Science.gov

Sample records for capturing blocked-entrance binaural

  1. Binaural beat salience

    PubMed Central

    Grose, John H.; Buss, Emily; Hall, Joseph W.

    2012-01-01

    Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz – all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. PMID:22326292

  2. Binaural Loudness Constancy.

    PubMed

    Culling, John F; Dare, Helen

    2016-01-01

    In binaural loudness summation, diotic presentation of a sound usually produces greater loudness than monaural presentation. However, experiments using loudspeaker presentation with and without earplugs find that magnitude estimates of loudness are little altered by the earplug, suggesting a form of loudness constancy. We explored the significance of controlling stimulation of the second ear using meatal occlusion as opposed to the deactivation of one earphone. We measured the point of subjective loudness equality (PSLE) for monaural vs. binaural presentation using an adaptive technique for both speech and noise. These stimuli were presented in a reverberant room over a loudspeaker to the right of the listener, or over lightweight headphones. Using the headphones, stimuli were either presented dry, or matched to those of the loudspeaker by convolution with impulse responses measured from the loudspeaker to the listener position, using an acoustic manikin. The headphone response was also compensated. Using the loudspeaker, monaural presentation was achieved by instructing the listener to block the left ear with a finger. Near perfect binaural loudness constancy was observed using loudspeaker presentation, while there was a summation effect of 3-6 dB for both headphone conditions. However, only partial constancy was observed when meatal occlusion was simulated. These results suggest that there may be contributions to binaural loudness constancy from residual low frequencies at the occluded ear as well as a cognitive element, which is activated by the knowledge that one ear is occluded. PMID:27080647

  3. Binaural room simulation

    NASA Technical Reports Server (NTRS)

    Lehnert, H.; Blauert, Jens; Pompetzki, W.

    1991-01-01

    In every-day listening the auditory event perceived by a listener is determined not only by the sound signal that a sound emits but also by a variety of environmental parameters. These parameters are the position, orientation and directional characteristics of the sound source, the listener's position and orientation, the geometrical and acoustical properties of surfaces which affect the sound field and the sound propagation properties of the surrounding fluid. A complete set of these parameters can be called an Acoustic Environment. If the auditory event perceived by a listener is manipulated in such a way that the listener is shifted acoustically into a different acoustic environment without moving himself physically, a Virtual Acoustic Environment has been created. Here, we deal with a special technique to set up nearly arbitrary Virtual Acoustic Environments, the Binaural Room Simulation. The purpose of the Binaural Room Simulation is to compute the binaural impulse response related to a virtual acoustic environment taking into account all parameters mentioned above. One possible way to describe a Virtual Acoustic Environment is the concept of the virtual sound sources. Each of the virtual sources emits a certain signal which is correlated but not necessarily identical with the signal emitted by the direct sound source. If source and receiver are non moving, the acoustic environment becomes a linear time-invariant system. Then, the Binaural Impulse Response from the source to a listener' s eardrums contains all relevant auditory information related to the Virtual Acoustic Environment. Listening into the simulated environment can easily be achieved by convolving the Binaural Impulse Response with dry signals and representing the results via headphones.

