowel syndrome (IBS), abdominal pain is a common and distressing symptom where the pathophysiology is still not clearly defined. TRPV1-immunoreactive nerve fibres were investigated in colonic biopsies from patients with IBS, and this was related to abdominal pain. Methods: Rectosigmoid biopsies were collected from 23 IBS patients fulfilling Rome II criteria, and from 22 controls. Abdominal pain scores were recorded using a validated questionnaire. TRPV1-, substance P- and neuronal marker protein gene product (PGP) 9.5-expressing nerve fibres, mast cells (c-kit) and lymphocytes (CD3 and CD4) were quantified, following immunohistochemistry with specific antibodies. The biopsy findings were related to the abdominal pain scores. Results: A significant 3.5-fold increase in median numbers of TRPV1-immunoreactive fibres was found in biopsies from IBS patients compared with controls (p<0.0001). Substance P-immunoreactive fibres (p?=?0.01), total nerve fibres (PGP9.5) (p?=?0.002), mast cells (c-kit) (p?=?0.02) and lymphocytes (CD3) (p?=?0.03) were also significantly increased in the IBS group. In multivariate regression analysis, only TRPV1-immuno-reactive fibres (p?=?0.005) and mast cells (p?=?0.008) were significantly related to the abdominal pain score. Conclusions: Increased TRPV1 nerve fibres are observed in IBS, together with a low-grade inflammatory response. The increased TRPV1 nerve fibres may contribute to visceral hypersensitivity and pain in IBS, and provide a novel therapeutic target. PMID:18252749

Akbar, A; Yiangou, Y; Facer, P; Walters, J R F; Anand, P; Ghosh, S

2008-01-01

4

Burning mouth syndrome as a trigeminal small fibre neuropathy: Increased heat and capsaicin receptor TRPV1 in nerve fibres correlates with pain score  

Microsoft Academic Search

Burning mouth syndrome (BMS) is often an idiopathic chronic and intractable pain condition, affecting 1.5–5.5% of middle-aged and elderly women. We have studied the heat and capsaicin receptor TRPV1, and its regulator nerve growth factor (NGF), in BMS. Patients with BMS (n=10) and controls (n=10) were assessed for baseline and post-topical capsaicin pain scores, and their tongue biopsies immunostained for

Z. Yilmaz; T. Renton; Y. Yiangou; J. Zakrzewska; I. P. Chessell; C. Bountra; P. Anand

2007-01-01

5

Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog  

PubMed Central

The capsaicin receptor TRPV1 is the principal transduction channel for nociception. Excessive TRPV1 activation causes pathological pain. Ideal pain mangement requires selective inhibition of hyperactive pain-sensing neurons, but sparing normal nociception. We sought to determine whether it is possible to use activity-dependent TRPV1 agonists to identify nerves with excessive TRPV1 activity, as well as exploit the TRPV1 pore to deliver charged anesthetics for neuronal silencing. We synthesized a series of permanently charged capsaicinoids and found that one, cap-ET, efficaciously evoked TRPV1-dependent entry of Ca2+ or the large cationic dye YO-PRO-1 comparably to capsaicin, but far smaller electrical currents. Cap-ET–induced YO-PRO-1 transport required permeation of both the agonist and the dye through the TRPV1 pore and could be enhanced by kinase activation or oxidative covalent modification. Moreover, cap-ET reduced capsaicin-induced currents by a voltage-dependent block of the pore. A low dose of cap-ET elicited entry of permanently charged Na+ channel blockers to effectively suppress Na+ currents in sensory neurons presensitized with oxidative chemicals. These results implicate therapeutic potential of these unique TRPV1 agonists exhibiting activity-dependent ion transport but of minimal pain-producing risks. PMID:21536874

Li, Hui; Wang, Shu; Chuang, Alexander Y.; Cohen, Bruce E.; Chuang, Huai-hu

2011-01-01

6

Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog.  

PubMed

The capsaicin receptor TRPV1 is the principal transduction channel for nociception. Excessive TRPV1 activation causes pathological pain. Ideal pain mangement requires selective inhibition of hyperactive pain-sensing neurons, but sparing normal nociception. We sought to determine whether it is possible to use activity-dependent TRPV1 agonists to identify nerves with excessive TRPV1 activity, as well as exploit the TRPV1 pore to deliver charged anesthetics for neuronal silencing. We synthesized a series of permanently charged capsaicinoids and found that one, cap-ET, efficaciously evoked TRPV1-dependent entry of Ca(2+) or the large cationic dye YO-PRO-1 comparably to capsaicin, but far smaller electrical currents. Cap-ET-induced YO-PRO-1 transport required permeation of both the agonist and the dye through the TRPV1 pore and could be enhanced by kinase activation or oxidative covalent modification. Moreover, cap-ET reduced capsaicin-induced currents by a voltage-dependent block of the pore. A low dose of cap-ET elicited entry of permanently charged Na(+) channel blockers to effectively suppress Na(+) currents in sensory neurons presensitized with oxidative chemicals. These results implicate therapeutic potential of these unique TRPV1 agonists exhibiting activity-dependent ion transport but of minimal pain-producing risks. PMID:21536874

Li, Hui; Wang, Shu; Chuang, Alexander Y; Cohen, Bruce E; Chuang, Huai-Hu

2011-05-17

7

Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1.  

PubMed

The transient receptor potential vanilloid type 1 (TRPV1) channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA). Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP) in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane) used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS) inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1), AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms. PMID:21249195

Zschenderlein, Carsten; Gebhardt, Christine; von Bohlen Und Halbach, Oliver; Kulisch, Christoph; Albrecht, Doris

2011-01-01

8

Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1.  

PubMed

Oleoylethanolamide (OEA) is an endogenous lipid that regulates feeding and body weight. Although the effects of OEA are believed to depend on activation of vagal sensory afferent neurones, the mechanisms involved in exciting these neurones are unclear. Here we show that OEA directly excited nodose ganglion neurones, the cell bodies of vagal afferents. OEA depolarized these neurones and evoked inward currents that were restricted to capsaicin-sensitive cells. These currents were fully blocked by the TRPV1 inhibitor, capsazepine, and no responses to OEA were observed in neurones cultured from TRPV1-null mice. Similarly, OEA induced a rise in Ca(+) concentration in wild-type but not TRPV1-deficient neurones, and responses to OEA were greater at 37 degrees C compared to room temperature. Significantly, OEA administration in mice induced visceral pain-related behaviours that were inhibited by capsazepine and absent in TRPV1-null animals. Further, OEA reduced 30-min food intake in wild-type but not in TRPV1-null mice. Thus, the acute behavioural effects of OEA may result from visceral malaise via the activation of TRPV1. PMID:15695242

Wang, Xiangbin; Miyares, Rosa Linda; Ahern, Gerard P

2005-04-15

9

ARTICLE doi:10.1038/nature12823 TRPV1structuresindistinctconformations  

E-print Network

of the capsaicin receptor, TRPV1. A domain (consisting of transmembrane segments 1­4) that moves during acti by TRPV1 and other TRP channels. The capsaicin (vanilloid) receptor, TRPV1, is a heat-activated cation

Cai, Long

10

Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.  

PubMed

Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation. PMID:24975423

Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

2014-10-01

11

Neonatal capsaicin treatment in rats affects TRPV1-related noxious heat sensation and circadian body temperature rhythm.  

PubMed

The transient receptor potential vanilloid 1 (TRPV1) is a cation channel that serves as a polymodal detector of noxious stimuli such as capsaicin. Therefore, capsaicin treatment has been used to investigate the physiological function of TRPV1. Here, we report physiological changes induced by treating neonatal rats with capsaicin. Capsaicin (50mg/kg) (cap-treated) or vehicle (vehicle-treated) was systemically administered to newborn SD rat pups within 48 h after birth. TRPV1 expression, intake volume of capsaicin water, and noxious heat sensation were measured 6 weeks after capsaicin treatment. Circadian body temperature and locomotion were recorded by biotelemetry. Expression of Per1, Per2, Bmal1 and Hsf1 (clock genes) was also investigated. Neonatal capsaicin treatment not only decreased TRPV1 expression but also induced desensitization to noxious heat stimuli. Circadian body temperature of cap-treated rats increased significantly compared with that of vehicle-treated rats. Additionally, the amplitude of the circadian body temperature was reversed in cap-treated rats. Expression of the hypothalamic Hsf1 and liver Per2 clock genes followed a similar trend. Therefore, we suggest that these findings will be useful in studying various physiological mechanisms related to TRPV1. PMID:24746025

Jeong, Keun-Yeong; Seong, Jinsil

2014-06-15

12

Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat.  

PubMed

Vagal pulmonary myelinated afferents are normally not activated by capsaicin, a selective agonist of transient receptor potential vanilloid type 1 (TRPV1) receptors. This study was carried out to investigate whether the expression of TRPV1 in these afferents is altered when chronic airway inflammation is induced by ovalbumin (Ova) sensitization. Two groups of Brown-Norway rats (sensitized and control) were exposed to aerosolized Ova and vehicle, respectively, 3 days per week for 3 weeks. After the C-fibre conduction in both vagus nerves was blocked, right-atrial injection of capsaicin elicited augmented breaths in sensitized rats breathing spontaneously, but not in control rats, indicating a stimulation of rapidly adapting receptors (RARs) by capsaicin. Single-unit fibre activities of RARs and slow adapting receptors (SARs), identified by their firing behaviour and adaptation indexes in response to lung inflation, were recorded in anaesthetized, vagotomized and artificially ventilated rats. Capsaicin injection evoked either negligible or no response in both RARs and SARs of control rats. However, in striking contrast, the same dose of capsaicin evoked an immediate stimulatory effect on these myelinated afferents in sensitized rats. Furthermore, the immunohistochemistry experiments showed that there was a significant increase in the proportion of TRPV1-expressing pulmonary neurones in nodose ganglia of sensitized rats; this increase in TRPV1 expression was found mainly in neurofilament-positive (myelinated) neurones. In conclusion, allergen-induced airway inflammation clearly elevated capsaicin sensitivity in myelinated pulmonary afferents, which probably resulted from an increased expression of TRPV1 in these sensory nerves. PMID:18832423

Zhang, Guangfan; Lin, Ruei-Lung; Wiggers, Michelle; Snow, Diane M; Lee, Lu-Yuan

2008-12-01

13

Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1  

PubMed Central

BACKGROUND AND PURPOSE The transient receptor potential vanilloid 1 (TRPV1) plays a role in the activation of sensory neurons by various painful stimuli and is a therapeutic target. However, functional TRPV1 that affect microvascular diameter are also expressed in peripheral arteries and we attempted to characterize this receptor. EXPERIMENTAL APPROACH Sensory TRPV1 activation was measured in rats by use of an eye wiping assay. Arteriolar TRPV1-mediated smooth muscle specific responses (arteriolar diameter, changes in intracellular Ca2+) were determined in isolated, pressurized skeletal muscle arterioles obtained from the rat and wild-type or TRPV1?/? mice and in canine isolated smooth muscle cells. The vascular pharmacology of the TRPV1 agonists (potency, efficacy, kinetics of action and receptor desensitization) was determined in rat isolated skeletal muscle arteries. KEY RESULTS Capsaicin evoked a constrictor response in isolated arteries similar to that mediated by noradrenaline, this was absent in arteries from TRPV1 knockout mice and competitively inhibited by TRPV1 antagonist AMG9810. Capsaicin increased intracellular Ca2+ in the arteriolar wall and in isolated smooth muscle cells. The TRPV1 agonists evoked similar vascular constrictions (MSK-195 and JYL-79) or were without effect (resiniferatoxin and JYL-273), although all increased the number of responses (sensory activation) in the eye wiping assay. Maximal doses of all agonists induced complete desensitization (tachyphylaxis) of arteriolar TRPV1 (with the exception of capsaicin). Responses to the partial agonist JYL-1511 suggested 10% TRPV1 activation is sufficient to evoke vascular tachyphylaxis without sensory activation. CONCLUSIONS AND IMPLICATIONS Arteriolar TRPV1 have different pharmacological properties from those located on sensory neurons in the rat. PMID:21883148

Czikora, Á; Lizanecz, E; Bakó, P; Rutkai, I; Ruzsnavszky, F; Magyar, J; Pórszász, R; Kark, T; Facskó, A; Papp, Z; Édes, I; Tóth, A

2012-01-01

14

Phosphorylation-dependent desensitization by anandamide of vanilloid receptor-1 (TRPV1) function in rat skeletal muscle arterioles and in Chinese hamster ovary cells expressing TRPV1.  

PubMed

It has been proposed that activation of vanilloid receptor-1 (TRPV1) affects the vasotone of resistance arteries. One of the endogenous activators of TRPV1 is anandamide. The effects of anandamide on TRPV1 responsiveness were tested on isolated, pressurized (80 mm Hg) skeletal muscle (m. gracilis) arterioles (179 +/- 33 microm in diameter). We found that the TRPV1 agonist capsaicin (1 microM) elicited a substantial constriction in isolated arterioles (51 +/- 12%). In contrast, anandamide (0-100 microM) did not affect arteriolar diameter significantly (3 +/- 5%). Isolated vessels were also preincubated with anandamide (30 microM for 20 min). This anandamide pretreatment completely blocked capsaicin-induced arteriolar constriction (response decreased to 1 +/- 0.6%), and this inhibition was reversed by a protein phosphatase-2B inhibitor (cyclosporin-A; 100 nM, 5 min) treatment (constriction, 31 +/- 1%). An exogenous TRPV1-expressing cell line [Chinese hamster ovary (CHO)-TRPV1] was used to specifically evaluate TRPV1-mediated effects of anandamide. The efficacy of anandamide in this system, as determined by 45Ca2+ uptake, was 65 +/- 8% of that of capsaicin. Upon treatment of the cells with cyclosporin-A or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), anandamide was transformed to a full agonist. Anandamide treatment caused an acute desensitization in these cells as measured by intracellular Ca2+ imaging. Application of cyclosporin-A or PMA reversed this desensitization. Our data suggest that anandamide may cause a complete (albeit phosphorylation-dependent) desensitization of TRPV1 in skeletal muscle arterioles and in CHO-TRPV1 cells, which apparently transforms the ligand-gated TRPV1 into a phosphorylation-gated channel. This property of anandamide may provide a new therapeutic strategy to manipulate TRPV1 activity. PMID:16338989

Lizanecz, Erzsébet; Bagi, Zsolt; Pásztor, Eniko T; Papp, Zoltán; Edes, István; Kedei, Noémi; Blumberg, Peter M; Tóth, Attila

2006-03-01

15

Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity  

PubMed Central

Retinoids are structurally related derivatives of vitamin A and are required for normal vision as well as cell proliferation and differentiation. Clinically, retinoids are effective in treating many skin disorders and cancers. Application of retinoids evokes substantial irritating side effects, including pain and inflammation; however, the precise mechanisms accounting for the sensory hypersensitivity are not understood. Here we show that both naturally occurring and synthetic retinoids activate recombinant or native transient receptor potential channel vanilloid subtype 1 (TRPV1), an irritant receptor for capsaicin, the pungent ingredient of chili peppers. In vivo, retinoids produced pain-related behaviors that were either eliminated or significantly reduced by genetic or pharmacological inhibition of TRPV1 function. These findings identify TRPV1 as an ionotropic receptor for retinoids and provide cellular and molecular insights into retinoid-evoked hypersensitivity. These findings also suggest that selective TRPV1 antagonists are potential therapeutic drugs for treating retinoid-induced sensory hypersensitivity. PMID:23925292

Yin, Shijin; Luo, Jialie; Qian, Aihua; Du, Junhui; Yang, Qing; Zhou, Shentai; Yu, Weihua; Du, Guangwei; Clark, Richard B.; Walters, Edgar T.; Carlton, Susan M.; Hu, Hongzhen

2013-01-01

16

P2Y2 receptors mediate ATP-induced resensitization of TRPV1 expressed by kidney projecting sensory neurons.  

PubMed

The transient receptor potential vanilloid type 1 (TRPV1) channel is a ligand-gated cation channel expressed by sensory nerves. P2Y receptors are G protein-coupled receptors that are also expressed by TRPV1-positive sensory neurons. Therefore, we studied interactions between P2Y receptors and TRPV1 function on kidney projecting sensory neurons. Application of Fast Blue (FB) to nerves surrounding the renal artery retrogradely labeled neurons in dorsal root ganglia of rats. Whole cell recording was performed on FB-labeled neurons maintained in primary culture. Capsaicin was used to activate TRPV1. Four types of kidney projecting neurons were identified based on capsaicin responses: 1) desensitizing (35%), 2) nondesensitizing (29%), 3) silent (3%), and 4) insensitive (30%). Silent neurons responded to capsaicin only after ATP (100 microM) pretreatment. ATP reversed desensitization in desensitizing neurons. Insensitive neurons never responded to capsaicin. UTP, a P2Y purinoceptor 2 (P2Y(2))/P2Y(4) receptor agonist, reversed capsaicin-induced TRPV1 desensitization. 2-methyl-thio-ATP (2-Me-S-ATP), a P2Y(1) receptor agonist, did not change desensitization. MRS 2179 and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), drugs that block P2Y(1) receptors, did not block ATP-induced resensitization of TRPV1. Suramin, a P2Y(2) receptor antagonist, blocked resensitization caused by UTP. Immunocytochemical studies showed that FB-labeled neurons coexpressed P2Y(2) receptors and TRPV1. We conclude that P2Y(2) receptor activation can maintain TRPV1 function perhaps during sustained episodes of activity of kidney projecting sensory neurons. PMID:20335377

Wang, Hui; Wang, Donna H; Galligan, James J

2010-06-01

17

Direct evidence for functional TRPV1/TRPA1 heteromers.  

PubMed

Transient receptor potential cation channel, subfamily V, member 1 (TRPV1) plays a key role in sensing environmental hazards and in enhanced pain sensation following inflammation. A considerable proportion of TRPV1-expressing cells also express transient receptor potential cation channel, subfamily A, member 1 (TRPA1). There is evidence for a TRPV1-TRPA1 interaction that is predominantly calcium-dependent, and it has been suggested that the two proteins might form a heteromeric channel. Here, we constructed subunit concatemers to search for direct evidence for such an interaction. We found that a TRPV1::TRPV1 concatemer and TRPV1 formed channels with similar properties. A TRPV1::TRPA1 concatemer was responsive to TRPV1 agonists capsaicin, acidic pH and ethanol, but not to TRPA1 agonists. Isolated TRPV1 and TRPV1::TRPA1 imaged by atomic force microscopy (AFM) both had molecular volumes consistent with the formation of tetrameric channels. Antibodies decorated epitope tags on TRPV1 with a four-fold symmetry, as expected for a homotetramer. In contrast, pairs of antibodies decorated tags on TRPV1::TRPA1 predominantly at 180°, indicating the formation of a channel consisting of two TRPV1::TRPA1 concatemers arranged face to face. TRPV1::TRPA1 was sensitized by PKC activation and could be inhibited by a TRPV1 antagonist. TRPV1::TRPA1 was activated by heat and displayed a threshold and temperature coefficient similar to TRPV1. However, the channel formed by TRPV1::TRPA1 has only two binding sites for capsaicin and shows less total current and a smaller capsaicin-induced shift in voltage-dependent gating than TRPV1::TRPV1 or TRPV1. We conclude that the presence of TRPA1 exerts a functional inhibition on TRPV1. PMID:24643480

Fischer, Michael J M; Balasuriya, Dilshan; Jeggle, Pia; Goetze, Tom A; McNaughton, Peter A; Reeh, Peter W; Edwardson, J Michael

2014-12-01

18

Regulation of leptin receptor-expressing neurons in the brainstem by TRPV1.  

PubMed

The central nervous system plays a critical role in the regulation of feeding behavior and whole-body metabolism via controlling the autonomic output to the visceral organs. Activity of the parasympathetic neurons in the dorsal motor nucleus of the vagus (DMV) determines the vagal tone and thereby modulates the function of the subdiaphragmatic organs. Leptin is highly involved in the regulation of food intake and alters neuronal excitability of brainstem neurons. Transient receptor potential vanilloid type 1 (TRPV1) has also been shown to increase neurotransmission in the brainstem and we tested the hypothesis that TRPV1 regulates presynaptic neurotransmitter release to leptin receptor-expressing (LepRb(EGFP)) DMV neurons. Whole-cell patch-clamp recordings were performed to determine the effect of TRPV1 activation on excitatory and inhibitory postsynaptic currents (EPSC, IPSC) of LepRb(EGFP) neurons in the DMV. Capsaicin, a TRPV1 agonist increased the frequency of miniature EPSCs in 50% of LepRb(EGFP) neurons without altering the frequency of miniature IPSCs in the DMV. Stomach-projecting LepRb(EGFP) neurons were identified in the DMV using the transsynaptic retrograde viral tracer PRV-614. Activation of TRPV1 increased the frequency of mEPSC in ~50% of stomach-related LepRb(EGFP) DMV neurons. These data demonstrate that TRPV1 increases excitatory neurotransmission to a subpopulation of LepRb(EGFP) DMV neurons via presynaptic mechanisms and suggest a potential interaction between TRPV1 and leptin signaling in the DMV. PMID:25263209

Zsombok, Andrea; Jiang, Yanyan; Gao, Hong; Anwar, Imran J; Rezai-Zadeh, Kavon; Enix, Courtney L; Münzberg, Heike; Derbenev, Andrei V

2014-09-01

19

Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification.  

PubMed

The capsaicin receptor TRPV1, one of the major transduction channels in the pain pathway, integrates information from extracellular milieu to control excitability of primary nociceptive neurons. Sensitization of TRPV1 heightens pain sensation to moderately noxious or even innocuous stimuli. We report here that oxidative stress markedly sensitizes TRPV1 in multiple species' orthologs. The sensitization can be recapitulated in excised inside-out membrane patches, reversed by strong reducing agents, and blocked by pretreatment with maleimide that alkylates cysteines. We identify multiple cysteines required for full modulation of TRPV1 by oxidative challenges. Robust oxidative modulation recovers the agonist sensitivity of receptors desensitized by prolonged exposure to capsaicin. Moreover, oxidative modulation operates synergistically with kinase or proton modulations. Thus, oxidative modulation is a robust mechanism tuning TRPV1 activity via covalent modification of evolutionarily conserved cysteines and may play a role in pain sensing processes during inflammation, infection, or tissue injury. PMID:19897733

Chuang, Huai-hu; Lin, Stephanie

2009-11-24

20

A Modular PIP2 Binding Site as a Determinant of Capsaicin Receptor Sensitivity  

Microsoft Academic Search

The capsaicin receptor (TRPV1), a heat-activated ion channel of the pain pathway, is sensitized by phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis after phospholipase C activation. We identify a site within the C-terminal domain of TRPV1 that is required for PIP2-mediated inhibition of channel gating. Mutations that weaken PIP2-TRPV1 interaction reduce thresholds for chemical or thermal stimuli, whereas TRPV1 channels in which this region

Elizabeth D. Prescott; David Julius

2003-01-01

21

Targeting the transient receptor potential vanilloid type 1 (TRPV1) assembly domain attenuates inflammation-induced hypersensitivity.  

PubMed

The transient receptor potential channel vanilloid type 1 (TRPV1) is a non-selective cation channel expressed in sensory neurons of the dorsal root and trigeminal ganglia. TRPV1 is a polymodal channel activated by noxious heat, capsaicin, and protons. As a sensor for noxious stimuli, TRPV1 channel has been described as a key contributor to pain signaling. To form a functional channel, TRPV1 subunits must assemble into tetramers, and several studies have identified the TRPV1 C terminus as an essential element in subunit association. Here we combined biochemical assays with electrophysiology and imaging-based bimolecular fluorescence complementation (BiFC) and bioluminescence resonance energy transfer (BRET) in live cells to identify a short motif in the C-terminal tail of the TRPV1 subunit that governs channel assembly. Removing this region through early truncation or targeted deletion results in loss of subunit association and channel function. Importantly, we found that interfering with TRPV1 subunit association using a plasma membrane-tethered peptide attenuated mechanical and thermal hypersensitivity in two mouse models of inflammatory hyperalgesia. This represents a novel mechanism to disrupt TRPV1 subunit assembly and hence may offer a new analgesic tool for pain relief. PMID:24808184

Flynn, Robyn; Chapman, Kevin; Iftinca, Mircea; Aboushousha, Reem; Varela, Diego; Altier, Christophe

2014-06-13

22

Overexpression of artemin in the tongue increases expression of TRPV1 and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard oil.  

PubMed

Artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, supports a subpopulation of trigeminal sensory neurons through activation of the Ret/GFRalpha3 receptor tyrosine kinase complex. In a previous study we showed that artemin is increased in inflamed skin of wildtype mice and that transgenic overexpression of artemin in skin increases TRPV1 and TRPA1 expression in dorsal root ganglia neurons. In this study we examined how transgenic overexpression of artemin in tongue epithelium affects the anatomy, gene expression and calcium handling properties of trigeminal sensory afferents. At the RNA level, trigeminal ganglia of artemin overexpresser mice (ART-OEs) had an 81% increase in GFRalpha3, a 190% increase in TRPV1 and a 403% increase in TRPA1 compared to wildtype (WT) controls. Myelinated and unmyelinated fibers of the lingual nerve were increased in diameter, as was the density of GFRalpha3 and TRPV1-positive innervation to the dorsal anterior tongue and fungiform papilla. Retrograde labeling of trigeminal afferents by WGA injection into the tip of the tongue showed an increased percentage of GFRalpha3, TRPV1 and isolectin B4 afferents in ART-OE mice. ART-OE afferents had larger calcium transients in response to ligands of TRPV1 (capsaicin) and TRPA1 (mustard oil). Behavioral sensitivity was also exhibited by ART-OE mice to capsaicin and mustard oil, measured using a two-choice drinking test. These results suggest a potential role for artemin-responsive GFRalpha3/TRPV1/TRPA1 sensory afferents in mediating sensitivity associated with tissue injury, chemical sensitivity or disease states such as burning mouth syndrome. PMID:18652806

Elitt, Christopher M; Malin, Sacha A; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

2008-09-16

23

Nonpsychotropic Plant Cannabinoids, Cannabidivarin (CBDV) and Cannabidiol (CBD), Activate and Desensitize Transient Receptor Potential Vanilloid 1 (TRPV1) Channels in Vitro: Potential for the Treatment of Neuronal Hyperexcitability.  

PubMed

Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg(2+)-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg(2+)-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg(2+)-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy. PMID:25029033

Iannotti, Fabio Arturo; Hill, Charlotte L; Leo, Antonio; Alhusaini, Ahlam; Soubrane, Camille; Mazzarella, Enrico; Russo, Emilio; Whalley, Benjamin J; Di Marzo, Vincenzo; Stephens, Gary J

2014-11-19

24

Differential effects of transient receptor vanilloid one (TRPV1) antagonists in acid-induced excitation of esophageal vagal afferent fibers of rats  

Microsoft Academic Search

Gastro-esophageal acid reflux can stimulate esophageal vagal sensory afferents by activating proton-sensitive ion channel transient receptor vanilloid one (TRPV1). The objective of this study was to investigate the response characteristics of vagal afferent fibers of rats to acid (0.1 N HCl) and capsaicin (CAP) following esophagitis and differential effects of two classes of TRPV1 antagonists on responses of vagal afferent

S. Peles; B. K. Medda; Zhihong Zhang; B. Banerjee; A. Lehmann; R. Shaker; J. N. Sengupta

2009-01-01

25

Alteration in TRPV1 and Muscarinic (M3) Receptor Expression and Function in Idiopathic Overactive Bladder Urothelial Cells (Running title: Changes in TRPV1/M3 expression and function in human OAB urothelial cells)  

PubMed Central

Aim To examine function of both cholinergic (muscarinic) and TRPV1 receptors in human bladder urothelial (HBUC) from non-neurogenic overactive bladder (OAB) patients as compared to control subjects. Methods Primary HBUC cultures were derived from cystoscopic biopsies from OAB and control subjects. Muscarinic and TRPV1 function was assessed by acetylcholine (5 µM) or capsaicin (0.5 µM) evoked ATP release, measured by luciferase-assay. Overall expression of TRPV1 and muscarinic M3 receptors in bladder urothelial cells was accomplished using western immunoblotting. Results Our findings revealed that the response to acetylcholine in OAB HBUC cultures (which was blocked by the nonselective muscarinic antagonist, atropine methylnitrate or AMN) was not significantly different than from controls. The acetylcholine M3 receptor was slightly decreased as compared to control. In contrast, OAB HBUC cultures exhibited a capsaicin-hypersensitivity and augmented release of ATP (3.2 fold higher), which was blocked by the antagonist capsazepine. The increase in capsaicin-sensitivity correlated with increased urothelial TRPV1 expression. Conclusion Though characterized in a small number of subjects, augmented release of urothelial-derived transmitters such as ATP could ‘amplify’ signaling between and within urothelial cells and nearby afferent nerves. PMID:22691178

Birder, Lori A.; Wolf-Johnston, Amanda S.; Sun, Yan; Chai, Toby C.

2012-01-01

26

A tranziens receptor potenciál vanilloid-1 (TRPV1) ioncsatorna jelent?sége a sztomatológiai gyakorlatban.  

E-print Network

??Kísérleteinkben a tranziens receptor potenciál vanilloid-1 (TRPV1) ioncsatorna jelent?ségét vizsgáltuk a sztomatológiai gyakorlatban. Munkánk els? részében a klinikumban jó hatékonysággal alkalmazott tramadol TRPV1 m?ködésére kifejtett… (more)

Marincsák, Rita

2009-01-01

27

A role for the anandamide membrane transporter in TRPV1-mediated neurosecretion from  

E-print Network

the potency and efficacy of AEA-, NADA- and capsaicin-evoked CGRP release. Moreover OMDM-2 (IC50 values; Devane et al., 1992) and the capsaicin (CAP)-activated ion channel vanilloid receptor type 1 (TRPV1 Huang

Price, Theodore

28

Epithelial TRPV1 Signaling Accelerates Gingival Epithelial Cell Proliferation.  

PubMed

Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca(2+) levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

Takahashi, N; Matsuda, Y; Yamada, H; Tabeta, K; Nakajima, T; Murakami, S; Yamazaki, K

2014-11-01

29

The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept  

Microsoft Academic Search

The clinical use of TRPV1 (transient receptor potential vanilloid subfamily, member 1; also known as VR1) antagonists is based on the concept that endogenous agonists acting on TRPV1 might provide a major contribution to certain pain conditions. Indeed, a number of small-molecule TRPV1 antagonists are already undergoing Phase I\\/II clinical trials for the indications of chronic inflammatory pain and migraine.

Daniel N. Cortright; Charles A. Blum; Samer R. Eid; Arpad Szallasi

2007-01-01

30

Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol  

Microsoft Academic Search

The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol

Y. A. Blednov; R. A. Harris

2009-01-01

31

The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1)  

PubMed Central

Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with its deregulation. PMID:23613529

Morales-Lazaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara

2013-01-01

32

Halogenation of 4-hydroxy-3-methoxybenzyl thiourea TRPV1 agonists showed enhanced antagonism to capsaicin.  

PubMed

Selected potent TRPV1 agonists (1-6) have been modified by 5- or 6-halogenation on the aromatic A-region to analyze their effects on potency and efficacy (agonism versus antagonism). The halogenation caused enhanced functional antagonism at TRPV1 compared to the corresponding prototype agonists. The analysis of SAR indicated that the antagonism was enhanced as the size of the halogen increased (I>Br>Cl) and when the 6-position was halogenated. Compounds 23c and 31b were found to be potent full antagonists with K(i) (as functional antagonist)=23.1 and 30.3 nM in rTRPV1/CHO system, respectively. PMID:17035013

Kang, Dong Wook; Ryu, Hyungchul; Lee, Jeewoo; Lang, Krystle A; Pavlyukovets, Vladimir A; Pearce, Larry V; Ikeda, Tetsurou; Lazar, Jozsef; Blumberg, Peter M

2007-01-01

33

Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans.  

PubMed

The vanilloid receptor TRPV1 has been identified as a molecular target for the treatment of pain associated with inflammatory diseases and cancer. Hence, TRPV1 antagonists have been considered for therapeutic evaluation in such diseases. During Phase I clinical trials with AMG 517, a highly selective TRPV1 antagonist, we found that TRPV1 blockade elicited marked, but reversible, and generally plasma concentration-dependent hyperthermia. Similar to what was observed in rats, dogs, and monkeys, hyperthermia was attenuated after repeated dosing of AMG 517 (at the highest dose tested) in humans during a second Phase I trial. However, AMG 517 administered after molar extraction (a surgical cause of acute pain) elicited long-lasting hyperthermia with maximal body temperature surpassing 40 degrees C, suggesting that TRPV1 blockade elicits undesirable hyperthermia in susceptible individuals. Mechanisms of AMG 517-induced hyperthermia were then studied in rats. AMG 517 caused hyperthermia by inducing tail skin vasoconstriction and increasing thermogenesis, which suggests that TRPV1 regulates vasomotor tone and metabolic heat production. In conclusion, these results demonstrate that: (a) TRPV1-selective antagonists like AMG 517 cannot be developed for systemic use as stand alone agents for treatment of pain and other diseases, (b) individual susceptibility influences magnitude of hyperthermia observed after TRPV1 blockade, and (c) TRPV1 plays a pivotal role as a molecular regulator for body temperature in humans. PMID:18337008

Gavva, Narender R; Treanor, James J S; Garami, Andras; Fang, Liang; Surapaneni, Sekhar; Akrami, Anna; Alvarez, Francisco; Bak, Annette; Darling, Mary; Gore, Anu; Jang, Graham R; Kesslak, James P; Ni, Liyun; Norman, Mark H; Palluconi, Gabrielle; Rose, Mark J; Salfi, Margaret; Tan, Edward; Romanovsky, Andrej A; Banfield, Christopher; Davar, Gudarz

2008-05-01

34

THE TRPV1 RECEPTOR: TARGET OF TOXICANTS AND THERAPEUTICS  

EPA Science Inventory

Understanding the structural and functional complexities of the TRPV1 is essential to the therapeutic modulation of inflammation and pain. Because of its central role in initiating inflammatory processes and integrating painful stimuli, there is an understandable interest...

35

Integrative Binding Sites within Intracellular Termini of TRPV1 Receptor  

PubMed Central

TRPV1 is a nonselective cation channel that integrates wide range of painful stimuli. It has been shown that its activity could be modulated by intracellular ligands PIP2 or calmodulin (CaM). The detailed localization and description of PIP2 interaction sites remain unclear. Here, we used synthesized peptides and purified fusion proteins of intracellular regions of TRPV1 expressed in E.coli in combination with fluorescence anisotropy and surface plasmon resonance measurements to characterize the PIP2 binding to TRPV1. We characterized one PIP2 binding site in TRPV1 N-terminal region, residues F189-V221, and two independent PIP2 binding sites in C–terminus: residues K688-K718 and L777-S820. Moreover we show that two regions, namely F189-V221 and L777-S820, overlap with previously localized CaM binding sites. For all the interactions the equilibrium dissociation constants were estimated. As the structural data regarding C-terminus of TRPV1 are lacking, restraint-based molecular modeling combined with ligand docking was performed providing us with structural insight to the TRPV1/PIP2 binding. Our experimental results are in excellent agreement with our in silico predictions. PMID:23119017

Grycova, Lenka; Holendova, Blanka; Bumba, Ladislav; Bily, Jan; Jirku, Michaela; Lansky, Zdenek; Teisinger, Jan

2012-01-01

36

Supraspinal TRPV1 modulates the emotional expression of abdominal pain.  

PubMed

The transient receptor potential vanilloid receptor type-1 (TRPV1) is critically involved in peripheral nociceptive processes of somatic and visceral pain. However, the role of the capsaicin receptor in the brain regarding visceral pain remains elusive. Here, we studied the contribution of TRPV1 to abdominal pain transmission at different nociceptive pathway levels using TRPV1 knock-out mice, resiniferatoxin-mediated deletion of TRPV1-positive primary sensory neurons, and intracerebral TRPV1 antagonism. We found that constitutive genetic TRPV1 deletion or peripheral TRPV1 deletion reduced acetic acid-evoked abdominal constrictions, without affecting referred abdominal hyperalgesia or allodynia in an acute pancreatitis model of visceral pain. Notably, intracerebral TRPV1 antagonism by SB 366791 significantly reduced chemical and inflammatory spontaneous abdominal nocifensive responses, as observed by reduced expressions of nociceptive facial grimacing, illustrating the affective component of pain. In addition to the established role of cerebral TRPV1 in anxiety, fear, or emotional stress, we demonstrate here for the first time that TRPV1 in the brain modulates visceral nociception by interfering with the affective component of abdominal pain. PMID:25139591

Jurik, Angela; Ressle, Andrea; Schmid, Roland M; Wotjak, Carsten T; Thoeringer, Christoph K

2014-10-01

37

Molecular Cloning and Functional Characterization of Xenopus tropicalis Frog Transient Receptor Potential Vanilloid 1 Reveal Its Functional Evolution for Heat, Acid, and Capsaicin Sensitivities in Terrestrial Vertebrates*  

PubMed Central

The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca2+]i). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ?60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca2+]i increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function. PMID:22130664

Ohkita, Masashi; Saito, Shigeru; Imagawa, Toshiaki; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

2012-01-01

38

The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept.  

PubMed

The clinical use of TRPV1 (transient receptor potential vanilloid subfamily, member 1; also known as VR1) antagonists is based on the concept that endogenous agonists acting on TRPV1 might provide a major contribution to certain pain conditions. Indeed, a number of small-molecule TRPV1 antagonists are already undergoing Phase I/II clinical trials for the indications of chronic inflammatory pain and migraine. Moreover, animal models suggest a therapeutic value for TRPV1 antagonists in the treatment of other types of pain, including pain from cancer. We argue that TRPV1 antagonists alone or in conjunction with other analgesics will improve the quality of life of people with migraine, chronic intractable pain secondary to cancer, AIDS or diabetes. Moreover, emerging data indicate that TRPV1 antagonists could also be useful in treating disorders other than pain, such as urinary urge incontinence, chronic cough and irritable bowel syndrome. The lack of effective drugs for treating many of these conditions highlights the need for further investigation into the therapeutic potential of TRPV1 antagonists. PMID:17464295

Szallasi, Arpad; Cortright, Daniel N; Blum, Charles A; Eid, Samer R

2007-05-01

39

Involvement of central TRPV1 receptors in pentylenetetrazole and amygdala-induced kindling in male rats.  

PubMed

Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel that is involved in modulation of diverse physiological processes. The role of this receptor in epilepsy has not been studied well. Therefore, we investigated the role of central TRPV1 receptors on the development of pentylenetetrazole (PTZ) and amygdala-induced kindling in rats. Male Wistar rats received subconvulsive dose of PTZ intraperitoneally, every other day. TRPV1 receptor agonist, OLDA and its antagonist, AMG-9810 were injected intracerebroventricularly 30 min prior to PTZ administration. In electrical kindling, stimulating and recording electrodes were implanted in the right amygdala of male rats. After kindling, the effect of TRPV1 receptor agonist or antagonist on afterdischarge duration (ADD), latency to the onset of bilateral forelimb clonuses (S4L) and duration of loss of equilibrium (stage 5 seizures, S5D) were measured. The results demonstrated that, OLDA at the doses of 0.01, 0.1 and 1 ?g/rat, significantly accelerated the incidence of all seizure stages, increased S5D and decreased S4L in the PTZ model of kindling. Also, in amygdala kindling, S5D and ADD were significantly reduced following the administration of AMG-9810. In contrast, OLDA significantly aggravated the indices of seizure in both models of epileptic seizure. This study demonstrated that central TRPV1 receptors may be involved in the development of electrical and PTZ-induced kindling. PMID:24577898

Shirazi, Mohsen; Izadi, Mahin; Amin, Masoud; Rezvani, Mohammad Ebrahim; Roohbakhsh, Ali; Shamsizadeh, Ali

2014-08-01

40

Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channel.  

PubMed

Furanocoumarin imperatorin is the major active component of Angelica dahurica root extracts, widely used in traditional medicine to treat headache, toothache, and orbital eye pain. In this study, we investigated the mechanisms that may underlie the pain-relieving effects of the compound. We found that imperatorin significantly inhibited formalin- and capsaicin-induced nocifensive responses but did not alter baseline thermal withdrawal thresholds in the rat. We established that imperatorin is a weak agonist of TRPV1, a channel implicated in detecting several noxious stimuli, exhibiting a 50% effective concentration (EC50) of 12.6 ± 3.2 ?M. A specific TRPV1 antagonist, JNJ-17203212 (0.5 ?M), potently inhibited imperatorin-induced TRPV1 activation. Site-directed mutagenesis studies revealed that imperatorin most likely acted via a site adjacent to or overlapping with the TRPV1 capsaicin-binding site. TRPV1 recovery from desensitization was delayed in the presence of imperatorin. Conversely, imperatorin sensitized TRPV1 to acid activation but did not affect the current amplitude and/or the activation-inactivation properties of Na(v)1.7, a channel important for transmission of nociceptive information. Thus, our data indicate that furanocoumarins represent a novel group of TRPV1 modulators that may become important lead compounds in the drug discovery process aimed at developing new treatments for pain management. PMID:24569998

Chen, Xingjuan; Sun, Weiyang; Gianaris, Nicholas G; Riley, Ashley M; Cummins, Theodore R; Fehrenbacher, Jill C; Obukhov, Alexander G

2014-04-01

41

Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies.  

PubMed

We describe the expression of the capsaicin receptor (TRPV1) in human peripheral nervous system (PNS) and its changes in sural nerve and skin nerve fibers of patients with painful neuropathy. Dorsal root ganglion (DRG), root, and spinal cord autopsy specimens from subjects without PNS diseases were immunoassayed with anti-TRPV1 antibodies. Bright-field and confocal microscope studies using anti-TRPV1, protein gene product 9.5 (PGP 9.5), and unique-beta-tubulin (TuJ1) antibodies were performed in skin biopsies from 15 healthy subjects and 10 painful neuropathies. The density of intraepidermal nerve fiber (IENF) labeled by each antibody was quantified. Sural nerve biopsies from three patients with painful, one patient with nonpainful diabetic neuropathy, and two patients with multifocal motor neuropathy used as controls were immunoassayed with anti-TRPV1 antibodies and investigated by immunoelectron microscopy. TRPV1 strongly labeled laminae I and II of dorsal horns, most small-size and some medium-size DRG neurons, and small-diameter axons of dorsal roots. In sural nerve, TRPV1 was expressed within the cytoplasm of most unmyelinated and some small myelinated axons, in the muscular lamina of epineural vessels, and in the endothelium of endoneurial vessels. The density of IENF labeled by TRPV1, PGP 9.5, and TuJ1 did not differ. TRPV1 colocalized with TuJ1 in all IENF and dermal nerve bundles. Painful neuropathies showed a diffuse loss of TRPV1-positive axons both in the sural nerve and in the skin. Our findings demonstrated that TRPV1 is normally expressed throughout the nociceptive pathway of PNS and that TRPV1-positive peripheral nerve fibers degenerate in painful neuropathies. PMID:16930289

Lauria, Giuseppe; Morbin, Michela; Lombardi, Raffaella; Capobianco, Raffaella; Camozzi, Francesca; Pareyson, Davide; Manconi, Mauro; Geppetti, Pierangelo

2006-09-01

42

Group II/III metabotropic glutamate receptors exert endogenous activity-dependent modulation of TRPV1 receptors on peripheral nociceptors.  

PubMed

There is pharmacological evidence that group II and III metabotropic glutamate receptors (mGluRs) function as activity-dependent autoreceptors, inhibiting transmission in supraspinal sites. These receptors are expressed by peripheral nociceptors. We investigated whether mGluRs function as activity-dependent autoreceptors inhibiting pain transmission to the rat CNS, particularly transient receptor potential vanilloid 1 (TRPV1)-induced activity. Blocking peripheral mGluR activity by intraplantar injection of antagonists LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] (LY) (20, 100 ?m, group II/III), APICA [(RS)-1-amino-5-phosphonoindan-1-carboxylic acid] (100 ?m, group II), or UBP1112 (?-methyl-3-methyl-4-phosphonophenylglycine) (30 ?m, group III) increased capsaicin (CAP)-induced nociceptive behaviors and nociceptor activity. In contrast, group II agonist APDC [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] (0.1 ?m) or group III agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP-4) (10 ?m) blocked the LY-induced increase. Ca(2+) imaging in dorsal root ganglion (DRG) cells confirmed LY enhanced CAP-induced Ca(2+) mobilization, which was blocked by APDC and l-AP-4. We hypothesized that excess glutamate (GLU) released by high intensity and/or prolonged stimulation endogenously activated group II/III, dampening nociceptor activation. In support of this, intraplantar GLU + LY produced heat hyperalgesia, and exogenous GLU + LY applied to nociceptors produced enhanced nociceptor activity and thermal sensitization. Intraplantar Formalin, known to elevate extracellular GLU, enhanced pain behaviors in the presence of LY. LY alone produced no pain behaviors, no change in nociceptor discharge rate or heat-evoked responses, and no change in cytosolic Ca(2+) in DRG cells, demonstrating a lack of tonic inhibitory control. Group II/III mGluRs maintain an activity-dependent autoinhibition, capable of significantly reducing TRPV1-induced activity. They are endogenously activated after high-frequency and/or prolonged nociceptor stimulation, acting as built-in negative modulators of TRPV1 and nociceptor function, reducing pain transmission to the CNS. PMID:21900552

Carlton, Susan M; Zhou, Shengtai; Govea, Rosann; Du, Junhui

2011-09-01

43

Polypeptide modulators of TRPV1 produce analgesia without hyperthermia.  

PubMed

Transient receptor potential vanilloid 1 receptors (TRPV1) play a significant physiological role. The study of novel TRPV1 agonists and antagonists is essential. Here, we report on the characterization of polypeptide antagonists of TRPV1 based on in vitro and in vivo experiments. We evaluated the ability of APHC1 and APHC3 to inhibit TRPV1 using the whole-cell patch clamp approach and single cell Ca2+ imaging. In vivo tests were performed to assess the biological effects of APHC1 and APHC3 on temperature sensation, inflammation and core body temperature. In the electrophysiological study, both polypeptides partially blocked the capsaicin-induced response of TRPV1, but only APHC3 inhibited acid-induced (pH 5.5) activation of the receptor. APHC1 and APHC3 showed significant antinociceptive and analgesic activity in vivo at reasonable doses (0.01-0.1 mg/kg) and did not cause hyperthermia. Intravenous administration of these polypeptides prolonged hot-plate latency, blocked capsaicin- and formalin-induced behavior, reversed CFA-induced hyperalgesia and produced hypothermia. Notably, APHC3's ability to inhibit the low pH-induced activation of TRPV1 resulted in a reduced behavioural response in the acetic acid-induced writhing test, whereas APHC1 was much less effective. The polypeptides APHC1 and APHC3 could be referred to as a new class of TRPV1 modulators that produce a significant analgesic effect without hyperthermia. PMID:24351908

Andreev, Yaroslav A; Kozlov, Sergey A; Korolkova, Yuliya V; Dyachenko, Igor A; Bondarenko, Dmitrii A; Skobtsov, Denis I; Murashev, Arkadii N; Kotova, Polina D; Rogachevskaja, Olga A; Kabanova, Natalia V; Kolesnikov, Stanislav S; Grishin, Eugene V

2013-01-01

44

GABAA receptor modulation by piperine and a non-TRPV1 activating derivative?  

PubMed Central

The action of piperine (the pungent component of pepper) and its derivative SCT-66 ((2E,4E)-5-(1,3-benzodioxol-5-yl))-N,N-diisobutyl-2,4-pentadienamide) on different gamma-aminobutyric acid (GABA) type A (GABAA) receptors, transient-receptor-potential-vanilloid-1 (TRPV1) receptors and behavioural effects were investigated. GABAA receptor subtypes and TRPV1 receptors were expressed in Xenopus laevis oocytes. Modulation of GABA-induced chloride currents (IGABA) by piperine and SCT-66 and activation of TRPV1 was studied using the two-microelectrode-voltage-clamp technique and fast perfusion. Their effects on explorative behaviour, thermoregulation and seizure threshold were analysed in mice. Piperine acted with similar potency on all GABAA receptor subtypes (EC50 range: 42.8 ± 7.6 ?M (?2?2)–59.6 ± 12.3 ?M (?3?2)). IGABA modulation by piperine did not require the presence of a ?2S-subunit, suggesting a binding site involving only ? and ? subunits. IGABA activation was slightly more efficacious on receptors formed from ?2/3 subunits (maximal IGABA stimulation through ?1?3 receptors: 332 ± 64% and ?1?2: 271 ± 36% vs. ?1?1: 171 ± 22%, p < 0.05) and ?3-subunits (?3?2: 375 ± 51% vs. ?5?2:136 ± 22%, p < 0.05). Replacing the piperidine ring by a N,N-diisobutyl residue (SCT-66) prevents interactions with TRPV1 and simultaneously increases the potency and efficiency of GABAA receptor modulation. SCT-66 displayed greater efficacy on GABAA receptors than piperine, with different subunit-dependence. Both compounds induced anxiolytic, anticonvulsant effects and reduced locomotor activity; however, SCT-66 induced stronger anxiolysis without decreasing body temperature and without the proconvulsive effects of TRPV1 activation and thus may serve as a scaffold for the development of novel GABAA receptor modulators. PMID:23623790

Khom, Sophia; Strommer, Barbara; Schoffmann, Angela; Hintersteiner, Juliane; Baburin, Igor; Erker, Thomas; Schwarz, Thomas; Schwarzer, Christoph; Zaugg, Janine; Hamburger, Matthias; Hering, Steffen

2013-01-01

45

Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons  

PubMed Central

Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 ?M), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and capsaicin-elicited sEPSCs in TNC slices. The same effects of capsaicin and sumatriptan were found in acutely dissociated DiI-labeled TG neurons innervating cerebral dura. Conclusion Our results build on previous work indicating that TRPV1 channels in trigeminal nociceptors play a role in craniofacial pain. Our findings that TRPV1 is inhibited by the specific antimigraine drug sumatriptan, and that TRPV1 channels are functional in neurons projecting to cerebral dura suggests a specific role for these channels in migraine or cluster headache. PMID:22289052

Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.

