These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

ThermoTRP Channels in Nociceptors: Taking a Lead from Capsaicin Receptor TRPV1  

PubMed Central

Nociceptors with peripheral and central projections express temperature sensitive transient receptor potential (TRP) ion channels, also called thermoTRP’s. Chemosensitivity of thermoTRP’s to certain natural compounds eliciting pain or exhibiting thermal properties has proven to be a good tool in characterizing these receptors. Capsaicin, a pungent chemical in hot peppers, has assisted in the cloning of the first thermoTRP, TRPV1. This discovery initiated the search for other receptors encoding the response to a wide range of temperatures encountered by the body. Of these, TRPV1 and TRPV2 encode unique modalities of thermal pain when exposed to noxious heat. The ability of TRPA1 to encode noxious cold is presently being debated. The role of TRPV1 in peripheral inflammatory pain and central sensitization during chronic pain is well known. In addition to endogenous agonists, a wide variety of chemical agonists and antagonists have been discovered to activate and inhibit TRPV1. Efforts are underway to determine conditions under which agonist-mediated desensitization of TRPV1 or inhibition by antagonists can produce analgesia. Also, identification of specific second messenger molecules that regulate phosphorylation of TRPV1 has been the focus of intense research, to exploit a broader approach to pain treatment. The search for a role of TRPV2 in pain remains dormant due to the lack of suitable experimental models. However, progress into TRPA1’s role in pain has received much attention recently. Another thermoTRP, TRPM8, encoding for the cool sensation and also expressed in nociceptors, has recently been shown to reduce pain via a central mechanism, thus opening a novel strategy for achieving analgesia. The role of other thermoTRP’s (TRPV3 and TRPV4) encoding for detection of warm temperatures and expressed in nociceptors cannot be excluded. This review will discuss current knowledge on the role of nociceptor thermoTRPs in pain and therapy and describes the activator and inhibitor molecules known to interact with them and modulate their activity. PMID:19305786

Mandadi, Sravan; Roufogalis, Basil D.

2008-01-01

2

A Bivalent Tarantula Toxin Activates the Capsaicin Receptor, TRPV1, by Targeting the Outer Pore Domain  

PubMed Central

SUMMARY Toxins have evolved to target regions of membrane ion channels that underlie ligand binding, gating, or ion permeation, and have thus served as invaluable tools for probing channel structure and function. Here we describe a peptide toxin from the Earth Tiger tarantula that selectively and irreversibly activates the capsaicin- and heat-sensitive channel, TRPV1. This high avidity interaction derives from a unique tandem repeat structure of the toxin that endows it with an antibody-like bivalency, illustrating a new paradigm in toxin structure and evolution. The ‘double-knot’ toxin traps TRPV1 in the open state by interacting with residues in the presumptive pore-forming region of the channel, highlighting the importance of conformational changes in the outer pore region of TRP channels during activation. PMID:20510930

Bohlen, Christopher J.; Priel, Avi; Zhou, Sharleen; King, David; Siemens, Jan; Julius, David

2010-01-01

3

Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia  

PubMed Central

Background The kinin B1 receptor (B1R) is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1) activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism. Methods B1R expression (mRNA, protein and binding sites) was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c) in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791), the antioxidant N-acetyl-L-cysteine (NAC), or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t.) injection of a selective B1R agonist (des-Arg9-BK), and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [N?-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 ?g/site) was also investigated. Results Capsaicin (10 to 50 mg/kg, s.c.) enhanced time-dependently (0-24h) B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 ?g/site, i.t.) and SB-366791 (1 mg/kg, i.p.; 30 ?g/site, i.t.). Increases of B1R mRNA were correlated with IL-1? mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 ?g/site) also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days) prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg). Des-Arg9-BK (9.6 nmol/site, i.t.) decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg) while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p.o.), glutamate NMDA receptor (DL-AP5, 10 ?g/site, i.t.), substance P NK-1 receptor (RP-67580, 10 ?g/site, i.t.) and nitric oxide synthase (L-NNA, 10 ?g/site, i.t.). The B1R fluorescent agonist was co-localized with an immunomarker of microglia (Iba-1) in spinal cord dorsal horn of capsaicin-treated rats. Conclusion This study highlights a new mechanism for B1R induction via TRPV1 activation and establishes a link between these two pro-nociceptive receptors in inflammatory pain. PMID:22264228

2012-01-01

4

Glucose concentration in culture medium affects mRNA expression of TRPV1 and CB1 receptors and changes capsaicin toxicity in PC12 cells  

PubMed Central

Objective (s): Hyperglycemia is widely recognized as the underlying cause for some debilitating conditions in diabetic patients. The role of cannabinoid CB1 and vanilloid TRPV1 receptors and their endogenous agonists, endovanilloids, in diabetic neuropathy is shown in many studies. Here we have used PC12 cell line to investigate the possible influence of glucose concentration in culture medium on cytoprotective or toxic effects of a CB1 [WIN55 212-2 (WIN)], or TRPV1 [Capsaicin (CAS)] agonist. Materials and Methods: Cell viability was tested using the MTT assay. We have also measured TRPV1 and CB1 transcripts by real time reverse transcription-polymerase chain reaction while cells were grown in low (5.5 mM) and high (50 mM) glucose concentrations. Results: Real time PCR results indicated that high glucose medium increased (P<0.01) TRPV1 mRNA and decreased (P <0.001) that of CB1. Cell culture tests show that hyperglycemic cells are more vulnerable (Dose × Medium, F (3,63)=41.5, P<0.001) to the toxic effects of capsaicin compared to those grown in low glucose medium. Conclusion: These findings propose that hyperglycemic conditions may result in neuronal cell death because of inducing a counterbalance between cytotoxic TRPV1 and cytoprotective CB1 receptors.

Mohammadi-Farani, Ahmad; Ghazi-Khansari, Mahmoud; Sahebgharani, Mousa

2014-01-01

5

Design and synthesis of conformationally restricted capsaicin analogues based in the 1, 3, 4-thiadiazole heterocycle reveal a novel family of transient receptor potential vanilloid 1 (TRPV1) antagonists.  

PubMed

4-hydroxy-3-methoxybenzaldehyde was used as starting material to obtain a number of 1, 3, 4-thiadiazole alkylamide derivatives. The pharmacological properties of these conformationally restricted capsaicin analogues were evaluated on HEK-293T cells transiently expressing TRPV1 receptor. By means of a highthroughput calcium imaging assay we find that 1, 3, 4-thiadiazoles (compounds 8-15) act as potent antagonists of the capsaicin receptor, inhibiting both, the capsaicin- and temperature-dependent activation. Docking studies suggested a different binding orientation on the vanilloid binding site when compared with capsaicin analogues, such as 5-iodononivamide. Overall, our studies suggest that 1, 3, 4-thiadiazoles interact with capsaicin's binding region of the receptor, although using a different set of interactions within the vanilloid binding pocket. PMID:23796768

Rebolledo, Carolyne Lespay; Sotelo-Hitschfeld, Pamela; Brauchi, Sebastián; Olavarría, Miguel Zárraga

2013-08-01

6

Capsaicin induces NKCC1 internalization and inhibits chloride secretion in colonic epithelial cells independently of TRPV1  

PubMed Central

Colonic chloride secretion is regulated via the neurohormonal and immune systems. Exogenous chemicals (e.g., butyrate, propionate) can affect chloride secretion. Capsaicin, the pungent ingredient of the chili peppers, exerts various effects on gastrointestinal function. Capsaicin is known to activate the transient receptor potential vanilloid type 1 (TRPV1), expressed in the mesenteric nervous system. Recent studies have also demonstrated its presence in epithelial cells but its role remains uncertain. Because capsaicin has been reported to inhibit colonic chloride secretion, we tested whether this effect of capsaicin could occur by direct action on epithelial cells. In mouse colon and model T84 human colonic epithelial cells, we found that capsaicin inhibited forskolin-dependent short-circuit current (FSK-Isc). Using PCR and Western blot, we demonstrated the presence of TRPV1 in colonic epithelial cells. In T84 cells, TRPV1 localized at the basolateral membrane and in vesicular compartments. In permeabilized monolayers, capsaicin activated apical chloride conductance, had no effect on basolateral potassium conductance, but induced NKCC1 internalization demonstrated by immunocytochemistry and basolateral surface biotinylation. AMG-9810, a potent inhibitor of TRPV1, did not prevent the inhibition of the FSK-Isc by capsaicin. Neither resiniferatoxin nor N-oleoyldopamine, two selective agonists of TRPV1, blocked the FSK-Isc. Conversely capsaicin, resiniferatoxin, and N-oleoyldopamine raised intracellular calcium ([Ca2+]i) in T84 cells and AMG-9810 blocked the rise in [Ca2+]i induced by capsaicin and resiniferatoxin suggesting the presence of a functional TRPV1 channel. We conclude that capsaicin inhibits chloride secretion in part by causing NKCC1 internalization, but by a mechanism that appears to be independent of TRPV1. PMID:23139219

Tang, Xu; Weber, Christopher R.; Shen, Le; Turner, Jerrold R.; Matthews, Jeffrey B.

2013-01-01

7

Effects of neonatal treatment with the TRPV1 agonist, capsaicin, on adult rat brain and behaviour.  

PubMed

Treatment of neonatal rats with the transient receptor potential vanilloid 1 (TRPV1) channel agonist, capsaicin, produces life-long loss of sensory neurons expressing TRPV1 channels. Previously it was shown that rats treated on day 2 of life with capsaicin had behavioural hyperactivity in a novel environment at 5-7 weeks of age and brain changes reminiscent of those found in subjects with schizophrenia. The objective of the present study was to investigate brain and behavioural responses of adult rats treated as neonates with capsaicin. It was found that the brain changes found at 5-7 weeks in rats treated as neonates with capsaicin persisted into adulthood (12 weeks) but were less in older rats (16-18 weeks). Increased prepulse inhibition (PPI) of acoustic startle was found in these rats at 8 and 12 weeks of age rather than the deficit commonly found in animal models of schizophrenia. Subjects with schizophrenia also have reduced flare responses to niacin and methylnicotinate proposed to be mediated by prostaglandin D2 (PGD2). Flare responses are accompanied by cutaneous plasma extravasation. It was found that the cutaneous plasma extravasation responses to methylnicotinate and PGD2 were reduced in capsaicin-treated rats. In conclusion, several neuroanatomical changes observed in capsaicin-treated rats, as well as the reduced cutaneous plasma extravasation responses, indicate that the role of TRPV1 channels in schizophrenia is worthy of investigation. PMID:24975423

Newson, Penny N; van den Buuse, Maarten; Martin, Sally; Lynch-Frame, Ann; Chahl, Loris A

2014-10-01

8

Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior.  

PubMed

Bv8, prokineticin-1 or EG-VEGF (endocrine gland-derived vascular endothelial growth factor), and prokineticin-2, are naturally occurring peptide agonists of two G-protein-coupled receptors (GPCRs), prokineticin receptor 1 (PKR1) and PKR2. PKRs are expressed in neurons in the CNS and peripheral nervous system and many dorsal root ganglion (DRG) cells expressing PKRs also express transient receptor potential vanilloid receptor-1 (TRPV1). Mice lacking the pkr1 gene were generated to explore the role of the PKR1 receptor in nociceptive signaling and in nociceptor sensitization. When compared with wild-type littermates, mice lacking the pkr1 gene showed impaired responsiveness to noxious heat, mechanical stimuli, capsaicin, and protons. In wild-type mice, activation of PKRs by the PKR agonist Bv8 caused hyperalgesia and sensitized to the actions of capsaicin. pkr1-null mice exhibited impaired responses to Bv8 but showed normal hyperalgesic responses to bradykinin and PGE2 (prostaglandin E2). Conversely, trpv1-null mice showed a reduced pronociceptive response to Bv8. Additionally, pkr1-null mice showed diminished thermal hyperalgesia after acute inflammation elicited by mustard oil and reduced pain behavior after chronic inflammation produced by complete Freund's adjuvant. The number of neurons that responded with a [Ca2+]i increase to Bv8 exposure was five times lower in pkr1-null DRG cultures than in wild-type cultures. Furthermore, Bv8-responsive neurons from pkr1-null mice showed a significant reduction in the [Ca2+]i response to capsaicin. These findings indicate a modulatory role of PKR1 in acute nociception and inflammatory pain and disclose a pharmacological interaction between PKR1 and TRPV1 in nociceptor activation and sensitization. PMID:16793879

Negri, Lucia; Lattanzi, Roberta; Giannini, Elisa; Colucci, Mariantonella; Margheriti, Federica; Melchiorri, Pietro; Vellani, Vittorio; Tian, Hui; De Felice, Milena; Porreca, Frank

2006-06-21

9

N-octanoyl-Dopamine Is an Agonist at the Capsaicin Receptor TRPV1 and Mitigates Is Chemia-Induced Acute Kidney Injury in Rat  

PubMed Central

Since stimulation of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) mitigates acute kidney injury (AKI) and endogenous N-acyl dopamine derivatives are able to activate TRPV1, we tested if synthetic N-octanoyl-dopamine (NOD) activates TRPV1 and if it improves AKI. These properties of NOD and its intrinsic anti-inflammatory character were compared with those of dopamine (DA). TRPV1 activation and anti-inflammatory properties of NOD and DA were tested using primary cell cultures in vitro. The influence of NOD and DA on AKI was tested in a prospective, randomized, controlled animal study with 42 inbred male Lewis rats (LEW, RT1), treated intravenously with equimolar concentrations of DA or NOD one hour before the onset of warm ischemia and immediately before clamp release. NOD, but not DA, activates TRPV1 channels in isolated dorsal root ganglion neurons (DRG) that innervate several tissues including kidney. In TNF? stimulated proximal tubular epithelial cells, inhibition of NF?B and subsequent inhibition of VCAM1 expression by NOD was significantly stronger than by DA. NOD improved renal function compared to DA and saline controls. Histology revealed protective effects of NOD on tubular epithelium at day 5 and a reduced number of monocytes in renal tissue of DA and NOD treated rats. Our data demonstrate that NOD but not DA activates TRPV1 and that NOD has superior anti-inflammatory properties in vitro. Although NOD mitigates deterioration in renal function after AKI, further studies are required to assess to what extend this is causally related to TRPV1 activation and/or desensitization. PMID:22916273

Tsagogiorgas, Charalambos; Wedel, Johannes; Hottenrott, Maximilia; Schneider, Michael O.; Binzen, Uta; Greffrath, Wolfgang; Treede, Rolf-Detlef; Theisinger, Bastian; Theisinger, Sonja; Waldherr, Rüdiger; Krämer, Bernhard K.; Thiel, Manfred; Schnuelle, Peter; Yard, Benito A.; Hoeger, Simone

2012-01-01

10

The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor  

PubMed Central

The transient receptor potential vanilloid-1 (TRPV1) cation channel is a receptor that is activated by heat (>42?°C), acidosis (pH<6) and a variety of chemicals among which capsaicin is the best known. With these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurones, although some non-neuronal cells and neurones in the brain also express TRPV1. The activity of TRPV1 is controlled by a multitude of regulatory mechanisms that either cause sensitization or desensitization of the channel. As many proalgesic pathways converge on TRPV1 and this nocisensor is upregulated and sensitized by inflammation and injury, TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for the pharmacological control of pain. As a consequence, TRPV1 agonists causing defunctionalization of sensory neurones and a large number of TRPV1 blockers have been developed, some of which are in clinical trials. A major drawback of many TRPV1 antagonists is their potential to cause hyperthermia, and their long-term use may carry further risks because TRPV1 has important physiological functions in the peripheral and central nervous system. The challenge, therefore, is to pharmacologically differentiate between the physiological and pathological implications of TRPV1. There are several possibilities to focus therapy specifically on those TRPV1 channels that contribute to disease processes. These approaches include (i) site-specific TRPV1 antagonists, (ii) modality-specific TRPV1 antagonists, (iii) uncompetitive TRPV1 (open channel) blockers, (iv) drugs interfering with TRPV1 sensitization, (v) drugs interfering with intracellular trafficking of TRPV1 and (vi) TRPV1 agonists for local administration. PMID:18806809

Holzer, P

2008-01-01

11

TRPV1 desensitisation and endogenous vanilloid involvement in the enhanced analgesia induced by capsaicin in inflamed tissues.  

PubMed

The intra-plantar acute administration of 10 microg of capsaicin to mice which had received complete Freund's adjuvant (CFA) 1 week before inhibits the thermal inflammatory hyperalgesia it induces and even produces a long-lasting analgesia for at least 2 weeks. In this study, we show that the administration of capsaicin (10 microg) also reduces the immediate licking behavior evoked by the intra-plantar administration of a lower dose of capsaicin (0.1 microg), the duration of this inhibitory effect being greater in CFA-inflamed mice (at least 2 weeks) than in non-inflamed animals (less than 4 days). Since this reduction of capsaicin-induced licking behavior may be interpreted as a consequence of the transient receptor potential vanilloid 1 receptor (TRPV1) unresponsiveness, we conclude that the administration of 10 microg of capsaicin into inflamed tissues can render the TRPV1 desensitised. We next explored whether endogenous vanilloids released during inflammation contribute to maintain the analgesia triggered by exogenous capsaicin. The acute administration of capsazepine (10 microg; intra-plantarly (i.pl.)) abolished the analgesic effect induced by the injection of capsaicin 1 week before in inflamed mice. From these results, it may be proposed that the maintenance by endovanilloids of the TRPV1 desensitisation induced by capsaicin could contribute to prolonging the analgesic effect induced by this agonist in inflamed tissues. PMID:16216696

Baamonde, Ana; Lastra, Ana; Juarez, Lucía; Hidalgo, Agustín; Menéndez, Luis

2005-11-30

12

Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors  

PubMed Central

Background The contributions of brain cannabinoid (CB) receptors, typically CB1 (CB type 1) receptors, to the behavioral effects of nicotine (NC) have been reported to involve brain transient receptor potential vanilloid 1 (TRPV1) receptors, and the activation of candidate endogenous TRPV1 ligands is expected to be therapeutically effective. In the present study, the effects of TRPV1 ligands with or without affinity for CB1 receptors were examined on NC-induced depression-like behavioral alterations in a mouse model in order to elucidate the "antidepressant-like" contributions of TRPV1 receptors against the NC-induced "depression" observed in various types of tobacco abuse. Results Repeated subcutaneous NC treatments (NC group: 0.3 mg/kg, 4 days), like repeated immobilization stress (IM) (IM group: 10 min, 4 days), caused depression-like behavioral alterations in both the forced swimming (reduced swimming behaviors) and the tail suspension (increased immobility times) tests, at the 2 h time point after the last treatment. In both NC and IM groups, the TRPV1 agonists capsaicin (CP) and olvanil (OL) administered intraperitoneally provided significant antidepressant-like attenuation against these behavioral alterations, whereas the TRPV1 antagonist capsazepine (CZ) did not attenuate any depression-like behaviors. Furthermore, the endogenous TRPV1-agonistic CB1 agonists anandamide (AEA) and N-arachidonyldopamine (NADA) did not have any antidepressant-like effects. Nevertheless, a synthetic "hybrid" agonist of CB1 and TRPV1 receptors, arvanil (AR), caused significant antidepressant-like effects. The antidepressant-like effects of CP and OL were antagonized by the TRPV1 antagonist CZ. However, the antidepressant-like effects of AR were not antagonized by either CZ or the CB1 antagonist AM 251 (AM). Conclusions The antidepressant-like effects of TRPV1 agonists shown in the present study suggest a characteristic involvement of TRPV1 receptors in NC-induced depression-like behaviors, similar to those caused by IM. The strong antidepressant-like effects of the potent TRPV1 plus CB1 agonist AR, which has been reported to cause part of its TRPV1-mimetic and cannabimimetic effects presumably via non-TRPV1 or non-CB1 mechanisms support a contribution from other sites of action which may play a therapeutically important role in the treatment of NC abuse. PMID:21767384

2011-01-01

13

Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs.  

PubMed

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position ?9, 10, or 11 and ?9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1. PMID:25035428

Morales-Lázaro, Sara L; Serrano-Flores, Barbara; Llorente, Itzel; Hernández-García, Enrique; González-Ramírez, Ricardo; Banerjee, Souvik; Miller, Duane; Gududuru, Veeresh; Fells, James; Norman, Derek; Tigyi, Gabor; Escalante-Alcalde, Diana; Rosenbaum, Tamara

2014-08-29

14

Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies  

PubMed Central

The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rTRPV1. We experimentally evaluated by mutational analysis the contribution of residues of rat TRPV1 (rTRPV1) contributing to ligand binding by the prototypical TRPV1 agonists capsaicin and resiniferatoxin. We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands. PMID:21448716

Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V.; Pavlyukovets, Vladimir A.; Blumberg, Peter M.; Choi, Sun

2012-01-01

15

Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy  

Microsoft Academic Search

BACKGROUND: Transient receptor potential (TRP) receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG) sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol,

Paul Facer; Maria A Casula; Graham D Smith; Christopher D Benham; Iain P Chessell; Chas Bountra; Marco Sinisi; Rolfe Birch; Praveen Anand

2007-01-01

16

Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol  

PubMed Central

The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

Blednov, Y.A.; Harris, R.A.

2009-01-01

17

Regulation of leptin receptor?expressing neurons in the brainstem by TRPV1  

PubMed Central

Abstract The central nervous system plays a critical role in the regulation of feeding behavior and whole?body metabolism via controlling the autonomic output to the visceral organs. Activity of the parasympathetic neurons in the dorsal motor nucleus of the vagus (DMV) determines the vagal tone and thereby modulates the function of the subdiaphragmatic organs. Leptin is highly involved in the regulation of food intake and alters neuronal excitability of brainstem neurons. Transient receptor potential vanilloid type 1 (TRPV1) has also been shown to increase neurotransmission in the brainstem and we tested the hypothesis that TRPV1 regulates presynaptic neurotransmitter release to leptin receptor?expressing (LepRbEGFP) DMV neurons. Whole?cell patch?clamp recordings were performed to determine the effect of TRPV1 activation on excitatory and inhibitory postsynaptic currents (EPSC, IPSC) of LepRbEGFP neurons in the DMV. Capsaicin, a TRPV1 agonist increased the frequency of miniature EPSCs in 50% of LepRbEGFP neurons without altering the frequency of miniature IPSCs in the DMV. Stomach?projecting LepRbEGFP neurons were identified in the DMV using the transsynaptic retrograde viral tracer PRV?614. Activation of TRPV1 increased the frequency of mEPSC in ~50% of stomach?related LepRbEGFP DMV neurons. These data demonstrate that TRPV1 increases excitatory neurotransmission to a subpopulation of LepRbEGFP DMV neurons via presynaptic mechanisms and suggest a potential interaction between TRPV1 and leptin signaling in the DMV. PMID:25263209

Zsombok, Andrea; Jiang, Yanyan; Gao, Hong; Anwar, Imran J.; Rezai?Zadeh, Kavon; Enix, Courtney L.; Münzberg, Heike; Derbenev, Andrei V.

2014-01-01

18

The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes  

E-print Network

The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes, 2006) Cannabinoids can evoke antihyperalgesia and antinociception at a peripheral site of action the hypothesis that certain cannabinoids directly inhibit peripheral capsaicin-sensitive nociceptive neurons

Price, Theodore

19

Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice.  

PubMed

Capsaicin-sensitive, TRPV1 (transient receptor potential vanilloid 1) receptor-expressing primary sensory neurons exert local and systemic efferent effects besides the classical afferent function. The TRPV1 receptor is considered a molecular integrator of various physico-chemical noxious stimuli. In the present study its role was analysed in acute nociceptive tests and chronic neuropathy models by comparison of wild-type (WT) and TRPV1 knockout (KO) mice. The formalin-induced acute nocifensive behaviour, carrageenan-evoked inflammatory mechanical hyperalgesia and partial sciatic nerve lesion-induced neuropathic mechanical hyperalgesia were not different in WT and KO animals. Acute nocifensive behaviour after intraplantar injection of phorbol 12-myristate 13-acetate, an activator of protein kinase C (PKC), was absent in TRPV1 KO animals showing that PKC activation elicits nociception exclusively through TRPV1 receptor sensitization/activation. Thermal hyperalgesia (drop of noxious heat threshold) and mechanical hyperalgesia induced by a mild heat injury (51 degrees C, 15s) was smaller in KO mice suggesting a pronociceptive role for TRPV1 receptor in burn injury. Chronic mechanical hyperalgesia evoked by streptozotocin-induced diabetic and cisplatin-evoked toxic polyneuropathy occurred earlier and were greater in the TRPV1 KO group. In both polyneuropathy models, at time points when maximal difference in mechanical hyperalgesia between the two groups was measured, plasma somatostatin concentrations determined by radioimmunoassay significantly increased in WT but not in TRPV1 KO mice. It is concluded that sensitization/activation of the TRPV1 receptor plays a pronociceptive role in certain models of acute tissue injury but under chronic polyneuropathic conditions it can initiate antinociceptive counter-regulatory mechanisms possibly mediated by somatostatin released from sensory neurons. PMID:16150543

Bölcskei, Kata; Helyes, Zsuzsanna; Szabó, Arpád; Sándor, Katalin; Elekes, Krisztián; Németh, József; Almási, Róbert; Pintér, Erika; Petho, Gábor; Szolcsányi, János

2005-10-01

20

Activation of Mu Opioid Receptors Sensitizes Transient Receptor Potential Vanilloid Type 1 (TRPV1) via ?-Arrestin-2-Mediated Cross-Talk  

PubMed Central

The transient receptor potential family V1 channel (TRPV1) is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C). Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that ?-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of ?-arrestin2 sequestration by G-protein coupled receptors (GPCRs) on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in ?-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates ?-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven ?-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions. PMID:24695785

Rowan, Matthew P.; Bierbower, Sonya M.; Eskander, Michael A.; Szteyn, Kalina; Por, Elaine D.; Gomez, Ruben; Veldhuis, Nicholas; Bunnett, Nigel W.; Jeske, Nathaniel A.

2014-01-01

21

Capsaicin Blocks the Hyperpolarization-Activated Inward Currents via TRPV1 in the Rat Dorsal Root Ganglion Neurons.  

PubMed

Capsaicin, the pungent ingredient in hot pepper, activates nociceptors to produce pain and inflammation. However, prolonged exposures of capsaicin will cause desensitization to nociceptive stimuli. Hyperpolarization-activated cation currents (I(h)) contribute to the maintenance of the resting membrane potential and excitability of neurons. In the cultured dorsal root ganglion (DRG) neurons, we investigated mechanisms underlying capsaicin-mediated modulation of I(h) using patch clamp recordings. Capsaicin (1 µM) inhibited I(h) only in the capsaicin-sensitive neurons. The capsaicin-induced inhibition of I(h) was prevented by preexposing the TRPV1 antagonist, capsazepine (CPZ). Capsaicin-induced inhibition of I(h) was dose dependent (IC(50)= 0.68 µM) and partially abolished by intracellular BAPTA and cyclosporin A, specific calcineurin inhibitor. In summary, the inhibitory effects of capsaicin on I(h) are mediated by activation of TRPV1 and Ca(2+)-triggered cellular responses. Analgesic effects of capsaicin have been thought to be related to desensitization of nociceptive neurons due to depletion of pain-related substances. In addition, capsaicin-induced inhibition of I(h) is likely to be important in understanding the analgesic mechanism of capsaicin. PMID:22792028

Kwak, Jiyeon

2012-06-01

22

Cyclophosphamide-induced cystitis reduces ASIC channel but enhances TRPV1 receptor function in rat bladder sensory neurons  

PubMed Central

Using patch-clamp techniques, we studied the plasticity of acid-sensing ion channels (ASIC) and transient receptor potential V1 (TRPV1) channel function in dorsal root ganglia (DRG) neurons retrogradely labeled from the bladder. Saline (control) or cyclophosphamide (CYP) was given intraperitoneally on days 1, 3, and 5. On day 6, lumbosacral (LS, L6–S2) or thoracolumbar (TL, T13–L2) DRG were removed and dissociated. Bladders and bladder DRG neurons from CYP-treated rats showed signs of inflammation (greater myeloperoxidase activity; lower intramuscular wall pH) and increased size (whole cell capacitance), respectively, compared with controls. Most bladder neurons (>90%) responded to protons and capsaicin. Protons produced multiphasic currents with distinct kinetics, whereas capsaicin always triggered a sustained response. The TRPV1 receptor antagonist A-425619 abolished capsaicin-triggered currents and raised the threshold of heat-activated currents. Prolonged exposure to an acidic environment (pH range: 7.2 to 6.6) inhibited proton-evoked currents, potentiated the capsaicin-evoked current, and reduced the threshold of heat-activated currents in LS and TL bladder neurons. CYP treatment reduced density but not kinetics of all current components triggered by pH 5. In contrast, CYP-treatment was associated with an increased current density in response to capsaicin in LS and TL bladder neurons. Correspondingly, heat triggered current at a significantly lower temperature in bladder neurons from CYP-treated rats compared with controls. These results reveal that cystitis differentially affects TRPV1- and ASIC-mediated currents in both bladder sensory pathways. Acidification of the bladder wall during inflammation may contribute to changes in nociceptive transmission mediated through the TRPV1 receptor, suggesting a role for TRPV1 in hypersensitivity associated with cystitis. PMID:23636721

Dang, Khoa; Bielefeldt, Klaus

2013-01-01

23

Actions of two naturally occurring saturated N-acyldopamines on transient receptor potential vanilloid 1 (TRPV1) channels.  

PubMed

Four long-chain, linear fatty acid dopamides (N-acyldopamines) have been identified in nervous bovine and rat tissues. Two unsaturated members of this family of lipids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine, were shown to potently activate the transient receptor potential channel type V1 (TRPV1), also known as the vanilloid receptor type 1 for capsaicin. However, the other two congeners, N-palmitoyl- and N-stearoyl-dopamine (PALDA and STEARDA), are inactive on TRPV1. We have investigated here the possibility that the two compounds act by enhancing the effect of NADA on TRPV1 ('entourage' effect). When pre-incubated for 5 min with cells, both compounds dose-dependently enhanced NADA's TRPV1-mediated effect on intracellular Ca(2+) in human embryonic kidney cells overexpressing the human TRPV1. In the presence of either PALDA or STEARDA (0.1-10 microm), the EC(50) of NADA was lowered from approximately 90 to approximately 30 nm. The effect on intracellular Ca(2+) by another endovanilloid, N-arachidonoyl-ethanolamine (anandamide, 50 nm), was also enhanced dose-dependently by both PALDA and STEARDA. PALDA and STEARDA also acted in synergy with low pH (6.0-6.7) to enhance intracellular Ca(2+) via TRPV1. When co-injected with NADA (0.5 micrograms) in rat hind paws, STEARDA (5 micrograms) potentiated NADA's TRPV1-mediated nociceptive effect by significantly shortening the withdrawal latencies from a radiant heat source. STEARDA (1 and 10 micrograms) also enhanced the nocifensive behavior induced by carrageenan in a typical test of inflammatory pain. These data indicate that, despite their inactivity per se on TRPV1, PALDA and STEARDA may play a role as 'entourage' compounds on chemicophysical agents that interact with these receptors, with possible implications in inflammatory and neuropathic pain. PMID:15289293

De Petrocellis, Luciano; Chu, Constance J; Moriello, Aniello Schiano; Kellner, Juliane C; Walker, J Michael; Di Marzo, Vincenzo

2004-09-01

24

Intact Microtubules Preserve Transient Receptor Potential Vanilloid 1 (TRPV1) Functionality through Receptor Binding*  

PubMed Central

The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate TRPV1-microtubule interaction in living cells under the resting or activated state of TRPV1, as well as in presence of structurally intact or depolymerized cytoskeletal microtubules. We combined a toolbox of high resolution/high sensitivity fluorescence imaging techniques (such as FRET, correlation spectroscopy, and fluorescence anisotropy) to monitor TRPV1 aggregation status, membrane mobility, and interaction with microtubules. We found that TRPV1 is a dimeric membrane protein characterized by two populations with different diffusion properties in basal condition. After stimulation with resiniferatoxin, TRPV1 dimers tetramerize. The tetramers and the slower population of TRPV1 dimers bind dynamically to intact microtubules but not to tubulin dimers. Upon microtubule disassembly, the interaction with TRPV1 is lost thereby inducing receptor self-aggregation with partial loss of functionality. Intact microtubules play an essential role in maintaining TRPV1 functionality toward activation stimuli. This previously undisclosed property mirrors the recently reported role of TRPV1 in modulating microtubule assembly/disassembly and suggests the participation of these two players in a feedback cycle linking nociception and cytoskeletal remodeling. PMID:22262838

Storti, Barbara; Bizzarri, Ranieri; Cardarelli, Francesco; Beltram, Fabio

2012-01-01

25

Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia.  

PubMed

Systemic administration of resiniferatoxin (RTX), an ultrapotent capsaicin analogue, removes transient receptor potential vanilloid type 1 (TRPV1)-expressing afferent neurons and impairs thermal but not mechanical nociception in adult animals. In this study, we determined how loss of TRPV1-expressing sensory neurons alters the antinociceptive effect of mu opioids and mu opioid receptors in the spinal cord. The effect of morphine and (D-Ala2,N-Me-Phe4,Gly-ol5)-enkephalin (DAMGO) was measured by testing the paw mechanical withdrawal threshold in rats treated with RTX or vehicle. RTX treatment deleted TRPV1-immunoreactive dorsal root ganglion neurons and nerve terminals in the spinal dorsal horn. Also the mu opioid receptor immunoreactivity was markedly reduced in the superficial dorsal horn of RTX-treated rats. However, RTX treatment did not affect the dorsal horn neurons labeled with both TRPV1- and mu opioid receptor-immunoreactivity. Surprisingly, intrathecal morphine or DAMGO produced a greater increase in the withdrawal threshold in RTX- than in vehicle-treated rats. The duration of the effect of intrathecal morphine and DAMGO in RTX-treated rats was also profoundly increased. Furthermore, the antinociceptive effect of systemic morphine was significantly potentiated in RTX-treated rats. The B(MAX) (but not K(D)) of [3H]-DAMGO binding and DAMGO-stimulated [35S]GTPgammaS activity in the dorsal spinal cord were significantly reduced in the RTX group. This study provides novel information that loss of TRPV1 afferent neurons eliminates presynaptic mu opioid receptors present on TRPV1-expressing afferent neurons but paradoxically potentiates the analgesic effect of mu opioid agonists. Mechano-nociception, transmitted through non-TRPV1 sensory neurons, is subject to potent modulation by mu opioid agonists. PMID:16467418

Chen, Shao-Rui; Pan, Hui-Lin

2006-05-01

26

Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel.  

PubMed

The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1. PMID:24941664

Nagy, Istvan; Friston, Dominic; Valente, Jojo Sousa; Torres Perez, Jose Vicente; Andreou, Anna P

2014-01-01

27

Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation.  

PubMed

Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca(2+) levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

Takahashi, N; Matsuda, Y; Yamada, H; Tabeta, K; Nakajima, T; Murakami, S; Yamazaki, K

2014-11-01

28

The role of TRPV1 channels in carrageenan-induced mechanical hyperalgesia in mice.  

PubMed

Peripheral inflammation leads to ipsilateral and contralateral mechanical hyperalgesia. The transient receptor potential channel vanilloid type 1 (TRPV1), a nonselective cation channel expressed in mammalian primary sensory neurons and the spinal cord, may be involved in peripheral inflammation, but there is no consensus on the role of this channel in inflammation-induced mechanical hyperalgesia. Here, we examined the role of TRPV1 channels in carrageenan-induced mechanical hyperalgesia using wild-type and TRPV1-knockout (KO) mice and compared the results with those obtained in mice peripherally administered capsazepine, a TRPV1 antagonist, or capsaicin, a TRPV1 agonist. In the TRPV1-KO mice, ipsilateral mechanical hyperalgesia was significantly reduced during the acute phase (10-60?min), and the contralateral mechanical hyperalgesia nearly disappeared during both the acute and subacute phases. Blocking peripheral TRPV1 using capsazepine before carrageenan administration resulted in similar effects as those observed in the TRPV1-KO mice, except that it was less effective against contralateral mechanical hyperalgesia during the subacute phase. In contrast, capsaicin remarkably decreased ipsilateral and contralateral mechanical hyperalgesia throughout both phases, but this analgesic effect was not observed in the TRPV1-KO mice. Thus, TRPV1 channels could be involved in the development of both ipsilateral and contralateral mechanical hyperalgesia after inflammation. Peripheral TRPV1 could participate in acute hyperalgesia, whereas central TRPV1 may participate in subacute secondary hyperalgesia. Capsaicin potentially acts on both primary and secondary hyperalgesia in a TRPV1-dependent manner. PMID:25590988

Watanabe, Masaya; Ueda, Takashi; Shibata, Yasuhiro; Kumamoto, Natsuko; Ugawa, Shinya

2015-02-11

29

Identification of voltage-gated K(+) channel beta 2 (Kv?2) subunit as a novel interaction partner of the pain transducer Transient Receptor Potential Vanilloid 1 channel (TRPV1).  

PubMed

The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K(+) channel beta 2 subunit (Kv?2), an accessory subunit of voltage-gated K(+) channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kv?2 association. Biotinylation assays in the presence of Kv?2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kv? subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane. PMID:24036102

Bavassano, Carlo; Marvaldi, Letizia; Langeslag, Michiel; Sarg, Bettina; Lindner, Herbert; Klimaschewski, Lars; Kress, Michaela; Ferrer-Montiel, Antonio; Knaus, Hans-Günther

2013-12-01

30

Carboxyl-terminal Domain of Transient Receptor Potential Vanilloid 1 Contains Distinct Segments Differentially Involved in Capsaicin- and Heat-induced Desensitization*  

PubMed Central

Multiple Ca2+-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca2+, although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys155, both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli. PMID:24174527

Joseph, John; Wang, Sen; Lee, Jongseok; Ro, Jin Y.; Chung, Man-Kyo

2013-01-01

31

TRPV1 antagonists as potential antitussive agents.  

PubMed

Cough is an important defensive pulmonary reflex that removes irritants, fluids, or foreign materials from the airways. However, when cough is exceptionally intense or when it is chronic and/or nonproductive it may require pharmacologic suppression. For many patients, antitussive therapies consist of OTC products with inconsequential efficacies. On the other hand, the prescription antitussive market is dominated by older opioid drugs such as codeine. Unfortunately, "codeine-like" drugs suppress cough at equivalent doses that also often produce significant ancillary liabilities such as GI constipation, sedation, and respiratory depression. Thus, the discovery of a novel and effective antitussive drug with an improved side effect profile relative to codeine would fulfill an unmet clinical need in the treatment of cough. Afferent pulmonary nerves are endowed with a multitude of potential receptor targets, including TRPV1, that could act to attenuate cough. The evidence linking TRPV1 to cough is convincing. TRPV1 receptors are found on sensory respiratory nerves that are important in the generation of the cough reflex. Isolated pulmonary vagal afferent nerves are responsive to TRPV1 stimulation. In vivo, TRPV1 agonists such as capsaicin elicit cough when aerosolized and delivered to the lungs. Pertinent to the debate on the potential use of TRPV1 antagonist as antitussive agents are the observations that airway afferent nerves become hypersensitive in diseased and inflamed lungs. For example, the sensitivity of capsaicin-induced cough responses following upper respiratory tract infection and in airway inflammatory diseases such as asthma and COPD is increased relative to that of control responses. Indeed, we have demonstrated that TRPV1 antagonism can attenuate antigen-induced cough in the allergic guinea pig. However, it remains to be determined if the emerging pharmacologic profile of TRPV1 antagonists will translate into a novel human antitussive drug. Current efforts in clinical validation of TRPV1 antagonists revolve around various pain indications; therefore, clinical evaluation of TRPV1 antagonists as antitussive agents will have to await those outcomes. PMID:17926096

McLeod, Robbie L; Correll, Craig C; Jia, Yanlin; Anthes, John C

2008-01-01

32

Effect of genetic deletion of the vanilloid receptor TRPV1 on the expression of Substance P in sensory neurons of mice with adjuvant-induced arthritis  

PubMed Central

The neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an important role in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release SP from their central and peripheral axons, suggesting a functional link between SP and the capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1). The expression of both TRPV1 and SP have been reported to increase in several models of arthritis but the specific involvement of TRPV1-expressing articular afferents that can release SP is not completely understood. We here wanted to ascertain whether the increase in the number of SP-positive primary afferents in arthritis may be affected by genetic deletion of TRPV1. For this, we used immunohistochemistry to quantify the expression of SP in primary afferent neurons in wild type mice (WT) vs. TRPV1-knockout (KO) mice with adjuvant-induced arthritis (AIA). We found that the expression of SP in DRG 1) increased significantly over naďve level in both WT and KO mice 3 weeks after AIA, 2) was significantly higher in KO mice than in WT mice in naďve mice and 2-3 weeks after AIA, 3) was significantly higheron the side of AIA than on the contralateral, vehicle-injected side at all time points in WT mice, but not in KO mice, and 4) increased predominantly in small-size neurons in KO mice and in small- and medium-size neurons in WT mice. Since the size distribution of SP-positive DRG neurons in arthritic TRPV1-KO mice was not significantly different from that in naďve mice, we speculate that the increased expression of SP is unlikely to reflect recruitment of A-fiber primary afferents and that the higher expression of SP in KO mice may represent a plastic change to compensate for the missing receptor in a major sensory circuit. PMID:20303589

Willcockson, Helen H.; Chen, Yong; Han, Ji Eun; Valtschanoff, Juli G.

2010-01-01

33

GABA Blocks Pathological but Not Acute TRPV1 Pain Signals.  

PubMed

Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers. PMID:25679765

Hanack, Christina; Moroni, Mirko; Lima, Wanessa C; Wende, Hagen; Kirchner, Marieluise; Adelfinger, Lisa; Schrenk-Siemens, Katrin; Tappe-Theodor, Anke; Wetzel, Christiane; Kuich, P Henning; Gassmann, Martin; Roggenkamp, Dennis; Bettler, Bernhard; Lewin, Gary R; Selbach, Matthias; Siemens, Jan

2015-02-12

34

Supraspinal TRPV1 modulates the emotional expression of abdominal pain.  

PubMed

The transient receptor potential vanilloid receptor type-1 (TRPV1) is critically involved in peripheral nociceptive processes of somatic and visceral pain. However, the role of the capsaicin receptor in the brain regarding visceral pain remains elusive. Here, we studied the contribution of TRPV1 to abdominal pain transmission at different nociceptive pathway levels using TRPV1 knock-out mice, resiniferatoxin-mediated deletion of TRPV1-positive primary sensory neurons, and intracerebral TRPV1 antagonism. We found that constitutive genetic TRPV1 deletion or peripheral TRPV1 deletion reduced acetic acid-evoked abdominal constrictions, without affecting referred abdominal hyperalgesia or allodynia in an acute pancreatitis model of visceral pain. Notably, intracerebral TRPV1 antagonism by SB 366791 significantly reduced chemical and inflammatory spontaneous abdominal nocifensive responses, as observed by reduced expressions of nociceptive facial grimacing, illustrating the affective component of pain. In addition to the established role of cerebral TRPV1 in anxiety, fear, or emotional stress, we demonstrate here for the first time that TRPV1 in the brain modulates visceral nociception by interfering with the affective component of abdominal pain. PMID:25139591

Jurik, Angela; Ressle, Andrea; Schmid, Roland M; Wotjak, Carsten T; Thoeringer, Christoph K

2014-10-01

35

Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors.  

PubMed

Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts. PMID:17567713

Riera, Céline E; Vogel, Horst; Simon, Sidney A; le Coutre, Johannes

2007-08-01

36

TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.  

PubMed

TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS). TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST) afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs) under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs) that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM) blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5) direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons. PMID:21949835

Peters, James H; McDougall, Stuart J; Fawley, Jessica A; Andresen, Michael C

2011-01-01

37

B-Type Natriuretic Peptide-Induced Delayed Modulation of TRPV1 and P2X3 Receptors of Mouse Trigeminal Sensory Neurons  

PubMed Central

Important pain transducers of noxious stimuli are small- and medium-diameter sensory neurons that express transient receptor vanilloid-1 (TRPV1) channels and/or adenosine triphosphate (ATP)-gated P2X3 receptors whose activity is upregulated by endogenous neuropeptides in acute and chronic pain models. Little is known about the role of endogenous modulators in restraining the expression and function of TRPV1 and P2X3 receptors. In dorsal root ganglia, evidence supports the involvement of the natriuretic peptide system in the modulation of nociceptive transmission especially via the B-type natriuretic peptide (BNP) that activates the natriuretic peptide receptor-A (NPR-A) to downregulate sensory neuron excitability. Since the role of BNP in trigeminal ganglia (TG) is unclear, we investigated the expression of BNP in mouse TG in situ or in primary cultures and its effect on P2X3 and TRPV1 receptors of patch-clamped cultured neurons. Against scant expression of BNP, almost all neurons expressed NPR-A at membrane level. While BNP rapidly increased cGMP production and Akt kinase phosphorylation, there was no early change in passive neuronal properties or responses to capsaicin, ?,?-meATP or GABA. Nonetheless, 24 h application of BNP depressed TRPV1 mediated currents (an effect blocked by the NPR-A antagonist anantin) without changing responses to ?,?-meATP or GABA. Anantin alone decreased basal cGMP production and enhanced control ?,?-meATP-evoked responses, implying constitutive regulation of P2X3 receptors by ambient BNP. These data suggest a slow modulatory action by BNP on TRPV1 and P2X3 receptors outlining the role of this peptide as a negative regulator of trigeminal sensory neuron excitability to nociceptive stimuli. PMID:24312267

Ntamati, Niels; Nistri, Andrea

2013-01-01

38

Expression of TRPV1 in rabbits and consuming hot pepper affects its body weight.  

PubMed

The capsaicin receptor, known as transient receptor potential vanilloid subfamily member 1 (TRPV1), is an important membrane receptor that has been implicated in obesity, diabetes, metabolic syndrome and cardiovascular diseases. The rabbit model is considered excellent for studying cardiovascular and metabolic diseases, however, the tissue expression of TRPV1 and physiological functions of its ligand capsaicin on diet-induced obesity have not been fully defined in this model. In the current study, we investigated the tissue expression of TRPV1 in normal rabbits using real-time RT-PCR and Western blot analysis. Rabbit TRPV1 mRNA was highly expressed in a variety of organs, including the kidneys, adrenal gland, spleen and brain. A phylogenetic analysis showed that the amino acid sequence of rabbit TRPV1 was closer to human TRPV1 than rodent TRPV1. To examine the effect of capsaicin (a pungent compound in hot pepper) on body weight, rabbits were fed with either a high fat diet (as control) or high fat diet containing 1% hot pepper. We found that the body weight of the hot pepper-fed rabbits was significantly lower than the control group. We conclude that the intake of capsaicin can prevent diet-induced obesity and rabbit model is useful for the study of TRPV1 function in cardiovascular and metabolic diseases. PMID:22327653

Yu, Qi; Wang, Yanli; Yu, Ying; Li, Yafeng; Zhao, Sihai; Chen, Yulong; Waqar, Ahmed Bilal; Fan, Jianglin; Liu, Enqi

2012-07-01

39

Polypeptide Modulators of TRPV1 Produce Analgesia without Hyperthermia  

PubMed Central

Transient receptor potential vanilloid 1 receptors (TRPV1) play a significant physiological role. The study of novel TRPV1 agonists and antagonists is essential. Here, we report on the characterization of polypeptide antagonists of TRPV1 based on in vitro and in vivo experiments. We evaluated the ability of APHC1 and APHC3 to inhibit TRPV1 using the whole-cell patch clamp approach and single cell Ca2+ imaging. In vivo tests were performed to assess the biological effects of APHC1 and APHC3 on temperature sensation, inflammation and core body temperature. In the electrophysiological study, both polypeptides partially blocked the capsaicin-induced response of TRPV1, but only APHC3 inhibited acid-induced (pH 5.5) activation of the receptor. APHC1 and APHC3 showed significant antinociceptive and analgesic activity in vivo at reasonable doses (0.01–0.1 mg/kg) and did not cause hyperthermia. Intravenous administration of these polypeptides prolonged hot-plate latency, blocked capsaicin- and formalin-induced behavior, reversed CFA-induced hyperalgesia and produced hypothermia. Notably, APHC3’s ability to inhibit the low pH-induced activation of TRPV1 resulted in a reduced behavioural response in the acetic acid-induced writhing test, whereas APHC1 was much less effective. The polypeptides APHC1 and APHC3 could be referred to as a new class of TRPV1 modulators that produce a significant analgesic effect without hyperthermia. PMID:24351908

Andreev, Yaroslav A.; Kozlov, Sergey A.; Korolkova, Yuliya V.; Dyachenko, Igor A.; Bondarenko, Dmitrii A.; Skobtsov, Denis I.; Murashev, Arkadii N.; Kotova, Polina D.; Rogachevskaja, Olga A.; Kabanova, Natalia V.; Kolesnikov, Stanislav S.; Grishin, Eugene V.

2013-01-01

40

Structure Activity Relationships of 1,4-Dihydropyridines That Act as Enhancers of the Vanilloid Receptor 1 (TRPV1)  

PubMed Central

Vanilloid agonists such as capsaicin activate ion flux through the TRPV1 channel, a heat- and ligand-gated cation channel that transduces painful chemical or thermal stimuli applied to peripheral nerve endings in skin or deep tissues. We have probed the SAR of a variety of 1,4-dihydropyridine (DHP) derivatives as novel "enhancers" of TRPV1 activity by examining changes in capsaicin-induced elevations in 45Ca2+-uptake in either cells ectopically expressing TRPV1 or in cultured dorsal root ganglion (DRG) neurons. The enhancers increased the maximal capsaicin effect on 45Ca2+-uptake by typically 2 – 3 fold without producing an action when used alone. The DHP enhancers contained 6-aryl substitution and small alkyl groups at the 1 and 4 positions, and a 3-phenylalkylthioester was tolerated. Levels of free intracellular Ca2+, as measured by calcium imaging, were also increased in DRG neurons when exposed to the combination of capsaicin and the most efficacious enhancer 23 compared to capsaicin alone. Thus, DHPs can modulate TRPV1 channels in a positive fashion. PMID:18809334

Roh, Eun Joo; Keller, Jason M.; Olah, Zoltan; Iadarola, Michael J.; Jacobson, Kenneth A.

2008-01-01

41

The biophysical and molecular basis of TRPV1 proton gating  

PubMed Central

The capsaicin receptor TRPV1, a member of the transient receptor potential family of non-selective cation channels is a polymodal nociceptor. Noxious thermal stimuli, protons, and the alkaloid irritant capsaicin open the channel. The mechanisms of heat and capsaicin activation have been linked to voltage-dependent gating in TRPV1. However, until now it was unclear whether proton activation or potentiation or both are linked to a similar voltage-dependent mechanism and which molecular determinants underlie the proton gating. Using the whole-cell patch-clamp technique, we show that protons activate and potentiate TRPV1 by shifting the voltage dependence of the activation curves towards more physiological membrane potentials. We further identified a key residue within the pore region of TRPV1, F660, to be critical for voltage-dependent proton activation and potentiation. We conclude that proton activation and potentiation of TRPV1 are both voltage dependent and that amino acid 660 is essential for proton-mediated gating of TRPV1. PMID:21285946

Aneiros, Eduardo; Cao, Lishuang; Papakosta, Marianthi; Stevens, Edward B; Phillips, Stephen; Grimm, Christian

2011-01-01

42

Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons  

PubMed Central

Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 ?M), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and capsaicin-elicited sEPSCs in TNC slices. The same effects of capsaicin and sumatriptan were found in acutely dissociated DiI-labeled TG neurons innervating cerebral dura. Conclusion Our results build on previous work indicating that TRPV1 channels in trigeminal nociceptors play a role in craniofacial pain. Our findings that TRPV1 is inhibited by the specific antimigraine drug sumatriptan, and that TRPV1 channels are functional in neurons projecting to cerebral dura suggests a specific role for these channels in migraine or cluster headache. PMID:22289052

Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.

2011-01-01

43

Regulation of the putative TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate.  