  4. Statistics of Natural Binaural Sounds

    PubMed Central

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction. PMID:25285658

  5. Advancing Binaural Cochlear Implant Technology

    PubMed Central

    McAlpine, David

    2015-01-01

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies. PMID:26721929

  6. Dynamic binaural sound localization based on variations of interaural time delays and system rotations.

    PubMed

    Baumann, Claude; Rogers, Chris; Massen, Francis

    2015-08-01

    This work develops the mathematical model for a steerable binaural system that determines the instantaneous direction of a sound source in space. The model combines system angular speed and interaural time delays (ITDs) in a differential equation, which allows monitoring the change of source position in the binaural reference frame and therefore resolves the confusion about azimuth and elevation. The work includes the analysis of error propagation and presents results from a real-time application that was performed on a digital signal processing device. Theory and experiments demonstrate that the azimuthal angle to the sound source is accurately yielded in the case of horizontal rotations, whereas the elevation angle is estimated with large uncertainty. This paper also proves the equivalence of the ITD derivative and the Doppler shift appearing between the binaurally captured audio signals. The equation of this Doppler shift is applicable for any kind of motion. It shows that weak binaural pitch differences may represent an additional cue in localization of sound. Finally, the paper develops practical applications from this relationship, such as the synthesizing of binaural images of pure and complex tones emitted by a moving source, and the generation of multiple frequency images for binaural beat experiments. PMID:26328682

  7. Binaural Loudness Summation in the Hearing Impaired.

    ERIC Educational Resources Information Center

    Hawkins, David B.; And Others

    1987-01-01

    Binaural loudness summation was measured using three different paradigms with 10 normally hearing and 20 bilaterally symmetrical high-frequency sensorineural hearing loss subjects. Binaural summation increased with presentation level using the loudness matching procedure, with values in the 6-10 dB range. Summation decreased with level using the…

  8. Leak detection utilizing analog binaural (VLSI) techniques

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1995-01-01

    A detection method and system utilizing silicon models of the traveling wave structure of the human cochlea to spatially and temporally locate a specific sound source in the presence of high noise pandemonium. The detection system combines two-dimensional stereausis representations, which are output by at least three VLSI binaural hearing chips, to generate a three-dimensional stereausis representation including both binaural and spectral information which is then used to locate the sound source.

  9. The impact of binaural beats on creativity

    PubMed Central

    Reedijk, Susan A.; Bolders, Anne; Hommel, Bernhard

    2013-01-01

    Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale—mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods. PMID:24294202

  10. Comparing Binaural Pre-processing Strategies II

    PubMed Central

    Hu, Hongmei; Krawczyk-Becker, Martin; Marquardt, Daniel; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Bomke, Katrin; Plotz, Karsten; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias

    2015-01-01

    Several binaural audio signal enhancement algorithms were evaluated with respect to their potential to improve speech intelligibility in noise for users of bilateral cochlear implants (CIs). 50% speech reception thresholds (SRT50) were assessed using an adaptive procedure in three distinct, realistic noise scenarios. All scenarios were highly nonstationary, complex, and included a significant amount of reverberation. Other aspects, such as the perfectly frontal target position, were idealized laboratory settings, allowing the algorithms to perform better than in corresponding real-world conditions. Eight bilaterally implanted CI users, wearing devices from three manufacturers, participated in the study. In all noise conditions, a substantial improvement in SRT50 compared to the unprocessed signal was observed for most of the algorithms tested, with the largest improvements generally provided by binaural minimum variance distortionless response (MVDR) beamforming algorithms. The largest overall improvement in speech intelligibility was achieved by an adaptive binaural MVDR in a spatially separated, single competing talker noise scenario. A no-pre-processing condition and adaptive differential microphones without a binaural link served as the two baseline conditions. SRT50 improvements provided by the binaural MVDR beamformers surpassed the performance of the adaptive differential microphones in most cases. Speech intelligibility improvements predicted by instrumental measures were shown to account for some but not all aspects of the perceptually obtained SRT50 improvements measured in bilaterally implanted CI users. PMID:26721921

  11. Binaural signal analysis of diffuse sound fields

    NASA Astrophysics Data System (ADS)

    Novo, Pedro A.

    2004-10-01

    The simulation and the binaural recording of sounds produced by large crowds and rain impact sounds has produced an unexpected result. The listeners have reported that the auditory events were mainly concentrated to the left and to right, although the sound sources were equally distributed around the listeners. A similar result was reported with binaural recordings of applause. The results of a binaural signal analysis suggest that the key aspect regarding the lateral position dominance of the auditory events is connected to the sections where the cross-correlation coefficient assumes negative values. A comparison between normalized and non-normalized cross-correlation function predictions indicates that the latter is a better predictor for the cases studied. An adaptation period of several seconds was reported by several listeners. It is suggested that this adaptation period is related to the variations of the cross-correlation, which only average out after, approximately 2 s. The binaural impulse responses of a concert hall at two different listener positions have been analyzed in the light of the previous findings. In particular the diffuse sound field buildup will be analyzed in detail. Implications for the auditory source width and listener envelopment will be discussed.