2011-01-01

46

Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa.  

PubMed

It is still unknown which receptors of peripheral sensory pathways encode and integrate an acid-induced nociceptive event in the gastric mucosa. The transient receptor potential vanilloid receptor 1 (TRPV1) and the acid-sensing ion channel 3 (ASIC3) are two nociception-related receptors. Here we investigated (i) to what extent these receptors are distributed in stomach-innervating neurons of dorsal root and nodose ganglia, using immunohistochemistry and retrograde tracing, and (ii) whether their expression is altered in response to a noxious acid challenge of the stomach. We also explored the presence of TRPV1 in the gastric enteric nervous system because of its possible expression by intrinsic sensory neurons. Most stomach-innervating neurons in nodose ganglia were immunoreactive for TRPV1 (80%) and ASIC3 (75%), these results being similar in the dorsal root ganglia (71 and 82%). RT-PCR and Western blotting were performed up to 6 h after oral application of 0.5 m HCl to conscious rats. TRPV1 protein was increased in dorsal root but not in nodose ganglia whereas TRPV1 and ASIC3 mRNAs remained unchanged. TRPV1 mRNA was detected in longitudinal muscle-myenteric plexus preparations of control stomachs and was not altered by the acid challenge. Combined vagotomy and ganglionectomy abolished expression of TRPV1, indicating that it may derive from an extrinsic source. In summary, noxious acid challenge of the stomach increased TRPV1 protein in spinal but not vagal or intrinsic sensory afferents. The TRPV1 receptor may be a key molecule in the transduction of acid-induced nociception of the gastric mucosa and a mediator of visceral hypersensitivity. PMID:15078554

Schicho, Rudolf; Florian, Waltraud; Liebmann, Ingrid; Holzer, Peter; Lippe, Irmgard Th

2004-04-01

47

Differential effects of transient receptor vanilloid one (TRPV1) antagonists in acid-induced excitation of esophageal vagal afferent fibers of rats.  

PubMed

Gastro-esophageal acid reflux can stimulate esophageal vagal sensory afferents by activating proton-sensitive ion channel transient receptor vanilloid one (TRPV1). The objective of this study was to investigate the response characteristics of vagal afferent fibers of rats to acid (0.1 N HCl) and capsaicin (CAP) following esophagitis and differential effects of two classes of TRPV1 antagonists on responses of vagal afferent fibers. The chronic reflux was induced by ligating the fundus of the stomach and partial constriction of pylorus. Extracellular single fiber recordings were made from the cervical vagal afferent fibers from naive control and fundus-ligated (FL) esophagitis rats. Innervations of fibers were identified to esophageal distension (ED) and subsequently tested to CAP and acid before and after injection of TRPV1 antagonist JYL1421 or AMG9810 (10 micromol/kg i.v.). Seventy-five vagal afferent fibers from 70 rats were identified to ED. Intra-esophageal CAP (0.1 ml of 1 mg/ml) excited 39.5% (17/43, 5/22 from naive and 12/21 from FL rats) fibers. In contrast, i.v. injection of CAP (0.03-0.3 micromol/kg) dose-dependently excited 72% (42/58) fibers. Responses to CAP were significantly greater for fibers from FL rats (n=32) than naive rats (n=25). TRPV1 antagonists JYL1421 and AMG9810 (10 micromol/kg) significantly blocked response to CAP. Intra-esophageal acid infusion stimulated 5/17 (29.4%) fibers from naive rats and 12/28 (42%) from FL rats. Effect of acid was significantly blocked by AMG9810, but not by JYL1421. Results indicate that following esophagitis the number of fibers responsive to CAP and acid is greater than noninflamed esophagus, which may contribute to esophageal hypersensitivity. Acid-induced excitation of vagal sensory afferents can be differentially attenuated by different classes of TRPV1 antagonists. Therefore, TRPV1 antagonists play a key role in attenuation of hypersensitivity following reflux-induced esophagitis. The use of TRPV1 antagonists could be an alternative to the traditional symptoms-based treatment of chronic acid reflux and esophageal hypersensitivity. PMID:19324074

Peles, S; Medda, B K; Zhang, Zhihong; Banerjee, B; Lehmann, A; Shaker, R; Sengupta, J N

2009-06-30

48

cAMP-Dependent Protein Kinase Regulates Desensitization of the Capsaicin Receptor (VR1) by Direct Phosphorylation  

Microsoft Academic Search

The capsaicin receptor, VR1 (also known as TRPV1), is a ligand-gated ion channel expressed on nociceptive sensory neurons that responds to noxious thermal and chemical stimuli. Capsaicin responses in sensory neurons exhibit robust potentiation by cAMP-dependent protein kinase (PKA). In this study, we demonstrate that PKA reduces VR1 desensitization and directly phosphorylates VR1. In vitro phosphorylation, phosphopeptide mapping, and protein

Gautam Bhave; Weiguo Zhu; Haibin Wang; D. J Brasier; Gerry S Oxford; Robert W Gereau IV

2002-01-01

49

TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons  

SciTech Connect

Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca{sup 2+} influx. Interestingly, nifedipine, a specific L-type Ca{sup 2+} channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 and several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca{sup 2+} channel opening, Ca{sup 2+} influx, ERK phosphorylation, and reactive oxygen species production.

Shirakawa, Hisashi; Yamaoka, Tomoko; Sanpei, Kazuaki; Sasaoka, Hirotoshi; Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: skaneko@pharm.kyoto-u.ac.jp

2008-12-26

50

"Hotheaded": the role OF TRPV1 in brain functions.  

PubMed

The TRPV1 (vanilloid 1) channel is best known for its role in sensory transmission in the nociceptive neurons of the peripheral nervous system. Although first studied in the dorsal root ganglia as the receptor for capsaicin, TRPV1 has been recently recognized to have a broader distribution in the central nervous system, where it is likely to constitute an atypical neurotransmission system involved in several functions through modulation of both neuronal and glial activities. The endovanilloid-activated brain TRPV1 channels seem to be involved in somatosensory, motor and visceral functions. Recent studies suggested that TRPV1 channels also account for more complex functions, as addiction, anxiety, mood and cognition/learning. However, more studies are needed before the relevance of TRPV1 in brain activity can be clearly stated. This review highlights the increasing importance of TRPV1 as a regulator of brain function and discusses possible bases for the future development of new therapeutic approaches that by targeting brain TRPV1 receptors might be used for the treatment of several neurological disorders. PMID:24887171

Martins, D; Tavares, I; Morgado, C

2014-10-01

51

POTENTIATION OF PULMONARY REFLEX RESPONSE TO CAPSAICIN 24 HOURS FOLLOWING WHOLE-BODY ACROLEIN EXPOSURE IS MEDIATED BY TRPV1  

EPA Science Inventory

Pulmonary C-fibers are stimulated by irritant air pollutants producing apnea, bronchospasm, and decrease in HR. C-fiber chemoreflex activation is mediated by TRPV1 and release of substance P. While acrolein has been shown to stimulate C-fibers, the persistence of acrolein effect...

52

Overexpression of artemin in the tongue increases expression of TRPV1 and TRPA1 in trigeminal afferents and causes oral sensitivity to capsaicin and mustard oil  

Microsoft Academic Search

Artemin, a member of the glial cell line-derived neurotrophic factor (GDNF) family, supports a subpopulation of trigeminal sensory neurons through activation of the Ret\\/GFR?3 receptor tyrosine kinase complex. In a previous study we showed that artemin is increased in inflamed skin of wildtype mice and that transgenic overexpression of artemin in skin increases TRPV1 and TRPA1 expression in dorsal root

Christopher M. Elitt; Sacha A. Malin; H. Richard Koerber; Brian M. Davis; Kathryn M. Albers

2008-01-01

53

Expression of the TRPV1 receptor differs in quiescent inflammatory bowel disease with or without abdominal pain  

Microsoft Academic Search

ObjectiveTransient receptor potential vanilloid type 1 (TRPV1) has been shown to play an important role in visceral hypersensitivity. A significant proportion of patients with inflammatory bowel disease (IBD) continue to complain of abdominal pain despite their disease being otherwise quiescent. We investigated TRPV1-immunoreactive fibres in rectosigmoid biopsies taken from such patients with correlation to abdominal pain severity.MethodsRectosigmoid biopsies were collected

Ayesha Akbar; Yiangos Yiangou; Paul Facer; W. G. Brydon; Julian R F Walters; Praveen Anand; Subrata Ghosh

2010-01-01

54

Interactions between CB1 receptors and TRPV1 channels mediated by 12-HPETE are cytotoxic to mesencephalic dopaminergic neurons  

PubMed Central

Background and purposes: We recently proposed the existence of neurotoxic interactions between the cannabinoid type 1 (CB1) receptor and transient receptor potential vanilloid 1 (TRPV1) channels in rat mesencephalic cultures. This study seeks evidence for the mediator(s) and mechanisms underlying the neurotoxic interactions between CB1 receptors and TRPV1 in vitro and in vivo. Experimental approach: The mediator(s) and mechanism(s) for the interactions between CB1 receptors and TRPV1 were evaluated by cell viability assays, immunocytochemistry, Fura-2 calcium imaging, mitochondrial morphology assay, ELISA and Western blot assay in vitro in neuron-enriched mesencephalic cultures. Injections into the substantia nigra and subsequent cell counts were also used to confirm these interactions in vivo. Key results: The neurotoxic interactions were mediated by 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), an endogenous TRPV1 agonist. CB1 receptor agonists (HU210 and WIN55,212-2) increased the level of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a downstream metabolite of 12(S)-HPETE, which stimulates TRPV1-mediated death of mesencephalic neurons, both in vitro and in vivo. The neurotoxicity was mediated by increased intracellular Ca2+ concentration ([Ca2+]i) through TRPV1, consequently leading to mitochondrial damage and was attenuated by baicalein, a 12-lipoxygenase inhibitor. Conclusion and implications: Activation of CB1 receptors in rat mesencephalic neurons was associated with biosynthesis of 12(S)-HPETE, which in turn stimulated TRPV1 activity, leading to increased [Ca2+]i, mitochondrial damage and neuronal death. PMID:18552868

Kim, S R; Bok, E; Chung, Y C; Chung, E S; Jin, B K

2008-01-01

55

Role of TRPV1 Channels in Ischemia/Reperfusion-Induced Acute Kidney Injury  

PubMed Central

Objectives Transient receptor potential vanilloid 1 (TRPV1) -positive sensory nerves are widely distributed in the kidney, suggesting that TRPV1-mediated action may participate in the regulation of renal function under pathophysiological conditions. Stimulation of TRPV1 channels protects against ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). However, it is unknown whether inhibition of these channels is detrimental in AKI or not. We tested the role of TRPV1 channels in I/R-induced AKI by modulating these channels with capsaicin (TRPV1 agonist), capsazepine (TRPV1 antagonist) and using Trpv1?/? mice. Methods and Results Anesthetized C57BL/6 mice were subjected to 25 min of renal ischemia and 24 hrs of reperfusion. Mice were pretreated with capsaicin (0.3 mg/kg body weight) or capsazepine (50 mg/kg body weight). Capsaicin ameliorated the outcome of AKI, as measured by serum creatinine levels, tubular damage,neutrophil gelatinase-associated lipocalin (NGAL) abundance and Ly-6B.2 positive polymorphonuclear inflammatory cells in injured kidneys. Neither capsazepine nor deficiency of TRPV1 did deteriorate renal function or histology after AKI. Measurements of endovanilloids in kidney tissue indicate that 20-hydroxyeicosatetraeonic acid (20-HETE) or epoxyeicosatrienoic acids (EETs) are unlikely involved in the beneficial effects of capsaicin on I/R-induced AKI. Conclusions Activation of TRPV1 channels ameliorates I/R-induced AKI, but inhibition of these channels does not affect the outcome of AKI. Our results may have clinical implications for long-term safety of renal denervation to treat resistant hypertension in man, with respect to the function of primary sensory nerves in the response of the kidney to ischemic stimuli. PMID:25330307

Chen, Lan; Marko, Lajos; Kassmann, Mario; Zhu, Ye; Wu, Kaiyin; Gollasch, Maik

2014-01-01

56

Transient Receptor Potential Vanilloid-1 (TRPV1) Is a Mediator of Lung Toxicity for Coal Fly Ash Particulate Material  

PubMed Central

Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4? (C4?), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue. PMID:22155782

Deering-Rice, Cassandra E.; Johansen, Mark E.; Roberts, Jessica K.; Thomas, Karen C.; Romero, Erin G.; Lee, Jeewoo; Yost, Garold S.; Veranth, John M.

2012-01-01

57

Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases.  

PubMed

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release. PMID:23324998

Leonelli, Mauro; Martins, Daniel O; Britto, Luiz R G

2013-04-01

58

Anticonvulsant Effects of N-Arachidonoyl-Serotonin, a Dual Fatty Acid Amide Hydrolase Enzyme and Transient Receptor Potential Vanilloid Type-1 (TRPV1) Channel Blocker, on Experimental Seizures: The Roles of Cannabinoid CB1 Receptors and TRPV1 Channels.  

PubMed

Selective blockade of anandamide hydrolysis, through the inhibition of the FAAH enzyme, has anticonvulsant effects, which are mediated by CB1 receptors. Anandamide, however, also activates TRPV1 channels, generally with an opposite outcome on neuronal modulation. Thus, we suggested that the dual FAAH and TRPV1 blockade with N-arachidonoyl-serotonin (AA-5-HT) would be efficacious in inhibiting pentylenetetrazole (PTZ)-induced seizures in mice. We also investigated the contribution of CB1 activation and TRPV1 blockade to the overt effect of AA-5-HT. In the first experiment, injection of AA-5-HT (0.3-3.0 mg/kg) delayed the onset and reduced the duration of PTZ (60 mg)-induced seizures in mice. These effects were reversed by pre-treatment with the CB1 antagonist, AM251 (1.0-3.0 mg/kg). Finally, we observed that administration of the selective TRPV1 antagonist, SB366791 (0.1-1 mg/kg), did not entirely mimic AA-5-HT effects. In conclusion, AA-5-HT alleviates seizures in mice, an effect inhibited by CB1 antagonism, but not completely mimicked by TRPV1 blockage, indicating that the overall effect of AA-5-HT seems to depend mainly on CB1 receptors. This may represent a new strategy for the development of drugs against seizures, epilepsies and related syndromes. PMID:24674273

Vilela, Luciano R; Medeiros, Daniel C; de Oliveira, Antonio Carlos P; Moraes, Marcio F; Moreira, Fabricio A

2014-10-01

59

Ursolic acid from Agastache mexicana aerial parts produces antinociceptive activity involving TRPV1 receptors, cGMP and a serotonergic synergism.  

PubMed

Agastache mexicana is a plant that has long been used in large demands in Mexican folk medicine to treat anxiety, insomnia and pain, among others affections. Chromatographic technique was used to identify ursolic acid (UA), 130.7 mg/g and 20.3 mg/g, as an antinociceptive active compound identified in ethyl acetate and methanol extracts of A. mexicana aerial parts, respectively. Temporal course curves of the antinociceptive response demonstrated a dose-dependent and significant activity of UA (1 to 100 mg/kg, i.p.) with an ED50=2 mg/kg in comparison to the efficacy of diclofenac (1 or 30 to 100 mg/kg, i.p.), a non-steroidal anti-inflammatory drug, with an ED50=11.56 mg/kg. The antinociceptive response consisted in the reduction of abdominal constrictions induced with 1% acetic acid in mice. Similarly, UA at 2 mg/kg produced significant antinociception in the intracolonic administration of 0.3% capsaicin (a TRPV1 agonist) in mice. It has been reported the inhibition produced by UA on the calcium-flux induced by capsaicin on TRPV1 receptor suggesting the antagonistic activity of this receptor. Finally, an ED50=44 mg/kg was calculated in the neurogenic and inflammatory nociception induced in the formalin test in rats. The antinociceptive response of UA in the formalin test was not modified in presence of naloxone, flumazenil or L-arginine. Nevertheless, it was reverted in presence of 1-H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ, an inhibitor of soluble guanylyl cyclase) and increased in presence of N(G)-L-nitro-arginine methyl ester (L-NAME, inhibitor of nitric oxide synthase), theophylline (inhibitor of phosphodiesterase) and WAY100635 (an antagonist of 5-HT1A receptors). Current results provide evidence that the antinociceptive response of A. mexicana depends in part on the presence of UA. Moreover, this triterpene may exerts its antinociceptive effect mediated by the presence of cGMP and an additive synergism with 5HT1A receptors, but also an antagonistic activity towards TRPV1 receptors may be involved. PMID:23932918

Verano, Jazmín; González-Trujano, Ma Eva; Déciga-Campos, Myrna; Ventura-Martínez, Rosa; Pellicer, Francisco

2013-09-01

60

Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel  

PubMed Central

Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca2+–CaM) in complex with the TRPV1-CT segment, determined to 1.95-Ĺ resolution. The two lobes of Ca2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca2+–CaM, respectively. This structure is similar to canonical Ca2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms. PMID:23109716

Lau, Sze-Yi; Procko, Erik

2012-01-01

61

Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins  

PubMed Central

Prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) are major inflammatory mediators that play important roles in pain sensation and hyperalgesia. The role of their receptors (EP and IP, respectively) in inflammation has been well documented, although the EP receptor subtypes involved in this process and the underlying cellular mechanisms remain to be elucidated. The capsaicin receptor TRPV1 is a nonselective cation channel expressed in sensory neurons and activated by various noxious stimuli. TRPV1 has been reported to be critical for inflammatory pain mediated through PKA- and PKC-dependent pathways. PGE2 or PGI2increased or sensitized TRPV1 responses through EP1 or IP receptors, respectively predominantly in a PKC-dependent manner in both HEK293 cells expressing TRPV1 and mouse DRG neurons. In the presence of PGE2 or PGI2, the temperature threshold for TRPV1 activation was reduced below 35°C, so that temperatures near body temperature are sufficient to activate TRPV1. A PKA-dependent pathway was also involved in the potentiation of TRPV1 through EP4 and IP receptors upon exposure to PGE2 and PGI2, respectively. Both PGE2-induced thermal hyperalgesia and inflammatory nociceptive responses were diminished in TRPV1-deficient mice and EP1-deficient mice. IP receptor involvement was also demonstrated using TRPV1-deficient mice and IP-deficient mice. Thus, the potentiation or sensitization of TRPV1 activity through EP1 or IP activation might be one important mechanism underlying the peripheral nociceptive actions of PGE2 or PGI2. PMID:15813989

Moriyama, Tomoko; Higashi, Tomohiro; Togashi, Kazuya; Iida, Tohko; Segi, Eri; Sugimoto, Yukihiko; Tominaga, Tomoko; Narumiya, Shuh; Tominaga, Makoto

2005-01-01

62

Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like  

E-print Network

Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin for review July 16, 1999) Capsaicin, a pungent ingredient of hot peppers, causes excitation of small sensory neurons, and thereby produces severe pain. A nonselective cation channel activated by capsaicin has been

Suh, Young-Ger

63

Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity.  

PubMed Central

The store-operated calcium-release-activated calcium current, I (CRAC), is a major mechanism for calcium entry into non-excitable cells. I (CRAC) refills calcium stores and permits sustained calcium signalling. The relationship between inositol 1,4,5-trisphosphate receptor (InsP(3)R)-containing stores and I (CRAC) is not understood. A model of global InsP(3)R store depletion coupling with I (CRAC) activation may be simplistic, since intracellular stores are heterogeneous in their release and refilling activities. Here we use a ligand-gated calcium channel, TRPV1 (transient receptor potential channel, vanilloid subfamily member 1), as a new tool to probe store heterogeneity and define intracellular calcium compartments in a mast cell line. TRPV1 has activity as an intracellular release channel but does not mediate global calcium store depletion and does not invade a store coupled with I (CRAC). Intracellular TRPV1 localizes to a subset of the InsP(3)R-containing stores. TRPV1 sensitivity functionally subdivides the InsP(3)-sensitive store, as does heterogeneity in the sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase isoforms responsible for store refilling. These results provide unequivocal evidence that a specific 'CRAC store' exists within the InsP(3)-releasable calcium stores and describe a novel methodology for manipulation of intracellular free calcium. PMID:12513687

Turner, Helen; Fleig, Andrea; Stokes, Alexander; Kinet, Jean-Pierre; Penner, Reinhold

2003-01-01

64

Conservation of Tubulin-Binding Sequences in TRPV1 throughout Evolution  

PubMed Central

Background Transient Receptor Potential Vanilloid sub type 1 (TRPV1), commonly known as capsaicin receptor can detect multiple stimuli ranging from noxious compounds, low pH, temperature as well as electromagnetic wave at different ranges. In addition, this receptor is involved in multiple physiological and sensory processes. Therefore, functions of TRPV1 have direct influences on adaptation and further evolution also. Availability of various eukaryotic genomic sequences in public domain facilitates us in studying the molecular evolution of TRPV1 protein and the respective conservation of certain domains, motifs and interacting regions that are functionally important. Methodology and Principal Findings Using statistical and bioinformatics tools, our analysis reveals that TRPV1 has evolved about ?420 million years ago (MYA). Our analysis reveals that specific regions, domains and motifs of TRPV1 has gone through different selection pressure and thus have different levels of conservation. We found that among all, TRP box is the most conserved and thus have functional significance. Our results also indicate that the tubulin binding sequences (TBS) have evolutionary significance as these stretch sequences are more conserved than many other essential regions of TRPV1. The overall distribution of positively charged residues within the TBS motifs is conserved throughout evolution. In silico analysis reveals that the TBS-1 and TBS-2 of TRPV1 can form helical structures and may play important role in TRPV1 function. Conclusions and Significance Our analysis identifies the regions of TRPV1, which are important for structure – function relationship. This analysis indicates that tubulin binding sequence-1 (TBS-1) near the TRP-box forms a potential helix and the tubulin interactions with TRPV1 via TBS-1 have evolutionary significance. This interaction may be required for the proper channel function and regulation and may also have significance in the context of Taxol®-induced neuropathy. PMID:22496727

Sardar, Puspendu; Kumar, Abhishek; Bhandari, Anita; Goswami, Chandan

2012-01-01

65

Sulphur-containing compounds of durian activate the thermogenesis-inducing receptors TRPA1 and TRPV1.  

PubMed

Durian (Durio zibethinus Murr.) is classified as a body-warming food in Indian herbalism, and its hyperthermic effect is empirically known in Southeast Asia. To investigate the mechanism underlying this effect, we focused on the thermogenesis-inducing receptors, TRPA1 and TRPV1. Durian contains sulphides similar to the TRPA1 and TRPV1 agonists of garlic. Accordingly, we hypothesized that the thermogenic effect of durian is driven by sulphide-induced TRP channel activation. To investigate our hypothesis, we measured the TRPA1 and TRPV1 activity of the sulphur-containing components of durian and quantified their content in durian pulp. These sulphur-containing components had a stronger effect on TRPA1 than TRPV1. Furthermore, sulphide content in the durian pulp was sufficient to evoke TRP channel activation and the main agonist was diethyl disulphide. From these results, we consider that the body-warming effect of durian is elicited by TRPA1 activation with its sulphides, as can be seen in spices. PMID:24679773

Terada, Yuko; Hosono, Takashi; Seki, Taiichiro; Ariga, Toyohiko; Ito, Sohei; Narukawa, Masataka; Watanabe, Tatsuo

2014-08-15

66

TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-? Upregulation  

PubMed Central

High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors ? (PPAR-?) play an important role in metabolic myocardium remodeling. However, it remains unknown whether activation of TRPV1 could alleviate cardiac hypertrophy and fibrosis and the effect of cross-talk between TRPV1 and PPAR-? on suppressing high-salt diet-generated oxidative stress. In this study, high-salt diet-induced cardiac hypertrophy and fibrosis are characterized by significant enhancement of HW/BW%, LVEDD, and LVESD, decreased FS and EF, and increased collagen deposition. These alterations were associated with downregulation of PPAR-?, UCP2 expression, upregulation of iNOS production, and increased oxidative/nitrotyrosine stress. These adverse effects of long-term high-salt diet were attenuated by chronic treatment with capsaicin. However, this effect of capsaicin was absent in TRPV1?/? mice on a high-salt diet. Our finding suggests that chronic dietary capsaicin consumption attenuates long-term high-salt diet-induced cardiac hypertrophy and fibrosis. This benefit effect is likely to be caused by TRPV1 mediated upregulation of PPAR-? expression. PMID:25152753

Gao, Feng; Liang, Yi; Wang, Xiang; Lu, Zongshi; Li, Li; Zhu, Shanjun; Liu, Daoyan; Yan, Zhencheng; Zhu, Zhiming

2014-01-01

67

Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors.  

PubMed

Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 ?g/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat). PMID:24200896

Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

2014-01-01

68

Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum.  

PubMed

Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation. PMID:23911956

Trevisan, Gabriela; Rossato, Mateus F; Hoffmeister, Carin; Oliveira, Sara M; Silva, Cássia R; Matheus, Filipe C; Mello, Gláucia C; Antunes, Edson; Prediger, Rui D S; Ferreira, Juliano

2013-08-15

69

Electroacupuncture Stimulation at CV12 Inhibits Gastric Motility via TRPV1 Receptor  

PubMed Central

Gastric dysmotility is one of the major pathophysiological factors in functional gastrointestinal disorders. Acupuncture, as one of the alternative approaches, is efficacious in the treatment of gastrointestinal motility disorders; however, the mechanism underlying its action is unclear. In the present study, we used both capsazepine, a TRPV1 antagonist, and TRPV1 knockout mice. Animals were divided into wild-type group (WT), capsazepine injection group (CZP, 0.5?mg/kg, i.p.), and TRPV1 knockout mice group (TRPV1?/?). Each of these three groups was divided into three subgroups, which were subjected to EA stimulation at acupoint Zhongwan (CV12) at a different intensity (1, 2, or 4?mA). We demonstrated that electroacupuncture at Zhongwan (CV12) markedly inhibited gastric motility at 2 and 4?mA in an intensity-dependent manner in wild-type mice. The inhibitory effect was also observed in capsazepine-injected and TRPV1?/? mice but was no longer intensity dependent, indicating that TRPV1 is partially involved in the electroacupuncture-mediated modulation of gastric motility. PMID:24106521

Yu, Zhi; Cao, Xin; Xia, Youbing; Ren, Binbin; Feng, Hong; Wang, Yali; Jiang, Jingfeng; Xu, Bin

2013-01-01

70

Microsomal omega-hydroxylated metabolites of N-arachidonoyl dopamine are active at recombinant human TRPV1 receptors  

PubMed Central

N-arachidonoyl dopamine (NADA) is an endogenous lipid that modulates signal transduction in neuronal and immune pathways. NADA activates the non-selective cation channel, transient receptor potential vanilloid type 1 (TRPV1) and cannabinoid receptor 1. That NADA is comprised of an arachidonic acid (AA) backbone suggests that it may be metabolized through many of the enzymes that act upon AA such as the other AA-derived signaling lipids, the endogenous cannabinoids. To investigate the metabolism of NADA through the cytochrome P450 (CYP450) metabolic pathway, we studied the in-vitro rat liver microsomal production of hydroxylated metabolites and their activity at recombinant human TRPV1 receptors. We showed that following microsomal activation in the presence of NADA, omega and (omega -1) hydroxylated metabolites (19-, and 20-HETE-DA) were formed. These metabolites were active at recombinant human TRPV1 receptors, inducing a dose-dependent calcium influx. Both metabolites exhibited lower potency compared to NADA. We conclude that CYP450 enzymes are capable of metabolizing this signaling lipid forming a larger family of potential neuromodulators. PMID:18812233

Rimmerman, N; Bradshaw, H.B; Basnet, A; Tan, B; Widlanski, Theodore S; Walker, J.M.

2009-01-01

71

TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular Ca2+ with Exposure to Hydrostatic Pressure  

PubMed Central

Purpose Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca2+-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca2+. Methods trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca2+ improves survival and whether, with the Ca2+ dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca2+. Results RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P ? 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P ? 0.01). Chelation of extracellular Ca2+ reduced RGC apoptosis at elevated pressure by nearly twofold (P ? 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca2+ that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. Conclusions RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca2+. PMID:18952924

Sappington, Rebecca M.; Sidorova, Tatiana; Long, Daniel J.; Calkins, David J.

2013-01-01

72

The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons.  

PubMed

Activation of peripheral nociceptors by products of inflammation has been shown to be dependent on specific sensory transducing elements such as the capsaicin receptor, TRPV1. The development of high-affinity antagonists to TRPV1 as well as to other receptors capable of detecting noxious stimuli has now become a major focus in analgesic development. Another critical feature of nociception is the relative abundance of a particular pain transducing receptor under normal or pathophysiologic conditions. Increases in expression and/or changes in distribution of nociceptive receptors such as TRPV1 have been correlated with progression of tissue injury and persistence of pain behaviors. Although some details are emerging as to what regulates nociceptor-specific gene expression, compounds that could potentially be used to block or reverse over-expression of nociceptive gene expression are essentially absent. In our efforts to better understand the transcriptional regulation of TRPV1 in sensory neurons, we identified an anticancer agent, mithramycin-A, that decreased TRPV1 expression in primary rat dorsal root ganglion (DRG) neurons. Mithramycin-A dose-dependently (10-50 nM) decreased endogenous TRPV1 mRNA content and appeared to decrease TRPV1-like protein expression in DRG neurons. We also observed that mithramycin-A directed a decrease in the number of capsaicin-responsive DRG neurons without a significant change in the capsaicin-response magnitudes. Interestingly, mithramycin-A also reduced the mRNA encoding Sp1 and Sp4 in DRG neurons, transcription factors previously found to positively regulate TRPV1 expression in sensory neurons. Taken together, we propose that mithramycin-A directs an inhibitory effect on a subpopulation of capsaicin-responsive DRG neurons that utilize Sp1-like factors for TRPV1 expression. Given the therapeutic correlate of mithramycin-A effectiveness in the treatment of certain cancers, small molecule transcriptional inhibitors such as mithramycin-A may serve as useful tools of discovery in pain transduction and possibly future analgesic development. PMID:24468003

Zavala, K; Lee, J; Chong, J; Sharma, M; Eilers, H; Schumacher, M A

2014-08-22

73

TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision.  

PubMed

Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators. PMID:25222270

Ryskamp, Daniel A; Redmon, Sarah; Jo, Andrew O; Križaj, David

2014-01-01

74

TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision  

PubMed Central

Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators. PMID:25222270

Ryskamp, Daniel A.; Redmon, Sarah; Jo, Andrew O.; Krizaj, David

2014-01-01

75

Reciprocal Changes in Vanilloid (TRPV1) and Endocannabinoid (CB1) Receptors Contribute to Visceral Hyperalgesia in the Water Avoidance Stressed Rat  

PubMed Central

Background Increasing evidence suggests that chronic stress plays an important role in the pathophysiology of several functional gastrointestinal disorders. We investigated whether CB1 and TRPV1 receptors are involved in stress induced visceral hyperalgesia. Methods Male rats were exposed to 1-hour water avoidance (WA) stress daily for 10 consecutive days. The visceromotor response (VMR) to colorectal distension (CRD) was measured. Immunofluorescence and Western blot analysis were used to assess the expression of CB1 and TRPV1 receptors in DRG neurons. Results WA stressed rats demonstrated a significant increase in the serum corticosterone levels and fecal pellet output compared to controls supporting stimulation of the HPA axis. The VMR increased significantly at pressures of 40 and 60 mmHg in WA stress rats compared with controls, respectively, and was associated with hyperalgesia. The endogenous CB1 agonist anandamide was increased significantly in DRGs from stressed rats. Immunofluorescence and Western blot analysis showed a significant decrease in CB1 and reciprocal increase in TRPV1 expression and phosphorylation in DRG neurons from stressed rats. These reciprocal changes in CB1 and TRPV1 were reproduced by treatment of control DRGs with anandamide in vitro. In contrast, treatment of control DRGs in vitro with the CB1 receptor agonist WIN 55,212-2 decreased the levels of TRPV1 and TRPV1 phosphorylation. Treatment of WA stress rats in situ with WIN or the TRPV1 antagonist capsazepine prevented the development of visceral hyperalgesia and blocked the up-regulation of TRPV1. Conclusions These results suggest that the endocannabinoid (CB1) and TRP (TRPV1) pathways may play a potentially important role in stress-induced visceral hyperalgesia. PMID:18936104

Hong, Shuangsong; Fan, Jing; Kemmerer, Elyse S.; Evans, Simon; Li, Ying; Wiley, John W.

2014-01-01

76

TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction  

PubMed Central

Background Diabetic cardiovascular complications are characterised by oxidative stress-induced endothelial dysfunction. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial reactive oxygen species (ROS) generation and can antagonise oxidative stress, but approaches that enhance the activity of UCP2 to inhibit ROS are scarce. Our previous studies show that activation of transient receptor potential vanilloid 1 (TRPV1) by capsaicin can prevent cardiometabolic disorders. In this study, we conducted experiments in vitro and in vivo to investigate the effect of capsaicin treatment on endothelial UCP2 and oxidative stress. We hypothesised that TRPV1 activation by capsaicin attenuates hyperglycemia-induced endothelial dysfunction through a UCP2-mediated antioxidant effect. Methods TRPV1-/-, UCP2 -/- and db/db mice, as well as matched wild type (WT) control mice, were included in this study. Some mice were subjected to dietary capsaicin for 14 weeks. Arteries isolated from mice and endothelial cells were cultured. Endothelial function was examined, and immunohistological and molecular analyses were performed. Results Under high-glucose conditions, TRPV1 expression and protein kinase A (PKA) phosphorylation were found to be decreased in the cultured endothelial cells, and the effects of high-glucose on these molecules were reversed by the administration of capsaicin. Furthermore, high-glucose exposure increased ROS production and reduced nitric oxide (NO) levels both in endothelial cells and in arteries that were evaluated respectively by dihydroethidium (DHE) and DAF-2 DA fluorescence. Capsaicin administration decreased the production of ROS, restored high-glucose-induced endothelial dysfunction through the activation of TRPV1 and acted in a UCP2-dependent manner in vivo. Administration of dietary capsaicin for 14 weeks increased the levels of PKA phosphorylation and UCP2 expression, ameliorated the vascular oxidative stress and increased NO levels observed in diabetic mice. Prolonged dietary administration of capsaicin promoted endothelium-dependent relaxation in diabetic mice. However, the beneficial effect of capsaicin on vasorelaxation was absent in the aortas of UCP2 -/- mice exposed to high-glucose levels. Conclusion TRPV1 activation by capsaicin might protect against hyperglycemia-induced endothelial dysfunction through a mechanism involving the PKA/UCP2 pathway. PMID:23607427

2013-01-01

77

Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones  

E-print Network

.6 s) repeated capsaicin applica- tions, and PAR activator peptides or proteases (Table 2) were applied for 2 min prior to the sixth capsaicin appli- cation. For control experiments PAR activator applica- tion was omitted. The ratios obtained... by dividing the amplitude of the sixth capsaicin peak by the amplitude of the fifth capsaicin peak were used to plot a histogram for each treatment group. The distribution seen for each group was compared with the distribution obtained from control, vehicle...

Vellani, Vittorio; Kinsey, Anna M; Prandini, Massimiliano; Hechtfischer, Sabine C; Reeh, Peter; Magherini, Pier C; Giacomoni, Chiara; McNaughton, Peter A

2010-09-27

78

Activation and desensitization of TRPV1 channels in sensory neurons by the PPAR? agonist palmitoylethanolamide  

PubMed Central

Background and Purpose Palmitoylethanolamide (PEA) is an endogenous fatty acid amide displaying anti-inflammatory and analgesic actions. To investigate the molecular mechanism responsible for these effects, the ability of PEA and of pain-inducing stimuli such as capsaicin (CAP) or bradykinin (BK) to influence intracellular calcium concentrations ([Ca2+]i) in peripheral sensory neurons, has been assessed in the present study. The potential involvement of the transcription factor PPAR? and of TRPV1 channels in PEA-induced effects was also studied. Experimental Approach [Ca2+]i was evaluated by single-cell microfluorimetry in differentiated F11 cells. Activation of TRPV1 channels was assessed by imaging and patch-clamp techniques in CHO cells transiently-transfected with rat TRPV1 cDNA. Key Results In F11 cells, PEA (1–30 ?M) dose-dependently increased [Ca2+]i. The TRPV1 antagonists capsazepine (1 ?M) and SB-366791 (1 ?M), as well as the PPAR? antagonist GW-6471 (10 ?M), inhibited PEA-induced [Ca2+]i increase; blockers of cannabinoid receptors were ineffective. PEA activated TRPV1 channels heterologously expressed in CHO cells; this effect appeared to be mediated at least in part by PPAR?. When compared with CAP, PEA showed similar potency and lower efficacy, and caused stronger TRPV1 currents desensitization. Sub-effective PEA concentrations, closer to those found in vivo, counteracted CAP- and BK-induced [Ca2+]i transients, as well as CAP-induced TRPV1 activation. Conclusions and Implications Activation of PPAR? and TRPV1 channels, rather than of cannabinoid receptors, largely mediate PEA-induced [Ca2+]i transients in sensory neurons. Differential TRPV1 activation and desensitization by CAP and PEA might contribute to their distinct pharmacological profile, possibly translating into potentially relevant clinical differences. PMID:23083124

Ambrosino, Paolo; Soldovieri, Maria Virginia; Russo, Claudio; Taglialatela, Maurizio

2013-01-01

79

TRPV1: a stress response protein in the central nervous system  

PubMed Central

The transient receptor potential (TRP) family comprises a diverse group of cation channels that regulate a variety of intracellular signaling pathways. The TRPV1 (vanilloid 1) channel is best known for its role in nociception and sensory transmission. First studied in the dorsal root ganglia as the receptor for capsaicin, TRPV1 is now recognized to have a broader distribution and function within the central nervous system (CNS). Because it can be activated by a range of potentially noxious stimuli, TRPV1’s polymodal nature and ability to interact with other receptor pathways make it a candidate for a stress response protein. As a result, TRPV1 is emerging as a key mediator of CNS function through modulation of both glial and neuronal activity. Growing evidence has suggested that TRPV1 can mediate a variety of pathways from glial reactivity and cytokine release to synaptic transmission and plasticity. This review highlights the increasing importance of TRPV1 as a regulator of CNS function in response to stress. PMID:22737633

Ho, Karen W; Ward, Nicholas J; Calkins, David J

2012-01-01

80

Vanilloid Receptors in Hearing: Altered Cochlear Sensitivity by Vanilloids and Expression of TRPV1 in the Organ of Corti  

PubMed Central

Capsaicin, the vanilloid that selectively activates vanilloid receptors (VRs) on sensory neurons for noxious perception, has been reported to increase cochlear blood flow (CBF). VR-related receptors have also been found in the inner ear. This study aims to address the question as to whether VRs exist in the organ of Corti and play a role in cochlear physiology. Capsaicin or the more potent VR agonist, resiniferatoxin (RTX), was infused into the scala tympani of guinea pig cochlea, and their effects on cochlear sensitivity were investigated. Capsaicin (20 µM) elevated the threshold of auditory nerve compound action potential and reduced the magnitude of cochlear microphonic and electrically evoked otoacoustic emissions. These effects were reversible and could be blocked by a competitive antagonist, capsazepine. Application of 2 µM RTX resulted in cochlear sensitivity alterations similar to that by capsaicin, which could also be blocked by capsazepine. A desensitization phenomenon was observed in the case of prolonged perfusion with either capsaicin or RTX. Brief increase of CBF by capsaicin was confirmed, and the endocochlear potential was not decreased. Basilar membrane velocity (BM) growth functions near the best frequency and BM tuning were altered by capsaicin. Immunohistochemistry study revealed the presence of vanilloid receptor type 1 of the transient receptor potential channel family in the hair cells and supporting cells of the organ of Corti and the spiral ganglion cells of the cochlea. The results indicate that the main action of capsaicin is on outer hair cells and suggest that VRs in the cochlea play a role in cochlear homeostasis. PMID:12660354

Zheng, Jiefu; Dai, Chunfu; Steyger, Peter S.; Kim, Youngki; Vass, Zoltan; Ren, Tianying; Nuttall, Alfred L.

2013-01-01

81

Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor.  

PubMed

Recent studies suggest the ability of the central nervous system to detect changes in osmolality is mediated by products of the genes encoding the transient receptor potential vanilloid-1 (TRPV1) or vanilloid-4 (TRPV4) channel. The purpose of the present study was to determine whether deletion of TRPV1 and/or TRPV4 channels altered thirst responses to cellular dehydration in mice. Injection of 0.5 or 1.0 M NaCl produced dose-dependent increases in cumulative water intakes of wild-type (WT), TRPV1(-/-), TRPV4(-/-), and TRPV1(-/-)V4(-/-) mice. However, there were no differences in cumulative water intakes between WT versus any other strain despite similar increases in plasma electrolytes and osmolality. Similar results were observed after injection of hypertonic mannitol. This was a consistent finding regardless of the injection route (intraperitoneal vs. subcutaneous) or timed access to water (delayed vs. immediate). There were also no differences in cumulative intakes across strains after injection of 0.15 M NaCl or during a time-controlled period (no injection). Chronic hypernatremia produced by sole access to 2% NaCl for 48 h also produced similar increases in water intake across strains. In a final set of experiments, subcutaneous injection of 0.5 M NaCl produced similar increases in the number of Fos-positive nuclei within the organum vasculosum of the lamina terminalis and median preoptic nucleus across strains but significantly smaller number in the subfornical organ of WT versus TRPV1(-/-)V4(-/-) mice. Collectively, these findings suggest that TRPV1 and/or TRPV4 channels are not the primary mechanism by which the central nervous system responds to cellular dehydration during hypernatremia or hyperosmolality to increase thirst. PMID:25100078

Kinsman, Brian; Cowles, James; Lay, Jennifer; Simmonds, Sarah S; Browning, Kirsteen N; Stocker, Sean D

2014-11-01

82

Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue  

PubMed Central

Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expressing terminals. PMID:22688302

Kawashima, M.; Imura, K.; Sato, I.

2012-01-01

83

Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel - an overview of the current mutational data  

PubMed Central

This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232

2013-01-01

84

TRPV1 Activation Exacerbates Hypoxia/Reoxygenation-Induced Apoptosis in H9C2 Cells via Calcium Overload and Mitochondrial Dysfunction.  

PubMed

Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase ?). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8-37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1-/- mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects. PMID:25314299

Sun, Zewei; Han, Jie; Zhao, Wenting; Zhang, Yuanyuan; Wang, Shuai; Ye, Lifang; Liu, Tingting; Zheng, Liangrong

2014-01-01

85

TRPV1 Activation Exacerbates Hypoxia/Reoxygenation-Induced Apoptosis in H9C2 Cells via Calcium Overload and Mitochondrial Dysfunction  

PubMed Central

Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase ?). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1?/? mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects. PMID:25314299

Sun, Zewei; Han, Jie; Zhao, Wenting; Zhang, Yuanyuan; Wang, Shuai; Ye, Lifang; Liu, Tingting; Zheng, Liangrong

2014-01-01

86

Increase of TRPV1-Immunoreactivity in Dorsal Root Ganglia Neurons Innervating the Femur in a Rat Model of Osteoporosis  

PubMed Central

Purpose Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel, which can be activated by capsaicin and other noxious stimuli. Recently, an association between bone pain and TRPV1 has been reported. However, the influence of osteoporosis on TRPV1 in the sensory system innervating the femur has not been reported. Materials and Methods TRPV1-immunoreactive (ir) in dorsal root ganglia (DRG) neurons labeled with neurotracer [Fluoro-Gold (FG)] innervating the femurs of Sprague Dawley rats were examined in control, sham, and ovariectomized (OVX) rats. We evaluated osteoporosis in the femurs and compared the proportion of TRPV1-ir DRG neurons innervating femur between the 3 groups of rats. Results OVX rats showed osteoporotic cancellous bone in the femur. FG labeled neurons were distributed from L1 to L6 DRG, but there was no significant difference in the proportion of labeled neurons between the 3 groups (p>0.05). The proportions of FG labeled TRPV1-ir DRG neurons were 1.7%, 1.7%, and 2.8% of DRG neurons innervating the femur, in control, sham-operated, and OVX rats, respectively. The proportion of TRPV1-ir neurons in DRG innervating the femur in OVX rats was significantly higher than that in control and sham-operated rats (p<0.05). Conclusion Under physiological conditions, DRG neurons innervating femurs in rats contain TRPV1. Osteoporosis increases the numbers of TRPV1-ir neurons in DRG innervating osteoporotic femurs in rats. These findings suggest that TRPV1 may have a role in sensory perception of osteoporotic femurs. PMID:25323897

Yoshino, Kensuke; Suzuki, Miyako; Kawarai, Yuya; Sakuma, Yoshihiro; Inoue, Gen; Orita, Sumihisa; Yamauchi, Kazuyo; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Kubota, Gou; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Nakamura, Junichi; Toyone, Tomoaki; Takahashi, Kazuhisa

2014-01-01

87

Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects.  

PubMed

Transient receptor potential channels are implicated in thermosensation both in mammals and insects. The aim of our study was to assess the effect of mammalian vanilloid receptor subtype 1 (TRPV1) agonist (capsaicin) and antagonist (capsazepine) on insect behavioral thermoregulation. We tested behavioral thermoregulation of mealworms larvae intoxicated with capsaicin and capsazepine in two concentrations (10(-7) and 10(-4) M) in a thermal gradient system for 3 days. Our results revealed that in low concentration, capsaicin induces seeking lower temperatures than the ones selected by the insects that were not intoxicated. After application of capsazepine in the same concentration, the mealworms prefer higher temperatures than the control group. The observed opposite effect of TRPV1 agonist and antagonist on insect behavioral thermoregulation, which is similar to the effect of these substances on thermoregulation in mammals, indicates indirectly that capsaicin may act on receptors in insects that are functionally similar to TRPV1. PMID:21667066

Olszewska, Justyna; T?gowska, Eugenia

2011-10-01

88

Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.  

PubMed

Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling. PMID:25088915

Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

2014-09-26

89

Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries  

Microsoft Academic Search

Capsaicin, a pungent constituent from red chilli peppers, activates sensory nerve fibres via transient receptor potential\\u000a vanilloid receptors type 1 (TRPV1) to release neuropeptides like calcitonin gene-related peptide (CGRP) and substance P. Capsaicin-sensitive\\u000a nerves are widely distributed in human and porcine vasculature. In this study, we examined the mechanism of capsaicin-induced\\u000a relaxations, with special emphasis on the role of CGRP,

Saurabh Gupta; Jair Lozano-Cuenca; Carlos M. Villalón; René de Vries; Ingrid M. Garrelds; Cees J. J. Avezaat; Jorge P. van Kats; Pramod R. Saxena; Antoinette MaassenVanDenBrink

2007-01-01

90

Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control  

PubMed Central

New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough and airway inflammation in asthma, COPD and reactive airway dysfunction syndrome. PMID:19074743

Bessac, Bret F.; Jordt, Sven-Eric

2009-01-01

91

Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control  

NSDL National Science Digital Library

New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species, and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough, and airway inflammation in asthma, COPD, and reactive airway dysfunction syndrome.

Bret Bessac (Yale University School of Medicine Pharmacology); Sven-Eric Jordt (Yale University School of Medicine)

2008-12-01

92

Coexpression and activation of TRPV1 suppress the activity of the KCNQ2/3 channel  

PubMed Central

Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca2+ influx through the activated channel followed by Ca2+-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain. PMID:21844219

Zhang, Xu-Feng; Han, Ping; Neelands, Torben R.; McGaraughty, Steve; Honore, Prisca; Surowy, Carol S.

2011-01-01

93

Monoacylglycerols activate TRPV1--a link between phospholipase C and TRPV1.  

PubMed

Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous "entourage" compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain. PMID:24312564

Zygmunt, Peter M; Ermund, Anna; Movahed, Pouya; Andersson, David A; Simonsen, Charlotte; Jönsson, Bo A G; Blomgren, Anders; Birnir, Bryndis; Bevan, Stuart; Eschalier, Alain; Mallet, Christophe; Gomis, Ana; Högestätt, Edward D

2013-01-01

94

TRPA1 contributes to capsaicin-induced facial cold hyperalgesia in rats.  