PubMed

Regulation of the putative amiloride and benzamil (Bz)-insensitive TRPV1t salt taste receptor by phosphatidylinositol 4,5-bisphosphate (PIP(2)) was studied by monitoring chorda tympani (CT) taste nerve responses to 0.1 M NaCl solutions containing Bz (5 x 10(-6) M; a specific ENaC blocker) and resiniferatoxin (RTX; 0-10 x 10(-6) M; a specific TRPV1 agonist) in Sprague-Dawley rats and in wildtype (WT) and TRPV1 knockout (KO) mice. In rats and WT mice, RTX elicited a biphasic effect on the NaCl + Bz CT response, increasing the CT response between 0.25 x 10(-6) and 1 x 10(-6) M. At concentrations >1 x 10(-6) M, RTX inhibited the CT response. An increase in PIP(2) by topical lingual application of U73122 (a phospholipase C blocker) or diC8-PIP(2) (a short chain synthetic PIP(2)) inhibited the control NaCl + Bz CT response and decreased its sensitivity to RTX. A decrease in PIP(2) by topical lingual application of phenylarsine oxide (a phosphoinositide 4 kinase blocker) enhanced the control NaCl + Bz CT response, increased its sensitivity to RTX stimulation, and inhibited the desensitization of the CT response at RTX concentrations >1 x 10(-6) M. The ENaC-dependent NaCl CT responses were not altered by changes in PIP(2). An increase in PIP(2) enhanced CT responses to sweet (0.3 M sucrose) and bitter (0.01 M quinine) stimuli. RTX produced the same increase in the Bz-insensitive Na(+) response when present in salt solutions containing 0.1 M NaCl + Bz, 0.1 M monosodium glutamate + Bz, 0.1 M NaCl + Bz + 0.005 M SC45647, or 0.1 M NaCl + Bz + 0.01 M quinine. No effect of RTX was observed on CT responses in WT mice and rats in the presence of the TRPV1 blocker N-(3-methoxyphenyl)-4-chlorocinnamide (1 x 10(-6) M) or in TRPV1 KO mice. We conclude that PIP(2) is a common intracellular effector for sweet, bitter, umami, and TRPV1t-dependent salt taste, although in the last case, PIP(2) seems to directly regulate the taste receptor protein itself, i.e., the TRPV1 ion channel or its taste receptor variant, TRPV1t. PMID:20032236

Lyall, Vijay; Phan, Tam-Hao T; Ren, ZuoJun; Mummalaneni, Shobha; Melone, Pamela; Mahavadi, Sunila; Murthy, Karnam S; DeSimone, John A

2010-03-01

44

TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells  

PubMed Central

Vascular smooth muscle cells (VSMCs) are an important origin of foam cells besides macrophages. The mechanisms underlying VSMC foam cell formation are relatively little known. Activation of transient receptor potential vanilloid subfamily 1 (TRPV1) and autophagy have a potential role in regulating foam cell formation. Our study demonstrated that autophagy protected against foam cell formation in oxidized low-density lipoprotein (oxLDL)-treated VSMCs; activation of TRPV1 by capsaicin rescued the autophagy impaired by oxLDL and activated autophagy–lysosome pathway in VSMCs; activation of TRPV1 by capsaicin impeded foam cell formation of VSMCs through autophagy induction; activation of TRPV1 by capsaicin induced autophagy through AMP-activated protein kinase (AMPK) signaling pathway. This study provides evidence that autophagy plays an important role in VSMC foam cell formation and highlights TRPV1 as a promising therapeutic target in atherosclerosis. PMID:24743737

Li, B-H; Yin, Y-W; Liu, Y; Pi, Y; Guo, L; Cao, X-J; Gao, C-Y; Zhang, L-L; Li, J-C

2014-01-01

45

Tiotropium modulates transient receptor potential V1 (TRPV1) in airway sensory nerves: A beneficial off-target effect???  

PubMed Central

Background Recent studies have suggested that the long-acting muscarinic receptor antagonist tiotropium, a drug widely prescribed for its bronchodilator activity in patients with chronic obstructive pulmonary disease and asthma, improves symptoms and attenuates cough in preclinical and clinical tussive agent challenge studies. The mechanism by which tiotropium modifies tussive responses is not clear, but an inhibition of vagal tone and a consequent reduction in mucus production from submucosal glands and bronchodilation have been proposed. Objective The aim of this study was to investigate whether tiotropium can directly modulate airway sensory nerve activity and thereby the cough reflex. Methods We used a conscious cough model in guinea pigs, isolated vagal sensory nerve and isolated airway neuron tissue– and cell-based assays, and in vivo single-fiber recording electrophysiologic techniques. Results Inhaled tiotropium blocked cough and single C-fiber firing in the guinea pig to the transient receptor potential (TRP) V1 agonist capsaicin, a clinically relevant tussive stimulant. Tiotropium and ipratropium, a structurally similar muscarinic antagonist, inhibited capsaicin responses in isolated guinea pig vagal tissue, but glycopyrrolate and atropine did not. Tiotropium failed to modulate other TRP channel–mediated responses. Complementary data were generated in airway-specific primary ganglion neurons, demonstrating that tiotropium inhibited capsaicin-induced, but not TRPA1-induced, calcium movement and voltage changes. Conclusion For the first time, we have shown that tiotropium inhibits neuronal TRPV1-mediated effects through a mechanism unrelated to its anticholinergic activity. We speculate that some of the clinical benefit associated with taking tiotropium (eg, in symptom control) could be explained through this proposed mechanism of action. PMID:24506933

Birrell, Mark A.; Bonvini, Sara J.; Dubuis, Eric; Maher, Sarah A.; Wortley, Michael A.; Grace, Megan S.; Raemdonck, Kristof; Adcock, John J.; Belvisi, Maria G.

2014-01-01

46

TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons  

SciTech Connect

Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca{sup 2+} influx. Interestingly, nifedipine, a specific L-type Ca{sup 2+} channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 and several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca{sup 2+} channel opening, Ca{sup 2+} influx, ERK phosphorylation, and reactive oxygen species production.

Shirakawa, Hisashi; Yamaoka, Tomoko; Sanpei, Kazuaki; Sasaoka, Hirotoshi; Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: skaneko@pharm.kyoto-u.ac.jp

2008-12-26

47

The TRPv1 receptor is a mediator of the exercise pressor reflex in rats  

PubMed Central

The skeletal muscle exercise pressor reflex (EPR) induces increases in heart rate (HR) and mean arterial pressure (MAP) during physical activity. This reflex is activated during contraction by stimulation of afferent fibres responsive to mechanical distortion and/or the metabolic by-products of skeletal muscle work. The molecular mechanisms responsible for activating these afferent neurons have yet to be identified. It has been reported that activation of the transient receptor potential vanilloid 1 (TRPv1) receptor within skeletal muscle (localized to unmyelinated afferent fibres) elicits increases in MAP and HR similar to those generated by the EPR. Thus, we hypothesized that stimulation of the TRPv1 receptor during muscle contraction contributes to the activation of the EPR. The EPR was activated by electrically induced static muscle contraction of the hindlimb in decerebrate Sprague–Dawley rats (n= 61) before and after the administration of the TRPv1 receptor antagonists, capsazepine (Capz; 100 ?g/100 ?l), iodoresinaferatoxin (IRTX; 1 ?g/100 ?l), or Ruthenium Red (RR; 100 ?g/100 ?l). Static muscle contraction alone induced increases in both HR (8 ± 2 bpm) and MAP (21 ± 3 mmHg). The HR and MAP responses to contraction were significantly lower (P < 0.05) after the administration of Capz (2 ± 1 bpm; 7 ± 1 mmHg, respectively), IRTX (3 ± 2 bpm; 5 ± 3 mmHg, respectively) and RR (0 ± 1, bpm; 5 ± 2 mmHg, respectively). These data suggest that the TRPv1 receptor contributes importantly to activation of the EPR during skeletal muscle contraction in the rat. PMID:20142275

Smith, Scott A; Leal, Anna K; Williams, Maurice A; Murphy, Megan N; Mitchell, Jere H; Garry, Mary G

2010-01-01

48

TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling.  

PubMed

The sensation of pain is associated with increased mortality, but it is unknown whether pain perception can directly affect aging. We find that mice lacking TRPV1 pain receptors are long-lived, displaying a youthful metabolic profile at old age. Loss of TRPV1 inactivates a calcium-signaling cascade that ends in the nuclear exclusion of the CREB-regulated transcriptional coactivator CRTC1 within pain sensory neurons originating from the spinal cord. In long-lived TRPV1 knockout mice, CRTC1 nuclear exclusion decreases production of the neuropeptide CGRP from sensory endings innervating the pancreatic islets, subsequently promoting insulin secretion and metabolic health. In contrast, CGRP homeostasis is disrupted with age in wild-type mice, resulting in metabolic decline. We show that pharmacologic inactivation of CGRP receptors in old wild-type animals can restore metabolic health. These data suggest that ablation of select pain sensory receptors or the inhibition of CGRP are associated with increased metabolic health and control longevity. PMID:24855942

Riera, Céline E; Huising, Mark O; Follett, Patricia; Leblanc, Mathias; Halloran, Jonathan; Van Andel, Roger; de Magalhaes Filho, Carlos Daniel; Merkwirth, Carsten; Dillin, Andrew

2014-05-22

49

Compartment-Specific Modulation of GABAergic Synaptic Transmission by TRPV1 Channels in the Dentate Gyrus.  

PubMed

The transient receptor potential TRPV1 or vanilloid receptor is a nonselective ligand-gated channel highly expressed in primary sensory neurons where it mediates nociception. TRPV1 is also expressed in the brain where its activation depresses excitatory synaptic transmission. Whether TRPV1 also regulates inhibitory synapses in the brain is unclear. Here, using a combination of pharmacology, electrophysiology, and an in vivo knockdown strategy, we report that TRPV1 activation by capsaicin or by the endocannabinoid anandamide depresses somatic, but not dendritic inhibitory transmission in both rat and mouse dentate gyrus. The effect on somatic inhibition was absent in TRPV1 knock-out mice and was also eliminated by two different TRPV1 shRNAs expressed in dentate granule cells, strongly supporting a functional role for TRPV1 in modulating GABAergic synaptic function. Moreover, TRPV1-mediated depression occurs independently of GABA release, requires postsynaptic Ca(2+) rise and activation of calcineurin, and is likely due to clathrin-dependent internalization of GABA receptors. Altogether, these findings reveal a novel form of compartment-specific regulation whereby TRPV1 channels can modify synaptic function in the brain. PMID:25505315

Chávez, Andrés E; Hernández, Vivian M; Rodenas-Ruano, Alma; Chan, C Savio; Castillo, Pablo E

2014-12-10

50

TRPV1: A Potential Drug Target for Treating Various Diseases  

PubMed Central

Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically. PMID:24861977

Brito, Rafael; Sheth, Sandeep; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram

2014-01-01

51

TRPV1 channels make major contributions to behavioral hypersensitivity and spontaneous activity in nociceptors after spinal cord injury.  

PubMed

Chronic neuropathic pain is often a severe and inadequately treated consequence of spinal cord injury (SCI). Recent findings suggest that SCI pain is promoted by spontaneous activity (SA) generated chronically in cell bodies of primary nociceptors in dorsal root ganglia (DRG). Many nociceptors express transient receptor potential V1 (TRPV1) channels, and in a preceding study most dissociated DRG neurons exhibiting SA were excited by the TRPV1 activator, capsaicin. The present study investigated roles of TRPV1 channels in behavioral hypersensitivity and nociceptor SA after SCI. Contusive SCI at thoracic segment T10 increased expression of TRPV1 protein in lumbar DRG 1 month after injury and enhanced capsaicin-evoked ion currents and Ca2+ responses in dissociated small DRG neurons. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hind limb withdrawal responses to mechanical and thermal stimuli at a dose that did not block detection of noxious heat. Similar reversal of behavioral hypersensitivity was induced by intrathecal oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of SA in dissociated nociceptors after SCI. Prolonged application of very low concentrations of capsaicin produced nondesensitizing firing similar to SA, and this effect was enhanced by prior SCI. These results show that TRPV1 makes important contributions to pain-related hypersensitivity long after SCI, and suggest a role for TRPV1-dependent enhancement of nociceptor SA that offers a promising target for treating chronic pain after SCI. PMID:23811042

Wu, Zizhen; Yang, Qing; Crook, Robyn J; O'Neil, Roger G; Walters, Edgar T

2013-10-01

52

Interactions between CB1 receptors and TRPV1 channels mediated by 12-HPETE are cytotoxic to mesencephalic dopaminergic neurons  

PubMed Central

Background and purposes: We recently proposed the existence of neurotoxic interactions between the cannabinoid type 1 (CB1) receptor and transient receptor potential vanilloid 1 (TRPV1) channels in rat mesencephalic cultures. This study seeks evidence for the mediator(s) and mechanisms underlying the neurotoxic interactions between CB1 receptors and TRPV1 in vitro and in vivo. Experimental approach: The mediator(s) and mechanism(s) for the interactions between CB1 receptors and TRPV1 were evaluated by cell viability assays, immunocytochemistry, Fura-2 calcium imaging, mitochondrial morphology assay, ELISA and Western blot assay in vitro in neuron-enriched mesencephalic cultures. Injections into the substantia nigra and subsequent cell counts were also used to confirm these interactions in vivo. Key results: The neurotoxic interactions were mediated by 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), an endogenous TRPV1 agonist. CB1 receptor agonists (HU210 and WIN55,212-2) increased the level of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a downstream metabolite of 12(S)-HPETE, which stimulates TRPV1-mediated death of mesencephalic neurons, both in vitro and in vivo. The neurotoxicity was mediated by increased intracellular Ca2+ concentration ([Ca2+]i) through TRPV1, consequently leading to mitochondrial damage and was attenuated by baicalein, a 12-lipoxygenase inhibitor. Conclusion and implications: Activation of CB1 receptors in rat mesencephalic neurons was associated with biosynthesis of 12(S)-HPETE, which in turn stimulated TRPV1 activity, leading to increased [Ca2+]i, mitochondrial damage and neuronal death. PMID:18552868

Kim, S R; Bok, E; Chung, Y C; Chung, E S; Jin, B K

2008-01-01

53

Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells  

PubMed Central

The heat and capsaicin receptor, TRPV1, is required for the detection of painful heat by primary afferent pain fibers (nociceptors), but the extent to which functional TRPV1 channels are expressed in the central nervous system (CNS) is debated. As previous evidence is based largely on indirect physiological responses to capsaicin, here we genetically modified the TrpV1 locus to reveal, with excellent sensitivity and specificity, the distribution of TRPV1 in all neuronal and non-neuronal tissues. In contrast to reports of widespread and robust expression in the CNS, we find that neuronal TRPV1 is largely restricted to nociceptors in primary sensory ganglia, with minimal expression in a few discrete brain regions, most notably in a contiguous band of cells within and adjacent to the caudal hypothalamus. We confirm hypothalamic expression in the mouse using several complementary approaches, including in situ hybridization, calcium imaging, and electrophysiological recordings. Additional in situ hybridization experiments in rat, monkey and human brain demonstrate that the restricted expression of TRPV1 in the CNS is conserved across species. Outside of the CNS, we find TRPV1 expression in a subset of arteriolar smooth muscle cells within thermoregulatory tissues. Here, capsaicin increases calcium uptake and induces vasoconstriction, an effect that likely counteracts the vasodilation produced by activation of neuronal TRPV1. PMID:21451044

Cavanaugh, Daniel J.; Chesler, Alexander T.; Jackson, Alexander C.; Sigal, Yaron M.; Yamanaka, Hiroki; Grant, Rebecca; O’Donnell, Dajan; Nicoll, Roger A.; Shah, Nirao M.; Julius, David; Basbaum, Allan I.

2011-01-01

54

Developing piperine towards TRPV1 and GABAA receptor ligands - synthesis of piperine analogs via Heck-coupling of conjugated dienes.  

PubMed

Piperine, the pungent alkaloid of black pepper, and several of its derivatives are modulators of ?-amino butyric acid type A (GABAA) receptors. Concomitantly, this natural product has also been reported to activate transient receptor potential vanilloid type 1 (TRPV1) receptors. We have developed a Heck cross-coupling reaction of conjugated dienamides enabling the rapid assembly of piperine derivatives containing a modified aromatic core. Upon assessment of a focussed compound library, key aromatic substituents were identified selectively affecting either the GABAA or the TRPV1 receptor. PMID:25438036

Wimmer, Laurin; Schönbauer, David; Pakfeifer, Peter; Schöffmann, Angela; Khom, Sophia; Hering, Steffen; Mihovilovic, Marko D

2015-01-28

55

Additive antiemetic efficacy of low-doses of the cannabinoid CB(1/2) receptor agonist ?(9)-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva).  

PubMed

Previous studies have shown that cannabinoid CB1/2 and vanilloid TRPV1 agonists (delta-9-tetrahydrocannabinol (?(9)-THC) and resiniferatoxin (RTX), respectively) can attenuate the emetic effects of chemotherapeutic agents such as cisplatin. In this study we used the least shrew to demonstrate whether combinations of varying doses of ?(9)-THC with resiniferatoxin can produce additive antiemetic efficacy against cisplatin-induced vomiting. RTX by itself caused vomiting in a bell-shaped dose-dependent manner with maximal vomiting at 18 ?g/kg when administered subcutaneously (s.c.) but not intraperitoneally (i.p.). ?(9)-THC up to 10 mg/kg provides only 80% protection of least shrews from cisplatin-induced emesis with an ID50 of 0.3-1.8 mg/kg. Combinations of 1 or 5 ?g/kg RTX with varying doses of ?(9)-THC completely suppressed both the frequency and the percentage of shrews vomiting with ID50 dose values 5-50 times lower than ?(9)-THC doses tested alone against cisplatin. A less potent TRPV1 agonist, capsaicin, by itself did not cause emesis (i.p. or s.c.), but it did significantly reduce vomiting induced by cisplatin given after 30 min but not at 2 h. The TRPV1-receptor antagonist, ruthenium red, attenuated cisplatin-induced emesis at 5mg/kg; however, another TRPV1-receptor antagonist, capsazepine, did not. In summary, we present evidence that combination of CB1/2 and TRPV1 agonists have the capacity to completely abolish cisplatin-induced emesis at doses that are ineffective when used individually. PMID:24157976

Darmani, Nissar A; Chebolu, Seetha; Zhong, Weixia; Trinh, Chung; McClanahan, Bryan; Brar, Rajivinder S

2014-01-01

56

TRPV1 in Salivary Gland Epithelial Cells Is Not Involved in Salivary Secretion via Transcellular Pathway.  

PubMed

Transient receptor potential vanilloid subtype 1 (TRPV1) was originally found in sensory neurons. Recently, it has been reported that TRPV1 is expressed in salivary gland epithelial cells (SGEC). However, the physiological role of TRPV1 in salivary secretion remains to be elucidated. We found that TRPV1 is expressed in mouse and human submandibular glands (SMG) and HSG cells, originated from human submandibular gland ducts at both mRNA and protein levels. However, capsaicin (CAP), TRPV1 agonist, had little effect on intracellular free calcium concentration ([Ca(2+)]i) in these cells, although carbachol consistently increased [Ca(2+)]i. Exposure of cells to high temperature (>43?) or acidic bath solution (pH5.4) did not increase [Ca(2+)]i, either. We further examined the role of TRPV1 in salivary secretion using TRPV1 knock-out mice. There was no significant difference in the pilocarpine (PILO)-induced salivary flow rate between wild-type and TRPV1 knock-out mice. Saliva flow rate also showed insignificant change in the mice treated with PILO plus CAP compared with that in mice treated with PILO alone. Taken together, our results suggest that although TRPV1 is expressed in SGEC, it appears not to play any direct roles in saliva secretion via transcellular pathway. PMID:25598668

Choi, Seulki; Shin, Yong-Hwan; Namkoong, Eun; Hwang, Sung-Min; Cong, Xin; Yu, Guangyan; Park, Kyungpyo

2014-12-01

57

TRPV1 in Salivary Gland Epithelial Cells Is Not Involved in Salivary Secretion via Transcellular Pathway  

PubMed Central

Transient receptor potential vanilloid subtype 1 (TRPV1) was originally found in sensory neurons. Recently, it has been reported that TRPV1 is expressed in salivary gland epithelial cells (SGEC). However, the physiological role of TRPV1 in salivary secretion remains to be elucidated. We found that TRPV1 is expressed in mouse and human submandibular glands (SMG) and HSG cells, originated from human submandibular gland ducts at both mRNA and protein levels. However, capsaicin (CAP), TRPV1 agonist, had little effect on intracellular free calcium concentration ([Ca2+]i) in these cells, although carbachol consistently increased [Ca2+]i. Exposure of cells to high temperature (>43?) or acidic bath solution (pH5.4) did not increase [Ca2+]i, either. We further examined the role of TRPV1 in salivary secretion using TRPV1 knock-out mice. There was no significant difference in the pilocarpine (PILO)-induced salivary flow rate between wild-type and TRPV1 knock-out mice. Saliva flow rate also showed insignificant change in the mice treated with PILO plus CAP compared with that in mice treated with PILO alone. Taken together, our results suggest that although TRPV1 is expressed in SGEC, it appears not to play any direct roles in saliva secretion via transcellular pathway. PMID:25598668

Choi, Seulki; Shin, Yong-Hwan; Namkoong, Eun; Hwang, Sung-Min; Cong, Xin; Yu, Guangyan

2014-01-01

58

6,6-Fused heterocyclic ureas as highly potent TRPV1 antagonists.  

PubMed

A series of N-[{2-(4-methylpiperidin-1-yl)-6-(trifluoromethyl)-pyridin-3-yl}methyl] N'-(6,6-fused heterocyclic) ureas have been investigated as hTRPV1 antagonists. Among them, compound 15 showed highly potent TRPV1 antagonism to capsaicin, with Ki(ant)=0.2nM, as well as antagonism to other activators, and it was efficacious in a pain model. A docking study of 15 with our hTRPV1 homology model indicates that there is crucial hydrogen bonding between the ring nitrogen and the receptor, contributing to its potency. PMID:25597011

Sun, Wei; Kim, Hyo-Shin; Lee, Sunho; Jung, Aeran; Kim, Sung-Eun; Ann, Jihyae; Yoon, Suyoung; Choi, Sun; Lee, Jin Hee; Blumberg, Peter M; Frank-Foltyn, Robert; Bahrenberg, Gregor; Schiene, Klaus; Stockhausen, Hannelore; Christoph, Thomas; Frormann, Sven; Lee, Jeewoo

2015-02-15

59

Comparison of the effects of pelargonic acid vanillylamide and capsaicin on human vanilloid receptors.  

PubMed

Pelargonic acid vanillylamide is like capsaicin a natural capsaicinoid from chili peppers and commonly used in food additives to create a hot sensation, even in self-defense pepper sprays and as an alternative to capsaicin in medical products for topical treatment of pain. Although the chemical structures of both compounds are similar, preclinical data suggest that capsaicin is the more potent compound. We therefore performed voltage-clamp recordings using cells transfected with the human vanilloid receptor TRPV1 in order to assess the responses of pelargonic acid vanillylamide and capsaicin at the receptor level. We provide evidence that at the molecular target TRPV1, the concentration-response curves, kinetics of current activation, as well as inhibition by the competitive antagonist capsazepine were not significantly different between the two capsaicinoids. We suggest that the different effects of the two capsaicinoids observed in previous studies may rather be due to different physicochemical or pharmacokinetic properties than to different pharmacological profiles at the receptor level. PMID:22961689

Weiser, Thomas; Roufogalis, Basil; Chrubasik, Sigrun

2013-07-01

60

Distinct properties of Ca2+–calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel  

PubMed Central

Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca2+–CaM) in complex with the TRPV1-CT segment, determined to 1.95-Ĺ resolution. The two lobes of Ca2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca2+–CaM, respectively. This structure is similar to canonical Ca2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms. PMID:23109716

Lau, Sze-Yi; Procko, Erik

2012-01-01

61

Nobilamides A-H, long-acting transient receptor potential vanilloid-1 (TRPV1) antagonists from mollusk-associated bacteria.  

PubMed

New compounds nobilamides A-H and related known compounds A-3302-A and A-3302-B were isolated based upon their suppression of capsaicin-induced calcium uptake in a mouse dorsal root ganglion primary cell culture assay. Two of these compounds, nobilamide B and A-3302-A, were shown to be long-acting antagonists of mouse and human TRPV1 channels, abolishing activity for >1 h after removal of drug presumably via a covalent attachment. Other derivatives also inhibited the TRPV1 channel, albeit with low potency, affording a structure-activity profile to support the proposed mechanism of action. While the activities were modest, we propose a new mechanism of action and a new site of binding for these inhibitors that may spur development of related analogues for treatment of pain. PMID:21524089

Lin, Zhenjian; Reilly, Christopher A; Antemano, Rowena; Hughen, Ronald W; Marett, Lenny; Concepcion, Gisela P; Haygood, Margo G; Olivera, Baldomero M; Light, Alan; Schmidt, Eric W

2011-06-01

62

Nobilamides A-H, Long-Acting Transient Receptor Potential Vanilloid-1 (TRPV1) Antagonists from Mollusk-Associated Bacteria  

PubMed Central

New compounds nobilamides A-H and related known compounds A-3302-A and A-3302-B were isolated based upon their suppression of capsaicin-induced calcium uptake in a mouse dorsal root ganglion primary cell culture assay. Two of these compounds, nobilamide B and A-3302-A, were shown to be long-acting antagonists of mouse and human TRPV1 channels, abolishing activity for >1 h after removal of drug presumably via a covalent attachment. Other derivatives also inhibited the TRPV1 channel, albeit with low potency, affording a structure-activity profile to support the proposed mechanism of action. While the activities were modest, we propose a new mechanism of action and a new site of binding for these inhibitors that may spur development of related analogs for treatment of pain. PMID:21524089

Lin, Zhenjian; Reilly, Christopher A.; Antemano, Rowena; Hughen, Ronald W.; Marett, Lenny; Concepcion, Gisela P.; Haygood, Margo G.; Olivera, Baldomero M.; Light, Alan; Schmidt, Eric W.

2011-01-01

63

TRPV1 Channels are Involved in Niacin-induced Cutaneous Vasodilation in Mice.  

PubMed

Niacin is effective in treating dyslipidemias, but causes cutaneous vasodilation or flushing, a side effect that limits its clinical use. Blocking prostaglandins in humans reduces but does not consistently eliminate flushing, indicating additional mechanisms may contribute to flushing. The transient receptor potential vanilloid 1 (TRPV1) channel, when activated, causes cutaneous vasodilation and undergoes tachyphylaxis, similar to that seen with niacin. Using a murine model, early phase niacin-induced flushing was examined and TRPV1 channel involvement demonstrated using pharmacologic blockade, desensitization, and genetic knockouts (TRPV1 KO). The TRPV1 antagonist AMG9810 reduced the magnitude of the initial and secondary peaks and the rapidity of the vasodilatory response (slope). TRPV1 desensitization by chronic capsaicin reduced the initial peak and slope. TRPV1 KO mice had a lower initial peak, secondary peak and slope compared to wild-type mice. Chronic niacin reduced the initial peak, secondary peak and slope in wild-type mice but had no effect in knockout mice. Furthermore, chronic niacin diminished the response to capsaicin in wild-type mice. Overall, these data demonstrate an important role for TRPV1 channels in niacin-induced flushing, both in the acute response and with chronic administration. That niacin-induced flushing is a complex cascade of events should inform pharmacological intervention against this side effect. PMID:25387247

Clifton, Heather L; Inceoglu, Bora; Ma, Linlin; Zheng, Jie; Schaefer, Saul

2014-11-10

64

Anionic linear aliphatic surfactants activate TRPV1: a possible endpoint for estimation of detergent induced eye nociception?  

PubMed

The transient receptor potential vanilloid type 1 (TRPV1) has been reported as one of the key components in the pain pathway. Activation of the receptor causes a Ca(2+) influx in sensory C-fibres with secondary effects leading to neurogenic inflammation in the surrounding tissue. We have earlier reported specific activation of TRPV1 by surfactant-containing hygiene products. We have continued this project by investigating activation of the TRPV1 by shampoo and soap ingredients in low concentrations measured as intracellular Ca(2+) influxes in stably TRPV1-expressing neuroblastoma SH-SY5Y cells. As a TRPV1 specific control, the TRPV1 antagonist capsazepine was used. The response was quantified as the product induced Ca(2+) influx during 2 min in relation to the maximum response induced by the TRPV1 agonist capsaicin. The results show that anionic alkyl linear surfactant ingredients such as sodium lauryl sulphate, sodium laureth sulphate, ammonium lauryl sulphate, sodium C12-15 pareth sulphate and N-lauroylsarcosine concentration-dependently induced Ca(2+) influx that could be addressed to TRPV1. The cationic surfactants benzalkonium chloride and cetylpyridinium chloride induced a Ca(2+) influx that was not TRPV1 mediated as well as the zwitterionic surfactant cocamidopropyl betaine, the non-linear anionic surfactant sodium deoxycholate and the non-ionic surfactant Triton-X. These results reveal a new mechanistic pathway for surfactant-induced nociception. PMID:19540328

Lindegren, H; Mogren, H; El Andaloussi-Lilja, J; Lundqvist, J; Forsby, A

2009-12-01

65

Corticosterone Mediates Reciprocal Changes in CB1 and TRPV1 Receptors in Primary Sensory Neurons in the Chronically Stressed Rat  

PubMed Central

Background & Aims Chronic stress is associated with visceral hyperalgesia in functional gastrointestinal disorders. We investigated whether corticosterone plays a role in chronic psychological stress-induced visceral hyperalgesia. Methods Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous corticosterone injection daily for 10 consecutive days in the presence or absence of corticoid receptor antagonist RU-486 and cannabinoid receptor agonist WIN55,212-2. The visceromotor response (VMR) to colorectal distension (CRD) was measured. Receptor protein levels were measured and whole-cell patch-clamp recordings employed to assess TRPV1 currents in L6-S2 DRG neurons. Mass spectrometry was used to measure endocannabinoid anandamide content. Results Chronic WA stress was associated with visceral hyperalgesia in response to CRD, increased stool output and reciprocal changes in CB1 (decreased) and TRPV1 (increased) receptor expression and function. Treatment of WA stressed rats with RU-486 prevented these changes. Control rats treated with serial injections of corticosterone in situ demonstrated a significant increase in serum corticosterone associated with visceral hyperalgesia, enhanced anandamide content, increased TRPV1 and decreased CB1 receptor protein levels which were prevented by co-treatment with RU-486. Exposure of isolated control L6-S2 DRGs in vitro to corticosterone reproduced the changes in CB1 and TRPV1 receptors observed in situ which was prevented by co-treatment with RU-486 or WIN55,212-2. Conclusions These results support a novel role for corticosterone to modulate CB1 and TRPV1 receptor pathways in L6-S2 DRGs in the chronic WA stressed rat which contributes to visceral hyperalgesia observed in this model. PMID:21070780

Hong, Shuangsong; Zheng, Gen; Wu, Xiaoyin; Snider, Natasha T.; Owyang, Chung; Wiley, John W.

2010-01-01

66

TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids  

PubMed Central

Summary The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP2, PI4P and PI, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C-terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other “receptor-operated” TRP channels. PMID:23439120

Cao, Erhu; Cordero-Morales, Julio F.; Liu, Beiying; Qin, Feng; Julius, David

2013-01-01

67

Structure-Activity Relationship of Capsaicin Analogs and Transient Receptor Potential Vanilloid 1-Mediated Human Lung Epithelial Cell ToxicityS?  

PubMed Central

Activation of intracellular transient receptor potential vanilloid-1 (TRPV1) in human lung cells causes endoplasmic reticulum (ER) stress, increased expression of proapoptotic GADD153 (growth arrest- and DNA damage-inducible transcript 3), and cytotoxicity. However, in cells with low TRPV1 expression, cell death is not inhibited by TRPV1 antagonists, despite preventing GADD153 induction. In this study, chemical variants of the capsaicin analog nonivamide were synthesized and used to probe the relationship between TRPV1 receptor binding, ER calcium release, GADD153 expression, and cell death in TRPV1-overexpressing BEAS-2B, normal BEAS-2B, and primary normal human bronchial epithelial lung cells. Modification of the 3-methoxy-4-hydroxybenzylamide vanilloid ring pharmacophore of nonivamide reduced the potency of the analogs and rendered several analogs mildly inhibitory. Correlation analysis of analog-induced calcium flux, GADD153 induction, and cytotoxicity revealed a direct relationship for all three endpoints in all three lung cell types for nonivamide and N-(3,4-dihydroxybenzyl)nonanamide. However, the N-(3,4-dihydroxybenzyl)nonanamide analog also produced cytotoxicity through redox cycling/reactive oxygen species formation, shown by inhibition of cell death by N-acetylcysteine. Molecular modeling of binding interactions between the analogs and TRPV1 agreed with data for reduced potency of the analogs, and only nonivamide was predicted to form a “productive” ligand-receptor complex. This study provides vital information on the molecular interactions of capsaicinoids with TRPV1 and substantiates TRPV1-mediated ER stress as a conserved mechanism of lung cell death by prototypical TRPV1 agonists. PMID:21343315

Thomas, Karen C.; Ethirajan, Manivannan; Shahrokh, Kiumars; Sun, Hao; Lee, Jeewoo; Cheatham, Thomas E.; Yost, Garold S.

2011-01-01

68

Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum.  

PubMed

Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation. PMID:23911956

Trevisan, Gabriela; Rossato, Mateus F; Hoffmeister, Carin; Oliveira, Sara M; Silva, Cássia R; Matheus, Filipe C; Mello, Gláucia C; Antunes, Edson; Prediger, Rui D S; Ferreira, Juliano

2013-08-15

69

Sulphur-containing compounds of durian activate the thermogenesis-inducing receptors TRPA1 and TRPV1.  

PubMed

Durian (Durio zibethinus Murr.) is classified as a body-warming food in Indian herbalism, and its hyperthermic effect is empirically known in Southeast Asia. To investigate the mechanism underlying this effect, we focused on the thermogenesis-inducing receptors, TRPA1 and TRPV1. Durian contains sulphides similar to the TRPA1 and TRPV1 agonists of garlic. Accordingly, we hypothesized that the thermogenic effect of durian is driven by sulphide-induced TRP channel activation. To investigate our hypothesis, we measured the TRPA1 and TRPV1 activity of the sulphur-containing components of durian and quantified their content in durian pulp. These sulphur-containing components had a stronger effect on TRPA1 than TRPV1. Furthermore, sulphide content in the durian pulp was sufficient to evoke TRP channel activation and the main agonist was diethyl disulphide. From these results, we consider that the body-warming effect of durian is elicited by TRPA1 activation with its sulphides, as can be seen in spices. PMID:24679773

Terada, Yuko; Hosono, Takashi; Seki, Taiichiro; Ariga, Toyohiko; Ito, Sohei; Narukawa, Masataka; Watanabe, Tatsuo

2014-08-15

70

Depressive behavior in the forced swim test can be induced by TRPV1 receptor activity and is dependent on NMDA receptors.  

PubMed

Blocking, desensitizing, or knocking out transient receptor potential vanilloid type 1 (TRPV1) receptors decreases immobility in the forced swim test, a measure of depressive behavior. We questioned whether enhancing TRPV1 activity promotes immobility in a fashion that is prevented by antidepressants. To test this we activated heat-sensitive TRPV1 receptors in mice by water that is warmer than body temperature (41 °C) or a low dose of resiniferatoxin (RTX). Water at 41 °C elicited less immobility than cooler water (26 °C), indicating that thermoregulatory sites do not contribute to immobility. Although a desensitizing regimen of RTX (3-5 injections of 0.1 mg/kg s.c.) decreased immobility during swims at 26 °C, it did not during swims at 41 °C. In contrast, low dose of RTX (0.02 mg/kg s.c.) enhanced immobility, but only during swims at 41 °C. Thus, activation of TRPV1 receptors, endogenously or exogenously, enhances immobility and these sites are activated by cold rather than warmth. Two distinct types of antidepressants, amitriptyline (10mg/kg i.p.) and ketamine (50 mg/kg i.p.), each inhibited the increase in immobility induced by the low dose of RTX, verifying its mediation by TRPV1 sites. When desensitization was limited to central populations using intrathecal injections of RTX (0.25 ?g/kg i.t.), immobility was attenuated at both temperatures and the increase in immobility produced by the low dose of RTX was inhibited. This demonstrates a role for central TRPV1 receptors in depressive behavior, activated by conditions (cold stress) distinct from those that activate TRPV1 receptors along thermosensory afferents (heat). PMID:24200896

Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

2014-01-01

71

TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision.  

PubMed

Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators. PMID:25222270

Ryskamp, Daniel A; Redmon, Sarah; Jo, Andrew O; Križaj, David

2014-01-01

72

TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision  

PubMed Central

Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC) axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators. PMID:25222270

Ryskamp, Daniel A.; Redmon, Sarah; Jo, Andrew O.; Križaj, David

2014-01-01

73

TRPV1-mediated UCP2 upregulation ameliorates hyperglycemia-induced endothelial dysfunction  

PubMed Central

Background Diabetic cardiovascular complications are characterised by oxidative stress-induced endothelial dysfunction. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial reactive oxygen species (ROS) generation and can antagonise oxidative stress, but approaches that enhance the activity of UCP2 to inhibit ROS are scarce. Our previous studies show that activation of transient receptor potential vanilloid 1 (TRPV1) by capsaicin can prevent cardiometabolic disorders. In this study, we conducted experiments in vitro and in vivo to investigate the effect of capsaicin treatment on endothelial UCP2 and oxidative stress. We hypothesised that TRPV1 activation by capsaicin attenuates hyperglycemia-induced endothelial dysfunction through a UCP2-mediated antioxidant effect. Methods TRPV1-/-, UCP2 -/- and db/db mice, as well as matched wild type (WT) control mice, were included in this study. Some mice were subjected to dietary capsaicin for 14 weeks. Arteries isolated from mice and endothelial cells were cultured. Endothelial function was examined, and immunohistological and molecular analyses were performed. Results Under high-glucose conditions, TRPV1 expression and protein kinase A (PKA) phosphorylation were found to be decreased in the cultured endothelial cells, and the effects of high-glucose on these molecules were reversed by the administration of capsaicin. Furthermore, high-glucose exposure increased ROS production and reduced nitric oxide (NO) levels both in endothelial cells and in arteries that were evaluated respectively by dihydroethidium (DHE) and DAF-2 DA fluorescence. Capsaicin administration decreased the production of ROS, restored high-glucose-induced endothelial dysfunction through the activation of TRPV1 and acted in a UCP2-dependent manner in vivo. Administration of dietary capsaicin for 14 weeks increased the levels of PKA phosphorylation and UCP2 expression, ameliorated the vascular oxidative stress and increased NO levels observed in diabetic mice. Prolonged dietary administration of capsaicin promoted endothelium-dependent relaxation in diabetic mice. However, the beneficial effect of capsaicin on vasorelaxation was absent in the aortas of UCP2 -/- mice exposed to high-glucose levels. Conclusion TRPV1 activation by capsaicin might protect against hyperglycemia-induced endothelial dysfunction through a mechanism involving the PKA/UCP2 pathway. PMID:23607427

2013-01-01

74

Electroacupuncture Stimulation at CV12 Inhibits Gastric Motility via TRPV1 Receptor  

PubMed Central

Gastric dysmotility is one of the major pathophysiological factors in functional gastrointestinal disorders. Acupuncture, as one of the alternative approaches, is efficacious in the treatment of gastrointestinal motility disorders; however, the mechanism underlying its action is unclear. In the present study, we used both capsazepine, a TRPV1 antagonist, and TRPV1 knockout mice. Animals were divided into wild-type group (WT), capsazepine injection group (CZP, 0.5?mg/kg, i.p.), and TRPV1 knockout mice group (TRPV1?/?). Each of these three groups was divided into three subgroups, which were subjected to EA stimulation at acupoint Zhongwan (CV12) at a different intensity (1, 2, or 4?mA). We demonstrated that electroacupuncture at Zhongwan (CV12) markedly inhibited gastric motility at 2 and 4?mA in an intensity-dependent manner in wild-type mice. The inhibitory effect was also observed in capsazepine-injected and TRPV1?/? mice but was no longer intensity dependent, indicating that TRPV1 is partially involved in the electroacupuncture-mediated modulation of gastric motility. PMID:24106521

Yu, Zhi; Cao, Xin; Xia, Youbing; Ren, Binbin; Feng, Hong; Wang, Yali; Jiang, Jingfeng; Xu, Bin

2013-01-01

75

TRPV1: a stress response protein in the central nervous system  

PubMed Central

The transient receptor potential (TRP) family comprises a diverse group of cation channels that regulate a variety of intracellular signaling pathways. The TRPV1 (vanilloid 1) channel is best known for its role in nociception and sensory transmission. First studied in the dorsal root ganglia as the receptor for capsaicin, TRPV1 is now recognized to have a broader distribution and function within the central nervous system (CNS). Because it can be activated by a range of potentially noxious stimuli, TRPV1’s polymodal nature and ability to interact with other receptor pathways make it a candidate for a stress response protein. As a result, TRPV1 is emerging as a key mediator of CNS function through modulation of both glial and neuronal activity. Growing evidence has suggested that TRPV1 can mediate a variety of pathways from glial reactivity and cytokine release to synaptic transmission and plasticity. This review highlights the increasing importance of TRPV1 as a regulator of CNS function in response to stress. PMID:22737633

Ho, Karen W; Ward, Nicholas J; Calkins, David J

2012-01-01

76

Transient activation of specific neurons in mice by selective expression of the capsaicin receptor  

PubMed Central

The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ~10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches. PMID:22434189

Güler, Ali D.; Rainwater, Aundrea; Parker, Jones G.; Jones, Graham L.; Argilli, Emanuela; Arenkiel, Benjamin R.; Ehlers, Michael D.; Bonci, Antonello; Zweifel, Larry s.; Palmiter, Richard D.

2013-01-01

77

Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue  

PubMed Central

Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expressing terminals. PMID:22688302

Kawashima, M.; Imura, K.; Sato, I.

2012-01-01

78

A painful link between the TRPV1 channel and lysophosphatidic acid.  

PubMed

The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed mainly by sensory neurons that detect noxious stimuli from the environment such as high temperatures and pungent compounds (such as allicin and capsaicin) and has been extensively linked to painful and inflammatory processes. This extraordinary protein also responds to endogenous stimuli among which we find molecules of a lipidic nature. We recently described that lysophosphatidic acid (LPA), a bioactive lysophospholipid linked to the generation and maintenance of pain, can directly activate TRPV1 and produce pain by binding to the channels' C-terminal region, specifically to residue K710. In an effort to further understand how activation of TRPV1 is achieved by this negatively-charged lipid, we used several synthetic and naturally-occurring lipids to determine the structural requirements that need to be met by these charged lipids in order to produce the activation of TRPV1. In this review, we detail the findings obtained by other research groups and our own on the field of TRPV1-regulation by negatively-charged lipids and discuss the possible therapeutic relevance of these findings on the basis of the role of TRPV1 in pathophysiological processes. PMID:25445434

Morales-Lázaro, Sara L; Rosenbaum, Tamara

2014-10-14

79

Activation of transient receptor potential vanilloid subtype 1 increases secretion of the hypofunctional, transplanted submandibular gland.  

PubMed

Hyposecretion occurs in most patients early after submandibular gland autotransplantation for severe keratoconjunctivitis sicca. Endogenous transient receptor potential vanilloid subtype 1 (TRPV1) has been recently demonstrated in rabbit submandibular glands, and activation of TRPV1 by capsaicin increases secretion in isolated glands, but the TRPV1-mediated secretory mechanism remains to be elucidated. The purpose of this study was to verify whether activation of TRPV1 by capsaicin could improve the secretion of transplanted gland and its underlying mechanism. The salivary flow of the transplanted glands was significantly decreased, and the mRNA and protein levels of TRPV1 and aquaporin 5 (AQP5) were downregulated in the transplanted glands. Topical capsaicin cream increased secretion and upregulated levels of TRPV1 and AQP5 in transplanted glands. Moreover, in cultured submandibular gland cells, capsaicin increased the mRNA expression of AQP5 and led to redistribution of AQP5 from the cytoplasm to the plasma membrane via TRPV1 activation. Capsaicin enhanced the phosphorylation of extracellular signal-regulated kinase (ERK). Preincubation of cells with PD98059, an inhibitor of ERK kinase, suppressed the capsaicin-induced mRNA expression of AQP5. In summary, the capsaicin-induced secretory mechanism involved activation of TRPV1 and upregulation of AQP5 in an ERK-dependent manner and promoted the redistribution of AQP5 in submandibular gland cells. Activation of TRPV1 may provide a new therapeutic strategy to improve submandibular gland hypofunction. PMID:20360133

Zhang, Y; Cong, X; Shi, L; Xiang, B; Li, Y M; Ding, Q W; Ding, C; Wu, L L; Yu, G Y

2010-07-01

80

Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia.  

PubMed

Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel that functions as an integrator of multiple pain stimuli including heat, acid, capsaicin and a variety of putative endogenous lipid ligands. TRPV1 antagonists have been shown to decrease inflammatory pain in animal models and to produce limited hyperthermia at analgesic doses. Here, we report that ABT-102, which is a potent and selective TRPV1 antagonist, is effective in blocking nociception in rodent models of inflammatory, post-operative, osteoarthritic, and bone cancer pain. ABT-102 decreased both spontaneous pain behaviors and those evoked by thermal and mechanical stimuli in these models. Moreover, we have found that repeated administration of ABT-102 for 5-12 days increased its analgesic activity in models of post-operative, osteoarthritic, and bone cancer pain without an associated accumulation of ABT-102 concentration in plasma or brain. Similar effects were also observed with a structurally distinct TRPV1 antagonist, A-993610. Although a single dose of ABT-102 produced a self-limiting increase in core body temperature that remained in the normal range, the hyperthermic effects of ABT-102 effectively tolerated following twice-daily dosing for 2 days. Therefore, the present data demonstrate that, following repeated administration, the analgesic activity of TRPV1 receptor antagonists is enhanced, while the associated hyperthermic effects are attenuated. The analgesic efficacy of ABT-102 supports its advancement into clinical studies. PMID:19135797

Honore, Prisca; Chandran, Prasant; Hernandez, Gricelda; Gauvin, Donna M; Mikusa, Joseph P; Zhong, Chengmin; Joshi, Shailen K; Ghilardi, Joseph R; Sevcik, Molly A; Fryer, Ryan M; Segreti, Jason A; Banfor, Patricia N; Marsh, Kennan; Neelands, Torben; Bayburt, Erol; Daanen, Jerome F; Gomtsyan, Arthur; Lee, Chih-Hung; Kort, Michael E; Reilly, Regina M; Surowy, Carol S; Kym, Philip R; Mantyh, Patrick W; Sullivan, James P; Jarvis, Michael F; Faltynek, Connie R

2009-03-01

81

Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor.  

PubMed

Recent studies suggest the ability of the central nervous system to detect changes in osmolality is mediated by products of the genes encoding the transient receptor potential vanilloid-1 (TRPV1) or vanilloid-4 (TRPV4) channel. The purpose of the present study was to determine whether deletion of TRPV1 and/or TRPV4 channels altered thirst responses to cellular dehydration in mice. Injection of 0.5 or 1.0 M NaCl produced dose-dependent increases in cumulative water intakes of wild-type (WT), TRPV1-/-, TRPV4-/-, and TRPV1-/-V4-/- mice. However, there were no differences in cumulative water intakes between WT versus any other strain despite similar increases in plasma electrolytes and osmolality. Similar results were observed after injection of hypertonic mannitol. This was a consistent finding regardless of the injection route (intraperitoneal vs. subcutaneous) or timed access to water (delayed vs. immediate). There were also no differences in cumulative intakes across strains after injection of 0.15 M NaCl or during a time-controlled period (no injection). Chronic hypernatremia produced by sole access to 2% NaCl for 48 h also produced similar increases in water intake across strains. In a final set of experiments, subcutaneous injection of 0.5 M NaCl produced similar increases in the number of Fos-positive nuclei within the organum vasculosum of the lamina terminalis and median preoptic nucleus across strains but significantly smaller number in the subfornical organ of WT versus TRPV1-/-V4-/- mice. Collectively, these findings suggest that TRPV1 and/or TRPV4 channels are not the primary mechanism by which the central nervous system responds to cellular dehydration during hypernatremia or hyperosmolality to increase thirst. PMID:25100078

Kinsman, Brian; Cowles, James; Lay, Jennifer; Simmonds, Sarah S; Browning, Kirsteen N; Stocker, Sean D

2014-11-01

82

Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel – an overview of the current mutational data  

PubMed Central

This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232

2013-01-01

83

Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects.  

PubMed

Transient receptor potential channels are implicated in thermosensation both in mammals and insects. The aim of our study was to assess the effect of mammalian vanilloid receptor subtype 1 (TRPV1) agonist (capsaicin) and antagonist (capsazepine) on insect behavioral thermoregulation. We tested behavioral thermoregulation of mealworms larvae intoxicated with capsaicin and capsazepine in two concentrations (10(-7) and 10(-4) M) in a thermal gradient system for 3 days. Our results revealed that in low concentration, capsaicin induces seeking lower temperatures than the ones selected by the insects that were not intoxicated. After application of capsazepine in the same concentration, the mealworms prefer higher temperatures than the control group. The observed opposite effect of TRPV1 agonist and antagonist on insect behavioral thermoregulation, which is similar to the effect of these substances on thermoregulation in mammals, indicates indirectly that capsaicin may act on receptors in insects that are functionally similar to TRPV1. PMID:21667066

Olszewska, Justyna; T?gowska, Eugenia

2011-10-01

84

Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.  

PubMed

Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling. PMID:25088915

Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

2014-09-26

85

The effects of cannabinoid CB1, CB2 and vanilloid TRPV1 receptor antagonists on cocaine addictive behavior in rats.  

PubMed

There is evidence that indicates that tonic activation of cannabinoid CB1 receptors plays a role in extinction/reinstatement of cocaine seeking-behavior but is not involved in the maintenance of cocaine self-administration. To further explore the importance of other endocannabinoid-related receptors in an animal model of cocaine addiction, the present paper examines cannabinoid CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethylbicyclo(2.2.1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) and the transient receptor potential vanilloid type-1 (TRPV1) receptor antagonist N-(3-methoxyphenyl)-4-chlorocinnamide (SB366791) on intravenous (i.v.) cocaine self-administration and extinction/reinstatement of cocaine-seeking behavior in rats. For comparison and reference purposes, the effect of the cannabinoid CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) was also examined. Moreover, for comparison effects of those drugs on operant lever responding for artificial (cocaine) vs. natural (food) reward, food self-administration was also evaluated. Our findings show that AM251 (1-3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.3-1mg/kg) did not affect cocaine self-administration. However, AM251 (0.1-1mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) decreased cocaine-induced reinstatement of cocaine-seeking behavior, and AM251 (0.3-1mg/kg) decreased cue-induced reinstatement. Moreover, AM251 (3mg/kg), SR144528 (0.1-1mg/kg) and SB366791 (0.1-1mg/kg) slightly decreased food self-administration behavior, but only AM251 (3mg/kg) reduced food reward. In conclusion, our results indicate for the first time, that tonic activation of CB2 or TRPV1 receptors is involved in cocaine-induced reinstatement of cocaine-seeking behavior, but their activity is not necessary for the rewarding effect of this psychostimulant. In contrast to CB1 receptors, neither CB2 nor TRPV1 receptors play a role in cue-induced reinstatement of cocaine-seeking behavior. PMID:22325096

Adamczyk, Przemys?aw; Miszkiel, Joanna; McCreary, Andrew C; Filip, Ma?gorzata; Papp, Mariusz; Przegali?ski, Edmund

2012-03-20

86

Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold  

PubMed Central

Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes. PMID:24344247

Cao, Xu; Ma, Linlin; Yang, Fan

2014-01-01

87

Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control  

PubMed Central

New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough and airway inflammation in asthma, COPD and reactive airway dysfunction syndrome. PMID:19074743

Bessac, Bret F.; Jordt, Sven-Eric

2009-01-01

88

Breathtaking TRP Channels: TRPA1 and TRPV1 in Airway Chemosensation and Reflex Control  

NSDL National Science Digital Library

New studies have revealed an essential role for TRPA1, a sensory neuronal TRP ion channel, in airway chemosensation and inflammation. TRPA1 is activated by chlorine, reactive oxygen species, and noxious constituents of smoke and smog, initiating irritation and airway reflex responses. Together with TRPV1, the capsaicin receptor, TRPA1 may contribute to chemical hypersensitivity, chronic cough, and airway inflammation in asthma, COPD, and reactive airway dysfunction syndrome.

Bret Bessac (Yale University School of Medicine Pharmacology); Sven-Eric Jordt (Yale University School of Medicine)

2008-12-01

89

Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation  

PubMed Central

Polymodal neurons of the trigeminal nerve innervate the nasal cavity, nasopharynx, oral cavity and cornea. Trigeminal nociceptive fibers express a diverse collection of receptors and are stimulated by a wide variety of chemicals. However, the mechanism of stimulation is known only for relatively few of these compounds. Capsaicin, for example, activates transient receptor potential vanilloid 1 (TRPV1) channels. In the present study, wildtype (C57Bl/6J) and TRPV1 knockout mice were tested in three behavioral assays for irritation to determine if TRPV1 is necessary to detect trigeminal irritants in addition to capsaicin. In one assay mice were presented with a chemical via a cotton swab and their response scored on a 5 level scale. In another assay, a modified two bottle preference test, which avoids the confound of mixing irritants with the animal’s drinking water, was used to assess aversion. In the final assay, an air dilution olfactometer was used to administer volatile compounds to mice restrained in a double-chambered plethysmograph where respiratory reflexes were monitored. TRPV1 knockouts showed deficiencies in the detection of benzaldehyde, cyclohexanone and eugenol in at least one assay. However, cyclohexanone was the only substance tested that appears to act solely through TRPV1. PMID:24358880

Saunders, CJ

2013-01-01

90

Monoacylglycerols Activate TRPV1 – A Link between Phospholipase C and TRPV1  

PubMed Central

Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain. PMID:24312564

Zygmunt, Peter M.; Ermund, Anna; Movahed, Pouya; Andersson, David A.; Simonsen, Charlotte; Jönsson, Bo A. G.; Blomgren, Anders; Birnir, Bryndis; Bevan, Stuart; Eschalier, Alain; Mallet, Christophe; Gomis, Ana; Högestätt, Edward D.