  12. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    PubMed

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. PMID:25008412

  13. Loudness enhancement - Monaural, binaural, and dichotic

    NASA Technical Reports Server (NTRS)

    Elmasian, R.; Galambos, R.

    1975-01-01

    When one tone burst (T) precedes another (S) by 100 msec, variations in the intensity of T systematically influence the loudness of S. When T is more intense than S, S is increased; and when T is less intense, S loudness is decreased. This occurs in monaural, binaural, and dichotic paradigms of signal presentation. When T and S are presented to the same ear (monaural or binaural), there is more enhancement with less intersubject variability than when they are presented to different ears (dichotic paradigm). Monaural enhancements as large as 30 dB can readily be demonstrated, but decrements rarely exceed 5 dB. Possible physiological mechanisms are discussed for this loudness enhancement, which apparently shares certain characteristics with time-order error, assimilation, and temporal partial masking experiments.

  14. A probabilistic model for binaural sound localization.

    PubMed

    Willert, Volker; Eggert, Julian; Adamy, Jürgen; Stahl, Raphael; Körner, Edgar

    2006-10-01

    This paper proposes a biologically inspired and technically implemented sound localization system to robustly estimate the position of a sound source in the frontal azimuthal half-plane. For localization, binaural cues are extracted using cochleagrams generated by a cochlear model that serve as input to the system. The basic idea of the model is to separately measure interaural time differences and interaural level differences for a number of frequencies and process these measurements as a whole. This leads to two-dimensional frequency versus time-delay representations of binaural cues, so-called activity maps. A probabilistic evaluation is presented to estimate the position of a sound source over time based on these activity maps. Learned reference maps for different azimuthal positions are integrated into the computation to gain time-dependent discrete conditional probabilities. At every timestep these probabilities are combined over frequencies and binaural cues to estimate the sound source position. In addition, they are propagated over time to improve position estimation. This leads to a system that is able to localize audible signals, for example human speech signals, even in reverberating environments. PMID:17036807

  15. Binaural Advantage for Younger and Older Adults with Normal Hearing

    ERIC Educational Resources Information Center

    Dubno, Judy R.; Ahlstrom, Jayne B.; Horwitz, Amy R.

    2008-01-01

    Purpose: Three experiments measured benefit of spatial separation, benefit of binaural listening, and masking-level differences (MLDs) to assess age-related differences in binaural advantage. Method: Participants were younger and older adults with normal hearing through 4.0 kHz. Experiment 1 compared spatial benefit with and without head shadow.…

  16. Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing.

    PubMed

    Tillein, Jochen; Hubka, Peter; Kral, Andrej

    2016-04-01

    Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit responses in cortical field A1 to cochlear implant stimulation were studied in normal-hearing cats, bilaterally congenitally deaf cats (CDCs), and unilaterally deaf cats (uCDCs). Binaural deafness reduced cortical responsiveness and decreased response thresholds and dynamic range. In contrast to CDCs, in uCDCs, cortical responsiveness was not reduced, but hemispheric-specific reorganization of aural dominance and binaural interactions were observed. Deafness led to a substantial drop in binaural facilitation in CDCs and uCDCs, demonstrating the inevitable role of experience for a binaural benefit. Sensitivity to interaural time differences was more reduced in uCDCs than in CDCs, particularly at the hemisphere ipsilateral to the hearing ear. Compared with binaural deafness, unilateral hearing prevented nonspecific reduction in cortical responsiveness, but extensively reorganized aural dominance and binaural responses. The deaf ear remained coupled with the cortex in uCDCs, demonstrating a significant difference to deprivation amblyopia in the visual system. PMID:26803166