PubMed

Orofacial cold hyperalgesia is known to cause severe persistent pain in the face following trigeminal nerve injury or inflammation, and transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankylin 1 (TRPA1) are thought to be involved in cold hyperalgesia. However, how these two receptors are involved in cold hyperalgesia is not fully understood. To clarify the mechanisms underlying facial cold hyperalgesia, nocifensive behaviors to cold stimulation, the expression of TRPV1 and TRPA1 in trigeminal ganglion (TG) neurons, and TG neuronal excitability to cold stimulation following facial capsaicin injection were examined in rats. The head-withdrawal reflex threshold (HWRT) to cold stimulation of the lateral facial skin was significantly decreased following facial capsaicin injection. This reduction of HWRT was significantly recovered following local injection of TRPV1 antagonist as well as TRPA1 antagonist. Approximately 30% of TG neurons innervating the lateral facial skin expressed both TRPV1 and TRPA1, and about 64% of TRPA1-positive neurons also expressed TRPV1. The TG neuronal excitability to noxious cold stimulation was significantly increased following facial capsaicin injection and this increase was recovered by pretreatment with TRPA1 antagonist. These findings suggest that TRPA1 sensitization via TRPV1 signaling in TG neurons is involved in cold hyperalgesia following facial skin capsaicin injection. PMID:25371244

Honda, Kuniya; Shinoda, Masamichi; Furukawa, Akihiko; Kita, Kozue; Noma, Noboru; Iwata, Koichi

2014-12-01

95

Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKC? pathway in dorsal root ganglion neurons  

PubMed Central

Background It has been demonstrated that lysophosphatidic acid (LPA) released from injury tissue and transient receptor potential vanilloid 1 (TRPV1) receptor are implicated in the induction of chronic pain. In the present study we examined whether an interaction between LPA receptor LPA1 and TRPV1 in dorsal root ganglion (DRG) neurons contributes to the development of bone cancer pain. Results Bone cancer was established by injection of mammary gland carcinoma cells into the rat tibia. Following the development of bone cancer pain, the TRPV1 expression and capsaicin-evoked currents were up-regulated in rat DRG neurons at L4-6 segments. Immunohistochemistry staining revealed a high co-localization of LPA1 with TRPV1 in DRG neurons. In isolated DRG neurons, whole-cell patch recording showed that capsaicin-induced currents were potentiated by LPA in a dose-dependent manner. The potentiation was blocked by either LPA1 antagonist, protein kinase C (PKC) inhibitor or PKC? inhibitor, but not by protein kinase A (PKA) inhibitor or Rho inhibitor. In the behavioral tests, both mechanical allodynia and thermal hyperalgesia in bone cancer rats were attenuated by LPA1 antagonist. Conclusion LPA potentiates TRPV1 current via a PKC?-dependent pathway in DRG neurons of rats with bone cancer, which may be a novel peripheral mechanism underlying the induction of bone cancer pain. PMID:21118579

2010-01-01

96

Gastrin-releasing peptide acts via postsynaptic BB2 receptors to modulate inward rectifier K+ and TRPV1-like conductances in rat paraventricular thalamic neurons  

PubMed Central

Gastrin-releasing peptide (GRP) is a bombesin-like peptide with a widespread distribution in mammalian CNS, where it has a role in food intake, circadian rhythm generation, fear memory, itch sensation and sexual behaviour. While it has been established that GRP predominantly excites neurons, details of the membrane mechanism involved in this action remain largely undefined. We used perforated patch clamp recording in acute brain slice preparations to investigate GRP-affected receptors and ionic conductances in neurons of the rat paraventricular thalamic nucleus (PVT). PVT is a component of the midline and intralaminar thalamus that participates in arousal, motivational drives and stress responses, and exhibits a prominence of GRP-like immunoreactive fibres. Exposure of PVT neurons to low nanomolar concentrations of GRP induced sustained TTX-resistant membrane depolarizations that could trigger rhythmic burst discharges or tonic firing. Membrane current analyses in voltage clamp revealed an underlying postsynaptic bombesin type 2 receptor-mediated inward current that resulted from the simultaneous suppression of a Ba2+-sensitive inward rectifier K+ conductance and activation of a non-selective cation conductance with biophysical and pharmacological properties reminiscent of transient receptor potential vanilloid (TRPV) 1. A role for a TRPV1-like conductance was further implied by a significant suppressant influence of a TRPV1 antagonist on GRP-induced membrane depolarization and rhythmic burst or tonic firing. The results provide a detailed picture of the receptor and ionic conductances that are involved in GRP's excitatory action in midline thalamus. PMID:23359674

Hermes, M L H J; Kolaj, M; Coderre, E M; Renaud, L P

2013-01-01

97

Acid evoked thermal hyperalgesia involves peripheral P2Y1 receptor mediated TRPV1 phosphorylation in a rodent model of thrombus induced ischemic pain  

PubMed Central

Background We previously developed a thrombus-induced ischemic pain (TIIP) animal model, which was characterized by chronic bilateral mechanical allodynia without thermal hyperalgesia (TH). On the other hand we had shown that intraplantar injection of acidic saline facilitated ATP-induced pain, which did result in the induction of TH in normal rats. Because acidic pH and increased ATP are closely associated with ischemic conditions, this study is designed to: (1) examine whether acidic saline injection into the hind paw causes the development of TH in TIIP, but not control, animals; and (2) determine which peripheral mechanisms are involved in the development of this TH. Results Repeated intraplantar injection of pH 4.0 saline, but not pH 5.5 and 7.0 saline, for 3 days following TIIP surgery resulted in the development of TH. After pH 4.0 saline injections, protein levels of hypoxia inducible factor-1? (HIF-1?) and carbonic anhydrase II (CA II) were elevated in the plantar muscle indicating that acidic stimulation intensified ischemic insults with decreased tissue acidity. At the same time point, there were no changes in the expression of TRPV1 in hind paw skin, whereas a significant increase in TRPV1 phosphorylation (pTRPV1) was shown in acidic saline (pH 4.0) injected TIIP (AS-TIIP) animals. Moreover, intraplantar injection of chelerythrine (a PKC inhibitor) and AMG9810 (a TRPV1 antagonist) effectively alleviated the established TH. In order to investigate which proton- or ATP-sensing receptors contributed to the development of TH, amiloride (an ASICs blocker), AMG9810, TNP-ATP (a P2Xs antagonist) or MRS2179 (a P2Y1 antagonist) were pre-injected before the pH 4.0 saline. Only MRS2179 significantly prevented the induction of TH, and the increased pTRPV1 ratio was also blocked in MRS2179 injected animals. Conclusion Collectively these data show that maintenance of an acidic environment in the ischemic hind paw of TIIP rats results in the phosphorylation of TRPV1 receptors via a PKC-dependent pathway, which leads to the development of TH mimicking what occurs in chronic ischemic patients with severe acidosis. More importantly, peripheral P2Y1 receptors play a pivotal role in this process, suggesting a novel peripheral mechanism underlying the development of TH in these patients. PMID:24401144

2014-01-01

98

Role of Myeloid-Derived Suppressor Cells in Amelioration of Experimental Autoimmune Hepatitis Following Activation of TRPV1 Receptors by Cannabidiol  

Microsoft Academic Search

BackgroundMyeloid-derived suppressor cells (MDSCs) are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis.Methodology\\/Principal FindingsPolyclonal activation of T

Venkatesh L. Hegde; Prakash S. Nagarkatti; Mitzi Nagarkatti

2011-01-01

99

Sensitisation of TRPV1 in rat sensory neurones by activation of SNSRs.  

PubMed

The novel sensory neurone specific receptor (SNSR) family of G-protein coupled receptors are activated by non-opiate fragments of opioid precursor peptides. SNSRs are expressed in nociceptors, and SNSR agonists have been found to cause sensitisation to painful stimuli in vivo. We explored the basis of sensitisation caused by SNSR agonists in sensory neurones by investigating the effect of the SNSR-selective agonist bovine adrenal medulla peptide 8-22 (BAM (8-22)) on gating of the heat and capsaicin-sensitive ion channel TRPV1. Using calcium imaging we found that BAM (8-22) caused sensitisation of the TRPV1 response in approximately 13% of DRG neurones. Sensitisation of TRPV1 in a similar proportion of neurones was observed using whole-cell patch clamping. The PKC-specific inhibitor Ro-31-8220 reduced but did not completely abolish sensitisation, while the protein kinase A inhibitor H-89 was without significant effect. No translocation of the PKC delta, epsilon and zeta isoforms to the cell membrane was observed in response to BAM (8-22). These observations implicate PKC in the sensitisation of TRPV1, but suggest that other pathways are also involved. PMID:17601667

Honan, Stuart Andrew; McNaughton, Peter Anthony

2007-07-01

100

The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes  

E-print Network

the hypothesis that certain cannabinoids directly inhibit peripheral capsaicin-sensitive nociceptive neurons or isolated skin biopsies rapidly and significantly inhibited capsaicin- activated inward currents and cyclosporine cyclophilin complex) abolished WIN- induced inhibition of capsaicin-evoked inward currents and neu

Price, Theodore

101

Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects  

Microsoft Academic Search

Transient receptor potential channels are implicated in thermosensation both in mammals and insects. The aim of our study\\u000a was to assess the effect of mammalian vanilloid receptor subtype 1 (TRPV1) agonist (capsaicin) and antagonist (capsazepine)\\u000a on insect behavioral thermoregulation. We tested behavioral thermoregulation of mealworms larvae intoxicated with capsaicin\\u000a and capsazepine in two concentrations (10?7 and 10?4 M) in a thermal

Justyna Olszewska; Eugenia T?gowska

102

The C-type Natriuretic Peptide Induces Thermal Hyperalgesia Through a Non-canonical G??-dependent Modulation of TRPV1 Channel  

PubMed Central

Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain largely unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific G?i-??-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is co-expressed in TRPV1-expressing mouse DRG neurons. NPR-C can be co-immunoprecipitated with G?i, and CNP treatment induced translocation of PKC? to the plasma membrane of these neurons, which was inhibited by pertussis toxin pre-treatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons, and increased neuronal firing frequency, an effect that was absent in DRG neurons from TRPV1?/? mice. CNP-induced sensitization of TRPV1 activity was attenuated by pre-treatment of DRG neurons with the specific inhibitors of G??, PLC? or PKC, but not of PKA, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Further, CNP injection into mouse hind paw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of G?? or TRPV1, and was also absent in TRPV1?/? mice. Thus, our work identifies the G??-PLC?-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity. PMID:22933780

Loo, Lipin; Shepherd, Andrew J.; Mickle, Aaron D.; Lorca, Ramon A.; Shutov, Leonid; Usachev, Yuriy M.; Mohapatra, Durga P.

2012-01-01

103

Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers  

E-print Network

1 agonist capsaicin, QX-314 blocked sodium channels and inhibited ex- citability. Inhibition by co-applied QX-314 and capsaicin was restricted to neurons expressing TRPV1. Injection of QX-314 together with capsaicin into rat hindpaws produced a long-lasting (more than 2 h) increase in mechanical and thermal

Kharasch, Evan

104

The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli  

Microsoft Academic Search

Capsaicin, the main pungent ingredient in “hot” chili peppers, elicits burning pain by activating specific (vanilloid) receptors on sensory nerve endings. The cloned vanilloid receptor (VR1) is a cation channel that is also activated by noxious heat. Here, analysis of heat-evoked single channel currents in excised membrane patches suggests that heat gates VR1 directly. We also show that protons decrease

Makoto Tominaga; Michael J. Caterina; Annika B. Malmberg; Tobias A. Rosen; Heather Gilbert; Kate Skinner; Brigitte E. Raumann; Allan I. Basbaum; David Julius

1998-01-01

105

No relevant modulation of TRPV1-mediated trigeminal pain by intranasal carbon dioxide in healthy humans  

PubMed Central

Background Nasal insufflation of CO2 has been shown to exert antinociceptive respectively antihyperalgesic effects in animal pain models using topical capsaicin with activation of TRPV1-receptor positive nociceptive neurons. Clinical benefit from CO2 inhalation in patients with craniofacial pain caused by a putative activation of TRPV1 receptor positive trigeminal neurons has also been reported. These effects are probably mediated via an activation of TRPV1 receptor - positive neurons in the nasal mucosa with subsequent central inhibitory effects (such as conditioned pain modulation). In this study, we aimed to examine the effects of intranasal CO2 on a human model of craniofacial pain elicited by nasal application of capsaicin. Methods In a first experiment, 48 healthy volunteers without previous craniofacial pain received intranasal capsaicin to provoke trigeminal pain elicited by activation of TRVP1 positive nociceptive neurons. Then, CO2 or air was insufflated alternatingly into the nasal cavity at a flow rate of 1 l/min for 60 sec each. In the subsequent experiment, all participants were randomized into 2 groups of 24 each and received either continuous nasal insufflation of CO2 or placebo for 18:40 min after nociceptive stimulation with intranasal capsaicin. In both experiments, pain was rated on a numerical rating scale every 60 sec. Results Contrary to previous animal studies, the effects of CO2 on experimental trigeminal pain were only marginal. In the first experiment, CO2 reduced pain ratings only minimally by 5.3% compared to air if given alternatingly with significant results for the main factor GROUP (F1,47?=?4.438; p?=?0.041) and the interaction term TIME*GROUP (F2.6,121.2?=?3.3; p?=?0.029) in the repeated-measures ANOVA. However, these effects were abrogated after continuous insufflation of CO2 or placebo with no significant changes for the main factors or the interaction term. Conclusions Although mild modulatory effects of low-flow intranasal CO2 could be seen in this human model of TRPV-1 mediated activation of nociceptive trigeminal neurons, utility is limited as observed changes in pain ratings are clinically non-significant. PMID:23574808

2013-01-01

106

Unravelling the Mystery of Capsaicin: A Tool to Understand and Treat Pain  

PubMed Central

A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes. PMID:23023032

Brock, Christina; Olesen, Anne Estrup; Andresen, Trine; Nilsson, Matias; Dickenson, Anthony H.

2012-01-01

107

Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs.  

PubMed

Although previous reports have suggested that P2Y1 receptors (P2Y1Rs) are involved in cutaneous nociceptive signaling, it remains unclear how P2Y1Rs contribute to peripheral sensitization. The current study was designed to delineate the role of peripheral P2Y1Rs in pain and to investigate potential linkages to mitogen-activated protein kinase (MAPK) in DRGs and Transient Receptor Potential Vanilloid 1 (TRPV1) expression in a rodent inflammatory pain model. Following injection of 2% carrageenan into the hind paw, expressions of P2Y1 and TRPV1 and the phosphorylation rates of both p38 MAPK and ERK but not JNK were increased and peaked at day 2 post-injection. Blockade of peripheral P2Y1Rs by the P2Y1R antagonist, MRS2500 injection (i.pl, D0 to D2) significantly reduced the induction of thermal hyperalgesia, but not mechanical allodynia. Simultaneously, MRS2500 injections suppressed upregulated TRPV1 expression and DRG p38 phosphorylation, while pERK signaling was not affected. Furthermore, inhibition of p38 activation in the DRGs by SB203580 (a p38 inhibitor, i.t, D0 to D2) prevented the upregulation of TRPV1 and a single i.t injection of SB203580 reversed the established thermal hyperalgesia, but not mechanical allodynia. Lastly, to identify the mechanism of action of P2Y1Rs, we repeatedly injected the P2Y1 agonist, MRS2365 into the naďve rat's hind paw and observed a dose-dependent increase in TRPV1 expression and p38 MAPK phosphorylation. These data demonstrate a sequential role for P2Y1R, p38 MAPK and TRPV1 in inflammation-induced thermal hyperalgesia; thus, peripheral P2Y1Rs activation modulates p38 MAPK signaling and TRPV1 expression, which ultimately leads to the induction of thermal hyperalgesia. PMID:24333674

Kwon, Soon-Gu; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Choi, Sheu-Ran; Choi, Hoon-Seong; Kang, Suk-Yun; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern

2014-04-01

108

A Randomised Trial Evaluating the Effects of the TRPV1 Antagonist SB705498 on Pruritus Induced by Histamine, and Cowhage Challenge in Healthy Volunteers  

PubMed Central

Background Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel widely expressed in skin tissues, and peripheral sensory nerve fibres. Activation of TRPV1 releases neuropeptides; the resulting neurogenic inflammation is believed to contribute to the development of pruritus. A TRPV1 antagonist has the potential to perform as an anti-pruritic agent. SB705498 is a TRPV1 antagonist that has demonstrated in vitro activity against cloned TRPV1 human receptors and when orally administered has demonstrated pharmacodynamic activity in animal models and clinical studies. Objectives To select a topical dose of SB705498 using the TRPV1 agonist capsaicin; to confirm engagement of the TRPV1 antagonistic action of SB705498 and assess whether the dose selected has an effect on itch induced by two challenge agents. Methods A clinical study was conducted in 16 healthy volunteers to assess the effects of 3 doses of SB705498 on skin flare induced by capsaicin. Subjects with a robust capsaicin response were chosen to determine if the selected topical formulation of SB705498 had an effect on challenge agent induced itch. Results Following capsaicin challenge the greatest average reduction in area of flare was seen for the 3% formulation. This dose was selected for further investigation. Itch intensity induced by two challenge agents (cowhage and histamine) was assessed on the Computerised Visual Analogue Scale. The difference in average itch intensity (Weighted Mean Over 15 Mins) between the 3% dose of SB705498 and placebo for the cowhage challenge was ?0.64, whilst the histamine challenge showed on average a ?4.65 point change. Conclusions The 3% topical formulation of SB705498 cream was clinically well tolerated and had target specific pharmacodynamic activity. However there were no clinically significant differences on pruritus induced by either challenge agent in comparison to placebo. SB705498 is unlikely to be of symptomatic benefit for histaminergic or non-histaminergic induced itch. Trial Registration ClinicalTrials.gov NCT01673529 PMID:25047038

Gibson, Rachel A.; Robertson, Jon; Mistry, Harshna; McCallum, Stewart; Fernando, Disala; Wyres, Melody; Yosipovitch, Gil

2014-01-01

109

TLR4 enhances histamine-mediated pruritus by potentiating TRPV1 activity  

PubMed Central

Background Recent studies have indicated that Toll-like receptor 4 (TLR4), a pathogen-recognition receptor that triggers inflammatory signals in innate immune cells, is also expressed on sensory neurons, implicating its putative role in sensory signal transmission. However, the possible function of sensory neuron TLR4 has not yet been formally addressed. In this regard, we investigated the role of TLR4 in itch signal transmission. Results TLR4 was expressed on a subpopulation of dorsal root ganglia (DRG) sensory neurons that express TRPV1. In TLR4-knockout mice, histamine-induced itch responses were compromised while TLR4 activation by LPS did not directly elicit an itch response. Histamine-induced intracellular calcium signals and inward currents were comparably reduced in TLR4-deficient sensory neurons. Reduced histamine sensitivity in the TLR4-deficient neurons was accompanied by a decrease in TRPV1 activity. Heterologous expression experiments in HEK293T cells indicated that TLR4 expression enhanced capsaicin-induced intracellular calcium signals and inward currents. Conclusions Our data show that TLR4 on sensory neurons enhances histamine-induced itch signal transduction by potentiating TRPV1 activity. The results suggest that TLR4 could be a novel target for the treatment of enhanced itch sensation. PMID:25139109

2014-01-01

110

Capsaicin Induces "Brite" Phenotype in Differentiating 3T3-L1 Preadipocytes  

PubMed Central

Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPAR? and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and induces brown-like phenotype whereas higher doses. PMID:25072597

Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

2014-01-01

111

Capsaicin, transient receptor potential (trp) protein subfamilies and the particular relationship between capsaicin receptors and small primary sensory neurons  

Microsoft Academic Search

A number of subfamilies of the capsaicin receptor, collectively called TRP, have been reported since the discovery of vanilloid\\u000a receptor 1 (VR1). The term ‘TRP’ is derived from ‘transient receptor potential’, which means the transient and rapid defect\\u000a of reaction following long stimulation with light in the photoreceptor cells of mutant Drosophila. The common features of\\u000a TRP family members are

Hiroshi Nakagawa; Akio Hiura

2006-01-01

112

Capsaicin-sensitive cough receptors in lower airway are responsible for cough hypersensitivity in patients with upper airway cough syndrome  

PubMed Central

Background Cough hypersensitivity may be related to the pathogenesis of upper airway cough syndrome (UACS). The purpose of the study was to investigate the role of capsaicin-sensitive cough receptors on the laryngopharynx and lower airway in the cough hypersensitivity of patients with UACS. Material/Methods 59 patients with UACS, 33 patients with rhinitis/sinusitis without cough, and 39 healthy volunteers were recruited for the study. Cough threshold C5, defined as the lowest concentration of capsaicin required for the induction of ?5 coughs upon esposure to capsaicin, were determined at baseline and after laryngopharngeal anesthesia with lidocaine in all the subjects. After induced sputum cytology, the concentrations of histamine, prostaglandin E2 (PGE2), and calcitonin-gene-related peptide (CGPR) in the induced sputum were measured by ELISA. In 15 patients with UACS, sputum cytology and measurement of the above mediators were repeated after successful therapy. Results C5 response to capsaicin was significantly lower in the UACS group than in the rhinitis/sinusitis group and healthy control groups [3.9 (0.98, 7.8) ?mol/L vs. 7.8 (3.9, 93.75) ?mol/L vs. 31.2 (15.6, 62.5) ?mol/L, H=40.12, P=0.000]. Laryngopharngeal anesthesia with lidocaine dramatically increased C5 to capsaicin in the subjects of all 3 groups by a similar degree, but the increase in the UACS group was still the lowest, with an increased level of histamine, PGE2, and CGRP in the induced sputum. When cough resolved with the treatment of cetirizine alone or in combination with erythromycin, the levels of CGRP and histamine in the induced sputum decreased significantly in 15 patients with UACS, with no obvious change in cell differential or concentration of PGE2 in the induced sputum. Conclusions Laryngeal TRPV1 plays an important role in cough sensitivity, but sensitization of capsaicin-sensitive cough receptors in the lower airway may be more responsible for the cough hypersensitivity in patients with UACS. PMID:24296694

Yu, Li; Xu, Xianghuai; Wang, Lan; Yang, Zhongmin; Lü, Hanjing; Qiu, Zhongmin

2013-01-01

113

Lipopolysaccharide-induced Pulpitis Up-regulates TRPV1 in Trigeminal Ganglia  

PubMed Central

Tooth pain often accompanies pulpitis. Accumulation of lipopolysaccharides (LPS), a product of Gram-negative bacteria, is associated with painful clinical symptoms. However, the mechanisms underlying LPS-induced tooth pain are not clearly understood. TRPV1 is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and hyperalgesia under inflammation or injury. Although TRPV1 is expressed in pulpal afferents, it is not known whether the application of LPS to teeth modulates TRPV1 in trigeminal nociceptors. By assessing the levels of protein and transcript of TRPV1 in mouse trigeminal ganglia, we demonstrate that dentinal application of LPS increases the expression of TRPV1. Our results suggest that the up-regulation of TRPV1 in trigeminal nociceptors following bacterial infection could contribute to hyperalgesia under pulpitis conditions. PMID:21712529

Chung, M.-K.; Lee, J.; Duraes, G.; Ro, J.Y.

2011-01-01

114

TRPV1 signaling: mechanistic understanding and therapeutic potential.  

PubMed

Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons. TRPV1 is acting as an important signal integrator in sensory nociceptors under physiological and pathological conditions including inflammation and neuropathy. Because of its integrative signaling properties in response to inflammatory stimuli, TRPV1 agonists and antagonists are predicted to inhibit the sensation of ongoing or burning pain that is reported by patients suffering from chronic pain, therefore offering an unprecedented advantage in selectively inhibiting painful signaling from where it is initiated. In this article, we firstly summarize recent advances in the understanding of the role of TRPV1 in pain signaling, including a overview of clinical pharmacological trials using TRPV1 agonists and antagonists. Finally, we also present an update on the mechanistic understanding and controlling of hyperthermia caused by TRPU1 antagonists, and provide perspective for future study. PMID:21671876

Xia, Rong; Samad, Tarek A; Btesh, Joan; Jiang, Lin-Hua; Kays, Ibrahim; Stjernborg, Louise; Dekker, Niek

2011-01-01

115

TRPV1: A Target for Next Generation Analgesics  

PubMed Central

Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects. PMID:19305794

Premkumar, Louis S; Sikand, Parul

2008-01-01

116

TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release.  

PubMed

Vagal sensory afferents innervating airways and abdominal tissues express TRPV1 and TRPA1, two depolarizing calcium permeable ion channels playing a major role in sensing environmental irritants and endogenous metabolites which cause neuropeptide release and neurogenic inflammation. Here we have studied axonal chemosensitivity and control of neuropeptide release from the isolated rat and mouse vagus nerve by using prototypical agonists of these transduction channels - capsaicin, mustard oil and the specific endogenous activators, anandamide (methyl arachidonyl ethanolamide, mAEA), and acrolein, respectively. Capsaicin evoked iCGRP release from the rat vagus nerve with an EC?? of 0.12 ?M. Co-application of mAEA had a dual effect: nanomolar concentrations of mAEA (0.01 ?M) significantly reduced capsaicin-evoked iCGRP release while concentrations ? 1 ?M mAEA had sensitizing effects. Only 100 ?M mAEA directly augmented iCGRP release by itself. In the mouse, 310 ?M mAEA increased release in wildtype and TRPA1-/- mice which could be inhibited by capsazepine (10 ?M) and was completely absent in TRPV1-/- mice. CB1-/- and CB1/CB2 double -/- mice equally displayed increased sensitivity to mAEA (100 ?M) and a sensitizing effect to capsaicin, in contrast to wildtypes. Acrolein and mustard oil (MO)--at ?M concentrations--induced a TRPA1-dependent iCGRP release; however, millimolar concentrations of mustard oil (>1mM) evoked iCGRP release by activating TRPV1, confirming recent evidence for TRPV1 agonism of high mustard oil concentrations. Taken together, we present evidence for functional expression of excitatory TRPV1, TRPA1, and inhibitory CB1 receptors along the sensory fibers of the vagus nerve which lend pathophysiological relevance to the axonal membrane and the control of neuropeptide release that may become important in cases of inflammation or neuropathy. Sensitization and possible ectopic discharge may contribute to the development of autonomic dysregulation in visceral tissues that are innervated by the vagus nerve. PMID:21868092

Weller, K; Reeh, P W; Sauer, S K

2011-12-01

117

Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels.  

PubMed

Glutathione (GSH) and N-acetylcysteine (NAC) are thiol-containing antioxidants, and also act through a direct reaction with free radicals. Transient receptor potential vanilloid 1 (TRPV1) is the principal transduction channel serving as a polymodal detector. Despite the importance of oxidative stress in pain sensitivity, its role in TRPV1 modulation is poorly understood. NAC may also have a regulator role on TRPV1 channel activity in the dorsal root ganglion (DRG) neuron. Therefore, we tested the effects of GSH and NAC on TRPV1 channel current, Ca(2+) influx, oxidative stress and caspase activity in the DRG of mice. DRG neurons were freshly isolated from mice and the neurons were incubated for 6 and 24h with buthionine sulfoximine (BSO). Pretreatment of cultured DRG neurons with NAC, results in a protection against oxidative damages. This neuroprotection is associated with the attenuation of a Ca(2+) influx triggered by oxidative agents such as H2O2, 5,5'-dithiobis-(2-nitrobenzoic acid) and GSH depletion via BSO. Here, we demonstrate the contribution of cytosolic factors (related to thiol group depletion) on the activation of TRPV1 channels in this mechanism. TRPV1 channels are activated by various agents including capsaicin (CAP), the pungent component of hot chili peppers, and are blocked by capsazepine. An oxidative environment also increased CAP-evoked TRPV1 currents in the neurons. When NAC and GSH were included in the patch pipette as well as extracellularly in the chamber, TRPV1 channels were not activated by CAP and H2O2. TRPV1 inhibitors, 2-aminoethyl diphenylborinate and N-(p-amylcinnamoyl)anthranilic acid strongly reduced BSO-induced oxidative toxicity and Ca(2+) influx, in a manner similar to pretreatment with NAC and GSH. Caspase-3 and -9 activities of all groups were not changed by the agonists or antagonists. In conclusion, in our experimental model, TRPV1 channels are involved in the oxidative stress-induced neuronal death, and negative modulation of this channel activity by GSH and NAC pretreatment may account for their neuroprotective activity against oxidative stress. PMID:23545271

Naz?ro?lu, M; Ci?, B; Ozgül, C

2013-07-01

118

Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines.  

PubMed

The flavonoid vitexin (1) is a flavone C-glycoside (apigenin-8-C-?-D-glucopyranoside) present in several medicinal and other plants. Plant extracts containing 1 are reported to possess antinociceptive, anti-inflammatory, and antioxidant activities. However, the only evidence that 1 exhibits antinociceptive activity was demonstrated in the acetic acid-induced writhing model. Therefore, the analgesic effects and mechanisms of 1 were evaluated. In the present investigation, intraperitoneal treatment with 1 dose-dependently inhibited acetic acid-induced writhing. Furthermore, treatment with 1 also inhibited pain-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), capsaicin (an agonist of transient receptor potential vanilloid 1, TRPV1), and both phases of the formalin test. It was also observed that inhibition of carrageenan-, capsaicin-, and chronic CFA-induced mechanical and thermal hyperalgesia occurred. Regarding the antinociceptive mechanisms of 1, it prevented the decrease of reduced glutathione levels, ferric-reducing ability potential, and free-radical scavenger ability, inhibited the production of hyperalgesic cytokines such as TNF-?, IL-1?, IL-6, and IL-33, and up-regulated the levels of the anti-hyperalgesic cytokine IL-10. These results demonstrate that 1 exhibits an analgesic effect in a variety of inflammatory pain models by targeting TRPV1 and oxidative stress and by modulating cytokine production. PMID:23742617

Borghi, Sergio M; Carvalho, Thacyana T; Staurengo-Ferrari, Larissa; Hohmann, Miriam S N; Pinge-Filho, Phileno; Casagrande, Rubia; Verri, Waldiceu A

2013-06-28

119

‘TRPing’ Synaptic Ribbon Function in the Rat Pineal Gland: Neuroendocrine Regulation Involves the Capsaicin Receptor TRPV1  

Microsoft Academic Search

Synaptic ribbons (SRs) are presynaptic structures thought to regulate and facilitate multivesicular release. In the pineal gland, they display a circadian rhythm with higher levels at night paralleling melatonin synthesis. To gain more insight into the processes involved and the possible functions of these structures, a series of experiments were conducted in rodents. We studied the regional distribution of a

Stefan Reuss; Ursula Disque-Kaiser; Uta Binzen; Wolfgang Greffrath; Elmar Peschke

2010-01-01

120

A re-evaluation of 9-HODE activity at TRPV1 channels in comparison with anandamide: enantioselectivity and effects at other TRP channels and in sensory neurons  

PubMed Central

Background and Purpose Two oxidation products of linoleic acid, 9- and 13-hydroxy-octadecadienoic acids (HODEs), have recently been suggested to act as endovanilloids, that is, endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) channels, thereby contributing to inflammatory hyperalgesia in rats. However, HODE activity at rat TRPV1 in comparison with the best established endovanilloid, anandamide, and its enantioselectivity and selectivity towards other TRP channels that are also abundant in sensory neurons have never been investigated. Experimental Approach We studied the effect of 9(R)-HODE, 9(S)-HODE, (+/–)13-HODE, 15(S)-hydroxyanandamide and anandamide on [Ca2+]i in HEK-293 cells stably expressing the rat or human recombinant TRPV1, or rat recombinant TRPV2, TRPA1 or TRPM8, and also the effect of 9(S)-HODE in rat dorsal root ganglion (DRG) neurons by calcium imaging. Key Results Anandamide and 15(S)-hydroxyanandamide were the most potent endovanilloids at human TRPV1, whereas 9(S)-HODE was approximately threefold less efficacious and 75- and 3-fold less potent, respectively, and did not perform much better at rat TRPV1. The 9(R)-HODE and (+/–)13-HODE were almost inactive at TRPV1. Unlike anandamide and 15(S)-hydroxyanandamide, all HODEs were very weak at desensitizing TRPV1 to the action of capsaicin, but activated rat TRPV2 [only (+/–)13-HODE] and rat TRPA1, and antagonized rat TRPM8, at concentrations higher than those required to activate TRPV1. Finally, 9(S)-HODE elevated [Ca2+]i in DRG neurons almost exclusively in capsaicin-sensitive cells but only at concentrations between 25 and 100 ?M. Conclusions and Implications The present data suggest that HODEs are less important endovanilloids than anandamide. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22861649

De Petrocellis, Luciano; Schiano Moriello, Aniello; Imperatore, Roberta; Cristino, Luigia; Starowicz, Katarzyna; Di Marzo, Vincenzo

2012-01-01

121

TRPA1 receptors in cough  

Microsoft Academic Search

In the early 1990’s ion channels of the Transient Receptor Potential (TRP) class were implicated in the afferent sensory loop of the cough reflex and in the heightened cough sensitivity seen in disease. Agonists of the TRPV1 capsaicin receptor such as vanilloids and protons were demonstrated to be amongst the most potent chemical stimuli which cause cough. However, more recently,

Megan S. Grace; Maria G. Belvisi

2011-01-01

122

The capsaicin receptor: a heat-activated ion channel in the pain pathway  

Microsoft Academic Search

Capsaicin, the main pungent ingredient in ‘hot’ chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system. We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons. This receptor is a non-selective cation

Michael J. Caterina; Mark A. Schumacher; Makoto Tominaga; Tobias A. Rosen; Jon D. Levine; David Julius

1997-01-01

123

Capsaicin inhibits Porphyromonas gingivalis growth, biofilm formation, gingivomucosal inflammatory cytokine secretion, and in vitro osteoclastogenesis.  

PubMed

The prevention and treatment of periodontitis requires not only the control of causative pathogens, especially Porphyromonas gingivalis, but also the regulation of inflammatory immune response. Investigating auxiliary drugs for periodontitis during conventional treatments is, thus, quite important. Capsaicin, an agonist for the vanilloid receptor subtype 1 (TRPV1), due to its bacteriostatic activity against Gram-negative bacteria and anti-inflammatory effects, appears to be a promising drug. In this work, the antimicrobial activity of capsaicin against P. gingivalis and biofilm formation, inflammatory cytokine levels in experimental periodontitis, osteoclast precursor proliferation, and osteoclastogenesis in vitro were fully investigated. The results showed that capsaicin inhibited P. gingivalis growth with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 16 and 64 mg/l, respectively. Capsaicin also inhibited P. gingivalis biofilm formation, with minimum biofilm inhibition concentrations MBIC50 and MBIC90 of 16 and 32 mg/l, respectively, and reduced pre-formed biofilms' viability with a minimum biofilm reduction concentration MBRC50 of 64 mg/l, as demonstrated by confocal laser scanning microscopy. In experimental periodontitis, except for IL-10, TNF-?, IL-1?, IL-6, IL-12, and iNOS were depressed after capsaicin treatment. Moreover, capsaicin also suppressed osteoclast precursor proliferation and osteoclastogenesis, as demonstrated by NF-?B p65. However, this favorable effect was attenuated by the TRPV1 antagonist, camphor. It, thus, suggests that capsaicin is a potential drug for the auxiliary treatment of periodontitis. TRPV1 activation may involve in beneficial roles of capsaicin on periodontitis. PMID:23955115

Zhou, Y; Guan, X; Zhu, W; Liu, Z; Wang, X; Yu, H; Wang, H

2014-02-01

124

Capsazepine, a TRPV1 antagonist, sensitizes colorectal cancer cells to apoptosis by TRAIL through ROS-JNK-CHOP-mediated upregulation of death receptors.  

PubMed

A major problem in clinical trials of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as cancer therapy is the development of resistance to TRAIL. Therefore, agents that can overcome TRAIL resistance have great therapeutic potential. In this study, we evaluated capsazepine, a TRPV1 antagonist, for its ability to sensitize human colon cancer cells to TRAIL-induced apoptosis. Capsazepine potentiated the effect of TRAIL, as shown by its effect on intracellular esterase activity; activation of caspase-8,-9, and -3; and colony-formation assay. Capsazepine induced death receptors (DRs) DR5 and DR4, but not decoy receptors, at the transcriptional level and in a non-cell-type-specific manner. DR induction was dependent on CCAAT/enhancer-binding protein homologous protein (CHOP), as shown by (a) the induction of CHOP by capsazepine and (b) the abolition of DR- and potentiation of TRAIL-induced apoptosis by CHOP gene silencing. CHOP induction was also reactive oxygen species (ROS)-dependent, as shown by capsazepine's ability to induce ROS and by the quenching of ROS by N-acetylcysteine or glutathione, which prevented induction of CHOP and DR5 and consequent sensitization to TRAIL. Capsazepine's effects appeared to be mediated via JNK, as shown by capsazepine's ability to induce JNK and by the suppression of both CHOP and DR5 activation by inhibition of JNK. Furthermore, ROS sequestration abrogated the activation of JNK. Finally, capsazepine downregulated the expression of various antiapoptotic proteins (e.g., cFLIP and survivin) and increased the expression of proapoptotic proteins (e.g., Bax and p53). Together, our results indicate that capsazepine potentiates the apoptotic effects of TRAIL through downregulation of cell survival proteins and upregulation of death receptors via the ROS-JNK-CHOP-mediated pathway. PMID:22922338

Sung, Bokyung; Prasad, Sahdeo; Ravindran, Jayaraj; Yadav, Vivek R; Aggarwal, Bharat B

2012-11-15

125

Discovery of Novel TRPV1 Ligands Bull. Korean Chem. Soc. 2010, Vol. 31, No. 6 1501 DOI 10.5012/bkcs.2010.31.6.1501  

E-print Network

OH O OH O NH O NH (d) Figure 1. Structural feature of TRPV1 agonist. (a) 12(S)-HPETE (b) capsaicin (c) capsaicinoid. (d) Overlay of Ca2+ -influx agonists produced by GASP alignment. 12(S)-HPETE; green, Capsaicin capsaicin and resinifera- toxin (RTX), have been studied clinically as potential treat- ments

Suh, Young-Ger

126

Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner.  

PubMed

Hyperalgesia is a cardinal symptom of opioid withdrawal. The transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated ion channel expressed on sensory neurons responding to noxious heat, protons, and chemical stimuli such as capsaicin. TRPV1 can be inhibited via ?-opioid receptor (MOR)-mediated reduced activity of adenylyl cyclases (ACs) and decreased cyclic adenosine monophosphate (cAMP) levels. In contrast, opioid withdrawal following chronic activation of MOR uncovers AC superactivation and subsequent increases in cAMP and protein kinase A (PKA) activity. Here we investigated (1) whether an increase in cAMP during opioid withdrawal increases the activity of TRPV1 and (2) how opioid withdrawal modulates capsaicin-induced nocifensive behavior in rats. We applied whole-cell patch clamp, microfluorimetry, cAMP assays, radioligand binding, site-directed mutagenesis, and behavioral experiments. Opioid withdrawal significantly increased cAMP levels and capsaicin-induced TRPV1 activity in both transfected human embryonic kidney 293 cells and dissociated dorsal root ganglion (DRG) neurons. Inhibition of AC and PKA, as well as mutations of the PKA phosphorylation sites threonine 144 and serine 774, prevented the enhanced TRPV1 activity. Finally, capsaicin-induced nocifensive behavior was increased during opioid withdrawal in vivo. In summary, our results demonstrate an increased activity of TRPV1 in DRG neurons as a new mechanism contributing to opioid withdrawal-induced hyperalgesia. PMID:23398938

Spahn, Viola; Fischer, Oliver; Endres-Becker, Jeannette; Schäfer, Michael; Stein, Christoph; Zöllner, Christian

2013-04-01

127

Nitro-oleic acid desensitizes TRPA1 and TRPV1 agonist responses in adult rat DRG neurons.  

PubMed

Nitro-oleic acid (OA-NO2), an electrophilic fatty acid nitroalkene byproduct of redox reactions, activates transient receptor potential ion channels (TRPA1 and TRPV1) in primary sensory neurons. To test the possibility that signaling actions of OA-NO2 might modulate TRP channels, we examined: (1) interactions between OA-NO2 and other agonists for TRPA1 (allyl-isothiocyanate, AITC) and TRPV1 (capsaicin) in rat dissociated dorsal root ganglion cells using Ca(2+) imaging and patch clamp techniques and (2) interactions between these agents on sensory nerves in the rat hindpaw. Ca(2+) imaging revealed that brief application (15-30 s) of each of the three agonists induced homologous desensitization. Heterologous desensitization also occurred when one agonist was applied prior to another agonist. OA-NO2 was more effective in desensitizing the response to AITC than the response to capsaicin. Prolonged exposure to OA-NO2 (20 min) had a similar desensitizing effect on AITC or capsaicin. Homologous and heterologous desensitizations were also demonstrated with patch clamp recording. Deltamethrin, a phosphatase inhibitor, reduced the capsaicin or AITC induced desensitization of OA-NO2 but did not suppress the OA-NO2 induced desensitization of AITC or capsaicin, indicating that heterologous desensitization induced by either capsaicin or AITC occurs by a different mechanism than the desensitization produced by OA-NO2. Subcutaneous injection of OA-NO2 (2.5mM, 35 ?l) into a rat hindpaw induced delayed and prolonged nociceptive behavior. Homologous desensitization occurred with AITC and capsaicin when applied at 15 minute intervals, but did not occur with OA-NO2 when applied at a 30 min interval. Pretreatment with OA-NO2 reduced AITC-evoked nociceptive behaviors but did not alter capsaicin responses. These results raise the possibility that OA-NO2 might be useful clinically to reduce neurogenic inflammation and certain types of painful sensations by desensitizing TRPA1 expressing nociceptive afferents. PMID:24212047

Zhang, Xiulin; Koronowski, Kevin B; Li, Lu; Freeman, Bruce A; Woodcock, Stephen; de Groat, William C

2014-01-01

128

The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4(+) T cells.  

PubMed

TRPV1 is a Ca(2+)-permeable channel studied mostly as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here we found that TRPV1 was functionally expressed in CD4(+) T cells, where it acted as a non-store-operated Ca(2+) channel and contributed to T cell antigen receptor (TCR)-induced Ca(2+) influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promoted colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4(+) T cells recapitulated the phenotype of mouse Trpv1(-/-) CD4(+) T cells. Our findings suggest that inhibition of TRPV1 could represent a new therapeutic strategy for restraining proinflammatory T cell responses. PMID:25282159

Bertin, Samuel; Aoki-Nonaka, Yukari; de Jong, Petrus Rudolf; Nohara, Lilian L; Xu, Hongjian; Stanwood, Shawna R; Srikanth, Sonal; Lee, Jihyung; To, Keith; Abramson, Lior; Yu, Timothy; Han, Tiffany; Touma, Ranim; Li, Xiangli; González-Navajas, José M; Herdman, Scott; Corr, Maripat; Fu, Guo; Dong, Hui; Gwack, Yousang; Franco, Alessandra; Jefferies, Wilfred A; Raz, Eyal

2014-11-01

129

Prolactin regulates TRPV1, TRPA1, and TRPM8 in sensory neurons in a sex-dependent manner: Contribution of prolactin receptor to inflammatory pain  

PubMed Central

Prolactin (PRL) is a hormone produced in the anterior pituitary but also synthesized extrapituitary where it can influence diverse cellular processes, including inflammatory responses. Females experience greater pain in certain inflammatory conditions, but the contribution of the PRL system to sex-dependent inflammatory pain is unknown. We found that PRL regulates transient receptor potential (TRP) channels in a sex-dependent manner in sensory neurons. At >20 ng/ml, PRL sensitizes TRPV1 in female, but not male, neurons. This effect is mediated by PRL receptor (PRL-R). Likewise, TRPA1 and TRPM8 were sensitized by 100 ng/ml PRL only in female neurons. We showed that complete Freund adjuvant (CFA) upregulated PRL levels in the inflamed paw of both male and female rats, but levels were higher in females. In contrast, CFA did not change mRNA levels of long and short PRL-R in the dorsal root ganglion or spinal cord. Analysis of PRL and PRL-R knockout (KO) mice demonstrated that basal responses to cold stimuli were only altered in females, and with no significant effects on heat and mechanical responses in both sexes. CFA-induced heat and cold hyperalgesia were not changed in PRL and PRL-R KO compared with wild-type (WT) males, whereas significant reduction of heat and cold post-CFA hyperalgesia was detected in PRL and PRL-R KO females. Attenuation of CFA-induced mechanical allodynia was observed in both PRL and PRL-R KO females and males. Thermal hyperalgesia in PRL KO females was restored by administration of PRL into hindpaws. Overall, we demonstrate a sex-dependent regulation of peripheral inflammatory hyperalgesia by the PRL system. PMID:24022869

Patil, Mayur J.; Ruparel, Shivani B.; Henry, Michael A.

2013-01-01

130

Cough reflex and oral chemesthesis induced by capsaicin and capsiate in healthy never-smokers  

Microsoft Academic Search

BACKGROUND: Many tussive agents are components of foods, but little is known about the relationship between cough reflex and oral chemesthesis sensitivities. We investigated the relationships between cough reflex and oral chemesthesis in individuals using two transient receptor potential vanilloid 1 (TRPV1) agonists with different potencies: capsaicin and capsiate. METHODS: Twenty-eight healthy never-smokers were allocated to evaluate cough and oral

Miyako Yamasaki; Satoru Ebihara; Takae Ebihara; Shannon Freeman; Shinsuke Yamanda; Masanori Asada; Motoki Yoshida; Hiroyuki Arai

2007-01-01

131

17 Estradiol Activates Estrogen Receptor  Signalling and Inhibits Transient Receptor Potential Vanilloid Receptor 1 Activation by Capsaicin in Adult Rat Nociceptor Neurons  

Microsoft Academic Search

There is mounting evidence that estrogens act directly on the nervous system to affect the severity of pain. Estrogen recep- tors (ERs) are expressed by sensory neurons, and in trigem- inalganglia,17-estradiolcanindirectlyenhancenociception by stimulating expression and release of prolactin, which in- creases phosphorylation of the nociceptor transducer tran- sient receptor potential vanilloid receptor 1 (TRPV1). Here, we show that 17-estradiol acts

Shenghong Xu; Ying Cheng; Janet R. Keast; Peregrine B. Osborne

2008-01-01

132

2-Aryl substituted pyridine C-region analogues of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides as highly potent TRPV1 antagonists.  

PubMed

A series of 2-aryl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed highly potent TRPV1 antagonism toward capsaicin comparable to previous lead 7. Among them, compound 9 demonstrated anti-allodynia in a mouse neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner. Docking analysis of 9 with our hTRPV1 homology model provided insight into its specific binding mode. PMID:25011915

Ryu, HyungChul; Seo, Sejin; Kim, Myeong Seop; Kim, Mi-Yeon; Kim, Ho Shin; Ann, Jihyae; Tran, Phuong-Thao; Hoang, Van-Hai; Byun, Jieun; Cui, Minghua; Son, Karam; Sharma, Pankaz Kumar; Choi, Sun; Blumberg, Peter M; Frank-Foltyn, Robert; Bahrenberg, Gregor; Koegel, Babette-Yvonne; Christoph, Thomas; Frormann, Sven; Lee, Jeewoo

2014-08-15

133

Calcineurin is required for TRPV1-induced long-term depression of hippocampal interneurons.  

PubMed

Transient receptor potential vanilloid 1 (TRPV1) mediates a novel form of presynaptic long-term depression (LTD) in hippocampal interneurons. To date, while TRPV1 is currently being heavily studied in the PNS for its anti-nociceptive and anti-inflammatory properties, much less is known regarding TRPV1 signaling and function in the CNS, including the mechanism mediating hippocampal interneuron LTD. Here we performed whole-cell voltage clamp electrophysiology experiments on CA1 hippocampal interneurons from Sprague-Dawley male rats to identify this signaling mechanism. Because calcineurin is linked to multiple synaptic plasticity types, we investigated whether TRPV1 activates presynaptic calcineurin, which in turn induces LTD. To do so we employed calcineurin inhibitors cyclosporin A or FK-506. To determine the location of the calcineurin involved we either bath applied calcineurin antagonists, blocking calcineurin activity ubiquitously in the slice, presynaptically and postsynaptically, or applied antagonists to the internal solution to block calcineurin postsynaptically. Both calcineurin antagonists applied to the bath blocked TRPV1-dependent LTD, indicating calcineurin involvement in LTD. Because calcineurin antagonist applied to the internal solution did not block TRPV1-LTD, it suggests presynaptic calcineurin is required for LTD. Finally, because high frequency stimulus used to induce LTD could potentially activate receptors besides TRPV1, we confirmed that bath, but not intracellularly applied cyclosporin A, also blocked TRPV1 agonist-induced depression of CA1 interneurons. In conclusion, these data illustrate that presynaptic calcineurin activity is required for both TRPV1-induced LTD and TRPV1 agonist-induced depression. This finding is the first to demonstrate the TRPV1-induced signaling mechanism in CA1 hippocampus. PMID:22260796

Jensen, Tyron; Edwards, Jeffrey G

2012-02-29

134

Capsaicin sensitivity is associated with the expression of the vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia  

Microsoft Academic Search

A vanilloid receptor (VR1) has recently been cloned and shown to be a target for capsaicin, the excitotoxic component of capsicum peppers (Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. and Julius, D., Nature, 389 (1997) 816–824). The effects of capsaicin appear to be selective for a subset of sensory neurones which includes polymodal nociceptors. The present study

Rachel J. A Helliwell; Linda M McLatchie; Melanie Clarke; Janet Winter; Stuart Bevan; Peter McIntyre

1998-01-01

135

Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries.  