2013-01-01

91

Capsaicin and sensory neurones: a historical perspective.  

PubMed

Capsaicin, the pungent ingredient of red pepper has become not only a "hot" topic in neuroscience but its new target-related unique actions have opened the door for the drug industry to introduce a new chapter of analgesics. After several lines of translational efforts with over 1,000 patents and clinical trials, the 8% capsaicin dermal patch reached the market and its long-lasting local analgesic effect in some severe neuropathic pain states is now well established. This introductory chapter outlines on one hand the historical background based on the author's 50 years of experience in this field and on the other hand emphasizes new scopes, fascinating perspectives in pharmaco-physiology, and molecular pharmacology of nociceptive sensory neurons. Evidence for the effect of capsaicin on C-polymodal nociceptors (CMH), C-mechanoinsensitive (CHMi), and silent C-nociceptors are listed and the features of the capsaicin-induced blocking effects of nociceptors are demonstrated. Common and different characteristics of nociceptor-blocking actions after systemic, perineural, local, intrathecal, and in vitro treatments are summarized. Evidence for the misleading conclusions drawn from neonatal capsaicin pretreatment is presented. Perspectives opened from cloning the capsaicin receptor "Transient Receptor Potential Vanilloid 1" (TRPV1) are outlined and potential molecular mechanisms behind the long-lasting functional, ultrastructural, and nerve terminal-damaging effects of capsaicin and other TRPV1 agonists are summarized. Neurogenic inflammation and the long-list of "capsaicin-sensitive" tissue responses are mediated by an unorthodox dual sensory-efferent function of peptidergic TRPV1-expressing nerve terminals which differ from the classical efferent and sensory nerve endings that have a unidirectional role in neuroregulation. Thermoregulatory effects of capsaicin are discussed in detail. It is suggested that since hyperthermia and burn risk due to enhanced noxious heat threshold are the major obstacles of some TRPV1 antagonists, they could be overcome. The special "multisteric" gating function of the TRPV1 cation channel provides the structural ground for blocking chemical activation of TRPV1 without affecting its responsiveness to physical stimuli. A new chapter of potential analgesics targeting nociceptors is now already supported for pain relief in persistent pathological pain states. PMID:24941663

Szolcsányi, János

2014-01-01

92

The capsaicin receptor participates in artificial sweetener aversion.  

PubMed

Artificial sweeteners such as saccharin, aspartame, acesulfame-K, and cyclamate produce at high concentrations an unpleasant after-taste that is generally attributed to bitter and metallic taste sensations. To identify receptors involved with the complex perception of the above compounds, preference tests were performed in wild-type mice and mice lacking the TRPV1 channel or the T1R3 receptor, the latter being necessary for the perception of sweet taste. The sweeteners, including cyclamate, displayed a biphasic response profile, with the T1R3 mediated component implicated in preference. At high concentrations imparting off-taste, omission of TRPV1 reduced aversion. In a heterologous expression system the Y511A point mutation in the vanilloid pocket of TRPV1 did not affect saccharin and aspartame responses but abolished cyclamate and acesulfame-K activities. The results rationalize artificial sweetener tastes and off-tastes by showing that at low concentrations, these molecules stimulate the gustatory system through the hedonically positive T1R3 pathway, and at higher concentrations, their aversion is partly mediated by TRPV1. PMID:18804451

Riera, Céline E; Vogel, Horst; Simon, Sidney A; Damak, Sami; le Coutre, Johannes

2008-11-28

93

Transient receptor potential vanilloid type 1 channel (TRPV1) immunolocalization in the murine enteric nervous system is affected by the targeted C-terminal epitope of the applied antibody.  

PubMed

The expression of transient receptor potential vanilloid type 1 channel (TRPV1) in the enteric nervous system is still the subject of debate. Although a number of studies have reported that TRPV1 is limited to extrinsic afferent fibers, other studies argue for an intrinsic expression of TRPV1. In the present study, reverse transcriptase PCR was employed to establish the expression of TRPV1 mRNA throughout the gastrointestinal tract. Using two antibodies directed against different epitopes of TRPV1, we were able to show at the protein level that the observed distribution pattern of TRPV1 is dependent on the antibody used in the immunohistochemical staining. A first antibody indeed mainly stained neuronal fibers, whereas a second antibody exclusively stained perikarya of enteric neurons throughout the mouse gastrointestinal tract. We argue that these different distribution patterns are due to the antibodies discriminating between different modulated forms of TRPV1 that influence the recognition of the targeted immunogen and as such distinguish intracellular from plasmalemmal forms of TRPV1. Our study is the first to directly compare these two antibodies within the same species and in identical conditions. Our observations underline that detailed knowledge of the epitope that is recognized by the antibodies employed in immunohistochemical procedures is a prerequisite for correctly interpreting experimental results. PMID:23482327

Buckinx, Roeland; Van Nassauw, Luc; Avula, Leela R; Alpaerts, Katrien; Adriaensen, Dirk; Timmermans, Jean-Pierre

2013-06-01

94

Gastrin-releasing peptide acts via postsynaptic BB2 receptors to modulate inward rectifier K+ and TRPV1-like conductances in rat paraventricular thalamic neurons  

PubMed Central

Gastrin-releasing peptide (GRP) is a bombesin-like peptide with a widespread distribution in mammalian CNS, where it has a role in food intake, circadian rhythm generation, fear memory, itch sensation and sexual behaviour. While it has been established that GRP predominantly excites neurons, details of the membrane mechanism involved in this action remain largely undefined. We used perforated patch clamp recording in acute brain slice preparations to investigate GRP-affected receptors and ionic conductances in neurons of the rat paraventricular thalamic nucleus (PVT). PVT is a component of the midline and intralaminar thalamus that participates in arousal, motivational drives and stress responses, and exhibits a prominence of GRP-like immunoreactive fibres. Exposure of PVT neurons to low nanomolar concentrations of GRP induced sustained TTX-resistant membrane depolarizations that could trigger rhythmic burst discharges or tonic firing. Membrane current analyses in voltage clamp revealed an underlying postsynaptic bombesin type 2 receptor-mediated inward current that resulted from the simultaneous suppression of a Ba2+-sensitive inward rectifier K+ conductance and activation of a non-selective cation conductance with biophysical and pharmacological properties reminiscent of transient receptor potential vanilloid (TRPV) 1. A role for a TRPV1-like conductance was further implied by a significant suppressant influence of a TRPV1 antagonist on GRP-induced membrane depolarization and rhythmic burst or tonic firing. The results provide a detailed picture of the receptor and ionic conductances that are involved in GRP's excitatory action in midline thalamus. PMID:23359674

Hermes, M L H J; Kolaj, M; Coderre, E M; Renaud, L P

2013-01-01

95

Opposite effect of capsaicin and capsazepine on behavioral thermoregulation in insects  

Microsoft Academic Search

Transient receptor potential channels are implicated in thermosensation both in mammals and insects. The aim of our study\\u000a was to assess the effect of mammalian vanilloid receptor subtype 1 (TRPV1) agonist (capsaicin) and antagonist (capsazepine)\\u000a on insect behavioral thermoregulation. We tested behavioral thermoregulation of mealworms larvae intoxicated with capsaicin\\u000a and capsazepine in two concentrations (10?7 and 10?4 M) in a thermal

Justyna Olszewska; Eugenia T?gowska

96

The C-type Natriuretic Peptide Induces Thermal Hyperalgesia Through a Non-canonical G??-dependent Modulation of TRPV1 Channel  

PubMed Central

Natriuretic peptides (NPs) control natriuresis and normalize changes in blood pressure. Recent studies suggest that NPs are also involved in the regulation of pain sensitivity, although the underlying mechanisms remain largely unknown. Many biological effects of NPs are mediated by guanylate cyclase (GC)-coupled NP receptors, NPR-A and NPR-B, whereas the third NP receptor, NPR-C, lacks the GC kinase domain and acts as the NP clearance receptor. In addition, NPR-C can couple to specific G?i-??-mediated intracellular signaling cascades in numerous cell types. We found that NPR-C is co-expressed in TRPV1-expressing mouse DRG neurons. NPR-C can be co-immunoprecipitated with G?i, and CNP treatment induced translocation of PKC? to the plasma membrane of these neurons, which was inhibited by pertussis toxin pre-treatment. Application of CNP potentiated capsaicin- and proton-activated TRPV1 currents in cultured mouse DRG neurons, and increased neuronal firing frequency, an effect that was absent in DRG neurons from TRPV1?/? mice. CNP-induced sensitization of TRPV1 activity was attenuated by pre-treatment of DRG neurons with the specific inhibitors of G??, PLC? or PKC, but not of PKA, and was abolished by mutations at two PKC phosphorylation sites in TRPV1. Further, CNP injection into mouse hind paw led to the development of thermal hyperalgesia that was attenuated by administration of specific inhibitors of G?? or TRPV1, and was also absent in TRPV1?/? mice. Thus, our work identifies the G??-PLC?-PKC-dependent potentiation of TRPV1 as a novel signaling cascade recruited by CNP in mouse DRG neurons that can lead to enhanced nociceptor excitability and thermal hypersensitivity. PMID:22933780

Loo, Lipin; Shepherd, Andrew J.; Mickle, Aaron D.; Lorca, Ramón A.; Shutov, Leonid; Usachev, Yuriy M.; Mohapatra, Durga P.

2012-01-01

97

Molecular Determinants of Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Binding to Transient Receptor Potential V1 (TRPV1) Channels.  

PubMed

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate. PMID:25425643

Poblete, Horacio; Oyarzún, Ingrid; Olivero, Pablo; Comer, Jeffrey; Zuńiga, Matías; Sepulveda, Romina V; Báez-Nieto, David; González Leon, Carlos; González-Nilo, Fernando; Latorre, Ramón

2015-01-23

98

Inhibition of TRPV1 for the treatment of sensitive skin.  

PubMed

During the past years, the topic sensitive skin became one of the most important fields in dermatology. The tremendous interest is based on several studies showing that about 50% of the population declares to have sensitive skin. The human thermoreceptor hTRPV1 was previously identified to contribute to this skin condition while facilitating neurogenic inflammation leading to hyperalgesia. Furthermore, skin sensitivity towards capsaicin, a natural activator of TRPV1, was shown to correlate with sensitive skin. In a screening campaign based on recombinant HEK293-cells stably transfected with hTRPV1, the selective antagonist trans-4-tert-butylcyclohexanol was identified. This antagonist is able to inhibit capsaicin-induced hTRPV1 activation with an IC(50) value of 34 ± 5 ?m tested in HEK293-cells as well as in electrophysiological recordings performed in oocytes expressing hTRPV1. Strikingly, in a clinical study with 30 women using topical treatment with o/w emulsions containing 31.6 ppm capsaicin, we were able to show that 0.4% of this inhibitor significantly reduces capsaicin-induced burning (P < 0.0001) in vivo. Thus trans-4-tert-butylcyclohexanol has the potential as a novel bioactive for the treatment of sensitive skin. PMID:20626462

Kueper, Thomas; Krohn, Michael; Haustedt, Lars Ole; Hatt, Hanns; Schmaus, Gerhard; Vielhaber, Gabriele

2010-11-01

99

Abundant expression and functional participation of TRPV1 at Zusanli acupoint (ST36) in mice: mechanosensitive TRPV1 as an “acupuncture-responding channel”  

PubMed Central

Background Acupuncture is a therapy that involves applying mechanical stimulation to acupoints using needles. Although acupuncture is believed to trigger neural regulation by opioids or adenosine, still little is known about how physical stimulation is turned into neurological signaling. The transient receptor potential vanilloid receptors 1 and 4 (TRPV1 and TRPV4) and the acid-sensing ion channel 3 (ASIC3) are regarded as mechanosensitive channels. This study aimed to clarify their role at the Zusanli acupoint (ST36) and propose possible sensing pathways linking channel activation to neurological signaling. Methods First, tissues from different anatomical layers of ST36 and the sham point were sampled, and channel expressions between the two points were compared using western blotting. Second, immunofluorescence was performed at ST36 to reveal distribution pattern of the channels. Third, agonist of the channels were injected into ST36 and tested in a mouse inflammatory pain model to seek if agonist injection could replicate acupuncture-like analgesic effect. Last, the components of proposed downstream sensing pathway were tested with western blotting to determine if they were expressed in tissues with positive mechanosensitive channel expression. Results The results from western blotting demonstrated an abundance of TRPV1, TRPV4, and ASIC3 in anatomical layers of ST36. Furthermore, immunofluorescence showed these channels were expressed in both neural and non-neural cells at ST36. However, only capsaicin, a TRPV1 agonist, replicated the analgesic effect of acupuncture when injected into ST36. Components of calcium wave propagation (CWP, the proposed downstream sensing pathway) were also expressed in tissues with abundant TRPV1 expression, the muscle and epimysium layers. Conclusions The results demonstrated mechanosensitive channel TRPV1 is highly expressed at ST36 and possibly participated in acupuncture related analgesia. Since CWP was reported by other to occur during acupuncture and its components were shown here to express in tissues with positive TRPV1 expression. These findings suggest TRPV1 might act as acupuncture-responding channel by sensing physical stimulation from acupuncture and conducting the signaling via CWP to nerve terminals. This study provided a better understanding between physical stimulation from acupuncture to neurological signaling. PMID:24612851

2014-01-01

100

Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel.  

PubMed

The TRPV1 ion channel serves as an integrator of noxious stimuli with its activation linked to pain and neurogenic inflammation. Cholesterol, a major component of cell membranes, modifies the function of several types of ion channels. Here, using measurements of capsaicin-activated currents in excised patches from TRPV1-expressing HEK cells, we show that enrichment with cholesterol, but not its diastereoisomer epicholesterol, markedly decreased wild-type rat TRPV1 currents. Substitutions in the S5 helix, rTRPV1-R579D, and rTRPV1-F582Q, decreased this cholesterol response and rTRPV1-L585I was insensitive to cholesterol addition. Two human TRPV1 variants, with different amino acids at position 585, had different responses to cholesterol with hTRPV1-Ile(585) being insensitive to this molecule. However, hTRPV1-I585L was inhibited by cholesterol addition similar to rTRPV1 with the same S5 sequence. In the absence of capsaicin, cholesterol enrichment also inhibited TRPV1 currents induced by elevated temperature and voltage. These data suggest that there is a cholesterol-binding site in TRPV1 and that the functions of TRPV1 depend on the genetic variant and membrane cholesterol content. PMID:21555515

Picazo-Juárez, Giovanni; Romero-Suárez, Silvina; Nieto-Posadas, Andrés; Llorente, Itzel; Jara-Oseguera, Andrés; Briggs, Margaret; McIntosh, Thomas J; Simon, Sidney A; Ladrón-de-Guevara, Ernesto; Islas, León D; Rosenbaum, Tamara

2011-07-15

101

Identification of a Binding Motif in the S5 Helix That Confers Cholesterol Sensitivity to the TRPV1 Ion Channel*  

PubMed Central

The TRPV1 ion channel serves as an integrator of noxious stimuli with its activation linked to pain and neurogenic inflammation. Cholesterol, a major component of cell membranes, modifies the function of several types of ion channels. Here, using measurements of capsaicin-activated currents in excised patches from TRPV1-expressing HEK cells, we show that enrichment with cholesterol, but not its diastereoisomer epicholesterol, markedly decreased wild-type rat TRPV1 currents. Substitutions in the S5 helix, rTRPV1-R579D, and rTRPV1-F582Q, decreased this cholesterol response and rTRPV1-L585I was insensitive to cholesterol addition. Two human TRPV1 variants, with different amino acids at position 585, had different responses to cholesterol with hTRPV1-Ile585 being insensitive to this molecule. However, hTRPV1-I585L was inhibited by cholesterol addition similar to rTRPV1 with the same S5 sequence. In the absence of capsaicin, cholesterol enrichment also inhibited TRPV1 currents induced by elevated temperature and voltage. These data suggest that there is a cholesterol-binding site in TRPV1 and that the functions of TRPV1 depend on the genetic variant and membrane cholesterol content. PMID:21555515

Picazo-Juárez, Giovanni; Romero-Suárez, Silvina; Nieto-Posadas, Andrés; Llorente, Itzel; Jara-Oseguera, Andrés; Briggs, Margaret; McIntosh, Thomas J.; Simon, Sidney A.; Ladrón-de-Guevara, Ernesto; Islas, León D.; Rosenbaum, Tamara

2011-01-01

102

Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.  

PubMed

Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase C? (PLC?) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLC? indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

2015-01-01

103

Unravelling the Mystery of Capsaicin: A Tool to Understand and Treat Pain  

PubMed Central

A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes. PMID:23023032

Brock, Christina; Olesen, Anne Estrup; Andresen, Trine; Nilsson, Matias; Dickenson, Anthony H.

2012-01-01

104

The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli  

Microsoft Academic Search

Capsaicin, the main pungent ingredient in “hot” chili peppers, elicits burning pain by activating specific (vanilloid) receptors on sensory nerve endings. The cloned vanilloid receptor (VR1) is a cation channel that is also activated by noxious heat. Here, analysis of heat-evoked single channel currents in excised membrane patches suggests that heat gates VR1 directly. We also show that protons decrease

Makoto Tominaga; Michael J. Caterina; Annika B. Malmberg; Tobias A. Rosen; Heather Gilbert; Kate Skinner; Brigitte E. Raumann; Allan I. Basbaum; David Julius

1998-01-01

105

Modulation of transient receptor potential vanilloid subtype 1 (TRPV1) and norepinephrine transporters (NET) protect against oxidative stress, cellular injury, and vascular dementia.  

PubMed

Chronic cerebral hypoperfusion (CCH) is a risk factor for the development of vascular dementia (VaD). CCH participates in a negative role in cognitive impairments. Transient receptor potential vanilloid subtype 1 (TRPV1) participates in cognition, ischemic damage and neuroprotection. Selective norepinephrine transporter (NET) inhibitors have a role in cognitive dysfunction and oxidative stress. The role of TRPV1 and NET in CCH induced VaD is still unknown. The present study has been structured to investigate the role of vanillin; a selective agonist of TRPV1 as well as atomoxetine; a selective NET inhibitor in CCH induced VaD in mice. Permanent bilateral common carotid arteries ligation or two vessel occlusion (2VO) technique was used to induce a stage of chronic cerebral hypoperfusion in mice. 2VO animals have shown significant impairment of locomotion (Actophotometer), motor coordination (Rota rod), learning and memory (Morris water maze). 2VO animals have shown significant reduction in brain catalase, glutathione, and superoxide dismutase, with significant increase in brain infarct size (TTC staining), malondialdehyde and acetyl cholinesterase-AChE activity. Whereas, administration of vanillin as well as atomoxetine has significantly attenuated 2VO induced impaired locomotion, motor coordination, learning and memory, brain damage, brain oxidative stress and higher AChE activity. It may be concluded that 2VO induced CCH has elicited VaD, which was attenuated by vanillin and atomoxetine. Thus, modulators of vanilloid receptors and norepinephrine transporter may be explored further for their benefits in CCH induced VaD. PMID:24597602

Gupta, Surbhi; Sharma, Bhupesh; Singh, Prabhat; Sharma, Brij Mohan

2014-05-01

106

A Randomised Trial Evaluating the Effects of the TRPV1 Antagonist SB705498 on Pruritus Induced by Histamine, and Cowhage Challenge in Healthy Volunteers  

PubMed Central

Background Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel widely expressed in skin tissues, and peripheral sensory nerve fibres. Activation of TRPV1 releases neuropeptides; the resulting neurogenic inflammation is believed to contribute to the development of pruritus. A TRPV1 antagonist has the potential to perform as an anti-pruritic agent. SB705498 is a TRPV1 antagonist that has demonstrated in vitro activity against cloned TRPV1 human receptors and when orally administered has demonstrated pharmacodynamic activity in animal models and clinical studies. Objectives To select a topical dose of SB705498 using the TRPV1 agonist capsaicin; to confirm engagement of the TRPV1 antagonistic action of SB705498 and assess whether the dose selected has an effect on itch induced by two challenge agents. Methods A clinical study was conducted in 16 healthy volunteers to assess the effects of 3 doses of SB705498 on skin flare induced by capsaicin. Subjects with a robust capsaicin response were chosen to determine if the selected topical formulation of SB705498 had an effect on challenge agent induced itch. Results Following capsaicin challenge the greatest average reduction in area of flare was seen for the 3% formulation. This dose was selected for further investigation. Itch intensity induced by two challenge agents (cowhage and histamine) was assessed on the Computerised Visual Analogue Scale. The difference in average itch intensity (Weighted Mean Over 15 Mins) between the 3% dose of SB705498 and placebo for the cowhage challenge was ?0.64, whilst the histamine challenge showed on average a ?4.65 point change. Conclusions The 3% topical formulation of SB705498 cream was clinically well tolerated and had target specific pharmacodynamic activity. However there were no clinically significant differences on pruritus induced by either challenge agent in comparison to placebo. SB705498 is unlikely to be of symptomatic benefit for histaminergic or non-histaminergic induced itch. Trial Registration ClinicalTrials.gov NCT01673529 PMID:25047038

Gibson, Rachel A.; Robertson, Jon; Mistry, Harshna; McCallum, Stewart; Fernando, Disala; Wyres, Melody; Yosipovitch, Gil

2014-01-01

107

[TRPV1 in neuropathic pain: from animal models to therapeutical prospects].  

PubMed

Since its cloning in 1997, functional and structural studies of TRPV1 have led to an improvement in our understanding of the mechanisms that underlie the transduction of noxious thermal and mechanical stimuli by sensory neurons. Because of its role in inflammatory processes and nociceptive pathways, TRPV1 has become an important target for neuropathic pain relief. Models of painful small-fiber sensory neuropathy were developed and several laboratories have progressed in the conception of TRPV1 agonists and antagonists. Patch and cream containing capsaicin, the most famous TRPV1 agonist, are commercialized to relieve neuropathic pain. Others agonists and TRPV1 antagonists are tested in clinical trials and new agents, "TRPV1 modulators", with fewer side effects are currently developed in experimental studies. PMID:23859514

Danigo, Aurore; Magy, Laurent; Demiot, Claire

2013-01-01

108

Different types of toxins targeting TRPV1 in pain.  

PubMed

The transient receptor potential vanilloid 1(TRPV1) channels are members of the transient receptor potential (TRP) superfamily. Members of this family are expressed in primary sensory neurons and are best known for their role in nociception and sensory transmission. Multiple painful stimuli can activate these channels. In this review, we discussed the mechanisms of different types of venoms that target TRPV1, such as scorpion venom, botulinum neurotoxin, spider toxin, ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning (NSP). Some of these toxins activate TRPV1; however, some do not. Regardless of TRPV1 inhibition or activation, they occur through different pathways. For example, BoNT/A decreases TRPV1 expression levels by blocking TRPV1 trafficking to the plasma membrane, although the exact mechanism is still under debate. Vanillotoxins from tarantula (Psalmopoeus cambridgei) are proposed to activate TRPV1 via interaction with a region of TRPV1 that is homologous to voltage-dependent ion channels. Here, we offer a description of the present state of knowledge for this complex subject. PMID:23732125

Min, Jia-Wei; Liu, Wan-Hong; He, Xiao-Hua; Peng, Bi-Wen

2013-09-01

109

On the Mechanism of TBA Block of the TRPV1 Channel  

PubMed Central

The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data. PMID:17369424

Oseguera, Andrés Jara; Islas, León D.; García-Villegas, Refugio; Rosenbaum, Tamara

2007-01-01

110

A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid.  

PubMed

The vanilloid receptor transient receptor potential type V1 (TRPV1) integrates responses to multiple stimuli, such as capsaicin, acid, heat, and endovanilloids and plays an important role in the transmission of inflammatory pain. Here, we report the identification and in vitro characterization of A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel, potent, and selective TRPV1 antagonist. A-425619 was found to potently block capsaicin-evoked increases in intracellular calcium concentrations in HEK293 cells expressing recombinant human TRPV1 receptors (IC50 = 5 nM). A-425619 showed similar potency (IC50 = 3-4 nM) to block TRPV1 receptor activation by anandamide and N-arachidonoyl-dopamine. Electrophysiological experiments showed that A-425619 also potently blocked the activation of native TRPV1 channels in rat dorsal root ganglion neurons (IC50 = 9 nM). When compared with other known TRPV1 antagonists, A-425619 exhibited superior potency in blocking both naive and phorbol ester-sensitized TRPV1 receptors. Like capsazepine, A-425619 demonstrated competitive antagonism (pA2 = 2.5 nM) of capsaicin-evoked calcium flux. Moreover, A-425619 was 25- to 50-fold more potent than capsazepine in blocking TRPV1 activation. A-425619 showed no significant interaction with a wide range of receptors, enzymes, and ion channels, indicating a high degree of selectivity for TRPV1 receptors. These data show that A-425619 is a structurally novel, potent, and selective TRPV1 antagonist. PMID:15837819

El Kouhen, Rachid; Surowy, Carol S; Bianchi, Bruce R; Neelands, Torben R; McDonald, Heath A; Niforatos, Wende; Gomtsyan, Arthur; Lee, Chih-Hung; Honore, Prisca; Sullivan, James P; Jarvis, Michael F; Faltynek, Connie R

2005-07-01

111

Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation.  

PubMed

Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs). Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of ?7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function. PMID:21949864

Canetta, Sarah E; Luca, Edlira; Pertot, Elyse; Role, Lorna W; Talmage, David A

2011-01-01

112

TRPV1: A Target for Next Generation Analgesics  

PubMed Central

Transient Receptor Potential Vanilloid 1 (TRPV1) is a Ca2+ permeant non-selective cation channel expressed in a subpopulation of primary afferent neurons. TRPV1 is activated by physical and chemical stimuli. It is critical for the detection of nociceptive and thermal inflammatory pain as revealed by the deletion of the TRPV1 gene. TRPV1 is distributed in the peripheral and central terminals of the sensory neurons and plays a role in initiating action potentials at the nerve terminals and modulating neurotransmitter release at the first sensory synapse, respectively. Distribution of TRPV1 in the nerve terminals innervating blood vessels and in parts of the CNS that are not subjected to temperature range that is required to activate TRPV1 suggests a role beyond a noxious thermal sensor. Presently, TRPV1 is being considered as a target for analgesics through evaluation of different antagonists. Here, we will discuss the distribution and the functions of TRPV1, potential use of its agonists and antagonists as analgesics and highlight the functions that are not related to nociceptive transmission that might lead to adverse effects. PMID:19305794

Premkumar, Louis S; Sikand, Parul

2008-01-01

113

Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines.  

PubMed

The flavonoid vitexin (1) is a flavone C-glycoside (apigenin-8-C-?-D-glucopyranoside) present in several medicinal and other plants. Plant extracts containing 1 are reported to possess antinociceptive, anti-inflammatory, and antioxidant activities. However, the only evidence that 1 exhibits antinociceptive activity was demonstrated in the acetic acid-induced writhing model. Therefore, the analgesic effects and mechanisms of 1 were evaluated. In the present investigation, intraperitoneal treatment with 1 dose-dependently inhibited acetic acid-induced writhing. Furthermore, treatment with 1 also inhibited pain-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), capsaicin (an agonist of transient receptor potential vanilloid 1, TRPV1), and both phases of the formalin test. It was also observed that inhibition of carrageenan-, capsaicin-, and chronic CFA-induced mechanical and thermal hyperalgesia occurred. Regarding the antinociceptive mechanisms of 1, it prevented the decrease of reduced glutathione levels, ferric-reducing ability potential, and free-radical scavenger ability, inhibited the production of hyperalgesic cytokines such as TNF-?, IL-1?, IL-6, and IL-33, and up-regulated the levels of the anti-hyperalgesic cytokine IL-10. These results demonstrate that 1 exhibits an analgesic effect in a variety of inflammatory pain models by targeting TRPV1 and oxidative stress and by modulating cytokine production. PMID:23742617

Borghi, Sergio M; Carvalho, Thacyana T; Staurengo-Ferrari, Larissa; Hohmann, Miriam S N; Pinge-Filho, Phileno; Casagrande, Rubia; Verri, Waldiceu A

2013-06-28

114

Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.  

PubMed

The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (? 43°C), acidic pH (< 6), and endogenous lipids including N-arachidonoyl dopamine (NADA). Antagonists that block all modes of TRPV1 activation elicit hyperthermia. To identify efficacious TRPV1 antagonists that do not affect temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain. PMID:22570364

Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

2012-08-01

115

Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura  

PubMed Central

Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology. PMID:22971321

2012-01-01

116

Inhibitory effect of Iboga-type indole alkaloids on capsaicin-induced contraction in isolated mouse rectum.  

PubMed

Voacanga africana (Apocynaceae) is used as an anti-diarrheal medicine in West Africa. In the present study, we investigated the effect of an extract of V. africana and its constituents on smooth muscle contraction induced by capsaicin in mouse rectum, where transient receptor potential vanilloid type 1 (TRPV1)-immunoreactive fibers are abundant. Methanol and alkaloid extracts of the root bark of V. africana were found to inhibit capsaicin-induced contraction in a dose-dependent manner (30-300 ?g/ml). Major constituents isolated from the alkaloid extract were then studied for their effects on the capsaicin-induced contraction. The main active constituents were found to be Iboga-type alkaloids, including voacangine (1), 3-oxovoacangine (2), voacristine (3), and (7?)-voacangine hydroxyindolenine (4). The voacangine concentration dependently (3-100 ?M) inhibited the capsaicin-induced contraction. The capsaicin-induced contraction was almost completely inhibited by the TRPV1 antagonist, N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC). On the other hand, the Iboga-type alkaloids did not inhibit the contractions induced by 3 ?M acetylcholine and 300 ?M nicotine. These results suggest that Iboga-type alkaloids isolated from V. africana inhibit capsaicin-induced contraction in the mouse rectum, possibly via the inhibition of a TRPV1-mediated pathway. This inhibition may be involved in the anti-diarrheal effect of V. africana. PMID:21042867

Lo, Mee Wah; Matsumoto, Kenjiro; Iwai, Masumi; Tashima, Kimihito; Kitajima, Mariko; Horie, Syunji; Takayama, Hiromitsu

2011-01-01

117

Allyl isothiocyanate sensitizes TRPV1 to heat stimulation.  

PubMed

The powerful plant-derived irritant allyl isothiocyanate (AITC, aka mustard oil) induces hyperalgesia to heat in rodents and humans through mechanisms that are not yet fully understood. It is generally believed that AITC activates the broadly tuned chemosensory cation channel transient receptor potential cation channel subfamily A member 1 (TRPA1), triggering an inflammatory response that sensitizes the heat sensor transient receptor potential cation channel subfamily V member 1 (TRPV1). In the view of recent data demonstrating that AITC can directly activate TRPV1, we here explored the possibility that this compound sensitizes TRPV1 to heat stimulation in a TRPA1-independent manner. Patch-clamp recordings and intracellular Ca(2+) imaging experiments in HEK293T cells over-expressing mouse TRPV1 revealed that the increase in channel activation induced by heating is larger in the presence of AITC than in control conditions. The analysis of the effects of AITC and heat on the current-voltage relationship of TRPV1 indicates that the mechanism of sensitization is based on additive shifts of the voltage dependence of activation towards negative voltages. Finally, intracellular Ca(2+) imaging experiments in mouse sensory neurons isolated from Trpa1 KO mice yielded that AITC enhances the response to heat, specifically in the subpopulation expressing TRPV1. Furthermore, this effect was strongly reduced by the TRPV1 inhibitor capsazepine and virtually absent in neurons isolated from double Trpa1/Trpv1 KO mice. Taken together, these findings demonstrate that TRPV1 is a locus for cross sensitization between AITC and heat in sensory neurons and may help explaining, at least in part, the role of this channel in AITC-induced hyperalgesia to heat. PMID:23955021

Alpizar, Yeranddy A; Boonen, Brett; Gees, Maarten; Sanchez, Alicia; Nilius, Bernd; Voets, Thomas; Talavera, Karel

2014-03-01

118

Capsaicin affects brain function in a model of hepatic encephalopathy associated with fulminant hepatic failure in mice  

PubMed Central

Background and purpose: Hepatic encephalopathy is a neuropsychiatric syndrome caused by liver failure. In view of the effects of cannabinoids in a thioacetamide-induced model of hepatic encephalopathy and liver disease and the beneficial effect of capsaicin (a TRPV1 agonist) in liver disease, we assumed that capsaicin may also affect hepatic encephalopathy. Experimental approach: Fulminant hepatic failure was induced in mice by thioacetamide and 24 h later, the animals were injected with one of the following compound(s): 2-arachidonoylglycerol (CB1, CB2 and TRPV1 receptor agonist); HU308 (CB2 receptor agonist), SR141716A (CB1 receptor antagonist); SR141716A+2-arachidonoylglycerol; SR144528 (CB2 receptor antagonist); capsaicin; and capsazepine (TRPV1 receptor agonist and antagonist respectively). Their neurological effects were evaluated on the basis of activity in the open field, cognitive function in an eight-arm maze and a neurological severity score. The mice were killed 3 or 14 days after thioacetamide administration. 2-arachidonoylglycerol and 5-hydroxytryptamine (5-HT) levels were determined by gas chromatography-mass spectrometry and high-performance liquid chromatography with electrochemical detection, respectively. Results: Capsaicin had a neuroprotective effect in this animal model as shown by the neurological score, activity and cognitive function. The effect of capsaicin was blocked by capsazepine. Thioacetamide induced astrogliosis in the hippocampus and the cerebellum and raised brain 5-hydroxytryptamine levels, which were decreased by capsaicin, SR141716A and HU-308. Thioacetamide lowered brain 2-arachidonoylglycerol levels, an effect reversed by capsaicin. Conclusions: Capsaicin improved both liver and brain dysfunction caused by thioacetamide, suggesting that both the endocannabinoid and the vanilloid systems play important roles in hepatic encephalopathy. Modulation of these systems may have therapeutic value. PMID:19764982

Avraham, Y; Grigoriadis, NC; Magen, I; Poutahidis, T; Vorobiav, L; Zolotarev, O; Ilan, Y; Mechoulam, R; Berry, EM

2009-01-01

119

In vitro hepatic and skin metabolism of capsaicin.  

PubMed

On the basis of the ability of capsaicin to activate the transient receptor potential vanilloid 1 receptor (TRPV1) expressed in nociceptive sensory neurons, topical and injectable high-concentration formulations are being developed as potential treatments for various pain syndromes. As much of the published literature on capsaicin is based on pepper extracts, which are typically a mixture of capsaicin and other capsaicinoids (including norhydrocapsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin), the purpose of this investigation was to study the in vitro metabolism of pure capsaicin. The metabolism of capsaicin was similar in human, rat, and dog microsomes and S9 fractions. In these assays, three major metabolites were detected and identified as 16-hydroxycapsaicin, 17-hydroxycapsaicin, and 16,17-dehydrocapsaicin. In addition to these three metabolites, rat microsomes and S9 fractions also produced vanillylamine and vanillin. Biotransformation of capsaicin was slow in human skin in vitro, with the majority of the applied capsaicin remaining unchanged and a small fraction being metabolized to vanillylamine and vanillic acid. These data suggest that the metabolism of capsaicin by cytochrome P450 enzymes in skin is minimal, relative to hepatic metabolism. PMID:18180272

Chanda, Sanjay; Bashir, Mohammad; Babbar, Sunita; Koganti, Aruna; Bley, Keith

2008-04-01

120

Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels  

PubMed Central

Cnidarian envenomations cause a burning-pain sensation of which the underlying mechanisms are unknown. Activation of TRPV1, a non-selective cation channel expressed in nociceptive neurons, leads to cell depolarisation and pain. Here, we show in vitro and in vivo evidence for desensitization-dependent TRPV1 activation in cnidarian envenomations. Cnidarian venom induced a nociceptive reactivity, comparable to capsaicin, in laboratory rats, which could be reduced by the selective TRPV1 antagonist, BCTC. These findings are the first to explain at least part of the symptomology of cnidarian envenomations and provide insights into the design of more effective treatments for this global public health problem. PMID:17010344

Cuypers, Eva; Yanagihara, Angel; Karlsson, Evert; Tytgat, Jan

2007-01-01

121

Activity and Ca(2+) regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons.  

PubMed

TRPV1 channels are gated by a variety of thermal, chemical, and mechanical stimuli. We used optical recording of Ca(2+) influx through TRPV1 to measure activity and mobility of single TRPV1 molecules in isolated dorsal root ganglion neurons and cell lines. The opening of single TRPV1 channels produced sparklets, representing localized regions of elevated Ca(2+). Unlike sparklets reported for L-type Ca(2+) channels, TRPV4 channels, and AchR channels, TRPV1 channels diffused laterally in the plasma membrane as they gated. Mobility was highly variable from channel-to-channel and, to a smaller extent, from cell to cell. Most surprisingly, we found that mobility decreased upon channel activation by capsaicin, but only in the presence of extracellular Ca(2+). We propose that decreased mobility of open TRPV1 could act as a diffusion trap to concentrate channels in cell regions with high activity. PMID:25569155

Senning, Eric N; Gordon, Sharona E

2014-01-01

122

Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis.  

PubMed

This study aimed at determining the thermoregulatory phenotype of mice lacking transient receptor potential vanilloid-1 (TRPV1) channels. We used Trpv1 knockout (KO) mice and their genetically unaltered littermates to study diurnal variations in deep body temperature (T(b)) and thermoeffector activities under basal conditions, as well as thermoregulatory responses to severe heat and cold. Only subtle alterations were found in the basal T(b) of Trpv1 KO mice or in their T(b) responses to thermal challenges. The main thermoregulatory abnormality of Trpv1 KO mice was a different pattern of thermoeffectors used to regulate T(b). On the autonomic side, Trpv1 KO mice were hypometabolic (had a lower oxygen consumption) and hypervasoconstricted (had a lower tail skin temperature). In agreement with the enhanced skin vasoconstriction, Trpv1 KO mice had a higher thermoneutral zone. On the behavioral side, Trpv1 KO mice preferred a lower ambient temperature and expressed a higher locomotor activity. Experiments with pharmacological TRPV1 agonists (resiniferatoxin and anandamide) and a TRPV1 antagonist (AMG0347) confirmed that TRPV1 channels located outside the brain tonically inhibit locomotor activity. With age (observed for up to 14 months), the body mass of Trpv1 KO mice exceeded that of controls, sometimes approaching 60 g. In summary, Trpv1 KO mice possess a distinct thermoregulatory phenotype, which is coupled with a predisposition to age-associated overweight and includes hypometabolism, enhanced skin vasoconstriction, decreased thermopreferendum, and hyperkinesis. The latter may be one of the primary deficiencies in Trpv1 KO mice. We propose that TRPV1-mediated signals from the periphery tonically suppress the general locomotor activity. PMID:21289181

Garami, Andras; Pakai, Eszter; Oliveira, Daniela L; Steiner, Alexandre A; Wanner, Samuel P; Almeida, M Camila; Lesnikov, Vladimir A; Gavva, Narender R; Romanovsky, Andrej A

2011-02-01

123

Transient receptor potential vanilloid 1 is expressed in human cytotrophoblasts: Induction of cell apoptosis and impairment of syncytialization.  

PubMed

The normal development of placenta relies essentially on a balanced proliferation, differentiation and apoptosis of cytotrophoblasts. These processes are tightly regulated by several hormones, cytokines, lipids and other molecules and anomalies in these events are associated with gestational complications. The cation channel transient receptor potential vanilloid 1 (TRPV1) is expressed in several organs and tissues and it participates in cellular events like nociception, inflammation and cell death. However, the expression and importance of this receptor in human placenta still remains unknown. In this work, we found that TRPV1 is expressed in human cytotrophoblasts and syncytiotrophoblasts. Furthermore, the TRPV1 agonists capsaicin and anandamide decreased cytotrophoblast viability and induced morphological alterations, such as chromatin condensation and fragmentation, which suggest the occurrence of apoptosis. Also, both TRPV1 agonists induced a loss of mitochondrial membrane potential and an increase of caspase 3/7 activity and production of reactive species of oxygen and nitrogen. Furthermore, capsaicin (10?M) impaired the spontaneous in vitro differentiation of cytotrophoblasts into syncytiotrophoblasts by triggering TRPV1, as observed by the decrease in placental alkaline phosphatase activity and in human chorionic gonadotropin secretion. On the other hand, anandamide decreased placental alkaline phosphatase activity via a TRPV1-independent mechanism but did not influence the secretion of human chorionic gonadotropin. In conclusion, we showed that TRPV1 is expressed in human cytotrophoblasts and syncytiotrophoblasts and also reported the involvement of this receptor in cytotrophoblast apoptosis and differentiation. PMID:25450464

Costa, M A; Fonseca, B M; Keating, E; Teixeira, N A; Correia-da-Silva, G

2014-12-01

124

Prolactin regulates TRPV1, TRPA1, and TRPM8 in sensory neurons in a sex-dependent manner: Contribution of prolactin receptor to inflammatory pain.  

PubMed

Prolactin (PRL) is a hormone produced in the anterior pituitary but also synthesized extrapituitary where it can influence diverse cellular processes, including inflammatory responses. Females experience greater pain in certain inflammatory conditions, but the contribution of the PRL system to sex-dependent inflammatory pain is unknown. We found that PRL regulates transient receptor potential (TRP) channels in a sex-dependent manner in sensory neurons. At >20 ng/ml, PRL sensitizes TRPV1 in female, but not male, neurons. This effect is mediated by PRL receptor (PRL-R). Likewise, TRPA1 and TRPM8 were sensitized by 100 ng/ml PRL only in female neurons. We showed that complete Freund adjuvant (CFA) upregulated PRL levels in the inflamed paw of both male and female rats, but levels were higher in females. In contrast, CFA did not change mRNA levels of long and short PRL-R in the dorsal root ganglion or spinal cord. Analysis of PRL and PRL-R knockout (KO) mice demonstrated that basal responses to cold stimuli were only altered in females, and with no significant effects on heat and mechanical responses in both sexes. CFA-induced heat and cold hyperalgesia were not changed in PRL and PRL-R KO compared with wild-type (WT) males, whereas significant reduction of heat and cold post-CFA hyperalgesia was detected in PRL and PRL-R KO females. Attenuation of CFA-induced mechanical allodynia was observed in both PRL and PRL-R KO females and males. Thermal hyperalgesia in PRL KO females was restored by administration of PRL into hindpaws. Overall, we demonstrate a sex-dependent regulation of peripheral inflammatory hyperalgesia by the PRL system. PMID:24022869

Patil, Mayur J; Ruparel, Shivani B; Henry, Michael A; Akopian, Armen N

2013-11-01

125

Prolactin regulates TRPV1, TRPA1, and TRPM8 in sensory neurons in a sex-dependent manner: Contribution of prolactin receptor to inflammatory pain  

PubMed Central

Prolactin (PRL) is a hormone produced in the anterior pituitary but also synthesized extrapituitary where it can influence diverse cellular processes, including inflammatory responses. Females experience greater pain in certain inflammatory conditions, but the contribution of the PRL system to sex-dependent inflammatory pain is unknown. We found that PRL regulates transient receptor potential (TRP) channels in a sex-dependent manner in sensory neurons. At >20 ng/ml, PRL sensitizes TRPV1 in female, but not male, neurons. This effect is mediated by PRL receptor (PRL-R). Likewise, TRPA1 and TRPM8 were sensitized by 100 ng/ml PRL only in female neurons. We showed that complete Freund adjuvant (CFA) upregulated PRL levels in the inflamed paw of both male and female rats, but levels were higher in females. In contrast, CFA did not change mRNA levels of long and short PRL-R in the dorsal root ganglion or spinal cord. Analysis of PRL and PRL-R knockout (KO) mice demonstrated that basal responses to cold stimuli were only altered in females, and with no significant effects on heat and mechanical responses in both sexes. CFA-induced heat and cold hyperalgesia were not changed in PRL and PRL-R KO compared with wild-type (WT) males, whereas significant reduction of heat and cold post-CFA hyperalgesia was detected in PRL and PRL-R KO females. Attenuation of CFA-induced mechanical allodynia was observed in both PRL and PRL-R KO females and males. Thermal hyperalgesia in PRL KO females was restored by administration of PRL into hindpaws. Overall, we demonstrate a sex-dependent regulation of peripheral inflammatory hyperalgesia by the PRL system. PMID:24022869

Patil, Mayur J.; Ruparel, Shivani B.; Henry, Michael A.

2013-01-01

126

Asymmetric synthesis and receptor activity of chiral simplified resiniferatoxin (sRTX) analogues as transient receptor potential vanilloid 1 (TRPV1) ligands.  

PubMed

The chiral isomers of the two potent simplified RTX-based vanilloids, compounds 2 and 3, were synthesized employing highly enantioselective PTC alkylation and evaluated as hTRPV1 ligands. The analysis indicated that the R-isomer was the eutomer in binding affinity and functional activity. The agonism of compound 2R was comparable to that of RTX. Docking analysis of the chiral isomers of 3 suggested the basis for its stereospecific activity and the binding mode of 3R. PMID:24321344

Kim, Myeong Seop; Ki, Yooran; Ahn, Song Yeon; Yoon, Suyoung; Kim, Sung-Eun; Park, Hyeung-Geun; Sun, Wei; Son, Karam; Cui, Minghua; Choi, Sun; Pearce, Larry V; Esch, Timothy E; Deandrea-Lazarus, Ian A; Blumberg, Peter M; Lee, Jeewoo

2014-01-01

127

Coarse Architecture of the Transient Receptor Potential Vanilloid 1 (TRPV1) Ion Channel Determined by Fluorescence Resonance Energy Transfer*  

PubMed Central

The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane. PMID:23965996

De-la-Rosa, Víctor; Rangel-Yescas, Gisela E.; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D.

2013-01-01

128

Phenylarsine oxide as a redox modulator of transient receptor potential vanilloid type 1 channel function.  

PubMed

Transient receptor potential vanilloid type 1 (TRPV1) channels are capable of detecting and integrating noxious stimuli and play an important role in nociceptor activation and sensitization. It has been demonstrated that oxidizing agents are capable of positively modulating (sensitizing) the TRPV1 channel. The present study investigates the ability of the thiol-oxidizing agent phenylarsine oxide (PAO) to modulate TRPV1 currents under voltage-clamp conditions. We assessed the ability of PAO to modulate both proton- and capsaicin-activated currents mediated by recombinant human TRPV1 channels as well as native rat and human TRPV1 channels in dorsal root ganglion (DRG) neurons. Experiments with other oxidizing and reducing agents having various membrane-permeating properties supported the intracellular oxidizing mechanism of PAO modulation. The PAO modulation of proton-activated currents was consistent across the cell types studied, with an increase in current across the proton concentrations studied. PAO modulation of the capsaicin-activated current in hTRPV1/Chinese hamster ovary cells consisted of potentiation of the current elicited with low capsaicin concentrations and inhibition of the current at higher concentrations. This same effect was seen with these recombinant cells in calcium imaging experiments and with native TRPV1 channels in rat DRG neurons. Contrary to this, currents in human DRG neurons were potentiated at all capsaicin concentrations tested after PAO treatment. These results could indicate important differences in the reduction-oxidation modulation of human TRPV1 channels in a native cellular environment. © 2014 Wiley Periodicals, Inc. PMID:25250537

Carlin, Kevin P; Wu, Gang; Patel, Aniket; Crumley, Gregg; Ilyin, Victor I

2015-02-01

129

The Basal Thermal Sensitivity of the TRPV1 Ion Channel Is Determined by PKC?II  

PubMed Central

Peripheral nociceptors are excited by the activation of membrane receptors and ion channels. The heat-sensitive TRPV1 ion channel responds to various noxious chemical and thermal stimuli, causing pain and itch. Here, we show that TRPV1 is coexpressed with PKC?II in a subset of mouse sensory neurons and that, in these neurons, TRPV1 binds directly to PKC?II, leading to the activation and translocation of PKC?II. Activated PKC?II, in turn, significantly increases the responsiveness of TRPV1 by phosphorylating Thr705. The heat sensitivity of TRPV1 is almost eliminated by either knocking down PKC?II or mutating Thr705; however, neither of these manipulations affects the potentiation of TRPV1 caused by the activation of PKC?. PKC?II thus acts as an auxiliary subunit of TRPV1 by forming a population-dependent TRPV1 ion channel complex controlling the sensitivity of TRPV1 and setting the threshold for pain and itch. PMID:24920628

Li, Lin; Hasan, Raquibul

2014-01-01

130

Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice.  

PubMed

We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists. PMID:25529549

Luvisetto, Siro; Vacca, Valentina; Cianchetti, Carlo

2015-02-01

131

Inhibitory effect of Iboga-type indole alkaloids on capsaicin-induced contraction in isolated mouse rectum  

Microsoft Academic Search

Voacanga africana (Apocynaceae) is used as an anti-diarrheal medicine in West Africa. In the present study, we investigated the effect of an\\u000a extract of V. africana and its constituents on smooth muscle contraction induced by capsaicin in mouse rectum, where transient receptor potential\\u000a vanilloid type 1 (TRPV1)-immunoreactive fibers are abundant. Methanol and alkaloid extracts of the root bark of V.

Mee Wah Lo; Kenjiro Matsumoto; Masumi Iwai; Kimihito Tashima; Mariko Kitajima; Syunji Horie; Hiromitsu Takayama

2011-01-01

132

Analysis of Transient Receptor Potential Ankyrin 1 (TRPA1) in Frogs and Lizards Illuminates Both Nociceptive Heat and Chemical Sensitivities and Coexpression with TRP Vanilloid 1 (TRPV1) in Ancestral Vertebrates*  

PubMed Central

Transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (V1) perceive noxious temperatures and chemical stimuli and are involved in pain sensation in mammals. Thus, these two channels provide a model for understanding how different genes with similar biological roles may influence the function of one another during the course of evolution. However, the temperature sensitivity of TRPA1 in ancestral vertebrates and its evolutionary path are unknown as its temperature sensitivities vary among different vertebrate species. To elucidate the functional evolution of TRPA1, TRPA1s of the western clawed (WC) frogs and green anole lizards were characterized. WC frog TRPA1 was activated by heat and noxious chemicals that activate mammalian TRPA1. These stimuli also activated native sensory neurons and elicited nocifensive behaviors in WC frogs. Similar to mammals, TRPA1 was functionally co-expressed with TRPV1, another heat- and chemical-sensitive nociceptive receptor, in native sensory neurons of the WC frog. Green anole TRPA1 was also activated by heat and noxious chemical stimulation. These results suggest that TRPA1 was likely a noxious heat and chemical receptor and co-expressed with TRPV1 in the nociceptive sensory neurons of ancestral vertebrates. Conservation of TRPV1 heat sensitivity throughout vertebrate evolution could have changed functional constraints on TRPA1 and influenced the functional evolution of TRPA1 regarding temperature sensitivity, whereas conserving its noxious chemical sensitivity. In addition, our results also demonstrated that two mammalian TRPA1 inhibitors elicited different effect on the TRPA1s of WC frogs and green anoles, which can be utilized to clarify the structural bases for inhibition of TRPA1. PMID:22791718

Saito, Shigeru; Nakatsuka, Kazumasa; Takahashi, Kenji; Fukuta, Naomi; Imagawa, Toshiaki; Ohta, Toshio; Tominaga, Makoto

2012-01-01

133

Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels  

PubMed Central

The pathogenesis of bone resorption in ?-thalassemia major is multifactorial and our understanding of the underlying molecular and cellular mechanisms remains incomplete. Considering the emerging importance of the endocannabinoid/endovanilloid system in bone metabolism, it may be instructive to examine a potential role for this system in the development of osteoporosis in patients with ?-thalassemia major and its relationship with iron overload and iron chelation therapy. This study demonstrates that, in thalassemic-derived osteoclasts, tartrate-resistant acid phosphatase expression inversely correlates with femoral and lumbar bone mineral density, and directly correlates with ferritin levels and liver iron concentration. The vanilloid agonist resiniferatoxin dramatically reduces cathepsin K levels and osteoclast numbers in vitro, without affecting tartrate-resistant acid phosphatase expression. The iron chelators deferoxamine, deferiprone and deferasirox decrease both tartrate-resistant acid phosphatase and cathepsin K expression, as well as osteoclast activity. Taken together, these data show that transient receptor potential vanilloid type 1 activation/desensitization influences tartrate-resistant acid phosphatase expression and activity, and this effect is dependent on iron, suggesting a pivotal role for iron overload in the dysregulation of bone metabolism in patients with thalassemia major. Our applied pharmacology provides evidence for the potential of iron chelators to abrogate these effects by reducing osteoclast activity. Whether iron chelation therapy is capable of restoring bone health in humans requires further study, but the potential to provide dual benefits for patients with ?-thalassemia major –preventing iron-overload and alleviating associated osteoporotic changes – is exciting. PMID:25216685

Rossi, Francesca; Perrotta, Silverio; Bellini, Giulia; Luongo, Livio; Tortora, Chiara; Siniscalco, Dario; Francese, Matteo; Torella, Marco; Nobili, Bruno; Di Marzo, Vincenzo; Maione, Sabatino

2014-01-01

134

A synergistic effect of simultaneous TRPA1 and TRPV1 activations on vagal pulmonary C-fiber afferents.  