  17. Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing

    PubMed Central

    Tillein, Jochen; Hubka, Peter; Kral, Andrej

    2016-01-01

    Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit responses in cortical field A1 to cochlear implant stimulation were studied in normal-hearing cats, bilaterally congenitally deaf cats (CDCs), and unilaterally deaf cats (uCDCs). Binaural deafness reduced cortical responsiveness and decreased response thresholds and dynamic range. In contrast to CDCs, in uCDCs, cortical responsiveness was not reduced, but hemispheric-specific reorganization of aural dominance and binaural interactions were observed. Deafness led to a substantial drop in binaural facilitation in CDCs and uCDCs, demonstrating the inevitable role of experience for a binaural benefit. Sensitivity to interaural time differences was more reduced in uCDCs than in CDCs, particularly at the hemisphere ipsilateral to the hearing ear. Compared with binaural deafness, unilateral hearing prevented nonspecific reduction in cortical responsiveness, but extensively reorganized aural dominance and binaural responses. The deaf ear remained coupled with the cortex in uCDCs, demonstrating a significant difference to deprivation amblyopia in the visual system. PMID:26803166

  18. Comparing Binaural Pre-processing Strategies III

    PubMed Central

    Warzybok, Anna; Ernst, Stephan M. A.

    2015-01-01

    A comprehensive evaluation of eight signal pre-processing strategies, including directional microphones, coherence filters, single-channel noise reduction, binaural beamformers, and their combinations, was undertaken with normal-hearing (NH) and hearing-impaired (HI) listeners. Speech reception thresholds (SRTs) were measured in three noise scenarios (multitalker babble, cafeteria noise, and single competing talker). Predictions of three common instrumental measures were compared with the general perceptual benefit caused by the algorithms. The individual SRTs measured without pre-processing and individual benefits were objectively estimated using the binaural speech intelligibility model. Ten listeners with NH and 12 HI listeners participated. The participants varied in age and pure-tone threshold levels. Although HI listeners required a better signal-to-noise ratio to obtain 50% intelligibility than listeners with NH, no differences in SRT benefit from the different algorithms were found between the two groups. With the exception of single-channel noise reduction, all algorithms showed an improvement in SRT of between 2.1 dB (in cafeteria noise) and 4.8 dB (in single competing talker condition). Model predictions with binaural speech intelligibility model explained 83% of the measured variance of the individual SRTs in the no pre-processing condition. Regarding the benefit from the algorithms, the instrumental measures were not able to predict the perceptual data in all tested noise conditions. The comparable benefit observed for both groups suggests a possible application of noise reduction schemes for listeners with different hearing status. Although the model can predict the individual SRTs without pre-processing, further development is necessary to predict the benefits obtained from the algorithms at an individual level. PMID:26721922

  19. Accuracy of pointing a binaural listening array.

    PubMed

    Letowski, T R; Ricard, G L; Kalb, J T; Mermagen, T J; Amrein, K M

    1997-12-01

    We measured the accuracy with which sounds heard over a binaural, end-fire array could be located when the angular separation of the array's two arms was varied. Each individual arm contained nine cardioid electret microphones, the responses of which were combined to produce a unidirectional, band-limited pattern of sensitivity. We assessed the desirable angular separation of these arms by measuring the accuracy with which listeners could point to the source of a target sound presented against high-level background noise. We employed array separations of 30 degrees, 45 degrees, and 60 degrees, and signal-to-noise ratios of +5, -5, and -15 dB. Pointing accuracy was best for a separation of 60 degrees; this performance was indistinguishable from pointing during unaided listening conditions. In addition, the processing of the array was modeled to depict the information that was available for localization. The model indicates that highly directional binaural arrays can be expected to support accurate localization of sources of sound only near the axis of the array. Wider enhanced listening angles may be possible if the forward coverage of the sensor system is made less directional and more similar to that of human listeners. PMID:9473975

  20. Comparing Binaural Pre-processing Strategies I

    PubMed Central

    Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M. A.; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias

    2015-01-01

    In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. PMID:26721920

  1. Loudness enhancement: Monaural, binaural and dichotic

    NASA Technical Reports Server (NTRS)

    Elmasian, R. O.; Galambos, R.