PubMed

Capsaicin, a pungent constituent from red chilli peppers, activates sensory nerve fibres via transient receptor potential vanilloid receptors type 1 (TRPV1) to release neuropeptides like calcitonin gene-related peptide (CGRP) and substance P. Capsaicin-sensitive nerves are widely distributed in human and porcine vasculature. In this study, we examined the mechanism of capsaicin-induced relaxations, with special emphasis on the role of CGRP, using various pharmacological tools. Segments of human and porcine proximal and distal coronary arteries, as well as cranial arteries, were mounted in organ baths. Concentration response curves to capsaicin were constructed in the absence or presence of the CGRP receptor antagonist olcegepant (BIBN4096BS, 1 microM), the neurokinin NK1 receptor antagonist L-733060 (0.5 microM), the voltage-sensitive calcium channel blocker ruthenium red (100 microM), the TRPV1 receptor antagonist capsazepine (5 microM), the nitric oxide synthetase inhibitor Nomega-nitro-L-arginine methyl ester HCl (L-NAME; 100 microM), the gap junction blocker 18alpha-glycyrrhetinic acid (10 microM), as well as the RhoA kinase inhibitor Y-27632 (1 microM). Further, we also used the K+ channel inhibitors 4-aminopyridine (1 mM), charybdotoxin (0.5 microM) + apamin (0.1 microM) and iberiotoxin (0.5 microM) + apamin (0.1 microM). The role of the endothelium was assessed by endothelial denudation in distal coronary artery segments. In distal coronary artery segments, we also measured levels of cyclic adenosine monophosphate (cAMP) after exposure to capsaicin, and in human segments, we also assessed the amount of CGRP released in the organ bath fluid after exposure to capsaicin. Capsaicin evoked concentration-dependent relaxant responses in precontracted arteries, but none of the above-mentioned inhibitors did affect these relaxations. There was no increase in the cAMP levels after exposure to capsaicin, unlike after (exogenously administered) alpha-CGRP. Interestingly, there were significant increases in CGRP levels after exposure to vehicle (ethanol) as well as capsaicin, although this did not induce relaxant responses. In conclusion, the capsaicin-induced relaxations of the human and porcine distal coronary arteries are not mediated by CGRP, NK1, NO, vanilloid receptors, voltage-sensitive calcium channels, K+ channels or cAMP-mediated mechanisms. Therefore, these relaxant responses to capsaicin are likely to be attributed to a non-specific, CGRP-independent mechanism. PMID:17295025

Gupta, Saurabh; Lozano-Cuenca, Jair; Villalón, Carlos M; de Vries, René; Garrelds, Ingrid M; Avezaat, Cees J J; van Kats, Jorge P; Saxena, Pramod R; MaassenVanDenBrink, Antoinette

2007-03-01

136

Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries  

PubMed Central

Capsaicin, a pungent constituent from red chilli peppers, activates sensory nerve fibres via transient receptor potential vanilloid receptors type 1 (TRPV1) to release neuropeptides like calcitonin gene-related peptide (CGRP) and substance P. Capsaicin-sensitive nerves are widely distributed in human and porcine vasculature. In this study, we examined the mechanism of capsaicin-induced relaxations, with special emphasis on the role of CGRP, using various pharmacological tools. Segments of human and porcine proximal and distal coronary arteries, as well as cranial arteries, were mounted in organ baths. Concentration response curves to capsaicin were constructed in the absence or presence of the CGRP receptor antagonist olcegepant (BIBN4096BS, 1 ?M), the neurokinin NK1 receptor antagonist L-733060 (0.5 ?M), the voltage-sensitive calcium channel blocker ruthenium red (100 ?M), the TRPV1 receptor antagonist capsazepine (5 ?M), the nitric oxide synthetase inhibitor N?-nitro-l-arginine methyl ester HCl (l-NAME; 100 ?M), the gap junction blocker 18?-glycyrrhetinic acid (10 ?M), as well as the RhoA kinase inhibitor Y-27632 (1 ?M). Further, we also used the K+ channel inhibitors 4-aminopyridine (1 mM), charybdotoxin (0.5 ?M)?+?apamin (0.1 ?M) and iberiotoxin (0.5 ?M)?+?apamin (0.1 ?M). The role of the endothelium was assessed by endothelial denudation in distal coronary artery segments. In distal coronary artery segments, we also measured levels of cyclic adenosine monophosphate (cAMP) after exposure to capsaicin, and in human segments, we also assessed the amount of CGRP released in the organ bath fluid after exposure to capsaicin. Capsaicin evoked concentration-dependent relaxant responses in precontracted arteries, but none of the above-mentioned inhibitors did affect these relaxations. There was no increase in the cAMP levels after exposure to capsaicin, unlike after (exogenously administered) ?-CGRP. Interestingly, there were significant increases in CGRP levels after exposure to vehicle (ethanol) as well as capsaicin, although this did not induce relaxant responses. In conclusion, the capsaicin-induced relaxations of the human and porcine distal coronary arteries are not mediated by CGRP, NK1, NO, vanilloid receptors, voltage-sensitive calcium channels, K+ channels or cAMP-mediated mechanisms. Therefore, these relaxant responses to capsaicin are likely to be attributed to a non-specific, CGRP-independent mechanism. PMID:17295025

Gupta, Saurabh; Lozano-Cuenca, Jair; Villalon, Carlos M.; de Vries, Rene; Garrelds, Ingrid M.; Avezaat, Cees J. J.; van Kats, Jorge P.; Saxena, Pramod R.

2007-01-01

137

TRPV1 acts as a synaptic protein and regulates vesicle recycling.  

PubMed

Electrophysiological studies demonstrate that transient receptor potential vanilloid subtype 1 (TRPV1) is involved in neuronal transmission. Although it is expressed in the peripheral as well as the central nervous system, the questions remain whether TRPV1 is present in synaptic structures and whether it is involved in synaptic processes. In the present study we gathered evidence that TRPV1 can be detected in spines of cortical neurons, that it colocalizes with both pre- and postsynaptic proteins, and that it regulates spine morphology. Moreover, TRPV1 is also present in biochemically prepared synaptosomes endogenously. In F11 cells, a cell line derived from dorsal-root-ganglion neurons, TRPV1 is enriched in the tips of elongated filopodia and also at sites of cell-cell contact. In addition, we also detected TRPV1 in synaptic transport vesicles, and in transport packets within filopodia and neurites. Using FM4-64 dye, we demonstrate that recycling and/or fusion of these vesicles can be rapidly modulated by TRPV1 activation, leading to rapid reorganization of filopodial structure. These data suggest that TRPV1 is involved in processes such as neuronal network formation, synapse modulation and release of synaptic transmitters. PMID:20483957

Goswami, Chandan; Rademacher, Nils; Smalla, Karl-Heinz; Kalscheuer, Vera; Ropers, Hans-Hilger; Gundelfinger, Eckart D; Hucho, Tim

2010-06-15

138

Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents.  

PubMed

The transient receptor potential vanilloid 1 (TRPV1) channel is the principal detector of noxious heat in the peripheral nervous system. TRPV1 is expressed in many nociceptors and is involved in heat-induced hyperalgesia and thermoregulation. The precise mechanism or mechanisms mediating the thermal sensitivity of TRPV1 are unknown. Here, we have shown that the oxidized linoleic acid metabolites 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE) are formed in mouse and rat skin biopsies by exposure to noxious heat. 9- and 13-HODE and their metabolites, 9- and 13-oxoODE, activated TRPV1 and therefore constitute a family of endogenous TRPV1 agonists. Moreover, blocking these substances substantially decreased the heat sensitivity of TRPV1 in rats and mice and reduced nociception. Collectively, our results indicate that HODEs contribute to the heat sensitivity of TRPV1 in rodents. Because oxidized linoleic acid metabolites are released during cell injury, these findings suggest a mechanism for integrating the hyperalgesic and proinflammatory roles of TRPV1 and linoleic acid metabolites and may provide the foundation for investigating new classes of analgesic drugs. PMID:20424317

Patwardhan, Amol M; Akopian, Armen N; Ruparel, Nikita B; Diogenes, Anibal; Weintraub, Susan T; Uhlson, Charis; Murphy, Robert C; Hargreaves, Kenneth M

2010-05-01

139

Mapping the Binding Site of TRPV1 on AKAP79: Implications for Inflammatory Hyperalgesia  

PubMed Central

Inflammation causes hyperalgesia, an enhanced sensitivity to noxious stimuli. Transient receptor potential vanilloid 1 (TRPV1), a thermo-TRP ion channel activated by painful levels of heat, is an important contributor because hyperalgesia is reduced when TRPV1 is either genetically deleted or pharmacologically blocked. Inflammatory mediators such as prostaglandin-E2 or bradykinin cause hyperalgesia by activating cellular kinases that phosphorylate TRPV1, a process that has recently been shown to rely on a scaffolding protein, AKAP79, to target the kinases to TRPV1. Here we use Förster resonance energy transfer, immunoprecipitation, and TRPV1 membrane trafficking experiments to identify a key region on AKAP79, between amino acids 326–336, which is responsible for its interaction with TRPV1. A peptide identical to this domain inhibited sensitization of TRPV1 in vitro, and when covalently linked to a TAT peptide to promote uptake across the cell membrane the peptide inhibited in vivo inflammatory hyperalgesia in mice. Critically, it did so without affecting pain thresholds in the absence of inflammation. These results suggest that antagonizing the TRPV1–AKAP79 interaction will be a useful strategy for inhibiting inflammatory hyperalgesia. PMID:23699529

Stott, Katherine; McNaughton, Peter A.

2014-01-01

140

Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca2+/NFAT pathway in airway epithelial cells.  

PubMed

The airway epithelium is exposed to a range of irritants in the environment that are known to trigger inflammatory response such as asthma. Transient receptor potential vanilloid 1 (TRPV1) is a Ca(2+)-permeable cation channel critical for detecting noxious stimuli by sensory neurons. Recently increasing evidence suggests TRPV1 is also crucially involved in the pathophysiology of asthma on airway epithelium in human. Here we report that in airway epithelial cells TRPV1 activation potently induces allergic cytokine thymic stromal lymphopoietin (TSLP) release. TSLP induction by protease-activated receptor (PAR)-2 activation is also partially mediated by TRPV1 channels. PMID:24931369

Jia, Xinying; Zhang, Hong; Cao, Xu; Yin, Yuxin; Zhang, Bo

2014-08-25

141

Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC.  

PubMed

The capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1), acts as a polymodal detector of pain-producing chemical and physical stimuli in sensory neurons. Hyperglycemia and hypoxia are two main phenomena in diabetes associated with several complications. Although many studies on streptozotocin-induced diabetic rats indicate that early diabetic neuropathy is associated with potentiation of TRPV1 activity in dorsal root ganglion neurons, its underlying mechanism and distinctive roles of hyperglycemia and hypoxia have not been completely clarified. Here, we show that hypoxic and high glucose conditions (overnight exposure) potentiate the TRPV1 activity without affecting TRPV1 expression in both native rat sensory neurons and human embryonic kidney-derived 293 cells expressing rat or human TRPV1. Surprisingly, hypoxia was found to be a more effective determinant than high glucose, and hypoxia-inducible factor-1 alpha (HIF-1?) seemed to be involved. In addition, high glucose enhanced TRPV1 sensitization only when high glucose existed together with hypoxia. The potentiation of TRPV1 was caused by its phosphorylation of the serine residues, and translocation of protein kinase C (PKC)? was clearly observed in the cells exposed to the hypoxic conditions in both cell types, which was inhibited by 2-methoxyestradiol, a HIF-1? inhibitor. These data suggest that hypoxia is a new sensitization mechanism for TRPV1, which might be relevant to diabetes-related complications, and also for other diseases that are associated with acute hypoxia. PMID:21376466

Ristoiu, Violeta; Shibasaki, Koji; Uchida, Kunitoshi; Zhou, Yiming; Ton, Bich-Hoai Thi; Flonta, Maria-Luiza; Tominaga, Makoto

2011-04-01

142

Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor  

Microsoft Academic Search

The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the ``pain'' pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43°C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in

M. J. Caterina; A. Leffler; A. B. Malmberg; W. J. Martin; J. Trafton; K. R. Petersen-Zeitz; M. Koltzenburg; A. I. Basbaum; D. Julius

2000-01-01

143

Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels  

PubMed Central

The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca2+-ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1-dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1-mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1-mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5-triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release. PMID:16107881

van der Stelt, Mario; Trevisani, Marcello; Vellani, Vittorio; De Petrocellis, Luciano; Schiano Moriello, Aniello; Campi, Barbara; McNaughton, Peter; Geppetti, Piero; Di Marzo, Vincenzo

2005-01-01

144

TRPV1 Gates Tissue Access and Sustains Pathogenicity in Autoimmune Encephalitis  

PubMed Central

Multiple sclerosis (MS) is a chronic progressive, demyelinating condition whose therapeutic needs are unmet, and whose pathoetiology is elusive. We report that transient receptor potential vanilloid-1 (TRPV1) expressed in a major sensory neuron subset, controls severity and progression of experimental autoimmune encephalomyelitis (EAE) in mice and likely in primary progressive MS. TRPV1?/? B6 congenics are protected from EAE. Increased survival reflects reduced central nervous systems (CNS) infiltration, despite indistinguishable T cell autoreactivity and pathogenicity in the periphery of TRPV1-sufficient and -deficient mice. The TRPV1+ neurovascular complex defining the blood-CNS barriers promoted invasion of pathogenic lymphocytes without the contribution of TRPV1-dependent neuropeptides such as substance P. In MS patients, we found a selective risk-association of the missense rs877610 TRPV1 single nucleotide polymorphism (SNP) in primary progressive disease. Our findings indicate that TRPV1 is a critical disease modifier in EAE, and we identify a predictor of severe disease course and a novel target for MS therapy. PMID:23689362

Paltser, Geoffrey; Liu, Xue Jun; Yantha, Jason; Winer, Shawn; Tsui, Hubert; Wu, Ping; Maezawa, Yuko; Cahill, Lindsay S; Laliberté, Christine L; Ramagopalan, Sreeram V; DeLuca, Gabriele C; Sadovnick, A Dessa; Astsaturov, Igor; Ebers, George C; Henkelman, R Mark; Salter, Michael W; Dosch, H-Michael

2013-01-01

145

Curcumin Produces an Antihyperalgesic Effect via Antagonism of TRPV1  

Microsoft Academic Search

Curcumin has diverse therapeutic effects, such as anti-inflammatory, anti-oxidant, anti-cancer, and antimicrobial activities. The vanilloid moiety of curcumin is considered important for activation of the transient receptor potential vanilloid 1 (TRPV1), which plays an important role in nociception. However, very little is known about the effects of curcumin on nociception. In the present study, we investigated whether the anti-nociceptive effects

K. Y. Yeon; S. A. Kim; Y. H. Kim; M. K. Lee; D. K. Ahn; H. J. Kim; J. S. Kim; S. J. Jung; S. B. Oh

2010-01-01

146

Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor  

SciTech Connect

Capsaicin, the pungent constituent of chili peppers, represents the paradigm for the capsaicinoids or vanilloids, a family of compounds shown to stimulate and then desensitize specific subpopulations of sensory receptors, including C-polymodal nociceptors, A-delta mechanoheat nociceptors and warm receptors of the skin, as well as enteroceptors of thin afferent fibers. An exciting recent advance in the field has been the finding that resiniferatoxin (RTX), a naturally occurring diterpene containing a homovanillic acid ester, a key structural motif of capsaicin, functions as an ultrapotent capsaicin analog. For most of the responses characteristic of capsaicin, RTX is 100-10,000 fold more potent. Structure/activity analysis indicates, however, that RTX and related homovanillyl-diterpene esters display distinct spectra of activity. Specific ({sup 3}H)RTX binding provides the first direct proof for the existence of vanilloid receptors. We expect that the RTX class of vanilloids will promote rapid progress in understanding of vanilloid structure/activity requirements and mechanism.

Szallasi, A.; Blumberg, P.M. (National Institutes of Health, Bethesda, MD (USA))

1990-01-01

147

Opposite modulation of capsaicin-evoked substance P release by glutamate receptors  

Microsoft Academic Search

Substance P and glutamate are present in primary afferent C-fibers and play important roles in persistent inflammatory and neuropathic pain. In the present study, we have examined whether activation of different glutamate receptor subtypes modulates the release of substance P evoked by the C-fiber selective stimulant capsaicin (1 ?M) from rat trigeminal nucleus slices. The selective NMDA glutamate receptor agonist L-CCG-IV

Maria C Cuesta; Jose L Arcaya; Georgina Cano; Lorelay Sanchez; William Maixner; Herberto Suarez-Roca

1999-01-01

148

Transient receptor potential vanilloid 1 - a polymodal nociceptive receptor - plays a crucial role in formaldehyde-induced skin inflammation in mice.  

PubMed

Formaldehyde (FA) is irritating to the skin and is the main cause of sick building syndrome. However, the cutaneous reaction induced by long-term FA exposure has not been fully investigated. In our previous study, we demonstrated that repeated painting of 2% - 10% FA on mouse ears caused marked ear swelling and increased mRNA expression of transient receptor potential vanilloid 1 (TRPV1) and neurotrophins in the ear. TRPV1 is reported to be involved in neurogenic inflammation; therefore, in the present study, we investigated the role of TRPV1 in FA-induced skin inflammation using TRPV1 gene-knockout mice. Mice were painted with 5% FA once a week for 5 weeks, and ear swelling and mRNA expression were investigated. Ear swelling and increased expression of neurotrophins mRNA by FA provocation in wild-type mice were attenuated by disruption of the TRPV1 gene. Furthermore, painting with a threshold dose of capsaicin, which does not induce ear swelling in intact mice, caused marked ear swelling after painting the ear 5 times with FA, indicating that inflamed tissues after FA application are hypersensitive to various ligands of TRPV1 in mice. These results demonstrated that neurogenic inflammation via TRPV1 and neurotrophins could be involved in FA-induced dermatitis. PMID:22302023

Usuda, Haruki; Endo, Takumi; Shimouchi, Ayumi; Saito, Asaka; Tominaga, Makoto; Yamashita, Hirotaka; Nagai, Hiroichi; Inagaki, Naoki; Tanaka, Hiroyuki

2012-01-01

149

Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons.  

PubMed

Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A's central antinociceptive activity following its application into the rat whisker pad was examined in trigeminal nucleus caudalis (TNC) and higher-level nociceptive brain areas using BoNT/A-cleaved synaptosomal-associated protein 25 (SNAP-25) and c-Fos immunohistochemistry. Occurrence of cleaved SNAP-25 in TNC was examined after nonselective ganglion ablation with formalin or selective denervation of capsaicin-sensitive (vanilloid receptor-1 or TRPV1-expressing) neurons, and in relation to different cellular and neuronal markers. Regional c-Fos activation and effect of TRPV1-expressing afferent denervation on toxin's antinociceptive action were studied in formalin-induced orofacial pain. BoNT/A-cleaved SNAP-25 was observed in TNC, but not in higher-level nociceptive nuclei. Cleaved SNAP-25 in TNC disappeared after formalin-induced trigeminal ganglion ablation or capsaicin-induced sensory denervation. Occurrence of cleaved SNAP-25 in TNC and BoNT/A antinociceptive activity in formalin-induced orofacial pain were prevented by denervation with capsaicin. Cleaved SNAP-25 localization demonstrated toxin's presynaptic activity in TRPV1-expressing neurons. BoNT/A reduced the c-Fos activation in TNC, locus coeruleus, and periaqueductal gray. Present experiments suggest that BoNT/A alters the nociceptive transmission at the central synapse of primary afferents. Targeting of TRPV1-expressing neurons might be associated with observed selectivity of BoNT/A action only in certain types of pain. PMID:24793910

Matak, Ivica; Rossetto, Ornella; Lackovi?, Zdravko

2014-08-01

150

Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.  

PubMed

Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress. PMID:25392504

Weitlauf, Carl; Ward, Nicholas J; Lambert, Wendi S; Sidorova, Tatiana N; Ho, Karen W; Sappington, Rebecca M; Calkins, David J

2014-11-12

151

TRPV1 in Brain Is Involved in Acetaminophen-Induced Antinociception  

PubMed Central

Background Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV1) in vitro. Pharmacological activation of TRPV1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV1 in the brain contributes to the analgesic effect of acetaminophen. Methodology/Principal Findings Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E2 (PGE2) and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test. Conclusions This study shows that TRPV1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV1 in the brain. PMID:20862299

Eschalier, Alain; Zygmunt, Peter M.; Hogestatt, Edward D.

2010-01-01

152

Anti pruritic effects of topical crotamiton, capsaicin, and a corticosteroid on pruritogen-induced scratching behavior.  

PubMed

Itch accompanies various skin diseases. As a number of mediators other than histamine can be involved in the itch sensation, H1 receptor antagonists are not necessarily effective in treating itch. External application of antipruritic drugs is occasionally used as an alternative therapy for pruritic skin conditions, such as pruritus on primary non-diseased, non-inflamed skin. Even so, the actual effects of these drugs on the itch sensation have yet to be studied in detail. To verify the antipruritic effects of crotamiton, capsaicin, and a corticosteroid on the itch sensation, we examined the inhibitory effects of these drugs on various pruritogen-induced scratching behaviors in mice. Topical application of 10% crotamiton moderately inhibited histamine-, serotonin-, and PAR-2 agonist-induced scratching behaviors. Topical capsaicin (0.025%) also exerted a moderate suppressive effect on histamine-, substance P-, and PAR-2 agonist-induced itch responses. Notably, topical corticosteroid (0.05% clobetasol propionate) remarkably inhibited the scratching behaviors induced by all of the pruritogenic agents tested. Therapeutic effects of capsaicin on substance P-induced pruritus did not seem to be mediated by desensitization of the TRPV1 (+) C fibers and/or by altered responsiveness of the mast cells. In addition, the antipruritic effects of crotamiton and corticosteroid appear to be, at least partly, associated with a TRPV1-independent pathway. This study examined the itch responses to pruritogens and demonstrated the mode of action of the externally applied antipruritic drugs. PMID:22379965

Sekine, Rika; Satoh, Takahiro; Takaoka, Ayumi; Saeki, Kazumi; Yokozeki, Hiroo

2012-03-01

153

Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis  

PubMed Central

We examined the effects of the ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzol[f]quinoxaline-7-sulphonamide (NBQX), the kainate receptor antagonists ?-(R-)-glutamylaminomethanesulphonic acid (GAMS) and 6,7,8,9-tetrahydro-5-nitro-1H-benz[g]indole-2,3-dione-3-oxime (NS-102), and the group III metabotropic glutamate receptor (mGluR) agonist 2-amino-4-phosphono-S-butanoic acid (L-AP4) on c-fos-like immunoreactivity (c-fos LI) in trigeminal caudalis (Sp5C), lateral reticular (LRt), medullary reticular (Md) and solitary tract (Sol) nuclei, after intracisternal injection of capsaicin in urethane anaesthetized Sprague-Dawley rats. Few c-fos labelled cells were observed within Sp5C in capsaicin-vehicle treated animals. The number of positive c-fos cells increased by 17 fold after intracisternal capsaicin (5?nmol) administration. Pretreatment with CNQX (0.02, 0.1, 0.6, 3 and 15?mg?kg?1) or NBQX (0.01, 0.1 and 1?mg?kg?1), administered intraperitoneally 15?min before capsaicin, significantly reduced labelled cells within Sp5C by a maximum of 45 and 34%, respectively. The number of c-fos LI cells within LRt, Md and Sol was not affected. Pretreatment with ?L-AP4 (1, 3 and 10?mg?kg?1) decreased the number of Sp5C c-fos LI cells by a maximum of 30%, whereas GAMS (1 and 10?mg?kg?1) and NS-102 (1 and 5?mg?kg?1) did not show any significant effect. These results suggest that blockade of AMPA receptors, but not kainate receptors, or the activation of group III mGluRs, decrease the response of Sp5C neurons to trigeminovascular activation. Thus, in addition to NMDA receptors, mGluRs and AMPA receptors may modulate cephalic pain and may provide a potential therapeutic target for antimigraine drugs. PMID:10401552

Mitsikostas, Dimos D; Sanchez del Rio, Margarita; Waeber, Christian; Huang, Zhihong; Cutrer, F Michael; Moskowitz, Michael A

1999-01-01

154

Blocking TRPV1 in Nucleus Accumbens Inhibits Persistent Morphine Conditioned Place Preference Expression in Rats  

PubMed Central

The function of TRPV1 (transient receptor potential vanilloid subfamily, member 1) in the central nervous system is gradually elucidated. It has been recently proved to be expressed in nucleus accumbens (NAc), a region playing an essential role in mediating opioid craving and taking behaviors. Based on the general role of TRPV1 antagonist in blocking neural over-excitability by both pre- and post-synaptic mechanisms, TRPV1 antagonist capsazepine (CPZ) was tested for its ability to prohibit persistent opioid craving in rats. In the present study, we assessed the expression of TRPV1 in nucleus accumbens and investigated the effect of CPZ in bilateral nucleus accumbens on persistent morphine conditioned place preference (mCPP) in rats. We also evaluated the side-effect of CPZ on activity by comparing cross-beam times between groups. We found that morphine conditioned place preference increased the TRPV1 expression and CPZ attenuated morphine conditioned place preference in a dose-dependent and target–specific manner after both short- and long-term spontaneous withdrawal, reflected by the reduction of the increased time in morphine-paired side. CPZ (10 nM) could induce prolonged and stable inhibition of morphine conditioned place preference expression. More importantly, CPZ did not cause dysfunction of activity in the subjects tested, which indicates the inhibitory effect was not obtained at the sacrifice of regular movement. Collectively, these results indicated that injection of TRPV1 antagonist in nucleus accumbens is capable of attenuating persistent morphine conditioned place preference without affecting normal activity. Thus, TRPV1 antagonist is one of the promising therapeutic drugs for the treatment of opioid addiction. PMID:25118895

Ma, Lian-Ting; Yuan, Wei-Xin; Song, Jian; Wang, Peng; Xu, Guo-Zheng; Gao, Guo-Dong

2014-01-01

155

Capsaicin stimulates the non-store-operated Ca{sup 2+} entry but inhibits the store-operated Ca{sup 2+} entry in neutrophils  

SciTech Connect

Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) V1. However, capsaicin-stimulated [Ca{sup 2+}]{sub i} elevation occurred only at high concentrations ({>=}100 {mu}M). This response was substantially decreased in a Ca{sup 2+}-free medium. Vanilloids displayed similar patterns of Ca{sup 2+} response with the rank order of potency as follows: scutigeral>resiniferatoxin>capsazepine>capsaicin=olvanil>isovelleral. Arachidonyl dopamine (AAD), an endogenous ligand for TRPV1, failed to desensitize the subsequent capsaicin challenge. Capsaicin-induced Ca{sup 2+} response was not affected by 8-bromo-cyclic ADP-ribose (8-Br-cADPR), the ryanodine receptor blocker, but was slightly attenuated by 1-[6-[17{beta}-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,= 5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, 1-[{beta}-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), the blocker of receptor-gated and store-operated Ca{sup 2+} (SOC) channels, 2-aminoethyldiphenyl borate (2-APB), the blocker of D-myo-inositol 1,4,5-trisphospahte (IP{sub 3}) receptor and Ca{sup 2+} influx, and by ruthenium red, a blocker of TRPV channels, and enhanced by the Ca{sup 2+} channels blocker, cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12330A) and Na{sup +}-deprivation. In addition, capsaicin had no effect on the plasma membrane Ca{sup 2+}-ATPase activity or the production of nitric oxide (NO) and reactive oxygen intermediates (ROI) or on the total thiols content. Capsaicin ({>=}100 {mu}M) inhibited the cyclopiazonic acid (CPA)-induced store-operated Ca{sup 2+} entry (SOCE). In the absence of external Ca{sup 2+}, the robust Ca{sup 2+} entry after subsequent addition of Ca{sup 2+} was decreased by capsaicin in CPA-activated cells. Capsaicin alone increased the actin cytoskeleton, and also increased the actin filament content in cell activation with CPA. These results indicate that capsaicin activates a TRPV1-independent non-SOCE pathway in neutrophils. The reorganization of the actin cytoskeleton is probably involved in the capsaicin inhibition of SOCE.

Wang, J.-P. [Department of Education and Research, Taichung Veterans General Hospital, 160, Sec. 3, Chung Kang Road, Taichung 407, Taiwan (China) and Graduate Institute of Pharmaceutical Chemistry, School of Pharmacy, Taichung, Taiwan (China)]. E-mail: w1994@vghtc.gov.tw; Tseng, C.-S. [Department of Anesthesiology, and Taichung Veterans General Hospital, Taichung, Taiwan (China); Sun, S.-P. [Department of Education and Research, Taichung Veterans General Hospital, 160, Sec. 3, Chung Kang Road, Taichung 407, Taiwan (China); Chen, Y.-S. [Department of Education and Research, Taichung Veterans General Hospital, 160, Sec. 3, Chung Kang Road, Taichung 407, Taiwan (China); Tsai, C.-R. [Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan (China); Hsu, M.-F. [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan (China)

2005-12-01

156

Effect of the TRPV1 antagonist SB-705498 on the nasal parasympathetic reflex response in the ovalbumin sensitized guinea pig  

PubMed Central

Background and Purpose Nasal sensory nerves play an important role in symptoms associated with rhinitis triggered by environmental stimuli. Here, we propose that TRPV1 is pivotal in nasal sensory nerve activation and assess the potential of SB-705498 as an intranasal therapy for rhinitis. Experimental Approach The inhibitory effect of SB-705498 on capsaicin-induced currents in guinea pig trigeminal ganglion cells innervating nasal mucosa was investigated using patch clamp electrophysiology. A guinea pig model of rhinitis was developed using intranasal challenge of capsaicin and hypertonic saline to elicit nasal secretory parasympathetic reflex responses, quantified using MRI. The inhibitory effect of SB-705498, duration of action and potency comparing oral versus intranasal route of administration were examined. Key Results SB-705498 concentration-dependently inhibited capsaicin-induced currents in isolated trigeminal ganglion cells (pIC50 7.2). In vivo, capsaicin ipsilateral nasal challenge (0.03–1 mM) elicited concentration-dependent increases in contralateral intranasal fluid secretion. Ten per cent hypertonic saline initiated a similar response. Atropine inhibited responses to either challenge. SB-705498 inhibited capsaicin-induced responses by ?50% at 10 mg·kg?1 (oral), non-micronized 10 mg·mL?1 or 1 mg·mL?1 micronized SB-705498 (intranasal) suspension. Ten milligram per millilitre intranasal SB-705498, dosed 24 h prior to capsaicin challenge produced a 52% reduction in secretory response. SB-705498 (10 mg·mL?1, intranasal) inhibited 10% hypertonic saline responses by 70%. Conclusions and Implications The paper reports the development of a guinea pig model of rhinitis. SB-705498 inhibits capsaicin-induced trigeminal currents and capsaicin-induced contralateral nasal secretions via oral and intranasal routes; efficacy was optimized using particle-reduced SB-705498. We propose that TRPV1 is pivotal in initiating symptoms of rhinitis. PMID:23441756

Changani, Kumar; Hotee, Sarah; Campbell, Simon; Pindoria, Kashmira; Dinnewell, Laura; Saklatvala, Paula; Thompson, Sally-Anne; Coe, Diane; Biggadike, Keith; Vitulli, Giovanni; Lines, Marion; Busza, Albert; Denyer, Jane

2013-01-01

157

Inhibition of capsaicin-induced increase in dermal blood flow by the oral CGRP receptor antagonist, telcagepant (MK-0974)  

PubMed Central

AIMS To evaluate inhibition of capsaicin-induced increase in dermal blood flow (DBF) following telcagepant (MK-0974), a potent and selective orally bioavailable calcitonin gene-related peptide (CGRP) receptor antagonist being developed for the acute treatment of migraine. METHODS A three-period crossover study in 12 healthy adult men. Each subject received a single oral dose of telcagepant 300 mg, telcagepant 800 mg or placebo at 0 h, followed 0.5 and 3.5 h later by two topical doses of 300 and 1000 µg capsaicin per 20 µl water–ethanol mixture. Capsaicin was applied at two sites on the volar surface of the subjects' left and right forearms. DBF was assessed by laser Doppler perfusion imaging immediately before (‘baseline’), and 0.5 h after each capsaicin application at 1 and 4 h. Plasma samples to determine telcagepant concentrations were collected immediately after laser Doppler perfusion imaging. A pharmacodynamic model was developed to explore the relationship between plasma concentration and inhibition of capsaicin-induced increase in DBF. RESULTS Geometric mean plasma concentrations after dosing with 300 mg and 800 mg telcagepant were 720 and 1146 nm, respectively, at 1 h, vs. 582 and 2548 nm, respectively, at 4 h. The pharmacodynamic model suggested that the EC90 for telcagepant inhibition of capsaicin-induced increases in DBF was 909 nm. CONCLUSIONS Telcagepant inhibits the increases in DBF induced by the topical application of capsaicin on the human forearm. This experimental medicine model may have utility to assist in dose selection for the development of CGRP receptor antagonists. PMID:20078608

Sinclair, Simon R; Kane, Stefanie A; Van der Schueren, Bart J; Xiao, Alan; Willson, Kenneth J; Boyle, Janet; de Lepeleire, Inge; Xu, Yang; Hickey, Lisa; Denney, William S; Li, Chi-Chung; Palcza, John; Vanmolkot, Floris H M; Depre, Marleen; Van Hecken, Anne; Murphy, M Gail; Ho, Tony W; de Hoon, Jay N

2010-01-01

158

Effects of methacholine induced bronchoconstriction and procaterol induced bronchodilation on cough receptor sensitivity to inhaled capsaicin and tartaric acid  

Microsoft Academic Search

BACKGROUND: The direct effect of bronchoconstriction on cough receptor sensitivity is unknown, and the antitussive effect of beta 2 adrenergic agonists in man has been controversial. This study was designed to throw light on these questions. METHODS: The threshold of the cough response to inhaled capsaicin, a stimulant acting on C fibre endings, and tartaric acid, a chemostimulant, was measured

M Fujimura; S Sakamoto; Y Kamio; T Matsuda

1992-01-01

159

Capsaicinoids Cause Inflammation and Epithelial Cell Death through Activation of Vanilloid Receptors  

PubMed Central

Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammation and damage to nasal, tracheal, bronchiolar, and alveolar cells in a dose-related manner. In vitro cytotoxicity assays demonstrated that cultured human lung cells (BEAS-2B and A549) were more susceptible to necrotic cell death than liver (HepG2) cells. Transcription of the human vanilloid receptor type-1, VR1 or TRPV1, was demonstrated by RT-PCR in all of these cells, and the relative transcript levels were correlated to cellular susceptibility. TRPV1 receptor activation was presumably responsible for cellular cytotoxicity, but prototypical functional antagonists of this receptor were cytotoxic themselves, and did not ameliorate capsaicinoid-induced damage. Conversely, the TRPV1 antagonist capsazepine, as well as calcium chelation by EGTA ablated cytokine (IL-6) production after capsaicin exposure. To address these seemingly contradictory results, recombinant human TRPV1 was cloned and overexpressed in BEAS-2B cells. These cells exhibited dramatically increased cellular susceptibility to capsaicinoids, measured using IL-6 production and cytotoxicity, and an apoptotic mechanism of cell death. Surprisingly, the cytotoxic effects of capsaicin in TRPV1 overexpressing cells were also not inhibited by TRPV1 antagonists or by treatments that modified extracellular calcium. Thus, capsaicin interacted with TRPV1 expressed by BEAS-2B and other airway epithelial cells to cause the calcium-dependent production of cytokines and, conversely, calcium-independent cell death. These results have demonstrated that capsaicinoids contained in pepper spray products produce airway inflammation and cause respiratory epithelial cell death. The mechanisms of these cellular responses to capsaicinoids appear to proceed via distinct cellular pathways, but both pathways are initiated by TRPV1. PMID:12721390

Reilly, Christopher A.; Taylor, Jack L.; Lanza, Diane L.; Carr, Brian A.; Crouch, Dennis J.; Yost, Garold S.

2008-01-01

160

Low Frequency Electroacupuncture Alleviated Spinal Nerve Ligation Induced Mechanical Allodynia by Inhibiting TRPV1 Upregulation in Ipsilateral Undamaged Dorsal Root Ganglia in Rats  

PubMed Central

Neuropathic pain is an intractable problem in clinical practice. Accumulating evidence shows that electroacupuncture (EA) with low frequency can effectively relieve neuropathic pain. Transient receptor potential vanilloid type 1 (TRPV1) plays a key role in neuropathic pain. The study aimed to investigate whether neuropathic pain relieved by EA administration correlates with TRPV1 inhibition. Neuropathic pain was induced by right L5 spinal nerve ligation (SNL) in rats. 2?Hz?EA stimulation was administered. SNL induced mechanical allodynia in ipsilateral hind paw. SNL caused a significant reduction of TRPV1 expression in ipsilateral L5 dorsal root ganglia (DRG), but a significant up-regulation in ipsilateral L4 and L6 DRGs. Calcitonin gene-related peptide (CGRP) change was consistent with that of TRPV1. EA alleviated mechanical allodynia, and inhibited TRPV1 and CGRP overexpressions in ipsilateral L4 and L6 DRGs. SNL did not decrease pain threshold of contralateral hind paw, and TRPV1 expression was not changed in contralateral L5 DRG. 0.001, 0.01?mg/kg TRPV1 agonist 6?-IRTX fully blocked EA analgesia in ipsilateral hind paw. 0.01?mg/kg 6?-IRTX also significantly decreased pain threshold of contralateral paw. These results indicated that inhibition of TRPV1 up-regulation in ipsilateral adjacent undamaged DRGs contributed to low frequency EA analgesia for mechanical allodynia induced by spinal nerve ligation. PMID:23935654

Fang, Jian-Qiao

2013-01-01

161

No requirement of TRPV1 in long-term potentiation or long-term depression in the anterior cingulate cortex  

PubMed Central

One major interest in the study of transient receptor potential vanilloid type 1 (TRPV1) in sensory system is that it may serve as a drug target for treating chronic pain. While the roles of TRPV1 in peripheral nociception and sensitization have been well documented, less is known about its contribution to pain-related cortical plasticity. Here, we used 64 multi-electrode array recording to examine the potential role of TRPV1 in two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), in the anterior cingulate cortex (ACC). We found that pharmacological blockade of TRPV1 with either [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide] (AMG9810, 10 ?M) or N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791, 20 ?M) failed to affect LTP induced by strong theta burst stimulation in the ACC of adult mice. Similarly, neither AMG9810 nor SB366791 blocked the cingulate LTD induced by low-frequency stimulation. Analysis of the results from different layers of the ACC obtained the same conclusions. Spatial distribution of LTP or LTD-showing channels among the ACC network was also unaltered by the TRPV1 antagonists. Since cortical LTP and LTD in the ACC play critical roles in chronic pain triggered by inflammation or nerve injury, our findings suggest that TRPV1 may not be a viable target for treating chronic pain, especially at the cortical level. PMID:24708859

2014-01-01

162

No requirement of TRPV1 in long-term potentiation or long-term depression in the anterior cingulate cortex.  

PubMed

One major interest in the study of transient receptor potential vanilloid type 1 (TRPV1) in sensory system is that it may serve as a drug target for treating chronic pain. While the roles of TRPV1 in peripheral nociception and sensitization have been well documented, less is known about its contribution to pain-related cortical plasticity. Here, we used 64 multi-electrode array recording to examine the potential role of TRPV1 in two major forms of synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), in the anterior cingulate cortex (ACC). We found that pharmacological blockade of TRPV1 with either [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide] (AMG9810, 10 ?M) or N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791, 20 ?M) failed to affect LTP induced by strong theta burst stimulation in the ACC of adult mice. Similarly, neither AMG9810 nor SB366791 blocked the cingulate LTD induced by low-frequency stimulation. Analysis of the results from different layers of the ACC obtained the same conclusions. Spatial distribution of LTP or LTD-showing channels among the ACC network was also unaltered by the TRPV1 antagonists. Since cortical LTP and LTD in the ACC play critical roles in chronic pain triggered by inflammation or nerve injury, our findings suggest that TRPV1 may not be a viable target for treating chronic pain, especially at the cortical level. PMID:24708859

Liu, Ming-Gang; Zhuo, Min

2014-01-01

163

Neural precursor cells induce cell death of high-grade astrocytomas via stimulation of TRPV1  

PubMed Central

Primary astrocytomas of World Health Organization grade 3 and grade 4 (HG-astrocytomas) are preponderant among adults and are almost invariably fatal despite multimodal therapy. Here, we show that the juvenile brain has an endogenous defense mechanism against HG-astrocytomas. Neural precursor cells (NPCs) migrate to HG-astrocytomas, reduce glioma expansion and prolong survival by releasing a group of fatty acid ethanolamides that have agonistic activity on the vanilloid receptor (transient receptor potential vanilloid subfamily member-1; TRPV1). TRPV1 expression is higher in HG-astrocytomas than in tumor-free brain and TRPV1 stimulation triggers tumor cell death via the activating transcription factor-3 (ATF3) controlled branch of the ER stress pathway. The anti-tumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid Arvanil, suggesting that TRPV1 agonists hold potential as new HG-astrocytoma therapeutics. PMID:22820645

Stock, Kristin; Kumar, Jitender; Synowitz, Michael; Petrosino, Stefania; Imperatore, Roberta; Smith, Ewan St. J.; Wend, Peter; Purfurst, Bettina; Nuber, Ulrike A.; Gurok, Ulf; Matyash, Vitali; Walzlein, Joo-Hee; Chirasani, Sridhar R.; Dittmar, Gunnar; Cravatt, Benjamin F.; Momma, Stefan; Lewin, Gary R.; Ligresti, Alessia; De Petrocellis, Luciano; Cristino, Luigia; Di Marzo, Vincenzo; Kettenmann, Helmut; Glass, Rainer

2012-01-01

164

The effect of topical capsaicin-induced sensitization on heat-evoked cutaneous vasomotor responses  

PubMed Central

Brief, localized, cutaneous, non-painful thermal stimuli can evoke a transient vasomotor response, causing increased cutaneous blood flow and elevated skin temperature. The aims of this study were to investigate 1) if cutaneous sensitization by topical application of capsaicin (TRPV1 receptor agonist) can facilitate the size, duration and spatial extent of this vasomotor response and 2) if males and females respond differently. Thermal pulses (43°C for 60 seconds) were applied on left/right volar forearms of 15 age-matched males and females. Skin temperature and cutaneous blood flow were measured 1, 5, 10, 15, and 30 minutes after heat application before and after topical capsaicin (1%, 30 min application) with contralateral arm serving as the control. Recordings were made from the region of interest at distances of 2, 4, 6, 8, and 10 cm from the capsaicin application site. Sensitization significantly enhanced skin temperature for up to 30 min and compared with non-sensitized skin at 10 min. Females showed the strongest response after sensitization, but the response lasted longer and spread more widely in males. The blood flow responses were significantly longer after capsaicin (from 5 to 30 minutes after thermal application). This increased blood flow extended outside the treated area up to 10 min after stimulation. After sensitization, the area under the blood flow response curves showed significantly stronger responses in females, spreading 4 cm outside the stimulation site. Cutaneous sensitizing caused prolonged and spatially expanded vasomotor responses to standardized thermal stimulation with sex specific differences. PMID:24044034

Nielsen, Thomas A; da Silva, Larissa Bittencourt; Arendt-Nielsen, Lars; Gazerani, Parisa

2013-01-01

165

Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons  

E-print Network

in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types

Clapham, David E.

166

TRPV1: a therapy target that attracts the pharmaceutical interests.  

PubMed

TRPV1 is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons, and act as an important signal integrator in sensory nociceptors. Because of its integrative signaling properties in response to inflammatory stimuli, TRPV1 antagonists are predicted to inhibit the sensation of ongoing or burning pain that is reported by patients suffering from chronic pain, therefore offering an unprecedented advantage in selectively inhibiting painful signaling from where it is initiated. In this chapter, we firstly summarize the physiological and pathological roles of TRPV1 and then describe the pharmacology of TRPV1 agonists and antagonists. Finally, we give an update and the status on TRPV1 therapies that have progressed into clinical trials. PMID:21290320

Xia, Rong; Dekermendjian, Kim; Lullau, Elke; Dekker, Niek

2011-01-01

167

Amelioration of neuropathic pain by novel transient receptor potential vanilloid 1 antagonist AS1928370 in rats without hyperthermic effect.  

PubMed

Transient receptor potential vanilloid 1 (TRPV1) is activated by a variety of stimulations, such as endogenous ligands and low pH, and is believed to play a role in pain transmission. TRPV1 antagonists have been reported to be effective in several animal pain models; however, some compounds induce hyperthermia in animals and humans. We discovered the novel TRPV1 antagonist (R)-N-(1-methyl-2-oxo-1,2,3,4-tetrahydro-7-quinolyl)-2-[(2-methylpyrrolidin-1-yl)methyl]biphenyl-4-carboxamide (AS1928370) in our laboratory. AS1928370 bound to the resiniferatoxin-binding site on TRPV1 and inhibited capsaicin-mediated inward currents with an IC?? value of 32.5 nM. Although AS1928370 inhibited the capsaicin-induced Ca˛(+) flux in human and rat TRPV1-expressing cells, the inhibitory effect on proton-induced Ca˛(+) flux was extremely small. In addition, AS1928370 showed no inhibitory effects on transient receptor potential vanilloid 4, transient receptor potential ankyrin 1, and transient receptor potential melastatin 8 in concentrations up to 10 ?M. AS1928370 improved capsaicin-induced secondary hyperalgesia and mechanical allodynia in an L5/L6 spinal nerve ligation model in rats with respective ED?? values of 0.17 and 0.26 mg/kg p.o. Furthermore, AS1928370 alleviated inflammatory pain in a complete Freund's adjuvant model at 10 mg/kg p.o. AS1928370 had no effect on rectal body temperature up to 10 mg/kg p.o., although a significant hypothermic effect was noted at 30 mg/kg p.o. In addition, AS1928370 showed no significant effect on motor coordination. These results suggest that blockage of the TRPV1 receptor without affecting the proton-mediated TRPV1 activation is a promising approach to treating neuropathic pain because of the potential wide safety margin against hyperthermic effects. As such, compounds such as ASP1928370 may have potential as new analgesic agents for treating neuropathic pain. PMID:21098091

Watabiki, Tomonari; Kiso, Tetsuo; Kuramochi, Takahiro; Yonezawa, Koichi; Tsuji, Noriko; Kohara, Atsuyuki; Kakimoto, Shuichiro; Aoki, Toshiaki; Matsuoka, Nobuya

2011-03-01

168

NK1 tachykinin receptor treatment is superior to capsaicin pre-treatment in improving functional outcome following acute ischemic stroke.  

PubMed

Previous results from our laboratory have shown that blockade of the substance P (SP) pathway with an NK1 tachykinin receptor antagonist significantly reduces blood brain barrier breakdown, cerebral edema and functional deficits following ischemic stroke. However, it is unclear whether removal of all neuropeptides is more efficacious than blocking SP alone. As such, the aim of the present study was to determine the effect of neuropeptide depletion with capsaicin pre-treatment on functional outcome following acute ischemic stroke in rats. Animals received 125 mg/kg of capsaicin or equal volume of saline vehicle, administered subcutaneously over a 3-day period. At 14 days following treatment animals were subject to 2h of middle cerebral artery occlusion followed by reperfusion. A subset of animals was treated with an NK1 tachykinin receptor antagonist (NAT) or vehicle at 4h after the onset of stroke only. The functional outcome of animals was assessed for a 7-day period following stroke using a rotarod device, the bilateral asymmetry test, modified neurological severity score, open field and angleboard. Although capsaicin pre-treatment improved outcome, treatment with an NK1 tachykinin receptor antagonist was superior in improving post-stroke functional outcome. This data suggests that some neuropeptides may play a beneficial role following stroke, whilst others such as SP are deleterious. PMID:25151181

Turner, Renée J; Vink, Robert

2014-10-01

169

Activation of transient receptor potential vanilloid 2-expressing primary afferents stimulates synaptic transmission in the deep dorsal horn of the rat spinal cord and elicits mechanical hyperalgesia.  

PubMed

Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non-overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch-clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III-V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III-V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1-expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia. PMID:25104469

Petitjean, Hugues; Hugel, Sylvain; Barthas, Florent; Bohren, Yohann; Barrot, Michel; Yalcin, Ipek; Schlichter, Rémy

2014-10-01

170

Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion.  

PubMed

Traditional methods of therapeutic hypothermia show promise for neuroprotection against cerebral ischemia-reperfusion (I/R), however, with limitations. We examined effectiveness and specificity of pharmacological hypothermia (PH) by transient receptor potential vanilloid 1 (TRPV1) channel agonism in the treatment of focal cerebral I/R. Core temperature (T(core)) was measured after subcutaneous infusion of TRPV1 agonist dihydrocapsaicin (DHC) in conscious C57BL/6 WT and TRPV1 knockout (KO) mice. Acute measurements of heart rate (HR), mean arterial pressure (MAP), and cerebral perfusion were measured before and after DHC treatment. Focal cerebral I/R (1 h ischemia + 24 h reperfusion) was induced by distal middle cerebral artery occlusion. Hypothermia (>8 h) was initiated 90 min after start of reperfusion by DHC infusion (osmotic pump). Neurofunction (behavioral testing) and infarct volume (TTC staining) were measured at 24 h. DHC (1.25 mg/kg) produced a stable drop in T(core) (33°C) in naive and I/R mouse models but not in TRPV1 KO mice. DHC (1.25 mg/kg) had no measurable effect on HR and cerebral perfusion but produced a slight transient drop in MAP (<6 mmHg). In stroke mice, DHC infusion produced hypothermia, decreased infarct volume by 87%, and improved neurofunctional score. The hypothermic and neuroprotective effects of DHC were absent in TRPV1 KO mice or mice maintained normothermic with heat support. PH via TRPV1 agonist appears to be a well-tolerated and effective method for promoting mild hypothermia in the conscious mouse. Furthermore, TRPV1 agonism produces effective hypothermia in I/R mice and significantly improves outcome when initiated 90 min after start of reperfusion. PMID:24305062

Cao, Zhijuan; Balasubramanian, Adithya; Marrelli, Sean P

2014-01-15

171

Acid Solution Is a Suitable Medium for Introducing QX-314 into Nociceptors through TRPV1 Channels to Produce Sensory-Specific Analgesic Effects  

Microsoft Academic Search

BackgroundPrevious studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of

He Liu; Hong-Xing Zhang; Hui-Yan Hou; Xian-Fu Lu; Jing-Qiu Wei; Chun-Guang Wang; Li-Cai Zhang; Yin-Ming Zeng; Yong-Ping Wu; Jun-Li Cao

2011-01-01

172

Anandamide Capacitates Bull Spermatozoa through CB1 and TRPV1 Activation  

Microsoft Academic Search

Anandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect. Since sperm detachment may

María Gracia Gervasi; Claudia Osycka-Salut; Julieta Caballero; Mónica Vazquez-Levin; Elba Pereyra; Silvia Billi; Ana Franchi; Silvina Perez-Martinez

2011-01-01

173

TRPV1-tubulin complex: involvement of membrane tubulin in the regulation of chemotherapy-induced peripheral neuropathy.  