PubMed

Transient receptor potential ankyrin type 1 (TRPA1) and vanilloid type 1 (TRPV1) receptors are coexpressed in vagal pulmonary C-fiber sensory nerves. Because both these receptors are sensitive to a number of endogenous inflammatory mediators, it is conceivable that they can be activated simultaneously during airway inflammation. This study aimed to determine whether there is an interaction between these two polymodal transducers upon simultaneous activation, and how it modulates the activity of vagal pulmonary C-fiber sensory nerves. In anesthetized, spontaneously breathing rats, the reflex-mediated apneic response to intravenous injection of a combined dose of allyl isothiocyanate (AITC, a TRPA1 activator) and capsaicin (Cap, a TRPV1 activator) was ?202% greater than the mathematical sum of the responses to AITC and Cap when they were administered individually. Similar results were also observed in anesthetized mice. In addition, the synergistic effect was clearly demonstrated when the afferent activity of single vagal pulmonary C-fiber afferents were recorded in anesthetized, artificially ventilated rats; C-fiber responses to AITC, Cap and AITC + Cap (in combination) were 0.6 ± 0.1, 0.8 ± 0.1, and 4.8 ± 0.6 impulses/s (n = 24), respectively. This synergism was absent when either AITC or Cap was replaced by other chemical activators of pulmonary C-fiber afferents. The pronounced potentiating effect was further demonstrated in isolated vagal pulmonary sensory neurons using the Ca(2+) imaging technique. In summary, this study showed a distinct positive interaction between TRPA1 and TRPV1 when they were activated simultaneously in pulmonary C-fiber sensory nerves. PMID:25414245

Lin, Yu-Jung; Lin, Ruei-Lung; Ruan, Ting; Khosravi, Mehdi; Lee, Lu-Yuan

2015-02-01

135

Modulation by 17?-estradiol of anandamide vasorelaxation in normotensive and hypertensive rats: a role for TRPV1 but not fatty acid amide hydrolase.  

PubMed

Recent studies suggest that endocannabinoid signaling is modulated by 17?-estradiol (17E?) however it is unclear if this applies to the cardiovascular actions of anandamide, a major endocannabinoid. This study examined the in vitro effects of 17E? on vasorelaxation to anandamide in myograph-mounted small mesenteric arteries obtained from Wistar rats and Spontaneously Hypertensive Rats (SHRs) of both sexes. Treatment with 1?M 17E? but not its enantiomer 17E? significantly enhanced relaxation to anandamide in male Wistar rats. This effect was independent of a functional endothelium but was blocked by the Transient Receptor Potential Vanilloid type 1 (TRPV1) receptor antagonist SB366791 (2?M) or prolonged treatment with the TRPV1 agonist capsaicin (10?M). A TRPV1-dependent potentiation by 17E? was also observed in male SHRs, but not in female Wistar rats or female SHRs. Whilst inhibition of anandamide hydrolysis by 1?M URB597 (an inhibitor of fatty acid amide hydrolase; FAAH) similarly augmented anandamide relaxation in male, but not female, Wistar rats and SHRs, URB597 did not affect the 17E?-induced potentiation. Female SHRs displayed a larger maximal relaxation to anandamide; however sex difference was not found in Wistar rats. We conclude that pharmacological levels of 17E? potentiate mesenteric relaxation to anandamide through mechanisms dependent on TRPV1 receptors but not FAAH-mediated hydrolysis in male Wistar rats and male SHRs. Sexual dimorphism was observed in the modulatory effects of 17E? and URB597, which does not necessarily lead to a greater anandamide response in female rats. PMID:23340220

Ho, W-S V

2013-02-15

136

Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)] [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: jyli04@nankai.edu.cn [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)] [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)

2012-07-20

137

Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons.  

PubMed

Neurotrophin-3 (NT-3) negatively modulates nerve growth factor (NGF) receptor expression and associated nociceptive phenotype in intact neurons, suggesting a beneficial role in treating aspects of neuropathic pain mediated by NGF. We report that NT-3 is effective at suppressing thermal hyperalgesia associated with chronic constriction injury (CCI); however, NT-3 does not alter the mechanical hypersensitivity that also develops with CCI. Thermal hyperalgesia is critically linked to expression and activation of the capsaicin receptor, transient receptor potential vanilloid receptor-1 (TRPV1). Thus, its modulation by NT-3 after CCI was examined. CCI results in elevated TRPV1 expression at both the mRNA and protein levels in predominantly small-to-medium neurons, with the percentage of neurons expressing TRPV1 remaining unchanged at approximately 56%. Attenuation of thermal hyperalgesia mediated by NT-3 correlates with decreased TRPV1 expression such that only approximately 26% of neurons ipsilateral to CCI expressed detectable TRPV1 mRNA. NT-3 effected a decrease in expression of the activated component of the signaling pathway linked to regulation of TRPV1 expression, phospho-p38 MAPK (Ji et al., 2002), in neurons ipsilateral to CCI. Exogenous NT-3 could both prevent the onset of thermal hyperalgesia and reverse established thermal hyperalgesia and elevated TRPV1 expression 1 week after CCI. Continuous infusion is required for suppression of both thermal hyperalgesia and TRPV1 expression, because removal of NT-3 resulted in a prompt reestablishment of the hyperalgesic state and corresponding CCI-associated TRPV1 phenotype. In conclusion, although NGF drives inflammation-associated thermal hyperalgesia via its regulation of TRPV1 expression, NT-3 is now identified as a potent negative modulator of this state. PMID:15659614

Wilson-Gerwing, Tracy D; Dmyterko, Myles V; Zochodne, Douglas W; Johnston, Jayne M; Verge, Valerie M K

2005-01-19

138

Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis  

PubMed Central

The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

2014-01-01

139

Post-operative pain behavior in rats is reduced after single high-concentration capsaicin application.  

PubMed

Surgical procedures associated with tissue injury are often followed by increased sensitivity to innocuous and noxious stimuli in the vicinity of the surgical wound. The aim of this study was to evaluate the role of transient receptor potential vanilloid 1 receptor (TRPV1) containing nociceptors in this process, by their functional inactivation using a high-concentration intradermal injection of capsaicin in a rat plantar incision model. Paw withdrawal responses to mechanical stimuli (von Frey filaments 10-367mN) and to radiant heat applied on plantar skin were tested in animals treated with capsaicin or the vehicle 6 days and 24h before or 2h after the incision was made. In the vehicle-treated animals, mechanical and thermal sensitivity increased significantly 1-96h following the incision. Capsaicin applied 24h before the surgery was most effective and significantly diminished the development of post-incisional mechanical allodynia and hyperalgesia. Thermal hypoalgesia was present in the incised paw after the capsaicin treatment. Capsaicin application 6 days before the incision induced thermal hypoalgesia before the incision but did not prevent completely the thermal hyperalgesia after the incision, while there was also a reduction of mechanical hypersensitivity. Application of the capsaicin injection after the incision showed its first effect at 2h after the injection and at 24h the effect was comparable with the 6 days pretreatment. Our results show an important role of TRPV1-containing nociceptors in the development of post-surgical hypersensitivity and suggest that local, high-concentration capsaicin treatment could be used to reduce it. PMID:16797124

Pospisilova, Eva; Palecek, Jiri

2006-12-01

140

Antinociceptive pharmacology of N-(4-chlorobenzyl)-N'-(4-hydroxy-3-iodo-5-methoxybenzyl) thiourea, a high-affinity competitive antagonist of the transient receptor potential vanilloid 1 receptor.  

PubMed

The transient receptor potential vanilloid 1 receptor (TRPV1) is expressed predominantly in a subset of primary afferent nociceptors. Due to its specific anatomical location and its pivotal role as a molecular integrator for noxious thermal and chemical stimuli, there is considerable interest to develop TRPV1 antagonists for the treatment of pain. Recently, N-(4-chlorobenzyl)-N'-(4-hydroxy-3-iodo-5-methoxybenzyl) thiourea (IBTU) was synthesized, and it was found in vitro to be a high-affinity competitive antagonist of cytoplasmic, but not intracellular, TRPV1. In this study, we examined the in vivo antinociceptive activity of IBTU in several acute and inflammatory pain models in mice. Our emphasis was on nociceptive pathways that are likely mediated by TRPV1, including capsaicin-, noxious heat-, and proton (including inflammation)-induced nociception tests. Capsazepine was used as a positive control in these experiments. IBTU dose-dependently blocked the capsaicin-induced nociception, confirming its antagonism at TRPV1 in vivo. By itself, IBTU produced significant antinociception, because it significantly prolonged the tail-flick latency in a dose-dependent manner. IBTU also blocked both early and late phases of the formalin-induced flinching response as well as acetic acid-induced writhing behavior. Moreover, IBTU inhibited the complete Freund's adjuvant-induced persistent hyperalgesia. Taken together, these data demonstrate that IBTU acts as a TRPV1 antagonist in vivo, and they suggest that it may be of therapeutic use for the treatment of pain. PMID:17312187

Tang, Lei; Chen, Yan; Chen, Zili; Blumberg, Peter M; Kozikowski, Alan P; Wang, Zaijie Jim

2007-05-01

141

Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels  

PubMed Central

The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP, the muscarinic receptor agonist carbachol or the Ca2+-ATPase inhibitor thapsigargin leads to formation of anandamide, and subsequent TRPV1-dependent Ca2+ influx in transfected cells and sensory neurons of rat dorsal root ganglia (DRG). Anandamide metabolism and efflux from the cell tonically limit TRPV1-mediated Ca2+ entry. In DRG neurons, this mechanism was found to lead to TRPV1-mediated currents that were enhanced by selective blockade of anandamide cellular efflux. Thus, endogenous anandamide is formed on stimulation of metabotropic receptors coupled to the phospholipase C/inositol 1,4,5-triphosphate pathway and then signals to TRPV1 channels. This novel intracellular function of anandamide may precede its action at cannabinoid receptors, and might be relevant to its control over neurotransmitter release. PMID:16107881

van der Stelt, Mario; Trevisani, Marcello; Vellani, Vittorio; De Petrocellis, Luciano; Schiano Moriello, Aniello; Campi, Barbara; McNaughton, Peter; Geppetti, Piero; Di Marzo, Vincenzo

2005-01-01

142

Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury  

PubMed Central

Endogenous agonists of transient receptor potential vanilloid-1 (TRPV1) (endovanilloids) are implicated as mediators of lung injury during inflammation. This study tested the hypothesis that endovanilloids produced following lipopolysaccharide (LPS) treatment activate TRPV1 and cause endoplasmic reticulum stress/GADD153 expression in lung cells, representing a mechanistic component of lung injury. The TRPV1 agonist nonivamide induced GADD153 expression and caused cytotoxicity in immortalized and primary human bronchial, bronchiolar/alveolar, and microvascular endothelial cells, proportional to TRPV1 mRNA expression. In CF-1 mice, Trpv1 mRNA was most abundant in the alveoli, and intratracheal nonivamide treatment promoted Gadd153 expression in the alveolar region. Treatment of CF-1 mice with LPS increased Gadd153 in the lung, lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, and lung wet-to-dry weight ratio. Cotreating mice with LPS and the TRPV1 antagonist LJO-328 reduced Gadd153 induction and LDH in BAL but did not inhibit increases in lung wet-to-dry ratio. In Trpv1?/? mice treated with LPS, Gadd153 induction and LDH in BAL were reduced relative to wild-type mice, and the wet-to-dry weight ratios of lungs from both wild-type and Trpv1?/? mice decreased. Organic extracts of blood collected from LPS-treated mice were more cytotoxic to TRPV1-overexpressing cells compared with BEAS-2B cells and extracts from control mice, however, most pure endovanilloids did not produce cytotoxicity in a characteristic TRPV1-dependent manner. Collectively, these data indicate a role for TRPV1, and endogenous TRPV1 agonists, in ER stress and cytotoxicity in lung cells but demonstrate that ER stress and cytotoxicity are not essential for pulmonary edema. PMID:21949157

Thomas, Karen C.; Roberts, Jessica K.; Deering-Rice, Cassandra E.; Romero, Erin G.; Dull, Randal O.; Lee, Jeewoo; Yost, Garold S.

2012-01-01

143

Auto-oxidation Products of Epigallocatechin Gallate Activate TRPA1 and TRPV1 in Sensory Neurons.  

PubMed

The sensation of astringency is elicited by catechins and their polymers in wine and tea. It has been considered that catechins in green tea are unstable and auto-oxidized to induce more astringent taste. Here, we examined how mammalian transient receptor potential V1 (TRPV1) and TRPA1, which are nociceptive sensors, are activated by green tea catechins during the auto-oxidation process. Neither TRPV1 nor TRPA1 could be activated by any of the freshly prepared catechin. When one of the major catechin, epigallocatechin gallate (EGCG), was preincubated for 3h in Hank's balanced salt solution, it significantly activated both TRP channels expressed in HEK293 cells. Even after incubation, other catechins showed much less effects. Results suggest that only oxidative products of EGCG activate both TRPV1 and TRPA1. Dorsal root ganglion (DRG) sensory neurons were also activated by the incubated EGCG through TRPV1 and TRPA1 channels. Liquid chromatography-mass spectrometry revealed that theasinensins A and D are formed during incubation of EGCG. We found that purified theasinensin A activates both TRPV1 and TRPA1, and that it stimulates DRG neurons through TRPV1 and TRPA1 channels. Results suggested a possibility that TRPV1 and TRPA1 channels are involved in the sense of astringent taste of green tea. PMID:25422365

Kurogi, Mako; Kawai, Yasushi; Nagatomo, Katsuhiro; Tateyama, Michihiro; Kubo, Yoshihiro; Saitoh, Osamu

2015-01-01

144

Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor  

Microsoft Academic Search

The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the ``pain'' pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43°C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in

M. J. Caterina; A. Leffler; A. B. Malmberg; W. J. Martin; J. Trafton; K. R. Petersen-Zeitz; M. Koltzenburg; A. I. Basbaum; D. Julius

2000-01-01

145

Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats.  

PubMed

Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is exclusively mediated through TRPV1. Since antagonist-induced hyperthermia is considered a hurdle for developing TRPV1 antagonists as therapeutics, we investigated the possibility of eliminating hyperthermia while maintaining antihyperalgesia. Here, we report four potent and selective TRPV1 modulators with unique in vitro pharmacology profiles (profiles A through D) and their respective effects on body temperature. We found that profile C modulator, (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)acrylamide (AMG8562), blocks capsaicin activation of TRPV1, does not affect heat activation of TRPV1, potentiates pH 5 activation of TRPV1 in vitro, and does not cause hyperthermia in vivo in rats. We further profiled AMG8562 in an on-target (agonist) challenge model, rodent pain models, and tested for its side effects. We show that AMG8562 significantly blocks capsaicin-induced flinching behavior, produces statistically significant efficacy in complete Freund's adjuvant- and skin incision-induced thermal hyperalgesia, and acetic acid-induced writhing models, with no profound effects on locomotor activity. Based on the data shown here, we conclude that it is feasible to modulate TRPV1 in a manner that does not cause hyperthermia while maintaining efficacy in rodent pain models. PMID:18420600

Lehto, Sonya G; Tamir, Rami; Deng, Hong; Klionsky, Lana; Kuang, Rongzhen; Le, April; Lee, Doo; Louis, Jean-Claude; Magal, Ella; Manning, Barton H; Rubino, John; Surapaneni, Sekhar; Tamayo, Nuria; Wang, Tingrong; Wang, Judy; Wang, Jue; Wang, Weiya; Youngblood, Brad; Zhang, Maosheng; Zhu, Dawn; Norman, Mark H; Gavva, Narender R

2008-07-01

146

Quantification of TRPV1 protein levels in rat tissues to understand its physiological roles.  

PubMed

Transient receptor potential subfamily V, member 1 (TRPV1) is a nonselective cation channel expressed in both the peripheral and central nervous systems (CNS). TRPV1 protein levels in rat tissues were determined under normal and pain states using enzyme-linked immunosorbent assay. In naive rats, brain TRPV1 protein concentrations ranged from 1.5 to 4 ng/mg in hippocampus, cortex, hypothalamus, and cerebellum. Rat spinal cord TRPV1 protein levels were 40-50 ng/mg in L1-L5 of the lumbar regions, but increased to 97 ± 9.3 ng/mg toward the end of the lumbar region (L6-S1). In the complete Freund's adjuvant (CFA)-induced inflammatory pain model, TRPV1 protein level significantly increased on both the contralateral (36.5 %, p < 0.05) and ipsilateral (31.4 %, p < 0.05) L4-L6 dorsal root ganglia (DRG). TRPV1 protein levels also increased 33.3 % (p < 0.05) on the ipsilateral sciatic nerve, but no significant change in the lumbar spinal cord of CFA rats. In the monoiodoacetate-induced rat knee joint pain model, TRPV1 protein level was significantly reduced in the ipsilateral L3-L5 DRG (33.3 %, p < 0.01), no significant difference was detected in the lumbar region of the spinal cord. Quantitative determination of TRPV1 protein levels may help to elucidate the TRPV1 physiological roles and regulatory mechanisms in various pain states. PMID:22798269

Han, Ping; Korepanova, Alla V; Vos, Melissa H; Moreland, Robert B; Chiu, Mark L; Faltynek, Connie R

2013-05-01

147

TRPV1 channels in the nucleus of the solitary tract mediate thermal prolongation of the LCR in decerebrate piglets  

PubMed Central

Elevating body temperature or just the temperature of the dorsal medulla by approximately 2 °C prolongs the laryngeal chemoreflex (LCR) in decerebrate neonatal piglets. We tested the hypothesis that transient receptor potential vanilloid 1 (TRPV1) receptors in the nucleus of the solitary tract (NTS) mediate thermal prolongation of the LCR. We studied the effect of a selective TRPV1 receptor antagonist on thermal prolongation of the LCR, and we tested the effect of a TRPV1 agonist on the duration of the LCR under normothermic conditions. We studied 37 decerebrate neonatal piglets between the ages of post-natal days 4 and 7. The TRPV1 receptor antagonist, 5?iodoresiniferatoxin (65 microM/L in 100 nL), blocked thermal prolongation of the LCR when injected bilaterally into the region of the NTS. The TRPV1 agonist, resiniferatoxin (0.65-1.0 mM/L in 100 nL), prolonged the LCR after bilateral injection into the NTS even when the body temperature of each piglet was normal. The effect of the TRPV1 agonists could be blocked by treatment with the GABAA receptor antagonist, bicuculline, whether given intravenously (0.3 mg/kg) or focally injected bilaterally into the NTS (10 mM in 100nL). We conclude that TRPV1 receptors in the NTS mediate thermal prolongation of the LCR. PMID:21276877

Xia, Luxi; Bartlett, Donald; Leiter, J.C.

2011-01-01

148

TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization  

SciTech Connect

Synoviocyte hyperplasia is critical for rheumatoid arthritis, therefore, potentially an important target for therapeutics. It was found in this work that a TRPV1 agonist capsaicin, and acidic solution (pH 5.5) induced increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) and reactive oxygen species (ROS) production in synoviocytes isolated from a rat model of collagen-induced arthritis. The increases in both [Ca{sup 2+}]{sub c} and ROS production were completely abolished in calcium-free buffer or by a TRPV1 antagonist capsazepine. Further experiments revealed that capsaicin and pH 5.5 solution caused mitochondrial membrane depolarization and reduction in cell viability; such effects were inhibited by capsazepine, or the NAD(P)H oxidase inhibitor diphenylene iodonium. Both capsaicin and pH 5.5 buffer induced apoptosis as shown by nuclear condensation and fragmentation. Furthermore, RT-PCR readily detected TRPV1 mRNA expression in the isolated synoviocytes. Taken together, these data indicated that TRPV1 activation triggered synoviocyte death by [Ca{sup 2+}]{sub c} elevation, ROS production, and mitochondrial membrane depolarization.

Hu Fen; Sun Wenwu [Department of Biophysics, School of Physics, Ministry of Education Key Laboratory of Bioactive Materials, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071 (China); Zhao Xiao Ting [Institute of Cell Biology, Beijing Normal University, Beijing 100875 (China); Cui Zongjie [Institute of Cell Biology, Beijing Normal University, Beijing 100875 (China)], E-mail: zjcui@bnu.edu.cn; Yang Wenxiu [Department of Biophysics, The School of Physics, The Ministry of Education Key Laboratory of Bioactive Materials, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071 (China)], E-mail: yangwenx@nankai.edu.cn

2008-05-16

149

Contribution of transient receptor potential vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia.  

PubMed

Endothelin-1 (ET-1) plays an important role in peripheral pain processing. However, the mechanisms of the nociceptive action of ET-1 have not been fully elucidated. In this study, we investigated the contribution of transient receptor potential vanilloid subfamily 1 (TRPV1) to ET-1-induced thermal hyperalgesia. Intraplantar ET-1-induced thermal hyperalgesia was examined by assessing the paw withdrawal latency to noxious heat stimuli. In electrophysiological study, whole-cell patch-clamp recordings were performed to investigate the interaction of ET-1 and TRPV1 using human embryonic kidney 293 (HEK293) cells expressing endothelin type A receptor (ET(A)) and TRPV1. Intraplantar ET-1 (3, 10 and 30 pmol) produced thermal hyperalgesia in a dose-dependent manner. Thermal hyperalgesia was attenuated by the inhibition of ET(A) and protein kinase C (PKC) but not that of ET(B). ET-1-induced thermal hyperalgesia was significantly attenuated in TRPV1-deficient mice compared with that in wild-type mice. In voltage-clamp experiments, 10 nM capsaicin evoked small inward currents in HEK293 cells expressing TRPV1 and ET(A). In the presence of ET-1, capsaicin produced much larger current responses (P<0.05). Mutation at PKC-specific TRPV1 phosphorylation sites (S800A/S502A) and PKC inhibitors inhibited the potentiating effect of ET-1. In addition, ET-1 decreased the temperature threshold for TRPV1 activation in a PKC-dependent manner (from 41.0+/-0.4 degrees C to 32.6+/-0.6 degrees C). In addition, Western blot analysis was also performed to confirm ET-1-induced phosphorylation of TRPV1. Incubation of ET-1 and intraplantar ET-1 evoked phosphorylation of TRPV1 in HEK293 cells expressing TRPV1 and ET(A) and the skin, respectively. These results suggest that the sensitization of TRPV1 activity through an ET(A)-PKC pathway contributes to ET-1-induced thermal hyperalgesia. PMID:18495351

Kawamata, T; Ji, W; Yamamoto, J; Niiyama, Y; Furuse, S; Namiki, A

2008-06-26

150

The Effects of Capsaicin and Capsiate on Energy Balance: Critical Review and Meta-analyses of Studies in Humans  

PubMed Central

Consumption of spicy foods containing capsaicin, the major pungent principle in hot peppers, reportedly promotes negative energy balance. However, many individuals abstain from spicy foods due to the sensory burn and pain elicited by the capsaicin molecule. A potential alternative for nonusers of spicy foods who wish to exploit this energy balance property is consumption of nonpungent peppers rich in capsiate, a recently identified nonpungent capsaicin analog contained in CH-19 Sweet peppers. Capsiate activates transient receptor potential vanilloid subtype 1 (TRPV1) receptors in the gut but not in the oral cavity. This paper critically evaluates current knowledge on the thermogenic and appetitive effects of capsaicin and capsiate from foods and in supplemental form. Meta-analyses were performed on thermogenic outcomes, with a systematic review conducted for both thermogenic and appetitive outcomes. Evidence indicates that capsaicin and capsiate both augment energy expenditure and enhance fat oxidation, especially at high doses. Furthermore, the balance of the literature suggests that capsaicin and capsiate suppress orexigenic sensations. The magnitude of these effects is small. Purposeful inclusion of these compounds in the diet may aid weight management, albeit modestly. PMID:22038945

Ludy, Mary-Jon; Moore, George E.

2012-01-01

151

TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation.  

PubMed

Anandamide (N-arachidonyl ethanolamide, AEA) is an endogenous cannabinoid that is involved in various pathological conditions, including cardiovascular diseases and tumor-angiogenesis. Herein, we tested the involvement of classical cannabinoid receptors (CBRs) and the Ca(2+)-channel transient receptor potential vanilloid 1 (TRPV1) on cellular AEA uptake and its effect on endothelial cell proliferation and network-formation. Uptake of the fluorescence-labeled anandamide (SKM4-45-1) was monitored in human endothelial colony-forming cells (ECFCs) and a human endothelial-vein cell line (EA.hy926). Involvement of the receptors during AEA translocation was determined by selective pharmacological inhibition (AM251, SR144528, CID16020046, SB366791) and molecular interference by TRPV1-selective siRNA-mediated knock-down and TRPV1 overexpression. We show that exclusively TRPV1 contributes essentially to AEA transport into endothelial cells in a Ca(2+)-independent manner. This TRPV1 function is a prerequisite for AEA-induced endothelial cell proliferation and network-formation. Our findings point to a so far unknown moonlighting function of TRPV1 as Ca(2+)-independent contributor/regulator of AEA uptake. We propose TRPV1 as representing a promising target for development of pharmacological therapies against AEA-triggered endothelial cell functions, including their stimulatory effect on tumor-angiogenesis. PMID:25395667

Hofmann, Nicole A; Barth, Sonja; Waldeck-Weiermair, Markus; Klec, Christiane; Strunk, Dirk; Malli, Roland; Graier, Wolfgang F

2014-01-01

152

TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation  

PubMed Central

ABSTRACT Anandamide (N-arachidonyl ethanolamide, AEA) is an endogenous cannabinoid that is involved in various pathological conditions, including cardiovascular diseases and tumor-angiogenesis. Herein, we tested the involvement of classical cannabinoid receptors (CBRs) and the Ca2+-channel transient receptor potential vanilloid 1 (TRPV1) on cellular AEA uptake and its effect on endothelial cell proliferation and network-formation. Uptake of the fluorescence-labeled anandamide (SKM4-45-1) was monitored in human endothelial colony-forming cells (ECFCs) and a human endothelial-vein cell line (EA.hy926). Involvement of the receptors during AEA translocation was determined by selective pharmacological inhibition (AM251, SR144528, CID16020046, SB366791) and molecular interference by TRPV1-selective siRNA-mediated knock-down and TRPV1 overexpression. We show that exclusively TRPV1 contributes essentially to AEA transport into endothelial cells in a Ca2+-independent manner. This TRPV1 function is a prerequisite for AEA-induced endothelial cell proliferation and network-formation. Our findings point to a so far unknown moonlighting function of TRPV1 as Ca2+-independent contributor/regulator of AEA uptake. We propose TRPV1 as representing a promising target for development of pharmacological therapies against AEA-triggered endothelial cell functions, including their stimulatory effect on tumor-angiogenesis. PMID:25395667

Hofmann, Nicole A.; Barth, Sonja; Waldeck-Weiermair, Markus; Klec, Christiane; Strunk, Dirk; Malli, Roland; Graier, Wolfgang F.

2014-01-01

153

Full-length transient receptor potential vanilloid 1 channels mediate calcium signals and possibly contribute to osmoreception in vasopressin neurones in the rat supraoptic nucleus.  

PubMed

Neurones in the supraoptic nucleus (SON) of the hypothalamus possess intrinsic osmosensing mechanisms, which are lost in transient receptor potential vanilloid 1 (Trpv1)-knock-out mice. The molecular nature of the osmosensory mechanism in SON neurones is believed to be associated with the N-terminal splice variant of Trpv1, although their entire molecular structures have not been hitherto identified. In this study, we sought for TRPV1-related molecules and their function in the rat SON. We performed RT-PCR and immunohistochemistry to detect TRPV1-related molecules in the SON, and patch-clamp and imaging of the cytosolic Ca(2+) concentration ([Ca(2+)]i) to measure responses to osmolality changes and TRPV-related drugs in acutely dissociated SON neurones of rats. RT-PCR analysis revealed full-length Trpv1 and a new N-terminal splice variant, Trpv1_SON (LC008303) in the SON. Positive immunostaining was observed using an antibody against the N-terminal portion of TRPV1 in arginine vasopressin (AVP)-immunoreactive neurones, but not in oxytocin (OT)-immunoreactive neurones. Approximately 20% of SON neurones responded to mannitol (50mM) with increased action potential firing, inward currents, and [Ca(2+)]i mobilization. Mannitol-induced responses were observed in AVP neurones isolated from AVP-eGFP transgenic rats and identified by GFP fluorescence, but not in OT neurones isolated from OT-mRFP transgenic rats and identified by RFP fluorescence. The mannitol-induced [Ca(2+)]i responses were reversibly blocked by the non-selective TRPV antagonist, ruthenium red (10?M) and the TRPV1 antagonists, capsazepine (10?M) and BCTC (10?M). Although the TRPV1 agonist, capsaicin (100nM) evoked no response at room temperature, it triggered cationic currents and [Ca(2+)]i elevation when the temperature was increased to 36°C. These results suggest that AVP neurones in the rat SON possess functional full-length TRPV1. Moreover, differences between the responses to capsaicin or hyperosmolality obtained in rat SON neurones and those obtained from dorsal root ganglion neurones or TRPV1-expressing cells indicate that the osmoreceptor expressed in the SON may be a heteromultimer in which TRPV1 is co-assembled with some other, yet unidentified, molecules. PMID:25479918

Moriya, Taiki; Shibasaki, Rina; Kayano, Tomohiko; Takebuchi, Nami; Ichimura, Momoko; Kitamura, Naoki; Asano, Atsushi; Hosaka, Yoshinao Z; Forostyak, Oksana; Verkhratsky, Alexei; Dayanithi, Govindan; Shibuya, Izumi

2015-01-01

154

Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain  

PubMed Central

Objectives Blockade of transient receptor potential vanilloid 1 (TRPV1) with systemic antagonists attenuates osteoarthritis (OA) pain behaviour in rat models, but on-target-mediated hyperthermia has halted clinical trials. The present study investigated the potential for targeting TRPV1 receptors within the OA joint in order to produce analgesia. Methods The presence of TRPV1 receptors in human synovium was detected using western blotting and immunohistochemistry. In a rat model of OA, joint levels of an endogenous ligand for TRPV1, 12-hydroxy-eicosatetraenoic acid (12-HETE), were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Effects of peripheral administration of the TRPV1 receptor antagonist JNJ-17203212 on afferent fibre activity, pain behaviour and core body temperature were investigated. Effects of a spinal administration of JNJ-17203212 on dorsal horn neuronal responses were studied. Results We demonstrate increased TRPV1 immunoreactivity in human OA synovium, confirming the diseased joint as a potential therapeutic target for TRPV1-mediated analgesia. In a model of OA pain, we report increased joint levels of 12-HETE, and the sensitisation of joint afferent neurones to mechanical stimulation of the knee. Local administration of JNJ-17203212 reversed this sensitisation of joint afferents and inhibited pain behaviour (weight-bearing asymmetry), to a comparable extent as systemic JNJ-17203212, in this model of OA pain, but did not alter core body temperature. There was no evidence for increased TRPV1 function in the spinal cord in this model of OA pain. Conclusions Our data provide a clinical and mechanistic rationale for the future investigation of the therapeutic benefits of intra-articular administration of TRPV1 antagonists for the treatment of OA pain. PMID:24152419

Kelly, S; Chapman, R J; Woodhams, S; Sagar, D R; Turner, J; Burston, J J; Bullock, C; Paton, K; Huang, J; Wong, A; McWilliams, D F; Okine, B N; Barrett, D A; Hathway, G J; Walsh, D A; Chapman, V

2015-01-01

155

Subgroup-Elimination Transcriptomics Identifies Signaling Proteins that Define Subclasses of TRPV1-Positive Neurons and a Novel Paracrine Circuit  

PubMed Central

Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination rather than enrichment of the subgroup of interest revealed proteins that define subclasses of TRPV1-positive neurons and suggests a novel paracrine circuit. PMID:25551770

Isensee, Jörg; Wenzel, Carsten; Buschow, Rene; Weissmann, Robert; Kuss, Andreas W.; Hucho, Tim

2014-01-01

156

Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways.  

PubMed

Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and anti-inflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O M Zack

2014-12-28

157

Transient Receptor Potential Vanilloid 1 Expression and Functionality in MCF-7 Cells: A Preliminary Investigation  

PubMed Central

Purpose Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel belonging to the transient receptor potential family, and it is expressed in different neoplastic tissues. Its activation is associated with regulation of cancer growth and progression. The aim of this research was to study the expression and pharmacological characteristics of TRPV1 in cells derived from human breast cancer MCF-7 cells. Methods TRPV1 presence was assessed by binding studies and Western blotting. Receptor binding characteristics were evaluated through competition assays, while 3-(4,5-dimethylthiazol-2-yl)-2,5,-dipheyltetrazolium bromide reduction assays were performed to confirm an early hypothesis regarding the modulation of cancer cell proliferation. The functionality of TRPV1 was evaluated by measuring Ca2+ uptake in the presence of increasing concentrations of TRPV1 agonists and antagonists. Results Binding studies identified a single class of TRPV1 (Bmax 1,492±192 fmol/mg protein), and Western blot showed a signal at 100 kDa corresponding to the molecular weight of human TRPV1. Among the different tested agonists and antagonists, anandamide (Ki: 2.8×10-11 M) and 5-iodoresiniferatoxin (5-I-RTX) (Ki: 5.6×10-11 M) showed the highest degrees of affinity for TRPV1, respectively. All tested TRPV1 agonists and antagonists caused a significant (p<0.05) decrease in cell growth rate in MCF-7 cells. For agonists and antagonists, the efficacy of tested compounds displayed the following rank order: resiniferatoxin>anandamide>capsaicin and 5-I-RTX=capsazepine, respectively. Conclusion These data indicate that both TRPV1 agonists and antagonists induce significant inhibition of MCF-7 cell growth. Even though the mechanisms involved in the antiproliferative effects of TRPV1 agonists and antagonists should be further investigated, it has been suggested that agonists cause desensitization of the receptor, leading to alteration in Ca2+-influx regulation. By contrast, antagonists cause a functional block of the receptor with consequent fatal dysregulation of cell homeostasis. PMID:25548580

Barbero, Raffaella; Cuniberti, Barbara; Racca, Silvia; Abbadessa, Giuliana; Piccione, Francesca; Re, Giovanni

2014-01-01

158

Astrocytic TRPV1 ion channels detect blood-borne signals in the sensory circumventricular organs of adult mouse brains.  

PubMed

The circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP) sense a variety of blood-borne molecules because they lack typical blood-brain barrier. Though a few signaling pathways are known, it is not known how endogenous ligands for transient receptor potential vanilloid receptor 1 ion channel (TRPV1) are sensed in the CVOs. In this study, we aimed to examine whether or not astrocytic TRPV1 senses directly blood-borne molecules in the OVLT, SFO, and AP of adult mice. The reverse transcription-polymerase chain reaction and Western analysis revealed the expression of TRPV1 in the CVOs. Confocal microscopic immunohistochemistry further showed that TRPV1 was localized prominently at thick cellular processes of astrocytes rather than fine cellular processes and cell bodies. TRPV1-expressing cellular processes of astrocytes surrounded the vasculature to constitute dense networks. The expression of TRPV1 was also found at neuronal dendrites but not somata in the CVOs. The intravenous administration of a TRPV1 agonist resiniferatoxin (RTX) prominently induced Fos expression at astrocytes in the OVLT, SFO, and AP and neurons in adjacent related nuclei of the median preoptic nuclei (MnPO) and nucleus of the solitary tract (Sol) of wild-type but not TRPV1-knockout mice. The intracerebroventricular infusion of RTX induced Fos expression at both astrocytes and neurons in the CVOs, MnPO, and Sol. Thus, this study demonstrates that blood-borne molecules are sensed directly by astrocytic TRPV1 of the CVOs in adult mammalians. PMID:23468425

Mannari, Tetsuya; Morita, Shoko; Furube, Eriko; Tominaga, Makoto; Miyata, Seiji

2013-06-01

159

Blocking TRPV1 in Nucleus Accumbens Inhibits Persistent Morphine Conditioned Place Preference Expression in Rats  

PubMed Central

The function of TRPV1 (transient receptor potential vanilloid subfamily, member 1) in the central nervous system is gradually elucidated. It has been recently proved to be expressed in nucleus accumbens (NAc), a region playing an essential role in mediating opioid craving and taking behaviors. Based on the general role of TRPV1 antagonist in blocking neural over-excitability by both pre- and post-synaptic mechanisms, TRPV1 antagonist capsazepine (CPZ) was tested for its ability to prohibit persistent opioid craving in rats. In the present study, we assessed the expression of TRPV1 in nucleus accumbens and investigated the effect of CPZ in bilateral nucleus accumbens on persistent morphine conditioned place preference (mCPP) in rats. We also evaluated the side-effect of CPZ on activity by comparing cross-beam times between groups. We found that morphine conditioned place preference increased the TRPV1 expression and CPZ attenuated morphine conditioned place preference in a dose-dependent and target–specific manner after both short- and long-term spontaneous withdrawal, reflected by the reduction of the increased time in morphine-paired side. CPZ (10 nM) could induce prolonged and stable inhibition of morphine conditioned place preference expression. More importantly, CPZ did not cause dysfunction of activity in the subjects tested, which indicates the inhibitory effect was not obtained at the sacrifice of regular movement. Collectively, these results indicated that injection of TRPV1 antagonist in nucleus accumbens is capable of attenuating persistent morphine conditioned place preference without affecting normal activity. Thus, TRPV1 antagonist is one of the promising therapeutic drugs for the treatment of opioid addiction. PMID:25118895

Ma, Lian-Ting; Yuan, Wei-Xin; Song, Jian; Wang, Peng; Xu, Guo-Zheng; Gao, Guo-Dong

2014-01-01

160

Sex Differences in Serotonin Enhancement of Capsaicin-evoked Calcitonin Gene-Related Peptide Release from Human Dental Pulp  

PubMed Central

Serotonin (5HT) is a pronociceptive mediator in the periphery and evidence implicates involvement in trigeminal pain processing. However, the mechanism(s) by which 5HT modulates trigeminal nociceptors remains unclear. Trigeminal pain can be evoked by the transient receptor potential V1 channel (TRPV1), which is expressed by nociceptive trigeminal neurons and induces release of proinflammatory calcitonin gene-related peptide (CGRP). In our preclinical models, 5HT evoked thermal hyperalgesia and enhanced calcium influx and CGRP release from the TRPV1 population of trigeminal nociceptors. Whether this occurs in humans is unknown. As dental pulp is densely innervated by trigeminal nociceptors, routine tooth extractions offer a unique opportunity to examine whether 5HT enhances CGRP release from human nociceptors. Pulpal tissue was collected from 140 extracted molar teeth from men and women and basal release samples were collected prior to treatment with saline or 5HT 100 ?M. CGRP release was then stimulated with the TRPV1 agonist capsaicin 1 ?M and quantitated by enzyme immunoassay. Additional samples were collected for western blots to examine 5HT receptor expression. We report that 5HT induced a significant increase in capsaicin-evoked CGRP release and this enhancement was observed only in female dental pulp, with no effect of 5HT on male dental pulp. The greatest amount of CGRP release occurred in dental pulp from women in the luteal phase of the menstrual cycle. These results indicate that 5HT enhances capsaicin-evoked CGRP release from human trigeminal nociceptors in a sexually dimorphic manner providing a mechanistic basis for prevalence of trigeminal pain disorders in women. PMID:22819536

Loyd, Dayna R.; Sun, Xiaoling X.; Locke, Erin E.; Salas, Margaux M.; Hargreaves, Kenneth M.

2012-01-01

161

Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: Role of TRPV1, oxidative stress, cytokines and NF-?B.  

PubMed

Cytokines and reactive oxygen species are inflammatory mediators that lead to increased sensitivity to painful stimuli, and their inhibition represents a therapeutic approach in controlling acute and chronic pain. The water-soluble flavonone hesperidin methyl chalcone (HMC) is used in the treatment of venous diseases, but its bioactivity as anti-inflammatory and analgesic is poorly understood. The present study evaluated the protective effects of HMC in widely used mouse models of acute and prolonged inflammation and pain. Male Swiss mice were treated with HMC (3-100 or 30mg/kg, intraperitoneally) or vehicle (saline) 1h before inflammatory stimuli. In overt pain-like behavior tests, HMC inhibited acetic acid- and phenyl-p-benzoquinone-induced writhing, and capsaicin-, Complete Freund's Adjuvant (CFA)- and formalin-induced paw flinching and licking. HMC also inhibited carrageenan-, capsaicin- and CFA-induced mechanical and thermal hyperalgesia. Mechanistically, HMC inhibited carrageenan-induced cytokine (TNF-?, IL-1?, IL-6, and IL-10) production, oxidative stress and NF-?B activation. Furthermore, HMC did not cause gastric or hepatic injury in a 7days treatment protocol. Thus, this is the first report that HMC reduces inflammation and inflammatory pain by targeting TRPV1 (transient receptor potential vanilloid type 1) receptor activity, oxidative stress, cytokine production, and NF-?B activity, which suggests its potential applicability in inflammatory diseases. PMID:25617481

Pinho-Ribeiro, Felipe A; Hohmann, Miriam S N; Borghi, Sergio M; Zarpelon, Ana C; Guazelli, Carla F S; Manchope, Marilia F; Casagrande, Rubia; Verri, Waldiceu A

2015-02-25

162

Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels  

PubMed Central

Background and purpose: Oily extracts of Sichuan and Melegueta peppers evoke pungent sensations mediated by different alkylamides [mainly hydroxy-?-sanshool (?-SOH)] and hydroxyarylalkanones (6-shogaol and 6-paradol). We assessed how transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (TRPV1), two chemosensory ion channels, participate in these pungent sensations. Experimental approach: The structure–activity relationships of these molecules on TRPA1 and TRPV1 was measured by testing natural and synthetic analogues using calcium and voltage imaging on dissociated dorsal root ganglia neurons and human embryonic kidney 293 cells expressing the wild-type channels or specific cysteine mutants using glutathione trapping as a model to probe TRPA1 activation. In addition, using Trpv1 knockout mice, the compounds' aversive responses were measured in a taste brief-access test. Key results: For TRPA1 activation, the cis C6 double bond in the polyenic chain of ?-SOH was critical, whereas no structural specificity was required for activation of TRPV1. Both 6-shogaol and 6-paradol were found to activate TRPV1 and TRPA1 channels, whereas linalool, an abundant terpene in Sichuan pepper, activated TRPA1 but not TRPV1 channels. Alkylamides and 6-shogaol act on TRPA1 by covalent bonding whereas none of these compounds activated TRPV1 through such interactions. Finally, TRPV1 mutant mice retained sensitivity to 6-shogaol but were not responsive to ?-SOH. Conclusions and implications: The pungent nature of components of Sichuan and Melegueta peppers was mediated via interactions with TRPA1 and TRPV1 channels and may explain the aversive properties of these compounds. PMID:19594761

Riera, CE; Menozzi-Smarrito, C; Affolter, M; Michlig, S; Munari, C; Robert, F; Vogel, H; Simon, SA; le Coutre, J

2009-01-01

163

Acute Heat-Evoked Temperature Sensation Is Impaired but Not Abolished in Mice Lacking TRPV1 and TRPV3 Channels  

PubMed Central

The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation. PMID:24925072

Reynders, Ana; Gaillard, Stéphane; Moqrich, Aziz

2014-01-01

164

Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1.  

PubMed

The vanilloid receptor [transient receptor potential (TRP)V1, also known as VR1] is a member of the TRP channel family. These receptors share a significant sequence homology, a similar predicted structure with six transmembrane-spanning domains (S1-S6), a pore-forming region between S5 and S6, and the cytoplasmically oriented C- and N-terminal regions. Although structural/functional studies have identified some of the key amino acids influencing the gating of the TRPV1 ion channel, the possible contributions of terminal regions to vanilloid receptor function remain elusive. In the present study, C-terminal truncations of rat TRPV1 have been constructed to characterize the contribution of the cytoplasmic C-terminal region to TRPV1 function and to delineate the minimum amount of C tail necessary to form a functional channel. The truncation of 31 residues was sufficient to induce changes in functional properties of TRPV1 channel. More pronounced effects of C-terminal truncation were seen in mutants lacking the final 72 aa. These changes were characterized by a decline of capsaicin-, pH-, and heat-sensitivity; progressive reduction of the activation thermal threshold (from 41.5 to 28.6 degrees C); and slowing of the activation rate of heat-evoked membrane currents (Q10 from 25.6 to 4.7). The voltage-induced currents of the truncated mutants exhibited a slower onset, markedly reduced outward rectification, and significantly smaller peak tail current amplitudes. Truncation of the entire TRPV1 C-terminal domain (155 residues) resulted in a nonfunctional channel. These results indicate that the cytoplasmic COOH-terminal domain strongly influences the TRPV1 channel activity, and that the distal half of this structural domain confers specific thermal sensitivity. PMID:12598622

Vlachová, Viktorie; Teisinger, Jan; Susánková, Klára; Lyfenko, Alla; Ettrich, Rüdiger; Vyklický, Ladislav

2003-02-15

165

The vanilloid receptor and hypertension.  

PubMed

Mammalian transient receptor potential (TRP) channels consist of six related protein sub-families that are involved in a variety of pathophysiological function, and disease development. The TRPV1 channel, a member of the TRPV sub-family, is identified by expression cloning using the "hot" pepper-derived vanilloid compound capsaicin as a ligand. Therefore, TRPV1 is also referred as the vanilloid receptor (VR1) or the capsaicin receptor. VR1 is mainly expressed in a subpopulation of primary afferent neurons that project to cardiovascular and renal tissues. These capsaicin-sensitive primary afferent neurons are not only involved in the perception of somatic and visceral pain, but also have a "sensory-effector" function. Regarding the latter, these neurons release stored neuropeptides through a calcium-dependent mechanism via the binding of capsaicin to VR1. The most studied sensory neuropeptides are calcitonin gene-related peptide (CGRP) and substance P (SP), which are potent vasodilators and natriuretic/diuretic factors. Recent evidence using the model of neonatal degeneration of capsaicin-sensitive sensory nerves revealed novel mechanisms that underlie increased salt sensitivity and several experimental models of hypertension. These mechanisms include insufficient suppression of plasma renin activity and plasma aldosterone levels subsequent to salt loading, enhancement of sympathoexcitatory response in the face of a salt challenge, activation of the endothelin-1 receptor, and impaired natriuretic response to salt loading in capsaicin-pretreated rats. These data indicate that sensory nerves counterbalance the prohypertensive effects of several neurohormonal systems to maintain normal blood pressure when challenged with salt loading. The therapeutic utilities of vanilloid compounds, endogenous agonists, and sensory neuropeptides are also discussed. PMID:15715923

Wang, Donna H

2005-03-01

166

Locomotor Networks are Targets of Modulation by Sensory Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Melastatin 8 Channels  

PubMed Central

It is well recognized that proprioceptive afferent inputs can control the timing and pattern of locomotion. C and A? afferents can also affect locomotion but an unresolved issue is the identity of the subsets of these afferents that encode defined modalities. Over the last decade, the transient receptor potential (TRP) ion channels have emerged as a family of non-selective cation conductances that can label specific subsets of afferents. We focus on a class of TRPs known as ThermoTRPs which are well known to be sensor receptors that transduce changes in heat and cold. ThermoTRPs are known to help encode somatosensation and painful stimuli, and receptors have been found on C and A? afferents with central projections onto dorsal horn laminae. Here we show, using in vitro neonatal mouse spinal cord preparations, that activation of both spinal and peripheral transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) afferent terminals modulates central pattern generators (CPGs). Capsaicin or menthol and cooling modulated both sacrocaudal afferent (SCA) evoked and monoaminergic drug-induced rhythmic locomotor-like activity in spinal cords from wild type but not TRPV1-null (trpv1?/?) or TRPM8-null (trpm8?/?) mice, respectively. Capsaicin induced an initial increase in excitability of the lumbar motor networks, while menthol or cooling caused a decrease in excitability. Capsaicin and menthol actions on CPGs involved excitatory and inhibitory glutamatergic mechanisms, respectively. These results for the first time show that dedicated pathways of somatosensation and pain identified by TRPV1 or TRPM8 can target spinal locomotor CPGs. PMID:19482068

Mandadi, S.; Nakanishi, S. T.; Takashima, Y.; Dhaka, A.; Patapoutian, A.; McKemy, D. D.; Whelan, P. J.

2010-01-01

167

?CGRP is essential for algesic exocytotic mobilization of TRPV1 channels in peptidergic nociceptors  

PubMed Central

Proalgesic sensitization of peripheral nociceptors in painful syndromes is a complex molecular process poorly understood that involves mobilization of thermosensory receptors to the neuronal surface. However, whether recruitment of vesicular thermoTRP channels is a general mechanism underlying sensitization of all nociceptor types or is subtype-specific remains controversial. We report that sensitization-induced Ca2+-dependent exocytotic insertion of transient receptor potential vanilloid 1 (TRPV1) receptors to the neuronal plasma membrane is a mechanism specifically used by peptidergic nociceptors to potentiate their excitability. Notably, we found that TRPV1 is present in large dense-core vesicles (LDCVs) that were mobilized to the neuronal surface in response to a sensitizing insult. Deletion or silencing of calcitonin-gene–related peptide alpha (?CGRP) gene expression drastically reduced proalgesic TRPV1 potentiation in peptidergic nociceptors by abrogating its Ca2+-dependent exocytotic recruitment. These findings uncover a context-dependent molecular mechanism of TRPV1 algesic sensitization and a previously unrecognized role of ?CGRP in LDCV mobilization in peptidergic nociceptors. Furthermore, these results imply that concurrent secretion of neuropeptides and channels in peptidergic C-type nociceptors facilitates a rapid modulation of pain signaling. PMID:25489075

Devesa, Isabel; Ferrándiz-Huertas, Clotilde; Mathivanan, Sakthikumar; Wolf, Christoph; Luján, Rafael; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

2014-01-01

168

Activin acutely sensitizes dorsal root ganglion neurons and induces hyperalgesia via PKC-mediated potentiation of transient receptor potential vanilloid I.  