    1975-01-01

    It is shown that when one tone burst precedes another by 100 msec variations in the intensity of the first systematically influences the loudness of second. When the first burst is more intense than the second, the second is increased and when the first burst is less intense, the loudness of the second is decreased. This occurs in monaural, binaural and dichotic paradigms of signal presentation. Where both bursts are presented to the same ear there is more enhancement with less intersubject variability than when they are presented to different ears. Monaural enhancements as large as 30 db can readily be demonstrated, but decrements rarely exceed 5 db. Possible physiological mechanisms are discussed for this loudness enhancement, which apparently shares certain characteristics with time-order-error, assimilation, and temporal partial masking experiments.

  2. Binaural unmasking of frequency-following responses in rat amygdala.

    PubMed

    Du, Yi; Huang, Qiang; Wu, Xihong; Galbraith, Gary C; Li, Liang

    2009-03-01

    Survival in natural environments for small animals such as rats often depends on precise neural coding of life-threatening acoustic signals, and binaural unmasking of species-specific pain calls is especially critical. This study investigated how species-specific tail-pain chatter is represented in the rat amygdala, which receives afferents from both auditory thalamus and auditory association cortex, and whether the amygdaloid representation of the chatter can be binaurally unmasked. The results show that chatter with a fundamental frequency (F0) of 2.1 kHz was able to elicit salient phase-locked frequency-following responses (FFRs) in the lateral amygdala nucleus in anesthetized rats. FFRs to the F0 of binaurally presented chatter were sensitive to the interaural time difference (ITD), with the preference of ipsilateral-ear leading, as well as showing features of binaural inhibition. When interaurally correlated masking noises were added and ipsilateral chatter led contralateral chatter, introducing an ITD disparity between the chatter and masker significantly enhanced (unmasked) the FFRs. This binaural unmasking was further enhanced by chemically blocking excitatory glutamate receptors in the auditory association cortex. When the chatter was replaced by a harmonic tone complex with an F0 of 0.7 kHz, both the binaural-inhibition feature and the binaural unmasking were preserved only for the harmonic of 2.1 kHz but not the tone F0. These results suggest that both frequency-dependent ascending binaural modulations and cortical descending modulations of the precise auditory coding of the chatter in the amygdala are critical for processing life-threatening acoustic signals in noisy and even reverberant environments. PMID:19036862

  3. Spectral and binaural loudness summation for hearing-impaired listeners.

    PubMed

    Oetting, Dirk; Hohmann, Volker; Appell, Jens-E; Kollmeier, Birger; Ewert, Stephan D

    2016-05-01

    Sensorineural hearing loss typically results in a steepened loudness function and a reduced dynamic range from elevated thresholds to uncomfortably loud levels for narrowband and broadband signals. Restoring narrowband loudness perception for hearing-impaired (HI) listeners can lead to overly loud perception of broadband signals and it is unclear how binaural presentation affects loudness perception in this case. Here, loudness perception quantified by categorical loudness scaling for nine normal-hearing (NH) and ten HI listeners was compared for signals with different bandwidth and different spectral shape in monaural and in binaural conditions. For the HI listeners, frequency- and level-dependent amplification was used to match the narrowband monaural loudness functions of the NH listeners. The average loudness functions for NH and HI listeners showed good agreement for monaural broadband signals. However, HI listeners showed substantially greater loudness for binaural broadband signals than NH listeners: on average a 14.1 dB lower level was required to reach "very loud" (range 30.8 to -3.7 dB). Overall, with narrowband loudness compensation, a given binaural loudness for broadband signals above "medium loud" was reached at systematically lower levels for HI than for NH listeners. Such increased binaural loudness summation was not found for loudness categories below "medium loud" or for narrowband signals. Large individual variations in the increased loudness summation were observed and could not be explained by the audiogram or the narrowband loudness functions. PMID:27006003