PubMed

Existence of microtubule cytoskeleton at the membrane and submembranous regions, referred as 'membrane tubulin' has remained controversial for a long time. Since we reported physical and functional interaction of Transient Receptor Potential Vanilloid Sub Type 1 (TRPV1) with microtubules and linked the importance of TRPV1-tubulin complex in the context of chemotherapy-induced peripheral neuropathy, a few more reports have characterized this interaction in in vitro and in in vivo condition. However, the cross-talk between TRPs with microtubule cytoskeleton, and the complex feedback regulations are not well understood. Sequence analysis suggests that other than TRPV1, few TRPs can potentially interact with microtubules. The microtubule interaction with TRPs has evolutionary origin and has a functional significance. Biochemical evidence, Fluorescence Resonance Energy Transfer analysis along with correlation spectroscopy and fluorescence anisotropy measurements have confirmed that TRPV1 interacts with microtubules in live cell and this interaction has regulatory roles. Apart from the transport of TRPs and maintaining the cellular structure, microtubules regulate signaling and functionality of TRPs at the single channel level. Thus, TRPV1-tubulin interaction sets a stage where concept and parameters of 'membrane tubulin' can be tested in more details. In this review, I critically analyze the advancements made in biochemical, pharmacological, behavioral as well as cell-biological observations and summarize the limitations that need to be overcome in the future. PMID:22845740

Goswami, Chandan

2012-10-01

174

Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4.  

PubMed

Primary osmosensory neurons in the mouse organum vasculosum lamina terminalis (OVLT) transduce hypertonicity via the activation of nonselective cation channels that cause membrane depolarization and increased action potential discharge, and this effect is absent in mice lacking expression of the transient receptor potential vanilloid 1 (Trpv1) gene (Ciura and Bourque, 2006). However other experiments have indicated that channels encoded by Trpv4 also contribute to central osmosensation in mice (Liedtke and Friedman, 2003; Mizuno et al., 2003). At present, the mechanism by which hypertonicity modulates cation channels in OVLT neurons is unknown, and it remains unclear whether Trpv1 and Trpv4 both contribute to this process. Here, we show that physical shrinking is necessary and sufficient to mediate hypertonicity sensing in OVLT neurons isolated from adult mice. Steps coupling progressive decreases in cell volume to increased neuronal activity were quantitatively equivalent whether shrinking was evoked by osmotic pressure or mechanical aspiration. Finally, modulation of OVLT neurons by tonicity or mechanical stimulation was unaffected by deletion of trpv4 but was abolished in cells lacking Trpv1 or wild-type neurons treated with the TRPV1 antagonist SB366791. Thus, hypertonicity sensing is a mechanical process requiring Trpv1, but not Trpv4. PMID:21994383

Ciura, Sorana; Liedtke, Wolfgang; Bourque, Charles W

2011-10-12

175

Selective Targeting of TRPV1 Expressing Sensory Nerve Terminals in the Spinal Cord for Long Lasting Analgesia  

PubMed Central

Chronic pain is a major clinical problem and opiates are often the only treatment, but they cause significant problems ranging from sedation to deadly respiratory depression. Resiniferatoxin (RTX), a potent agonist of Transient Receptor Potential Vanilloid 1 (TRPV1), causes a slow, sustained and irreversible activation of TRPV1 and increases the frequency of spontaneous excitatory postsynaptic currents, but causes significant depression of evoked EPSCs due to nerve terminal depolarization block. Intrathecal administration of RTX to rats in the short-term inhibits nociceptive synaptic transmission, and in the long-term causes a localized, selective ablation of TRPV1-expressing central sensory nerve terminals leading to long lasting analgesia in behavioral models. Since RTX actions are selective for central sensory nerve terminals, other efferent functions of dorsal root ganglion neurons can be preserved. Preventing nociceptive transmission at the level of the spinal cord can be a useful strategy to treat chronic, debilitating and intractable pain. PMID:19753113

Sikand, Parul; Parihar, Arti; Evans, M. Steven; Premkumar, Louis S.

2009-01-01

176

Excitation and Modulation of TRPA1, TRPV1, and TRPM8 Channel-expressing Sensory Neurons by the Pruritogen Chloroquine*  

PubMed Central

The sensations of pain, itch, and cold often interact with each other. Pain inhibits itch, whereas cold inhibits both pain and itch. TRPV1 and TRPA1 channels transduce pain and itch, whereas TRPM8 transduces cold. The pruritogen chloroquine (CQ) was reported to excite TRPA1, leading to the sensation of itch. It is unclear how CQ excites and modulates TRPA1+, TRPV1+, and TRPM8+ neurons and thus affects the sensations of pain, itch, and cold. Here, we show that only 43% of CQ-excited dorsal root ganglion neurons expressed TRPA1; as expected, the responses of these neurons were completely prevented by the TRPA1 antagonist HC-030031. The remaining 57% of CQ-excited neurons did not express TRPA1, and excitation was not prevented by either a TRPA1 or TRPV1 antagonist but was prevented by the general transient receptor potential canonical (TRPC) channel blocker BTP2 and the selective TRPC3 inhibitor Pyr3. Furthermore, CQ caused potent sensitization of TRPV1 in 51.9% of TRPV1+ neurons and concomitant inhibition of TRPM8 in 48.8% of TRPM8+ dorsal root ganglion neurons. Sensitization of TRPV1 is caused mainly by activation of the phospholipase C-PKC pathway following activation of the CQ receptor MrgprA3. By contrast, inhibition of TRPM8 is caused by a direct action of activated G?q independent of the phospholipase C pathway. Our data suggest the involvement of the TRPC3 channel acting together with TRPA1 to mediate CQ-induced itch. CQ not only elicits itch by directly exciting itch-encoding neurons but also exerts previously unappreciated widespread actions on pain-, itch-, and cold-sensing neurons, leading to enhanced pain and itch. PMID:23508958

Than, Jonathan Y.-X. L.; Li, Lin; Hasan, Raquibul; Zhang, Xuming

2013-01-01

177

Contractile mechanisms coupled to TRPA1 receptor activation in rat urinary bladder.  

PubMed

TRPA1 is a member of the transient receptor potential (TRP) channel family present in sensory neurons. Here we show that vanilloid receptor (TRPV1) stimulation with capsaicin and activation of TRPA1 with allyl isothiocyanate or cinnamaldehyde cause a graded contraction of the rat urinary bladder in vitro. Repeated applications of maximal concentrations of the agonists produce desensitization to their contractile effects. Moreover, contraction caused by TRPA1 agonists generates cross-desensitization with capsaicin. The TRP receptor antagonist ruthenium red (10-100 microM) inhibits capsaicin (0.03 microM), allyl isothiocyanate (100 microM) and cinnamaldehyde (300 microM)-induced contractions in the rat urinary bladder. The selective TRPV1 receptor antagonist SB 366791 (10 microM) blocks capsaicin-induced contraction, but partially reduces allyl isothiocyanate- or cinnamaldehyde-mediated contraction. However, allyl isothiocyanate and cinnamaldehyde (10-1000 microM) completely fail to interfere with the specific binding sites for the TRPV1 agonist [(3)H]-resiniferatoxin. Allyl isothiocyanate or cinnamaldehyde-mediated contractions of rat urinary bladder, which rely on external Ca(2+) influx, are significantly inhibited by tachykinin receptor antagonists as well as by tetrodotoxin (1 microM) or indomethacin (1 microM). Allyl isothiocyanate-induced contraction is not changed by atropine (1 microM) or suramin (300 microM). The exposure of urinary bladders to allyl isothiocyanate (100 microM) causes an increase in the prostaglandin E(2) and substance P levels. Taken together, these results indicate that TRPA1 agonists contract rat urinary bladder through sensory fibre stimulation, depending on extracellular Ca(2+) influx and release of tachykinins and cyclooxygenase metabolites, probably prostaglandin E(2). Thus, TRPA1 appears to exert an important role in urinary bladder function. PMID:16725114

Andrade, Edinéia Lemos; Ferreira, Juliano; André, Eunice; Calixto, Joăo B

2006-06-28

178

TRPV1-lineage neurons are required for thermal sensation  

PubMed Central

The ion-channel TRPV1 is believed to be a major sensor of noxious heat, but surprisingly animals lacking TRPV1 still display marked responses to elevated temperature. In this study, we explored the role of TRPV1-expressing neurons in somatosensation by generating mice wherein this lineage of cells was selectively labelled or ablated. Our data show that TRPV1 is an embryonic marker of many nociceptors including all TRPV1- and TRPM8-neurons as well as many Mrg-expressing neurons. Mutant mice lacking these cells are completely insensitive to hot or cold but in marked contrast retain normal touch and mechanical pain sensation. These animals also exhibit defective body temperature control and lose both itch and pain reactions to potent chemical mediators. Together with previous cell ablation studies, our results define and delimit the roles of TRPV1- and TRPM8-neurons in thermosensation, thermoregulation and nociception, thus significantly extending the concept of labelled lines in somatosensory coding. PMID:21139565

Mishra, Santosh K; Tisel, Sarah M; Orestes, Peihan; Bhangoo, Sonia K; Hoon, Mark A

2011-01-01

179

Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain  

PubMed Central

The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol’s antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4-aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil?=?olvanil>>AM404> HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4-aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT3 or 5-HT1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol’s analgesic activity via activation of bulbospinal pathways. Our findings demonstrate that it is possible to construct novel antinociceptive drugs based on fatty acid conjugation as a metabolic pathway for the generation of TRPV1 modulators in the CNS. PMID:23940628

Blomgren, Anders; Simonsen, Charlotte; Daulhac, Laurence; Libert, Frederic; Chapuy, Eric; Etienne, Monique; Hogestatt, Edward D.; Zygmunt, Peter M.; Eschalier, Alain

2013-01-01

180

TRPV1 Antagonism by Capsazepine Modulates Innate Immune Response in Mice Infected with Plasmodium berghei ANKA  

PubMed Central

Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host's defence to malaria. Transient receptor potential vanilloid 1 (TRPV1) modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 105 red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80+Ly6G+ cell numbers as well as activation of both F4/80+and F4/80+Ly6G+ cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1+ and natural killer (NK) population, without interfering with natural killer T (NKT) cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNF? and IFN?, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNF?. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.

Fernandes, Elizabeth S.; Brito, Carolina X. L.; Teixeira, Simone A.; Barboza, Renato; dos Reis, Aramys S.; Azevedo-Santos, Ana Paula S.; Muscara, Marcelo; Costa, Soraia K. P.; Marinho, Claudio R. F.; Brain, Susan D.; Grisotto, Marcos A. G.

2014-01-01

181

Different uptake of gentamicin through TRPV1 and TRPV4 channels determines cochlear hair cell vulnerability  

PubMed Central

Hair cells at the base of the cochlea appear to be more susceptible to damage by the aminoglycoside gentamicin than those at the apex. However, the mechanism of base-to-apex gradient ototoxicity by gentamicin remains to be elucidated. We report here that gentamicin caused rodent cochlear hair cell damages in a time- and dose-dependent manner. Hair cells at the basal turn were more vulnerable to gentamicin than those at the apical turn. Gentamicin-conjugated Texas Red (GTTR) uptake was predominant in basal turn hair cells in neonatal rats. Transient receptor potential vanilloid 1 (TRPV1) and 4 (TRPV4) expression was confirmed in the cuticular plate, stereocilia and hair cell body of inner hair cells and outer hair cells. The involvement of TRPV1 and TRPV4 in gentamicin trafficking of hair cells was confirmed by exogenous calcium treatment and TRPV inhibitors, including gadolinium and ruthenium red, which resulted in markedly inhibited GTTR uptake and gentamicin-induced hair cell damage in rodent and zebrafish ototoxic model systems. These results indicate that the cytotoxic vulnerability of cochlear hair cells in the basal turn to gentamicin may depend on effective uptake of the drug, which was, in part, mediated by the TRPV1 and TRPV4 proteins. PMID:23470714

Lee, Jeong-Han; Park, Channy; Kim, Se-Jin; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; So, Hong-Seob; Park, Raekil

2013-01-01

182

Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats.  

PubMed

Vampire bats (Desmodus rotundus) are obligate blood feeders that have evolved specialized systems to suit their sanguinary lifestyle. Chief among such adaptations is the ability to detect infrared radiation as a means of locating hotspots on warm-blooded prey. Among vertebrates, only vampire bats, boas, pythons and pit vipers are capable of detecting infrared radiation. In each case, infrared signals are detected by trigeminal nerve fibres that innervate specialized pit organs on the animal's face. Thus, vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species-specific or cell-type-specific manner. Previously, we have shown that snakes co-opt a non-heat-sensitive channel, vertebrate TRPA1 (transient receptor potential cation channel A1), to produce an infrared detector. Here we show that vampire bats tune a channel that is already heat-sensitive, TRPV1, by lowering its thermal activation threshold to about 30?°C. This is achieved through alternative splicing of TRPV1 transcripts to produce a channel with a truncated carboxy-terminal cytoplasmic domain. These splicing events occur exclusively in trigeminal ganglia, and not in dorsal root ganglia, thereby maintaining a role for TRPV1 as a detector of noxious heat in somatic afferents. This reflects a unique organization of the bat Trpv1 gene that we show to be characteristic of Laurasiatheria mammals (cows, dogs and moles), supporting a close phylogenetic relationship with bats. These findings reveal a novel molecular mechanism for physiological tuning of thermosensory nerve fibres. PMID:21814281

Gracheva, Elena O; Cordero-Morales, Julio F; González-Carcacía, José A; Ingolia, Nicholas T; Manno, Carlo; Aranguren, Carla I; Weissman, Jonathan S; Julius, David

2011-08-01

183

LASSBio-1135: a dual TRPV1 antagonist and anti-TNF-alpha compound orally effective in models of inflammatory and neuropathic pain.  

PubMed

LASSBio-1135 is an imidazo[1,2-a]pyridine derivative with high efficacy in screening models of nociception and inflammation, presumed as a weak COX-2 inhibitor. In order to tease out its mechanism of action, we investigated others possible target for LASSBio-1135, such as TNF-? and TRPV1, to better characterize it as a multitarget compound useful in the treatment of chronic pain. TRPV1 modulation was assessed in TRPV1-expressing Xenopus oocytes against capsaicin and low pH-induced current. Modulation of TNF-? production was evaluated in culture of macrophages stimulated with LPS. In vivo efficacy of LASSBio-1135 was investigated in carrageenan and partial sciatic ligation-induced thermal hyperalgesia and mechanical allodynia. Corroborating its previous demonstration of efficacy in a model of capsaicin-induced hyperalgesia, LASSBio-1135 blocks capsaicin-elicited currents in a non-competitive way with an IC50 of 580 nM as well as low pH-induced current at 50 µM. As an additional action, LASSBio-1135 inhibited TNF-? release in these cells stimulated by LPS with an IC50 of 546 nM by reducing p38 MAPK phosphorilation. Oral administration of 100 µmol x Kg(-1) LASSBio-1135 markedly reduced thermal hyperalgesia induced by carrageenan, however at 10 µmol x Kg(-1) only a partial reduction was observed at the 4th h. Neutrophil recruitment and TNF-? production after carrageenan stimulus was also inhibited by the treatment with LASSBio-1135. Modulating TRPV1 and TNF-? production, two key therapeutic targets of neuropathic pain, 100 µmol x Kg(-1) LASSBio-1135 was orally efficacious in reversing thermal hyperalgesia and mechanical allodynia produced by partial sciatic ligation 7-11 days after surgery without provoking hyperthermia, a common side effect of TRPV1 antagonists. In conclusion LASSBio-1135, besides being a weak COX-2 inhibitor, is a non-competitive TRPV1 antagonist and a TNF-? inhibitor. As a multitarget compound, LASSBio-1135 is orally efficacious in a model of neuropathic pain without presenting hyperthermia. PMID:24941071

Lima, Cleverton K F; Silva, Rafael M; Lacerda, Renata B; Santos, Bruna L R; Silva, Rafaela V; Amaral, Luciana S; Quintas, Luís E M; Fraga, Carlos A M; Barreiro, Eliezer J; Guimaraes, Marília Z P; Miranda, Ana L P

2014-01-01

184

LASSBio-1135: A Dual TRPV1 Antagonist and Anti-TNF-Alpha Compound Orally Effective in Models of Inflammatory and Neuropathic Pain  

PubMed Central

LASSBio-1135 is an imidazo[1,2-a]pyridine derivative with high efficacy in screening models of nociception and inflammation, presumed as a weak COX-2 inhibitor. In order to tease out its mechanism of action, we investigated others possible target for LASSBio-1135, such as TNF-? and TRPV1, to better characterize it as a multitarget compound useful in the treatment of chronic pain. TRPV1 modulation was assessed in TRPV1-expressing Xenopus oocytes against capsaicin and low pH-induced current. Modulation of TNF-? production was evaluated in culture of macrophages stimulated with LPS. In vivo efficacy of LASSBio-1135 was investigated in carrageenan and partial sciatic ligation-induced thermal hyperalgesia and mechanical allodynia. Corroborating its previous demonstration of efficacy in a model of capsaicin-induced hyperalgesia, LASSBio-1135 blocks capsaicin-elicited currents in a non-competitive way with an IC50 of 580 nM as well as low pH-induced current at 50 µM. As an additional action, LASSBio-1135 inhibited TNF-? release in these cells stimulated by LPS with an IC50 of 546 nM by reducing p38 MAPK phosphorilation. Oral administration of 100 µmol.Kg?1 LASSBio-1135 markedly reduced thermal hyperalgesia induced by carrageenan, however at 10 µmol.Kg?1 only a partial reduction was observed at the 4th h. Neutrophil recruitment and TNF-? production after carrageenan stimulus was also inhibited by the treatment with LASSBio-1135. Modulating TRPV1 and TNF-? production, two key therapeutic targets of neuropathic pain, 100 µmol.Kg?1 LASSBio-1135 was orally efficacious in reversing thermal hyperalgesia and mechanical allodynia produced by partial sciatic ligation 7–11 days after surgery without provoking hyperthermia, a common side effect of TRPV1 antagonists. In conclusion LASSBio-1135, besides being a weak COX-2 inhibitor, is a non-competitive TRPV1 antagonist and a TNF-? inhibitor. As a multitarget compound, LASSBio-1135 is orally efficacious in a model of neuropathic pain without presenting hyperthermia. PMID:24941071

Lima, Cleverton K. F.; Silva, Rafael M.; Lacerda, Renata B.; Santos, Bruna L. R.; Silva, Rafaela V.; Amaral, Luciana S.; Quintas, Luis E. M.; Fraga, Carlos A. M.; Barreiro, Eliezer J.; Guimaraes, Marilia Z. P.; Miranda, Ana L. P.

2014-01-01

185

An exploration of the estrogen receptor transcription activity of capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays.  

PubMed

Capsaicin has been considered as an alternative template of dichlorodiphenyl trichloroethane (DDT) in antifouling paint. However, information regarding the estrogenic activity of capsaicin analogues is rather limited in comparison to that of DDT analogues and their metabolites. We here explore the ER transcription activity of selected capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays. Molecular simulation and the agonist/antagonist differential-docking screening identified 6-iodonordihydrocapsaicin (6-I-CPS) as a weak ER? agonist, while anti-estrogenicity was expected for N-arachidonoyldopamine, capsazepine, dihydrocapsaicin, trichostatin A, and capsaicin. On the contrary, the large volume of analogues, such as phorbol 12-phenylacetate 13-acetate 20-homovanillate and phorbol 12,13-dinonanoate 20-homovanillate, cannot fit well with the ER cavity. The result of MVLN assay was in accord with the in silico prediction. 6-I-CPS was demonstrated to induce luciferase gene expression, while the other analogues of relatively small molecular volume reduced luciferase gene expression in MVLN cells, both in the absence and presence of estradiol. This finding suggested that the ER transcription activity of capsaicin analogues is generated at least partly through the ER?-mediated pathway. Moreover, receptor polymorphism analysis indicated that capsaicin analogues may exhibit diverse species selectivity for human beings and marine species. PMID:24747365

Li, Juan; Ma, Duo; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian

2014-06-16

186

Fetal ethanol exposure attenuates aversive oral effects of TrpV1, but not TrpA1 agonists in rats.  

PubMed

In humans, fetal ethanol exposure is highly predictive of adolescent ethanol use and abuse. Prior work in our labs indicated that fetal ethanol exposure results in stimulus-induced chemosensory plasticity in the taste and olfactory systems of adolescent rats. In particular, we found that increased ethanol acceptability could be attributed, in part, to an attenuated aversion to ethanol's aversive odor and quinine-like bitter taste quality. Here, we asked whether fetal ethanol exposure also alters the oral trigeminal response of adolescent rats to ethanol. We focused on two excitatory ligand-gated ion channels, TrpV1 and TrpA1, which are expressed in oral trigeminal neurons and mediate the aversive orosensory response to many chemical irritants. To target TrpV1, we used capsaicin, and to target TrpA1, we used allyl isothiocyanate (or mustard oil). We assessed the aversive oral effects of ethanol, together with capsaicin and mustard oil, by measuring short-term licking responses to a range of concentrations of each chemical. Experimental rats were exposed in utero by administering ethanol to dams through a liquid diet. Control rats had ad libitum access to an iso-caloric iso-nutritive liquid diet. We found that fetal ethanol exposure attenuated the oral aversiveness of ethanol and capsaicin, but not mustard oil, in adolescent rats. Moreover, the increased acceptability of ethanol was directly related to the reduced aversiveness of the TrpV1-mediated orosensory input. We propose that fetal ethanol exposure increases ethanol avidity not only by making ethanol smell and taste better, but also by attenuating ethanol's capsaicin-like burning sensations. PMID:22378825

Glendinning, John I; Simons, Yael M; Youngentob, Lisa; Youngentob, Steven L

2012-03-01

187

Differential modulation of agonist and antagonist structure activity relations for rat TRPV1 by cyclosporin A and other protein phosphatase inhibitors.  

PubMed

The transient receptor potential V1 channel (vanilloid receptor, TRPV1) represents a promising therapeutic target for inflammatory pain and other conditions involving C-fiber sensory afferent neurons. Sensitivity of TRPV1 is known to be subject to modulation by numerous signaling pathways, in particular by phosphorylation, and we wished to determine whether TRPV1 structure activity relations could be differentially affected. We demonstrate here that the structure activity relations of TRPV1, as determined by (45)Ca(2) uptake, were substantially altered by treatment of the cells with cyclosporin A, an inhibitor of protein phosphatase 2B. Whereas the potency of resiniferatoxin for stimulation of (45)Ca(2) was not altered by cyclosporin A treatment, the potencies of some other agonists were increased up to 8-fold. Among the antagonists examined, potencies were reduced to a lesser extent, ranging from 1- to 2.5-fold. Finally, the efficacy of partial agonists was increased. In contrast to cyclosporin A, okadaic acid, an inhibitor of protein phosphatases 1 and 2A, had little effect on agonist potencies, and calyculin A, an inhibitor of protein phosphatases 1 and 2A but with somewhat different selectivity from that of okadaic acid, caused changes in structure activity relations distinct from those induced by cyclosporin A. Because phosphatase activity differentially modulates the structure activity relations of TRPV1 agonists and antagonists, our findings predict that it may be possible to design agonists and antagonists selective for TRPV1 in a specific regulatory environment. A further implication is that it may be desirable to tailor screening approaches for drug discovery to reflect the desired regulatory state of the targeted TRPV1. PMID:18259730

Pearce, Larry V; Toth, Attila; Ryu, HyungChul; Kang, Dong Wook; Choi, Hyun-Kyung; Jin, Mi-Kyoung; Lee, Jeewoo; Blumberg, Peter M

2008-04-01

188

Thermo-Sensitive Receptor Protein: Role of TRPVs in Control of Body Temperature under Heat Radiation  

NASA Astrophysics Data System (ADS)

In vertebrate peripheral nervous system, skin heating and cooling are detected by thermo-sensitive neurons tuned to respond over distinct temperature ranges. TRP-family is thermo-sensitive receptor protein which is Ca2+-permeable ion channels expressing in cellular membrane. TRPV1 is activated by noxious heat above 42 °C, whereas TRPV3 and TRPV4 are sensitive to moderate temperatures (<34 °C). Although the amino acid sequence and the channel properties have been characterized, the molecular mechanism of temperature sensation remains poorly understood. In environment, mid and far infrared radiation act as physical stimuli. Here we examined the role of TRPV1 and TRPV4 in regulation of body temperature (BT) by using infrared laser as mild heat stimuli. In wild type mouse, the laser irradiation which caused the increase in skin temperature up to 55 °C did not induce the change in BT without any treatment of TRPVs. However, desensitization of TRPV1 with capsaicin resulted in the increase in BT by laser irradiation. On the other hand, in TRPV4-knockout mouse, moderate thermal stimulus (skin surface temperature <43 °C) caused the increase in the BT. These results suggest that the processing of noxious and moderate thermal radiation stimuli may depend on the TRPV1 and TRPV4, respectively.

Mochizuki-Oda, Noriko; Kusuno, Tomoyuki; Hanada, Tsunehisa; Tominaga, Makoto; Tominaga, Tomoko; Suzuki, Makoto; Yamada, Hisao; Yamada, Hironari

2007-03-01

189

Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization  

PubMed Central

The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

2013-01-01

190

Intrathecal administration of AS1928370, a transient receptor potential vanilloid 1 antagonist, attenuates mechanical allodynia in a mouse model of neuropathic pain.  

PubMed

Transient receptor potential vanilloid 1 (TRPV1) is primarily expressed in central and peripheral terminals of non-myelinated primary afferent neurons. We previously showed that AS1928370, a novel TRPV1 antagonist that can prevent ligand-induced activation but not proton-induced activation, ameliorates neuropathic pain in rats without hyperthermic effect. In this study, we investigated its analgesic profile in mice. AS1928370 showed good oral bioavailability and high penetration into the brain and spinal cord in mice. The mean plasma-to-brain and plasma-to-spinal cord ratios were 4.3 and 3.5, respectively. Pretreatment with AS1928370 significantly suppressed both capsaicin-induced acute pain and withdrawal response in hot plate test at 10-30 mg/kg per os (p.o.). At lower oral doses (0.3-1.0 mg/kg), AS1928370 improved mechanical allodynia in mice undergoing spinal nerve ligation. Intrathecal administration of AS1928370 (30 µg/body) also significantly suppressed mechanical allodynia. In addition, AS1928370 showed no effect on locomotor activity up to 30 mg/kg p.o. These results suggest that spinal TRPV1 has an important role in the transmission of neuropathic pain and that the central nervous system (CNS) penetrant TRPV1 receptor antagonist AS1928370 is a promising candidate for treating neuropathic pain. PMID:21720020

Watabiki, Tomonari; Kiso, Tetsuo; Tsukamoto, Mina; Aoki, Toshiaki; Matsuoka, Nobuya

2011-01-01

191

Biochem. J. (2010) 432, 549556 (Printed in Great Britain) doi:10.1042/BJ20100936 549 PP2B/calcineurin-mediated desensitization of TRPV1 does not require  

E-print Network

(transient receptor potential subfamily V type 1 channel, also known as the capsaicin receptor by multiple pain-evoking stimuli, including noxious heat (>42 C), acidic pH and CAP (capsaicin), the active

Scott, John D.

192

Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain  

PubMed Central

Background Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear. Results In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function. Conclusion Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia. PMID:19602228

Chen, Ying-Ju; Huang, Chia-Wei; Lin, Chih-Shin; Chang, Wen-Han; Sun, Wei-Hsin

2009-01-01

193

Discovery of (R)-1-(7-Chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): A Temperature-Neutral Transient Receptor Potential Vanilloid-1 (TRPV1) Antagonist with Analgesic Efficacy.  

PubMed

The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents. PMID:25100568

Voight, Eric A; Gomtsyan, Arthur R; Daanen, Jerome F; Perner, Richard J; Schmidt, Robert G; Bayburt, Erol K; DiDomenico, Stanley; McDonald, Heath A; Puttfarcken, Pamela S; Chen, Jun; Neelands, Torben R; Bianchi, Bruce R; Han, Ping; Reilly, Regina M; Franklin, Pamela H; Segreti, Jason A; Nelson, Richard A; Su, Zhi; King, Andrew J; Polakowski, James S; Baker, Scott J; Gauvin, Donna M; Lewis, LaGeisha R; Mikusa, Joseph P; Joshi, Shailen K; Faltynek, Connie R; Kym, Philip R; Kort, Michael E

2014-09-11

194

Vanilloid (capsaicin) receptors in the rat: distribution in the brain, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment  

Microsoft Academic Search

Vanilloid (capsaicin) receptors were visualized by [3H]resiniferatoxin (RTX) autoradiography in the brain of newborn as well as adult (both control and colchicine-treated) rats. Specific labelling was seen in the brain stem only, in the nucleus of the solitary tract extending into the area postrema and the spinal sensory nucleus of the trigeminal nerve. Also, a strong signal was seen in

Arpad Szallasi; Siv Nilsson; Tunde Farkas-Szallasi; Peter M. Blumberg; Tomas Hökfelt; Jan M. Lundberg

1995-01-01

195

Epidermal keratinocyte polarity and motility require Ca2+ influx through TRPV1  

PubMed Central

Summary Ca2+ has long been known to play an important role in cellular polarity and guidance. We studied the role of Ca2+ signaling during random and directed cell migration to better understand whether Ca2+ directs cell motility from the leading edge and which ion channels are involved in this function by using primary zebrafish keratinocytes. Rapid line-scan and time-lapse imaging of intracellular Ca2+ (Ca2+i) during migration and automated image alignment enabled us to characterize and map the spatiotemporal changes in Ca2+i. We show that asymmetric distributions of lamellipodial Ca2+ sparks are encoded in frequency, not amplitude, and that they correlate with cellular rotation during migration. Directed migration during galvanotaxis increases the frequency of Ca2+ sparks over the entire lamellipod; however, these events do not give rise to asymmetric Ca2+i signals that correlate with turning. We demonstrate that Ca2+-permeable channels within these cells are mechanically activated and include several transient receptor potential family members, including TRPV1. Last, we demonstrate that cell motility and Ca2+i activity are affected by pharmacological agents that target TRPV1, indicating a novel role for this channel during cell migration. PMID:23943873

Graham, David M.; Huang, Ling; Robinson, Kenneth R.; Messerli, Mark A.

2013-01-01

196

Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation  

PubMed Central

The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues—I696 and W697—with Ala markedly affects TRPV1’s response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention. PMID:24567510

Gregorio-Teruel, Lucia; Valente, Pierluigi; Gonzalez-Ros, Jose Manuel; Fernandez-Ballester, Gregorio

2014-01-01

197

The induction of long-term potentiation in spinal dorsal horn after peripheral nociceptive stimulation and contribution of spinal TRPV1 in rats.  

PubMed

During chronic pain states, peripheral nociceptive stimulation can induce long-term potentiation (LTP) in the spinal dorsal horn, but it is not clear how quickly spinal LTP develops after peripheral noxious stimulation. Furthermore, transient receptor potential vanilloid type 1 (TRPV1) receptors are abundant in spinal cord dorsal horn, especially in the superficial layers, and are thought to be involved in synaptic plasticity. In this study, we investigated the time frame of LTP induction after inflammatory insult and electrical stimulation and the involvement of TRPV1 receptors. By using extracellular recordings of C-fiber-evoked field potentials in the superficial spinal dorsal horn and teased fiber recording in vivo, we found that subcutaneous injection of complete Freund's adjuvant (CFA) or 5% formalin induced low-frequency, irregular discharges of C-fibers and LTP of the C-fiber-evoked field potentials in the spinal dorsal horn within 3h. Topical application of the TRPV1 receptor antagonist capsazepine onto the spinal cord inhibited the induction of spinal LTP by CFA or formalin. Furthermore, capsazepine and another TRPV1 antagonist, (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide, partially or completely blocked the LTP induced by conditioning stimulation with high- and low-frequency electrical stimulation. These results suggest that acute peripheral inflammatory stimulation by CFA or 5% formalin can induce spinal LTP very early after stimulation onset and that TRPV1 receptors in the spinal dorsal horn might contribute to this LTP induction. PMID:24680883

Yang, F; Guo, J; Sun, W-L; Liu, F-Y; Cai, J; Xing, G-G; Wan, Y

2014-06-01

198

The stimulation of capsaicin-sensitive neurones in a vanilloid receptor-mediated fashion by pungent terpenoids possessing an unsaturated 1,4-dialdehyde moiety.  

PubMed Central

1. The irritant fungal terpenoid isovelleral caused protective eye-wiping movements in the rat upon intraocular instillation and showed cross-tachyphylaxis with capsaicin, the pungent principle in hot pepper. 2. Isovelleral induced a dose-dependent calcium uptake by rat dorsal root ganglion neurones cultured in vitro with an EC50 of 95 nM, which was fully inhibited by the competitive vanilloid receptor antagonist capsazepine. 3. Isovelleral inhibited specific binding of [3H]-resiniferatoxin (RTX), an ultrapotent capsaicin analogue, to rat trigeminal ganglion or spinal cord preparations with an IC50 of 5.2 microM; in experiments in which the concentration of [3H]-RTX was varied, isovelleral changed both the apparent affinity (from 16 pM to 37 pM) and the co-operativity index (from 2.1 to 1.5), but not the Bmax. 4. The affinity of isovelleral for inducing calcium uptake or inhibiting RTX binding was in very good agreement with the threshold dose (2.2. nmol) at which it provoked pungency on the human tongue. 5. For a series of 14 terpenoids with an unsaturated 1,4-dialdehyde, a good correlation was found between pungency on the human tongue and affinity for vanilloid receptors on the rat spinal cord. 6. The results suggest that isovelleral-like compounds produce their irritant effect by interacting with vanilloid receptors on capsaicin-sensitive sensory neurones. Since these pungent diterpenes are structurally distinct from the known classes of vanilloids, these data provide new insights into structure-activity relations and may afford new opportunities for the development of drugs targeting capsaicin-sensitive pathways. PMID:8886410

Szallasi, A.; Jonassohn, M.; Acs, G.; Biro, T.; Acs, P.; Blumberg, P. M.; Sterner, O.

1996-01-01

199

Nitric oxide induces apoptosis associated with TRPV1 channel-mediated Ca(2+) entry via S-nitrosylation in osteoblasts.  

PubMed

The high-level production of nitric oxide (NO) induced by inflammatory cytokines has been shown to play a key role in the pathogenesis of inflammation-mediated osteoporosis. In the present work, we observed that 1mM of the NO donor sodium nitroprusside (SNP) induced an increase of the cytosolic calcium concentration ([Ca(2+)]c) in osteoblasts, which was completely abolished by applying an extracellular Ca(2+)-free buffer. Further experiments showed that the SNP-induced [Ca(2+)]c increase was specifically blocked by potent antagonists of the transient receptor potential vanilloid subtype 1 (TRPV1) channel: capsazepine, ruthenium red, and La(3+) in Ca(2+)-containing buffer. However, nifedipine, an L-type voltage sensitive Ca(2+)-channel blocker, failed to suppress the [Ca(2+)]c elevation caused by SNP. Additionally, 1mM SNP induced osteoblast apoptosis, which was largely inhibited by the blockers of TRPV1, capsazepine and ruthenium red. Interestingly, our data showed that the SNP-induced [Ca(2+)]c increase was significantly inhibited by N-ethylmaleimide, the blocker of S-nitrosylation modification, instead of inhibitors of the NO-cGMP-PKG pathway. Taken together, our data clearly demonstrated that the NO donor SNP resulted in apoptosis associated with TRPV1 channel-mediated Ca(2+) entry via S-nitrosylation in osteoblasts. PMID:23707350

Pan, Leiting; Song, Kun; Hu, Fen; Sun, Wenwu; Lee, Imshik

2013-09-01

200

Ultraviolet irradiation of the eye and Fos-positive neurons induced in trigeminal brainstem after intravitreal or ocular surface transient receptor potential vanilloid 1 activation.  

PubMed

The interior structures of the eye are well supplied by the trigeminal nerve; however, the function of these afferent fibers is not well defined. The aim of this study was to use c-fos like immunohistochemistry (Fos-LI) to map the trigeminal brainstem complex after intravitreal microinjection or ocular surface application of capsaicin, a selective transient receptor potential vanilloid 1 (TRPV1) agonist in male rats under barbiturate anesthesia. The effect of ocular inflammation on Fos-LI was tested 2 or 7 days after UV irradiation of the eye. In non-inflamed controls, intravitreal capsaicin produced peaks of Fos-LI at the trigeminal subnucleus interpolaris/caudalis (Vi/Vcvl) transition and in superficial laminae at the caudalis/upper cervical cord (Vc/C1) junction regions. At the Vc/C1 junction intravitreal capsaicin induced Fos-LI in a dose-dependent manner, while at the Vi/Vcvl transition responses were similar after vehicle or capsaicin injections. Two days, but not 7 days, after UV irradiation intravitreal and ocular surface capsaicin-evoked Fos-LI at the Vc/C1 junction and nucleus tractus solitarius (NTS) were markedly enhanced, whereas the responses at the Vi/Vcvl transition were not different from non-inflamed controls. More than 80% of trigeminal ganglion neurons labeled after intravitreal microinjection of Fluorogold also expressed immunoreactivity for the TRPV1 receptor. These findings suggested that most intraocular trigeminal sensory nerves serve as nociceptors. The similar pattern and magnitude of Fos-LI after capsaicin suggested that TRPV1-responsive trigeminal nerves that supply intraocular and ocular surface tissues form a unified integrative circuit in the caudal brainstem. Intensity coding of capsaicin concentration and facilitation of Fos-LI expression after UV irradiation strongly supported the hypothesis that the Vc/C1 junction was critical for nociceptive processing related to ocular pain, whereas the Vi/Vcvl transition region likely served other functions in ocular homeostasis under naďve and inflamed conditions. PMID:20643195

Chang, Z; Okamoto, K; Tashiro, A; Bereiter, D A

2010-10-13

201

Molecular target size of the vanilloid (capsaicin) receptor in pig dorsal root ganglia  

SciTech Connect

The size of the vanilloid receptor was examined by high-energy radiation inactivation analysis of the binding of ({sup 3}H)resiniferatoxin to pig dorsal root ganglion membranes; it was found to be 270 {plus minus} 25 kDa. This value most likely represents the size of a receptor complex rather than of an individual subunit. Other ligand-gated cation channel complexes have reported molecular weights in this range, e.g. 300 kDa for the acetylcholine receptor.

Szallasi, A.; Blumberg, P.M. (National Cancer Institute, Bethesda, MD (USA))

1991-01-01

202

Activation of transient receptor potential ankyrin 1 by eugenol.  

PubMed

Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5?M. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol. PMID:24384226

Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

2014-03-01

203

Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action.  

PubMed

Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo. PMID:24075930

Skrzypski, M; Sassek, M; Abdelmessih, S; Mergler, S; Grötzinger, C; Metzke, D; Wojciechowicz, T; Nowak, K W; Strowski, M Z

2014-01-01

204

The Effects of a Co-Application of Menthol and Capsaicin on Nociceptive Behaviors of the Rat on the Operant Orofacial Pain Assessment Device  

PubMed Central

Background Transient receptor potential (TRP) cation channels are involved in the perception of hot and cold pain and are targets for pain relief in humans. We hypothesized that agonists of TRPV1 and TRPM8/TRPA1, capsaicin and menthol, would alter nociceptive behaviors in the rat, but their opposite effects on temperature detection would attenuate one another if combined. Methods Rats were tested on the Orofacial Pain Assessment Device (OPAD, Stoelting Co.) at three temperatures within a 17 min behavioral session (33°C, 21°C, 45°C). Results The lick/face ratio (L/F: reward licking events divided by the number of stimulus contacts. Each time there is a licking event a contact is being made.) is a measure of nociception on the OPAD and this was equally reduced at 45°C and 21°C suggesting they are both nociceptive and/or aversive to rats. However, rats consumed (licks) equal amounts at 33°C and 21°C but less at 45°C suggesting that heat is more nociceptive than cold at these temperatures in the orofacial pain model. When menthol and capsaicin were applied alone they both induced nociceptive behaviors like lower L/F ratios and licks. When applied together though, the licks at 21°C were equal to those at 33°C and both were significantly higher than at 45°C. Conclusions This suggests that the cool temperature is less nociceptive when TRPM8/TRPA1 and TRPV1 are co-activated. These results suggest that co-activation of TRP channels can reduce certain nociceptive behaviors. These data demonstrate that the motivational aspects of nociception can be influenced selectively by TRP channel modulation and that certain aspects of pain can be dissociated and therefore targeted selectively in the clinic. PMID:24558480

Anderson, Ethan M.; Jenkins, Alan C.; Caudle, Robert M.; Neubert, John K.

2014-01-01

205

Immunohistochemical Localization of Transient Receptor Potential Vanilloid Subtype 1 in the Trachea of Ovalbumin-Sensitized Guinea Pigs  

Microsoft Academic Search

Background: We previously found many transient receptor potential vanilloid receptor subtype 1 (TRPV1) axons in the tracheal smooth muscle and epithelium of the guinea pig airway. One report indicates that the number of TRPV1 axons is significantly increased in patients with cough variant asthma. Aim: To determine whether the distribution of TRPV1 in the airways is altered in guinea pigs

Naoto Watanabe; Syunji Horie; Domenico Spina; Gregory J. Michael; Clive P. Page; John V. Priestley

2008-01-01

206

Full Inhibition of Spinal FAAH Leads to TRPV1-Mediated Analgesic Effects in Neuropathic Rats and Possible Lipoxygenase-Mediated Remodeling of Anandamide Metabolism  

PubMed Central

Neuropathic pain elevates spinal anandamide (AEA) levels in a way further increased when URB597, an inhibitor of AEA hydrolysis by fatty acid amide hydrolase (FAAH), is injected intrathecally. Spinal AEA reduces neuropathic pain by acting at both cannabinoid CB1 receptors and transient receptor potential vanilloid-1 (TRPV1) channels. Yet, intrathecal URB597 is only partially effective at counteracting neuropathic pain. We investigated the effect of high doses of intrathecal URB597 on allodynia and hyperalgesia in rats with chronic constriction injury (CCI) of the sciatic nerve. Among those tested, the 200 µg/rat dose of URB597 was the only one that elevated the levels of the FAAH non-endocannabinoid and anti-inflammatory substrates, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and of the endocannabinoid FAAH substrate, 2-arachidonoylglycerol, and fully inhibited thermal and tactile nociception, although in a manner blocked almost uniquely by TRPV1 antagonism. Surprisingly, this dose of URB597 decreased spinal AEA levels. RT-qPCR and western blot analyses demonstrated altered spinal expression of lipoxygenases (LOX), and baicalein, an inhibitor of 12/15-LOX, significantly reduced URB597 analgesic effects, suggesting the occurrence of alternative pathways of AEA metabolism. Using immunofluorescence techniques, FAAH, 15-LOX and TRPV1 were found to co-localize in dorsal spinal horn neurons of CCI rats. Finally, 15-hydroxy-AEA, a 15-LOX derivative of AEA, potently and efficaciously activated the rat recombinant TRPV1 channel. We suggest that intrathecally injected URB597 at full analgesic efficacy unmasks a secondary route of AEA metabolism via 15-LOX with possible formation of 15-hydroxy-AEA, which, together with OEA and PEA, may contribute at producing TRPV1-mediated analgesia in CCI rats. PMID:23573230

Starowicz, Katarzyna; Makuch, Wioletta; Korostynski, Michal; Malek, Natalia; Slezak, Michal; Zychowska, Magdalena; Petrosino, Stefania; De Petrocellis, Luciano; Cristino, Luigia; Przewlocka, Barbara; Di Marzo, Vincenzo

2013-01-01

207

Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism.  

PubMed

Neuropathic pain elevates spinal anandamide (AEA) levels in a way further increased when URB597, an inhibitor of AEA hydrolysis by fatty acid amide hydrolase (FAAH), is injected intrathecally. Spinal AEA reduces neuropathic pain by acting at both cannabinoid CB1 receptors and transient receptor potential vanilloid-1 (TRPV1) channels. Yet, intrathecal URB597 is only partially effective at counteracting neuropathic pain. We investigated the effect of high doses of intrathecal URB597 on allodynia and hyperalgesia in rats with chronic constriction injury (CCI) of the sciatic nerve. Among those tested, the 200 µg/rat dose of URB597 was the only one that elevated the levels of the FAAH non-endocannabinoid and anti-inflammatory substrates, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and of the endocannabinoid FAAH substrate, 2-arachidonoylglycerol, and fully inhibited thermal and tactile nociception, although in a manner blocked almost uniquely by TRPV1 antagonism. Surprisingly, this dose of URB597 decreased spinal AEA levels. RT-qPCR and western blot analyses demonstrated altered spinal expression of lipoxygenases (LOX), and baicalein, an inhibitor of 12/15-LOX, significantly reduced URB597 analgesic effects, suggesting the occurrence of alternative pathways of AEA metabolism. Using immunofluorescence techniques, FAAH, 15-LOX and TRPV1 were found to co-localize in dorsal spinal horn neurons of CCI rats. Finally, 15-hydroxy-AEA, a 15-LOX derivative of AEA, potently and efficaciously activated the rat recombinant TRPV1 channel. We suggest that intrathecally injected URB597 at full analgesic efficacy unmasks a secondary route of AEA metabolism via 15-LOX with possible formation of 15-hydroxy-AEA, which, together with OEA and PEA, may contribute at producing TRPV1-mediated analgesia in CCI rats. PMID:23573230

Starowicz, Katarzyna; Makuch, Wioletta; Korostynski, Michal; Malek, Natalia; Slezak, Michal; Zychowska, Magdalena; Petrosino, Stefania; De Petrocellis, Luciano; Cristino, Luigia; Przewlocka, Barbara; Di Marzo, Vincenzo

2013-01-01

208

Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia  

NASA Astrophysics Data System (ADS)

Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist ??meATP, induced a dose- and time-dependent hyperalgesia. Importantly, the ??meATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand gated ion channels form functional complexes in nociceptors. It is also important to further elucidate peripheral anti-nociceptive mechanisms to improve clinical utilization of currently available analgesics and uncover additional therapeutic targets. A side project examined the mechanisms underlying sex differences in the anti-hyperalgesic effects of delta opioid receptors (DORs). This study provides evidence of a sex difference in the potency at DORs that is mediated by differences in the expression of ATP-sensitive potassium channels. Collectively, understanding detailed molecular events that underlie the development of pathological pain conditions could benefit future pharmacotherapies.

Saloman, Jami L.

209

Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.  

PubMed

Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress. PMID:24792079

Ghazizadeh, Vahid; Naz?ro?lu, Mustafa

2014-09-01

210

Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses.  

PubMed

In rodents, at least two transduction mechanisms are involved in salt taste: 1) the sodium-selective epithelial sodium channel, blocked by topical amiloride administration, and 2) one or more amiloride-insensitive cation-nonselective pathways. Whereas electrophysiological evidence from the chorda tympani nerve (CT) has implicated the transient receptor potential vanilloid-1 (TRPV1) channel as a major component of amiloride-insensitive salt taste transduction, behavioral results have provided only equivocal support. Using a brief-access taste test, we examined generalization profiles of water-deprived C57BL/6J (WT) and TRPV1 knockout (KO) mice conditioned (via LiCl injection) to avoid 100 ?M amiloride-prepared 0.25 M NaCl and tested with 0.25 M NaCl, sodium gluconate, KCl, NH(4)Cl, 6.625 mM citric acid, 0.15 mM quinine, and 0.5 M sucrose. Both LiCl-injected WT and TRPV1 KO groups learned to avoid NaCl+amiloride relative to controls, but their generalization profiles did not differ; LiCl-injected mice avoided the nonsodium salts and quinine suggesting that a TRPV1-independent pathway contributes to the taste quality of the amiloride-insensitive portion of the NaCl signal. Repeating the experiment but doubling all stimulus concentrations revealed a difference in generalization profiles between genotypes. While both LiCl-injected groups avoided the nonsodium salts and quinine, only WT mice avoided the sodium salts and citric acid. CT responses to these stimuli and a concentration series of NaCl and KCl with and without amiloride did not differ between genotypes. Thus, in our study, TRPV1 did not appear to contribute to sodium salt perception based on gustatory signals, at least in the CT, but may have contributed to the oral somatosensory features of sodium. PMID:23054171

Smith, Kimberly R; Treesukosol, Yada; Paedae, A Brennan; Contreras, Robert J; Spector, Alan C

2012-12-01

211

Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice.  