PubMed

Pain hypersensitivity is a cardinal sign of tissue damage, but how molecules from peripheral tissues affect sensory neuron physiology is incompletely understood. Previous studies have shown that activin A increases after peripheral injury and is sufficient to induce acute nociceptive behavior and increase pain peptides in sensory ganglia. This study was designed to test the possibility that the enhanced nociceptive responsiveness associated with activin involved sensitization of transient receptor potential vanilloid I (TRPV1) in primary sensory neurons. Activin receptors were found widely distributed among adult sensory neurons, including those that also express the capsaicin receptor. Whole-cell patch-clamp recording from sensory neurons showed that activin acutely sensitized capsaicin responses and depended on activin receptor kinase activity. Pharmacological studies revealed that the activin sensitization of capsaicin responses required PKCepsilon signaling, but not PI3K (phosphoinositide 3-kinase), ERK (extracellular signal-regulated protein kinase), PKA, PKCalpha/beta, or Src. Furthermore, activin administration caused acute thermal hyperalgesia in wild-type mice, but not in TRPV1-null mice. These data suggest that activin signals through its own receptor, involves PKCepsilon signaling to sensitize the TRPV1 channel, and contributes to acute thermal hyperalgesia. PMID:18077689

Zhu, Weiguo; Xu, Pin; Cuascut, Fernando X; Hall, Alison K; Oxford, Gerry S

2007-12-12

169

The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis  

PubMed Central

Objective To assess if a coding variant in the gene encoding transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is associated with genetic risk of painful knee osteoarthritis (OA). Methods The Ile585Val TRPV1 variant encoded by rs8065080 was genotyped in 3270 cases of symptomatic knee OA, 1098 cases of asymptomatic knee OA and 3852 controls from seven cohorts from the UK, the USA and Australia. The genetic association between the low-pain genotype Ile–Ile and risk of symptomatic and asymptomatic knee OA was assessed. Results The TRPV1 585 Ile–Ile genotype, reported to be associated with lower thermal pain sensitivity, was associated with a lower risk of symptomatic knee OA in a comparison of symptomatic cases with healthy controls, with an odds ratio (OR) of 0.75 (95% CI 0.64 to 0.88; p=0.00039 by meta-analysis) after adjustment for age, sex and body mass index. No difference was seen between asymptomatic OA cases and controls (OR=1.02, 95% CI 0.82 to 1.27 p=0.86) but the Ile–Ile genotype was associated with lower risk of symptomatic versus asymptomatic knee OA adjusting for covariates and radiographic severity (OR=0.73, 95% CI 0.57 to 0.94 p=0.0136). TRPV1 expression in articular cartilage was increased by inflammatory cytokines (tumour necrosis factor ? and interleukin 1). However, there were no differences in TRPV1 expression in healthy and arthritic synovial tissue. Conclusions A genotype involved in lower peripheral pain sensitivity is significantly associated with a decreased risk of painful knee OA. This indicates a role for the pro-nociceptive gene TRPV1 in genetic susceptibility to symptomatic knee OA, which may also be influenced by a role for this molecule in cartilage function. PMID:21616913

Valdes, Ana M; De Wilde, Gert; Doherty, Sally A; Lories, Rik J; Vaughn, Frances L; Laslett, Laura L; Maciewicz, Rose A; Soni, Anushka; Hart, Deborah J; Zhang, Weiya; Muir, Kenneth R; Dennison, Elaine M; Wheeler, Margaret; Leaverton, Paul; Cooper, Cyrus; Spector, Tim D; Cicuttini, Flavia M; Chapman, Victoria; Jones, Graeme; Arden, Nigel K; Doherty, Michael

2011-01-01

170

NK-3 receptors mediate enhancement of substance P release from capsaicin-sensitive spinal cord afferent terminals  

PubMed Central

The effects of NK-3 receptor agonists on the release of substance P-immunoreactivity (SP-LI) have been investigated using superfused rat spinal cord synaptosomes.The Ca2+-dependent overflow of SP-LI evoked by 35?mM KCl was concentration-dependently enhanced by senktide (EC50=52?nM; maximal effect=70%) or [MePhe7]NKB (EC50=5.5?nM; maximal effect=125%), both selective agonists at receptors of the NK-3 type.The potentiation of the SP-LI overflow elicited by 100?nM senktide or [MePhe7]NKB was prevented by the NK-3 receptor antagonist (+)-SR142801. The antagonist halved, at 10?nM, and almost abolished, at 100?nM, the effect of both agonists. The effect of senktide or [MePhe7]NKB was insensitive to antagonists at NK-1 or NK-2 receptors.Capsaicin (0.1–1??M) stimulated SP-LI release in a concentration-dependent manner from spinal cord synaptosomes. The SP-LI overflow elicited by 1??M capsaicin was completely dependent on external Ca2+. Senktide could not affect the capsaicin-evoked release of SP-LI.Senktide failed to potentiate the K+-evoked overflow of SP-LI from synaptosomes previously exposed for 15?min in superfusion to capsaicin.The results show that release-enhancing NK-3 receptors are located on axon terminals of capsaicin-sensitive primary afferent neurones in the spinal cord. Antagonists at NK-3 receptors might help controlling pain transmission. PMID:9831894

Schmid, Giovanna; Caritŕ, Francesca; Bonanno, Giambattista; Raiteri, Maurizio

1998-01-01

171

Increased expression of TRPV1 in the trigeminal ganglion is involved in orofacial pain during experimental tooth movement in rats.  

PubMed

To investigate whether transient receptor potential vanilloid type 1 (TRPV1) is involved in pain induced by experimental tooth movement, experiments were performed in male Sprague-Dawley rats weighing 200-250 g. Directed face-grooming behavior was used to evaluate nocifensive behavior in rats during experimental tooth movement. The distribution of TRPV1 in the trigeminal ganglion (TG) was evaluated by immunohistochemistry, and its expression was detected by western blotting at several time points following the application of various magnitudes of force during tooth movement. Immunohistochemical analysis revealed that TRPV1 was expressed in TG, and its expression was increased after experimental tooth movement. Western blot results also showed that experimental tooth movement led to a statistically significant increase in expression of TRPV1 protein in TG. Meanwhile, the time spent on directed face-grooming peaked on day 1 and thereafter showed a gradual decrease. In addition, both the change in TRPV1 expression in the TG and directed face-grooming behavior were modulated in a force-dependent manner and in concert with initial orthodontic pain responses. Our results reveal that TRPV1 expression is modulated by experimental tooth movement and is involved in tooth-movement pain. PMID:25407056

Qiao, Hu; Gao, YuNan; Zhang, Caidi; Zhou, Hong

2015-02-01

172

TRPV1-dependent regulation of synaptic activity in the mouse dorsal motor nucleus of the vagus nerve  

PubMed Central

The dorsal motor nucleus of the vagus (DMV) is a key integrative point of the parasympathetic neuronal network localized in the dorsal vagal complex. Activity of neurons in the DMV is closely regulated by synaptic inputs, and regulation of excitatory and inhibitory synapsis by transient receptor potential vanilloid type 1 (TRPV1) has been demonstrated. Activation of TRPV1 by heat, protons, endovanilloids, endocannabinoids, and inflammatory mediators is well established. In our study we hypothesized that TRPV1 contributes to the synaptic transmission of DMV neurons at physiological range of temperature without additional stimuli. Using whole-cell patch-clamp recordings we evaluated the effect of a rapid increase of temperature on excitatory and inhibitory neurotransmission and the contribution of TRPV1 to this response. Rapid increase of temperature from 25 to 37°C increased the frequency of miniature excitatory post-synaptic currents (mEPSC) by 351.7%. The frequency of miniature inhibitory post-synaptic currents (mIPSC) also increased by 184.7%. 5?-iodoresiniferatoxin (5?-iRFT), a selective TRPV1 antagonist, prevented the increase of mEPSC and mIPSC frequency. In summary, our data demonstrate that at physiological range of temperature TRPV1 contributes to presynaptic neurotransmission of DMV neurons. PMID:24379754

Anwar, Imran J.; Derbenev, Andrei V.

2013-01-01

173

The effect of topical capsaicin-induced sensitization on heat-evoked cutaneous vasomotor responses  

PubMed Central

Brief, localized, cutaneous, non-painful thermal stimuli can evoke a transient vasomotor response, causing increased cutaneous blood flow and elevated skin temperature. The aims of this study were to investigate 1) if cutaneous sensitization by topical application of capsaicin (TRPV1 receptor agonist) can facilitate the size, duration and spatial extent of this vasomotor response and 2) if males and females respond differently. Thermal pulses (43°C for 60 seconds) were applied on left/right volar forearms of 15 age-matched males and females. Skin temperature and cutaneous blood flow were measured 1, 5, 10, 15, and 30 minutes after heat application before and after topical capsaicin (1%, 30 min application) with contralateral arm serving as the control. Recordings were made from the region of interest at distances of 2, 4, 6, 8, and 10 cm from the capsaicin application site. Sensitization significantly enhanced skin temperature for up to 30 min and compared with non-sensitized skin at 10 min. Females showed the strongest response after sensitization, but the response lasted longer and spread more widely in males. The blood flow responses were significantly longer after capsaicin (from 5 to 30 minutes after thermal application). This increased blood flow extended outside the treated area up to 10 min after stimulation. After sensitization, the area under the blood flow response curves showed significantly stronger responses in females, spreading 4 cm outside the stimulation site. Cutaneous sensitizing caused prolonged and spatially expanded vasomotor responses to standardized thermal stimulation with sex specific differences. PMID:24044034

Nielsen, Thomas A; da Silva, Larissa Bittencourt; Arendt-Nielsen, Lars; Gazerani, Parisa

2013-01-01

174

Capsaicin-induced mucus secretion in rat airways assessed in vivo and non-invasively by magnetic resonance imaging  

PubMed Central

Background and purpose: An up-regulation of the sensory neural pathways in the lung has been implicated in asthma and chronic obstructive pulmonary disease (COPD) and is thought to contribute to mucus hypersecretion, an essential feature of both diseases. The aim of this study was to assess non-invasively the acute effects (up to 60?min) of sensory nerve stimulation by capsaicin in the lung, using magnetic resonance imaging (MRI). Experimental approach: Male Brown Norway rats were imaged prior to and 10, 30 and 60?min after intra-tracheal challenge with capsaicin (30 ?gkg?1) or vehicle (0.5% ethanol solution). In subsequent studies, pre-treatment with the transient receptor potential vanilloid (TRPV)-1 antagonist, capsazepine; the dual neurokinin (NK) 1 and NK2 receptor antagonist, DNK333 and the mast cell stabilizer, di-sodium cromoglycate (DSCG) was used to modulate the effects of capsaicin. Key results: Diffuse fluid signals were detected by MRI in the lung as early as 10?min after capsaicin, remaining constant 30 and 60?min after treatment. Broncho-alveolar lavage (BAL) fluid analysis performed 60?min after capsaicin revealed increased mucin concentration. Capsazepine (3.5 mgkg?1), DNK333 (10 mgkg?1) but not DSCG (10 mgkg?1) administered prophylactically were able to block the effect of capsaicin in the airways. Conclusions and implications: These observations suggest that the fluid signals detected by MRI after capsaicin administration reflected predominantly the release of mucus following activation of sensory nerves. They point to the opportunity of non-invasively assessing with MRI the influence of neuronal mechanisms in animal models of asthma and COPD. PMID:17351665

Karmouty-Quintana, H; Cannet, C; Sugar, R; Fozard, J R; Page, C P; Beckmann, N

2007-01-01

175

Orphanin FQ inhibits capsaicin-induced thermal nociception in monkeys by activation of peripheral ORL1 receptors  

PubMed Central

Orphanin FQ (OFQ), an endogenous peptide for ORL1 receptors, has been identified. Although the actions of OFQ have much in common with those of opioid peptides at the cellular level, behavioral studies in rodents seem conflicting. The aim of this study was to investigate the potential pronociceptive or antinociceptive function of peripheral ORL1 receptors in primates. Experiments were conducted to verify whether local administration of OFQ can attenuate capsaicin-induced nociception and whether peripheral ORL1 receptors selectively mediate the local action of OFQ in monkeys. Capsaicin (100??g) was administered subcutaneously in the tail to locally evoke a nociceptive response (thermal allodynia/hyperalgesia), which was manifested as a reduced tail-withdrawal latency in normally innocuous 46°C warm water. Co-administration of OFQ (1?–?30??g) with capsaicin in the tail dose-dependently inhibited thermal nociception. However, a locally effective dose of OFQ (30??g), when applied in the back, did not inhibit capsaicin-induced nociception. OFQ-induced local antinociception was antagonized by a small dose (10??g) of J-113397, a selective ORL1 receptor antagonist, in the tail. Similarly, s.c. administration of 10??g of J-113397 in the back did not antagonize local antinociception of OFQ. In addition, s.c. administration of either OFQ or J-113397 in the tail alone did not change its thermal nociceptive threshold. Local administration of opioid receptor antagonists selective for mu, kappa, and delta opioid receptors did not antagonize OFQ-induced local antinociception. Local administration of J-113397 also did not interfere with the local actions of mu, kappa, and delta opioid agonists in the tail. These results provide the first functional evidence that activation of peripheral ORL1 receptors produces thermal antinociception in primates and this action is independent of antinociception produced at classical opioid receptors. PMID:11861322

Ko, M C H; Naughton, N N; Traynor, J R; Song, M S; Woods, J H; Rice, K C; McKnight, A T

2002-01-01

176

Palvanil, a non-pungent capsaicin analogue, inhibits inflammatory and neuropathic pain with little effects on bronchopulmonary function and body temperature.  

PubMed

N-Palmitoyl-vanillamide (palvanil) is a non-pungent capsaicinoid, found in low amounts in Capsicum and shown to rapidly desensitize transient receptor potential vanilloid type-1 (TRPV1) channels to the action of capsaicin and to exert analgesic effects after local administration. We have investigated here if systemic administration of palvanil to mice causes two typical adverse events of TRPV1 agonists, i.e. profound changes in body temperature and bronchoconstriction, and if it can still produce effective inhibition of inflammatory and chronic pain in different experimental models. Varying doses of palvanil were tested subcutaneously and acutely on body temperature in vivo or, or as a bolus, on bronchopulmunary function ex vivo, in comparison with capsaicin. Intraperitoneal palvanil was also tested against formalin-induced nocifensive behavior and carrageenan-induced oedema and thermal hyperalgesia, acutely, and against mechanical allodynia and thermal hyperalgesia in mice with spared nerve injury (SNI) of the sciatic nerve, after repeated administration over 7 days from SNI. Palvanil, at therapeutically relevant doses, produced significantly less hypothermia and bronchoconstriction than capsaicin. Palvanil (0.5-2.5 mg/kg) abolished formalin-induced nocifensive behavior and strongly attenuated SNI-induced mechanical allodynia and thermal hyperalgesia and carrageenan-induced oedema and thermal hyperalgesia. Systemic administration of the non-pungent capsaicinoid, palvanil, produces, at least in mice, much less of those side effects typical of TRPV1 agonists (hypothermia and bronchoconstriction), whilst being very effective at reducing pain and oedema. Thus, palvanil might be developed further as a novel pharmacological treatment for chronic abnormal pain. PMID:22634607

Luongo, Livio; Costa, Barbara; D'Agostino, Bruno; Guida, Francesca; Comelli, Francesca; Gatta, Luisa; Matteis, Maria; Sullo, Nikol; De Petrocellis, Luciano; de Novellis, Vito; Maione, Sabatino; Di Marzo, Vincenzo

2012-09-01

177

Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain.  

PubMed

Trigeminal neuropathic pain is a facial pain syndrome associated with trigeminal nerve injury. However, the mechanism of trigeminal neuropathic pain is poorly understood. This study aimed to determine the role of transient receptor potential vanilloid 1 (TRPV1) in heat hyperalgesia in a trigeminal neuropathic pain model. We evaluated nociceptive responses to mechanical and heat stimuli using a partial infraorbital nerve ligation (pIONL) model. Withdrawal responses to mechanical and heat stimuli to vibrissal pads (VP) were assessed using von Frey filaments and a thermal stimulator equipped with a heat probe, respectively. Changes in withdrawal responses were measured after subcutaneous injection of the TRP channel antagonist capsazepine. In addition, the expression of TRPV1 in the trigeminal ganglia was examined. Mechanical allodynia and heat hyperalgesia were observed in VP by pIONL. Capsazepine suppressed heat hyperalgesia but not mechanical allodynia. The number of TRPV1-positive neurons in the trigeminal ganglia was significantly increased in the large-diameter-cell group. These results suggest that TRPV1 plays an important role in the heat hyperalgesia observed in the pIONL model. PMID:23091405

Urano, Hiroko; Ara, Toshiaki; Fujinami, Yoshiaki; Hiraoka, B Yukihiro

2012-01-01

178

Role of endogenous TRPV1 agonists in a postburn pain model of partial-thickness injury.  

PubMed

Oxidized linoleic acid metabolites (OLAMs) are a class of endogenous transient receptor potential vanilloid 1 (TRPV1) channel agonists released on exposure of tissue to transient noxious temperatures. These lipid compounds also contribute to inflammatory and heat allodynia. Because persistent pain after a burn injury represents a significant clinical challenge for treatment, we developed an in vivo rat model of partial-thickness cutaneous thermal injury and examined whether TRPV1 and specific OLAM metabolites play a role in mediating postburn pain injury. This peripheral model of burn injury had marked thermal allodynia peaking at 24h after thermal injury, with allodynia being maintained for up to 7d. Immunohistochemical characterization of tissue taken from injury sites revealed an increase in leukocyte/macrophage infiltration that was colocalized with TRPV1-positive fibers. Using this peripheral thermal injury model, we found that pharmacological blockade of peripheral TRPV1 receptors reduced thermal allodynia by about 98%. Moreover, there was a significant increase in OLAM levels compared to naive controls in hind paw skin biopsies. Additional studies of the metabolism of [C(14)]-linoleic acid in skin biopsies revealed the role of the cytochrome P450 (CYP) system in mediating the metabolism of linoleic acid after thermal injury. Finally, we demonstrated that direct inhibition of OLAMs using OLAM antibodies and indirect inhibition using the CYP inhibitor ketoconazole significantly reduced postburn thermal allodynia. Collectively, these findings point to a novel role of the OLAMs and CYP-related enzymes in generating postburn allodynia via activation of peripheral TRPV1. PMID:23891895

Green, Dustin P; Ruparel, Shivani; Roman, Linda; Henry, Michael A; Hargreaves, Kenneth M

2013-11-01

179

Activation of transient receptor potential vanilloid 2-expressing primary afferents stimulates synaptic transmission in the deep dorsal horn of the rat spinal cord and elicits mechanical hyperalgesia.  

PubMed

Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non-overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch-clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III-V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III-V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1-expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia. PMID:25104469

Petitjean, Hugues; Hugel, Sylvain; Barthas, Florent; Bohren, Yohann; Barrot, Michel; Yalcin, Ipek; Schlichter, Rémy

2014-10-01

180

Phosphoinositide 3-Kinase Binds to TRPV1 and Mediates NGF-stimulated TRPV1 Trafficking to the Plasma Membrane  

PubMed Central

Sensitization of the pain-transducing ion channel TRPV1 underlies thermal hyperalgesia by proalgesic agents such as nerve growth factor (NGF). The currently accepted model is that the NGF-mediated increase in TRPV1 function during hyperalgesia utilizes activation of phospholipase C (PLC) to cleave PIP2, proposed to tonically inhibit TRPV1. In this study, we tested the PLC model and found two lines of evidence that directly challenge its validity: (1) polylysine, a cationic phosphoinositide sequestering agent, inhibited TRPV1 instead of potentiating it, and (2) direct application of PIP2 to inside-out excised patches dramatically potentiated TRPV1. Furthermore, we show four types of experiments indicating that PI3K is physically and functionally coupled to TRPV1: (1) the p85? subunit of PI3K interacted with the N-terminal region of TRPV1 in yeast 2-hybrid experiments, (2) PI3K-p85? coimmunoprecipitated with TRPV1 from both HEK293 cells and dorsal root ganglia (DRG) neurons, (3) TRPV1 interacted with recombinant PI3K-p85 in vitro, and (4) wortmannin, a specific inhibitor of PI3K, completely abolished NGF-mediated sensitization in acutely dissociated DRG neurons. Finally, simultaneous electrophysiological and total internal reflection fluorescence (TIRF) microscopy recordings demonstrate that NGF increased the number of channels in the plasma membrane. We propose a new model for NGF-mediated hyperalgesia in which physical coupling of TRPV1 and PI3K in a signal transduction complex facilitates trafficking of TRPV1 to the plasma membrane. PMID:17074976

Stein, Alexander T.; Ufret-Vincenty, Carmen A.; Hua, Li; Santana, Luis F.; Gordon, Sharona E.

2006-01-01

181

Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion  

PubMed Central

Traditional methods of therapeutic hypothermia show promise for neuroprotection against cerebral ischemia-reperfusion (I/R), however, with limitations. We examined effectiveness and specificity of pharmacological hypothermia (PH) by transient receptor potential vanilloid 1 (TRPV1) channel agonism in the treatment of focal cerebral I/R. Core temperature (Tcore) was measured after subcutaneous infusion of TRPV1 agonist dihydrocapsaicin (DHC) in conscious C57BL/6 WT and TRPV1 knockout (KO) mice. Acute measurements of heart rate (HR), mean arterial pressure (MAP), and cerebral perfusion were measured before and after DHC treatment. Focal cerebral I/R (1 h ischemia + 24 h reperfusion) was induced by distal middle cerebral artery occlusion. Hypothermia (>8 h) was initiated 90 min after start of reperfusion by DHC infusion (osmotic pump). Neurofunction (behavioral testing) and infarct volume (TTC staining) were measured at 24 h. DHC (1.25 mg/kg) produced a stable drop in Tcore (33°C) in naive and I/R mouse models but not in TRPV1 KO mice. DHC (1.25 mg/kg) had no measurable effect on HR and cerebral perfusion but produced a slight transient drop in MAP (<6 mmHg). In stroke mice, DHC infusion produced hypothermia, decreased infarct volume by 87%, and improved neurofunctional score. The hypothermic and neuroprotective effects of DHC were absent in TRPV1 KO mice or mice maintained normothermic with heat support. PH via TRPV1 agonist appears to be a well-tolerated and effective method for promoting mild hypothermia in the conscious mouse. Furthermore, TRPV1 agonism produces effective hypothermia in I/R mice and significantly improves outcome when initiated 90 min after start of reperfusion. PMID:24305062

Cao, Zhijuan; Balasubramanian, Adithya

2013-01-01

182

The distribution of TRPV1 and TRPV2 in the rat pharynx.  

PubMed

Immunohistochemistry for two nociceptive transducers, the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2), was performed on the pharynx and its adjacent regions. TRPV1-immunoreactivity (IR) was detected in nerve fibers beneath and within the epithelium and/or taste bud-like structure. In the pharynx, these nerve fibers were abundant in the naso-oral part and at the border region of naso-oral and laryngeal parts. They were also numerous on the laryngeal side of the epiglottis and in the soft palate. TRPV2-IR was expressed by dendritic cells in the pharynx and epiglottis, as well as in the root of the tongue and soft palate. These cells were located in the epithelium and lamina propria. TRPV2-immunoreactive (IR) dendritic cells were numerous in the naso-oral part of the pharynx, epiglottis, and tongue. Abundance of TRPV2-IR dendritic processes usually obscured the presence of TRPV2-IR nerve fibers in these portions. However, some TRPV2-IR nerve fibers could be observed in the epithelium of the soft palate. Retrograde tracing method also revealed that sensory neurons which innervate the pharynx or soft palate were abundant in the jugular-petrosal ganglion complex and relatively rare in the nodose ganglion. In the jugular-petrosal ganglion complex, TRPV1- and TRPV2-IR were expressed by one-third of pharyngeal and soft palate neurons. TRPV2-IR was also detected in 11.5 % pharyngeal and 30.9 % soft palate neurons in the complex. Coexpression of TRPV1 and CGRP was frequent among pharyngeal and soft palate neurons. The present study suggests that TRPV1- and TRPV2-IR jugular-petrosal neurons may be associated with the regulation of the swallowing reflex. PMID:23584686

Sasaki, Rika; Sato, Tadasu; Yajima, Takehiro; Kano, Mitsuhiro; Suzuki, Toshihiko; Ichikawa, Hiroyuki

2013-07-01

183

Suppression of network activity in dorsal horn by gabapentin permeation of TRPV1 channels: Implications for drug access to cytoplasmic targets.  

PubMed

The effectiveness of gabapentin (GBP) in the treatment of neuropathic pain depends on access to the ?2?-1 accessory subunit of voltage-gated Ca(2+) channels. Access may be limited by its rate of entry via the neuronal system L-neutral amino acid transporter. The open pore of capsaicin-activated TRPV1 channel admits organic molecules such as local anesthetics and we calculated that GBP entry via this route would be 500× more rapid than via the transporter. Capsaicin should therefore increase GBP effectiveness. We used a quaternary GBP derivative (Q-GBP) as sole charge carrier in whole-cell recording experiments on rat dorsal root ganglion (DRG) neurons. Under these conditions, capsaicin produced a capsazepine-sensitive inward current thereby confirming Q-GBP permeation of TRPV1 channels. We have previously established that 5-6days exposure to 100?M GBP decreases excitability of dorsal horn neurons whereas 10?M is ineffective. Excitability was monitored using confocal Ca(2+) imaging of rat spinal cord slices in organotypic culture. GBP effectiveness was augmented by transient exposures of cultures to capsaicin and robust suppression of excitability was seen with 10?M GBP. Experiments with an inhibitor of the neutral amino acid transporter, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH 300?M), showed the actions of GBP seen in the presence of capsaicin were independent of its entry by this route. Capsaicin potentiation of GBP depression of dorsal horn activity may therefore reflect drug permeation of TRPV1 channels. Agonist activation of TRP channels may provide a means for improving drug access to cytoplasmic targets in selective neuronal populations defined on the basis of type of TRP channel expressed. PMID:25079903

Biggs, James E; Stemkowski, Patrick L; Knaus, Edward E; Chowdhury, Morshed A; Ballanyi, Klaus; Smith, Peter A

2015-01-01

184

Hypoxic preconditioning protects rat hearts against ischemia-reperfusion injury via the arachidonate12-lipoxygenase/transient receptor potential vanilloid 1 pathway.  

PubMed

Hypoxic preconditioning (HPC) protects rat hearts against ischemia-reperfusion (IR) injury. However, the role of transient receptor potential vanilloid 1 (TRPV1) in HPC-mediated cardioprotection remains unknown. TRPV1 is activated by endovanilloid 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], which is synthesized by arachidonate 12-lipoxygenase (ALOX12). Therefore, we examined whether HPC protects the myocardium against IR via the ALOX12/TRPV1 pathway. Compared to hearts of rats kept in room air, the hearts of rats kept in air with 10 % oxygen for 4 weeks had better post-ischemic recovery and less tissue damage when subjected to 30-min global ischemia and 4-h reflow in a Langendorff apparatus. Capsazepine, a specific TRPV1 blocker, administered 5 min before reperfusion markedly attenuated the effects of HPC, confirming that TRPV1 is a downstream effector in HPC-mediated cardioprotection. HPC resulted in the upregulation of ALOX12 and myocardial 12(S)-HETE, and prevented IR-induced 12(S)-HETE reduction. In addition, sarcolemmal ALOX12 expression in HPC hearts mainly co-localized with TRPV1 expression. Blockade of ALOX12 by cinnamyl-3,4-dihydroxy-?-cyanocinnamate or baicalein abrogated the effects of HPC, baicalein also decreased 12(S)-HETE expression. Mimicking HPC by given 12(S)-HETE or capsaicin to baicalien-treated hearts enhanced cardiac recovery during reperfusion. The cardiac protein kinase C (PKC) isoforms ?, ?, ?, and ? were preferentially expressed in the sarcolemmal membrane of HPC-treated hearts, indicating their high intrinsic activation state. Capsazepine or co-treatment with baicalein attenuated translocation of PKC?, PKC? and PKC?, but not that of PKC?. We conclude that HPC reduces heart susceptibly to IR via ALOX12/TRPV1/PKC pathway, as shown by increased 12(S)-HETE expression in HPC hearts. PMID:24816396

Lu, Ming-Jen; Chen, Yih-Sharng; Huang, Ho-Shiang; Ma, Ming-Chieh

2014-07-01

185

Transient receptor potential channels in sensory neurons are targets of the antimycotic agent clotrimazole.  

PubMed

Clotrimazole (CLT) is a widely used drug for the topical treatment of yeast infections of skin, vagina, and mouth. Common side effects of topical CLT application include irritation and burning pain of the skin and mucous membranes. Here, we provide evidence that transient receptor potential (TRP) channels in primary sensory neurons underlie these unwanted effects of CLT. We found that clinically relevant CLT concentrations activate heterologously expressed TRPV1 and TRPA1, two TRP channels that act as receptors of irritant chemical and/or thermal stimuli in nociceptive neurons. In line herewith, CLT stimulated a subset of capsaicin-sensitive and mustard oil-sensitive trigeminal neurons, and evoked nocifensive behavior and thermal hypersensitivity with intraplantar injection in mice. Notably, CLT-induced pain behavior was suppressed by the TRPV1-antagonist BCTC [(N-(-4-tertiarybutylphenyl)-4-(3-cholorpyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide)] and absent in TRPV1-deficient mice. In addition, CLT inhibited the cold and menthol receptor TRPM8, and blocked menthol-induced responses in capsaicin- and mustard oil-insensitive trigeminal neurons. The concentration for 50% inhibition (IC50) of inward TRPM8 current was approximately 200 nM, making CLT the most potent known TRPM8 antagonist and a useful tool to discriminate between TRPM8- and TRPA1-mediated responses. Together, our results identify TRP channels in sensory neurons as molecular targets of CLT, and offer means to develop novel CLT preparations with fewer unwanted sensory side effects. PMID:18199759

Meseguer, Victor; Karashima, Yuji; Talavera, Karel; D'Hoedt, Dieter; Donovan-Rodríguez, Tansy; Viana, Felix; Nilius, Bernd; Voets, Thomas

2008-01-16

186

Permeation and Dynamics of an Open-Activated TRPV1 Channel.  

PubMed

Transient receptor potential (TRP) ion channels constitute a large and diverse protein family, found in yeast and widespread in the animal kingdom. TRP channels work as sensors for a wide range of cellular and environmental signals. Understanding how these channels respond to physical and chemical stimuli has been hindered by the limited structural information available until now. The three-dimensional structure of the vanilloid receptor 1 (TRPV1) was recently determined by single particle electron cryo-microscopy, offering for the first time the opportunity to explore ionic conduction in TRP channels at atomic detail. In this study, we present molecular dynamics simulations of the open-activated pore domain of TRPV1 in the presence of three cationic species: Na(+), Ca(2+) and K(+). The dynamics of these ions while interacting with the channel pore allowed us to rationalize their permeation mechanism in terms of a pathway involving three binding sites at the intracellular cavity, as well as the extracellular and intracellular entrance of the selectivity filter. Furthermore, conformational analysis of the pore in the presence of these ions reveals specific ion-mediated structural changes in the selectivity filter, which influences the permeability properties of the TRPV1 channel. PMID:25479373

Darré, Leonardo; Furini, Simone; Domene, Carmen

2015-01-30

187

TRPV1 and TRPV4 Play Pivotal Roles in Delayed Onset Muscle Soreness  

PubMed Central

Unaccustomed strenuous exercise that includes lengthening contraction (LC) often causes tenderness and movement related pain after some delay (delayed-onset muscle soreness, DOMS). We previously demonstrated that nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are up-regulated in exercised muscle through up-regulation of cyclooxygenase (COX)-2, and they sensitized nociceptors resulting in mechanical hyperalgesia. There is also a study showing that transient receptor potential (TRP) ion channels are involved in DOMS. Here we examined whether and how TRPV1 and/or TRPV4 are involved in DOMS. We firstly evaluated a method to measure the mechanical withdrawal threshold of the deep tissues in wild-type (WT) mice with a modified Randall-Selitto apparatus. WT, TRPV1?/? and TRPV4?/? mice were then subjected to LC. Another group of mice received injection of murine NGF-2.5S or GDNF to the lateral gastrocnemius (LGC) muscle. Before and after these treatments the mechanical withdrawal threshold of LGC was evaluated. The change in expression of NGF, GDNF and COX-2 mRNA in the muscle was examined using real-time RT-PCR. In WT mice, mechanical hyperalgesia was observed 6–24 h after LC and 1–24 h after NGF and GDNF injection. LC induced mechanical hyperalgesia neither in TRPV1?/? nor in TRPV4?/? mice. NGF injection induced mechanical hyperalgesia in WT and TRPV4?/? mice but not in TRPV1?/? mice. GDNF injection induced mechanical hyperalgesia in WT but neither in TRPV1?/? nor in TRPV4?/? mice. Expression of NGF and COX-2 mRNA was significantly increased 3 h after LC in all genotypes. However, GDNF mRNA did not increase in TRPV4?/? mice. These results suggest that TRPV1 contributes to DOMS downstream (possibly at nociceptors) of NGF and GDNF, while TRPV4 is located downstream of GDNF and possibly also in the process of GDNF up-regulation. PMID:23799042

Ota, Hiroki; Katanosaka, Kimiaki; Murase, Shiori; Kashio, Makiko; Tominaga, Makoto; Mizumura, Kazue

2013-01-01

188

Fatty Acid Amide Hydrolase-Dependent Generation of Antinociceptive Drug Metabolites Acting on TRPV1 in the Brain  

PubMed Central

The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol’s antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4-aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil?=?olvanil>>AM404> HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4-aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT3 or 5-HT1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol’s analgesic activity via activation of bulbospinal pathways. Our findings demonstrate that it is possible to construct novel antinociceptive drugs based on fatty acid conjugation as a metabolic pathway for the generation of TRPV1 modulators in the CNS. PMID:23940628

Blomgren, Anders; Simonsen, Charlotte; Daulhac, Laurence; Libert, Frédéric; Chapuy, Eric; Etienne, Monique; Högestätt, Edward D.; Zygmunt, Peter M.; Eschalier, Alain

2013-01-01

189

TRPV1-lineage neurons are required for thermal sensation  

PubMed Central

The ion-channel TRPV1 is believed to be a major sensor of noxious heat, but surprisingly animals lacking TRPV1 still display marked responses to elevated temperature. In this study, we explored the role of TRPV1-expressing neurons in somatosensation by generating mice wherein this lineage of cells was selectively labelled or ablated. Our data show that TRPV1 is an embryonic marker of many nociceptors including all TRPV1- and TRPM8-neurons as well as many Mrg-expressing neurons. Mutant mice lacking these cells are completely insensitive to hot or cold but in marked contrast retain normal touch and mechanical pain sensation. These animals also exhibit defective body temperature control and lose both itch and pain reactions to potent chemical mediators. Together with previous cell ablation studies, our results define and delimit the roles of TRPV1- and TRPM8-neurons in thermosensation, thermoregulation and nociception, thus significantly extending the concept of labelled lines in somatosensory coding. PMID:21139565

Mishra, Santosh K; Tisel, Sarah M; Orestes, Peihan; Bhangoo, Sonia K; Hoon, Mark A

2011-01-01

190

LASSBio-1135: A Dual TRPV1 Antagonist and Anti-TNF-Alpha Compound Orally Effective in Models of Inflammatory and Neuropathic Pain  

PubMed Central

LASSBio-1135 is an imidazo[1,2-a]pyridine derivative with high efficacy in screening models of nociception and inflammation, presumed as a weak COX-2 inhibitor. In order to tease out its mechanism of action, we investigated others possible target for LASSBio-1135, such as TNF-? and TRPV1, to better characterize it as a multitarget compound useful in the treatment of chronic pain. TRPV1 modulation was assessed in TRPV1-expressing Xenopus oocytes against capsaicin and low pH-induced current. Modulation of TNF-? production was evaluated in culture of macrophages stimulated with LPS. In vivo efficacy of LASSBio-1135 was investigated in carrageenan and partial sciatic ligation-induced thermal hyperalgesia and mechanical allodynia. Corroborating its previous demonstration of efficacy in a model of capsaicin-induced hyperalgesia, LASSBio-1135 blocks capsaicin-elicited currents in a non-competitive way with an IC50 of 580 nM as well as low pH-induced current at 50 µM. As an additional action, LASSBio-1135 inhibited TNF-? release in these cells stimulated by LPS with an IC50 of 546 nM by reducing p38 MAPK phosphorilation. Oral administration of 100 µmol.Kg?1 LASSBio-1135 markedly reduced thermal hyperalgesia induced by carrageenan, however at 10 µmol.Kg?1 only a partial reduction was observed at the 4th h. Neutrophil recruitment and TNF-? production after carrageenan stimulus was also inhibited by the treatment with LASSBio-1135. Modulating TRPV1 and TNF-? production, two key therapeutic targets of neuropathic pain, 100 µmol.Kg?1 LASSBio-1135 was orally efficacious in reversing thermal hyperalgesia and mechanical allodynia produced by partial sciatic ligation 7–11 days after surgery without provoking hyperthermia, a common side effect of TRPV1 antagonists. In conclusion LASSBio-1135, besides being a weak COX-2 inhibitor, is a non-competitive TRPV1 antagonist and a TNF-? inhibitor. As a multitarget compound, LASSBio-1135 is orally efficacious in a model of neuropathic pain without presenting hyperthermia. PMID:24941071

Lima, Cleverton K. F.; Silva, Rafael M.; Lacerda, Renata B.; Santos, Bruna L. R.; Silva, Rafaela V.; Amaral, Luciana S.; Quintas, Luís E. M.; Fraga, Carlos A. M.; Barreiro, Eliezer J.; Guimaraes, Marília Z. P.; Miranda, Ana L. P.

2014-01-01

191

Structure of the TRPV1 ion channel determined by electron cryo-microscopy  

PubMed Central

Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Ĺ resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function. PMID:24305160

Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

2014-01-01

192

TRPV1 Antagonism by Capsazepine Modulates Innate Immune Response in Mice Infected with Plasmodium berghei ANKA  

PubMed Central

Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host's defence to malaria. Transient receptor potential vanilloid 1 (TRPV1) modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 105 red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80+Ly6G+ cell numbers as well as activation of both F4/80+and F4/80+Ly6G+ cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1+ and natural killer (NK) population, without interfering with natural killer T (NKT) cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNF? and IFN?, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNF?. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria. PMID:25242870

Fernandes, Elizabeth S.; Brito, Carolina X. L.; Teixeira, Simone A.; Barboza, Renato; dos Reis, Aramys S.; Azevedo-Santos, Ana Paula S.; Muscará, Marcelo; Costa, Soraia K. P.; Marinho, Claudio R. F.; Brain, Susan D.; Grisotto, Marcos A. G.

2014-01-01

193

ATP: a mediator for HCl-induced TRPV1 activation in esophageal mucosa  

PubMed Central

In esophageal mucosa, HCl causes TRPV1-mediated release of calcitonin gene-related peptide (CGRP) and substance P (SP) from submucosal neurons and of platelet-activating factor (PAF) from epithelial cells. CGRP and SP release was unaffected by PAF antagonists but reduced by the purinergic antagonist suramin. ATP caused CGRP and SP release from esophageal mucosa, confirming a role of ATP in the release. The human esophageal epithelial cell line HET-1A was used to identify epithelial cells as the site of ATP release. HCl caused ATP release from HET-1A, which was reduced by the TRPV1 antagonist 5-iodoresiniferatoxin. Real-time PCR demonstrated the presence of mRNA for several P2X and P2Y purinergic receptors in epithelial cells. HCl also increased activity of lyso-PAF acetyl-CoA transferase (lyso-PAF AT), the enzyme responsible for production of PAF. The increase was blocked by suramin. ATP caused a similar increase, confirming ATP as a mediator for the TRPV1-induced increase in enzyme activity. Repeated exposure of HET-1A cells to HCl over 2 days caused upregulation of mRNA and protein expression for lyso-PAF AT. Suramin blocked this response. Repeated exposure to ATP caused a similar mRNA increase, confirming ATP as a mediator for upregulation of the enzyme. Thus, HCl-induced activation of TRPV1 causes ATP release from esophageal epithelial cells that causes release of CGRP and SP from esophageal submucosal neurons and activation of lyso-PAF AT, the enzyme responsible for the production of PAF in epithelial cells. Repeated application of HCl or of ATP causes upregulation of lyso-PAF AT in epithelial cells. PMID:21960521

Ma, Jie; Altomare, Annamaria; Rieder, Florian; Behar, Jose; Biancani, Piero

2011-01-01

194

Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats.  

PubMed

Vampire bats (Desmodus rotundus) are obligate blood feeders that have evolved specialized systems to suit their sanguinary lifestyle. Chief among such adaptations is the ability to detect infrared radiation as a means of locating hotspots on warm-blooded prey. Among vertebrates, only vampire bats, boas, pythons and pit vipers are capable of detecting infrared radiation. In each case, infrared signals are detected by trigeminal nerve fibres that innervate specialized pit organs on the animal's face. Thus, vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species-specific or cell-type-specific manner. Previously, we have shown that snakes co-opt a non-heat-sensitive channel, vertebrate TRPA1 (transient receptor potential cation channel A1), to produce an infrared detector. Here we show that vampire bats tune a channel that is already heat-sensitive, TRPV1, by lowering its thermal activation threshold to about 30?°C. This is achieved through alternative splicing of TRPV1 transcripts to produce a channel with a truncated carboxy-terminal cytoplasmic domain. These splicing events occur exclusively in trigeminal ganglia, and not in dorsal root ganglia, thereby maintaining a role for TRPV1 as a detector of noxious heat in somatic afferents. This reflects a unique organization of the bat Trpv1 gene that we show to be characteristic of Laurasiatheria mammals (cows, dogs and moles), supporting a close phylogenetic relationship with bats. These findings reveal a novel molecular mechanism for physiological tuning of thermosensory nerve fibres. PMID:21814281

Gracheva, Elena O; Cordero-Morales, Julio F; González-Carcacía, José A; Ingolia, Nicholas T; Manno, Carlo; Aranguren, Carla I; Weissman, Jonathan S; Julius, David

2011-08-01

195

Attenuation of TRPV1 and TRPV4 Expression and Function in Mouse Inflammatory Pain Models Using Electroacupuncture  

PubMed Central

Although pain is a major human affliction, our understanding of pain mechanisms is limited. TRPV1 (transient receptor potential vanilloid subtype 1) and TRPV4 are two crucial receptors involved in inflammatory pain, but their roles in EA- (electroacupuncture-) mediated analgesia are unknown. We injected mice with carrageenan (carra) or a complete Freund's adjuvant (CFA) to model inflammatory pain and investigated the analgesic effect of EA using animal behavior tests, immunostaining, Western blotting, and a whole-cell recording technique. The inflammatory pain model mice developed both mechanical and thermal hyperalgesia. Notably, EA at the ST36 acupoint reversed these phenomena, indicating its curative effect in inflammatory pain. The protein levels of TRPV1 and TRPV4 in DRG (dorsal root ganglion) neurons were both increased at day 4 after the initiation of inflammatory pain and were attenuated by EA, as demonstrated by immunostaining and Western blot analysis. We verified DRG electrophysiological properties to confirm that EA ameliorated peripheral nerve hyperexcitation. Our results indicated that the AP (action potential) threshold, rise time, and fall time, and the percentage and amplitude of TRPV1 and TRPV4 were altered by EA, indicating that EA has an antinociceptive role in inflammatory pain. Our results demonstrate a novel role for EA in regulating TRPV1 and TRPV4 protein expression and nerve excitation in mouse inflammatory pain models. PMID:23258994

Chen, Wei-Hsin; Tzen, Jason T. C.; Hsieh, Ching Liang; Chen, Yung Hsiang; Lin, Tzu-Jou; Chen, Shih-Yin; Lin, Yi-Wen

2012-01-01

196

Attenuation of TRPV1 and TRPV4 Expression and Function in Mouse Inflammatory Pain Models Using Electroacupuncture.  

PubMed

Although pain is a major human affliction, our understanding of pain mechanisms is limited. TRPV1 (transient receptor potential vanilloid subtype 1) and TRPV4 are two crucial receptors involved in inflammatory pain, but their roles in EA- (electroacupuncture-) mediated analgesia are unknown. We injected mice with carrageenan (carra) or a complete Freund's adjuvant (CFA) to model inflammatory pain and investigated the analgesic effect of EA using animal behavior tests, immunostaining, Western blotting, and a whole-cell recording technique. The inflammatory pain model mice developed both mechanical and thermal hyperalgesia. Notably, EA at the ST36 acupoint reversed these phenomena, indicating its curative effect in inflammatory pain. The protein levels of TRPV1 and TRPV4 in DRG (dorsal root ganglion) neurons were both increased at day 4 after the initiation of inflammatory pain and were attenuated by EA, as demonstrated by immunostaining and Western blot analysis. We verified DRG electrophysiological properties to confirm that EA ameliorated peripheral nerve hyperexcitation. Our results indicated that the AP (action potential) threshold, rise time, and fall time, and the percentage and amplitude of TRPV1 and TRPV4 were altered by EA, indicating that EA has an antinociceptive role in inflammatory pain. Our results demonstrate a novel role for EA in regulating TRPV1 and TRPV4 protein expression and nerve excitation in mouse inflammatory pain models. PMID:23258994

Chen, Wei-Hsin; Tzen, Jason T C; Hsieh, Ching Liang; Chen, Yung Hsiang; Lin, Tzu-Jou; Chen, Shih-Yin; Lin, Yi-Wen

2012-01-01

197

Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice.  

PubMed

Sensory neurons in aging mammals undergo changes in anatomy, physiology and gene expression that correlate with reduced sensory perception. In this study we compared young and aged mice to identify proteins that might contribute to this loss of sensation. We first show using behavioral testing that thermal sensitivity in aged male and female mice is reduced. Expression of sodium channel (Nav1.8 and Nav1.9) and transient receptor potential vanilloid (TRPV) channels in DRG and peripheral nerves of young and old male mice was then examined. Immunoblotting and RT-PCR assays showed reduced Nav1.8 levels in aged mice. No change was measured in TRPV1 mRNA levels in DRG though TRPV1 protein appeared reduced in the DRG and peripheral nerves. The GFRalpha3 receptor, which binds the growth factor artemin and is expressed by TRPV1-positive neurons, was also decreased in the DRG of aged animals. These findings indicate that loss of thermal sensitivity in aging animals may result from a decreased level of TRPV1 and Nav1.8 and decreased trophic support that inhibits efficient transport of channel proteins to peripheral afferents. PMID:15979214

Wang, Shuying; Davis, Brian M; Zwick, Melissa; Waxman, Stephen G; Albers, Kathryn M

2006-06-01

198

Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways  

PubMed Central

Hydrogen sulfide (H2S) is described as a mediator of diverse biological effects, and is known to produce irritation and injury in the lung following inhalation. Recently, H2S has been found to cause contraction in the rat urinary bladder via a neurogenic mechanism. Here, we studied whether sodium hydrogen sulfide (NaHS), used as donor of H2S, produces responses mediated by sensory nerve activation in the guinea-pig airways. NaHS evoked an increase in neuropeptide release in the airways that was significantly attenuated by capsaicin desensitization and by the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. In addition, NaHS caused an atropine-resistant contraction of isolated airways, which was completely prevented by capsaicin desensitization. Furthermore, NaHS-induced contraction was reduced by TRPV1 antagonism (ruthenium red, capsazepine and SB366791), and was abolished by pretreatment with the combination of tachykinin NK1 (SR140333) and NK2 (SR48968) receptor antagonists. In anesthetized guinea-pigs, intratracheal instillation of NaHS increased the total lung resistance and airway plasma protein extravasation. These two effects were reduced by TRPV1 antagonism (capsazepine) and tachykinin receptors (SR140333 and SR48968) blockade. Our results provide the first pharmacological evidence that H2S provokes tachykinin-mediated neurogenic inflammatory responses in guinea-pig airways, and that this effect is mediated by stimulation of TRPV1 receptors on sensory nerves endings. This novel mechanism may contribute to the irritative action of H2S in the respiratory system. PMID:15937520

Trevisani, Marcello; Patacchini, Riccardo; Nicoletti, Paola; Gatti, Raffaele; Gazzieri, David; Lissi, Nicola; Zagli, Giovanni; Creminon, Christophe; Geppetti, Pierangelo; Harrison, Selena

2005-01-01

199

An exploration of the estrogen receptor transcription activity of capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays.  

PubMed

Capsaicin has been considered as an alternative template of dichlorodiphenyl trichloroethane (DDT) in antifouling paint. However, information regarding the estrogenic activity of capsaicin analogues is rather limited in comparison to that of DDT analogues and their metabolites. We here explore the ER transcription activity of selected capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays. Molecular simulation and the agonist/antagonist differential-docking screening identified 6-iodonordihydrocapsaicin (6-I-CPS) as a weak ER? agonist, while anti-estrogenicity was expected for N-arachidonoyldopamine, capsazepine, dihydrocapsaicin, trichostatin A, and capsaicin. On the contrary, the large volume of analogues, such as phorbol 12-phenylacetate 13-acetate 20-homovanillate and phorbol 12,13-dinonanoate 20-homovanillate, cannot fit well with the ER cavity. The result of MVLN assay was in accord with the in silico prediction. 6-I-CPS was demonstrated to induce luciferase gene expression, while the other analogues of relatively small molecular volume reduced luciferase gene expression in MVLN cells, both in the absence and presence of estradiol. This finding suggested that the ER transcription activity of capsaicin analogues is generated at least partly through the ER?-mediated pathway. Moreover, receptor polymorphism analysis indicated that capsaicin analogues may exhibit diverse species selectivity for human beings and marine species. PMID:24747365

Li, Juan; Ma, Duo; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian

2014-06-16

200

VGLUT2 controls heat and punctuate hyperalgesia associated with nerve injury via TRPV1-Cre primary afferents.  

PubMed

Nerve injury induces a state of prolonged thermal and mechanical hypersensitivity in the innervated area, causing distress in affected individuals. Nerve injury-induced hypersensitivity is partially due to increased activity and thereby sustained release of neurotransmitters from the injured fibers. Glutamate, a prominent neurotransmitter in primary afferents, plays a major role in development of hypersensitivity. Glutamate is packed in vesicles by vesicular glutamate transporters (VGLUTs) to enable controlled release upon depolarization. While a role for peripheral VGLUTs in nerve injury-induced pain is established, their contribution in specific peripheral neuronal populations is unresolved. We investigated the role of VGLUT2, expressed by transient receptor potential vanilloid (TRPV1) fibers, in nerve injury-induced hypersensitivity. Our data shows that removal of Vglut2 from Trpv1-Cre neurons using transgenic mice abolished both heat and punctuate hyperalgesia associated with nerve injury. In contrast, the development of cold hypersensitivity after nerve injury was unaltered. Here, we show that, VGLUT2-mediated glutamatergic transmission from Trpv1-Cre neurons selectively mediates heat and mechanical hypersensitivity associated with nerve injury. Our data clarifies the role of the Trpv1-Cre population and the dependence of VGLUT2-mediated glutamatergic transmission in nerve injury-induced hyperalgesia. PMID:25615623

Rogoz, Katarzyna; Stjärne, Ludvig; Kullander, Klas; Lagerström, Malin C

2015-01-01

201

VGLUT2 controls heat and punctuate hyperalgesia associated with nerve injury via TRPV1-Cre primary afferents  

PubMed Central

Nerve injury induces a state of prolonged thermal and mechanical hypersensitivity in the innervated area, causing distress in affected individuals. Nerve injury-induced hypersensitivity is partially due to increased activity and thereby sustained release of neurotransmitters from the injured fibers. Glutamate, a prominent neurotransmitter in primary afferents, plays a major role in development of hypersensitivity. Glutamate is packed in vesicles by vesicular glutamate transporters (VGLUTs) to enable controlled release upon depolarization. While a role for peripheral VGLUTs in nerve injury-induced pain is established, their contribution in specific peripheral neuronal populations is unresolved. We investigated the role of VGLUT2, expressed by transient receptor potential vanilloid (TRPV1) fibers, in nerve injury-induced hypersensitivity. Our data shows that removal of Vglut2 from Trpv1-Cre neurons using transgenic mice abolished both heat and punctuate hyperalgesia associated with nerve injury. In contrast, the development of cold hypersensitivity after nerve injury was unaltered. Here, we show that, VGLUT2-mediated glutamatergic transmission from Trpv1-Cre neurons selectively mediates heat and mechanical hypersensitivity associated with nerve injury. Our data clarifies the role of the Trpv1-Cre population and the dependence of VGLUT2-mediated glutamatergic transmission in nerve injury-induced hyperalgesia. PMID:25615623

Rogoz, Katarzyna; Stjärne, Ludvig; Kullander, Klas; Lagerström, Malin C.

2015-01-01

202

Role of Endogenous TRPV1 Agonists in a Post-Burn Pain Model of Partial-Thickness Injury  

PubMed Central

Oxidized linoleic acid metabolites (OLAMs) are a class of endogenous transient receptor potential vanilloid 1 (TRPV1) channel agonists released upon exposure of tissue to transient noxious temperatures. These lipid compounds also contribute to inflammatory and heat allodynia. As persistent pain after a burn injury represents a significant clinical challenge for treatment, we developed an in vivo rat model of partial thickness cutaneous thermal injury and examined whether TRPV1 and specific OLAM metabolites play a role in mediating post-burn pain injury. This peripheral model of burn injury had marked thermal allodynia peaking at 24 hours post thermal injury, with allodynia being maintained for up to 7 days. Immunohistochemical characterization of tissue taken from injury site revealed an increase of leukocyte/macrophage infiltration that was co-localized with TRPV1-positive fibers. Utilizing this peripheral thermal injury model we found that pharmacological blockade of peripheral TRPV1 receptors reduced thermal allodynia by about 67%. Moreover, there was a significant increase in OLAM levels compared to naďve controls in hindpaw skin biopsies. Additional studies on metabolism of [C14]-linoleic acid in skin biopsies revealed the role of the cytochrome P450 (CYP) system in mediating the metabolism of linoleic acid post thermal injury. Finally, we demonstrated direct inhibition of OLAMs using OLAM antibodies and indirect inhibition using the CYP inhibitor ketoconazole significantly reduced post-burn thermal allodynia. Collectively, these findings point to a novel role of the OLAMs and CYP-related enzymes in generating post-burn allodynia via activation of peripheral TRPV1. PMID:23891895

Green, Dustin; Ruparel, Shivani; Roman, Linda; Henry, Michael A.; Hargreaves, Kenneth M.

2013-01-01

203

Epilepsy But Not Mobile Phone Frequency (900 MHz) Induces Apoptosis and Calcium Entry in Hippocampus of Epileptic Rat: Involvement of TRPV1 Channels.  