  4. Binaural hearing in children using Gaussian enveloped and transposed tones.

    PubMed

    Ehlers, Erica; Kan, Alan; Winn, Matthew B; Stoelb, Corey; Litovsky, Ruth Y

    2016-04-01

    Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children. PMID:27106319

  5. The effect of overlap-masking on binaural reverberant word intelligibility

    NASA Astrophysics Data System (ADS)

    Libbey, Brad; Rogers, Peter H.

    2004-11-01

    Reverberation interferes with the ability to understand speech in rooms. Overlap-masking explains this degradation by assuming reverberant phonemes endure in time and mask subsequent reverberant phonemes. Most listeners benefit from binaural listening when reverberation exists, indicating that the listener's binaural system processes the two channels to reduce the reverberation. This paper investigates the hypothesis that the binaural word intelligibility advantage found in reverberation is a result of binaural overlap-masking release with the reverberation acting as masking noise. The tests utilize phonetically balanced word lists (ANSI-S3.2 1989), that are presented diotically and binaurally with recorded reverberation and reverberation-like noise. A small room, 62 m3, reverberates the words. These are recorded using two microphones without additional noise sources. The reverberation-like noise is a modified form of these recordings and has a similar spectral content. It does not contain binaural localization cues due to a phase randomization procedure. Listening to the reverberant words binaurally improves the intelligibility by 6.0% over diotic listening. The binaural intelligibility advantage for reverberation-like noise is only 2.6%. This indicates that binaural overlap-masking release is insufficient to explain the entire binaural word intelligibility advantage in reverberation. .

  6. [Sound localization cues of binaural hearing].

    PubMed

    Paulus, E

    2003-04-01

    characteristics of the outer ears. Scientific findings further suggest that spectral patterns like peaks and notches may also be exploited monaurally, albeit an a priori-knowledge at the central-auditive level concerning the corresponding transfer functions and relevant real-world sounds is required. Binaural spectral cues are more likely to play a major role in localization. They are derived from another transfer function, the so-called Interaural Transfer Function (ITF), being the ratio of the ATFs at the two ears. The contributions of all these cues may sometimes not be enough to prevent the listener from opting for the wrong direction. But things can be eased by allowing head-movements: More than 60 years ago science reasoned that small head movements could provide the information necessary to resolve most of the ambiguities. Recent studies have proved that these findings have been accurate all along. PMID:12717598

  7. The effect of stimulus bandwidth on binaural loudness summation.

    PubMed

    Shao, Zhiyue; Mo, Fangshuo; Mao, Dongxing

    2015-09-01

    Binaural loudness summation is an important property of the human auditory system. This paper presents an experimental investigation of how binaural loudness summation varies with stimulus bandwidth. Loudness matches were obtained between dichotic stimuli, with interaural level differences (ILDs) of 2-12 dB, and diotic stimuli. The stimuli were noise bands with seven center frequencies and four bandwidths. Results showed that the loudness of dichotic stimuli increased nonlinearly with ILD, the increase being slightly less with broader bandwidths. There was a bandwidth-dependent difference between the listening tests results and the predictions of Moore and Glasberg's [(2007) J. Acoust. Soc. Am. 121, 1604-1612] loudness model. The size of the difference was, however, small. A characteristic function was derived describing how overall loudness depends on stimulus bandwidth and ILD. PMID:26428788

  8. Rate-Constrained Beamforming in Binaural Hearing Aids

    NASA Astrophysics Data System (ADS)

    Srinivasan, Sriram; den Brinker, Albertus C.