PubMed

Using a recently developed in vitro preparation of vagal afferent pathways, we examined the role of TRPV1 and ASIC3 on the mechano- and chemosensitive properties of gastroesophageal sensory neurons. Esophagus, stomach, and the intact vagus nerves up to the central terminations were carefully dissected from TRPV1 and ASIC3 knockout mice and wild-type controls. The organ preparation was placed in a superfusion chamber to obtain intracellular recordings from the soma of nodose neurons during luminal stimulation of esophagus and stomach. The proximal esophagus and distal stomach were separately intubated to allow perfusion and graded luminal distension. In wild-type mice, mechanosensitive neurons were activated by low distension pressures and encoded stimulus intensity over the entire range tested. Luminal acidification significantly transiently increased the resting frequency but did not alter responses to subsequent mechanical stimulation. ASIC3 and TRPV1 knockout significantly blunted responses to distension compared with wild-type controls, with deletion of TRPV1 having a more significant effect than ASIC3 deletion. Luminal acidification did not activate mechanosensory neurons in ASIC3 and TRPV1 knockout mice. Our data demonstrate a role of TRPV1 in chemo- and mechanosensation of gastroesophageal afferents. ASIC3 may contribute to acid sensation but plays a more subtle role in responses to distending stimuli. Considering the importance of acid in dyspeptic symptoms and gastroesophageal reflux, TRPV1 or ASIC3 may be an attractive target for treatment strategies in patients who do not respond to acid suppressive therapy. PMID:17975130

Bielefeldt, Klaus; Davis, Brian M

2008-01-01

212

Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy.  

PubMed

Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8weeks of diabetes development. Here we found that 6-7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception. The proportion of IB4-positive capsaicin-sensitive small DRG neurons, strongly involved in thermal nociception, was not altered under different types of PDN implying differential changes at cellular and molecular level. We further focused on properties of T-type calcium and TRPV1 channels, which are known to be involved in Ca(2+) signaling and pathological nociception. Indeed, TRPV1-mediated signaling in these neurons was downregulated under hypo- and normalgesia and upregulated under hyperalgesia. A complex interplay between diabetes-induced changes in functional expression of Cav3.2 T-type calcium channels and depolarizing shift of their steady-state inactivation resulted in upregulation of these channels under hyper- and normalgesia and their downregulation under hypoalgesia. As a result, T-type window current was increased by several times under hyperalgesia partially underlying the increased resting [Ca(2+)]i observed in the hyperalgesic rats. At the same time Cav3.2-dependent Ca(2+) signaling was upregulated in all types of PDN. These findings indicate that alterations in functioning of Cav3.2 T-type and TRPV1 channels, specific for each type of PDN, may underlie the variety of pain syndromes induced by type 1 diabetes. PMID:23376589

Khomula, Eugen V; Viatchenko-Karpinski, Viacheslav Y; Borisyuk, Anya L; Duzhyy, Dmytro E; Belan, Pavel V; Voitenko, Nana V

2013-05-01

213

TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis.  

PubMed

Visceral afferents expressing transient receptor potential (TRP) channels TRPV1 and TRPA1 are thought to be required for neurogenic inflammation and development of inflammatory hyperalgesia. Using a mouse model of chronic pancreatitis (CP) produced by repeated episodes (twice weekly) of caerulein-induced AP (AP), we studied the involvement of these TRP channels in pancreatic inflammation and pain-related behaviors. Antagonists of the two TRP channels were administered at different times to block the neurogenic component of AP. Six bouts of AP (over 3 wks) increased pancreatic inflammation and pain-related behaviors, produced fibrosis and sprouting of pancreatic nerve fibers, and increased TRPV1 and TRPA1 gene transcripts and a nociceptive marker, pERK, in pancreas afferent somata. Treatment with TRP antagonists, when initiated before week 3, decreased pancreatic inflammation and pain-related behaviors and also blocked the development of histopathological changes in the pancreas and upregulation of TRPV1, TRPA1, and pERK in pancreatic afferents. Continued treatment with TRP antagonists blocked the development of CP and pain behaviors even when mice were challenged with seven more weeks of twice weekly caerulein. When started after week 3, however, treatment with TRP antagonists was ineffective in blocking the transition from AP to CP and the emergence of pain behaviors. These results suggest: (1) an important role for neurogenic inflammation in pancreatitis and pain-related behaviors, (2) that there is a transition from AP to CP, after which TRP channel antagonism is ineffective, and thus (3) that early intervention with TRP channel antagonists may attenuate the transition to and development of CP effectively. PMID:23536075

Schwartz, Erica S; La, Jun-Ho; Scheff, Nicole N; Davis, Brian M; Albers, Kathryn M; Gebhart, G F

2013-03-27

214

TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis  

PubMed Central

Visceral afferents expressing transient receptor potential channels TRPV1 and TRPA1 are thought to be required for neurogenic inflammation and development of inflammatory hyperalgesia. In a mouse model of chronic pancreatitis (CP) produced by repeated episodes (twice/wk) of caerulein-induced acute pancreatitis (AP), we studied involvement of these TRP channels in pancreatic inflammation and pain-related behaviors. Antagonists of the two TRP channels were administered at different times to block the neurogenic component of AP. Six bouts of AP (over 3 wks) increased pancreatic inflammation and pain-related behaviors, produced fibrosis, sprouting of pancreatic nerve fibers and increased TRPA1 and TRPV1 gene transcripts and a nociceptive marker, pERK, in pancreas afferent somata. Treatment with TRP antagonists, when initiated prior to week 3, decreased pancreatic inflammation and pain-related behaviors and also blocked development of histopathological changes in the pancreas and upregulation of TRPV1, TRPA1 and pERK in pancreatic afferents. Continued treatment with TRP antagonists blocked development of CP and pain behaviors even when mice were challenged with seven more weeks of twice/wk caerulein. When started after week 3, however, treatment with TRP antagonists was ineffective in blocking the transition from AP to CP and the emergence of pain behaviors. These results suggest 1) an important role for neurogenic inflammation in pancreatitis and pain-related behaviors, 2) there is transition from AP to CP, after which TRP channel antagonism is ineffective, and thus 3) that early intervention with TRP channel antagonists may effectively attenuate the transition to and development of CP. PMID:23536075

Schwartz, Erica S.; La, Jun-Ho; Scheff, Nicole N.; Davis, Brian M.; Albers, Kathryn M.; Gebhart, G.F.

2013-01-01

215

Cannabinoid WIN 55,212-2 Regulates TRPV1 Phosphorylation in Sensory Neurons*  

E-print Network

, § Pharmacology, and ¶ Physiology, University of Texas Health Science Center, San Antonio, Texas 78229 the cannabi- noid agonist WIN 55,212-2 (WIN) regulates the phosphoryla- tion state of TRPV1. Here, we show

Price, Theodore

216

Shivering and tachycardic responses to external cooling in mice are substantially suppressed by TRPV1 activation but not by TRPM8 inhibition  

PubMed Central

Mild decrease of core temperature (32–34°C), also known as therapeutic hypothermia, is a highly effective strategy of neuroprotection from ischemia and holds significant promise in the treatment of stroke. However, induction of hypothermia in conscious stroke patients is complicated by cold-defensive responses, such as shivering and tachycardia. Although multiple thermoregulatory responses may be altered by modulators of thermosensitive ion channels, TRPM8 (transient receptor potential melastatin 8) and TRPV1 (TRP vanilloid 1), it is unknown whether these agents affect cold-induced shivering and tachycardia. The current study aimed to determine the effects of TRPM8 inhibition and TRPV1 activation on the shivering and tachycardic responses to external cooling. Conscious mice were treated with TRPM8 inhibitor compound 5 or TRPV1 agonist dihydrocapsaicin (DHC) and exposed to cooling at 10°C. Shivering was measured by electromyography using implanted electrodes in back muscles, tachycardic response by electrocardiography, and core temperature by wireless transmitters in the abdominal cavity. The role of TRPM8 was further determined using TRPM8 KO mice. TRPM8 ablation had no effect on total electromyographic muscle activity (vehicle: 24.0 ± 1.8; compound 5: 23.8 ± 2.0; TRPM8 KO: 19.7 ± 1.9 V·s/min), tachycardia (?HR = 124 ± 31; 121 ± 13; 121 ± 31 beats/min) and drop in core temperature (?3.6 ± 0.1; ?3.4 ± 0.4; ?3.6 ± 0.5°C) during cold exposure. TRPV1 activation substantially suppressed muscle activity (vehicle: 25.6 ± 3.0 vs. DHC: 5.1 ± 2.0 V·s/min), tachycardia (?HR = 204 ± 25 vs. 3 ± 35 beats/min) and produced a profound drop in core temperature (?2.2 ± 0.6 vs. ?8.9 ± 0.6°C). In conclusion, external cooling-induced shivering and tachycardia are suppressed by TRPV1 activation, but not by TRPM8 inhibition. This suggests that TRPV1 agonists may be combined with external physical cooling to achieve more rapid and effective hypothermia. PMID:24005250

Feketa, Viktor V.; Balasubramanian, Adithya; Flores, Christopher M.; Player, Mark R.

2013-01-01

217

Thermosensitive ion channel TRPV1 is endogenously expressed in the sperm of a fresh water teleost fish (Labeo rohita) and regulates sperm motility  

PubMed Central

Sperm cells exhibit extremely high sensitivity in response to slight changes in temperature, osmotic pressure and/or presence of various chemical stimuli. In most cases throughout the evolution, these physico-chemical stimuli trigger Ca2+-signaling and subsequently alter structure, cellular function, motility and survival of the sperm cells. Few reports have recently demonstrated the presence of Transient Receptor Potential (TRP) channels in the sperm cells from higher eukaryotes, mainly from higher mammals. In this work, we have explored if the sperm cells from lower vertebrates can also have thermo-sensitive TRP channels. In this paper, we demonstrate the endogenous presence of one specific thermo-sensitive ion channel, namely Transient Receptor Potential Vanilloid family member sub type 1 (TRPV1) in the sperm cells collected from fresh water teleost fish, Labeo rohita. By using western blot analysis, fluorescence assisted cell sorting (FACS) and confocal microscopy; we confirm the presence of this non-selective cation channel. Activation of TRPV1 by an endogenous activator NADA significantly increases the quality as well as the duration of fish sperm movement. The sperm cell specific expression of TRPV1 matches well with our in silico sequence analysis. The results demonstrate that TRPV1 gene is conserved in various fishes, ranging from 1–3 in copy number, and it originated by fish-specific duplication events within the last 320 million years (MY). To the best of our knowledge, this is the first report demonstrating the presence of any thermo-sensitive TRP channels in the sperm cells of early vertebrates as well as of aquatic animals, which undergo external fertilization in fresh water. This observation may have implications in the aquaculture, breeding of several fresh water and marine fish species and cryopreservation of fish sperms. PMID:23912940

Majhi, Rakesh Kumar; Kumar, Ashutosh; Yadav, Manoj; Swain, Nirlipta; Kumari, Shikha; Saha, Ashish; Pradhan, Avinash; Goswami, Luna; Saha, Somdatta; Samanta, Luna; Maity, Apratim; Nayak, Tapas Kumar; Chattopadhyay, Subhasis; Rajakuberan, Chitra; Kumar, Abhishek; Goswami, Chandan

2013-01-01

218

Ablation of TrpV1 neurons reveals their selective role in thermal pain sensation.  

PubMed

Here we make use of neural ablation to investigate the properties of the TrpV1-expressing neurons in the trigeminal and dorsal root ganglia of mice. Resiniferotoxin (RTX), a potent TrpV1 agonist, administered either by direct injection in the ganglion or intrathecally killed approximately 70% of TrpV1 cells and resulted in modest thermal analgesia. Interestingly, after carageenan injection in the hind paw, the analgesic effects of RTX were dramatically increased with mice now paradoxically showing far less response to heat applied at sites of inflammation. This additional carageenan and RTX-induced analgesia was transient, lasting less than 2 days, and likely resulted from deafferentation of remaining TrpV1 neurons. Remarkably, although RTX affected sensitivity to heat, mechanical sensitivity (both of normal and inflamed tissue) was completely unaltered by toxin-mediated silencing of the TrpV1 sensory input. Thus, our data demonstrate that TrpV1 neurons are selectively tuned nociceptors that mediate responses to thermal but not mechanical pain and insinuate a labeled line model for somatosensory coding. PMID:19853036

Mishra, Santosh K; Hoon, Mark A

2010-01-01

219

Enhanced salt sensitivity following shRNA silencing of neuronal TRPV1 in rat spinal cord  

PubMed Central

Aim: To investigate the effects of selective knockdown of TRPV1 channels in the lower thoracic and upper lumbar segments of spinal cord, dorsal root ganglia (DRG) and mesenteric arteries on rat blood pressure responses to high salt intake. Methods: TRPV1 short-hairpin RNA (shRNA) was delivered using intrathecal injection (6 ?g·kg?1·d?1, for 3 d). Levels of TRPV1 and tyrosine hydroxylase expression were determined by Western blot analysis. Systolic blood pressure and mean arterial pressure (MAP) were examined using tail-cuff and direct arterial measurement, respectively. Results: In rats injected with control shRNA, high-salt diet (HS) caused higher systolic blood pressure compared with normal-salt diet (NS) (HS:149±4 mmHg; NS:126±2 mmHg, P<0.05). Intrathecal injection of TRPV1 shRNA significantly increased the systolic blood pressure in both HS rats and NS rats (HS:169±3 mmHg; NS:139±2 mmHg). The increases was greater in HS rats than in NS rats (HS: 13.9%±1.8%; NS: 9.8±0.7, P<0.05). After TRPV1 shRNA treatment, TRPV1 expression in the dorsal horn and DRG of T8-L3 segments and in mesenteric arteries was knocked down to a greater extent in HS rats compared with NS rats. Blockade of ?1-adrenoceptors abolished the TRPV1 shRNA-induced pressor effects. In rats injected with TRPV1 shRNA, level of tyrosine hydroxylase in mesenteric arteries was increased to a greater extent in HS rats compared with NS rats. Conclusion: Selective knockdown of TRPV1 expression in the lower thoracic and upper lumbar segments of spinal cord, DRG, and mesenteric arteries enhanced the prohypertensive effects of high salt intake, suggesting that TRPV1 channels in these sites protect against increased salt sensitivity, possibly via suppression of sympatho-excitatory responses. PMID:21642952

Yu, Shuang-quan; Wang, Donna H

2011-01-01

220

Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia  

PubMed Central

Background Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown. Results Here we showed that a single intramuscular acid injection induced a priming effect on muscle nociceptors of mice. The primed muscle nociceptors were plastic and permitted the development of long-lasting chronic hyperalgesia induced by a second acid insult. The plastic changes of muscle nociceptors were modality-specific and required the activation of acid-sensing ion channel 3 (ASIC3) or transient receptor potential cation channel V1 (TRPV1). Activation of ASIC3 was associated with increased activity of tetrodotoxin (TTX)-sensitive voltage-gated sodium channels but not protein kinase C? (PKC?) in isolectin B4 (IB4)-negative muscle nociceptors. In contrast, increased activity of TTX-resistant voltage-gated sodium channels with ASIC3 or TRPV1 activation in NaV1.8-positive muscle nociceptors was required for the development of chronic hyperalgesia. Accordingly, compared to wild type mice, NaV1.8-null mice showed briefer acid-induced hyperalgesia (5 days vs. >27 days). Conclusion ASIC3 activation may manifest a new type of nociceptor priming in IB4-negative muscle nociceptors. The activation of ASIC3 and TRPV1 as well as enhanced NaV1.8 activity are essential for the development of long-lasting hyperalgesia in acid-induced, chronic, widespread muscle pain. PMID:24957987

2014-01-01

221

Photochemical gating of heterologous ion channels: Remote control over genetically designated  

E-print Network

the capsaicin receptor, TRPV1, the menthol receptor, TRPM8, or the ionotropic purinergic receptor P2X2 the respective ``caged'' precursors, 4,5-dimethoxy-2-nitrobenzyl- capsaicin and P3-[1-(4,5-dimethoxy-2

Nesnas, Nasri

222

Activations of TRPA1 and P2X receptors are important in ROS-mediated stimulation of capsaicin-sensitive lung vagal afferents by cigarette smoke in rats.  

PubMed

Capsaicin-sensitive lung vagal afferents (CSLVAs) are important in detecting pulmonary reactive oxygen species (ROS). We investigated the mechanisms underlying the stimulation of CSLVAs by inhaled cigarette smoke (CS) in 216 anesthetized rats. In spontaneously breathing rats, CS evoked a CSLVA-mediated reflex bradypnea that was prevented by N-acetyl-L-cysteine (NAC; an antioxidant), HC-030031 [a transient receptor potential ankyrin 1 (TRPA1) receptor antagonist], and iso-pyridoxalphosphate-6-azophenyl-2',5'-disulfonate (iso-PPADS; a P2X receptor antagonist). In paralyzed, artificially ventilated rats, CS evoked an increase in CSLVA fiber activity (DeltaFA) that was abolished by NAC and was attenuated by HC-030031, iso-PPADS, indomethacin (Indo; a cyclooxygenase inhibitor), and a combination of apyrase and adenosine deaminase (ADA) (ATP scavengers); the response to CS was reduced to 11.7+/-4.0%, 39.5+/-10.0%, 52.9+/-14.4%, 68.7+/-10.1%, and 47.2+/-12.9% of control, respectively. The suppressive effect on this afferent response was not improved by a combination of HC-030031 and Indo (DeltaFA=39.5+/-10.1% of control) compared with that induced by HC-030031 alone. In contrast, the suppressive effect was enhanced by a combination of HC-030031 and apyrase+ADA (DeltaFA=5.3+/-4.9% of control) or a combination of iso-PPADS and Indo (DeltaFA=23.3+/-7.7% of control) compared with that induced by HC-030031 alone or iso-PPADS alone. This afferent response was not altered by the vehicles for these drugs. These results suggest that activations of TRPA1 receptors by cyclooxygenase metabolites and P2X receptors by ATP are both necessary for the ROS-mediated stimulation of CSLVA fibers by CS in rats. PMID:20167675

Lin, You Shuei; Hsu, Chun-Chun; Bien, Mauo-Ying; Hsu, Hui-Chi; Weng, Hsu-Ting; Kou, Yu Ru

2010-05-01

223

Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and ?1 adrenoreceptors  

PubMed Central

Background Clinical studies have now confirmed the link between short-term exposure to elevated levels of air pollution and increased cardiovascular mortality, but the mechanisms are complex and not completely elucidated. The present study was designed to investigate the hypothesis that activation of pulmonary sensory receptors and the sympathetic nervous system underlies the influence of pulmonary exposure to diesel exhaust particulate on blood pressure, and on the myocardial response to ischemia and reperfusion. Methods & Results 6 h after intratracheal instillation of diesel exhaust particulate (0.5 mg), myocardial ischemia and reperfusion was performed in anesthetised rats. Blood pressure, duration of ventricular arrhythmia, arrhythmia-associated death, tissue edema and reperfusion injury were all increased by diesel exhaust particulate exposure. Reperfusion injury was also increased in buffer perfused hearts isolated from rats instilled in vivo, excluding an effect dependent on continuous neurohumoral activation or systemic inflammatory mediators. Myocardial oxidant radical production, tissue apoptosis and necrosis were increased prior to ischemia, in the absence of recruited inflammatory cells. Intratracheal application of an antagonist of the vanilloid receptor TRPV1 (AMG 9810, 30 mg/kg) prevented enhancement of systolic blood pressure and arrhythmia in vivo, as well as basal and reperfusion-induced myocardial injury ex vivo. Systemic ?1 adrenoreceptor antagonism with metoprolol (10 mg/kg) also blocked enhancement of myocardial oxidative stress and reperfusion injury. Conclusions Pulmonary diesel exhaust particulate increases blood pressure and has a profound adverse effect on the myocardium, resulting in tissue damage, but also increases vulnerability to ischemia-associated arrhythmia and reperfusion injury. These effects are mediated through activation of pulmonary TRPV1, the sympathetic nervous system and locally generated oxidative stress. PMID:24568236

2014-01-01

224

Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat.  

PubMed

Vagal afferent neurons relay important information regarding the control of the gastrointestinal system. However, the ionic mechanisms that underlie vagal activation induced by sensory inputs are not completely understood. We postulate that transient receptor potential (TRP) channels and/or two-pore potassium (K2p) channels are targets for activating vagal afferents. In this study we explored the distribution of these channels in vagal afferents by quantitative PCR after a capsaicin treatment to eliminate capsaicin-sensitive neurons, and by single-cell PCR measurements in vagal afferent neurons cultured after retrograde labeling from the stomach or duodenum. We found that TRPC1/3/5/6, TRPV1-4, TRPM8, TRPA1, TWIK2, TRAAK, TREK1, and TASK1/2 were all present in rat nodose ganglia. Both lesion results and single-cell PCR results suggested that TRPA1 and TRPC1 were preferentially expressed in neurons that were either capsaicin sensitive or TRPV1 positive. Expression of TRPM8 varied dynamically after various manipulations, which perhaps explains the disparate results obtained by different investigators. Last, we also examined ion channel distribution with the A-type CCK receptor (CCK-R(A)) and found there was a significant preference for neurons that express TRAAK to also express CCK-R(A), especially in gut-innervating neurons. These findings, combined with findings from prior studies, demonstrated that background conductances such as TRPC1, TRPA1, and TRAAK are indeed differentially distributed in the nodose ganglia, and not only do they segregate with specific markers, but the degree of overlap is also dependent on the innervation target. PMID:19959819

Zhao, Huan; Sprunger, Leslie K; Simasko, Steven M

2010-02-01

225

Transient Receptor Potential Ankyrin 1 Channel Localized to Non-Neuronal Airway Cells Promotes Non-Neurogenic Inflammation  

PubMed Central

Background The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1. Methodology/Principal Findings By using Real-Time PCR and calcium imaging, we found that cultured human airway cells, including fibroblasts, epithelial and smooth muscle cells express functional TRPA1 channels. By using immunohistochemistry, TRPA1 staining was observed in airway epithelial and smooth muscle cells in sections taken from human airways and lung, and from airways and lung of wild-type, but not TRPA1-deficient mice. In cultured human airway epithelial and smooth muscle cells and fibroblasts, acrolein and CS extract evoked IL-8 release, a response selectively reduced by TRPA1 antagonists. Capsaicin, agonist of the transient receptor potential vanilloid 1 (TRPV1), a channel co-expressed with TRPA1 by airway sensory nerves, and acrolein or CS (TRPA1 agonists), or the neuropeptide substance P (SP), which is released from sensory nerve terminals by capsaicin, acrolein or CS), produced neurogenic inflammation in mouse airways. However, only acrolein and CS, but not capsaicin or SP, released the keratinocyte chemoattractant (CXCL-1/KC, IL-8 analogue) in bronchoalveolar lavage (BAL) fluid of wild-type mice. This effect of TRPA1 agonists was attenuated by TRPA1 antagonism or in TRPA1-deficient mice, but not by pharmacological ablation of sensory nerves. Conclusions Our results demonstrate that, although either TRPV1 or TRPA1 activation causes airway neurogenic inflammation, solely TRPA1 activation orchestrates an additional inflammatory response which is not neurogenic. This finding suggests that non-neuronal TRPA1 in the airways is functional and potentially capable of contributing to inflammatory airway diseases. PMID:22905134

Fusi, Camilla; Carnini, Chiara; Facchinetti, Fabrizio; Viscomi, Arturo Roberto; Pisano, Anna Rita; Stokesberry, Susan; Brunmark, Charlott; Svitacheva, Naila; McGarvey, Lorcan; Patacchini, Riccardo; Damholt, Anders B.; Geppetti, Pierangelo; Materazzi, Serena

2012-01-01

226

Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion.  

PubMed

TRPV1 is expressed in a subpopulation of myelinated A? and unmyelinated C-fibers. TRPV1+ fibers are essential for the transmission of nociceptive thermal stimuli and for the establishment and maintenance of inflammatory hyperalgesia. We have previously shown that high-power, short-duration pulses from an infrared diode laser are capable of predominantly activating cutaneous TRPV1+ A?-fibers. Here we show that stimulating either subtype of TRPV1+ fiber in the paw during carrageenan-induced inflammation or following hind-paw incision elicits pronounced hyperalgesic responses, including prolonged paw guarding. The ultrapotent TRPV1 agonist resiniferatoxin (RTX) dose-dependently deactivates TRPV1+ fibers and blocks thermal nociceptive responses in baseline or inflamed conditions. Injecting sufficient doses of RTX peripherally renders animals unresponsive to laser stimulation even at the point of acute thermal skin damage. In contrast, Trpv1-/- mice, which are generally unresponsive to noxious thermal stimuli at lower power settings, exhibit withdrawal responses and inflammation-induced sensitization using high-power, short duration A? stimuli. In rats, systemic morphine suppresses paw withdrawal, inflammatory guarding, and hyperalgesia in a dose-dependent fashion using the same A? stimuli. The qualitative intensity of A? responses, the leftward shift of the stimulus-response curve, the increased guarding behaviors during carrageenan inflammation or after incision, and the reduction of A? responses with morphine suggest multiple roles for TRPV1+ A? fibers in nociceptive processes and their modulation of pathological pain conditions. PMID:24434730

Mitchell, Kendall; Lebovitz, Evan E; Keller, Jason M; Mannes, Andrew J; Nemenov, Michael I; Iadarola, Michael J

2014-04-01

227

ARTICLE doi:10.1038/nature12822 Structure of the TRPV1 ion channel  

E-print Network

it a `poster child' for elucidating basic principles under- lying TRP channel function and structure. MoreoverARTICLE doi:10.1038/nature12822 Structure of the TRPV1 ion channel determined by electron cryo respond to physical and chemical stimuli has been hampered by a lack of detailed structural information

Cai, Long

228

Exploiting Nanotechnologies and TRPV1 Channels to Investigate the Putative Anandamide Membrane Transporter  

PubMed Central

Background Considerable efforts have been made to characterize the pathways regulating the extracellular levels of the endocannabinoid anandamide. However, none of such pathways has been so argued as the existence of a carrier-mediated transport of anandamide across the membrane. Apart from the lack of molecular evidence for such a carrier, the main reasons of this controversy lie in the methodologies currently used to study anandamide cellular uptake. Furthermore, the main evidence in favor of the existence of an “anandamide transporter” relies on synthetic inhibitors of this process, the selectivity of which has been questioned. Methodology/Principal Findings We used the cytosolic binding site for anandamide on TRPV1 channels as a biosensor to detect anandamide entry into cells, and exploited nanotechnologies to study anandamide membrane transport into intact TRPV1-overexpressing HEK-293 cells. Both fluorescence and digital holographic (DH) quantitative phase microscopy were used to study TRPV1 activation. Poly-?-caprolactone nanoparticles (PCL-NPs) were used to incorporate anandamide, which could thus enter the cell and activate TRPV1 channels bypassing any possible specific protein(s) involved in the uptake process. We reasoned that in the absence of such protein(s), pharmacological tools previously shown to inhibit the “anandamide transporter” would affect in the same way the uptake of anandamide and PCL-NP-anandamide, and hence the activation of TRPV1. However, when masked into PCL-NPs, anandamide cellular uptake became much less sensitive to these agents, although it maintained the same pharmacokinetics and pharmacodynamics as that of “free” anandamide. Conclusions We found here that several agents previously reported to inhibit anandamide cellular uptake lose their efficacy when anandamide is prevented from interacting directly with plasma membrane proteins, thus arguing in favor of the specificity of such agents for the putative “anandamide transporter”, and of the existence of such mechanism. PMID:20422025

Hernan Perez de la Ossa, Dolores; Aberturas, Rosario; Cristino, Luigia; Moriello, Aniello Schiano; Finizio, Andrea; Gil, M?.Esther; Torres, Ana-Isabel; Molpeceres, Jesus; Di Marzo, Vincenzo

2010-01-01

229

Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses  

PubMed Central

Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals. PMID:24550768

Fenwick, Axel J.; Wu, Shaw-wen; Peters, James H.

2014-01-01

230

An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors  

Microsoft Academic Search

The vanilloid receptor VR1 is a nonselective cation channel that is most abundant in peripheral sensory fibers but also is found in several brain nuclei. VR1 is gated by protons, heat, and the pungent ingredient of \\

Susan M. Huang; Tiziana Bisogno; Marcello Trevisani; Abdulmonem Al-Hayani; Luciano de Petrocellis; Filomena Fezza; Michele Tognetto; Timothy J. Petros; Jocelyn F. Krey; Constance J. Chu; Jeffrey D. Miller; Stephen N. Davies; Pierangelo Geppetti; J. Michael Walker; Vincenzo di Marzo

2002-01-01

231

Histamine-induced edema in the rat paw — effect of capsaicin denervation and a CGRP receptor antagonist  

Microsoft Academic Search

Histamine is known to cause edema and excitation of small-diameter primary afferent neurons. In the present study we wanted to investigate to which extent afferent neurons participate in histamine-induced edema and, subsequently, determine possible inhibitory effects of a tachykinin NK1 receptor and CGRP receptor antagonist on the histamine response. Intraplantar injection of histamine (0.5 ?mol) into the rat hind paw

Rainer Amann; Rufina Schuligoi; Ilse Lanz; Josef Donnerer

1995-01-01

232

Receptor-targeting mechanisms of pain-causing toxins: How ow?  

PubMed Central

Venoms often target vital processes to cause paralysis or death, but many types of venom also elicit notoriously intense pain. While these pain-producing effects can result as a byproduct of generalized tissue trauma, there are now multiple examples of venom-derived toxins that target somatosensory nerve terminals in order to activate nociceptive (pain-sensing) neural pathways. Intriguingly, investigation of the venom components that are responsible for evoking pain has revealed novel roles and/or configurations of well-studied toxin motifs. This review serves to highlight pain-producing toxins that target the capsaicin receptor, TRPV1, or members of the acid-sensing ion channel family, and to discuss the utility of venom-derived multivalent and multimeric complexes. PMID:22538196

Bohlen, Christopher J.; Julius, David

2012-01-01

233

Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus  

SciTech Connect

Capsaicin is widely used as a food additive and as an analgesic agent. Besides its well-known role in nociception, which is mediated by vanilloid receptor 1 specifically expressed in dorsal root ganglion neurons, capsaicin has also been considered as a potential anticancer agent, as it inhibits cell proliferation and induces apoptosis in various types of cancer cells. Here we identified a new molecular target of capsaicin from human myeloid leukemia cells. We show that capsaicin binds to prohibitin (PHB) 2, which is normally localized to the inner mitochondrial membrane, and induces its translocation to the nucleus. PHB2 is implicated in the maintenance of mitochondrial morphology and the control of apoptosis. We also provide evidence suggesting that capsaicin causes apoptosis directly through the mitochondria and that PHB2 contributes to capsaicin-induced apoptosis at multiple levels. This work will serve as an important foundation for further understanding of anticancer activity of capsaicin.

Kuramori, Chikanori; Azuma, Motoki; Kume, Kanako; Kaneko, Yuki; Inoue, Atsushi; Yamaguchi, Yuki [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama (Japan); Kabe, Yasuaki [Department of Integrative Medical Biology, School of Medicine, Keio University, Tokyo (Japan); Hosoya, Takamitsu [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama (Japan); Kizaki, Masahiro [Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama (Japan); Suematsu, Makoto [Department of Integrative Medical Biology, School of Medicine, Keio University, Tokyo (Japan); Handa, Hiroshi [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama (Japan); Integrated Research Institute, Tokyo Institute of Technology, Yokohama (Japan)], E-mail: hhanda@bio.titech.ac.jp

2009-02-06

234

Effects of Capsaicin on Adipogenic Differentiation in Bovine Bone Marrow Mesenchymal Stem Cell  

PubMed Central

Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and 10 ?M) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis. PMID:25358373

Jeong, Jin Young; Suresh, Sekar; Park, Mi Na; Jang, Mi; Park, Sungkwon; Gobianand, Kuppannan; You, Seungkwon; Yeon, Sung-Heom; Lee, Hyun-Jeong

2014-01-01

235

Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition  

Microsoft Academic Search

Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipaseC (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical

Huai-hu Chuang; Elizabeth D. Prescott; Haeyoung Kong; Shannon Shields; Sven-Eric Jordt; Allan I. Basbaum; Moses V. Chao; David Julius

2001-01-01

236

Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats  

PubMed Central

Vampire bats (Desmodus rotundus) are obligate blood feeders that have evolved specialized systems to suit their unique sanguinary lifestyle 1–3. Chief among such adaptations is the ability to detect infrared radiation as a means of locating hot spots on warm-blooded prey. Among vertebrates, only vampire bats, boas, pythons, and pit vipers are capable of detecting infrared radiation 1,4. In each case, infrared heat is detected by trigeminal nerve fibers that innervate specialized pit organs on the animal’s face 5–10. Thus, vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species or cell type specific manner. Previously, we have shown that snakes co-opt a non-heat sensitive channel (vertebrate TRPA1) to produce an infrared detector 6. Here we show that vampire bats tune an already heat sensitive channel (TRPV1) by lowering its thermal activation threshold to ~30°C. This is achieved through alternative splicing of TRPV1 transcripts to produce a channel with a truncated C-terminal cytoplasmic domain. Remarkably, these splicing events occur exclusively in trigeminal ganglia (TG), and not dorsal root ganglia (DRG), thereby maintaining a role for TRPV1 as a detector of noxious heat in somatic afferents. This reflects a unique organization of the bat TRPV1 gene that we show to be characteristic of Laurasiatheria mammals (cows, dogs, and moles), supporting a close phylogenetic relationship with bats. These findings reveal a unique molecular mechanism for physiological tuning of thermosensory nerve fibers. PMID:21814281

Gracheva, Elena O.; Cordero-Morales, Julio F.; Gonzalez-Carcacia, Jose A.; Ingolia, Nicholas T.; Manno, Carlo; Aranguren, Carla I.; Weissman, Jonathan S.; Julius, David

2012-01-01

237

Capsaicin Binds to the Intracellular Domain of the Capsaicin Activated Ion Channel  

Microsoft Academic Search

Capsaicin (CAP) excites small sensory neurons, causing pain, neurogenic inflammation, and other visceral reflexes. These ef- fects have been proposed to be the result of CAP activation of a nonselective cation current. It is generally assumed that CAP binds to an extracellular domain of the membrane receptor. How- ever, the exact binding site is not known because of the lipophilic

Jooyoung Jung; Sun Wook Hwang; Jiyeon Kwak; Soon-Youl Lee; Chang-Joong Kang; Won Bae Kim; Donghee Kim

1999-01-01

238

Correlation between Urothelial Differentiation and Sensory Proteins P2X3, P2X5, TRPV1, and TRPV4 in Normal Urothelium and Papillary Carcinoma of Human Bladder  

PubMed Central

Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5) and transient receptor potential vanilloid channels (TRPV1, and TRPV4). Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns. PMID:24868547

Sterle, Igor; Zupancic, Dasa; Romih, Rok

2014-01-01

239

Capsaicin Treatment Attenuates Cholangiocarcinoma Carcinogenesis  

PubMed Central

Capsaicin, the most abundant pungent molecule produced by pepper plants, represents an important ingredient in spicy foods consumed throughout the world. Studies have shown that capsaicin can relieve inflammation and has anti-proliferative effects on various human malignancies. Cholangiocarcinoma (CC) is a cancer disease with rising incidence. The prognosis remains dismal with little advance in treatment. The aim of the present study is to explore the anti-tumor activity of capsaicin in cultured human CC cell lines. Capsaicin effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. Further, we show that capsaicin treatment of CC cells regulates the Hedgehog signaling pathway. Conclusion: Our results provide a basis for capsaicin to improve the prognosis of CCs in vivo and present new insights into the effectiveness and mode of action of capsaicin. PMID:24748170

Barat, Samarpita; Chen, Xi; El Khatib, Mona; Gotze, Julian; Belahmer, Hanane; Zender, Steffen; Bozko, Przemyslaw; Malek, Nisar P.; Plentz, Ruben R.

2014-01-01

240

TRPA1 receptors in cough.  

PubMed

In the early 1990's ion channels of the Transient Receptor Potential (TRP) class were implicated in the afferent sensory loop of the cough reflex and in the heightened cough sensitivity seen in disease. Agonists of the TRPV1 capsaicin receptor such as vanilloids and protons were demonstrated to be amongst the most potent chemical stimuli which cause cough. However, more recently, the TRPA1 receptor (not activated by capsaicin) has become of interest in the cough field because it is known to be activated by ligands such as acrolein which is present in air pollution and the acrid smoke from organic material. TRPA1 is a Ca(2+)-permeant non-selective cation channel with 14 ankyrin repeats in its amino terminus which belongs to the larger TRP family. TRPA1 has been characterised as a thermoreceptor which is activated by cold temperature, environmental irritants and reactive electrophilic molecules which can be generated by oxidant stress and inflammation. TRPA1 is primarily expressed in small diameter, nociceptive neurons where its activation probably contributes to the perception of noxious stimuli and the phenomena known as inflammatory hyperalgesia and neurogenic inflammation. The respiratory tract is innervated by primary sensory afferent nerves which are activated by mechanical and chemical stimuli. Activation of these vagal sensory afferents leads to central reflexes including dyspnoea, changes in breathing pattern and cough. Recently, it has been demonstrated that stimulating TRPA1 channels activates vagal bronchopulmonary C-fibres in the guinea pig and rodent lung, and recent data have shown that TRPA1 ligands cause cough in both animal models and normal volunteers. In summary, due to their activation by a wide range of irritant and chemical substances, either by exogenous agents, endogenously produced mediators during inflammation or by oxidant stress, we suggest TRPA1 channels should be considered as one of the most promising targets currently identified for the development of novel anti-tussive drugs. PMID:21074632

Grace, Megan S; Belvisi, Maria G

2011-06-01

241

Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine  

PubMed Central

The functional roles of transient receptor potential (TRP) channels in the gastrointestinal tract have garnered considerable attention in recent years. We previously reported that daikenchuto (TU-100), a traditional Japanese herbal medicine, increased intestinal blood flow (IBF) via adrenomedullin (ADM) release from intestinal epithelial (IE) cells (Kono T et al. J Crohns Colitis 4: 161–170, 2010). TU-100 contains multiple TRP activators. In the present study, therefore, we examined the involvement of TRP channels in the ADM-mediated vasodilatatory effect of TU-100. Rats were treated intraduodenally with the TRP vanilloid type 1 (TRPV1) agonist capsaicin (CAP), the TRP ankyrin 1 (TRPA1) agonist allyl-isothiocyanate (AITC), or TU-100, and jejunum IBF was evaluated using laser-Doppler blood flowmetry. All three compounds resulted in vasodilatation, and the vasodilatory effect of TU-100 was abolished by a TRPA1 antagonist but not by a TRPV1 antagonist. Vasodilatation induced by AITC and TU-100 was abrogated by anti-ADM antibody treatment. RT-PCR and flow cytometry revealed that an IEC-6 cell line originated from the small intestine and purified IE cells expressed ADM and TRPA1 but not TRPV1. AITC increased ADM release in IEC cells remarkably, while CAP had no effect. TU-100 and its ingredient 6-shogaol (6SG) increased ADM release dose-dependently, and the effects were abrogated by a TRPA1 antagonist. 6SG showed similar TRPA1-dependent vasodilatation in vivo. These results indicate that TRPA1 in IE cells may play an important role in controlling bowel microcirculation via ADM release. Epithelial TRPA1 appears to be a promising target for the development of novel strategies for the treatment of various gastrointestinal disorders. PMID:23275609

Kaneko, Atsushi; Omiya, Yuji; Ohbuchi, Katsuya; Ohno, Nagisa; Yamamoto, Masahiro

2013-01-01

242

The somatostatin analogue octreotide inhibits capsaicin-mediated activation of nociceptive primary afferent fibres in spinal cord lamina II (substantia gelatinosa).  

PubMed

Somatostatin (SST) in spinal cord has been linked with the inhibition of nociceptive neurotransmission in several experimental paradigms. The SST2 receptor (SSTR2) is the main SST receptor subtype in the superficial dorsal horn (DH) and is activated, besides to the naďve peptide, by the SST synthetic analogue octreotide (OCT). In the present work, we have studied the central effects of SSTR2 activation on capsaicin (CAP)-induced glutamate release in mouse DH. In neurons of the lamina II of DH, CAP (2 ?M) induced a strong increase of mEPSC frequency that was significantly reduced (70%) by OCT. SSTR2 involvement was assessed by using the specific antagonist CYN 154806. No differences were observed between frequency increase in CAP alone vs. CAP in the presence of CYN 154806+OCT. The effect of OCT was further investigated by studying c-fos expression in spinal cord slices. The CAP-induced increase in density of Fos immunoreactive nuclei in the superficial DH was strongly prevented by OCT. SSTR2a (a splicing variant of SSTR2) immunoreactivity was found in both pre- and post-synaptic compartments of laminae I-II synapses. By light and electron microscopy, SSTR2a was mainly localized onto non-peptidergic isolectin B4 (IB4)-positive primary afferent fibres (PAFs). A subset of them was also found to express the CAP receptor TRPV1. These data show that the SST analogue OCT inhibits CAP-mediated activation of non-peptidergic nociceptive PAFs in lamina II. Our data indicate that SSTR2a plays an important role in the pre-synaptic modulation of central excitatory nociceptive transmission in mouse. PMID:21109472

Bencivinni, Ileana; Ferrini, Francesco; Salio, Chiara; Beltramo, Massimiliano; Merighi, Adalberto

2011-07-01

243

Transient Receptor Potential Vanilloid-1 Signaling as a Regulator of Human Sebocyte Biology  

Microsoft Academic Search

Transient receptor potential vanilloid-1 (TRPV1), originally described as a central integrator of nociception, is expressed on human epidermal and hair follicle keratinocytes and is involved in regulation of cell growth and death. In human pilosebaceous units, we had shown that TRPV1 stimulation inhibits hair shaft elongation and matrix keratinocyte proliferation, and induces premature hair follicle regression and keratinocyte apoptosis. In

Balázs I Tóth; Tamás Géczy; Zoltán Griger; Anikó Dózsa; Holger Seltmann; László Kovács; László Nagy; Christos C Zouboulis; Ralf Paus; Tamás Bíró

2009-01-01

244

The Selective Capsaicin Antagonist Capsazepine Abolishes the Antinociceptive Action of Eugenol and Guaiacol  

Microsoft Academic Search

The dental phenolic medicaments, eugenol and guaiacol, are partly similar in chemical structure to capsaicin, the pungent constituent of chili peppers, which selectively activates sensory neurons via a specific receptor. We have previously demonstrated that these phenolic compounds show capsaicin-like action. In the present study, an attempt was made to investigate the possibility that these compounds interact with the same

T. Ohkubo; M. Shibata

1997-01-01

245

Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro  

Microsoft Academic Search

The capsaicin receptor TRPV1 is a polymodal sensory transducer molecule in the pain pathway. TRPV1 integrates noxious heat,\\u000a tissue acidosis and chemical stimuli which are all known to cause pain. Studies on TRPV1-deficient mice suggest that TRPV1\\u000a is essential for acid sensing by nociceptors and for thermal hyperalgesia in inflammation of the skin, but not for transducing\\u000a noxious heat. After

Michael St. Pierre; Peter W. Reeh; Katharina Zimmermann

2009-01-01

246

TRPV1, TRPA1, and CB1 in the isolated vagus nerve – Axonal chemosensitivity and control of neuropeptide release  

Microsoft Academic Search

Vagal sensory afferents innervating airways and abdominal tissues express TRPV1 and TRPA1, two depolarizing calcium permeable ion channels playing a major role in sensing environmental irritants and endogenous metabolites which cause neuropeptide release and neurogenic inflammation. Here we have studied axonal chemosensitivity and control of neuropeptide release from the isolated rat and mouse vagus nerve by using prototypical agonists of

K. Weller; P. W. Reeh; S. K. Sauer

247

Possible involvement of capsaicin-sensitive sensory nerves in the regulation of intestinal blood flow in the dog  

Microsoft Academic Search

1.The effect of capsaicin injected into the superior mesenteric artery has been studied on the intestinal blood flow in dogs.2.Capsaicin evoked a marked dose-dependent increase in mesenterial blood flow in the dose range of 0.1–7 µg\\/kg. The intestinal vasodilatatory effect of capsaicin could invariably be demonstrated after pretreatment with adrenoceptor and dopamine receptor antagonists, as well as with the ganglion

Zsuzsa Rózsa; G. Jancsó; V. Varró

1984-01-01

248

Lessons from peppers and peppermint: the molecular logic of thermosensation  

E-print Network

to noxious cold. Natural products that elicit psychophysical sensations of hot or cold, such as capsaicin transient receptor potential TRPV1 capsaicin receptor Introduction At any given moment we can experience at the biophysical and biochemical level. The capsaicin receptor -- a heat-activated ion channel in the pain pathway

Jordt, Sven-Eric

249

Implication of Transient Receptor Potential Vanilloid Type 1 in 14,15-Epoxyeicosatrienoic Acid-induced Angiogenesis.  

PubMed

14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca(2+) influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca(2+). Removal of extracellular Ca(2+), pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca(2+) level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca(2+) or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca(2+) influx, NO production and angiogenesis. PMID:25210497

Su, Kuo-Hui; Lee, Kuan-I; Shyue, Song-Kun; Chen, Hsiang-Ying; Wei, Jeng; Lee, Tzong-Shyuan

2014-01-01

250

Role of the transient receptor potential vanilloid 1 in inflammation and sepsis  

PubMed Central

The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes. PMID:22096371

Devesa, Isabel; Planells-Cases, Rosa; Fernandez-Ballester, Gregorio; Gonzalez-Ros, Jose Manuel; Ferrer-Montiel, Antonio; Fernandez-Carvajal, Asia

2011-01-01

251

Capsaicin, from Hot to Not; Can New Pain-Relieving Drugs Be Derived from This Substance Known to Cause Pain?  

ERIC Educational Resources Information Center

The systematic developments of synthetically modified structures related to capsaicin known to have pungent properties found in chili peppers that could be useful as analgesic drug are described. It is found that identification of the receptor for capsaicin and the mechanism of its action greatly contributed to an understanding of the role…

Rusterholz, David B.

2006-01-01

252

THE TRPV1 RECEPTOR: THE INTERAGENCY, INTERNATION SYMPOSIUM ON CYANOBACTERIAL HARMFUL ALGAL BLOOMS.  

EPA Science Inventory

Background and Significance Evidence indicates that the frequency of occurrence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial and temporal extent in the US and worldwide. Cyanotoxins are among the most potent toxins known, causing death through ...

253

Capsaicin-evoked bradycardia in anesthetized guinea pigs is mediated by endogenous tachykinins.  

PubMed

The present study was done to characterize the effects of endogenous tachykinins on heart rate in urethane-anesthetized guinea pigs. Intravenous injection of capsaicin (32 nmol/kg) was used to evoke release of tachykinins and calcitonin gene-related peptide (CGRP) from cardiac sensory nerve fibers. Such injections caused a brief decrease in heart rate (-37+/-7 beats/min, n=6) that was followed by a more prolonged increase (+44+/-10 beats/min). Blood pressure was lowered by -11+/-2 mmHg. Bilateral vagotomy did not affect the chronotropic or depressor responses to capsaicin, but atropine (1 micromol/kg) nearly abolished the bradycardic response (-8+/-3 beats/min, n=7). Combined blockade of NK2 and NK3 receptors, with SR48968 and SR14801 respectively, also caused a significant reduction of capsaicin-evoked bradycardia (-14+/-3 beats/min, n=4) but did not affect bradycardia evoked by vagal nerve stimulation. Blockade of CGRP receptors eliminated capsaicin-evoked tachycardia and prolonged the capsaicin-evoked bradycardia. These findings suggest that capsaicin-evoked bradycardia in the anesthetized guinea pig is mediated by tachykinins that stimulate cardiac cholinergic neurons. This effect appears to be truncated by the positive chronotropic action of CGRP that is also released from cardiac afferents by capsaicin. PMID:18207255

Hancock, John C; Hoover, Donald B

2008-04-10

254

Preventive effect of SA13353 [1-[2-(1-adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea], a novel transient receptor potential vanilloid 1 agonist, on ischemia/reperfusion-induced renal injury in rats.  

PubMed

Tumor necrosis factor (TNF)-alpha plays a crucial role in the pathogenesis of ischemia/reperfusion-induced renal injury. We demonstrated recently that the preischemic treatment with resiniferatoxin, a transient receptor potential vanilloid 1 (TRPV1) agonist, attenuates renal TNF-alpha mRNA expression and improves ischemia/reperfusion-induced renal injury in rats. In addition, we found that SA13353 [1-[2-(1-adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea], a novel orally active TRPV1 agonist, inhibits TNF-alpha production through the activation of capsaicin-sensitive afferent neurons and reduces the severity of symptoms in established rat collagen-induced arthritis. In the present study, we investigated effects of treatment with SA13353 on ischemia/reperfusion-induced renal injury in rats. Ischemic acute kidney injury (AKI) was induced by occlusion of the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal function in vehicle-treated AKI rats markedly decreased at 24 h after reperfusion. Treatment with SA13353 (3, 10, and 30 mg/kg p.o.) 30 min before ischemia dose-dependently attenuated the ischemia/reperfusion-induced renal dysfunction. Histopathological examination of the kidney of AKI rats revealed severe renal damage, which were significantly suppressed by the SA13353 treatment. In renal tissues exposed to ischemia/reperfusion, neutrophil infiltration, superoxide production, TNF-alpha mRNA expression, and cytokine-induced neutrophil chemoattractant-1 mRNA expression were augmented, but these alterations were attenuated by the treatment with SA13353. On the other hand, ischemia/reperfusion-enhanced renal interleukin-10 mRNA expression and its plasma concentration were further augmented by SA13353 treatment. These results demonstrate that the orally active TRPV1 agonist SA13353 prevents the ischemia/reperfusion-induced AKI. This renoprotective effects seem to be closely related to the inhibition of inflammatory response via TRPV1 activation. PMID:19147859

Ueda, Kyoko; Tsuji, Fumio; Hirata, Tomoko; Ueda, Kenji; Murai, Masaaki; Aono, Hiroyuki; Takaoka, Masanori; Matsumura, Yasuo

2009-04-01

255

Effects of capsaicin on intestinal cephalexin absorption in rats.  