PubMed

Electromagnetic radiation (EMR) and epilepsy are reported to mediate the regulation of apoptosis and oxidative stress through Ca(2+) influx. Results of recent reports indicated that EMR can increase temperature and oxidative stress of body cells, and TRPV1 channel is activated by noxious heat, oxidative stress, and capsaicin (CAP). We investigated the effects of mobile phone (900 MHz) EMR exposure on Ca(2+) influx, apoptosis, oxidative stress, and TRPV1 channel activations in the hippocampus of pentylenetetrazol (PTZ)-induced epileptic rats. Freshly isolated hippocampal neurons of twenty-one rats were used in study within three groups namely control, PTZ, and PTZ + EMR. The neurons in the three groups were stimulated by CAP. Epilepsy was induced by PTZ administration. The neurons in PTZ + EMR group were exposed to the 900 MHz EMR for 1 h. The apoptosis, mitochondrial membrane depolarization, intracellular reactive oxygen species (ROS), and caspase-3 and caspase-9 values were higher in PTZ and PTZ + EMR groups than in control. However, EMR did not add additional increase effects on the values in the hippocampal neurons. Intracellular-free Ca(2+) concentrations in fura-2 analyses were also higher in PTZ + CAP group than in control although their concentrations were decreased by TRPV1 channel blocker, capsazepine. However, there were no statistical changes on the Ca(2+) concentrations between epilepsy and EMR groups. In conclusion, apoptosis, mitochondrial, ROS, and Ca(2+) influx via TRPV1 channel were increased in the hippocampal neurons by epilepsy induction although the mobile phone did not change the values. The results indicated that TRPV1 channels in hippocampus may possibly be a novel target for effective target of epilepsy. PMID:25381485

Naz?ro?lu, Mustafa; Özkan, Fatma Feyza; Hapil, Seher Rabia; Ghazizadeh, Vahid; Çi?, Bilal

2015-02-01

204

Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization.  

PubMed

The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

Kiyatkin, Michael E; Feng, Bin; Schwartz, Erica S; Gebhart, G F

2013-11-01

205

Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization  

PubMed Central

The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

2013-01-01

206

Activation of the 5-HT1B/D receptor reduces hindlimb neurogenic inflammation caused by sensory nerve stimulation and capsaicin.  

PubMed

Activation of the 5-HT(1B/D) receptor inhibits cerebrovascular neurogenic inflammation (NI). The aim of this study was to determine if the 5-HT(1B/D) receptor agonist sumatriptan can also inhibit NI in other regions of the body. NI was assessed by measuring plasma extravasation (PE) and changes in blood flow in the rat hindpaw. Sumatriptan was administered locally (20 microl, 50 or 100 nM, s.c.) into the dorso-medial region of one hindpaw. The other paw was pre-treated with vehicle (20 microl of 0.9% saline) and served as a control. NI was induced after treatment with sumatriptan/vehicle by injecting capsaicin (15 microl, 1%, s.c.) into each paw or by electrically stimulating the saphenous nerve (4 Hz, 30s). Sumatriptan administered locally or systemically (300 microg/kg, i.v.) significantly reduced saphenous nerve and capsaicin-induced PE and vasodilation. The systemic and local inhibitory actions of sumatriptan are mediated by the 5-HT(1B/D) receptor as pre-treatment with the 5-HT(1B/D) antagonist GR127935 (GR; 15 microl, 1 microM, s.c. or 0.2 micromol/kg, i.v.) completely blocked the inhibitory effect of sumatriptan on capsaicin-induced vasodilation and reduced the inhibitory effect of sumatriptan on capsaicin and electrically induced-PE. Neither PE induced by local injection of substance P (SP) (20 pmol, 20 microl, s.c.) nor vasodilation induced by local CGRP injection was affected by pre-treatment with sumatriptan. These findings indicate that both local and systemic activation of the 5-HT(1B/D) receptor by sumatriptan reduce NI induced by nerve stimulation or capsaicin presumably by inhibiting neuropeptide release. 5-HT(1B/D) receptor agonists may be useful for the treatment of non-trigeminal pain conditions involving NI. PMID:17499925

Carmichael, Nicole M E; Charlton, Milton P; Dostrovsky, Jonathan O

2008-01-01

207

Activation of transient receptor potential vanilloid subtype 1 increases expression and permeability of tight junction in normal and hyposecretory submandibular gland.  

PubMed

Tight junction (TJ) is an important structure that regulates material transport through the paracellular pathway across the epithelium, but its significance in salivary physiology and pathogenesis of salivary dysfunctional diseases is not fully understood. We previously demonstrated that a functional transient receptor potential vanilloid subtype 1 (TRPV1) expresses in submandibular gland (SMG). However, association of TRPV1-induced saliva secretion with TJ remains unknown. Here we explored the effect of TRPV1 activation on expression and function of TJ of rabbit SMG in vitro and in vivo. RT-PCR and western blot analysis revealed that capsaicin upregulated expression of zonula occludin-1 (ZO-1), claudin (Cldn)-3, and -11, but not Cldn-1, -2, -4, -5, and -7 in cultured SMG cells. Capsaicin also increased the entering of 4?kDa FITC-dextran into the acinar lumen, induced redistribution of cytoskeleton F-actin under confocal microscope, and these effects were abolished by preincubation of capsazepine, a TRPV1 antagonist, indicating that activation of TRPV1 increases expression and permeability of TJ in SMG. Additionally, in a hyposecretory model induced by rabbit SMG transplantation, the expression of ZO-1, Cldn-3, and -11 was decreased, whereas other TJs remained unaltered. The structure of TJ was impaired and the width of apical TJs was reduced under transmission electron microscope, concomitant with diminished immunofluorescence of F-actin in peri-apicolateral region, indicating impaired TJ expression and decreased paracellular permeability in the transplanted SMG. Moreover, topical capsaicin cream increased secretion, decreased TJ structural injury, reversed TJ expression levels, and protected F-actin morphology from disarrangement in transplanted SMGs. These data provide the first evidence to demonstrate that TJ components, particularly ZO-1, Cldn-3, and -11 have important roles in secretion of SMG under both physiological and pathophysiological conditions. The injury in TJ integrity was involved in the hypofunctional SMGs, and TRPV1 might be a potential target to improve saliva secretion through modulating expression and function of TJs. PMID:22391958

Cong, Xin; Zhang, Yan; Shi, Liang; Yang, Ning-Yan; Ding, Chong; Li, Jing; Ding, Qian-Wen; Su, Yun-Chao; Xiang, Ruo-Lan; Wu, Li-Ling; Yu, Guang-Yan

2012-05-01

208

Using novel in vitro NociOcular assay based on TRPV1 channel activation for prediction of eye sting potential of baby shampoos.  

PubMed

The transient receptor potential vanilloid type 1 (TRPV1) channel is one of the most well-characterized pain-inducing receptors. The purpose of this study was to predict human eye stinging of 19 baby bath and shampoo formulations by studying TRPV1 activity, as measured by increase in intracellular free Ca(2+). The NociOcular test, a novel recombinant neuronal in vitro model with high expression of functional TRPV1 channels, was used to test formulations containing a variety of surfactants, preservatives, and fragrances. TRPV1-specific Ca(2+) influx was abolished when the TRPV1 channel antagonist capsazepine was applied to the cells prior to shampoo samples. The positive control, an adult shampoo that contains cocamide monoethanolamine (CMEA), a known stinging ingredient, was the most active sample tested in the NociOcular test. The negative control, a marketed baby shampoo, was negative in the NociOcular and human tests. Seven of the formulations induced stinging in the human test, and of those six were positive in the NociOcular test. Twelve formulations were classified as nonstinging in the human test, and of those ten were negative in the NociOcular test. There was no correlation between the clinical stinging results for the baby formulations and the data generated from other in vitro eye irritation assays (cytosensor microphysiometer, neutral red uptake, EpiOcular, transepithelial permeability). Our data support that the TRPV1 channel is a principal mediator of eye-stinging sensation induced by baby bath and shampoo formulations and that the NociOcular test may be a valuable in vitro tool to predict human eye-stinging sensation. PMID:22705807

Forsby, Anna; Norman, Kimberly G; El Andaloussi-Lilja, Johanna; Lundqvist, Jessica; Walczak, Vincent; Curren, Rodger; Martin, Katharine; Tierney, Neena K

2012-10-01

209

Role of CXCR2 and TRPV1 in functional, inflammatory and behavioural changes in the rat model of cyclophosphamide-induced haemorrhagic cystitis  

PubMed Central

Background and Purpose:?Cyclophosphamide induces urotoxicity characterized by the development of cystitis, which involves bladder overactivity and inflammation. Here, we investigated the roles of chemokine receptor 2 (CXCR2) and transient receptor potential vanilloid 1 (TRPV1) channels in a rat model of cyclophosphamide-induced cystitis. Experimental Approach:?Cystitis induced by cyclophosphamide in rats was assessed by gross morphology, histology and immunohistochemistry of bladder tissue. mRNA for CXCR2 and TRPV1 channels were measured by RT-PCR. Nociceptive responses in paw and abdomen, along with cystometric measures were recorded. Key Results:?Cyclophosphamide, i.p., induced pain behaviour, bladder inflammation and voiding dysfunction. The CXCR2 antagonist, SB225002, the TRPV1 channel antagonist, SB366791 or their combination reduced the mechanical hypersensitivity of paw and abdominal area and nociceptive behaviour after cyclophosphamide. Cyclophosphamide-induced cystitis was characterized by haemorrhage, oedema, neutrophil infiltration and other inflammatory changes, which were markedly decreased by the antagonists. Up-regulation of CXCR2 and TRPV1 mRNA in the bladder after cyclophosphamide was inhibited by SB225002, SB366791 or their combination. Expression of CXCR2 and TRPV1 channels was increased in the urothelium after cyclophosphamide. Bladder dysfunction was shown by increased number of non-voiding contractions (NVCs) and bladder pressures and a reduction in bladder capacity (BC), voided volume (VV) and voiding efficiency (VE). SB225002 or its combination with SB366791 reduced bladder pressures, whereas SB225002, SB366791 or their combination increased BC, VV and VE, and also reduced the number of NVCs. Conclusions and Implications:?CXCR2 and TRPV1 channels play important roles in cyclophosphamide-induced cystitis in rats and could provide potential therapeutic targets for cystitis. PMID:24117268

Dornelles, Fabiana N; Andrade, Edinéia L; Campos, Maria M; Calixto, Joăo B

2014-01-01

210

Capsaicin sensitive afferent neurons from peripheral glucose receptors mediate the insulin-induced increase in adrenaline secretion  

Microsoft Academic Search

1.The effect of insulin and of 2-deoxy-d-glucose (2-DG) on adrenaline secretion was compared in rats pretreated as neonates with capsaicin and in rats pretreated with the drug-vehicle.2.Capsaicin-pretreatment did not inhibit the fall in blood glucose concentrations induced by insulin or by fasting, nor did it affect the increase in blood glucose concentrations in response to 2-DG or restraint stress.3.Capsaicin greatly

Rainer Amann; Fred Lembeck

1986-01-01

211

The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway.  

PubMed

The activation of nitric oxide (NO) production is an analgesic mechanism shared by drugs such as morphine and diclofenac. Therefore, the controlled release of low amounts of NO seems to be a promising analgesic approach. In the present study, the antinociceptive effect of the ruthenium NO donor [Ru(bpy)2(NO)SO3](PF6) (complex I) was investigated. It was observed that complex I inhibited in a dose (0.3-10mg/kg)-dependent manner the acetic acid-induced writhing response. At the dose of 1mg/kg, complex I inhibited the phenyl-p-benzoquinone-induced writhing response and formalin- and complete Freund's adjuvant-induced licking and flinch responses. Additionally, complex I also inhibited transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent overt pain-like behavior induced by capsaicin. Complex I also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity (MPO) in paw skin samples. The inhibitory effect of complex I in the carrageenin-induced hyperalgesia, MPO activity and formalin was prevented by the treatment with ODQ, KT5823 and glybenclamide, indicating that complex I inhibits inflammatory hyperalgesia by activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. The present study demonstrates the efficacy of a novel ruthenium NO donor and its analgesic mechanisms. PMID:23470198

Staurengo-Ferrari, Larissa; Mizokami, Sandra S; Silva, Jean J; da Silva, Francisco O N; Sousa, Eduardo H S; da França, Luiz G; Matuoka, Mariana L; Georgetti, Sandra R; Baracat, Marcela M; Casagrande, Rubia; Pavanelli, Wander R; Verri, Waldiceu A

2013-04-01

212

Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice  

PubMed Central

The aim of the present study is to characterize the role of spinal endogenous ATP and P2X receptors in the generation of neurogenic and inflammatory pain. We examined the effects of intrathecal treatment with P2X receptor antagonists on the formalin- and capsaicin-induced nociceptive behaviours in mice. Intrathecal pretreatment with the general P2 receptor antagonist, pyridoxal-phosphate-6-azophenyl-2?,4?-disulphonic acid (PPADS), significantly suppressed both the first and second phases of the formalin-induced nociceptive behaviour. The second phase of the nociceptive response was also suppressed by intrathecal treatment with PPADS after the first phase. Furthermore, pretreatment with the selective antagonist for the P2X1, P2X3 and P2X2+3 receptors, 2?,3?-O-(2,4,6-trinitrophenyl)adenosine 5?-triphosphate (TNP-ATP), significantly reduced the first phase, but not the second phase. The second phase was also not suppressed by intrathecal TNP-ATP after the first phase. Capsaicin-induced nociceptive behaviour that has been shown to be a model for neurogenic pain, was also significantly suppressed by intrathecal pretreatment with PPADS or TNP-ATP. Nociceptive behaviour in the first phase of the formalin test and in the capsaicin test were significantly inhibited by intrathecal pretreatment with ?,?-methylene ATP (?,?meATP: 5??g mouse?1) 15?min prior to injection of formalin or capsaicin. This treatment has been previously shown to desensitize spinal P2X3 receptor subtypes in vivo. These findings suggest that spinal endogenous ATP may play a role in (1) the formalin- and capsaicin-induced neurogenic pain via the PPADS- and TNP-ATP-sensitive P2X receptors which are also desensitized by ?,?meATP (perhaps the P2X3 receptor subtype) and (2) formalin-induced inflammatory pain via PPADS-sensitive, TNP-ATP- and ?,?meATP-insensitive P2X (and/or P2Y) receptors. PMID:10602329

Tsuda, Makoto; Ueno, Shinya; Inoue, Kazuhide

1999-01-01

213

House dust mite potentiates capsaicin-evoked Ca2+ transients in mouse pulmonary sensory neurons via activation of protease-activated receptor-2  

PubMed Central

House dust mite (HDM) is a major source of allergen in house dust and has been suggested to be involved in the pathogenesis of asthma. In this study, we aimed to investigate whether HDM can modulate the sensitivity of pulmonary sensory neurons, and if so, to elucidate the underlying mechanism. Fura-2 based ratiometric Ca2+ imaging was carried out to determine the effect of HDM extract on the capsaicin-evoked Ca2+ transient in mouse vagal pulmonary sensory neurons. Pretreatment with HDM (50 ?g/ml, 5 min) significantly enhanced the Ca2+ transient evoked by capsaicin in these neurons isolated from wildtype mice. This potentiating effect of HDM was not antagonized by E-64, a selective cysteine protease inhibitor, but was completely prevented by AEBSF, a specific serine protease inhibitor. In addition, the potentiating effect of HDM on capsaicin-evoked Ca2+ transient was absent in the pulmonary sensory neurons isolated from protease-activated receptor-2 (PAR2) knockout mice. Further, the sensitizing effect of HDM was completely abolished by U73122, a PLC inhibitor, or chelerythrine, a PKC inhibitor. In summary, our results demonstrate that HDM, mainly through its serine protease activity, potentiates capsaicin-evoked Ca2+ transient in mouse pulmonary sensory neurons via the activation of PAR2 and PLC-PKC intracellular transduction cascade. PMID:22125310

Gu, Qihai; Lee, Lu-Yuan

2011-01-01

214

Progesterone receptor chaperone complex-based high-throughput screening assay: identification of capsaicin as an inhibitor of the hsp90 machine.  

PubMed

Hsp90 and its co-chaperones are known to be important for cancer cell survival. The N-terminal inhibitors of Hsp90 that are in ongoing clinical trials as antitumor agents have unfortunately shown disappointing efficacies in the clinic. Thus, novel inhibitors of the Hsp90 machine with a different mechanism of action are urgently needed. We report here the development of a novel high-throughput screening assay platform to identify small-molecule inhibitors of Hsp90 and its co-chaperones. This assay quantitatively measures the ability of Hsp90 and its co-chaperones to refold/protect the progesterone receptor, a physiological client of Hsp90, in a 96-well plate format. We screened the National Institutes of Health clinical collection drug library and identified capsaicin as a hit molecule. Capsaicin is a Food and Drug Administration-approved drug for topical use in pain management. Cell survival assays showed that capsaicin selectively kills cancer cells and destabilizes several Hsp90 client proteins. Thus, our data may explain the seemingly pleotropic effect of capsaicin. PMID:25184514

Patwardhan, Chaitanya A; Alfa, Eyad; Lu, Su; Chadli, Ahmed

2015-02-01

215

Discovery of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442): a temperature-neutral transient receptor potential vanilloid-1 (TRPV1) antagonist with analgesic efficacy.  

PubMed

The synthesis and characterization of a series of selective, orally bioavailable 1-(chroman-4-yl)urea TRPV1 antagonists is described. Whereas first-generation antagonists that inhibit all modes of TRPV1 activation can elicit hyperthermia, the compounds disclosed herein do not elevate core body temperature in preclinical models and only partially block acid activation of TRPV1. Advancing the SAR of this series led to the eventual identification of (R)-1-(7-chloro-2,2-bis(fluoromethyl)chroman-4-yl)-3-(3-methylisoquinolin-5-yl)urea (A-1165442, 52), an analogue that possesses excellent pharmacological selectivity, has a favorable pharmacokinetic profile, and demonstrates good efficacy against osteoarthritis pain in rodents. PMID:25100568

Voight, Eric A; Gomtsyan, Arthur R; Daanen, Jerome F; Perner, Richard J; Schmidt, Robert G; Bayburt, Erol K; DiDomenico, Stanley; McDonald, Heath A; Puttfarcken, Pamela S; Chen, Jun; Neelands, Torben R; Bianchi, Bruce R; Han, Ping; Reilly, Regina M; Franklin, Pamela H; Segreti, Jason A; Nelson, Richard A; Su, Zhi; King, Andrew J; Polakowski, James S; Baker, Scott J; Gauvin, Donna M; Lewis, LaGeisha R; Mikusa, Joseph P; Joshi, Shailen K; Faltynek, Connie R; Kym, Philip R; Kort, Michael E

2014-09-11

216

Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action.  

PubMed

Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo. PMID:24075930

Skrzypski, M; Sassek, M; Abdelmessih, S; Mergler, S; Grötzinger, C; Metzke, D; Wojciechowicz, T; Nowak, K W; Strowski, M Z

2014-01-01

217

The Effects of a Co-Application of Menthol and Capsaicin on Nociceptive Behaviors of the Rat on the Operant Orofacial Pain Assessment Device  

PubMed Central

Background Transient receptor potential (TRP) cation channels are involved in the perception of hot and cold pain and are targets for pain relief in humans. We hypothesized that agonists of TRPV1 and TRPM8/TRPA1, capsaicin and menthol, would alter nociceptive behaviors in the rat, but their opposite effects on temperature detection would attenuate one another if combined. Methods Rats were tested on the Orofacial Pain Assessment Device (OPAD, Stoelting Co.) at three temperatures within a 17 min behavioral session (33°C, 21°C, 45°C). Results The lick/face ratio (L/F: reward licking events divided by the number of stimulus contacts. Each time there is a licking event a contact is being made.) is a measure of nociception on the OPAD and this was equally reduced at 45°C and 21°C suggesting they are both nociceptive and/or aversive to rats. However, rats consumed (licks) equal amounts at 33°C and 21°C but less at 45°C suggesting that heat is more nociceptive than cold at these temperatures in the orofacial pain model. When menthol and capsaicin were applied alone they both induced nociceptive behaviors like lower L/F ratios and licks. When applied together though, the licks at 21°C were equal to those at 33°C and both were significantly higher than at 45°C. Conclusions This suggests that the cool temperature is less nociceptive when TRPM8/TRPA1 and TRPV1 are co-activated. These results suggest that co-activation of TRP channels can reduce certain nociceptive behaviors. These data demonstrate that the motivational aspects of nociception can be influenced selectively by TRP channel modulation and that certain aspects of pain can be dissociated and therefore targeted selectively in the clinic. PMID:24558480

Anderson, Ethan M.; Jenkins, Alan C.; Caudle, Robert M.; Neubert, John K.

2014-01-01

218

Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia  

NASA Astrophysics Data System (ADS)

Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist ??meATP, induced a dose- and time-dependent hyperalgesia. Importantly, the ??meATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand gated ion channels form functional complexes in nociceptors. It is also important to further elucidate peripheral anti-nociceptive mechanisms to improve clinical utilization of currently available analgesics and uncover additional therapeutic targets. A side project examined the mechanisms underlying sex differences in the anti-hyperalgesic effects of delta opioid receptors (DORs). This study provides evidence of a sex difference in the potency at DORs that is mediated by differences in the expression of ATP-sensitive potassium channels. Collectively, understanding detailed molecular events that underlie the development of pathological pain conditions could benefit future pharmacotherapies.

Saloman, Jami L.

219

Intrathecal AAV Serotype 9-mediated Delivery of shRNA Against TRPV1 Attenuates Thermal Hyperalgesia in a Mouse Model of Peripheral Nerve Injury  

PubMed Central

Gene therapy for neuropathic pain requires efficient gene delivery to both central and peripheral nervous systems. We previously showed that an adenoassociated virus serotype 9 (AAV9) vector expressing short-hairpin RNA (shRNA) could suppress target molecule expression in the dorsal root ganglia (DRG) and spinal cord upon intrathecal injection. To evaluate the therapeutic potential of this approach, we constructed an AAV9 vector encoding shRNA against vanilloid receptor 1 (TRPV1), which is an important target gene for acute pain, but its role in chronic neuropathic pain remains unclear. We intrathecally injected it into the subarachnoid space at the upper lumbar spine of mice 3 weeks after spared nerve injury (SNI). Delivered shTRPV1 effectively suppressed mRNA and protein expression of TRPV1 in the DRG and spinal cord, and it attenuated nerve injury-induced thermal allodynia 10–28 days after treatment. Our study provides important evidence for the contribution of TRPV1 to thermal hypersensitivity in neuropathic pain and thus establishes intrathecal AAV9-mediated gene delivery as an investigative and potentially therapeutic platform for the nervous system. PMID:24322332

Hirai, Takashi; Enomoto, Mitsuhiro; Kaburagi, Hidetoshi; Sotome, Shinichi; Yoshida-Tanaka, Kie; Ukegawa, Madoka; Kuwahara, Hiroya; Yamamoto, Mariko; Tajiri, Mio; Miyata, Haruka; Hirai, Yukihiko; Tominaga, Makoto; Shinomiya, Kenichi; Mizusawa, Hidehiro; Okawa, Atsushi; Yokota, Takanori

2014-01-01

220

Promiscuous gating modifiers target the voltage sensor of K(v)7.2, TRPV1, and H(v)1 cation channels.  

PubMed

Some of the fascinating features of voltage-sensing domains (VSDs) in voltage-gated cation channels (VGCCs) are their modular nature and adaptability. Here we examined the VSD sensitivity of different VGCCs to 2 structurally related nontoxin gating modifiers, NH17 and NH29, which stabilize K(v)7.2 potassium channels in the closed and open states, respectively. The effects of NH17 and NH29 were examined in Chinese hamster ovary cells transfected with transient receptor potential vanilloid 1 (TRPV1) or K(v)7.2 channels, as well as in dorsal root ganglia neurons, using the whole-cell patch-clamp technique. NH17 and NH29 exert opposite effects on TRPV1 channels, operating, respectively, as an activator and a blocker of TRPV1 currents (EC50 and IC50 values ranging from 4 to 40 ?M). Combined mutagenesis, electrophysiology, structural homology modeling, molecular docking, and molecular dynamics simulation indicate that both compounds target the VSDs of TRPV1 channels, which, like vanilloids, are involved in ?-? stacking, H-bonding, and hydrophobic interactions. Reflecting their promiscuity, the drugs also affect the lone VSD proton channel mVSOP. Thus, the same gating modifier can promiscuously interact with different VGCCs, and subtle differences at the VSD-ligand interface will dictate whether the gating modifier stabilizes channels in either the closed or the open state. PMID:24599966

Kornilov, Polina; Peretz, Asher; Lee, Yoonji; Son, Karam; Lee, Jin Hee; Refaeli, Bosmat; Roz, Netta; Rehavi, Moshe; Choi, Sun; Attali, Bernard

2014-06-01

221

Role of Peptidergic Nerve Terminals in the Skin: Reversal of Thermal Sensation by Calcitonin Gene-Related Peptide in TRPV1-Depleted Neuropathy  

PubMed Central

To investigate the contribution of peptidergic intraepidermal nerve fibers (IENFs) to nociceptive responses after depletion of the thermal-sensitive receptor, transient receptor potential vanilloid subtype 1 (TRPV1), we took advantage of a resiniferatoxin (RTX)-induced neuropathy which specifically affected small-diameter dorsal root ganglion (DRG) neurons and their corresponding nerve terminals in the skin. Thermal hypoalgesia (p<0.001) developed from RTX-treatment day 7 (RTXd7) and became normalized from RTXd56 to RTXd84. Substance P (SP)(+) and TRPV1(+) neurons were completely depleted (p?=?0.0001 and p<0.0001, respectively), but RTX had a relatively minor effect on calcitonin gene-related peptide (CGRP)(+) neurons (p?=?0.029). Accordingly, SP(+) (p<0.0001) and TRPV1(+) (p?=?0.0008) IENFs were permanently depleted, but CGRP(+) IENFs (p?=?0.012) were only transiently reduced and had recovered by RTXd84 (p?=?0.83). The different effects of RTX on peptidergic neurons were attributed to the higher co-localization ratio of TRPV1/SP than of TRPV1/CGRP (p?=?0.029). Thermal hypoalgesia (p?=?0.0018) reappeared with an intraplantar injection of botulinum toxin type A (botox), and the temporal course of withdrawal latencies in the hot-plate test paralleled the innervation of CGRP(+) IENFs (p?=?0.0003) and CGRP contents in skin (p?=?0.01). In summary, this study demonstrated the preferential effects of RTX on depletion of SP(+) IENFs which caused thermal hypoalgesia. In contrast, the skin was reinnervated by CGRP(+) IENFs, which resulted in a normalization of nociceptive functions. PMID:23209829

Chiang, Hao; Fu, Yaw-Syan; Lue, June-Horng; Hsieh, Sung-Tsang

2012-01-01

222

Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism.  

PubMed

Neuropathic pain elevates spinal anandamide (AEA) levels in a way further increased when URB597, an inhibitor of AEA hydrolysis by fatty acid amide hydrolase (FAAH), is injected intrathecally. Spinal AEA reduces neuropathic pain by acting at both cannabinoid CB1 receptors and transient receptor potential vanilloid-1 (TRPV1) channels. Yet, intrathecal URB597 is only partially effective at counteracting neuropathic pain. We investigated the effect of high doses of intrathecal URB597 on allodynia and hyperalgesia in rats with chronic constriction injury (CCI) of the sciatic nerve. Among those tested, the 200 µg/rat dose of URB597 was the only one that elevated the levels of the FAAH non-endocannabinoid and anti-inflammatory substrates, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and of the endocannabinoid FAAH substrate, 2-arachidonoylglycerol, and fully inhibited thermal and tactile nociception, although in a manner blocked almost uniquely by TRPV1 antagonism. Surprisingly, this dose of URB597 decreased spinal AEA levels. RT-qPCR and western blot analyses demonstrated altered spinal expression of lipoxygenases (LOX), and baicalein, an inhibitor of 12/15-LOX, significantly reduced URB597 analgesic effects, suggesting the occurrence of alternative pathways of AEA metabolism. Using immunofluorescence techniques, FAAH, 15-LOX and TRPV1 were found to co-localize in dorsal spinal horn neurons of CCI rats. Finally, 15-hydroxy-AEA, a 15-LOX derivative of AEA, potently and efficaciously activated the rat recombinant TRPV1 channel. We suggest that intrathecally injected URB597 at full analgesic efficacy unmasks a secondary route of AEA metabolism via 15-LOX with possible formation of 15-hydroxy-AEA, which, together with OEA and PEA, may contribute at producing TRPV1-mediated analgesia in CCI rats. PMID:23573230

Starowicz, Katarzyna; Makuch, Wioletta; Korostynski, Michal; Malek, Natalia; Slezak, Michal; Zychowska, Magdalena; Petrosino, Stefania; De Petrocellis, Luciano; Cristino, Luigia; Przewlocka, Barbara; Di Marzo, Vincenzo

2013-01-01

223

Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala  

PubMed Central

Background Neurons in the capsular part of the central nucleus of the amygdala (CeC), a region also called "nociceptive amygdala," receive nociceptive information from the dorsal horn via afferent pathways relayed from the lateral parabrachial nucleus (LPB). As the central amygdala is known to be involved in the acquisition and expression of emotion, this pathway is thought to play central roles in the generation of affective responses to nociceptive inputs. Excitatory synaptic transmission between afferents arising from the LPB and these CeC neurons is potentiated in arthritic, visceral, neuropathic, inflammatory and muscle pain models. In neuropathic pain models following spinal nerve ligation (SNL), in which we previously showed a robust LPB-CeC potentiation, the principal behavioral symptom is tactile allodynia triggered by non-C-fiber low-threshold mechanoreceptor afferents. Conversely, recent anatomical studies have revealed that most of the spinal neurons projecting to the LPB receive C-fiber afferent inputs. Here, we examined the hypothesis that these C-fiber-mediated inputs are necessary for the full establishment of robust synaptic potentiation of LPB-CeC transmission in the rats with neuropathic pain. Results Postnatal capsaicin treatment, which has been shown to denervate the C-fibers expressing transient receptor potential vanilloid type-1 (TRPV1) channels, completely abolished eye-wiping responses to capsaicin eye instillation in rats, but this treatment did not affect mechanical allodynia in the nerve-ligated animals. However, the postnatal capsaicin treatment prevented LPB-CeC synaptic potentiation after SNL, unlike in the vehicle-treated rats, primarily due to the decreased incidence of potentiated transmission by elimination of TRPV1-expressing C-fiber afferents. Conclusions C-fiber-mediated afferents in the nerve-ligated animals may be a required facilitator of the establishment of nerve injury-evoked synaptic potentiation in the CeC. These inputs might play essential roles in the chronic pain-induced plastic changes in the central network linking nociception and negative emotion. PMID:22776418

2012-01-01

224

TRPV1 activation is not an all-or-none event: TRPV1 partial agonism/antagonism and its regulatory modulation  

PubMed Central

TRPV1 has emerged as a promising therapeutic target for pain as well as a broad range of other conditions such as asthma or urge incontinence. The identification of resiniferatoxin as an ultrapotent ligand partially able to dissect the acute activation of TRPV1 from subsequent desensitization and the subsequent intense efforts in medicinal chemistry have revealed that TRPV1 affords a dramatic landscape of opportunities for pharmacological manipulation. While agonism and antagonism have represented the primary directions for drug development, the pharmacological complexity of TRPV1 affords additional opportunities. Partial agonism/partial antagonism, its modulation by signaling pathways, variable desensitization, and slow kinetics of action can all be exploited through drug design. PMID:21671879

Blumberg, Peter M.; Pearce, Larry V.; Lee, Jeewoo

2012-01-01

225

Capsaicin and N-Arachidonoyl-dopamine (NADA) Decrease Tension by Activating Both Cannabinoid and Vanilloid Receptors in Fast Skeletal Muscle Fibers of the Frog.  

PubMed

Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3 % of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors. PMID:25228331

Trujillo, Xóchitl; Ortiz-Mesina, Mónica; Uribe, Tannia; Castro, Elena; Montoya-Pérez, Rocío; Urzúa, Zorayda; Feria-Velasco, Alfredo; Huerta, Miguel

2015-02-01

226

Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.  

PubMed

Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress. PMID:24792079

Ghazizadeh, Vahid; Naz?ro?lu, Mustafa

2014-09-01

227

Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses  

PubMed Central

In rodents, at least two transduction mechanisms are involved in salt taste: 1) the sodium-selective epithelial sodium channel, blocked by topical amiloride administration, and 2) one or more amiloride-insensitive cation-nonselective pathways. Whereas electrophysiological evidence from the chorda tympani nerve (CT) has implicated the transient receptor potential vanilloid-1 (TRPV1) channel as a major component of amiloride-insensitive salt taste transduction, behavioral results have provided only equivocal support. Using a brief-access taste test, we examined generalization profiles of water-deprived C57BL/6J (WT) and TRPV1 knockout (KO) mice conditioned (via LiCl injection) to avoid 100 ?M amiloride-prepared 0.25 M NaCl and tested with 0.25 M NaCl, sodium gluconate, KCl, NH4Cl, 6.625 mM citric acid, 0.15 mM quinine, and 0.5 M sucrose. Both LiCl-injected WT and TRPV1 KO groups learned to avoid NaCl+amiloride relative to controls, but their generalization profiles did not differ; LiCl-injected mice avoided the nonsodium salts and quinine suggesting that a TRPV1-independent pathway contributes to the taste quality of the amiloride-insensitive portion of the NaCl signal. Repeating the experiment but doubling all stimulus concentrations revealed a difference in generalization profiles between genotypes. While both LiCl-injected groups avoided the nonsodium salts and quinine, only WT mice avoided the sodium salts and citric acid. CT responses to these stimuli and a concentration series of NaCl and KCl with and without amiloride did not differ between genotypes. Thus, in our study, TRPV1 did not appear to contribute to sodium salt perception based on gustatory signals, at least in the CT, but may have contributed to the oral somatosensory features of sodium. PMID:23054171

Smith, Kimberly R.; Treesukosol, Yada; Paedae, A. Brennan; Contreras, Robert J.

2012-01-01

228

Inhibition of airway hyper-responsiveness by TRPV1 antagonists (SB-705498 and PF-04065463) in the unanaesthetized, ovalbumin-sensitized guinea pig  

PubMed Central

BACKGROUND AND PURPOSE Airway sensory nerves play a key role in respiratory cough, dyspnoea, airway hyper-responsiveness (AHR), all fundamental features of airway diseases [asthma and chronic obstructive pulmonary disease (COPD) ]. Vagally mediated airway reflexes such as cough, bronchoconstriction and chest tightness originate from stimulation of airway sensory nerve endings. The transient receptor potential vanilloid 1 receptor (TRPV1) is present on peripheral terminals of airway sensory nerves and modulation of its activity represents a potential target for the pharmacological therapy of AHR in airway disease. EXPERIMENTAL APPROACH As guinea pig models can provide some of the essential features of asthma, including AHR, we have established the model with some classical pharmacological agents and examined the effect of the TRPV1 antagonists, SB-705498 and PF-04065463 on AHR to histamine evoked by ovalbumin (OA) in unanaesthetized sensitized guinea pigs restrained in a double chamber plethysmograph. Specific airway conductance (sGaw) derived from the airflow was calculated as a percentage of change from baseline. KEY RESULTS Cetirizine and salbutamol significantly inhibited OA-evoked bronchoconstriction [sGaw area under the curve (AUC): 70 and 78%, respectively]. Atropine, SB-705498 and PF-04065463 significantly inhibited OA-evoked AHR to histamine in unanaesthetized, OA-sensitized guinea pigs (sGaw AUC: 94%, 57% and 73%, respectively). Furthermore, this effect was not related to antagonism of histamine's activity. CONCLUSION AND IMPLICATIONS These data suggest that TRPV1 receptors located on airway sensory nerves are important in the development of AHR and that modulation of TRPV1-receptor activity represents a potential target for the pharmacological therapy of AHR in airway disease. PMID:22320181

Delescluse, I; Mace, H; Adcock, JJ

2012-01-01

229

Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy.  

PubMed

Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8weeks of diabetes development. Here we found that 6-7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception. The proportion of IB4-positive capsaicin-sensitive small DRG neurons, strongly involved in thermal nociception, was not altered under different types of PDN implying differential changes at cellular and molecular level. We further focused on properties of T-type calcium and TRPV1 channels, which are known to be involved in Ca(2+) signaling and pathological nociception. Indeed, TRPV1-mediated signaling in these neurons was downregulated under hypo- and normalgesia and upregulated under hyperalgesia. A complex interplay between diabetes-induced changes in functional expression of Cav3.2 T-type calcium channels and depolarizing shift of their steady-state inactivation resulted in upregulation of these channels under hyper- and normalgesia and their downregulation under hypoalgesia. As a result, T-type window current was increased by several times under hyperalgesia partially underlying the increased resting [Ca(2+)]i observed in the hyperalgesic rats. At the same time Cav3.2-dependent Ca(2+) signaling was upregulated in all types of PDN. These findings indicate that alterations in functioning of Cav3.2 T-type and TRPV1 channels, specific for each type of PDN, may underlie the variety of pain syndromes induced by type 1 diabetes. PMID:23376589

Khomula, Eugen V; Viatchenko-Karpinski, Viacheslav Y; Borisyuk, Anya L; Duzhyy, Dmytro E; Belan, Pavel V; Voitenko, Nana V

2013-05-01

230

TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis.  

PubMed

Visceral afferents expressing transient receptor potential (TRP) channels TRPV1 and TRPA1 are thought to be required for neurogenic inflammation and development of inflammatory hyperalgesia. Using a mouse model of chronic pancreatitis (CP) produced by repeated episodes (twice weekly) of caerulein-induced AP (AP), we studied the involvement of these TRP channels in pancreatic inflammation and pain-related behaviors. Antagonists of the two TRP channels were administered at different times to block the neurogenic component of AP. Six bouts of AP (over 3 wks) increased pancreatic inflammation and pain-related behaviors, produced fibrosis and sprouting of pancreatic nerve fibers, and increased TRPV1 and TRPA1 gene transcripts and a nociceptive marker, pERK, in pancreas afferent somata. Treatment with TRP antagonists, when initiated before week 3, decreased pancreatic inflammation and pain-related behaviors and also blocked the development of histopathological changes in the pancreas and upregulation of TRPV1, TRPA1, and pERK in pancreatic afferents. Continued treatment with TRP antagonists blocked the development of CP and pain behaviors even when mice were challenged with seven more weeks of twice weekly caerulein. When started after week 3, however, treatment with TRP antagonists was ineffective in blocking the transition from AP to CP and the emergence of pain behaviors. These results suggest: (1) an important role for neurogenic inflammation in pancreatitis and pain-related behaviors, (2) that there is a transition from AP to CP, after which TRP channel antagonism is ineffective, and thus (3) that early intervention with TRP channel antagonists may attenuate the transition to and development of CP effectively. PMID:23536075

Schwartz, Erica S; La, Jun-Ho; Scheff, Nicole N; Davis, Brian M; Albers, Kathryn M; Gebhart, G F

2013-03-27

231

Cannabinoid WIN 55,212-2 Regulates TRPV1 Phosphorylation in Sensory Neurons*  

E-print Network

, § Pharmacology, and ¶ Physiology, University of Texas Health Science Center, San Antonio, Texas 78229 the cannabi- noid agonist WIN 55,212-2 (WIN) regulates the phosphoryla- tion state of TRPV1. Here, we show

Price, Theodore

232

Acid Solution Is a Suitable Medium for Introducing QX-314 into Nociceptors through TRPV1 Channels to Produce Sensory-Specific Analgesic Effects  

PubMed Central

Background Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. Methodology/Principal Findings Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the sciatic nerve selectively blocked the sensory but not the motor functions in naďve and CCI mice. Conclusions/Significance Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce a sensory-specific analgesic effect. PMID:22216270

Lu, Xian-Fu; Wei, Jing-Qiu; Wang, Chun-Guang; Zhang, Li-Cai; Zeng, Yin-Ming; Wu, Yong-Ping; Cao, Jun-Li

2011-01-01

233

Intracellular Long-Chain Acyl CoAs Activate TRPV1 Channels  

PubMed Central

TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs), another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes. PMID:24798548

Youssef, Nermeen; Dyck, Jason R. B.; Light, Peter E.

2014-01-01

234

Mechanisms underlying the augmentation of phenylbiguanide and capsaicin induced cardiorespiratory reflexes by Mesobuthus tamulus venom.  

PubMed

Phenylbiguanide (PBG) and capsaicin evoke cardiorespiratory reflexes utilizing two separate pathways. It is known that Indian Red Scorpion (Mesobuthus tumulus; MBT) venom augments PBG (5-HT(3)) responses but, the effect of MBT venom on capsaicin (TRPV1)-induced response is not known. Therefore, the present study was undertaken to ascertain whether MBT venom also augments the capsaicin-induced reflex responses involving mechanisms similar to PBG. Experiments were performed on anaesthetized adult rats. Blood pressure, respiratory excursions and ECG were recorded. At the end of each experiment pulmonary water content was determined. PBG (10 ?g/kg) produced hypotension, bradycardia and apnoea-bradypnoea. Capsaicin (10 ?g/kg) also produced hypotension, bradycardia and apnoea-bradypnoea. MBT venom (100 ?g/kg) augmented PBG as well as capsaicin-induced responses and produced pulmonary oedema (increased pulmonary water content). Prostaglandin synthase inhibitor (indomethacin; 10 mg/kg) blocked the venom-induced augmentation of PBG and capsaicin reflexes. Kinin synthase inhibitor (aprotinin; 6000 KIU) and guanylate cyclase (GC) inhibitor (methylene blue; 5 mg/kg) blocked the venom-induced augmentation of PBG response but not the capsaicin response. However, pulmonary oedema was blocked by these antagonists. Phosphodiesterase V inhibitor (sildenafil; 100 ?g/kg) augmented the PBG response but not the capsaicin response, though pulmonary oedema was seen in both the groups. The present results indicate that MBT venom also augments the capsaicin-induced responses. The augmentation of capsaicin response involves PGs and pulmonary oedema-independent mechanisms whereas, the augmentation of PBG response involves kinin mediated GC-cGMP pathway and pulmonary oedema-dependent mechanisms. PMID:22820164

Dutta, Abhaya; Akella, Aparna; Deshpande, Shripad B

2012-10-01

235

Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception.  

PubMed

Transient receptor potential (TRP) ankyrin 1 (TRPA1) is a Ca(2+)-permeant, nonselective cationic channel. It is predominantly expressed in the C afferent sensory nerve fibers of trigeminal and dorsal root ganglion neurons and is highly coexpressed with the nociceptive ion channel transient receptor potential vanilloid 1 (TRPV1). Several physical and chemical stimuli have been shown to activate the channel. In this study, we have used electrophysiological techniques and behavioral models to characterize the properties of TRPA1. Whole cell TRPA1 currents induced by brief application of lower concentrations of N-methyl maleimide (NMM) or allyl isothiocyanate (AITC) can be reversed readily by washout, whereas continuous application of higher concentrations of NMM or AITC completely desensitized the currents. The deactivation and desensitization kinetics differed between NMM and AITC. TRPA1 current amplitude increased with repeated application of lower concentrations of AITC, whereas saturating concentrations of AITC induced tachyphylaxis, which was more pronounced in the presence of extracellular Ca(2+). The outward rectification exhibited by native TRPA1-mediated whole cell and single-channel currents was minimal as compared with other TRP channels. TRPA1 currents were negatively modulated by protons and polyamines, both of which activate the heat-sensitive channel, TRPV1. Interestingly, neither protein kinase C nor protein kinase A activation sensitized AITC-induced currents, but each profoundly sensitized capsaicin-induced currents. Current-clamp experiments revealed that AITC produced a slow and sustained depolarization as compared with capsaicin. TRPA1 is also expressed at the central terminals of nociceptors at the caudal spinal trigeminal nucleus. Activation of TRPA1 in this area increases the frequency and amplitude of miniature excitatory or inhibitory postsynaptic currents. In behavioral studies, intraplantar and intrathecal administration of AITC induced more pronounced and prolonged changes in nociceptive behavior than those induced by capsaicin. In conclusion, the characteristics of TRPA1 we have delineated suggest that it might play a unique role in nociception. PMID:21653898

Raisinghani, Manish; Zhong, Linlin; Jeffry, Joseph A; Bishnoi, Mahendra; Pabbidi, Reddy M; Pimentel, Fátima; Cao, De-Shou; Evans, M Steven; Premkumar, Louis S

2011-09-01

236

Kinetic and Energetic Analysis of Thermally Activated TRPV1 Channels  

PubMed Central

Thermal TRP channels are important for thermal sensation and nociception, but their gating mechanisms have remained elusive. With optically generated submillisecond temperature steps from 22°C to >60°C, we have directly measured the activation and deactivation kinetics of TRPV1 channels, and from the measurements we determined the energetics of thermal gating. We show that activation by temperature follows single exponential time courses. It occurs in a few milliseconds and is significantly faster than activation by agonists. The gating has characteristics of a melting process involving large compensatory enthalpy (>100 kcal/mol) and entropy changes with little free energy change. The reaction path is asymmetrical with temperature mainly driving the opening while the closing has nominal but negative temperature dependence (i.e., sensitivity to cold). Both voltage and agonists alter the slope of the temperature-dependent gating curve as well as shifting the midpoint. However, compared to the energetic effect of temperature on gating, the effect of voltage is small. Our data on the interdependence between voltage and direct temperature responses are not fit to a model involving independent stimuli but instead support a temperature-sensing mechanism that is coupled to charge movement or agonist binding. PMID:20858418

Yao, Jing; Liu, Beiying; Qin, Feng

2010-01-01

237

Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia  

PubMed Central

Background Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown. Results Here we showed that a single intramuscular acid injection induced a priming effect on muscle nociceptors of mice. The primed muscle nociceptors were plastic and permitted the development of long-lasting chronic hyperalgesia induced by a second acid insult. The plastic changes of muscle nociceptors were modality-specific and required the activation of acid-sensing ion channel 3 (ASIC3) or transient receptor potential cation channel V1 (TRPV1). Activation of ASIC3 was associated with increased activity of tetrodotoxin (TTX)-sensitive voltage-gated sodium channels but not protein kinase C? (PKC?) in isolectin B4 (IB4)-negative muscle nociceptors. In contrast, increased activity of TTX-resistant voltage-gated sodium channels with ASIC3 or TRPV1 activation in NaV1.8-positive muscle nociceptors was required for the development of chronic hyperalgesia. Accordingly, compared to wild type mice, NaV1.8-null mice showed briefer acid-induced hyperalgesia (5 days vs. >27 days). Conclusion ASIC3 activation may manifest a new type of nociceptor priming in IB4-negative muscle nociceptors. The activation of ASIC3 and TRPV1 as well as enhanced NaV1.8 activity are essential for the development of long-lasting hyperalgesia in acid-induced, chronic, widespread muscle pain. PMID:24957987

2014-01-01

238

The Transient Receptor Potential Vanilloid-1 Channel in Thermoregulation: A Thermosensor It Is Not  

PubMed Central

The development of antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel as pain therapeutics has revealed that these compounds cause hyperthermia in humans. This undesirable on-target side effect has triggered a surge of interest in the role of TRPV1 in thermoregulation and revived the hypothesis that TRPV1 channels serve as thermosensors. We review literature data on the distribution of TRPV1 channels in the body and on thermoregulatory responses to TRPV1 agonists and antagonists. We propose that two principal populations of TRPV1-expressing cells have connections with efferent thermoeffector pathways: 1) first-order sensory (polymodal), glutamatergic dorsal-root (and possibly nodose) ganglia neurons that innervate the abdominal viscera and 2) higher-order sensory, glutamatergic neurons presumably located in the median preoptic hypothalamic nucleus. We further hypothesize that all thermoregulatory responses to TRPV1 agonists and antagonists and thermoregulatory manifestations of TRPV1 desensitization stem from primary actions on these two neuronal populations. Agonists act primarily centrally on population 2; antagonists act primarily peripherally on population 1. We analyze what roles TRPV1 might play in thermoregulation and conclude that this channel does not serve as a thermosensor, at least not under physiological conditions. In the hypothalamus, TRPV1 channels are inactive at common brain temperatures. In the abdomen, TRPV1 channels are tonically activated, but not by temperature. However, tonic activation of visceral TRPV1 by nonthermal factors suppresses autonomic cold-defense effectors and, consequently, body temperature. Blockade of this activation by TRPV1 antagonists disinhibits thermoeffectors and causes hyperthermia. Strategies for creating hyperthermia-free TRPV1 antagonists are outlined. The potential physiological and pathological significance of TRPV1-mediated thermoregulatory effects is discussed. PMID:19749171

Almeida, Maria C.; Garami, Andras; Steiner, Alexandre A.; Norman, Mark H.; Morrison, Shaun F.; Nakamura, Kazuhiro; Burmeister, Jeffrey J.; Nucci, Tatiane B.

2009-01-01

239

Heteromeric Heat-sensitive Transient Receptor Potential Channels Exhibit Distinct Temperature and Chemical Response*  

PubMed Central

TRPV1 and TRPV3 are two heat-sensitive ion channels activated at distinct temperature ranges perceived by human as hot and warm, respectively. Compounds eliciting human sensations of heat or warmth can also potently activate these channels. In rodents, TRPV3 is expressed predominantly in skin keratinocytes, whereas in humans TRPV1 and TRPV3 are co-expressed in sensory neurons of dorsal root ganglia and trigeminal ganglion and are known to form heteromeric channels with distinct single channel conductances as well as sensitivities to TRPV1 activator capsaicin and inhibitor capsazepine. However, how heteromeric TRPV1/TRPV3 channels respond to heat and other stimuli remains unknown. In this study, we examined the behavior of heteromeric TRPV1/TRPV3 channels activated by heat, capsaicin, and voltage. Our results demonstrate that the heteromeric channels exhibit distinct temperature sensitivity, activation threshold, and heat-induced sensitization. Changes in gating properties apparently originate from interactions between TRPV1 and TRPV3 subunits. Our results suggest that heteromeric TRPV1/TRPV3 channels are unique heat sensors that may contribute to the fine-tuning of sensitivity to sensory inputs. PMID:22184123

Cheng, Wei; Yang, Fan; Liu, Shuang; Colton, Craig K.; Wang, Chunbo; Cui, Yuanyuan; Cao, Xu; Zhu, Michael X.; Sun, Changsen; Wang, KeWei; Zheng, Jie

2012-01-01

240

Regulation of Transient Receptor Potential channels by the phospholipase C pathway  

PubMed Central

Transient Receptor Potential (TRP) channels were discovered while analyzing visual mutants in drosophila. The protein encoded by the transient receptor potential (trp) gene is a Ca2+ permeable cation channel activated downstream of the phospholipase C (PLC) pathway. While searching for homologues in other organisms, a surprisingly large number of mammalian TRP channels were cloned. The regulation of TRP channels is quite diverse, but many of them are either activated downstream of the PLC pathway, or modulated by it. This review will summarize the current knowledge on regulation of TRP channels by the PLC pathway, with special focus on TRPC-s, which can be considered as effectors of the PLC pathway, and the heat and capsaicin sensitive TRPV1, which is modulated by the PLC pathway in a complex manner. PMID:23916247

Rohacs, Tibor

2013-01-01

241

Bioavailability of capsaicin and its implications for drug delivery.  

PubMed

The dietary compound capsaicin is responsible for the "hot and spicy" taste of chili peppers and pepper extracts. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation. Emerging studies show that it displays potent anti-tumor activity in several human cancers. On a more basic research level, capsaicin has been used as a ligand to activate several types of ion-channel receptors. The pharmacological activity of capsaicin-like compounds is dependent on several factors like the dose, the route of administration and most importantly on its concentration at target tissues. The present review describes the current knowledge involving the metabolism and bioavailability of capsaicinoids in rodents and humans. Novel drug delivery strategies used to improve the bioavailability and therapeutic index of capsaicin are discussed in detail. The generation of novel capsaicin-mimetics and improved drug delivery methods will foster the hope of innovative applications of capsaicin in human disease. PMID:25307998

Rollyson, William D; Stover, Cody A; Brown, Kathleen C; Perry, Haley E; Stevenson, Cathryn D; McNees, Christopher A; Ball, John G; Valentovic, Monica A; Dasgupta, Piyali

2014-12-28

242

On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation  

PubMed Central

The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via ?-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia. PMID:23956775

Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Rivera, Alicia; Van Craenenbroeck, Kathleen; Tarakanov, Alexander O.; Agnati, Luigi F.; Fuxe, Kjell

2013-01-01

243

Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and ?1 adrenoreceptors  

PubMed Central

Background Clinical studies have now confirmed the link between short-term exposure to elevated levels of air pollution and increased cardiovascular mortality, but the mechanisms are complex and not completely elucidated. The present study was designed to investigate the hypothesis that activation of pulmonary sensory receptors and the sympathetic nervous system underlies the influence of pulmonary exposure to diesel exhaust particulate on blood pressure, and on the myocardial response to ischemia and reperfusion. Methods & Results 6 h after intratracheal instillation of diesel exhaust particulate (0.5 mg), myocardial ischemia and reperfusion was performed in anesthetised rats. Blood pressure, duration of ventricular arrhythmia, arrhythmia-associated death, tissue edema and reperfusion injury were all increased by diesel exhaust particulate exposure. Reperfusion injury was also increased in buffer perfused hearts isolated from rats instilled in vivo, excluding an effect dependent on continuous neurohumoral activation or systemic inflammatory mediators. Myocardial oxidant radical production, tissue apoptosis and necrosis were increased prior to ischemia, in the absence of recruited inflammatory cells. Intratracheal application of an antagonist of the vanilloid receptor TRPV1 (AMG 9810, 30 mg/kg) prevented enhancement of systolic blood pressure and arrhythmia in vivo, as well as basal and reperfusion-induced myocardial injury ex vivo. Systemic ?1 adrenoreceptor antagonism with metoprolol (10 mg/kg) also blocked enhancement of myocardial oxidative stress and reperfusion injury. Conclusions Pulmonary diesel exhaust particulate increases blood pressure and has a profound adverse effect on the myocardium, resulting in tissue damage, but also increases vulnerability to ischemia-associated arrhythmia and reperfusion injury. These effects are mediated through activation of pulmonary TRPV1, the sympathetic nervous system and locally generated oxidative stress. PMID:24568236

2014-01-01

244

Mitochondrial fission augments capsaicin-induced axonal degeneration.  