    2009-12-01

    Recently, hearing aid systems where the left and right ear devices collaborate with one another have received much attention. Apart from supporting natural binaural hearing, such systems hold great potential for improving the intelligibility of speech in the presence of noise through beamforming algorithms. Binaural beamforming for hearing aids requires an exchange of microphone signals between the two devices over a wireless link. This paper studies two problems: which signal to transmit from one ear to the other, and at what bit-rate. The first problem is relevant as modern hearing aids usually contain multiple microphones, and the optimal choice for the signal to be transmitted is not obvious. The second problem is relevant as the capacity of the wireless link is limited by stringent power consumption constraints imposed by the limited battery life of hearing aids.

  9. The Effect of Asymmetrical Signal Degradation on Binaural Speech Recognition in Children and Adults.

    ERIC Educational Resources Information Center

    Rothpletz, Ann M.; Tharpe, Anne Marie; Grantham, D. Wesley

    2004-01-01

    To determine the effect of asymmetrical signal degradation on binaural speech recognition, 28 children and 14 adults were administered a sentence recognition task amidst multitalker babble. There were 3 listening conditions: (a) monaural, with mild degradation in 1 ear; (b) binaural, with mild degradation in both ears (symmetric degradation); and…

  10. Binaural Interaction in Specific Language Impairment: An Auditory Evoked Potential Study

    ERIC Educational Resources Information Center

    Clarke, Elaine M; Adams, Catherine

    2007-01-01

    The aim of the study was to examine whether auditory binaural interaction, defined as any difference between binaurally evoked responses and the sum of monaurally evoked responses, which is thought to index functions involved in the localization and detection of signals in background noise, is atypical in a group of children with specific language…

  11. Role of binaural hearing in speech intelligibility and spatial release from masking using vocoded speech.

    PubMed

    Garadat, Soha N; Litovsky, Ruth Y; Yu, Gongqiang; Zeng, Fan-Gang

    2009-11-01

    A cochlear implant vocoder was used to evaluate relative contributions of spectral and binaural temporal fine-structure cues to speech intelligibility. In Study I, stimuli were vocoded, and then convolved through head related transfer functions (HRTFs) to remove speech temporal fine structure but preserve the binaural temporal fine-structure cues. In Study II, the order of processing was reversed to remove both speech and binaural temporal fine-structure cues. Speech reception thresholds (SRTs) were measured adaptively in quiet, and with interfering speech, for unprocessed and vocoded speech (16, 8, and 4 frequency bands), under binaural or monaural (right-ear) conditions. Under binaural conditions, as the number of bands decreased, SRTs increased. With decreasing number of frequency bands, greater benefit from spatial separation of target and interferer was observed, especially in the 8-band condition. The present results demonstrate a strong role of the binaural cues in spectrally degraded speech, when the target and interfering speech are more likely to be confused. The nearly normal binaural benefits under present simulation conditions and the lack of order of processing effect further suggest that preservation of binaural cues is likely to improve performance in bilaterally implanted recipients. PMID:19894832

  12. Unilateral spectral and temporal compression reduces binaural fusion for normal hearing listeners with cochlear implant simulations

    PubMed Central

    Aronoff, Justin M.; Shayman, Corey; Prasad, Akila; Suneel, Deepa; Stelmach, Julia

    2015-01-01

    Patients with single sided deafness have recently begun receiving cochlear implants in their deaf ear. These patients gain a significant benefit from having a cochlear implant. However, despite this benefit, they are considerably slower to develop binaural abilities such as summation compared to bilateral cochlear implant patients. This suggests that these patients have difficulty fusing electric and acoustic signals. Although this may reflect inherent differences between electric and acoustic stimulation, it may also reflect properties of the processor and fitting system, which result in spectral and temporal compression. To examine the possibility that unilateral spectral and temporal compression can adversely affect binaural fusion, this study tested normal hearing listeners’ binaural fusion through the use of vocoded speech with unilateral spectral and temporal compression. The results indicate that unilateral spectral and temporal compression can hinder binaural fusion and thus may adversely affect binaural abilities in patients with single sided deafness who use a cochlear implant in their deaf ear. PMID:25549574