PubMed

The effects of capsaicin on intestinal cephalexin absorption were investigated by means of in situ single pass perfusion in rats to clarify whether this pungent compound present in spice is a potential factor altering the intestinal drug absorption processes. Under the control condition, cephalexin was absorbed at a rate of 1.16+/-0.08 and 0.90+/-0.06 nmol/min/cm in the jejunum and ileum, respectively. The intestinal cephalexin absorption rate was decreased when capsaicin was dissolved in the perfusate at a concentration of 400 microM, being 0.54+/-0.07 and 0.46+/-0.10 nmol/min/cm in the jejunum and ileum, respectively. The inhibitive effect of capsaicin on intestinal cephalexin absorption was diminished when ruthenium red, a non-selective inhibitor of the transient receptor potential (TRP) cation channels, was intravenously infused into the rat during the experiment. Moreover, when we evaluated the paracellular permeability of cephalexin by utilizing a competitive inhibitor, glycylsarcosine, it was demonstrated that glycylsarcosine-insensitive intestinal cephalexin absorption in the jejunum was increased by 4.5 times in the presence of 400 microM capsaicin. These findings indicate that capsaicin affects both transcellular and paracellular pathways of intestinal cephalexin absorption by interacting with the TRP cation channels in intestinal tissues, in which capsaicin seems to change the transport activity of H+/peptide co-transporter 1 (PEPT1), and to a lesser degree, it seems to alter the paracellular permeability of the intestinal epithelia. PMID:17329854

Komori, Yukiko; Aiba, Tetsuya; Sugiyama, Risa; Nakai, Chie; Kawasaki, Hiromu; Kurosaki, Yuji

2007-03-01

256

New Transient Receptor Potential Vanilloid Subfamily Member 1 Positron Emission Tomography Radioligands: Synthesis, Radiolabeling, and Preclinical Evaluation  

PubMed Central

The transient receptor potential vanilloid subfamily member 1 (TRPV1) cation channel is known to be involved in pain nociception and neurogenic inflammation, and accumulating evidence suggests that it plays an important role in several central nervous system (CNS)-related disorders. TRPV1-specific positron emission tomography (PET) radioligands can serve as powerful tools in TRPV1-related (pre)clinical research and drug design. We have synthesized several potent TRPV1 antagonists and accompanying precursors for radiolabeling with carbon-11 or fluorine-18. The cinnamic acid derivative [11C]DVV24 and the aminoquinazoline [18F]DVV54 were successfully synthesized, and their biological behavior was studied. In addition, the in vivo behavior of a 123I-labeled analogue of iodo-resiniferatoxin (I-RTX), a well-known TRPV1 antagonist, was evaluated. The binding affinities of DVV24 and DVV54 for human TRPV1 were 163 ± 28 and 171 ± 48 nM, respectively. [11C]DVV24, but not [18F]DVV54 or 123I-RTX, showed retention in the trigeminal nerve, known to abundantly express TRPV1. Nevertheless, it appears that ligands with higher binding affinities will be required to allow in vivo imaging of TRPV1 via PET. PMID:23421633

2013-01-01

257

Bortezomib Treatment Produces Nocifensive Behavior and Changes in the Expression of TRPV1, CGRP, and Substance P in the Rat DRG, Spinal Cord, and Sciatic Nerve  

PubMed Central

To investigate neurochemical changes associated with bortezomib-induced painful peripheral neuropathy (PN), we examined the effects of a single-dose intravenous administration of bortezomib and a well-established “chronic” schedule in a rat model of bortezomib-induced PN. The TRPV1 channel and sensory neuropeptides CGRP and substance P (SP) were studied in L4-L5 dorsal root ganglia (DRGs), spinal cord, and sciatic nerve. Behavioral measures, performed at the end of the chronic bortezomib treatment, confirmed a reduction of mechanical nociceptive threshold, whereas no difference occurred in thermal withdrawal latency. Western blot analysis showed a relative increase of TRPV1 in DRG and spinal cord after both acute and chronic bortezomib administration. Reverse transcriptase-polymerase chain reaction revealed a decrease of TRPV1 and CGRP mRNA relative levels after chronic treatment. Immunohistochemistry showed that in the DRGs, TRPV1-, CGRP-, and SP-immunoreactive neurons were mostly small- and medium-sized and the proportion of TRPV1- and CGRP-labeled neurons increased after treatment. A bortezomib-induced increase in density of TRPV1- and CGRP-immunoreactive innervation in the dorsal horn was also observed. Our findings show that bortezomib-treatment selectively affects subsets of DRG neurons likely involved in the processing of nociceptive stimuli and that neurochemical changes may contribute to development and persistence of pain in bortezomib-induced PN. PMID:24877063

Quartu, M.; Carozzi, V. A.; Dorsey, S. G.; Serra, M. P.; Poddighe, L.; Picci, C.; Boi, M.; Melis, T.; Del Fiacco, M.; Meregalli, C.; Chiorazzi, A.; Renn, C. L.; Cavaletti, G.; Marmiroli, P.

2014-01-01

258

Of pungency, pain, and naked mole rats: chili peppers revisited  

E-print Network

septum that separates seeds in the fruit (Stewart et al. 2007). Capsaicin and dihydrocapsaicin as the behavioural response of organisms to capsaicin and other irritants transduced by TRP receptors provide (Tewksbury and Nabhan 2001). The TRPV1 nociceptor in birds is insensitive to capsaicin although

Borges, Renee M

259

Cough and ventilatory adjustments evoked by aerosolised capsaicin and distilled water (fog) in man.  

PubMed

Airway receptors mediate cough and ventilatory adjustments. Simultaneous assessment of cough sensory-motor components and changes in breathing pattern may provide insights into the receptor(s) prevailingly stimulated by inhaled irritants. Nineteen subjects inhaled capsaicin and fog up to threshold concentrations for cough. Cough intensity, respiratory sensations and changes in breathing pattern induced by the two irritants were compared. Capsaicin and fog cough threshold values did not correlate. Coughing induced by both agents was preceded by qualitatively similar sensations and by significant increases in minute ventilation and respiratory drive due to selective increases in tidal volume (P<0.01). Cough intensity was similar with both agents. Cough frequency and the intensity of the urge to cough were higher with capsaicin (P<0.01). The lack of correlation between fog and capsaicin cough threshold values suggests differences in the neural mechanisms activated. The selective increase in tidal volume suggests prevailing involvement of rapidly adapting receptors. The stronger sensations evoked by capsaicin may contribute to the higher cough frequency observed with this agent. PMID:17134944

Lavorini, Federico; Pantaleo, Tito; Geri, Pietro; Mutolo, Donatella; Pistolesi, Massimo; Fontana, Giovanni A

2007-06-15

260

Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers  

PubMed Central

Background Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine the effects of CFA-induced-inflammation on the response properties of TRPV1-positive and TRPV1-negative cutaneous nociceptors. Results In wildtype mice we found that polymodal C-fibers (CPMs) lacking TRPV1 were sensitized to heat within a day after CFA injection. This sensitization included both a drop in average heat threshold and an increase in firing rate to a heat ramp applied to the skin. No changes were observed in the mechanical response properties of these cells. Conversely, TRPV1-positive mechanically insensitive, heat sensitive fibers (CHs) were not sensitized following inflammation. However, results suggested that some of these fibers may have gained mechanical sensitivity and that some previous silent fibers gained heat sensitivity. In mice lacking TRPV1, inflammation only decreased heat threshold of CPMs but did not sensitize their responses to the heat ramp. No CH-fibers could be identified in naďve nor inflamed TRPV1-/- mice. Conclusions Results obtained here suggest that increased heat sensitivity in TRPV1-negative CPM fibers alone following inflammation is insufficient for the induction of heat hyperalgesia. On the other hand, TRPV1-positive CH fibers appear to play an essential role in this process that may include both afferent and efferent functions. PMID:20858240

2010-01-01

261

Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat.  

PubMed

Cisplatin, a chemotherapeutic agent of choice for the treatment of solid tumors, produces hearing loss in approximately half a million new cancer patients annually in the United States. The hearing loss is due, in part, to increased generation of reactive oxygen species (ROS) in the cochlea, leading to lipid peroxidation and damage or death of outer hair cells in the organ of Corti. The cochlea expresses the transient receptor potential vanilloid 1 (TRPV1), which are normally expressed on small diameter neurons in the peripheral nervous system and mediate thermal sensitivity, but whose role in the cochlea is unclear. In this study, we show that TRPV1 is coregulated along with the NADPH oxidase isoform, NOX3, by cisplatin. Induction of these proteins by cisplatin is dependent on ROS generation, since it is reversed by systemic lipoic acid administration. In organ of Corti hair cell cultures (UB/OC-1 cells), cisplatin activates and induces TRPV1 and NOX3, leading to apoptosis of these cells. Inhibition of TRPV1 by capsazepine or ruthenium red reduced the apoptosis, implicating TRPV1 in this process. Treatment of UB/OC-1 cultures with short interfering RNA (siRNA) against either TRPV1 or NOX3 reduced cisplatin-induced apoptosis, while round window application of TRPV1 siRNA to rats reduced TRPV1 expression, decreased damage to outer hair cells and reduced cisplatin-induced hearing loss. These data provide a link between NOX3 and TRPV1 in cisplatin-induced hearing loss and suggest that targeting these proteins for knockdown by siRNA could serve as a novel approach in treating cisplatin ototoxicity. PMID:19052196

Mukherjea, Debashree; Jajoo, Sarvesh; Whitworth, Craig; Bunch, Jennifer R; Turner, Jeremy G; Rybak, Leonard P; Ramkumar, Vickram

2008-12-01

262

Role of Transient Receptor Potential Vanilloid Type 1 and C-C Chemokine Receptor 2 in Renal Injury Induced by Salt-sensitive Hype.  

PubMed

Objective To determine the effects of transient receptor potential vanilloid type 1(TRPV1)channel ablation and a chemokine receptor 2(CCR2)antagonist on salt-sensitive hypertension-induced renal injury. Methods Wild-type(WT)and TRPV1-null mutant(TRPV1(-/-))mice were subjected to uninephrectomy and deoxycorticosterone acetate(DOCA)-salt treatment for 4 weeks with or without a CCR2 antagonist,RS504393(n=8 for all the 4 groups). Sham WT and TRPV1(-/-)mice(both n=7)underwent uninephrectomy without receiving DOCA and saline. Systolic blood pressure,urinary excretion of albumin,8-isoprostane and creatinine clearance for 24 hours were assayed during the experimental period and at the end of the 4-week treatment. The morphological analysis was performed in renal histological sections,including glomerulosclerosis,tubulointerstitial injury,and monocyte/macrophage infiltration. Results Compared to the corresponding control mice,DOCA-salt treatment in both WT and TRPV1(-/-)mice led to increased systolic blood pressure(SBP),enhanced urinary excretion of albumin and 8-isoprostane,decreased creatinine clearance,increased glomerulosclerosis and tubulointerstitial injury associated with enhanced monocyte/macrophage infiltration(all P<0.05),all of which were much more severe in TRPV1(-/-)mice compared to WT mice with the exception of blood pressure(all P<0.05). RS5043943 attenuated DOCA-salt-induced changes in renal function and morphology in WT and TRPV1(-/-)mice(all P<0.05). There was no difference in blood pressure among DOCA-salt WT and TRPV1(-/-)mice with or without RS505393 with the exception of sham WT and TRPV1(-/-)mice(all P>0.05). Conclusions CCR2 antagonist inhibits DOCA-salt-induced renal injury and monocyte/macrophage infiltration in WT and TRPV1(-/-)mice with the greater in the latter strain. Activation of TRPV1 attenuates salt-sensitive hypertension-induced renal injury possibly via inhibition of CCR2-induced monocyte/macrophage infiltration. PMID:25360645

Zhu, Fei-Yun; Liu, Wei-Hong; Wang, Xiao-Xiao; Cui, Lin; Shen, Si; Zhu, Ming-Jun; Wang, You-Ping

2014-10-31

263

A novel agonist, phorbol 12-phenylacetate 13-acetate 20-homovanillate, abolishes positive cooperativity of binding by the vanilloid receptor  

Microsoft Academic Search

Capsaicin binds to a specific recognition site, referred to as the vanilloid receptor, which it shares with the natural, ultrapotent agonist resiniferatoxin and with the competitive antagonist capsazepine. Upon binding to its receptor, capsaicin opens a cation channel leading to Ca2+ influx. The binding of capsaicin or resiniferatoxin by the vanilloid receptor follows a sigmoidal saturation curve, indicative of positive

Arpad Szallasi; Geza Acs; Giancarlo Cravotto; Peter M. Blumberg; Jan M. Lundberg; Giovanni Appendino

1996-01-01

264

A review of the high-concentration capsaicin patch and experience in its use in the management of neuropathic pain  

PubMed Central

In the European Union, the high-concentration capsaicin patch is licensed for the management of neuropathic pain conditions in nondiabetic patients, including postherpetic neuralgia (PHN) and HIV-associated distal sensory polyneuropathy (HIV-DSP). However, in the USA, the Food and Drug Administration approved its use only in PHN patients. Capsaicin is a transient receptor potential vanilloid-1 agonist, which increases the intracellular calcium ion concentration. This triggers calcium-dependent protease enzymes causing cytoskeletal breakdown and leads to the loss of cellular integrity and ‘defunctionalization’ of nociceptor fibres. Efficacy and therapeutic effect has been shown in several clinical studies of PHN and HIV-DSP. The high-concentration capsaicin patch and its practical application are different from low-concentration creams; one application can help for up to 3 months. The process of setting up of a service to use the capsaicin 8% patch is also discussed. PMID:23997814

Das, Sangeeta; Bhaskar, Arun

2013-01-01

265

The role of capsaicin in dermatology.  

PubMed

Neurogenic pain and pruritus are the common chief complaints at dermatology office visits. Unfortunately, they are also notoriously difficult conditions to treat. Topical capsaicin used as a single therapy or as an adjuvant offers a low-risk option for patients who do not achieve control on other therapies. This chapter presents the evidence behind topical capsaicin use in dermatologic conditions characterized by neurogenic pain or pruritus, including postherpetic neuralgia, notalgia paresthetica, brachioradial pruritus, lichen simplex chronicus, prurigo nodularis, pruritus ani, pruritus of hemodialysis, aquagenic pruritus, apocrine chromhidrosis, lipodermatosclerosis, alopecia areata, and psoriasis. It presents the most common capsaicin formulations, dosages, and durations of treatment for each condition. Additionally, the chapter addresses various adverse effects and limitations in the use of topical capsaicin in dermatology. PMID:24941674

Boyd, Katherine; Shea, Sofia M; Patterson, James W

2014-01-01

266

Effects of Capsaicin on Plant Growth  

Microsoft Academic Search

Capsaicin, a possible allelochemical, caused growth inhibition of roots and shoots of alfalfa (Medicago sativa), cress (Lepidium sativum), lettuce (Lactuca sativa), crabgrass (Digitaria sanguinalis), timothy (Phleum pratense) and ryegrass (Lolium multiflorum), and suppressed their germination. Increasing the dose of capsaicin increased the inhibition. The concentrations for 50\\u000a % inhibition of the root growth were 2.7, 0.32, 2.1, 0.27, 0.29 and

H. Kato-Noguchi; Y. Tanaka

2003-01-01

267

Thermosensitive transient receptor potential channels in human corneal epithelial cells.  

PubMed

Thermosensitive transient receptor potential (TRP) proteins such as TRPV1-TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca(2+). TRPV1, TRPV3, and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca(2+)](i) transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1-3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca(2+) transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10-20 µM), a non-selective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 to over 40 °C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine CPZ (10 µM) or another related blocker, lanthanum chloride (La(3+)) (100 µM) suppressed these temperature-induced Ca(2+) increases. Planar patch-clamp technique was used to characterize the currents underlying Ca(2+) transients. Increasing the temperature to over 40 °C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25%) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermosensitive TRPV3 activity TRPV1, TRPV2, and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress. PMID:21506114

Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S; Paulsen, Friedrich; Pleyer, Uwe

2011-07-01

268

Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx  

SciTech Connect

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ? Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ? Capsaicin induces expression of DR5 through Sp1 activation. ? Capsaicin activates calcium signaling pathway.

Moon, Dong-Oh [Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712–714 (Korea, Republic of)] [Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712–714 (Korea, Republic of); Kang, Chang-Hee; Kang, Sang-Hyuck [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)] [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of); Choi, Yung-Hyun [Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614–054 (Korea, Republic of)] [Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614–054 (Korea, Republic of); Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree [School of Medicine, Jeju National University, Jeju-si 690–756 (Korea, Republic of)] [School of Medicine, Jeju National University, Jeju-si 690–756 (Korea, Republic of); Kim, Gi-Young, E-mail: immunkim@jejunu.ac.kr [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)] [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)

2012-02-15

269

Effects of transient receptor potential (TRP) channel agonists and antagonists on slowly adapting type II mechanoreceptors in the rat sinus hair follicle.  

PubMed

The possible functional role of transient receptor potential (TRP) channels was investigated by testing various TRP agonists and antagonists in an isolated rat sinus hair follicle preparation. Extracellular recordings from slowly adapting type II mechanoreceptor units were made. The antagonist capsazepine depressed spontaneous and mechanically evoked activity, with an IC(50) of 82 microM. In one-third of units, capsazepine caused a selective depression of mechanically evoked firing, such that the existing spontaneous firing was interrupted by an absence of activity during the mechanical stimulus. The broad spectrum TRP blocker ruthenium red (30 microM) had inconsistent effects, although in some units a delayed onset (following wash) bursting and paroxysmal firing ensued. The agonist icilin (50-100 microM) had an excitatory effect on spontaneous firing, and (-)-menthol (200 microM) had inconsistent effects. Cinnamaldehyde (1-2 mM) depressed all types of activity equally, mechanically evoked and spontaneous. Camphor (0.5-2 mM) also depressed all types of activity, although it had a preferential effect on spontaneous activity. Capsaicin (1-10 microM) and allyl isothiocyanate (50-100 microM) had no clear effects. These results rule out any role for TRPA1 and TRPV1 channels in mechanotransduction processes of slowly adapting type II mechanoreceptors. PMID:20021572

Cahusac, Peter M B

2009-12-01

270

Effects of transient receptor potential-like current on the firing pattern of action potentials in the Hodgkin-Huxley neuron during exposure to sinusoidal external voltage.  

PubMed

Transient receptor potential vanilloid-1 (TRPV1) channels play a role in several inflammatory and nociceptive processes. Previous work showed that magnetic electrical field-induced antinociceptive [corrected] action is mediated by activation of capsaicin-sensitive sensory afferents. In this study, a modified Hodgkin-Huxley model, in which TRP-like current (ITRP) was incorporated, was implemented to predict the firing behavior of action potentials (APs), as the model neuron was exposed to sinusoidal changes in externally-applied voltage. When model neuron is exposed to low-frequency sinusoidal voltage, increased maximal conductance of ITRP can enhance repetitive bursts of APs accompanied by a shortening of inter-spike interval (ISI) in AP firing. The change in ISIs with number of interval is periodic with the phase-locking. In addition, increased maximal conductance of ITRP can abolish chaotic pattern of AP firing in model neuron during exposure to high-frequency voltage. The ISI pattern is converted from irregular to constant, as maximal conductance of ITRP is increased under such high-frequency voltage. Our simulation results suggest that modulation of TRP-like channels functionally expressed in small-diameter peripheral sensory neurons should be an important mechanism through which it can contribute to the firing pattern of APs. PMID:21793354

Chen, Bing-Shuo; Lo, Yi-Ching; Lius, Yen-Chin; Wu, Sheng-Nan

2010-12-31

271

Adaptation to capsaicin within and across days.  

PubMed

Subjects judged the time-course of the burn caused by 100 ppm capsaicin applied to the tongue on Day 1 and Day 5. On Days 2-4, they tasted hard candy containing capsaicin. Most subjects did not show adaptation within Day 1, but either plateaued after about 16 min or rose monotonically for the entire 34 min. Intensity was less on Day 5 and levelled off or declined for most subjects. Data were fit to a mathematical model of adaptation. Adaptation across days was accounted for by changes in the gains of the three processes. PMID:9035246

McBurney, D H; Balaban, C D; Christopher, D E; Harvey, C

1997-02-01

272

The role of calcitonin gene-related peptide on the increase in transient receptor potential vanilloid-1 levels in trigeminal ganglion and trigeminal nucleus caudalis activation of rat.  

PubMed

Calcitonin gene-related peptide (CGRP) and transient receptor potential vanilloid-1 (TRPV1) play an important role in the development of pain and migraine pathogenesis. Increase in plasma CGRP levels is associated with delayed migraine-like attacks in migraine patients. Although several lines of evidence have indicated a key role of CGRP in migraine pain, its mechanisms remain unclear. In this study, we aimed to investigate the functional role of CGRP on trigeminal nociceptive pathway by determining the alteration in TRPV1 levels in trigeminal ganglion (TG) and the activation of trigeminal nucleus caudalis (TNC) of rat. Post intravenous injection of CGRP (600ng/kg) at 60min significantly increased the levels of TRPV1, CGRP, phosphorylated protein kinase C and phosphorylated cyclic AMP responsive element-binding protein in TG of rats. The number of small and medium TRPV1 and CGRP positive immunostaining neurons accompanying with co-localization of TRPV1 with CGRP neurons were significantly increased in TG of CGRP-injected rats. The sustained increase in c-Fos expression in TNC neurons was also observed in CGRP-injected rats. These results indicate that CGRP may participate in trigeminal nociceptive system sensitization by induced increase in TRPV1 and CGRP levels in TG neurons and activation of the central neurons in TNC. PMID:23123284

Chatchaisak, Duangthip; Srikiatkhachorn, Anan; Maneesri-le Grand, Supang; Govitrapong, Piyarat; Chetsawang, Banthit

2013-01-01

273

Incorporation of capsaicin in silicone coatings for enhanced antifouling performance  

NASA Astrophysics Data System (ADS)

Successful use of capsaicin as insect and animal repellant propelled us to use it as a possible antifouling agent. Its non-toxic, non-biocidal, non-leaching properties make it a viable alternative to organotin compounds. In order to optimize the anti-fouling performance of the coating, silicone, the most effective foul-release marine coating, was chosen as the carrier. We have incorporated capsaicin into silicone coating, by both bulk entrapment and surface immobilization. Contact angle measurements on capsaicin-incorporated silicone exhibited an increase in wettability, owing to the presence of capsaicin. FTIR study further confirmed the incorporation of capsaicin in silicone. Bacterial attachment studies were conducted using lake Erie water. While bacteria liberally inhabited the control coating, their presence on the capsaicin-incorporated coating was found to be minimal. These preliminary studies indicate that capsaicin incorporated silicone could be a viable environment friendly alternative to currently used antifouling coatings.

Reddy Jaggari, Karunakar; Zhang Newby, Bi-Min

2002-03-01

274

Intravesical capsaicin for treatment of detrusor hyperreflexia  

Microsoft Academic Search

An intravesical instillation of 100 ml 1 or 2 mmol\\/l capsaicin has been used to treat detrusor hyperreflexia giving rise to intractable urinary incontinence in 12 patients with spinal cord disease and two other patients with detrusor overactivity of non-spinal origin. Nine patients, all of whom had spinal cord disease, showed some improvement in bladder function. The benefit was only

C J Fowler; R O Beck; S Gerrard; C D Betts; C G Fowler

1994-01-01

275

Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells  

PubMed Central

Thermosensitive transient receptor potential proteins (TRPs) such as TRPV1-TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca2+. TRPV1, TRPV3 and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca 2+]i transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1-3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca2+ transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10–20 µM), a nonselective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 °C to over 40 °C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine (CPZ) (10 µM) or another related blocker, lanthanum chloride (La3+) (100 µM) suppressed these temperature-induced Ca2+ increases. Planar patch-clamp technique was used to characterize the currents underlying Ca2+ transients. Increasing the temperature to over 40 °C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25 %) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermo-sensitive TRPV3 activity TRPV1, TRPV2 and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress. PMID:21506114

Mergler, Stefan; Garreis, Fabian; Sahlmuller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe

2010-01-01

276

Effects of dextromethorphan in clinical doses on capsaicin-induced ongoing pain and mechanical hypersensitivity  

Microsoft Academic Search

The analgesic properties of the noncompetitive N-methyl-D-aspartate (NMDA)-receptor antagonist dextromethorphan, available for clinical use as an antitussive, have been studied in the human capsaicin pain model to determine a possible clinical effect on pain due to central sensitization. Ninety milligrams dextromethorphan or vehicle was given orally to ten volunteers, each at two different occasions in a double-blind fashion, prior to

Erik Kinnman; Eva-Britt Nygĺrds; Per Hansson

1997-01-01

277

Functional expression of ?7-nicotinic acetylcholine receptors by muscle afferent neurons.  

PubMed

The exercise pressor reflex (EPR) is generated by group III and IV muscle afferents during exercise to increase cardiovascular function. Muscle contraction is triggered by ACh, which is metabolized into choline that could serve as a signal of exercise-induced activity. We demonstrate that ACh can induce current in muscle afferents neurons isolated from male Sprague-Dawley rats. The nicotinic ACh receptors (nAChRs) appear to be expressed by some group III-IV neurons since capsaicin (TRPV1) and/or ATP (P2X) induced current in 56% of ACh-responsive neurons. ?7- And ?4?2-nAChRs have been shown to be expressed in sensory neurons. An ?7-nAChR antibody stained 83% of muscle afferent neurons. Functional expression was demonstrated by using the specific ?7-nAChR blockers ?-conotoxin ImI (IMI) and methyllycaconitine (MLA). MLA inhibited ACh responses in 100% of muscle afferent neurons, whereas IMI inhibited ACh responses in 54% of neurons. Dihydro-?-erythroidine, an ?4?2-nAChR blocker, inhibited ACh responses in 50% of muscle afferent neurons, but recovery from block was not observed. Choline, an ?7-nAChR agonist, elicited a response in 60% of ACh-responsive neurons. Finally, we demonstrated the expression of ?7-nAChR by peripherin labeled (group IV) afferent fibers within gastrocnemius muscles. Some of these ?7-nAChR-positive fibers were also positive for P2X3 receptors. Thus choline could serve as an activator of the EPR by opening ?7-nAChR expressed by group IV (and possible group III) afferents. nAChRs could become pharmacological targets for suppressing the excessive EPR activation in patients with peripheral vascular disease. PMID:24966300

Baxter, James C; Ramachandra, Renuka; Mayne, Dustin R; Elmslie, Keith S

2014-09-15

278

High Affinity Antagonists of the Vanilloid Receptor TAMAS SZABO, JACQUELINE D. WELTER, ATTILA TOTH, RICHARD TRAN, JIYOUN LEE,  

E-print Network

The vanilloid receptor VR1 has attracted great interest as a sensory transducer for capsaicin, protons, and heat]resiniferatoxin binding to rVR1 with an affinity of 53.5 6.5 nM and antagonized capsaicin- induced calcium uptake and KJM429 antagonized RTX as well as capsaicin and their mechanism was competitive. The responses to JYL

Suh, Young-Ger

279

A NOVEL METHOD TO QUANTIFY HISTOCHEMICAL CHANGES THROUGHOUT THE MEDIOLATERAL AXIS OF THE SUBSTANTIA GELATINOSA AFTER SPARED NERVE INJURY: CHARACTERIZATION WITH TRPV1 AND SUBSTANCE P  

PubMed Central

Nerve injury dramatically increases or decreases protein expression in the spinal cord dorsal horn. Whether the spatial distribution of these changes is restricted to the central innervation territories of injured nerves or could spread to adjacent territories in the dorsal horn is not understood. To address this question, we developed a simple computer software-assisted method to precisely distinguish and efficiently quantify immunohistochemical staining patterns across the mediolateral axis of the dorsal horn 2 wk after transection of either the tibial and common peroneal nerves (thus sparing the sural branch, spared nerve injury, SNI), the tibial nerve, or the common peroneal and sural nerves. Using thiamine monophosphatase (TMP) histochemistry, we determined that central terminals of the tibial, common peroneal, sural, and posterior cutaneous nerves occupy the medial 35%, medial-central 20%, central-lateral 20%, and lateral 25% of the substantia gelatinosa, respectively. We then used these calculations to show that SNI reduced the expression of SP and TRPV1 immunoreactivity within the tibial and peroneal innervation territories in the L4 dorsal horn, without changing expression in the uninjured, sural sector. We conclude that SNI-induced loss of SP and TRPV1 in central terminals of dorsal horn is restricted to injured fibers. Our new method enables direct comparison of injured and uninjured terminals in the dorsal horn so as to better understand their relative contributions to mechanisms of chronic pain. PMID:20350706

Corder, G.; Siegel, A.; Intondi, A.B.; Zhang, X.; Zadina, J.E.; Taylor, B.K.

2010-01-01

280

40 CFR 180.1165 - Capsaicin; exemption from the requirement of a tolerance.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Capsaicin; exemption from the requirement of a...Exemptions From Tolerances § 180.1165 Capsaicin; exemption from the requirement of a tolerance. Capsaicin is exempt from the requirement...

2013-07-01

281

40 CFR 180.1165 - Capsaicin; exemption from the requirement of a tolerance.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Capsaicin; exemption from the requirement of a...Exemptions From Tolerances § 180.1165 Capsaicin; exemption from the requirement of a tolerance. Capsaicin is exempt from the requirement...

2012-07-01

282

40 CFR 180.1165 - Capsaicin; exemption from the requirement of a tolerance.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Capsaicin; exemption from the requirement of a...Exemptions From Tolerances § 180.1165 Capsaicin; exemption from the requirement of a tolerance. Capsaicin is exempt from the requirement...

2010-07-01

283

40 CFR 180.1165 - Capsaicin; exemption from the requirement of a tolerance.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Capsaicin; exemption from the requirement of a...Exemptions From Tolerances § 180.1165 Capsaicin; exemption from the requirement of a tolerance. Capsaicin is exempt from the requirement...

2011-07-01

284

Capsaicin Inhibits in Vitro and in Vivo Angiogenesis  

Microsoft Academic Search

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a natural product of Capsicum species, is known to induce excitation of nociceptive termi- nals involved in pain perception. Recent studies have also shown that capsaicin not only has chemopreventive properties against certain carcin- ogens and mutagens but also exerts anticancer activity. Here, we demon- strated the antiangiogenic activity of capsaicin using in vitro and in vivo assay

Jeong-Ki Min; Kyu-Yeon Han; Eok-Cheon Kim; Young-Myeong Kim; Sae-Won Lee; Ok-Hee Kim; Kyu-Won Kim; Yong Song Gho; Young-Guen Kwon

2004-01-01

285

Human Keratinocytes Are Vanilloid Resistant  

Microsoft Academic Search

BackgroundUse of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain\\/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular

László Pecze; Kornélia Szabó; Márta Széll; Katalin Jósvay; Krisztián Kaszás; Erzsébet Kúsz; Tamás Letoha; János Prorok; István Koncz; András Tóth; Lajos Kemény; Csaba Vizler; Zoltán Oláh; Leslie B. Vosshall

2008-01-01

286

Modulation of lipopolysaccharide-induced oxidative stress by capsaicin.  

PubMed

This study investigated the effect of capsaicin (the active principle of hot red pepper and a sensory excitotoxin) on oxidative stress after systemic administration of the endotoxin lipopolysaccharide (100 ?g/kg, i.p.) in rats. Capsaicin (15, 150 or 1,500 ?g/kg; 10, 100 or 400 ?g/mL) was given via intragastric (i.g.) or intraperitoneal (i.p.) routes at time of endotoxin administration. Rats were killed 4 h later. Malondialdehyde (MDA) and reduced glutathione (GSH) were measured in brain, liver, and lungs. Alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase (ALP), nitric oxide, and glucose were measured in serum. In addition, histopathological examination of liver tissue was performed. In LPS-treated rats, hepatic GSH increased significantly by 40.8% after i.p. capsaicin at 1,500 ?g/kg. Liver MDA increased significantly by 32.9% after the administration of i.g. capsaicin at 1,500 ?g/kg and by 27.8 and 37.6% after the administration of i.p. capsaicin at 150 and 1,500 ?g/kg, respectively. In lung tissue, both MDA and GSH were decreased by capsaicin administration. MDA decreased by 19-20.8% after i.g. capsaicin and by 17.5-23.2% after i.p. capsaicin (150-1,500 ?g/kg), respectively. GSH decreased by 39.3-64.3% and by 35.7-41.1% after i.g. or i.p. capsaicin (150-1,500 ?g/kg), respectively. Brain GSH increased significantly after the highest dose of i.g. or i.p. capsaicin (by 20.6 and 15.9%, respectively). The increase in serum ALT and ALP after endotoxin administration was decreased by oral or i.p. capsaicin. Serum nitric oxide showed marked increase after LPS injection, but was markedly decreased after capsaicin (1,500 ?g/kg, i.p.). Serum glucose increased markedly after the administration of LPS, and was normalized by capsaicin treatment. It is suggested that in the presence of mild systemic inflammation, acute capsaicin administration might alter oxidative status in some tissues and exert an anti-inflammatory effect. Capsaicin exerted protective effects in the liver and lung against the LPS-induced tissue damage. PMID:22127606

Abdel-Salam, Omar M E; Abdel-Rahman, Rehab Fawzy; Sleem, Amany A; Farrag, Abdel Razik

2012-08-01

287

Current Pharmaceutical Design, 2005, 11, 2687-2698 2687 1381-6128/05 $50.00+.00 2005 Bentham Science Publishers Ltd.  

E-print Network

sensory neurons. TRPV1 is a ligand-gated, cation channel that is activated by heat, acid and capsaicin structural similarity with capsaicin. Because lipoxygenase products can activate TRPV1 in sensory neurons

Suh, Young-Ger

288

Time Course of Burn to Repeated Applications of Capsaicin  

Microsoft Academic Search

Human subjects rated the burn of 100 ppm capsaicin applied to the tongue via filter paper and replaced every minute. Capsaicin was presented at a constant concentration for 10 min, followed by 10 min of blank stimuli; this sequence was then repeated once. Both sensitization and desensitization were seen. A dynamic model composed of a level detector and change detector

Carey D Balaban; Donald H McBurney; Mindy Stoulis

1999-01-01

289

Suppression of Central Taste Transmission by Oral Capsaicin  

Microsoft Academic Search

Because intraoral capsaicin is reported to reduce the perceived intensity of certain taste qualities, we investigated whether it affects the central processing of gustatory information. The responses of gustatory neurons in the nucleus tractus solitarius (NTS) to tastant stimuli were recorded before and after lingual application of capsaicin in anesthetized rats. Thirty-four NTS units were characterized as respond- ing best

Christopher T. Simons; Yves Boucher; E. Carstens

2003-01-01

290

Olopatadine Hydrochloride Inhibits Capsaicin-Induced Flare Response in Humans  

Microsoft Academic Search

Capsaicin, a vanilloid, has the potential for releasing substance P (SP) from sensory nerves. Topical application of capsaicin induces a flare response in the skin. However, it has not been clarified whether the release of SP is involved in the process of flare response or not. A potent antihistamine drug, olopatadine hydrochloride, is known to have inhibitory action against the

Masahisa Shindo; Yuichi Yoshida; Osamu Yamamoto

2011-01-01

291

Why do cannabinoid receptors have more than one endogenous ligand?  

PubMed Central

The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, ?9-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis. PMID:23108541

Di Marzo, Vincenzo; De Petrocellis, Luciano

2012-01-01

292

[Sensitivity of cough with capsaicin in smokers].  

PubMed

In this study, effect of long term smoking on sensitivity of cough reflex was investigated. Healthy, current smoker male and female was evaluated by capsaicin cough challenge test and they were compared with healthy, non-smoker persons with similar age and gender, prospectively. In current smokers, there were 50 male and 39 female, in non-smoker control group, there were 20 male and 21 female. Mean and log C5 dosage in current smoker and non-smoker groups and mean and log C5 dosage in current smoker according to gender were calculated by using Mann-Whitney U-test. Results of capsaicin cough challenge test in current and non-smoker groups were evaluated by using Pearson Chi-Square test and Fisher's Exact test. In current smokers comparison of results of capsaicin cough challenge test with smoking history (age with first smoking, duration, pocket year and smoking per day) was evaluated by using Mann-Whitney U-test. Mean C5 and mean log C5 dosage were found decreased in current smokers when they were compared to control group (p< 0.00). In current smoker group mean C5 and mean log C5 dosage were found decreased in male (p< 0.002). When the results of capsaicin cough challenge test were compared between current smoker and control groups, sensitivity of cough reflex in concentration with 0.49, 0.98, 1.95, 3.9, 7.8, 15.6 microM was significantly decreased in current smoker group. Also there was a significant correlation between concentration with 0.98, 1.95, 3.9, 7.8, 15.6, 31.2 microM, and duration of smoking and pocket year of smoking. Also there was a correlation between concentration with 15.6, 31.2, 62.5, 125 microM and smoking per day. This results were correlated with hypothesis about inhibition of C-fibers with nicotin or decrease of C-fibers' sensitivity due to induction of neuropeptide wasting. PMID:18330750

Yildirim, Cetin Aydin; Celik, Pinar; Havlucu, Yavuz; Co?kun, Ev?en; Yorgancio?lu, Arzu; Sakar, Ay?in; Dinç, Gönül

2008-01-01

293

Capsaicin-sensitive sensory neurons regulate myocardial nitric oxide and cGMP signaling  

Microsoft Academic Search

We studied whether tissue levels of nitric oxide (NO) and cGMP are regulated by sensory nerves in normoxic and ischemic hearts. Wistar rats were treated with capsaicin to deplete neurotransmitters from capsaicin-sensitive sensory nerves. In separate experiments, capsaicin was applied perineurally to both vagus nerves for selective chemodenervation of vagal cardiac afferent nerves. Systemic capsaicin administration significantly decreased basal myocardial

Tamás Csont; Csaba Csonka; Péter Kovács; Gábor Jancsó; Péter Ferdinandy

2003-01-01

294

Noninvasive diode laser activation of transient receptor potential proteins and nociceptors  

NASA Astrophysics Data System (ADS)

We investigated diode laser (980 nm) evoked activation of transient receptor potential proteins (TRPV1 and TRPV2). C and A-delta (A?) nociceptor families are primarily responsible for pain mediation in the peripheral nervous system. TRPV1 proteins have been associated with heat evoked pain in C fibers while A? fibers have been associated with TRPV2. Diode laser stimulation allows a margin of safety between non-invasive activation and damage 19, 22, 34. Laser pulses (20-50 ms, 0.1-10 W, 980 nm) were used to stimulate: A) in vitro: excised patches from HEK293 cells expressing TRPV1; B) in vitro: rat DRG nociceptors expressing either TRPV1 or TRPV2; and C) in vivo: C-fibers of the rat saphenous nerve (SN) trunk. Cell currents were recorded using standard patch clamp methods. The SN was also stimulated electrically with bipolar electrodes. Stimulation (20-50 ms) of HEK and DRG cells expressing TRPV1 was highly reproducible. Activation and peak currents were achieved at estimated peak temperatures of 55°C and 70°C. Threshold activation was also observed in DRG neurons expressing TRPV2. The conduction velocity for laser-activated saphenous nerve afferents was in the C fiber range (0.5-1 m/s). Electrically stimulated nerve contained stimulation artifacts and complex neural components with conduction velocities ranging from 0.3-30 m/s. Diode laser activation of TRPV1 protein is a reproducible and effective means to probe TRP activity in both in vivo and in vitro preparations

Jiang, Nan; Cooper, Brian Y.; Nemenov, Michael I.

2007-02-01

295

Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction  

PubMed Central

Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1? were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1? as well as upregulated UCP2 and activation of GSK3?, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3? inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function. PMID:22442497

Zhang, Yingmei; Li, Linlin; Hua, Yinan; Nunn, Jennifer M.; Dong, Feng; Yanagisawa, Masashi; Ren, Jun

2012-01-01

296

Capsaicin prevents kainic acid-induced epileptogenesis in mice.  

PubMed

Epilepsy is a neurodegenerative disease with periodic occurrences of spontaneous seizures as the main symptom. The aim of this study was to investigate the neuroprotective effects of capsaicin, the major ingredient of hot peppers, in a kainic acid (KA)-induced status epilepticus model. After intraperitoneal injections of KA (30mg/kg) in 8-week-old male ICR mice, the animals were treated subcutaneously with capsaicin (0.33mg/kg or 1mg/kg) and then examined for any anti-ictogenic, hypothermic, antioxidative, anti-inflammatory, and anti-apoptotic effects of the capsaicin treatment 3 days after KA treatment. KA injections significantly enhanced neurodegenerative conditions but co-injection with capsaicin reduced the detrimental effects of KA in a dose-dependent manner in mice. The co-administered group that received KA and 1mg/kg of capsaicin showed significantly decreased behavioral seizure activity and body temperature for 3h and also remarkably blocked intense and high-frequency seizure discharges in the parietal cortex for 3 days compared with those that received KA alone. Capsaicin treatment significantly diminished the levels of oxidant activity and malondialdehyde concentration and increased the antioxidant activity in the blood and brain of KA-treated mice. In addition, capsaicin significantly lowered the KA-induced increase in the concentration of the cytokines IL-1? and TNF-? in the brain. Furthermore, co-treatment of KA and capsaicin (1mg/kg) resulted in considerably decreased apoptotic cell death in the cornu ammonis sections of the hippocampus compared with that seen in the KA-alone group. These findings indicate that capsaicin is preventative for the epileptogenesis induced by KA in mice. PMID:21333704

Lee, Tae-Hee; Lee, Jong-Geol; Yon, Jung-Min; Oh, Ki-Wan; Baek, In-Jeoung; Nahm, Sang-Soep; Lee, Beom Jun; Yun, Young Won; Nam, Sang-Yoon

2011-05-01

297

Time course of burn to repeated applications of capsaicin.  

PubMed

Human subjects rated the burn of 100 ppm capsaicin applied to the tongue via filter paper and replaced every minute. Capsaicin was presented at a constant concentration for 10 min, followed by 10 min of blank stimuli; this sequence was then repeated once. Both sensitization and desensitization were seen. A dynamic model composed of a level detector and change detector predicted the results and also previous data. Thus, the model provides a parsimonious description of responses to constant and intermittent capsaicin stimulation. PMID:10222481

Balaban, C D; McBurney, D H; Stoulis, M

1999-03-01

298

Endothelin and neonatal capsaicin regulate gastric resistance to injury in BDL rats  

PubMed Central

AIM: To investigate the relationship between primary afferent neurons, endothelin (ET) and the role of its receptors on ethanol-induced gastric damage in cirrhotic rats. METHODS: Cirrhosis and portal hypertension were induced in rats by bile duct ligation (BDL) while controls had a sham operation. The association between ET and afferent neurons on the gastric mucosa was evaluated by capsaicin treatment in newborn rats, the use of ET agonists or antagonists, gastric ET-1 and -3 mRNA and synthetic capacity. Ethanol-induced damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured by laser-Doppler flowmetry. RESULTS: ET-3 and an ETB receptor antagonist significantly reduced the extent of ethanol-induced gastric damage in BDL rats. Gastric ET-1 and -3 levels were 30% higher in BDL rats compared to control rats. Capsaicin treatment restored the gastric resistance and blood flow responses to topical application of ethanol in BDL rats and ET-1 and -3 production to levels observed in controls. CONCLUSION: Our results suggest that the reduced resistance of the gastric mucosa of cirrhotic rats to ethanol-induced injury is a phenomenon modulated by ET through the ETB receptor and by sensory afferent neurons. PMID:23293745

Camara, Paula RS; Ferraz, Gerson JN; Velloso, Licio A; Zeitune, Jose Murilo R; Suassuna, Fernando AB; Ferraz, Jose Geraldo P

2012-01-01

299

Capsaicin and nociception in the rat and mouse  

Microsoft Academic Search

Newborn or adult rats and mice were treated with capsaicin. The effect of systemic or intrathecal treatment on thermonociception, chemonociception, content and release of immunoreactive substance P (I-SP) was investigated.

Rainer Gamse

1982-01-01

300

ET1 induced Elevation of intracellular calcium in clonal neuronal and embryonic kidney cells involves endogenous endothelin-A receptors linked to phospholipase C through G? q\\/11  

Microsoft Academic Search

Endothelin-1 (ET-1) is a pain mediator, elevated in skin after injury, which potentiates noxious thermal and mechanical stimuli (hyperalgesia) through the activation of ETA (and, perhaps, ETB) receptors on pain fibers. Part of the mechanism underlying this effect has recently been shown to involve potentiation of neuronal TRPV1 by PKC?. However, the early steps of this pathway, which are recapitulated

Jean-Pierre Montmayeur; Travis P. Barr; Sarah A. Kam; Samuel J. Packer; Gary R. Strichartz

2011-01-01

301

Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats  

SciTech Connect

Gastrointestinal absorption of capsaicin and dihydrocapsaicin was studied in rats in vivo and in situ. Rapid absorption of capsaicin or dihydrocapsaicin from stomach and small intestine occurred in vivo. About 85% of the dose was absorbed in the gastrointestinal tract within 3 hr. In situ, within 60 min after the administration of capsaicin and dihydrocapsaicin into stomach, jejunum, and ileum, about 50, 80, and 70% of the respective dose had disappeared from the lumen. When 2,4-dinitrophenol or NaCN was added, no significant reduction in uptake of (/sup 3/H)dihydrocapsaicin was observed in the jejunum. These results suggested that capsaicin and its analogs were absorbed by a nonactive process in jejunum. (/sup 3/H)Dihydrocapsaicin was mainly absorbed via the portal system but not a mesenteric lymphangial one. The radioactivity in the portal blood was composed of 85% of (/sup 3/H)dihydrocapsaicin and 15% of its metabolite (8-methyl nonanoic acid) bound to the albumin fraction. Dihydrocapsaicin-hydrolyzing enzyme activity was found in jejunal tissue. These results suggest that capsaicin and its analogs partly received a first-pass effect, i.e., metabolism of a compound following first absorption in the gastrointestinal tract. It is concluded that capsaicin and its analogs are readily transported to the portal vein through the gastrointestinal tract by a nonactive process and partly metabolized during absorption.

Kawada, T.; Suzuki, T.; Takahashi, M.; Iwai, K.

1984-03-15

302

Thermal sensitivity of isolated vagal pulmonary sensory neurons: role of transient receptor potential vanilloid receptors.  

PubMed

A recent study has demonstrated that increasing the intrathoracic temperature from 36 degrees C to 41 degrees C induced a distinct stimulatory and sensitizing effect on vagal pulmonary C-fiber afferents in anesthetized rats (J Physiol 565: 295-308, 2005). We postulated that these responses are mediated through a direct activation of the temperature-sensitive transient receptor potential vanilloid (TRPV) receptors by hyperthermia. To test this hypothesis, we studied the effect of increasing temperature on pulmonary sensory neurons that were isolated from adult rat nodose/jugular ganglion and identified by retrograde labeling, using the whole cell perforated patch-clamping technique. Our results showed that increasing temperature from 23 degrees C (or 35 degrees C) to 41 degrees C in a ramp pattern evoked an inward current, which began to emerge after exceeding a threshold of approximately 34.4 degrees C and then increased sharply in amplitude as the temperature was further increased, reaching a peak current of 173 +/- 27 pA (n = 75) at 41 degrees C. The temperature coefficient, Q10, was 29.5 +/- 6.4 over the range of 35-41 degrees C. The peak inward current was only partially blocked by pretreatment with capsazepine (Delta I = 48.1 +/- 4.7%, n = 11) or AMG 9810 (Delta I = 59.2 +/- 7.8%, n = 8), selective antagonists of the TRPV1 channel, but almost completely abolished (Delta I = 96.3 +/- 2.3%) by ruthenium red, an effective blocker of TRPV1-4 channels. Furthermore, positive expressions of TRPV1-4 transcripts and proteins in these neurons were demonstrated by RT-PCR and immunohistochemistry experiments, respectively. On the basis of these results, we conclude that increasing temperature within the normal physiological range can exert a direct stimulatory effect on pulmonary sensory neurons, and this effect is mediated through the activation of TRPV1, as well as other subtypes of TRPV channels. PMID:16513770

Ni, Dan; Gu, Qihai; Hu, Hong-Zhen; Gao, Na; Zhu, Michael X; Lee, Lu-Yuan

2006-09-01

303

Multimodal use of calcitonin gene-related Peptide and substance p in itch and acute pain uncovered by the elimination of vesicular glutamate transporter 2 from transient receptor potential cation channel subfamily v member 1 neurons.  