PubMed

Capsaicin, an agonist of transient receptor potential vanilloid receptor 1, induces axonal degeneration of peripheral sensory nerves and is commonly used to treat painful sensory neuropathies. In this study, we investigated the role of mitochondrial dynamics in capsaicin-induced axonal degeneration. In capsaicin-treated rodent sensory axons, axonal swellings, decreased mitochondrial stationary site length and reduced mitochondrial transport preceded axonal degeneration. Increased axoplasmic Ca(2+) mediated the alterations in mitochondrial length and transport. While sustaining mitochondrial transport did not reduce axonal swellings in capsaicin-treated axons, preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results establish that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of Ca(2+)-dependent mitochondrial fission facilitates mitochondrial function and axonal survival following activation of axonal cationic channels. PMID:25322817

Chiang, Hao; Ohno, Nobuhiko; Hsieh, Yu-Lin; Mahad, Don J; Kikuchi, Shin; Komuro, Hitoshi; Hsieh, Sung-Tsang; Trapp, Bruce D

2015-01-01

245

Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates  

PubMed Central

Background Ablation of TRPV1-expressing nociceptive fibers with the potent capsaicin analog resiniferatoxin (RTX) results in long lasting pain relief. RTX is particularly adaptable to focal application, and the induced chemical axonopathy leads to analgesia with a duration that is influenced by dose, route of administration, and the rate of fiber regeneration. TRPV1 is expressed in a subpopulation of unmyelinated C- and lightly myelinated Adelta fibers that detect changes in skin temperature at low and high rates of noxious heating, respectively. Here we investigate fiber-type specific behaviors, their time course of recovery and molecular correlates of axon damage and nociception using infrared laser stimuli following an RTX-induced peripheral axonopathy. Results RTX was injected into rat hind paws (mid-plantar) to produce thermal hypoalgesia. An infrared diode laser was used to stimulate Adelta fibers in the paw with a small-diameter (1.6 mm), high-energy, 100 msec pulse, or C-fibers with a wide-diameter (5 mm), long-duration, low-energy pulse. We monitored behavioral responses to indicate loss and regeneration of fibers. At the site of injection, responses to C-fiber stimuli were significantly attenuated for two weeks after 5 or 50 ng RTX. Responses to Adelta stimuli were significantly attenuated for two weeks at the highest intensity stimulus, and for 5 weeks to a less intense Adelta stimulus. Stimulation on the toe, a site distal to the injection, showed significant attenuation of Adelta responses for 7- 8 weeks after 5 ng, or 9-10 weeks after 50 ng RTX. In contrast, responses to C-fiber stimuli exhibited basically normal responses at 5 weeks after RTX. During the period of fiber loss and recovery, molecular markers for nerve regeneration (ATF3 and galanin) are upregulated in the dorsal root ganglia (DRG) when behavior is maximally attenuated, but markers of nociceptive activity (c-Fos in spinal cord and MCP-1 in DRG), although induced immediately after RTX treatment, returned to normal. Conclusion Behavioral recovery following peripheral RTX treatment is linked to regeneration of TRPV1-expressing Adelta and C-fibers and sustained expression of molecular markers. Infrared laser stimulation is a potentially valuable tool for evaluating the behavioral role of Adelta fibers in pain and pain control. PMID:21167052

2010-01-01

246

Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier  

PubMed Central

Background The blood-brain barrier (BBB) plays the crucial role of limiting exposure of the central nervous system (CNS) to damaging molecules and cells. Dysfunction of the BBB is critical in a broad range of CNS disorders including neurodegeneration, inflammatory or traumatic injury to the CNS, and stroke. In peripheral tissues, the vascular-tissue permeability is normally greater than BBB permeability, but vascular leakage can be induced by efferent discharge activity in primary sensory neurons leading to plasma extravasation into the extravascular space. Whether discharge activity of sensory afferents entering the CNS may open the BBB or blood-spinal cord barrier (BSCB) remains an open question. Results Here we show that peripheral nerve injury (PNI) produced by either sciatic nerve constriction or transecting two of its main branches causes an increase in BSCB permeability, as assessed by using Evans Blue dye or horseradish peroxidase. The increase in BSCB permeability was not observed 6 hours after the PNI but was apparent 24 hours after the injury. The increase in BSCB permeability was transient, peaking about 24-48 hrs after PNI with BSCB integrity returning to normal levels by 7 days. The increase in BSCB permeability was prevented by administering the local anaesthetic lidocaine at the site of the nerve injury. BSCB permeability was also increased 24 hours after electrical stimulation of the sciatic nerve at intensity sufficient to activate C-fibers, but not when A-fibers only were activated. Likewise, BSCB permeability increased following application of capsaicin to the nerve. The increase in permeability caused by C-fiber stimulation or by PNI was not anatomically limited to the site of central termination of primary afferents from the sciatic nerve in the lumbar cord, but rather extended throughout the spinal cord and into the brain. Conclusions We have discovered that injury to a peripheral nerve and electrical stimulation of C-fibers each cause an increase in the permeability of the BSCB and the BBB. The increase in permeability is delayed in onset, peaks at about 24 hours and is dependent upon action potential propagation. As the increase is mimicked by applying capsaicin to the nerve, the most parsimonious explanation for our findings is that the increase in permeability is mediated by activation of TRPV1-expressing primary sensory neurons. Our findings may be relevant to the development of pain and neuroplastic changes in the CNS following nerve injury. In addition, our findings may provide the basis for developing methods to purposefully open the BBB when needed to increase brain penetration of therapeutic agents that might normally be excluded by an intact BBB. PMID:21044346

2010-01-01

247

Receptor-targeting mechanisms of pain-causing toxins: How ow?  

PubMed Central

Venoms often target vital processes to cause paralysis or death, but many types of venom also elicit notoriously intense pain. While these pain-producing effects can result as a byproduct of generalized tissue trauma, there are now multiple examples of venom-derived toxins that target somatosensory nerve terminals in order to activate nociceptive (pain-sensing) neural pathways. Intriguingly, investigation of the venom components that are responsible for evoking pain has revealed novel roles and/or configurations of well-studied toxin motifs. This review serves to highlight pain-producing toxins that target the capsaicin receptor, TRPV1, or members of the acid-sensing ion channel family, and to discuss the utility of venom-derived multivalent and multimeric complexes. PMID:22538196

Bohlen, Christopher J.; Julius, David

2012-01-01

248

Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses  

PubMed Central

Cranial visceral afferents contained within the solitary tract (ST) contact second-order neurons in the nucleus of the solitary tract (NTS) and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33 to 37°C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals. PMID:24550768

Fenwick, Axel J.; Wu, Shaw-wen; Peters, James H.

2014-01-01

249

Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice  

Microsoft Academic Search

This study investigates the antinociception caused by intradermal (i.d) or intracerebroventricular (i.c.v.) injection of the capsaicin receptor antagonist capsazepine (CPZ), and ruthenium red (RR) (a cation-selective antagonist coupled to vanilloid receptor of capsaicin), on the chemical nociception caused by i.d. injection of formalin (FM) and capsaicin (CAP) into the mouse paw. The i.d. injection of either CPZ or RR in

Adair R. S Santos; Joăo B Calixto

1997-01-01

250

Effects of electroacupuncture Zusanli (ST36) on food intake and expression of POMC and TRPV1 through afferents-medulla pathway in Obese Prone Rats  

PubMed Central

Objective The purpose of this study was to determine the effects of electroacupuncture (EA) ST36 on food intake and body weight in Obese Prone (OP) rats compared to obese resistant (OR) strain on a high fat diet. The influences of EA on mRNA levels of pro-opiomelanocortin (POMC), transient receptor potential vanilloid type-1 (TRPV1), and neuronal nitric oxide synthase (nNOS) were also examined in the medulla regions and ST36 skin tissue. Methods Advanced EA ST36 was conducted in two sessions of 20 min separated by an 80 min interval for 7 days. Food intake and body weight were recorded in conscious rats every day. Real time PCR was conducted in the micropunches of the medulla regions and skin tissues at the end of the treatment. Results Food intake and body weight were significantly reduced by advanced EA ST36 in OP rats, but slightly decreased in OR strain and sham-EA rats. Advanced EA ST36 produced a marked increase in POMC mRNA level in the nucleus tractus solitarius (NTS) and hypoglossal nucleus (HN) regions. TRPV1 and nNOS mRNAs were simultaneously increased in the NTS/gracile nucleus regions and in the ST36 skin regions by the EA treatment in OP rats. Conclusions We conclude that advanced EA ST36 produces an up-regulation of anorexigenic factor POMC production in the NTS/HN, which inhibits food intake and reduces body weight. EA-induced expression of TRPV1-nNOS in the ST36 and the NTS/gracile nucleus is involved in the signal transduction of EA stimuli via somatosensory afferents-medulla pathways. PMID:23116614

Ji, Bo; Hu, Jay; Ma, Shengxing

2013-01-01

251

Effects of Capsaicin on Adipogenic Differentiation in Bovine Bone Marrow Mesenchymal Stem Cell  

PubMed Central

Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and 10 ?M) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis. PMID:25358373

Jeong, Jin Young; Suresh, Sekar; Park, Mi Na; Jang, Mi; Park, Sungkwon; Gobianand, Kuppannan; You, Seungkwon; Yeon, Sung-Heom; Lee, Hyun-Jeong

2014-01-01

252

Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine  

PubMed Central

The functional roles of transient receptor potential (TRP) channels in the gastrointestinal tract have garnered considerable attention in recent years. We previously reported that daikenchuto (TU-100), a traditional Japanese herbal medicine, increased intestinal blood flow (IBF) via adrenomedullin (ADM) release from intestinal epithelial (IE) cells (Kono T et al. J Crohns Colitis 4: 161–170, 2010). TU-100 contains multiple TRP activators. In the present study, therefore, we examined the involvement of TRP channels in the ADM-mediated vasodilatatory effect of TU-100. Rats were treated intraduodenally with the TRP vanilloid type 1 (TRPV1) agonist capsaicin (CAP), the TRP ankyrin 1 (TRPA1) agonist allyl-isothiocyanate (AITC), or TU-100, and jejunum IBF was evaluated using laser-Doppler blood flowmetry. All three compounds resulted in vasodilatation, and the vasodilatory effect of TU-100 was abolished by a TRPA1 antagonist but not by a TRPV1 antagonist. Vasodilatation induced by AITC and TU-100 was abrogated by anti-ADM antibody treatment. RT-PCR and flow cytometry revealed that an IEC-6 cell line originated from the small intestine and purified IE cells expressed ADM and TRPA1 but not TRPV1. AITC increased ADM release in IEC cells remarkably, while CAP had no effect. TU-100 and its ingredient 6-shogaol (6SG) increased ADM release dose-dependently, and the effects were abrogated by a TRPA1 antagonist. 6SG showed similar TRPA1-dependent vasodilatation in vivo. These results indicate that TRPA1 in IE cells may play an important role in controlling bowel microcirculation via ADM release. Epithelial TRPA1 appears to be a promising target for the development of novel strategies for the treatment of various gastrointestinal disorders. PMID:23275609

Kaneko, Atsushi; Omiya, Yuji; Ohbuchi, Katsuya; Ohno, Nagisa; Yamamoto, Masahiro

2013-01-01

253

TRPA1 receptors in cough.  

PubMed

In the early 1990's ion channels of the Transient Receptor Potential (TRP) class were implicated in the afferent sensory loop of the cough reflex and in the heightened cough sensitivity seen in disease. Agonists of the TRPV1 capsaicin receptor such as vanilloids and protons were demonstrated to be amongst the most potent chemical stimuli which cause cough. However, more recently, the TRPA1 receptor (not activated by capsaicin) has become of interest in the cough field because it is known to be activated by ligands such as acrolein which is present in air pollution and the acrid smoke from organic material. TRPA1 is a Ca(2+)-permeant non-selective cation channel with 14 ankyrin repeats in its amino terminus which belongs to the larger TRP family. TRPA1 has been characterised as a thermoreceptor which is activated by cold temperature, environmental irritants and reactive electrophilic molecules which can be generated by oxidant stress and inflammation. TRPA1 is primarily expressed in small diameter, nociceptive neurons where its activation probably contributes to the perception of noxious stimuli and the phenomena known as inflammatory hyperalgesia and neurogenic inflammation. The respiratory tract is innervated by primary sensory afferent nerves which are activated by mechanical and chemical stimuli. Activation of these vagal sensory afferents leads to central reflexes including dyspnoea, changes in breathing pattern and cough. Recently, it has been demonstrated that stimulating TRPA1 channels activates vagal bronchopulmonary C-fibres in the guinea pig and rodent lung, and recent data have shown that TRPA1 ligands cause cough in both animal models and normal volunteers. In summary, due to their activation by a wide range of irritant and chemical substances, either by exogenous agents, endogenously produced mediators during inflammation or by oxidant stress, we suggest TRPA1 channels should be considered as one of the most promising targets currently identified for the development of novel anti-tussive drugs. PMID:21074632

Grace, Megan S; Belvisi, Maria G

2011-06-01

254

Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats  

PubMed Central

Vampire bats (Desmodus rotundus) are obligate blood feeders that have evolved specialized systems to suit their unique sanguinary lifestyle 1–3. Chief among such adaptations is the ability to detect infrared radiation as a means of locating hot spots on warm-blooded prey. Among vertebrates, only vampire bats, boas, pythons, and pit vipers are capable of detecting infrared radiation 1,4. In each case, infrared heat is detected by trigeminal nerve fibers that innervate specialized pit organs on the animal’s face 5–10. Thus, vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species or cell type specific manner. Previously, we have shown that snakes co-opt a non-heat sensitive channel (vertebrate TRPA1) to produce an infrared detector 6. Here we show that vampire bats tune an already heat sensitive channel (TRPV1) by lowering its thermal activation threshold to ~30°C. This is achieved through alternative splicing of TRPV1 transcripts to produce a channel with a truncated C-terminal cytoplasmic domain. Remarkably, these splicing events occur exclusively in trigeminal ganglia (TG), and not dorsal root ganglia (DRG), thereby maintaining a role for TRPV1 as a detector of noxious heat in somatic afferents. This reflects a unique organization of the bat TRPV1 gene that we show to be characteristic of Laurasiatheria mammals (cows, dogs, and moles), supporting a close phylogenetic relationship with bats. These findings reveal a unique molecular mechanism for physiological tuning of thermosensory nerve fibers. PMID:21814281

Gracheva, Elena O.; Cordero-Morales, Julio F.; González-Carcacía, José A.; Ingolia, Nicholas T.; Manno, Carlo; Aranguren, Carla I.; Weissman, Jonathan S.; Julius, David

2012-01-01

255

Dexamethasone Rapidly Increases GABA Release in the Dorsal Motor Nucleus of the Vagus via Retrograde Messenger-Mediated Enhancement of TRPV1 Activity  

PubMed Central

Glucocorticoids influence vagal parasympathetic output to the viscera via mechanisms that include modulation of neural circuitry in the dorsal vagal complex, a principal autonomic regulatory center. Glucocorticoids can modulate synaptic neurotransmitter release elsewhere in the brain by inducing release of retrograde signalling molecules. We tested the hypothesis that the glucocorticoid agonist dexamethasone (DEX) modulates GABA release in the rat dorsal motor nucleus of the vagus (DMV). Whole-cell patch-clamp recordings revealed that DEX (1-10 µM) rapidly (i.e. within three minutes) increased the frequency of tetrodotoxin-resistant, miniature IPSCs (mIPSCs) in 67% of DMV neurons recorded in acutely prepared slices. Glutamate-mediated mEPSCs were also enhanced by DEX (10 µM), and blockade of ionotropic glutamate receptors reduced the DEX effect on mIPSC frequency. Antagonists of type I or II corticosteroid receptors blocked the effect of DEX on mIPSCs. The effect was mimicked by application of the membrane-impermeant BSA-conjugated DEX, and intracellular blockade of G protein function with GDP ?S in the recorded cell prevented the effect of DEX. The enhancement of GABA release was blocked by the TRPV1 antagonists, 5’-iodoresiniferatoxin or capsazepine, but was not altered by the cannabinoid type 1 receptor antagonist AM251. The DEX effect was prevented by blocking fatty acid amide hydrolysis or by inhibiting anandamide transport, implicating involvement of the endocannabinoid system in the response. These findings indicate that DEX induces an enhancement of GABA release in the DMV, which is mediated by activation of TRPV1 receptors on afferent terminals. The effect is likely induced by anandamide or other ‘endovanilloid’, suggesting activation of a local retrograde signal originating from DMV neurons to enhance synaptic inhibition locally in response to glucocorticoids. PMID:23936221

Derbenev, Andrei V.; Smith, Bret N.

2013-01-01

256

Capsaicin Treatment Attenuates Cholangiocarcinoma Carcinogenesis  

PubMed Central

Capsaicin, the most abundant pungent molecule produced by pepper plants, represents an important ingredient in spicy foods consumed throughout the world. Studies have shown that capsaicin can relieve inflammation and has anti-proliferative effects on various human malignancies. Cholangiocarcinoma (CC) is a cancer disease with rising incidence. The prognosis remains dismal with little advance in treatment. The aim of the present study is to explore the anti-tumor activity of capsaicin in cultured human CC cell lines. Capsaicin effectively impaired cell proliferation, migration, invasion, epithelial to mesenchymal transition and growth of softagar colonies. Further, we show that capsaicin treatment of CC cells regulates the Hedgehog signaling pathway. Conclusion: Our results provide a basis for capsaicin to improve the prognosis of CCs in vivo and present new insights into the effectiveness and mode of action of capsaicin. PMID:24748170

Barat, Samarpita; Chen, Xi; El Khatib, Mona; Götze, Julian; Belahmer, Hanane; Zender, Steffen; Bozko, Przemyslaw; Malek, Nisar P.; Plentz, Ruben R.

2014-01-01

257

Divalent cations activate TRPV1 through promoting conformational change of the extracellular region  

PubMed Central

Divalent cations Mg2+ and Ba2+ selectively and directly potentiate transient receptor potential vanilloid type 1 heat activation by lowering the activation threshold into the room temperature range. We found that Mg2+ potentiates channel activation only from the extracellular side; on the intracellular side, Mg2+ inhibits channel current. By dividing the extracellularly accessible region of the channel protein into small segments and perturbing the structure of each segment with sequence replacement mutations, we observed that the S1–S2 linker, the S3–S4 linker, and the pore turret are all required for Mg2+ potentiation. Sequence replacements at these regions substantially reduced or eliminated Mg2+-induced activation at room temperature while sparing capsaicin activation. Heat activation was affected by many, but not all, of these structural alternations. These observations indicate that extracellular linkers and the turret may interact with each other. Site-directed fluorescence resonance energy transfer measurements further revealed that, like heat, Mg2+ also induces structural changes in the pore turret. Interestingly, turret movement induced by Mg2+ precedes channel activation, suggesting that Mg2+-induced conformational change in the extracellular region most likely serves as the cause of channel activation instead of a coincidental or accommodating structural adjustment. PMID:24344245

Yang, Fan; Ma, Linlin; Cao, Xu

2014-01-01

258

Transient receptor potential vanilloid 1 gene deficiency ameliorates hepatic injury in a mouse model of chronic binge alcohol-induced alcoholic liver disease.  

PubMed

Experimental alcohol-induced liver injury is exacerbated by a high polyunsaturated fat diet rich in linoleic acid. We postulated that bioactive oxidized linoleic acid metabolites (OXLAMs) play a critical role in the development/progression of alcohol-mediated hepatic inflammation and injury. OXLAMs are endogenous ligands for transient receptor potential vanilloid 1 (TRPV1). Herein, we evaluated the role of signaling through TRPV1 in an experimental animal model of alcoholic liver disease (ALD). Chronic binge alcohol administration increased plasma OXLAM levels, specifically 9- and 13-hydroxy-octadecadienoic acids. This effect was associated with up-regulation of hepatic TRPV1. Exposure of hepatocytes to these OXLAMs in vitro resulted in activation of TRPV1 signal transduction with increased intracellular Ca(2+) levels. Genetic depletion of TRPV1 did not blunt hepatic steatosis caused by ethanol, but prevented hepatic injury. TRPV1 deficiency protected from hepatocyte death and prevented the increase in proinflammatory cytokine and chemokine expression, including tumor necrosis factor-?, IL-6, macrophage inflammatory protein-2, and monocyte chemotactic protein 1. TRPV1 depletion markedly blunted ethanol-mediated induction of plasminogen activator inhibitor-1, an important alcohol-induced hepatic inflammation mediator, via fibrin accumulation. This study indicates, for the first time, that TRPV1 receptor pathway may be involved in hepatic inflammatory response in an experimental animal model of ALD. TRPV1-OXLAM interactions appear to play a significant role in hepatic inflammation/injury, further supporting an important role for dietary lipids in ALD. PMID:25447051

Liu, Huilin; Beier, Juliane I; Arteel, Gavin E; Ramsden, Christopher E; Feldstein, Ariel E; McClain, Craig J; Kirpich, Irina A

2015-01-01

259

[Activation of transient receptor potential vanilloid subtype 1 serves as a novel pathway to modulate secretion in submandibular gland].  

PubMed

Our work focused on the studies on the expression and function of transient receptor potential vanilloid subtype 1 (TRPV1) in the submandibular gland. By using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence, our data demonstrated the expression and distribution characteristics of TRPV1 in rabbit and human submandibular glands, as well as rat submandibular gland cell line SMG-C6. Furthermore, the possible intracellular signal molecules involved in the TRPV1-modulated saliva secretion were explored. Activation of TRPV1 increased the intracellular Ca(2+) concentration, upregulated the expression of aquaporin 5 (AQP5), the main transporter that mediate water secretion through transcellular pathway, and led to AQP5 redistribution. Extracellular signal-regulated kinase 1/2 (ERK1/2) was involved in the TRPV1-regulated AQP5 content. Besides, TRPV1 activation also modulated the expression, distribution, and function of tight junction protein, and increased paracellular permeability. ERK1/2 and myosin light chain 2 (MLC2) were responsible for the regulation of TRPV1on tight junction properties. Taken together, our work suggested that TRPV1 was a potential target to promote saliva secretion, and activation of TRPV1 might provide a new and safe therapeutic strategy to ameliorate submandibular gland hypofunction. PMID:25686321

Cong, X; Zhang, Y; Yu, G Y; Wu, L L

2015-02-18

260

Role of the transient receptor potential vanilloid 1 in inflammation and sepsis  

PubMed Central

The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes. PMID:22096371

Devesa, Isabel; Planells-Cases, Rosa; Fernández-Ballester, Gregorio; González-Ros, José Manuel; Ferrer-Montiel, Antonio; Fernández-Carvajal, Asia

2011-01-01

261

Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice.  

PubMed

The transient receptor potential vanilloid type 1 channel (TRPV1) (formerly called vanilloid receptor VR1) is known for its key role of functions in sensory nerves such as perception of inflammatory and thermal pain. Much less is known about the physiological significance of the TRPV1 expression in the brain. Here we demonstrate that TRPV1 knock-out mice (TRPV1-KO) show less anxiety-related behavior in the light-dark test and in the elevated plus maze than their wild-type littermates with no differences in locomotion. Furthermore, TRPV1-KO mice showed less freezing to a tone after auditory fear conditioning and stress sensitization. This reduction of conditioned and sensitized fear could not be explained by alterations in nociception. Also, tone perception per se was unaffected, as revealed by determination of auditory thresholds through auditory brainstem responses and distortion-product otoacoustic emissions. TRPV1-KO showed also less contextual fear if assessed 1 d or 1 month after strong conditioning protocols. These impairments in hippocampus-dependent learning were mirrored by a decrease in long-term potentiation in the Schaffer collateral-commissural pathway to CA1 hippocampal neurons. Our data provide first evidence for fear-promoting effects of TRPV1 with respect to both innate and conditioned fear and for a decisive role of this receptor in synaptic plasticity. PMID:17251423

Marsch, Rudolph; Foeller, Elisabeth; Rammes, Gerhard; Bunck, Mirjam; Kössl, Manfred; Holsboer, Florian; Zieglgänsberger, Walter; Landgraf, Rainer; Lutz, Beat; Wotjak, Carsten T

2007-01-24

262

New Transient Receptor Potential Vanilloid Subfamily Member 1 Positron Emission Tomography Radioligands: Synthesis, Radiolabeling, and Preclinical Evaluation  

PubMed Central

The transient receptor potential vanilloid subfamily member 1 (TRPV1) cation channel is known to be involved in pain nociception and neurogenic inflammation, and accumulating evidence suggests that it plays an important role in several central nervous system (CNS)-related disorders. TRPV1-specific positron emission tomography (PET) radioligands can serve as powerful tools in TRPV1-related (pre)clinical research and drug design. We have synthesized several potent TRPV1 antagonists and accompanying precursors for radiolabeling with carbon-11 or fluorine-18. The cinnamic acid derivative [11C]DVV24 and the aminoquinazoline [18F]DVV54 were successfully synthesized, and their biological behavior was studied. In addition, the in vivo behavior of a 123I-labeled analogue of iodo-resiniferatoxin (I-RTX), a well-known TRPV1 antagonist, was evaluated. The binding affinities of DVV24 and DVV54 for human TRPV1 were 163 ± 28 and 171 ± 48 nM, respectively. [11C]DVV24, but not [18F]DVV54 or 123I-RTX, showed retention in the trigeminal nerve, known to abundantly express TRPV1. Nevertheless, it appears that ligands with higher binding affinities will be required to allow in vivo imaging of TRPV1 via PET. PMID:23421633

2013-01-01

263

[Capsaicin-sensitive afferents in the vagus nerve].  

PubMed

Vanilloids were shown to interact with over 70% of vagal C-afferents first causing an excitation followed by desensitisation and a lasting destruction of nerve fibres. Capsaicin induces a secretion of some neuropeptides from 10-30% of vagal sensory terminals and therefore serves as a pharmacological tool for testing local "effector function" of primary afferents. Vagal afferents seem to have their own subtype of vanilloid receptors (VR), not completely identical with the VR receptors in the dorsal root ganglia. Considering potentiation of the capsaicin receptors sensitivity by some factors such as local heating, pH, free oxygen radicals, a possible role of the VRs as integrators of chemical and physical components of nociceptive stimuli, is discussed. PMID:11296704

Zolotarev, A D; Nozdrachev, A D

2001-02-01

264

Bortezomib treatment produces nocifensive behavior and changes in the expression of TRPV1, CGRP, and substance P in the rat DRG, spinal cord, and sciatic nerve.  

PubMed

To investigate neurochemical changes associated with bortezomib-induced painful peripheral neuropathy (PN), we examined the effects of a single-dose intravenous administration of bortezomib and a well-established "chronic" schedule in a rat model of bortezomib-induced PN. The TRPV1 channel and sensory neuropeptides CGRP and substance P (SP) were studied in L4-L5 dorsal root ganglia (DRGs), spinal cord, and sciatic nerve. Behavioral measures, performed at the end of the chronic bortezomib treatment, confirmed a reduction of mechanical nociceptive threshold, whereas no difference occurred in thermal withdrawal latency. Western blot analysis showed a relative increase of TRPV1 in DRG and spinal cord after both acute and chronic bortezomib administration. Reverse transcriptase-polymerase chain reaction revealed a decrease of TRPV1 and CGRP mRNA relative levels after chronic treatment. Immunohistochemistry showed that in the DRGs, TRPV1-, CGRP-, and SP-immunoreactive neurons were mostly small- and medium-sized and the proportion of TRPV1- and CGRP-labeled neurons increased after treatment. A bortezomib-induced increase in density of TRPV1- and CGRP-immunoreactive innervation in the dorsal horn was also observed. Our findings show that bortezomib-treatment selectively affects subsets of DRG neurons likely involved in the processing of nociceptive stimuli and that neurochemical changes may contribute to development and persistence of pain in bortezomib-induced PN. PMID:24877063

Quartu, M; Carozzi, V A; Dorsey, S G; Serra, M P; Poddighe, L; Picci, C; Boi, M; Melis, T; Del Fiacco, M; Meregalli, C; Chiorazzi, A; Renn, C L; Cavaletti, G; Marmiroli, P

2014-01-01

265

Bortezomib Treatment Produces Nocifensive Behavior and Changes in the Expression of TRPV1, CGRP, and Substance P in the Rat DRG, Spinal Cord, and Sciatic Nerve  

PubMed Central

To investigate neurochemical changes associated with bortezomib-induced painful peripheral neuropathy (PN), we examined the effects of a single-dose intravenous administration of bortezomib and a well-established “chronic” schedule in a rat model of bortezomib-induced PN. The TRPV1 channel and sensory neuropeptides CGRP and substance P (SP) were studied in L4-L5 dorsal root ganglia (DRGs), spinal cord, and sciatic nerve. Behavioral measures, performed at the end of the chronic bortezomib treatment, confirmed a reduction of mechanical nociceptive threshold, whereas no difference occurred in thermal withdrawal latency. Western blot analysis showed a relative increase of TRPV1 in DRG and spinal cord after both acute and chronic bortezomib administration. Reverse transcriptase-polymerase chain reaction revealed a decrease of TRPV1 and CGRP mRNA relative levels after chronic treatment. Immunohistochemistry showed that in the DRGs, TRPV1-, CGRP-, and SP-immunoreactive neurons were mostly small- and medium-sized and the proportion of TRPV1- and CGRP-labeled neurons increased after treatment. A bortezomib-induced increase in density of TRPV1- and CGRP-immunoreactive innervation in the dorsal horn was also observed. Our findings show that bortezomib-treatment selectively affects subsets of DRG neurons likely involved in the processing of nociceptive stimuli and that neurochemical changes may contribute to development and persistence of pain in bortezomib-induced PN. PMID:24877063

Quartu, M.; Carozzi, V. A.; Dorsey, S. G.; Serra, M. P.; Poddighe, L.; Picci, C.; Boi, M.; Melis, T.; Del Fiacco, M.; Meregalli, C.; Chiorazzi, A.; Renn, C. L.; Cavaletti, G.; Marmiroli, P.

2014-01-01

266

High yield production and refolding of the double-knot toxin, an activator of TRPV1 channels.  

PubMed

A unique peptide toxin, named double-knot toxin (DkTx), was recently purified from the venom of the tarantula Ornithoctonus huwena and was found to stably activate TRPV1 channels by targeting the outer pore domain. DkTx has been shown to consist of two inhibitory cysteine-knot (ICK) motifs, referred to as K1 and K2, each containing six cysteine residues. Beyond this initial characterization, however, the structural and functional details about DkTx remains elusive in large part due to the lack of a high yielding methodology for the synthesis and folding of this cysteine-rich peptide. Here, we overcome this obstacle by generating pure DkTx in quantities sufficient for structural and functional analyses. Our methodology entails expression of DkTx in E. coli followed by oxidative folding of the isolated linear peptide. Upon screening of various oxidative conditions for optimizing the folding yield of the toxin, we observed that detergents were required for efficient folding of the linear peptide. Our synthetic DkTx co-eluted with the native toxin on HPLC, and irreversibly activated TRPV1 in a manner identical to native DkTx. Interestingly, we find that DkTx has two interconvertible conformations present in a 1?6 ratio at equilibrium. Kinetic analysis of DkTx folding suggests that the K1 and K2 domains influence each other during the folding process. Moreover, the CD spectra of the toxins shows that the secondary structures of K1 and K2 remains intact even after separating the two knots. These findings provide a starting point for detailed studies on the structural and functional characterization of DkTx and utilization of this toxin as a tool to explore the elusive mechanisms underlying the polymodal gating of TRPV1. PMID:23240036

Bae, Chanhyung; Kalia, Jeet; Song, Inhye; Yu, JeongHeon; Kim, Ha Hyung; Swartz, Kenton J; Kim, Jae Il

2012-01-01

267

Glutamate and capsaicin effects on trigeminal nociception I: Activation and peripheral sensitization of deep craniofacial nociceptive afferents  

PubMed Central

We have examined the effect of the peripheral application of glutamate and capsaicin to deep craniofacial tissues in influencing the activation and peripheral sensitization of deep craniofacial nociceptive afferents. The activity of single trigeminal nociceptive afferents with receptive fields in deep craniofacial tissues were recorded extracellularly in 55 halothane-anesthetized rats. The mechanical activation threshold (MAT) of each afferent was assessed before and after injection of 0.5M glutamate (or vehicle) and 1% capsaicin (or vehicle) into the receptive field. A total of 68 afferents that could be activated by blunt noxious mechanical stimulation of the deep craniofacial tissues (23 masseter, 5 temporalis, 40 temporomandibular joint) were studied. When injected alone, glutamate and capsaicin activated and induced peripheral sensitization reflected as MAT reduction in many afferents. Following glutamate injection, capsaicin-evoked activity was greater than that evoked by capsaicin alone, whereas following capsaicin injection, glutamate-evoked responses were similar to glutamate alone. These findings indicate that peripheral application of glutamate or capsaicin may activate or induce peripheral sensitization in a subpopulation of trigeminal nociceptive afferents innervating deep craniofacial tissues, as reflected in changes in MAT and other afferent response properties. The data further suggest that peripheral glutamate and capsaicin receptor mechanisms may interact to modulate the activation and peripheral sensitization in some deep craniofacial nociceptive afferents. PMID:19056361

Lam, David K.; Sessle, Barry J.; Hu, James W.

2009-01-01

268

A study to investigate capsaicin-induced pressure response in vagotomized rats  

PubMed Central

Objectives: Capsaicin is used to evoke pulmonary C reflexes and produces complex pressure responses along with apnea/tachypnea, and bradycardia. In the present study, the mechanisms involved in capsaicin-induced pressure responses were explored. Materials and Methods: Tracheal, jugular venous, and femoral artery cannulations were performed in anesthetized adult rats. Blood pressure, respiratory excursions, and electrocardiogram were recorded. Cardiorespiratory reflex changes evoked by jugular venous injection of capsaicin (10 ?g/kg) were recorded in vagotomized and antagonist pretreated animals. Results: Capsaicin produced triphasic pressure response exhibiting immediate hypotension, intermediate recovery, and delayed hypotension. Time-matched respiratory changes showed apnea, bradypnea, and tachypnea, respectively. Bradycardia occurred at immediate and intermediate phases. After vagotomy, immediate hypotension was abolished; the intermediate recovery was potentiated as hypertensive response; and the delayed hypotension persisted. In case of respiration, the immediate bradypnea persisted and delayed tachypnea was abolished; while heart rate changes at immediate and intermediate phases were abolished. Antagonists of ?1-adrenoceptor (prazosin or terazosin, 0.5 mg/kg), ?-adrenoceptor (propranolol, 1 mg/kg), AT1 receptor (losartan, 10 mg/kg) and Ca2+ channel (diltiazem, 1 mg/kg) failed to block the capsaicin-induced intermediate hypertensive response in vagotomized animals. Conclusions: These observations implicate the existence of mechanisms other than adrenergic, angiotensinergic, or Ca2+ channel-dependent mechanisms for mediating the capsaicin-induced intermediate hypertensive response in vagotomized animals. PMID:24014912

Dutta, Abhaya; Akella, Aparna; Deshpande, Shripad B.

2013-01-01

269

Biochem. J. (2010) 432, 549556 (Printed in Great Britain) doi:10.1042/BJ20100936 549 PP2B/calcineurin-mediated desensitization of TRPV1 does not require  

E-print Network

/calcineurin-mediated desensitization of TRPV1 does not require AKAP150 Elaine D. POR*, Bret K. SAMELSON, Sergei BELUGIN, Armen N at the plasma membrane often initiates agonist-dependent signalling events. In sensory neurons, AKAP150 (A. Recent evidence indicates that AKAP150-anchored PKA and PKC phosphorylate and sensitize the TRPV1

Scott, John D.

270

Transient Receptor Potential Vanilloid 1-Immunoreactive Innervation Increases in Fractured Rat Femur  

PubMed Central

Purpose Pain from vertebral or femoral neck fractures is a particularly important problem in clinical orthopaedics. Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel, and there are recent reports on an association between bone pain and TRPV1. However, an increase in TRPV1 activity has not been reported following femoral fracture. Materials and Methods We applied a neurotracer [Fluoro-gold (FG)] onto femur to detect dorsal root ganglia (DRGs) innervating the cortex of the femur in 30 Sprague Dawley rats. Seven days after application, a closed mid-diaphyseal fracture of the femur was performed. FG labeled TRPV1-immunoreactive (ir) DRGs innervating the femur were examined in nonfractured controls, and 3 days, 1 week, 2 weeks, and 4 weeks after fracture. We evaluated bone healing of the femur and compared the ratio of TRPV1-ir DRG neurons innervating the femur at the time points. Results Four weeks after fracture, complete bone union was observed. There was no significant difference in the ratio of FG labeled DRG neurons to total DRG neurons at each time point. The percentages of TRPV1-ir neurons in DRGs innervating the femur at 3 days and 1 week after fracture were significantly higher than those in control, 2 weeks, and 4 weeks after fracture (p<0.05). Conclusion Fracture induced an increase of TRPV1-ir neurons in DRGs innervating the fractured femur within 3 days, and decreased during bone healing over 4 weeks. These findings show that TRPV1 may play a role in sensory sensation of bone fracture pain. PMID:24339305

Kawarai, Yuya; Suzuki, Miyako; Yoshino, Kensuke; Inoue, Gen; Orita, Sumihisa; Yamauchi, Kazuyo; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Kubota, Go; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Nakamura, Junichi; Takaso, Masashi; Toyone, Tomoaki; Takahashi, Kazuhisa

2014-01-01

271

Capsaicin Combined with Local Anesthetics Preferentially Prolongs Sensory/Nociceptive Block in Rat Sciatic Nerve  

PubMed Central

Background Transient receptor potential vanilloid 1 channels integrate nociceptive stimuli and are predominantly expressed by unmyelinated C-fiber nociceptors, but not low-threshold mechanoreceptive sensory or motor fibers. A recent report showed that the transient receptor potential vanilloid 1 channel agonist capsaicin allows a hydrophilic quaternary ammonium derivative of lidocaine, QX-314, to selectively block C fibers without motor block. The authors tested whether a similar differential block would be produced using amphipathicN-methyl amitriptyline, amitriptyline, bupivacaine, or lidocaine, either alone or together with 0.05% capsaicin, in a rat sciatic nerve block model. Methods Rats (n = 8/group) were anesthetized with sevoflurane, and 0.2 ml of drug was injected either alone or with capsaicin (simultaneously or 10 min later) next to the sciatic nerve in the sciatic notch. Motor function was assessed by the extensor postural thrust. Nociception was evaluated by the nocifensive withdrawal reflex and vocalization evoked by pinch of a skin fold over the lateral metatarsus (cutaneous pain) with a serrated forceps. Results N-Methyl amitriptyline, amitriptyline, bupivacaine, or lidocaine, followed by injection of capsaicin 10 min later, each elicited a predominantly nociceptive-specific blockade. In comparison, simultaneous application of each local anesthetic with capsaicin did not elicit a clinically significant differential block, with the exception of N-methyl amitriptyline. Conclusions Both tertiary amine local anesthetics and their quaternary ammonium derivatives can elicit a predominantly sensory/nociceptor selective block when followed by injection of capsaicin. The combined application of transient receptor potential vanilloid 1 channel agonists and various local anesthetics or their quaternary ammonium derivatives is an appealing strategy to achieve a long-lasting differential block in regional analgesia. PMID:18946300

Binshtok, Alexander M.; Wang, Chi-Fei; Hevelone, Nathanael D.; Bean, Bruce P.; Woolf, Clifford J.; Wang, Ging Kuo

2009-01-01

272

Differential Effects of Peripheral versus Central Coadministration of QX-314 and Capsaicin on Neuropathic Pain in Rats  

PubMed Central

Background Neuropathic pain is common and difficult to treat. Recently a technique was developed to selectively inhibit nociceptive inputs by simultaneously applying two drugs: capsaicin, a transient receptor potential vanilloid receptor 1 channel activator and QX-314, a lidocaine derivative that intracellularly blocks sodium channels. We used this technique to investigate whether transient receptor potential vanilloid receptor 1-expressing nociceptors contribute to neuropathic pain. Methods The rat chronic constriction injury model was used to induce neuropathic pain in order to test the analgesic effects of both peripheral (perisciatic) and central (intrathecal) administration of the QX-314/capsaicin combination. The Hargreaves and von Frey tests were used to monitor evoked pain-like behaviors and visual observations were used to rank spontaneous pain-like behaviors. Results Perisciatic injections of the QX-314/capsaicin combination transiently increased the withdrawal thresholds by ~3 fold for mechanical and thermal stimuli in rats (n = 6/group) with nerve injuries suggesting that peripheral transient receptor potential vanilloid receptor 1-expressing nociceptors contribute to neuropathic pain. In contrast, intrathecal administration of the QX-314/capsaicin combination did not alleviate pain-like behaviors (n = 5/group). Surprisingly, intrathecal QX-314 alone (n = 9) or in combination with capsaicin (n = 8) evoked spontaneous pain-like behaviors. Conclusions Data from the perisciatic injections suggested that a component of neuropathic pain was mediated by peripheral nociceptive inputs. The role of central nociceptive terminals could not be determined because of the severe side effects of the intrathecal drug combination. We concluded that only peripheral blockade of transient receptor potential vanilloid receptor 1-expressing nociceptive afferents by the QX-314/capsaicin combination was effective at reducing neuropathic allodynia and hyperalgesia. PMID:22739765

Shen, Jun; Fox, Lyle E.; Cheng, Jianguo

2012-01-01

273

A review of the high-concentration capsaicin patch and experience in its use in the management of neuropathic pain  

PubMed Central

In the European Union, the high-concentration capsaicin patch is licensed for the management of neuropathic pain conditions in nondiabetic patients, including postherpetic neuralgia (PHN) and HIV-associated distal sensory polyneuropathy (HIV-DSP). However, in the USA, the Food and Drug Administration approved its use only in PHN patients. Capsaicin is a transient receptor potential vanilloid-1 agonist, which increases the intracellular calcium ion concentration. This triggers calcium-dependent protease enzymes causing cytoskeletal breakdown and leads to the loss of cellular integrity and ‘defunctionalization’ of nociceptor fibres. Efficacy and therapeutic effect has been shown in several clinical studies of PHN and HIV-DSP. The high-concentration capsaicin patch and its practical application are different from low-concentration creams; one application can help for up to 3 months. The process of setting up of a service to use the capsaicin 8% patch is also discussed. PMID:23997814

Das, Sangeeta; Bhaskar, Arun

2013-01-01

274

Spatio-Temporal Expression and Functional Involvement of Transient Receptor Potential Vanilloid 1 in Diabetic Mechanical Allodynia in Rats  

PubMed Central

Diabetic neuropathic pain (DNP) is one of the most common clinical manifestations of diabetes mellitus (DM), which is characterized by prominent mechanical allodynia (DMA). However, the molecular mechanism underlying it has not fully been elucidated. In this study, we examined the spatio-temporal expression of a major nociceptive channel protein transient receptor potential vanilloid 1 (TRPV1) and analyzed its functional involvement by intrathecal (i.t.) application of TRPV1 antagonists in streptozocin (STZ)-induced DMA rat models. Western blot and immunofluorescent staining results showed that TRPV1 protein level was significantly increased in the soma of the dorsal root ganglion (DRG) neurons on 14 days after STZ treatment (DMA 14 d), whereas those in spinal cord and skin (mainly from the central and peripheral processes of DRG neurons) had already been enhanced on DMA 7 d to peak on DMA 14 d. qRT-PCR experiments confirmed that TRPV1 mRNA level was significantly up-regulated in the DRG on DMA 7 d, indicating a preceding translation of TRPV1 protein in the soma but preferential distribution of this protein to the processes under the DMA conditions. Cell counting assay based on double immunostaining suggested that increased TRPV1-immunoreactive neurons were likely to be small-sized and CGRP-ergic. Finally, single or multiple intrathecal applications of non-specific or specific TRPV1 antagonists, ruthenium red and capsazepine, at varying doses, effectively alleviated DMA, although the effect of the former was more prominent and long-lasting. These results collectively indicate that TRPV1 expression dynamically changes during the development of DMA and this protein may play important roles in mechanical nociception in DRG neurons, presumably through facilitating the release of CGRP. PMID:25020137

Wu, Huang-Hui; Qi, Jian; Shi, Juan; Li, Yun-Qing

2014-01-01

275

Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx  

SciTech Connect

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ? Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ? Capsaicin induces expression of DR5 through Sp1 activation. ? Capsaicin activates calcium signaling pathway.

Moon, Dong-Oh [Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712–714 (Korea, Republic of)] [Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712–714 (Korea, Republic of); Kang, Chang-Hee; Kang, Sang-Hyuck [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)] [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of); Choi, Yung-Hyun [Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614–054 (Korea, Republic of)] [Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614–054 (Korea, Republic of); Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree [School of Medicine, Jeju National University, Jeju-si 690–756 (Korea, Republic of)] [School of Medicine, Jeju National University, Jeju-si 690–756 (Korea, Republic of); Kim, Gi-Young, E-mail: immunkim@jejunu.ac.kr [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)] [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)

2012-02-15

276

Persistent respiratory symptoms following prolonged capsaicin exposure.  

PubMed

Capsaicin causes direct irritation of the eyes, mucous membranes, and respiratory tract. It is used in self-defense, in crowd control, and as a less lethal weapon in police work. Controlled trials suggest that capsaicin has minimal serious acute effects. Herein, we report a woman who had a 20-minute exposure to capsaicin during a jail riot. She subsequently developed episodic dyspnea and cough, and increased sensitivity to scents, perfumes, and cigarette smoke. She has not had wheezes on physical examination or abnormal pulmonary function tests. Her response to inhaled steroids and long-acting beta-agonists has been incomplete. She appears to have developed airway sensory hyperreactivity syndrome after the inhalation of capsaicin, which likely injured sensory nerves and/or caused persistent neurogenic inflammation. PMID:24141870

Copeland, S; Nugent, K

2013-10-01

277

Effects of Capsaicin on Plant Growth  

Microsoft Academic Search

Capsaicin, a possible allelochemical, caused growth inhibition of roots and shoots of alfalfa (Medicago sativa), cress (Lepidium sativum), lettuce (Lactuca sativa), crabgrass (Digitaria sanguinalis), timothy (Phleum pratense) and ryegrass (Lolium multiflorum), and suppressed their germination. Increasing the dose of capsaicin increased the inhibition. The concentrations for 50\\u000a % inhibition of the root growth were 2.7, 0.32, 2.1, 0.27, 0.29 and

H. Kato-Noguchi; Y. Tanaka

2003-01-01

278

Oxidant-based anticancer activity of a novel synthetic analogue of capsaicin, capsaicin epoxide.  

PubMed

Objectives Plant-derived natural substances, such as capsaicin, with potent antiproliferative activity against cancer cells in vitro are considered to be promising nutraceuticals in anticancer therapy. Nevertheless, the limited systemic bioavailability of phytochemicals may raise questions regarding the physiological relevance of their phytochemical effects in vivo. Thus, the search for novel phytochemical-based substances with more efficient anticancer action is needed. Methods In the present study, a capsaicin analogue, namely, capsaicin epoxide, was synthesized, and its cytotoxic potential against cancer cells was evaluated and compared to that of capsaicin through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and multi-caspase assays. The abilities of capsaicin and capsaicin epoxide to induce oxidative stress were estimated using redox-sensitive fluorogenic probes: 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) and dihydroethidium. Results The structure and purity of the synthesized product were confirmed by nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, and gas chromatography. Normal human dermal fibroblasts were not susceptible to treatment with the agent, whereas a cancer cell type-specific response was observed. Human breast carcinoma cells were found to be the most sensitive to capsaicin epoxide treatment compared with capsaicin treatment, and the action of capsaicin epoxide was oxidant based. Discussion Our data indicate that the antiproliferative activity of capsaicin epoxide is potentiated in vitro, when used at much lower concentrations compared with capsaicin at similar concentrations. Thus, the findings of this study may have implications for phytochemical-based anticancer drug development. PMID:25382686

Lewinska, Anna; Chochrek, Pawel; Smolag, Karolina; Rawska, Ewa; Wnuk, Maciej

2014-11-01

279

A role for the anandamide membrane transporter in TRPV1-mediated neurosecretion from  

E-print Network

. Keywords: Anandamide membrane transport; Cannabinoid; Vanilloid; Pain; Sensory neuron; Neuropeptide release 1. Introduction The endogenous cannabinoid/vanilloid agonists anan- damide (AEA) and N-arachidonoyl-dopamine (NADA) bind to both G-protein-coupled cannabinoid receptors (eg., CB1 and CB2 Bisogno et al., 2000

Price, Theodore

280

Pro- and anti-inflammatory actions of ricinoleic acid: similarities and differences with capsaicin.  

PubMed

We have investigated the pro- and anti-inflammatory effects of ricinoleic acid (RA), the main active principle of castor oil, in an experimental model of blepharitis induced by intradermal injection of carrageenan in the guinea-pig eyelid and its possible capsaicin-like mode of action on acutely dissociated rat dorsal root ganglia (DRG) neurons in vitro. Topical treatment with RA (10-100 mg/guinea-pig) or capsaicin (1-10 mg/guinea-pig) caused eyelid reddening and oedema. At lower doses (0.3-3 mg/guinea-pig and 0.009-0.09 mg/guinea-pig for RA and capsaicin, respectively) both drugs significantly potentiated the eyelid oedema induced by carrageenan. The tachykinin NK1 receptor antagonist FK 888 (0.59 mg/kg s.c.) abolished the potentiation of carrageenan-induced eyelid oedema induced by either RA or capsaicin. The neutral endopeptidase inhibitor, thiorphan (1.3 mg/kg i.v.) significantly enhanced the potentiation of carrageenan-induced eyelid oedema produced by RA. This potentiating effect was abolished by FK 888. Repeated (8 days) topical application of RA (0.9 mg/guinea-pig) or capsaicin (0.09 mg/guinea-pig) inhibited the carrageenan-induced eyelid oedema. This anti-inflammatory effect was accompanied by a reduction (75%-80% of SP and 46%-51% of NKA) in tachykinin content of the eyelids, as determined by radioimmunoassay. In dissociated rat DRG neurons, RA (0.1 mM for 5 min) significantly inhibited the inward currents induced by application of capsaicin (1 microM) and/or low pH (5.8), without inducing any currents by itself or changing voltage-dependent currents. Moreover, after 24-h incubation, RA (0.1 mM) significantly decreased the capsaicin (1 microM)-induced calcitonin gene-related peptide (CGRP) release from rat DRG neurons, whereas acute drug superfusion did not evoke CGRP release by itself. Summarizing, RA possesses capsaicin-like dual pro-inflammatory and anti-inflammatory properties which are observed upon acute and repeated application, respectively. However, unlike capsaicin, RA does not induce inward current in DRG neurons and it is devoid of algesic properties in vivo. PMID:11534859

Vieira, C; Fetzer, S; Sauer, S K; Evangelista, S; Averbeck, B; Kress, M; Reeh, P W; Cirillo, R; Lippi, A; Maggi, C A; Manzini, S

2001-08-01

281

Similarities and differences in the structure-activity relationships of capsaicin and resiniferatoxin analogues.  