PubMed

Primary afferents are known to use glutamate as their principal fast neurotransmitter. However, it has become increasingly clear that peptides have an influential role in both mediating and modulating sensory transmission. Here we describe the transmission accounting for different acute pain states and itch transmitted via the transient receptor potential cation channel subfamily V member 1 (TRPV1) population by either ablating Trpv1-Cre-expressing neurons or inducing vesicular glutamate transporter 2 (VGLUT2) deficiency in Trpv1-Cre-expressing neurons. Furthermore, by pharmacological inhibition of substance P or calcitonin gene-related peptide (CGRP) signaling in Vglut2-deficient mice, we evaluated the contribution of substance P or CGRP to these sensory modulations, with or without the presence of VGLUT2-mediated glutamatergic transmission in Trpv1-Cre neurons. This examination, together with c-Fos analyses, showed that glutamate via VGLUT2 in the Trpv1-Cre population together with substance P mediate acute cold pain, whereas glutamate together with CGRP mediate noxious heat. Moreover, we demonstrate that glutamate together with both substance P and CGRP mediate tissue-injury associated pain. We further show that itch, regulated by the VGLUT2-mediated transmission via the Trpv1-Cre population, depends on CGRP and gastrin-releasing peptide receptor (GRPR) transmission because pharmacological blockade of the CGRP or GRPR pathway, or genetic ablation of Grpr, led to a drastically attenuated itch. Our study reveals how different neurotransmitters combined can cooperate with each other to transmit or regulate various acute sensations, including itch. PMID:25319702

Rogoz, Katarzyna; Andersen, Helena H; Lagerström, Malin C; Kullander, Klas

2014-10-15

304

The impact of a noise stressor on capsaicin-induced primary and secondary hyperalgesia  

E-print Network

In searching for new human pain models that more closely resemble clinical pain states, the capsaicin pain model has emerged as a viable model for both inflammatory and neuropathic pain states. A principal benefit of the capsaicin model...

Grimes, Jeffrey Scott

2004-09-30

305

Studies on some pharmacological properties of Capsicum frutescens-driven capsaicin in experimental animal models.  

E-print Network

??The present study investigated pharmacological properties of Capsicum frutescens-derived capsaicin, including its analgesic, anti-inflammatory and coagulatory properties. The effects of capsaicin on gastrointestinal and myocardial… (more)

Jolayemi, Adebayo Taiwo Ezekiel.

2012-01-01

306

Capsaicin impairs proliferation of neural progenitor cells and hippocampal neurogenesis in young mice.  

PubMed

Capsaicin (N-vanillyl-8-methyl-1-nonenamide) is a major pungent ingredient in hot peppers and induces apoptosis in malignant carcinoma cell lines. However, the adverse effects of capsaicin on neuronal development have not been fully explored. The aim of this study was to determine whether capsaicin affected murine-derived cerebellar multi-potent neural progenitor cells (NPC) or adult hippocampal neurogenesis in vivo. Capsaicin dose-dependently suppressed NPC proliferation, and higher concentrations were cytotoxic. Capsaicin decreased the activation of extracellular signal-regulated kinases (ERK) without markedly affecting p38 kinases. Capsaicin reduced the number of newly generated cells in the dentate gyrus of the hippocampus but did not significantly alter learning and memory performance in young adult mice. Interestingly, capsaicin decreased ERK activation in the hippocampus, suggesting that reduced ERK signaling may be involved in the capsaicin-mediated regulation of hippocampal neurogenesis. PMID:20954075

Kong, Kyoung Hye; Kim, Hyun Kyu; Song, Kwan Sung; Woo, Young Sik; Choi, Won Suk; Park, Hee Ra; Park, Mikyung; Kim, Mi Eun; Kim, Min-Sun; Ryu, Jeong Sim; Kim, Hyung Sik; Lee, Jaewon

2010-01-01

307

Taste suppression following lingual capsaicin pre-treatment in humans.  

PubMed

The effect of oral capsaicin on taste sensations in humans was reinvestigated with attention to methodological issues raised in previous studies, including the mode of presentation and temperature of the tastant stimulus, as well as the sensitizing and desensitizing properties of capsaicin. One-half of the dorsal anterior tongue was pre-treated with capsaicin, followed by bilateral tastant application (sucrose, NaCl, quinine, monosodium glutamate and citric acid). Subjects indicated on which side the taste intensity was greater in a two-alternative, forced-choice procedure and also rated taste intensity independently on each side of the tongue. Each of the five tastants was tested sequentially, with reapplication of capsaicin between trials in order to maintain a constant level of burn. Four experiments were conducted: (i) a high concentration (33 p.p.m.) (109 microM) capsaicin effect on taste intensity elicited by high tastant concentrations; (ii) a high concentration capsaicin effect on taste intensity elicited by low tastant concentrations; (iii) a low concentration (1.5 p.p.m.) (4.9 microM) capsaicin effect on taste intensity elicited by low tastant concentrations; and (iv) validation of the method for localizing taste by pre-treating one side of the tongue with Gymnema sylvestre, followed by bilateral application of sucrose. In the first experiment, a significant proportion of the subjects chose the non-treated side in the two-alternative, forced-choice procedure and assigned significantly higher ratings to that side for sucrose-induced sweetness, quinine-induced bitterness and glutamate-induced umami sensations. Salty and sour sensations were not different between sides. A 15 min break was imposed in order to allow the capsaicin burn to disappear and desensitization to set in, followed by reapplication of the tastant test solutions. There were no bilateral differences in the intensity of the sensations elicited by any of the five tastants. Similar results were obtained in experiments 2 and 3. In the fourth experiment, all 15 subjects tested chose the side not treated with Gymnema sylvestre as having a stronger sweet taste and assigned significantly higher ratings to that side, thereby validating the method for taste localization. These results indicate that oral capsaicin reduces certain but not all taste sensations and are discussed in terms of possible physiological and cognitive interactions. PMID:12006375

Simons, Christopher T; O'Mahony, Michael; Carstens, E

2002-05-01

308

Endothelin-1-induced priming to capsaicin in young animals.  

PubMed

Endothelin-1 (ET-1) is a known algogen that causes acute pain and sensitization in humans and spontaneous nociceptive behaviors when injected into the periphery in rats. This study sought to examine the effect of ET-1 exposure in the neonatal period on subsequent contralateral capsaicin-induced secondary mechanical hyperalgesia. ET-1 or saline was injected into the left plantar hindpaw on postnatal day 7 (P7). On postnatal day 11 (P11), capsaicin cream or control lotion was applied to the right dorsum hind paw and mechanical paw withdrawal thresholds were measured in the plantar hind paw. In saline control males, P11 administration of capsaicin produced a secondary mechanical hyperalgesia that was still present at 2h. Neonatal priming with ET-1 did not alter the magnitude or the duration of secondary mechanical hyperalgesia in males. In contrast, in control females, P11 administration of capsaicin produced less than 40 min of mechanical hyperalgesia. Neonatal priming with ET-1 prolonged the duration of secondary mechanical hyperalgesia in females. Priming with ET-1 on P7 led to a significant increase in capsaicin-induced Fos expression in the dorsal horn of the spinal cord in both males and females compared to controls (p<0.001). These findings further suggest that pain in early life may alter future responses to painful stimuli at both the behavioral and neuronal level. PMID:24674771

Smith, Terika; Beasley, Sarah; Smith, Sherika; Mark, Isiasha; Sweitzer, Sarah M

2014-05-01

309

Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia  

E-print Network

Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia Raul Sanoja: Capsaicin Descending facilitation Hyperalgesia AP5 NMDA a b s t r a c t Most forms of visceral pain generate hyperalgesia. Intracolonic capsaicin instillation (ICI) was applied to rats in order to create a hyperalgesic

Price, Theodore

310

75 FR 22788 - Garlic Oil and Capsaicin; Registration Review Proposed Decisions; Notice of Availability  

Federal Register 2010, 2011, 2012, 2013

...EPA-HQ-OPP-2010-0177; FRL-8815-9] Garlic Oil and Capsaicin; Registration Review Proposed Decisions...such as ornamental plants and shrubs. Capsaicin is a naturally occurring polymer that...of chili peppers (genus Capsaicum). Capsaicin is used as a fungicide, insect...

2010-04-30

311

ORBITOFRONTAL CORTEX: NEURONAL REPRESENTATION OF ORAL TEMPERATURE AND CAPSAICIN IN ADDITION TO TASTE AND  

E-print Network

ORBITOFRONTAL CORTEX: NEURONAL REPRESENTATION OF ORAL TEMPERATURE AND CAPSAICIN IN ADDITION-cellulose in the range 1­10,000 cP), and capsaicin (10 M). Of 70 neurons with responses to any of these stimuli, 7 and viscosity-sensitive; and 11.3% were temperature, taste and viscosity sensitive. Capsaicin activated 15

Rolls, Edmund T.

312

Capsaicin Regulates Voltage-Dependent Sodium Channels by Altering Lipid Bilayer Elasticity  

E-print Network

Capsaicin Regulates Voltage-Dependent Sodium Channels by Altering Lipid Bilayer Elasticity J. A; accepted June 20, 2005 ABSTRACT At submicromolar concentrations, capsaicin specifically acti- vates in clinical and in vitro studies, capsaicin also modulates the function of a large number of seemingly

Gruner, Sol M.

313

Dissecting domain-specific evolutionary pressure profiles of transient receptor potential vanilloid subfamily members 1 to 4.  

PubMed

The transient receptor potential vanilloid family includes four ion channels-TRPV1, TRPV2, TRPV3 and TRPV4-that are represented within the vertebrate subphylum and involved in several sensory and physiological processes. These channels are related to adaptation to the environment, and probably under strong evolutionary pressure. Using multiple sequence alignments as source for evolutionary, bioinformatics and statistical analysis, we have analyzed the evolutionary profiles for TRPV1, TRPV2, TRPV3 and TRPV4. The evolutionary pressure exerted over vertebrate TRPV2 sequences compared to the other channels argues for a positive selection profile for TRPV2 compared to TRPV1, TRPV3 and TRPV4. We have analyzed the selective pressure on specific protein domains, observing a common selective pressure trend for the common TRPV scaffold, consisting of the ankyrin repeat domain, the membrane proximal domain, the transmembrane domain, and the TRP domain. Through a more detailed analysis we have identified evolutionary constraints involved in the subunit contact at the transmembrane domain level. Performing evolutionary comparison, we have translated specific channel structural information such as the transmembrane topology, and the interaction between the membrane proximal domain and the TRP box. We have also identified potential common regulatory domains among all TRPV1-4 members, such as protein-protein, lipid-protein and vesicle trafficking domains. PMID:25333484

Dońate-Macián, Pau; Perálvarez-Marín, Alex

2014-01-01

314

Dissecting Domain-Specific Evolutionary Pressure Profiles of Transient Receptor Potential Vanilloid Subfamily Members 1 to 4  

PubMed Central

The transient receptor potential vanilloid family includes four ion channels–TRPV1, TRPV2, TRPV3 and TRPV4–that are represented within the vertebrate subphylum and involved in several sensory and physiological processes. These channels are related to adaptation to the environment, and probably under strong evolutionary pressure. Using multiple sequence alignments as source for evolutionary, bioinformatics and statistical analysis, we have analyzed the evolutionary profiles for TRPV1, TRPV2, TRPV3 and TRPV4. The evolutionary pressure exerted over vertebrate TRPV2 sequences compared to the other channels argues for a positive selection profile for TRPV2 compared to TRPV1, TRPV3 and TRPV4. We have analyzed the selective pressure on specific protein domains, observing a common selective pressure trend for the common TRPV scaffold, consisting of the ankyrin repeat domain, the membrane proximal domain, the transmembrane domain, and the TRP domain. Through a more detailed analysis we have identified evolutionary constraints involved in the subunit contact at the transmembrane domain level. Performing evolutionary comparison, we have translated specific channel structural information such as the transmembrane topology, and the interaction between the membrane proximal domain and the TRP box. We have also identified potential common regulatory domains among all TRPV1-4 members, such as protein-protein, lipid-protein and vesicle trafficking domains. PMID:25333484

Donate-Macian, Pau; Peralvarez-Marin, Alex

2014-01-01

315

Transient receptor potential genes, smoking, occupational exposures and cough in adults  

PubMed Central

Background Transient receptor potential (TRP) vanilloid and ankyrin cation channels are activated by various noxious chemicals and may play an important role in the pathogenesis of cough. The aim was to study the influence of single nucleotide polymorphisms (SNPs) in TRP genes and irritant exposures on cough. Methods Nocturnal, usual, and chronic cough, smoking, and job history were obtained by questionnaire in 844 asthmatic and 2046 non-asthmatic adults from the Epidemiological study on the Genetics and Environment of Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Occupational exposures to vapors, gases, dusts, and/or fumes were assessed by a job-exposure matrix. Fifty-eight tagging SNPs in TRPV1, TRPV4, and TRPA1 were tested under an additive model. Results Statistically significant associations of 6 TRPV1 SNPs with cough symptoms were found in non-asthmatics after correction for multiple comparisons. Results were consistent across the eight countries examined. Haplotype-based association analysis confirmed the single SNP analyses for nocturnal cough (7-SNP haplotype: p-global = 4.8 × 10-6) and usual cough (9-SNP haplotype: p-global = 4.5 × 10-6). Cough symptoms were associated with exposure to irritants such as cigarette smoke and occupational exposures (p < 0.05). Four polymorphisms in TRPV1 further increased the risk of cough symptoms from irritant exposures in asthmatics and non-asthmatics (interaction p < 0.05). Conclusions TRPV1 SNPs were associated with cough among subjects without asthma from two independent studies in eight European countries. TRPV1 SNPs may enhance susceptibility to cough in current smokers and in subjects with a history of workplace exposures. PMID:22443337

2012-01-01

316

Epithelial expression of vanilloid and cannabinoid receptors: a potential role in burning mouth syndrome pathogenesis.  

PubMed

Burning mouth syndrome (BMS) is an intra-oral burning sensation for which presently no medical or dental causes have been found, and in which the oral mucosa appears normal. It remains an unknown disease for which there is still no long-term treatment. The aim of this study was to assess the epithelial alteration of transient receptor potential vanilloid channel type 1 (TRPV1) and cannabinoid receptors type 1 (CB1) and type 2 (CB2) in the human tongue. The study was performed on eight healthy controls and eight BMS patients. All patients underwent a 3-mm punch biopsy at the anterolateral aspect of the tongue close to the tip. TRPV1, CB1 and CB2 immuno-histochemistry was carried out showing an altered expression of all receptors. In BMS patients there was increased TRPV1, decreased CB1 and increased CB2 expression in tongue epithelial cells also associated with a change in their distribution. It would appear that these receptors are related to BMS. These data could be useful for future characterization of BMS epithelial markers and therapy. PMID:24190005

Borsani, Elisa; Majorana, Alessandra; Cocchi, Marco Angelo; Conti, Giulio; Bonadeo, Sara; Padovani, Alessandro; Lauria, Giuseppe; Bardellini, Elena; Rezzani, Rita; Rodella, Luigi Fabrizio

2014-04-01

317

Cloning and functional expression of a human orthologue of rat vanilloid receptor-1  

Microsoft Academic Search

Capsaicin, resiniferatoxin, protons or heat have been shown to activate an ion channel, termed the rat vanilloid receptor-1 (rVR1), originally isolated by expression cloning for a capsaicin sensitive phenotype. Here we describe the cloning of a human vanilloid receptor-1 (hVR1) cDNA containing a 2517 bp open reading frame that encodes a protein with 92% homology to the rat vanilloid receptor-1.

Philip Hayes; Helen J Meadows; Martin J Gunthorpe; Mark H Harries; D. Malcolm Duckworth; William Cairns; David C Harrison; Catherine E Clarke; Kathryn Ellington; Rab K Prinjha; Amanda J. L Barton; Andrew D Medhurst; Graham D Smith; Simon Topp; Paul Murdock; Gareth J Sanger; John Terrett; Owen Jenkins; Christopher D Benham; Andrew D Randall; Isro S Gloger; John B Davis

2000-01-01

318

Nucleotides control the excitability of sensory neurons via two P2Y receptors and a bifurcated signaling cascade  

PubMed Central

Nucleotides contribute to the sensation of acute and chronic pain, but it remained enigmatic which G protein-coupled nucleotide (P2Y) receptors and associated signaling cascades are involved. To resolve this issue, nucleotides were applied to dorsal root ganglion neurons under current- and voltage-clamp. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), and uridine triphosphate (UTP), but not uridine diphosphate (UDP), depolarized the neurons and enhanced action potential firing in response to current injections. The P2Y2 receptor preferring agonist 2-thio-UTP was equipotent to UTP in eliciting these effects. The selective P2Y1 receptor antagonist MRS2179 largely attenuated the excitatory effects of ADP, but left those of 2-thio-UTP unaltered. Thus, the excitatory effects of the nucleotides were mediated by 2 different P2Y receptors, P2Y1 and P2Y2. Activation of each of these 2 receptors by either ADP or 2-thio-UTP inhibited currents through KV7 channels, on one hand, and facilitated currents through TRPV1 channels, on the other hand. Both effects were abolished by inhibitors of phospholipase C or Ca2+-ATPase and by chelation of intracellular Ca2+. The facilitation of TRPV1, but not the inhibition KV7 channels, was prevented by a protein kinase C inhibitor. Simultaneous blockage of KV7 channels and of TRPV1 channels prevented nucleotide-induced membrane depolarization and action potential firing. Thus, P2Y1 and P2Y2 receptors mediate an excitation of dorsal root ganglion neurons by nucleotides through the inhibition of KV7 channels and the facilitation of TRPV1 channels via a common bifurcated signaling pathway relying on an increase in intracellular Ca2+ and an activation of protein kinase C, respectively. PMID:21600693

Yousuf, Arsalan; Klinger, Felicia; Schicker, Klaus; Boehm, Stefan

2011-01-01

319

TRP Channels in Pain and Inflammation: Therapeutic Opportunities  

PubMed Central

In ancient times, physicians had a limited number of therapies to provide pain relief. Not surprisingly, plant extracts applied topically often served as the primary analgesic plan. With the discovery of the capsaicin receptor (TRPV1), the search for ‘new’ analgesics has returned to compounds used by physicians thousands of years ago. One such compound, capsaicin, couples the paradoxical action of nociceptor activation (burning pain) with subsequent analgesia following repeat or high-dose application. Investigating this ‘paradoxical’ action of capsaicin has revealed several overlapping and complementary mechanisms to achieve analgesia including receptor desensitization, nociceptor dysfunction, neuropeptide depletion and nerve terminal destruction. Moreover, the realization that TRPV1 is both sensitized and activated by endogenous products of inflammation including bradykinin, H+, ATP, fatty acid derivatives, NGF and trypsins, has renewed interest in TRPV1 as an important site of analgesia. Building on this foundation, a new series of preclinical and clinical studies targeting TRPV1 have been reported. These include trials using brief exposure to high-dose topical capsaicin in conjunction with prior application of a local anesthetic. Clinical use of resiniferatoxin (RTX), another ancient but potent TRPV1 agonist, is also being explored as a therapy for refractory pain. The development of orally-administered high affinity TRPV1 antagonists hold promise for pioneering a new generation of analgesics capable of blocking painful sensations at the site of inflammation and tissue injury. With the isolation of other members of the TRP channel family such as TRPA1, additional opportunities are emerging in the development of safe and effective analgesics. PMID:20230457

Schumacher, Mark A.

2011-01-01

320

Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles  

PubMed Central

Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

Seebacher, Frank; Murray, Shauna A.

2007-01-01

321

Adaptation to capsaicin burn: effects of concentration and individual differences  

Microsoft Academic Search

Human subjects rated the time course of the burn produced by three concentrations of capsaicin applied to the tongue via filter papers. Data were fit to a dynamic model composed of a level detector, a change detector, and a double integrator. These three processes responded differently to concentration. 6-n-Propyl-2-thiouracil (PROP) taster status correlated positively with the integrator process. Although a

Donald H McBurney; Carey D Balaban; Justin R Popp; Jeremy E Rosenkranz

2001-01-01

322

Capsaicin responsiveness and cough in asthma and chronic obstructive pulmonary disease  

Microsoft Academic Search

BACKGROUNDChronic cough is associated with an increased sensitivity to inhaled capsaicin in a number of conditions but there are no data for patients with more severe asthma or chronic obstructive pulmonary disease (COPD). Moreover, the relationships between the capsaicin response (expressed as the concentration of capsaicin provoking five coughs, C5), self-reported cough, and routine medication is not known.METHODSThe cough response

M J Doherty; R Mister; M G Pearson; P M A Calverley

2000-01-01

323

Capsaicin in hot chili pepper: Carcinogen, co-carcinogen or anticarcinogen?  

Microsoft Academic Search

Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is a major pungent ingredient of the Capsicum fruits such as hot green and red peppers. Besides its use as a food additive in various spicy cuisines, capsaicin is currently utilized for therapeutic purposes to treat various peripheral painful conditions such as rheumatoid arthritis and diabetic neuropathy. Considering consumption of capsaicin as a food additive and its current

Y.-J. Surh; S. S. Lee

1996-01-01

324

Dose-dependent protective effect of BPC 157 on capsaicin-induced rhinitis in rats  

Microsoft Academic Search

Protection of BPC 157 on capsaicin-induced rhinitis was studied in Wistar rats for its effect on mastocyte infiltration, degranulation\\u000a and inflammatory cell infiltration. Animals were pretreated with 10 ?g\\/kg, 10 ng\\/kg or 2 ml saline i.p. and capsaicin (0.05\\u000a ml\\/nostril of 1750 nmol\\/l sol.) was applied intranasally. They were then euthanized at 1, 3 and 12 h after capsaicin provocation.

L. Kalogjera; M. Ries; T. Baudoin; Z. Ferencic; R. Trotic; B. Pegan

1997-01-01

325

Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist  

Microsoft Academic Search

BACKGROUND: The use of mechanical\\/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia. METHODS: First,

Keld Fosgerau; Uno J Weber; Jacob W Gotfredsen; Magdalena Jayatissa; Carsten Buus; Niels B Kristensen; Mogens Vestergaard; Peter Teschendorf; Andreas Schneider; Philip Hansen; Jakob Raunsř; Lars Křber; Christian Torp-Pedersen; Charlotte Videbaek

2010-01-01

326

Airway sensitivity to chemicals and scents. Sympoms, trigger factors and the capsaicin inhalation test.  

E-print Network

??Some patients with airway symptoms, induced by chemicals and scents, but who lackbronchoconstriction or allergy, have shown increased cough sensitivity to inhaled capsaicin. Capsaicinstimulates cough… (more)

Ternesten-Hasséus, Ewa 1956-

2005-01-01

327

Stimulation of glucagon-like peptide-1 secretion downstream of the ligand-gated ion channel TRPA1  

E-print Network

of gastrointestinal motility and absorption (15). Emerging data support a role for TRP channels in modulating both incretin and insulin secretion. Oral administration of the TRPV1 agonist capsaicin, for example, increased plasma GLP-1 and insulin concentrations... concentrations of AITC have been shown to activate TRPV1 (31), and TRPV1 activation by capsaicin has been reported to increase plasma GLP-1 concentrations in mice (16). We therefore examined whether TRPV1 channels are functionally expressed in L...

Emery, Edward C.; Diakogiannaki, Eleftheria; Gentry, Clive; Psichas, Arianna; Habib, Abdella M.; Bevan, Stuart; Fischer, Michael J. M.; Reimann, Frank; Gribble, Fiona M.

2014-10-16

328

Capsaicin and dihydrocapsaicin determination in chili pepper genotypes using ultra-fast liquid chromatography.  

PubMed

Research was carried out to estimate the levels of capsaicin and dihydrocapsaicin that may be found in some heat tolerant chili pepper genotypes and to determine the degree of pungency as well as percentage capsaicin content of each of the analyzed peppers. A sensitive, precise, and specific ultra fast liquid chromatographic (UFLC) system was used for the separation, identification and quantitation of the capsaicinoids and the extraction solvent was acetonitrile. The method validation parameters, including linearity, precision, accuracy and recovery, yielded good results. Thus, the limit of detection was 0.045 µg/kg and 0.151 µg/kg for capsaicin and dihydrocapsaicin, respectively, whereas the limit of quantitation was 0.11 µg/kg and 0.368 µg/kg for capsaicin and dihydrocapsaicin. The calibration graph was linear from 0.05 to 0.50 µg/g for UFLC analysis. The inter- and intra-day precisions (relative standard deviation) were <5.0% for capsaicin and <9.9% for dihydrocapsaicin while the average recoveries obtained were quantitative (89.4%-90.1% for capsaicin, 92.4%-95.2% for dihydrocapsaicin), indicating good accuracy of the UFLC method. AVPP0705, AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 showed the highest concentration of capsaicin (12,776, 5,828, 4,393, 4,760, 3,764 and 4,120 µg/kg) and the highest pungency level, whereas AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 recorded no detection of capsaicin and hence were non-pungent. All chili peppers studied except AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 could serve as potential sources of capsaicin. On the other hand, only genotypes AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 gave a % capsaicin content that falls within the pungency limit that could make them recommendable as potential sources of capsaicin for the pharmaceutical industry. PMID:24853712

Usman, Magaji G; Rafii, Mohd Y; Ismail, Mohd R; Malek, Md Abdul; Latif, Mohammad Abdul

2014-01-01

329

Cell, Vol. 112, 819829, March 21, 2003, Copyright 2003 by Cell Press ANKTM1, a TRP-like Channel  

E-print Network

stimuli such as temperature and pressure (Hensel, 1981). The cloning of TRPV1 (VR1: a capsaicin- and heat characteris- tics. TRPV and TRPC members contain two to fourcoexpressed with TRPV1/VR1 (the capsaicin/heat re neurons that also respond to capsaicin but not TRPC and TRPM members have a TRP box (with un- known

Kharasch, Evan

330

Inhibitory effects of capsaicin on hepatic stellate cells and liver fibrosis.  

PubMed

Hepatic stellate cells (HSCs) play an important role in the process of liver fibrosis. In this study, we investigated the inhibitory effects of capsaicin on HSCs and liver fibrosis. Cultured HSCs were incubated with various concentrations of capsaicin. Cell proliferation was examined using a cell counting kit. Production of hydrogen peroxide was determined using a 2',7'-dichlorofluorescin diacetate (DCFH-DA) assay. The mRNA and protein expression of target genes was analyzed by reverse transcription PCR and Western blot analysis, respectively. Cell apoptosis was evaluated by annexin V-FITC and propidium iodide (PI) costaining followed by flow cytometric analysis. A CCl4 rat liver fibrosis model was used to assess in vivo effects of capsaicin by histological examination and measurement of liver fibrosis markers, including hydroxyproline content, serum type III collagen, and hyaluronic acid (HA) levels. Our results show that capsaicin dose-dependently inhibited cell proliferation, suppressed cell activation, and decreased hydrogen peroxide production in cultured HSCs. Capsaicin reduced the mRNA levels of tissue inhibitors of metalloproteinase 1 (TIMP-1) and transforming growth factor-?1 (TGF-?1) in HSCs. Moreover, capsaicin-induced cell apoptosis was associated with increased expression of Bax, cytochrome c (cyt c), and caspase-3, but reduced levels of Bcl-2. The animal studies further revealed that capsaicin efficiently reduced the extent of liver fibrosis, inhibited HSC proliferation, and promoted cell apoptosis. Our findings suggest that capsaicin might inhibit fibrogenesis by inhibiting the activities of HSCs. PMID:25289759

Yu, Fu-Xiang; Teng, Yin-Yan; Zhu, Qian-Dong; Zhang, Qi-Yu; Tang, Yin-He

2014-10-01

331

Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation  

Microsoft Academic Search

Capsaicin applied topically to human skin produces itching, pricking and burning sensations due to excitation of nociceptors. With repeated application, these positive sensory responses are followed by a prolonged period of hypalgesia that is usually referred to as desensitization, or nociceptor inactivation. Consequently, capsaicin has been recommended as a treatment for a variety of painful syndromes. The precise mechanisms that

Maria Nolano; Donald A Simone; Gwen Wendelschafer-Crabb; Timothy Johnson; Eric Hazen; William R Kennedy

1999-01-01

332

Beneficial effects of intranasal applications of capsaicin in patients with vasomotor rhinitis  

Microsoft Academic Search

Capsaicin, a nonenamide derived from Capsicum plants, has proven useful in patients with vasomotor rhinitis. In the present study, we studied the effects of 15 µg capsaicin suspended in 100 µl solution in patients with known vasomotor rhinitis. Drug was given 3 times\\/ day for 3 days to each patient by means of a spray delivered to the nasal mucosa.

S. Marabinil; P. G. Ciabatti; G. Polli; B. M. Fusco; P. Geppettil

1991-01-01

333

Adrenergic-and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder  

E-print Network

Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves Apodaca, William C. de Groat, and Anthony J. Kanai. Adrenergic- and capsaicin-evoked nitric oxide release endogenous NO production. The afferent neurotoxin, capsaicin, and the mixed / -adrenergic agonist

Apodaca, Gerard

334

Adaptation to capsaicin burn: effects of concentration and individual differences.  

PubMed

Human subjects rated the time course of the burn produced by three concentrations of capsaicin applied to the tongue via filter papers. Data were fit to a dynamic model composed of a level detector, a change detector, and a double integrator. These three processes responded differently to concentration. 6-n-Propyl-2-thiouracil (PROP) taster status correlated positively with the integrator process. Although a minority of subjects showed evidence of the integrator process, any subject with an integrator process at a given concentration also showed it at any higher concentration. PMID:11239999

McBurney, D H; Balaban, C D; Popp, J R; Rosenkranz, J E

2001-01-01

335

Crystal forms of a capsaicin derivative analgesic DA5018  

Microsoft Academic Search

DA-5018 is a new capsaicin derivative and has analgesic effect. The objective of this work was to investigate the existence\\u000a of polymorphs and pseudopolymorphs of DA-5018 and the transformation of crystal forms. Eight crystal forms of DA-5018 have\\u000a been isolated by recrystallization and characterized by powder X-ray diffractometry (PXRD), differential scanning calorimetry\\u000a (DSC), and thermogravimetric analysis (TG).\\u000a \\u000a The PXRD and

E.-A. Lee; Y.-T. Sohn

2008-01-01

336

Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes  

PubMed Central

Cerebral ischemia is a leading cause of mortality and morbidity worldwide, which results in cognitive and motor dysfunction, neurodegenerative diseases, and death. Evodiamine (Evo) is extracted from Evodia rutaecarpa Bentham, a plant widely used in Chinese herbal medicine, which possesses variable biological abilities, such as anticancer, anti-inflammation, antiobesity, anti-Alzheimer's disease, antimetastatic, antianoxic, and antinociceptive functions. But the effect of Evo on ischemic stroke is unclear. Increasing data suggest that activation of autophagy, an adaptive response to environmental stresses, could protect neurons from ischemia-induced cell death. In this study, we found that Evo induced autophagy in U87-MG astrocytes. A scavenger of extracellular calcium and an antagonist of transient receptor potential vanilloid-1 (TRPV-1) decreased the percentage of autophagy accompanied by an increase in apoptosis, suggesting that Evo may induce calcium-mediated protective autophagy resulting from an influx of extracellular calcium. The same phenomena were also confirmed by a small interfering RNA technique to knock down the expression of TRPV1. Finally, Evo-induced c-Jun N-terminal kinases (JNK) activation was reduced by a TRPV1 antagonist, indicating that Evo-induced autophagy may occur through a calcium/c-Jun N-terminal kinase (JNK) pathway. Collectively, Evo induced an influx of extracellular calcium, which led to JNK-mediated protective autophagy, and this provides a new option for ischemic stroke treatment. PMID:24454492

Liu, Ann-Jeng; Wang, Sheng-Hao; Hou, Sz-Ying; Chiu, Wen-Ta; Hsiao, Sheng-Huang; Chen, Thay-Hsiung

2013-01-01

337

Sensory Nerve Terminal Mitochondrial Dysfunction Activates Airway Sensory Nerves via Transient Receptor Potential (TRP) Channels  

PubMed Central

Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing “nociceptor-like” mouse bronchopulmonary C-fibers. Action potential discharge was reduced by the TRPA1 antagonist HC-030031. Inhibition of TRPV1 further reduced C-fiber activation. In mouse dissociated vagal neurons, antimycin A induced Ca2+ influx that was significantly reduced by pharmacological inhibition or genetic knockout of either TRPA1 or TRPV1. Inhibition of both TRPA1 and TRPV1 was required to abolish antimycin A-induced Ca2+ influx in vagal neurons. Using an HEK293 cell expression system, antimycin A induced concentration-dependent activation of both hTRPA1 and hTRPV1 but failed to activate nontransfected cells. Myxothiazol (complex III Qo site inhibitor) inhibited antimycin A-induced TRPA1 activation, as did the reducing agent dithiothreitol. Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrially-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling. PMID:23444014

Nesuashvili, Lika; Hadley, Stephen H.; Bahia, Parmvir K.

2013-01-01

338

Capsaicin desensitization selectively inhibits lipoxin A4-induced contraction in guinea pig bronchus.  

PubMed

The pharmacological ablation of capsaicin-sensitive afferents by means of capsaicin desensitization is usually utilized as a first functional criterion to identify substances whose biological effects might involve activation of this type of nerves. We have studied, in guinea pig epithelium-denuded bronchial rings (in the presence of the neutral endopeptidase inhibitor thiorphan), the effect of in vitro capsaicin desensitization (10 microM for 15 min) on bronchomotor responses elicited by leukotriene D4 (10-100 nM), 15-HETE (3-6 microM) and lipoxin A4 (3-6 microM). While all these three lipid mediators contract bronchial preparations, only lipoxin A4 effects were markedly depressed by previous capsaicin challenge. As expected, capsaicin desensitization abolished subsequent motor responses to capsaicin itself or stimulation of non-adrenergic non-cholinergic nerves, while it left unaffected cholinergic responses. It is proposed that endogenously-generated lipoxin A4 acts, at least partially, through the activation of capsaicin-sensitive sensory nerve fibers. PMID:1773033

Manzini, S; Meini, S

1991-01-01

339

Behavioral and physiological effects of capsaicin in red-winged blackbirds.  

PubMed

We injected red-winged blackbirds (Agelaius phoeniceus) subcutaneously with capsaicin, and assessed (a) changes in basal body temperature, (b) ability to discriminate warm from cool drinking water, and (c) sensitivity to oral and topical applications of capsaicin, a trigeminal irritant. As predicted from studies of mammals, the injections seemed to disrupt thermoregulation when the ambient temperature increased, and eliminated discrimination between warm and cool drinking water (Figs. 1 and 2). In contrast to effects on mammals, injections failed to observably diminish oral or topical sensitivity to capsaicin and apparently induced a capsaicin preference in two-bottle drinking tests between capsaicin and its vehicle (Fig. 3). Such preferences were context-dependent, however, since water was reliably preferred to capsaicin or vehicle in three-bottle tests. To our knowledge, the present work is the first to report physiological and behavioral effects of capsaicin on birds, and the first to suggest that the substance may have different behavioral and physiological effects on different classes of animals. PMID:6647520

Mason, J R; Maruniak, J A

1983-11-01

340

Opioid, cannabinoid, and transient receptor potential (TRP) systems: effects on body temperature  

PubMed Central

Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. Endocannabinoids participate in the febrile response, but more studies are needed to determine if a cannabinoid CB1 receptor tone exerts control over basal body temperature. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation. PMID:21622235

Rawls, Scott M.; Benamar, Khalid

2014-01-01

341

Circulating GLP-1 and CCK-8 reduce food intake by capsaicin-insensitive, nonvagal mechanisms  

PubMed Central

Previous reports suggest that glucagon-like peptide (GLP-1), a peptide secreted from the distal small intestine, is an endocrine satiation signal. Nevertheless, there are conflicting reports regarding the site where circulating GLP-1 acts to reduce food intake. To test the hypothesis that vagal afferents are necessary for reduction of food intake by circulating GLP-1, we measured intake of 15% sucrose during intravenous GLP-1 infusion in intact, vagotomized, and capsaicin-treated rats. We also measured sucrose intake during intravenous infusion of cholecystokinin, a peptide known to reduce food intake via abdominal vagal afferents. We found that reduction of intake by GLP-1 was not diminished by capsaicin treatment or vagotomy. In fact, reduction of sucrose intake by our highest GLP-1 dose was enhanced in vagotomized and capsaicin-treated rats. Intravenous GLP-1 induced comparable increases of hindbrain c-Fos immunoreactivity in intact, capsaicin-treated, and vagotomized rats. Plasma concentrations of active GLP-1 in capsaicin-treated rats did not differ from those of controls during the intravenous infusions. Finally, capsaicin treatment was not associated with altered GLP-1R mRNA in the brain, but nodose ganglia GLP-1R mRNA was significantly reduced in capsaicin-treated rats. Although reduction of food intake by intraperitoneal cholecystokinin was abolished in vagotomized and capsaicin-treated rats, reduction of intake by intravenous cholecystokinin was only partially attenuated. These results indicate that vagal or capsaicin-sensitive neurons are not necessary for reduction of food intake by circulating (endocrine) GLP-1, or cholecystokinin. Vagal participation in satiation by these peptides may be limited to paracrine effects exerted near the sites of their secretion. PMID:22031786

Zhang, Jingchuan

2012-01-01

342

Standardized method for solubility and storage of capsaicin-based solutions for cough induction  

PubMed Central

Background Preparation of inhaled capsaicin solutions for cough induction varies greatly from one lab to another, which creates inconsistencies between tussigenic challenge results. The addition of Tween to these capsaicin solutions provides increased solubility and stability; however, the foul taste of Tween makes inhaling the solution for any prolonged period of time unpleasant. We sought to create a standard method for preparing soluble and stable capsaicin-based solutions (in 10% ethanol/water), without the addition of Tween. Methods Capsaicin solutions were created at concentrations ranging from 0 to 500 ?M in a variety of solvent systems, with and without Tween. Samples were stored in four different environments (-20°C, 3°C, and room temperature, protected from light; and room temperature, exposed to light) to test stability. Detection of capsaicin was carried out by UV absorption. A Grubb’s test was performed on all data to remove statistical outliers. Results Similar capsaicin concentrations were seen for solutions prepared with or without Tween (Tween provided a slight increase in solubility), with neither solvent system providing complete solubility. Of the four environments tested, storing capsaicin solutions at 3°C while protected from light afforded the greatest stability, for a minimum of 30 weeks. Conclusion We recommend the use of a 10% ethanol/water solvent system without Tween in the preparation of capsaicin solutions for tussigenic challenges. While this solvent system does not provide complete solubility, we have detailed a method for capsaicin solution preparation that will account for this loss of solubility, while maintaining a solution that is Tween-free and safe for human inhalation. PMID:25342957

2014-01-01

343

Anti-inflammatory effects of leptin and cholecystokinin on acetic acid-induced colitis in rats: role of capsaicin-sensitive vagal afferent fibers.  

PubMed

Leptin and cholecystokinin (CCK) have a synergistic interaction in the suppression of food intake, and afford similar gastroprotective activity. The present study was designed to investigate the putative protective effects of CCK and leptin on acute colonic inflammation. Leptin or CCK-8s was injected to rats intraperitoneally immediately before and 6 h after the induction of colitis with acetic acid. CCK-A receptor antagonist (L-364,718) or CCK-B receptor antagonist (L-365,260) was injected intraperitoneally 15 min before leptin or CCK treatments. In a group of rats, vagal afferent fibers were denervated by topical application of capsaicin on the cervical vagi. Rats were decapitated at 24 h, and the distal 8 cm of the colon were removed for macroscopic scoring, determination of tissue wet weight index (WWI), histologic assessment and tissue myeloperoxidase (MPO) activity. All inflammation parameters were increased by acetic acid-induced colitis compared to control group. Leptin or CCK-8s treatment reduced these parameters in a similar manner, while co-administration of leptin and CCK was found to be more effective in reducing the macroscopic score and WWI. CCK-8s-induced reduction in the score and WWI was prevented by CCK-A, but not by CCK-B receptor antagonist, whereas neither antagonist altered the inhibitory effect of leptin on colitis-induced injury. On the other hand, perivagal capsaicin prevented the protective effects of both CCK-8s and leptin on colitis. Our results indicate that leptin and CCK have anti-inflammatory effects on acetic acid-induced colitis in rats, which appear to be mediated by capsaicin-sensitive vagal afferent fibers involving the reduction in colonic neutrophil infiltration. PMID:14599722

Bozkurt, Ayhan; Cakir, Bari?; Ercan, Feriha; Ye?en, Berrak C

2003-11-15

344

Sensing hot and cold with TRP channels.  

PubMed

The past decade has witnessed the cloning of a new family of ion channels that are responsive to temperature. Six of these transient receptor potential (TRP) channels are proposed to be involved in thermosensation and are located in sensory nerves and skin. The TRPV1, TRPV2, TRPV3, and TRPV4 channels have incompletely overlapping functions over a broad thermal range from warm to hot. Deletion of the individual TRPV1, TRPV3, and TRPV4 channels in mice has established their physiological role in thermosensation. In all cases thermosensation is not completely abolished - suggesting some functional redundancy among the channels. Notably, the TRPV2 channel is responsive to hot temperatures in heterologous systems, but its physiological relevance in vivo has not been established. Cool and cold temperatures are sensed by TRPM8 and TRPA1 family members. Currently, the pharmaceutical industry is developing agonists and antagonists for the various TRP channels. For instance, TRPV1 receptor agonists produce hypothermia, while antagonists induce hyperthermia. Recent investigations have found that different regions of the TRPV1 receptor are responsive to temperature, nociceptive stimuli, and various chemical agents. With this information, it has been possible to develop a TRPV1 compound that blocks responses to capsaicin and acid while leaving temperature sensitivity intact. These channels have important implications for hyperthermia research and may help to identify previously unexplored mechanisms in different tissues that are responsive to thermal stress. PMID:21591901

Wetsel, William C

2011-01-01

345

Lack of transient receptor potential melastatin 8 activation by phthalate esters that enhance contact hypersensitivity in mice.  

PubMed

We studied the involvement of sensory neurons in skin sensitization to allergens using a mouse model in which the T-helper type 2 response is essential. Skin sensitization to fluorescein isothiocyanate (FITC) has been shown to be enhanced by several phthalate esters, including dibutyl phthalate (DBP). For different types of phthalate esters, we found a correlation between the ability of transient receptor potential (TRP) A1 activation and that of enhancing skin sensitization. A TRPA1-specific antagonist, HC-030031, was shown to suppress skin sensitization in the presence of DBP. However, since phthalate esters also activate TRPV1, phthalate esters could activate other types of TRP channels non-selectively. Furthermore, sensitization to FITC is also enhanced by menthol, which activates TRPA1 and TRPM8. Here we established an in vitro system for measuring TRPM8 activation. The selectivity for TRPM8 was established by the fact that two TRPM8 agonists (menthol and icilin) induced calcium mobilization, whereas agonists of TRPA1 and TRPV1 did not. We demonstrated that phthalate esters do not activate TRPM8. TRPA1-antagonist HC-030031 did not inhibit TRPM8 activation induced by menthol or icilin. These results show that phthalate esters activate TRPA1 and TRPV1 with selectivity. TRPM8 activation is not likely to be involved in the sensitization to FITC. PMID:23296101

Kurohane, Kohta; Sahara, Yurina; Kimura, Ayako; Narukawa, Masataka; Watanabe, Tatsuo; Daimon, Takashi; Imai, Yasuyuki

2013-03-13

346

Capsaicin-induced neurogenic inflammation in pig skin: a behavioural study.  

PubMed

Topical capsaicin is a well-established model of experimental hyperalgesia. Its application to the study of animals has been limited to few species. The effect of topical capsaicin on hyperalgesia in porcine skin was evaluated as part of a study of inflammatory pain in the pig. Two experiments were carried out on pigs of 27?±?5?kg (n?=?8) and 57?±?3?kg (n?=?16). Thermal and mechanical noxious stimuli were provided (CO2 laser and Pressure Application Measurement device) to assess avoidance behaviours. Capsaicin induced significant thermal hyperalgesia in the smaller pigs (P?capsaicin application may be useful to investigate the mechanisms of primary hyperalgesia in this species, although some experimental conditions, such as the administration route and cutaneous morphology, need to be evaluated. PMID:24746289

Di Giminiani, Pierpaolo; Petersen, Lars J; Herskin, Mette S

2014-06-01

347

Capsaicin, a double-edged sword: Toxicity, metabolism, and chemopreventive potential  

Microsoft Academic Search

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a primary pungent and irritating principle present in chilies and red peppers which are widely used as spices. Because of its selective effects on the functions of a defined subpopulation of sensory neurons, capsaicin is currently used as a versatile tool for the study of pain mechanisms and also for pharmacotherapy to treat several pain disorders. Considering

Young-Joon Surh; Sang Sup Lee

1995-01-01

348

Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET  

Microsoft Academic Search

Summary The PET H215O-bolus method was used to image regional brain activity in normal human subjects during intense pain induced by intradermal injection of capsaicin and during post-capsaicin mechanical allodynia (the percep- tion of pain from a normally non-painful stimulus). Images of regional cerebral blood flow were acquired during six conditions: (i) rest; (ii) light brushing of the forearm; (iii)

Michael J. Iadarola; Karen Faith Berman; Thomas A. Zeffiro; Michael G. Byas-Smith; Richard H. Gracely; Mitchell B. Max; Gary J. Bennett

1998-01-01

349

BISANDROGRAPHOLIDE FROM ANDROGRAPHIS PANICULATA ACTIVATES TRPV4 CHANNELS*  

E-print Network

by capsaicin and the activation of TRPM8 channels by menthol. We sought to identify additional plant compounds of channels is TRPV1, a channel gated by multiple stimuli including capsaicin, protons, heat and anandamide (1

Clapham, David E.

350

Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats  

Microsoft Academic Search

Capsaicin activates a non-specific cation conductance in mammalian sensory neurones. If capsaicin is applied continuously\\u000a or repeatedly then there is a progressive decline in responsiveness. We have studied the mechanism of this desensitization\\u000a using electro-physiological methods in cultured dorsal root ganglion neurones from adult rats. The rate of desensitization\\u000a of capsaicin-induced responses is partly dependent on the extracellular calcium concentration

R. J. Docherty; J. C. Yeats; S. Bevan; H. W. G. M. Boddeke

1996-01-01

351

Intradermal Injection of Capsaicin in Humans Produces Degeneration and Subsequent Reinnervation of Epidermal Nerve Fibers: Correlation with Sensory Function  

Microsoft Academic Search

fibers and the subepidermal neural plexus in capsaicin-treated skin, as indicated by the loss of immunoreactivity for PGP 9.5 and CGRP. The effect of capsaicin on dermal nerve fibers immunoreactive for SP was less obvious. Capsaicin decreased sensitivity to pain produced by sharp mechanical stimuli and nearly eliminated heat-evoked pain within the injected area. Limited reinnervation of the epidermis and

Donald A. Simone; Maria Nolano; Timothy Johnson; Gwen Wendelschafer-Crabb; William R. Kennedy

1998-01-01

352

Capsaicin-induced metabolic and cardiovascular autonomic improvement in an animal model of the metabolic syndrome.  

PubMed

The metabolic syndrome (MetS) is associated with an increased risk of cardiac mortality, as it is characterised by the clustering of multiple cardiovascular risk factors. Studies have shown that capsaicin (red pepper) may be useful as a nutraceutical, ameliorating metabolic profile and cardiovascular function. The aim of the present study was to investigate the cardiovascular and metabolic effects of orally administered capsaicin in rats with the MetS. Neonate spontaneously hypertensive rats were injected with monosodium glutamate and subjected to one of the following three treatments by oral administration for 14 d, between 27 and 30 weeks: low-dose capsaicin (CAP05, n 18, synthetic capsaicin powder diluted in a vehicle (10 % ethyl alcohol) plus 0·5 mg/kg body weight (BW) of capsaicin); high-dose capsaicin (CAP1, n 19, synthetic capsaicin powder diluted in a vehicle (10 % ethyl alcohol) plus 1 mg/kg BW of capsaicin); control (C, n 18, vehicle). Lee's index, lipid/metabolic profile, and cardiovascular parameters with the rats being conscious, including arterial pressure (AP) and heart rate (HR) variability, as well as aortic wall thickness (haematoxylin and eosin staining) and CD68 (cluster of differentiation 68) antibody levels (monocyte/macrophage immunostaining) were evaluated. Weight, Lee's index, and lipid and metabolic parameters, as well as AP and HR and aortic wall thickness, were similar between the groups. Capsaicin determined HR variability improvement (16·0 (sem 9·0), 31·0 (sem 28·2) and 31·3 (sem 19·0) ms2 for the C, CAP05 and CAP1 groups, respectively, P= 0·003), increased vascular sympathetic drive (low-frequency component of systolic AP variability: 3·3 (sem 2·8), 8·2 (sem 7·7) and 12·1 (sem 8·8) mmHg2 for the C, CAP05 and CAP1 groups, respectively, P< 0·001) and increased ?-index (spontaneous baroreflex sensitivity). The present data show that capsaicin did not improve lipid and glucose abnormalities in rats with the MetS. However, beneficial cardiovascular effects were observed with this nutraceutical. PMID:23968579

Tremarin, Camila da Silva; Casali, Karina Rabello; Meurer, Luise; Schaan, Beatriz D'Agord

2014-01-28

353

The case for the development of novel analgesic agents targeting both fatty acid amide hydrolase and either cyclooxygenase or TRPV1  

PubMed Central

Although the dominant approach to drug development is the design of compounds selective for a given target, compounds targeting more than one biological process may have superior efficacy, or alternatively a better safety profile than standard selective comp