PubMed

Structure-activity relationships in analogues of the irritant natural product capsaicin have previously been rationalized by subdivision of the molecule into three structural regions (A,B, and C). The hypothesis that resiniferatoxin (RTX), which is a high-potency ligand for the same receptor and which has superficial structural similarities with capsaicin, could be analogously subdivided has been investigated. The effects of making parallel changes in the two structural series have been studied in a cellular functional assay which is predictive of analgesic activity. Parallel structural changes in the two series lead to markedly different consequences on biological activity; the 3- and 4-position aryl substituents (corresponding to the capsaicin 'A-region') which are strictly required for activity in capsaicin analogues are not important in RTX analogues. The homovanillyl C-20 ester group in RTX (corresponding to the capsaicin 'B-region') is more potent than the corresponding amide, in contrast to the capsaicin analogues. Structural variations to the diterpene moiety suggest that the functionalized 5-membered diterpene ring of RTX is an important structural determinant for high potency. Modeling studies indicate that the 3D position of the alpha-hydroxy ketone moiety in the 5-membered ring is markedly different in the phorbol (inactive) analogues and RTX (active) series. This difference appears to be due to the influence of the strained ortho ester group in RTX, which acts as a local conformational constraint. The reduced activity of an analogue substituted in this region and the inactivity of a simplified analogue in which this unit is entirely removed support this conclusion. PMID:8709128

Walpole, C S; Bevan, S; Bloomfield, G; Breckenridge, R; James, I F; Ritchie, T; Szallasi, A; Winter, J; Wrigglesworth, R

1996-07-19

282

Lack of transient receptor potential vanilloid 1 channel modulates the development of neurogenic bladder dysfunction induced by cross-sensitization in afferent pathways  

PubMed Central

Background Bladder pain of unknown etiology has been associated with co-morbid conditions and functional abnormalities in neighboring pelvic organs. Mechanisms underlying pain co-morbidities include cross-sensitization, which occurs predominantly via convergent neural pathways connecting distinct pelvic organs. Our previous results showed that colonic inflammation caused detrusor instability via activation of transient receptor potential vanilloid 1 (TRPV1) signaling pathways, therefore, we aimed to determine whether neurogenic bladder dysfunction can develop in the absence of TRPV1 receptors. Methods Adult male C57BL/6 wild-type (WT) and TRPV1?/? (knockout) mice were used in this study. Colonic inflammation was induced by intracolonic trinitrobenzene sulfonic acid (TNBS). The effects of transient colitis on abdominal sensitivity and function of the urinary bladder were evaluated by cystometry, contractility and relaxation of detrusor smooth muscle (DSM) in vitro to various stimuli, gene and protein expression of voltage-gated sodium channels in bladder sensory neurons, and pelvic responses to mechanical stimulation. Results Knockout of TRPV1 gene did not eliminate the development of cross-sensitization between the colon and urinary bladder. However, TRPV1?/? mice had prolonged intermicturition interval and increased number of non-voiding contractions at baseline followed by reduced urodynamic responses during active colitis. Contractility of DSM was up-regulated in response to KCl in TRPV1?/? mice with inflamed colon. Application of Rho-kinase inhibitor caused relaxation of DSM in WT but not in TRPV1?/? mice during colonic inflammation. TRPV1?/? mice demonstrated blunted effects of TNBS-induced colitis on expression and function of voltage-gated sodium channels in bladder sensory neurons, and delayed development of abdominal hypersensitivity upon colon-bladder cross-talk in genetically modified animals. Conclusions The lack of TRPV1 receptors does not eliminate the development of cross-sensitization in the pelvis. However, the function of the urinary bladder significantly differs between WT and TRPV?/? mice especially upon development of colon-bladder cross-sensitization induced by transient colitis. Our results suggest that TRPV1 pathways may participate in the development of chronic pelvic pain co-morbidities in humans. PMID:23305398

2013-01-01

283

Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells  

PubMed Central

Thermosensitive transient receptor potential proteins (TRPs) such as TRPV1-TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca2+. TRPV1, TRPV3 and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca 2+]i transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1-3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca2+ transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10–20 µM), a nonselective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 °C to over 40 °C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine (CPZ) (10 µM) or another related blocker, lanthanum chloride (La3+) (100 µM) suppressed these temperature-induced Ca2+ increases. Planar patch-clamp technique was used to characterize the currents underlying Ca2+ transients. Increasing the temperature to over 40 °C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25 %) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermo-sensitive TRPV3 activity TRPV1, TRPV2 and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress. PMID:21506114

Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe

2010-01-01

284

Potentiation of the transient receptor potential vanilloid 1 channel contributes to pruritogenesis in a rat model of liver disease.  

PubMed

Persistent pruritus is a common disabling dermatologic symptom associated with different etiologic factors. These include primary skin conditions, as well as neuropathic, psychogenic, or systemic disorders like chronic liver disease. Defective clearance of potential pruritogenic substances that activate itch-specific neurons innervating the skin is thought to contribute to cholestatic pruritus. However, because the underlying disease-specific pruritogens and itch-specific neuronal pathways and mechanism(s) are unknown, symptomatic therapeutic intervention often leads to no or only limited success. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a model for hepatic pruritus and then to evaluate the contribution of inflammation, peripheral neuronal sensitization, and specific signaling pathways and subpopulations of itch-responsive neurons to scratching behavior and thermal hypersensitivity. Chronic BDL rats displayed enhanced scratching behavior and thermal hyperalgesia indicative of peripheral neuroinflammation. BDL-induced itch and hypersensitivity involved a minor contribution of histaminergic/serotonergic receptors, but significant activation of protein-activated receptor 2 (PAR2) receptors, prostaglandin PGE2 formation, and potentiation of transient receptor potential vanilloid 1 (TRPV1) channel activity. The sensitization of dorsal root ganglion nociceptors in BDL rats was associated with increased surface expression of PAR2 and TRPV1 proteins and an increase in the number of PAR2- and TRPV1-expressing peptidergic neurons together with a shift of TRPV1 receptor expression to medium sized dorsal root ganglion neurons. These results suggest that pruritus and hyperalgesia in chronic cholestatic BDL rats are associated with neuroinflammation and involve PAR2-induced TRPV1 sensitization. Thus, pharmacological modulation of PAR2 and/or TRPV1 may be a valuable therapeutic approach for patients with chronic liver pruritus refractory to conventional treatments. PMID:23408423

Belghiti, Majedeline; Estévez-Herrera, Judith; Giménez-Garzó, Carla; González-Usano, Alba; Montoliu, Carmina; Ferrer-Montiel, Antonio; Felipo, Vicente; Planells-Cases, Rosa

2013-04-01

285

Levodropropizine reduces capsaicin- and substance P-induced plasma extravasation in the rat trachea.  

PubMed

We investigated the effect of the non-opioid, peripherally acting antitussive agent levodropropizine to reduce neurogenic plasma extravasation in the rat trachea. Levodropropizine (10, 50 and 200 mg/kg) reduced in a dose-dependent manner the extravasation of Evans blue dye evoked by capsaicin. Levodropropizine inhibited also substance P-evoked extravasation, whereas it did not affect the extravasation evoked by platelet activating factor. Levodropropizine (10 and 100 microM) did not affect the contraction produced by [Sar9,Met(O2)11]substance P, a selective agonist for tachykinin NK1 receptors, in the rat urinary bladder in vitro. These data indicate that levodropropizine inhibits capsaicin-induced plasma extravasation: (a) acting at a postjunctional level; (b) exhibiting neuropeptide selectivity and; (c) via a mechanism independent of tachykinin NK1 receptor blockade. Irrespective of the mechanism, this novel antiinflammatory action of levodropropizine underlines its potential role in inflammatory airway diseases such as bronchial asthma. PMID:7504629

Yamawaki, I; Geppetti, P; Bertrand, C; Huber, O; Daffonchio, L; Omini, C; Nadel, J A

1993-10-12

286

Capsaicin in Idiopathic Rhinitis A Hot Topic  

Microsoft Academic Search

In chapter I the currently known causes for nonallergic noninfectious rhinitis and possible treatments are summarised. Also possible pathophysiological mechanisms underlying idiopathic rhinitis (IR) are discussed. In chapter II the aims of the studies are presented. This thesis comprises studies aimed at the therapeutic potential and safety of intranasal capsaicin in IR patients, developing a patient and physician friendly, effective

Rijswijk van J. B

2005-01-01

287

Human Keratinocytes Are Vanilloid Resistant  

Microsoft Academic Search

BackgroundUse of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain\\/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca2+-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular

László Pecze; Kornélia Szabó; Márta Széll; Katalin Jósvay; Krisztián Kaszás; Erzsébet Kúsz; Tamás Letoha; János Prorok; István Koncz; András Tóth; Lajos Kemény; Csaba Vizler; Zoltán Oláh; Leslie B. Vosshall

2008-01-01

288

Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons  

E-print Network

Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons Stephanie C channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8

Clapham, David E.

289

A NOVEL METHOD TO QUANTIFY HISTOCHEMICAL CHANGES THROUGHOUT THE MEDIOLATERAL AXIS OF THE SUBSTANTIA GELATINOSA AFTER SPARED NERVE INJURY: CHARACTERIZATION WITH TRPV1 AND SUBSTANCE P  

PubMed Central

Nerve injury dramatically increases or decreases protein expression in the spinal cord dorsal horn. Whether the spatial distribution of these changes is restricted to the central innervation territories of injured nerves or could spread to adjacent territories in the dorsal horn is not understood. To address this question, we developed a simple computer software-assisted method to precisely distinguish and efficiently quantify immunohistochemical staining patterns across the mediolateral axis of the dorsal horn 2 wk after transection of either the tibial and common peroneal nerves (thus sparing the sural branch, spared nerve injury, SNI), the tibial nerve, or the common peroneal and sural nerves. Using thiamine monophosphatase (TMP) histochemistry, we determined that central terminals of the tibial, common peroneal, sural, and posterior cutaneous nerves occupy the medial 35%, medial-central 20%, central-lateral 20%, and lateral 25% of the substantia gelatinosa, respectively. We then used these calculations to show that SNI reduced the expression of SP and TRPV1 immunoreactivity within the tibial and peroneal innervation territories in the L4 dorsal horn, without changing expression in the uninjured, sural sector. We conclude that SNI-induced loss of SP and TRPV1 in central terminals of dorsal horn is restricted to injured fibers. Our new method enables direct comparison of injured and uninjured terminals in the dorsal horn so as to better understand their relative contributions to mechanisms of chronic pain. PMID:20350706

Corder, G.; Siegel, A.; Intondi, A.B.; Zhang, X.; Zadina, J.E.; Taylor, B.K.

2010-01-01

290

Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.  

PubMed

Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel present on most afferents. Here we tested whether CB1 activation modulates synchronous, action potential-evoked (eEPSCs) and/or spontaneous (sEPSCs) EPSCs at solitary tract nucleus neurons. In rat horizontal brainstem slices, activation of solitary tract (ST) primary afferents generated ST-eEPSCs that were rapidly and reversibly inhibited from most afferents by activation of CB1 with arachidonyl-2'-chloroethylamide (ACEA) or WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate]. The CB1 antagonist/inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] blocked these responses. Despite profound depression of ST-eEPSCs during CB1 activation, sEPSCs in these same neurons were unaltered. Changes in temperature changed sEPSC frequency only from TRPV1(+) afferents (i.e., thermal sEPSC responses only occurred in TRPV1(+) afferents). CB1 activation failed to alter these thermal sEPSC responses. However, the endogenous arachidonate metabolite N-arachidonyldopamine (NADA) promiscuously activated both CB1 and TRPV1 receptors. NADA inhibited ST-eEPSCs while simultaneously increasing sEPSC frequency, and thermally triggered sEPSC increases in neurons with TRPV1(+) afferents. We found no evidence for CB1/TRPV1 interactions suggesting independent regulation of two separate vesicle pools. Together, these data demonstrate that action potential-evoked synchronous glutamate release is modulated separately from TRPV1-mediated glutamate release despite coexistence in the same central terminations. This two-pool arrangement allows independent and opposite modulation of glutamate release by single lipid metabolites. PMID:24920635

Fawley, Jessica A; Hofmann, Mackenzie E; Andresen, Michael C

2014-06-11

291

Why do cannabinoid receptors have more than one endogenous ligand?  

PubMed Central

The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, ?9-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis. PMID:23108541

Di Marzo, Vincenzo; De Petrocellis, Luciano

2012-01-01

292

[Preparation and in vitro study on diffusion of capsaicin cubosome].  

PubMed

This study was to investigate the permeability and absorbability of capsaicin cubosome across abdominal skin of the SD rats in vitro. Diffusion of capsaicin cubosome and cream was performed with the modified Franz diffusion cell technique. The capsaicin cubosome showed no enhancement of skin permeation within 24 hours. However, the deposition amounts of capsaicin in the rat skin in the cubosome group was markedly higher than those in the commercial cream group (P < 0.01). Cubosome showed excellent characetristic of skin-targed which could be a good carrier for the local transdermal drug delivery system. PMID:25204139

Peng, Xin-Sheng; Zhou, Yan-Fang; Han, Ke; Qin, Ling-Zhen; Wu, Chuan-Bin

2014-02-01

293

Modulation of lipopolysaccharide-induced oxidative stress by capsaicin.  

PubMed

This study investigated the effect of capsaicin (the active principle of hot red pepper and a sensory excitotoxin) on oxidative stress after systemic administration of the endotoxin lipopolysaccharide (100 ?g/kg, i.p.) in rats. Capsaicin (15, 150 or 1,500 ?g/kg; 10, 100 or 400 ?g/mL) was given via intragastric (i.g.) or intraperitoneal (i.p.) routes at time of endotoxin administration. Rats were killed 4 h later. Malondialdehyde (MDA) and reduced glutathione (GSH) were measured in brain, liver, and lungs. Alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase (ALP), nitric oxide, and glucose were measured in serum. In addition, histopathological examination of liver tissue was performed. In LPS-treated rats, hepatic GSH increased significantly by 40.8% after i.p. capsaicin at 1,500 ?g/kg. Liver MDA increased significantly by 32.9% after the administration of i.g. capsaicin at 1,500 ?g/kg and by 27.8 and 37.6% after the administration of i.p. capsaicin at 150 and 1,500 ?g/kg, respectively. In lung tissue, both MDA and GSH were decreased by capsaicin administration. MDA decreased by 19-20.8% after i.g. capsaicin and by 17.5-23.2% after i.p. capsaicin (150-1,500 ?g/kg), respectively. GSH decreased by 39.3-64.3% and by 35.7-41.1% after i.g. or i.p. capsaicin (150-1,500 ?g/kg), respectively. Brain GSH increased significantly after the highest dose of i.g. or i.p. capsaicin (by 20.6 and 15.9%, respectively). The increase in serum ALT and ALP after endotoxin administration was decreased by oral or i.p. capsaicin. Serum nitric oxide showed marked increase after LPS injection, but was markedly decreased after capsaicin (1,500 ?g/kg, i.p.). Serum glucose increased markedly after the administration of LPS, and was normalized by capsaicin treatment. It is suggested that in the presence of mild systemic inflammation, acute capsaicin administration might alter oxidative status in some tissues and exert an anti-inflammatory effect. Capsaicin exerted protective effects in the liver and lung against the LPS-induced tissue damage. PMID:22127606

Abdel-Salam, Omar M E; Abdel-Rahman, Rehab Fawzy; Sleem, Amany A; Farrag, Abdel Razik

2012-08-01

294

Gastroprotection induced by capsaicin in healthy human subjects  

PubMed Central

AIM: To evaluate the gastro-protective effect of capsaicin against the ethanol- and indomethacin (IND)-induced gastric mucosal damage in healthy human subjects. METHODS: The effects of small doses (1-8 ?g/mL, 100 mL) of capsaicin on the gastric acid secretion basal acid output (BAO) and its electrolyte concentration, gastric transmucosal potential difference (GTPD), ethanol- (5 mL 300 mL/L i.g.) and IND- (3×25 mg/d) induced gastric mucosal damage were tested in a randomized, prospective study of 84 healthy human subjects. The possible role of desensitization of capsaicin-sensitive afferents was tested by repeated exposures and during a prolonged treatment. RESULTS: Intragastric application of capsaicin decreased the BAO and enhanced “non-parietal” component (GTPD) in a dose-dependent manner. The decrease of GTPD evoked by ethanol was inhibited by the capsaicin application, which was reproducible. Gastric microbleeding induced by IND was inhibited by co-administration with capsaicin, but was not influenced by two weeks pretreatment with a daily capsaicin dose of 3×400 ?g i.g. CONCLUSION: Capsaicin in low concentration range protects against gastric injuries induced by ethanol or IND, which is attributed to stimulation of the sensory nerve endings. PMID:16127749

Mózsik, Gyula; Szolcsányi, János; Rácz, István

2005-01-01

295

Acute and neonatal capsaicin treatment inhibit jejunal amino acid absorption through a Na+-dependent mechanism.  

PubMed

It has recently been shown that capsaicin inhibits alanine absorption in rat jejunum via mechanisms that involve intestinal capsaicin-sensitive primary afferent (CSPA) fibers. This study provides further evidence that the effect of capsaicin is neurally mediated and demonstrates that CSPA fibers regulate Na+-dependent amino acid absorption. In vivo, basal alanine absorption in rats neonatally treated with capsaicin was reduced by 35% below control. Furthermore, intraluminal perfusion of 400 microM capsaicin reduced jejunal alanine absorption by 31% in sham rats but had no significant effect in rats neonatally treated with capsaicin. In vitro, capsaicin significantly reduced uptake of alanine and proline by jejunal strips but had no effect on uptake of lysine. Tetrodotoxin (0.2 microM) partially blocked the effects of capsaicin but did not itself affect alanine absorption. Capsaicin reduced unidirectional mucosal-to-serosal alanine (1 mM) influx by 33%, an effect that becomes significant after 5 min of preincubation with capsaicin. Neonatal capsaicin treatment reduced basal alanine influx in jejunal strips by 37%; however, preincubation of these strips with capsaicin had no significant effect. Kinetic analysis of alanine steady-state uptake and influx by jejunal strips incubated with capsaicin revealed that capsaicin reduced the Na+-dependent component of alanine influx into intestinal epithelial cells. Long-term sensory denervation by capsaicin also decreased the Na+-dependent component of alanine absorption. These data suggest that intestinal capsaicin-sensitive primary afferent fibers regulate Na+-dependent amino acid absorption. PMID:9142913

Barada, K A; Dika, S S; Atweh, S F; Saadé, N E; Nassar, C F

1997-04-01

296

ET1 induced Elevation of intracellular calcium in clonal neuronal and embryonic kidney cells involves endogenous endothelin-A receptors linked to phospholipase C through G? q\\/11  

Microsoft Academic Search

Endothelin-1 (ET-1) is a pain mediator, elevated in skin after injury, which potentiates noxious thermal and mechanical stimuli (hyperalgesia) through the activation of ETA (and, perhaps, ETB) receptors on pain fibers. Part of the mechanism underlying this effect has recently been shown to involve potentiation of neuronal TRPV1 by PKC?. However, the early steps of this pathway, which are recapitulated

Jean-Pierre Montmayeur; Travis P. Barr; Sarah A. Kam; Samuel J. Packer; Gary R. Strichartz

2011-01-01

297

Direct activation of transient receptor potential V1 by nickel ions  

Microsoft Academic Search

TRPV1 is a member of the transient receptor potential (TRP) family of cation channels. It is expressed in sensory neurons\\u000a of the dorsal root and trigeminal ganglia as well as in a wide range of non-neuronal tissues. The channel proteins serve as\\u000a polymodal receptors for various potentially harmful stimuli to prevent tissue damage by mediating unpleasant or painful sensations.\\u000a Using

Matthias Luebbert; Debbie Radtke; Rachel Wodarski; Nils Damann; Hanns Hatt; Christian H. Wetzel

2010-01-01

298

Evidence for a role of capsaicin-sensitive sensory nerves in the lung oedema induced by Tityus serrulatus venom in rats.  

PubMed

In the most severe cases of human envenoming by Tityus serrulatus, pulmonary oedema is a frequent finding and can be the cause of death. We have previously demonstrated a role for neuropeptides acting on tachykinin NK(1) receptors in the development of lung oedema following i.v. injection of T. serrulatus venom (TsV) in experimental animals. The present work was designed to investigate whether capsaicin-sensitive primary afferent neurons were a potential source of NK(1)-acting neuropeptides. To this end, sensory nerves were depleted of neuropeptides by neonatal treatment of rats with capsaicin. The effectiveness of this strategy at depleting sensory nerves was demonstrated by the inhibition of the neuropeptide-dependent response to intraplantar injection of formalin. Pulmonary oedema, as assessed by the levels of extravasation of Evans blue dye in the bronchoalveolar lavage and in the left lung, was markedly inhibited in capsaicin-treated animals. In contrast, capsaicin treatment failed to alter the increase in arterial blood pressure or the lethality following i.v. injection of TsV. Our results demonstrate an important role for capsaicin-sensitive sensory nerves in the cascade of events leading to lung injury following the i.v. administration of TsV. PMID:11711125

Andrade, Marcus V M; Souza, Danielle G; de A Castro, Maria Salete; Cunha-Melo, José R; Teixeira, Mauro M

2002-03-01

299

Intraperitoneal capsaicin treatment reduces postoperative gastric ileus in awake rats  

Microsoft Academic Search

Introduction: Postoperative gastric ileus interferes with postoperative recovery of the patients. Previous studies suggest that capsaicin-sensitive afferent neurons are involved in the mediation of postoperative gastric ileus. Methods: A group of rats were equipped with a strain gauge transducer sutured to the gastric wall. Gastric motility was recorded after intraperitoneal injection of capsaicin (0.1 µmol\\/kg and 1 µmol\\/kg) or vehicle.

T. T. Zittel; T. Meile; E. C. Jehle; H. D. Becker

2001-01-01

300

Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP.  

PubMed

Recent data support a role for nitric oxide (NO) in pain processing at the level of the spinal cord, possibly via regulation of neuropeptide release. The goal of this study was to determine whether capsaicin, which selectively activates primary afferent neurons and evokes neuropeptide release, acts in an NO-dependent manner. Our results indicate that capsaicin (1 microM)-evoked release of immunoreactive calcitonin gene-related peptide (iCGRP) is significantly reduced in the presence of the NO synthase inhibitor, L-NAME (10-400 nM; F(3,45)=68.38; P<0.001) and, the selective nNOS inhibitor, 3-bromo-7-nitroindazole (170-680 nM; F(5,48)=56.2; P<0. 01). D-NAME (200 nM) had no effect on capsaicin-evoked iCGRP release. Hemoglobin (an extracellular scavenger of NO; 3 mg/ml) significantly reduced the effect of capsaicin on the release of iCGRP (F(1,8)=9.12; P<0.05). The NOS substrate, L-arginine, effectively reversed the inhibitory effect of 3-bromo-7-nitroindazole on capsaicin-evoked iCGRP release. To determine whether the NO-mediated release was NMDA-driven, we superfused spinal cord slices with competitive and non-competitive NMDA antagonists in the presence and absence of capsaicin. MK-801 (0. 1-10 microM; F(4,33)=8.49; P<0.0001) and AP-5 (0.01-10 microM; F(4, 38)=3.34; P<0.05) reduced capsaicin-evoked iCGRP release. CNQX, an AMPA/kainate antagonist (10 nM-10 microM), significantly decreased capsaicin-evoked release of iCGRP (F(6,42)=8.76; P<0.01) in a dose-dependent fashion. Additionally, our results demonstrate that while capsaicin-evoked release is significantly reduced in the presence of LY-83583 (10 microM; F(2,18)=3.46; P<0.01; a cyclic GMP lowering agent), there is no effect of ODQ (a potent and selective inhibitor of guanylate cyclase). Moreover, the application of a cell permeable analog of cyclic GMP (8-bromo-cGMP; 0.01-1000 microM) is without effect on both basal and evoked iCGRP release. Finally, we observed no colocalization of immunoreactive neuronal NOS (nNOS) with CGRP in the dorsal horn. In summary, these data indicate that capsaicin evokes the release of iCGRP, in part, via the production of NO which enters the extracellular space prior to having an effect. Moreover, iCGRP and nNOS are produced in distinct populations of neurons within the dorsal horn. We conclude that capsaicin-evoked release involves the activation of the NMDA receptor but is also modified by the activation of AMPA or kainate receptors. Finally, these data suggest that while capsaicin-evoked iCGRP release is modified by NO, this release does not require the activation of guanylate cyclase and subsequent production of cyclic GMP. PMID:10760483

Garry, M G; Walton, L P; Davis, M A

2000-04-10

301

Dissecting Domain-Specific Evolutionary Pressure Profiles of Transient Receptor Potential Vanilloid Subfamily Members 1 to 4  

PubMed Central

The transient receptor potential vanilloid family includes four ion channels–TRPV1, TRPV2, TRPV3 and TRPV4–that are represented within the vertebrate subphylum and involved in several sensory and physiological processes. These channels are related to adaptation to the environment, and probably under strong evolutionary pressure. Using multiple sequence alignments as source for evolutionary, bioinformatics and statistical analysis, we have analyzed the evolutionary profiles for TRPV1, TRPV2, TRPV3 and TRPV4. The evolutionary pressure exerted over vertebrate TRPV2 sequences compared to the other channels argues for a positive selection profile for TRPV2 compared to TRPV1, TRPV3 and TRPV4. We have analyzed the selective pressure on specific protein domains, observing a common selective pressure trend for the common TRPV scaffold, consisting of the ankyrin repeat domain, the membrane proximal domain, the transmembrane domain, and the TRP domain. Through a more detailed analysis we have identified evolutionary constraints involved in the subunit contact at the transmembrane domain level. Performing evolutionary comparison, we have translated specific channel structural information such as the transmembrane topology, and the interaction between the membrane proximal domain and the TRP box. We have also identified potential common regulatory domains among all TRPV1-4 members, such as protein-protein, lipid-protein and vesicle trafficking domains. PMID:25333484

Dońate-Macián, Pau; Perálvarez-Marín, Alex

2014-01-01

302

What do we know about the Transient Receptor Potential Vanilloid 2 (TRPV2) ion channel?  

PubMed Central

Transient receptor potential (TRP) ion channels are emerging as a new set of membrane proteins involved in a vast array of cellular processes and regulated by a large number of physical and chemical stimuli, which involves them with sensory cell physiology. The vanilloid TRP subfamily (TRPV) named after the vanilloid receptor 1 (TRPV1) consists of six members, and at least four of them (TRPV1-TRPV4) have been related to thermal sensation. One of the least characterized members of the TRP subfamily is TRPV2. Although initially characterized as a noxious heat sensor, TRPV2 now seems to have little to do with temperature sensing, but a much more complex physiological profile. Here we review the available information and research progress on the structure, physiology and pharmacology of TRPV2 in an attempt to shed some light on the physiological and pharmacological deorphanization of TRPV2. PMID:23615321

Perálvarez-Marín, Alex; Dońate-Macian, Pau; Gaudet, Rachelle

2013-01-01

303

Potential of capsaicin-loaded transfersomes in arthritic rats.  

PubMed

Abstract In the present study, the biopotential of capsaicin (an active principle of capsicum) as a topical antiarthritic agent was studied in arthritic rats. Transfersomal vesicular system was employed for the topical administration of capsaicin in experimental rats. The characterization of prepared capsaicin-loaded transfersomes reveals their nano size (94?nm) with negative surface charge (-14.5?mV) and sufficient structural flexibility, which resulted in 60.34% entrapment efficacy, penetration across the biomembrane (220?µm) and 76.76% of drug release from vesicular system in 24?h in their intact form as evident from confocal laser scanning micrographic study. Results of transfersomal nanoformulation (capsaicin loaded, test) were compared with that of conventional gel formulation available in the market (Thermagel, standard), with an aim to assess the antiarthritic efficacy of our prepared capsaicin-loaded transfersomal formulation. In vivo antiarthritic activity study shows that our formulation possesses superior inhibitory activity than the marketed Thermagel formulation at the same dosage level, which could probably be due to the lesser permeability of Thermagel across the dermal barriers compared to our specially designed transfersomal delivery system. Moreover, the better tolerance of prepared vesicular formulation in biological system further enlightens the suitability of the transfersomal vesicle to be used as a novel carrier system for the topical administration of such highly irritant substance. PMID:24471764

Sarwa, Khomendra Kumar; Mazumder, Bhaskar; Rudrapal, Mithun; Verma, Vinod Kumar

2014-01-29

304

Endothelin-1-induced priming to capsaicin in young animals.  

PubMed

Endothelin-1 (ET-1) is a known algogen that causes acute pain and sensitization in humans and spontaneous nociceptive behaviors when injected into the periphery in rats. This study sought to examine the effect of ET-1 exposure in the neonatal period on subsequent contralateral capsaicin-induced secondary mechanical hyperalgesia. ET-1 or saline was injected into the left plantar hindpaw on postnatal day 7 (P7). On postnatal day 11 (P11), capsaicin cream or control lotion was applied to the right dorsum hind paw and mechanical paw withdrawal thresholds were measured in the plantar hind paw. In saline control males, P11 administration of capsaicin produced a secondary mechanical hyperalgesia that was still present at 2h. Neonatal priming with ET-1 did not alter the magnitude or the duration of secondary mechanical hyperalgesia in males. In contrast, in control females, P11 administration of capsaicin produced less than 40 min of mechanical hyperalgesia. Neonatal priming with ET-1 prolonged the duration of secondary mechanical hyperalgesia in females. Priming with ET-1 on P7 led to a significant increase in capsaicin-induced Fos expression in the dorsal horn of the spinal cord in both males and females compared to controls (p<0.001). These findings further suggest that pain in early life may alter future responses to painful stimuli at both the behavioral and neuronal level. PMID:24674771

Smith, Terika; Beasley, Sarah; Smith, Sherika; Mark, Isiasha; Sweitzer, Sarah M

2014-05-01

305

TRP Channels in Pain and Inflammation: Therapeutic Opportunities  

PubMed Central

In ancient times, physicians had a limited number of therapies to provide pain relief. Not surprisingly, plant extracts applied topically often served as the primary analgesic plan. With the discovery of the capsaicin receptor (TRPV1), the search for ‘new’ analgesics has returned to compounds used by physicians thousands of years ago. One such compound, capsaicin, couples the paradoxical action of nociceptor activation (burning pain) with subsequent analgesia following repeat or high-dose application. Investigating this ‘paradoxical’ action of capsaicin has revealed several overlapping and complementary mechanisms to achieve analgesia including receptor desensitization, nociceptor dysfunction, neuropeptide depletion and nerve terminal destruction. Moreover, the realization that TRPV1 is both sensitized and activated by endogenous products of inflammation including bradykinin, H+, ATP, fatty acid derivatives, NGF and trypsins, has renewed interest in TRPV1 as an important site of analgesia. Building on this foundation, a new series of preclinical and clinical studies targeting TRPV1 have been reported. These include trials using brief exposure to high-dose topical capsaicin in conjunction with prior application of a local anesthetic. Clinical use of resiniferatoxin (RTX), another ancient but potent TRPV1 agonist, is also being explored as a therapy for refractory pain. The development of orally-administered high affinity TRPV1 antagonists hold promise for pioneering a new generation of analgesics capable of blocking painful sensations at the site of inflammation and tissue injury. With the isolation of other members of the TRP channel family such as TRPA1, additional opportunities are emerging in the development of safe and effective analgesics. PMID:20230457

Schumacher, Mark A.

2011-01-01

306

Hot Chili Peppers: Extraction, Cleanup, and Measurement of Capsaicin  

NASA Astrophysics Data System (ADS)

Capsaicin, the pungent ingredient of the red pepper or Capsicum annuum, is widely used in food preparation. The purpose of this experiment was to acquaint students with the active ingredients of hot chili pepper (capsaicin and dihydrocapsaicin), the extraction, cleanup, and analysis of these chemicals, as a fun and informative analytical exercise. Fresh peppers were prepared and extracted with acetonitrile, removing plant co-extractives by addition to a C-18 solid-phase extraction cartridge. Elution of the capsaicinoids was accomplished with a methanol-acetic acid solution. Analysis was completed by reverse-phase HPLC with diode-array or variable wavelength detection and calibration with external standards. Levels of capsaicin and dihydrocapsaicin were typically found to correlate with literature values for a specific hot pepper variety. Students particularly enjoyed relating concentrations of capsaicinoids to their perceived valuation of "hotness".

Huang, Jiping; Mabury, Scott A.; Sagebiel, John C.

2000-12-01

307

Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles  

PubMed Central

Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

Seebacher, Frank; Murray, Shauna A.

2007-01-01

308

Transient receptor potential ion channels control thermoregulatory behaviour in reptiles.  

PubMed

Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

Seebacher, Frank; Murray, Shauna A

2007-01-01

309

Natural Capsaicin in Capsicum chinense: Concentration vs. Origin  

Technology Transfer Automated Retrieval System (TEKTRAN)

Capsaicin [N-vanillyl-8-methyl-6-(E) noneamide] is the most pungent of the group of compounds known as capsaicinoids in chili peppers. A survey was conducted to screen fruits of 307 hot pepper accessions of Capsicum chinense selected from the USDA germplasm collection for their major capsaicinoids c...

310

Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist  

Microsoft Academic Search

BACKGROUND: The use of mechanical\\/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia. METHODS: First,

Keld Fosgerau; Uno J Weber; Jacob W Gotfredsen; Magdalena Jayatissa; Carsten Buus; Niels B Kristensen; Mogens Vestergaard; Peter Teschendorf; Andreas Schneider; Philip Hansen; Jakob Raunsř; Lars Křber; Christian Torp-Pedersen; Charlotte Videbaek

2010-01-01

311

Capsaicin-induced cell death in a human gastric adenocarcinoma cell line  

PubMed Central

AIM: Capsaicin, a pungent ingredient found in red pepper, has long been used in spices, food additives, and drugs. Cell death induced by the binding of capsaicin was examined in a human gastric adenocarcinoma cell line (AGS cells). METHODS: By using XTT-based cytotoxicity assay, flow cytometry using the TUNEL method, and quantitation of DNA fragmentation, both cell death and DNA fragmentation were detected in AGS cells treated with capsaicin. By using Western blotting methods, capsaicin reduced the expression of Bcl-2, the antiapoptotic protein, in AGS cells in a concentration-dependent manner. RESULTS: After incubation of AGS cells with capsaicin for 24 h, cell viability decreased significantly in a dose-dependent manner. After incubation of AGS cells with capsaicin for 24 h, apoptotic bodies also significantly increased, and were again correlated with the dose of capsaicin. When the concentration of capsaicin was 1 mmol/L, the amount of DNA fragments also increased. Similar results were also in the lower traces. CONCLUSION: These results suggest that capsaicin-induced cell death might be via a Bcl-2 sensitive apoptotic pathway. Therefore, capsaicin might induce protection from gastric cancer. PMID:16419151

Lo, Yi-Ching; Yang, Yuan-Chieh; Wu, I-Chen; Kuo, Fu-Chen; Liu, Chi-Ming; Wang, Hao-Wei; Kuo, Chao-Hung; Wu, Jeng-Yi; Wu, Deng-Chyang

2005-01-01

312

Involvement of peripheral purinoceptors in sympathetic modulation of capsaicin-induced sensitization of primary afferent fibers.  

PubMed

Purinoceptors are distributed in primary afferent terminals, where transmission of nociceptive information is modulated by these receptors. In the present study, we evaluated whether the activation or blockade of purinoceptors of subtypes P2X and P2Y in the periphery affected the sensitization of primary afferents induced by intradermal injection of capsaicin (CAP) and examined their role in sympathetic modulation of sensitization of primary nociceptive afferents. Afferent activity was recorded from single Adelta- and C-primary afferent fibers in the tibial nerve in anesthetized rats. Peripheral pretreatment with alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-meATP), a P2X-selective receptor agonist, could potentiate the CAP-induced enhancement of responses of Adelta- and C-primary afferent nociceptive fibers to mechanical stimuli in sympathetically intact rats. After sympathetic denervation, the enhanced responses of both Adelta- and C-fibers after CAP injection were dramatically reduced. However, this reduction could be restored when P2X receptors were activated by alpha,beta-meATP. A blockade of P2X receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid could significantly reduce the CAP-induced sensitization of Adelta- and C-fibers. Pretreatment with uridine 5'-triphosphate, a P2Y-selective receptor agonist, did not significantly affect or restore the CAP-induced sensitization of Adelta- and C-fibers under sympathetically intact or sympathectomized conditions. Our study supports the view that ATP plays a role in modulation of primary afferent nociceptor sensitivity mainly by P2X receptors. Combined with our previous study, our data also provide further evidence that the sensitization of primary afferent nociceptors is subject to sympathetic modulation by activation of P2X as well as alpha(1)-adrenergic receptors. PMID:16885522

Ren, Yong; Zou, Xiaoju; Fang, Li; Lin, Qing

2006-11-01

313

Effectiveness of Capsaicin as a Repellent to Birdseed Consumption by Gray Squirrels  

Microsoft Academic Search

We evaluated the efficacy of capsaicin as an aversive agent to captive and free-ranging gray squirrels (Sciurus carolinenssi). Capsaicin appeared more aversive in lipid-based formulations. Sunflower hearts treated with capsaicin oleoresins at 100,000 Scoville Heat Units (SHU's) demonstrated near-complete aversiveness to captive squirrels. These treatments were sampled by food-deprived captive squirrels, but were not consumed due to their extreme pungency.

Christopher S. Fitzgerald; Paul D. Curtis; Milo E. Richmond; Joseph A. Dunn

1995-01-01

314

Influence of topical capsaicin on facial sensitivity in response to experimental pain.  

PubMed

Capsaicin, the pungent component of the red pepper, has been used as an analgesic in a variety of pain conditions, but sensory impairment after long-term treatment has been concerned. This study investigated the influence of topical capsaicin on various types of sensations including pain in the facial areas innervated by the mental nerve, and also evaluated whether the measurement of cutaneous current perception threshold (CPT) is reliable for the quantification of sensory change following capsaicin application. Twenty healthy subjects were given topical capsaicin cream (0.075%), which was applied to the mental area unilaterally, four times daily for 2 weeks. Burning sensation after capsaicin application gradually decreased with repeated applications. Repeated topical capsaicin resulted in reduced sensation to mechanical, heat and cold pain without changing non-painful tactile sensation. It also resulted in increased CPTs at 5 Hz and 250 Hz stimuli but no change in the CPTs at 2000 Hz from the first evaluation after capsaicin treatment and throughout the treatment period. This study demonstrated that topical capsaicin treatment for the management of chronic localized pain can be safely applied to the face without affecting non-painful normal sensations, and that CPT testing is a clinically useful tool for the quantification of sensory changes following capsaicin application. PMID:17207073

Lee, Y-S; Kho, H-S; Kim, Y-K; Chung, S-C

2007-01-01

315

Evaluation of the analgesic efficacy and psychoactive effects of AZD1940, a novel peripherally acting cannabinoid agonist, in human capsaicin-induced pain and hyperalgesia.  

PubMed

The aim of the present study was to investigate the effects of AZD1940, a novel peripherally acting cannabinoid CB(1) /CB(2) receptor agonist, on capsaicin-induced pain and hyperalgesia, as well as on biomarkers of cannabinoid central nervous system (CNS) effects. The present study was a randomized, double-blind, placebo-controlled, four-sequence, two-period, cross-over study in 44 male healthy volunteers aged 20-45 years. The effects of two single oral doses of AZD1940 (400 and 800 ?g) were compared with placebo. Pain intensity after intradermal capsaicin injections in the forearm was assessed on a continuous visual analogue scale (VAS; 0-100 mm). Primary and secondary hyperalgesia induced by application of capsaicin cream on the calf were assessed by measuring heat pain thresholds and the area of mechanical allodynia, respectively. The CNS effects were assessed at baseline and up to 24 h after dosing using a visual analogue mood scales (VAMS) for feeling 'stimulated', 'high', 'anxious', 'sedated' or 'down'. AZD1940 did not significantly attenuate ongoing pain or primary or secondary hyperalgesia compared with placebo. Mild CNS effects for AZD1940were observed on the VAMS for 'high' and 'sedated'. Dose-dependent mild-to-moderate CNS-related and gastrointestinal adverse events were reported following treatment with AZD1940. No evidence of analgesic efficacy was found for a peripherally acting CB(1)/CB(2) receptor agonist in the human capsaicin pain model. The emergence of mild dose-dependent CNS effects suggests that the dose range predicted from preclinical data had been attained. PMID:23324098

Kalliomäki, Jarkko; Annas, Peter; Huizar, Karin; Clarke, Cyril; Zettergren, Annika; Karlsten, Rolf; Segerdahl, Märta

2013-03-01

316

Capsaicin: a potent inhibitor of carbonic anhydrase isoenzymes.  

PubMed

Carbonic anhydrase (CA, EC 4.2.1.1) is a zinc containing metalloenzyme that catalyzes the rapid and reversible conversion of carbon dioxide (CO2) and water (H2O) into a proton (H+) and bicarbonate (HCO3-) ion. On the other hand, capsaicin is the main component in hot chili peppers and is used extensively used in spices, food additives and drugs; it is responsible for their spicy flavor and pungent taste. There are sixteen known CA isoforms in humans. Human CA isoenzymes I, and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. In this study, the inhibition properties of capsaicin against the slow cytosolic isoform hCA I, and the ubiquitous and dominant rapid cytosolic isozymes hCA II were studied. Both CA isozymes were inhibited by capsaicin in the micromolar range. This naturally bioactive compound has a Ki of 696.15 µM against hCA I, and of 208.37 µM against hCA II. PMID:25014536

Arabaci, Betul; Gulcin, Ilhami; Alwasel, Saleh

2014-01-01

317

Cannabinoid CB1 receptors mediate the effects of dipyrone.  

PubMed

Dipyrone is a non-steroidal anti-inflammatory drug (NSAID) used primarily as an analgesic and antipyretic. Some hypothesize that dipyrone activity can modulate other pathways, including endocannabinoid signaling. Thus, the aim of this study was to evaluate the possible role of endocannabinoids in mediating dipyrone activity. This study will be based on the tetrad effects of cannabinoids, which are an antinoceptive and cataleptic state, hypolocomotion, and hypothermia. Dipyrone treatment caused a decrease in locomotor activity, increased the latency to a thermal analgesic response, and induced a cataleptic and hypothermic state. These reactions are similar to the tetrad effects caused by the cannabinoid agonist, WIN 55,212-2. CB1 receptor antagonist reversed dipyrone's effects on locomotor activity, the cataleptic response and thermal analgesia. CB1 and TRPV1 antagonists accentuated the reduction in body temperature caused by dipyrone. However, CB2 antagonists did not alter the dipyrone-stimulated hypothermia response. These results indicate involvement of the endocannabinoid system, especially the CB1 receptor, in analgesia and the cataleptic effect and hypolocomotion. However, CB and TRPV1 receptors were not involved in hyporthermic effects. We hypothesize that dipyrone's mechanism of action may involve COX and FAAH inhibition, which together provide additional arachidonic acid as substrate for endocannabinoid synthesis or other related molecules. This increase in endocannabinoid availability enhances CB1 receptor stimulation, contributing to the observed effects. This article is protected by copyright. All rights reserved. PMID:25430877

Crunfli, Fernanda; Vilela, Fabiana C; Giusti-Paiva, Alexandre

2014-11-27

318

Treatment of neuropathic pain with the capsaicin 8% patch: is pretreatment with lidocaine necessary?  

PubMed

The capsaicin 8% patch can effectively treat neuropathic pain, but application can cause discomfort or a burning sensation. Until March 2013, it was recommended that patients be pretreated with a topical anesthetic, for example lidocaine, before capsaicin patch application. However, speculation existed over the need for pretreatment and its effectiveness in alleviating treatment-associated discomfort. This article compares tolerability to and efficacy of the capsaicin patch in pretreated and non-pretreated patients. All patients received a single capsaicin patch application. Pretreated patients received a lidocaine plaster before and intravenous lidocaine and metamizole infusions during capsaicin patch application. Pain levels, assessed using a Numeric Rating Scale (NRS), were used to determine tolerability and efficacy. All patients (pretreated n = 32; non-pretreated n = 26) completed 100% of the intended capsaicin patch application duration. At the time of capsaicin patch removal, 69% of pretreated and 88% of non-pretreated patients reported an NRS score increase, which returned to baseline by 6 hours post-treatment. There was no significant difference in mean NRS score between patient groups at any time during or after capsaicin patch treatment. Response was similar between patient groups; capsaicin patch treatment provided rapid and significant pain reductions that were sustained over 12 weeks. The same proportion of pretreated and non-pretreated patients reported willingness to receive retreatment with the capsaicin patch. This analysis shows that the capsaicin 8% patch is generally tolerable, and the small discomfort associated with patch application is short-lived. Lidocaine pretreatment does not have a significant effect on tolerability, efficacy, or patient willingness to receive retreatment. PMID:24289500

Kern, Kai-Uwe; Nowack, Walburga; Poole, Chris

2014-02-01

319

Treatment of Neuropathic Pain with the Capsaicin 8% Patch: Is Pretreatment with Lidocaine Necessary?  

PubMed Central

The capsaicin 8% patch can effectively treat neuropathic pain, but application can cause discomfort or a burning sensation. Until March 2013, it was recommended that patients be pretreated with a topical anesthetic, for example lidocaine, before capsaicin patch application. However, speculation existed over the need for pretreatment and its effectiveness in alleviating treatment-associated discomfort. This article compares tolerability to and efficacy of the capsaicin patch in pretreated and non-pretreated patients. All patients received a single capsaicin patch application. Pretreated patients received a lidocaine plaster before and intravenous lidocaine and metamizole infusions during capsaicin patch application. Pain levels, assessed using a Numeric Rating Scale (NRS), were used to determine tolerability and efficacy. All patients (pretreated n = 32; non-pretreated n = 26) completed 100% of the intended capsaicin patch application duration. At the time of capsaicin patch removal, 69% of pretreated and 88% of non-pretreated patients reported an NRS score increase, which returned to baseline by 6 hours post-treatment. There was no significant difference in mean NRS score between patient groups at any time during or after capsaicin patch treatment. Response was similar between patient groups; capsaicin patch treatment provided rapid and significant pain reductions that were sustained over 12 weeks. The same proportion of pretreated and non-pretreated patients reported willingness to receive retreatment with the capsaicin patch. This analysis shows that the capsaicin 8% patch is generally tolerable, and the small discomfort associated with patch application is short-lived. Lidocaine pretreatment does not have a significant effect on tolerability, efficacy, or patient willingness to receive retreatment. PMID:24289500

Kern, Kai-Uwe; Nowack, Walburga; Poole, Chris

2014-01-01

320

G-protein coupled receptors regulating cough.  

PubMed

Cough is a protective mechanism but can occur excessively in disease. Cough can be modulated by a range of GPCRs which can be either inhibitory or excitatory. Prostaglandin E2 and bradykinin can activate airway sensory nerves via EP3 and B2 receptors receptively and have both been shown to mediate their effects though TRPV1 and TRPA1 receptors. Activation of the ?2-adrenoceptor and cannabinoid CB2 receptors can inhibit sensory nerves and prevent cough. It is currently thought that activation of the ?2-adrenoceptor causes c-AMP dependent activation of PKA; however, recent research has suggested that the pathway involves PKG-mediated opening of the BKCa channel leading to hyperpolarization. PMID:21727026

Maher, Sarah A; Dubuis, Eric D; Belvisi, Maria G

2011-06-01

321

Opioid, cannabinoid, and transient receptor potential (TRP) systems: effects on body temperature  

PubMed Central

Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. Endocannabinoids participate in the febrile response, but more studies are needed to determine if a cannabinoid CB1 receptor tone exerts control over basal body temperature. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation. PMID:21622235

Rawls, Scott M.; Benamar, Khalid

2014-01-01

322

Orally given gastroprotective capsaicin does not modify aspirin-induced platelet aggregation in healthy male volunteers (human phase I examination).  

PubMed

Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 ?g capsaicin, 800 ?g capsaicin, 500 mg ASA, 400 ?g capsaicin+500 mg ASA and 800 ?g capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ? 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin. PMID:25532954

Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas

2014-12-01

323

Intraduodenal capsaicin inhibits gastric migrating motor complex via an extrinsic neural reflex in conscious dogs.  

PubMed

The aim was to study the effect of intraduodenal capsaicin on interdigestive gastric contractions. Mongrel dogs were equipped with strain-gauge force transducers to measure gastroduodenal motility. The effects of intraduodenal capsaicin with or without pharmacological antagonists on spontaneous and motilin-induced interdigestive gastric contractions and on plasma motilin were studied in dogs with intact stomachs. The effect of intraduodenal capsaicin on gastric contractions was also studied in vagally denervated gastric (Heidenhain) pouch and vagally innervated antral pouch. Intraduodenal capsaicin inhibited spontaneous and motilin-induced gastric contractions. The spontaneous peak in plasma motilin was inhibited by intraduodenal capsaicin. The effect of intraduodenal capsaicin on motilin-induced gastric contractions was not affected by blockade of nitric oxide synthase, or by beta-adrenoceptor antagonist. Administration of alpha-adrenergic blocker inhibited basal interdigestive gastric motility. Intraduodenal capsaicin had no effect on contractions in the Heidenhain pouch but inhibited those in vagally innervated antral pouch. Duodenal afferent fibres stimulated by capsaicin inhibit gastric contractions via a nitric oxide-independent extrinsic neural reflex. PMID:12358683

Shibata, C; Naito, H; Ueno, T; Jin, X-L; Funayama, Y; Fukushima, K; Matsuno, S; Sasaki, I

2002-10-01

324

Prenatal malnutrition-induced hypertension in young rats is prevented by neonatal capsaicin treatment  

Microsoft Academic Search

Prenatal malnutrition-induced fetal growth retardation in the rat results in elevated arterial blood pressure at adulthood. To test the contribution of cardiovascular sensory C fibers in the hypertensive state, arterial blood pressure was measured in prenatally undernourished rats treated at birth with capsaicin. The effects of the neonatal capsaicin treatment on heart rate and respiratory frequency were also evaluated. Maternal

Hernán Pérez; Samuel Ruiz; Rubén Soto-Moyano

2002-01-01

325

High-Dose Capsaicin for the Treatment of Neuropathic Pain: What We Know and What We Need to Know.  

PubMed

Neuropathic pain is a frequent and disabling condition with diverse underlying etiologies and is often difficult to treat. Systemic drug treatment is often limited in efficacy. Furthermore, adverse effects may be a limiting factor when trying to reach the necessary dose. Analgesics that can be applied topically have the potential to largely overcome this problem. They may be of particular advantage in localized neuropathic pain syndromes such as postherpetic neuralgia or small fiber neuropathy. Capsaicin, the pungent component of chili peppers, is a natural ligand of the transient receptor potential vanilloid 1 channel and has long been used as topically applicable cream with concentrations of 0.025 to 0.075%. In 2009, a high-concentration transdermal capsaicin 8% patch (Qutenza(®); Acorda Therapeutics, Inc., Ardsley, NY, USA; Astellas Pharma Europe Ltd., Chertsey, Surrey, UK) was introduced for the treatment of peripheral neuropathic pain syndromes other than of diabetic origin in adults. It has since been widely used in diverse neuropathic pain disorders. In this review article, we summarize current knowledge on Qutenza, its advantages and problems, and expose unmet needs. PMID:25069571

Uçeyler, Nurcan; Sommer, Claudia

2014-07-29

326

Botulinum toxin type A reduces capsaicin-evoked pain and neurogenic vasodilatation in human skin.  

PubMed

The effect of Botulinum Toxin type A (BoNT/A) on pain and neurogenic vasodilatation induced by application to the human skin of thermal stimuli and capsaicin was evaluated in a double blind study. A capsaicin cream (0.5 ml of a 0.075%) was applied to the skin of both forearms of eighteen subjects randomly pretreated with either BoNT/A (Botox) or 0.9% saline (NS). Capsaicin was applied to a skin area either inside (protocol A) or adjacent to the BoNT/A treated area (protocol B). Pre-treatment with BoNT/A did not affect thermal-specific and thermal-pain thresholds (by quantitative sensory testing). However, capsaicin-induced pain sensation (by a visual analogue scale), flare area (by acetate sheet) and changes in cutaneous blood flow (CBF, by laser Doppler flowmetry) were reduced when capsaicin was administered inside (protocol A) the BoNT/A treated area. In Protocol B, capsaicin-induced pain was unchanged, and capsaicin-induced flare/increase in CBF were reduced only in the area treated with BoNT/A, but not in the BoNT/A untreated area. Results indicate that (i) BoNT/A reduces capsaicin-induced pain and neurogenic vasodilatation without affecting the transmission of thermal and thermal-pain modalities; (ii) reduction in capsaicin-induced pain occurs only if capsaicin is administered into the BoNT/A pretreated area; (iii) reduction in neurogenic vasodilatation by BoNT/A does not contribute to its analgesic action. BoNT/A could be tested for the treatment of conditions characterised by neurogenic inflammation and inflammatory pain. PMID:17194546

Tugnoli, Valeria; Capone, Jay Guido; Eleopra, Roberto; Quatrale, Rocco; Sensi, Mariachiara; Gastaldo, Ernesto; Tola, Maria Rosaria; Geppetti, Pierangelo

2007-07-01

327

Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.  

PubMed

Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %). PMID:25355002

Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

2015-01-01

328