  13. A Comparison of Two Objective Measures of Binaural Processing

    PubMed Central

    Undurraga, Jaime A.; Marquardt, Torsten; McAlpine, David

    2015-01-01

    There has been continued interest in clinical objective measures of binaural processing. One commonly proposed measure is the binaural interaction component (BIC), which is obtained typically by recording auditory brainstem responses (ABRs)—the BIC reflects the difference between the binaural ABR and the sum of the monaural ABRs (i.e., binaural − (left + right)). We have recently developed an alternative, direct measure of sensitivity to interaural time differences, namely, a following response to modulations in interaural phase difference (the interaural phase modulation following response; IPM-FR). To obtain this measure, an ongoing diotically amplitude-modulated signal is presented, and the interaural phase difference of the carrier is switched periodically at minima in the modulation cycle. Such periodic modulations to interaural phase difference can evoke a steady state following response. BIC and IPM-FR measurements were compared from 10 normal-hearing subjects using a 16-channel electroencephalographic system. Both ABRs and IPM-FRs were observed most clearly from similar electrode locations—differential recordings taken from electrodes near the ear (e.g., mastoid) in reference to a vertex electrode (Cz). Although all subjects displayed clear ABRs, the BIC was not reliably observed. In contrast, the IPM-FR typically elicited a robust and significant response. In addition, the IPM-FR measure required a considerably shorter recording session. As the IPM-FR magnitude varied with interaural phase difference modulation depth, it could potentially serve as a correlate of perceptual salience. Overall, the IPM-FR appears a more suitable clinical measure than the BIC. PMID:26721925

  14. A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release.

    PubMed

    Lentz, Jennifer J; He, Yuan; Townsend, James T

    2014-01-01

    This study applied reaction-time based methods to assess the workload capacity of binaural integration by comparing reaction time (RT) distributions for monaural and binaural tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus was presented to each ear. In the dichotic contexts, an identical noise was presented to each ear, but the tone was presented to one of the ears 180° out of phase with respect to the other ear. Accuracy-based measurements have demonstrated a much lower signal detection threshold for the dichotic vs. the diotic conditions, but accuracy-based techniques do not allow for assessment of system dynamics or resource allocation across time. Further, RTs allow comparisons between these conditions at the same signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which provides an index of workload efficiency and quantifies the resource allocations for single ear vs. two ear presentations. We demonstrate that the release from masking generated by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency typically less than 1), consistent with less gain than would be expected by probability summation. However, the dichotic presentation leads to a significant increase in workload capacity (increased efficiency)-most specifically at lower signal-to-noise ratios. These experimental results provide further evidence that configural processing plays a critical role in binaural masking release, and that these mechanisms may operate more strongly when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy. PMID:25202254

  15. A new perspective on binaural integration using response time methodology: super capacity revealed in conditions of binaural masking release

    PubMed Central

    Lentz, Jennifer J.; He, Yuan; Townsend, James T.

    2014-01-01

    This study applied reaction-time based methods to assess the workload capacity of binaural integration by comparing reaction time (RT) distributions for monaural and binaural tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus was presented to each ear. In the dichotic contexts, an identical noise was presented to each ear, but the tone was presented to one of the ears 180° out of phase with respect to the other ear. Accuracy-based measurements have demonstrated a much lower signal detection threshold for the dichotic vs. the diotic conditions, but accuracy-based techniques do not allow for assessment of system dynamics or resource allocation across time. Further, RTs allow comparisons between these conditions at the same signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which provides an index of workload efficiency and quantifies the resource allocations for single ear vs. two ear presentations. We demonstrate that the release from masking generated by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency typically less than 1), consistent with less gain than would be expected by probability summation. However, the dichotic presentation leads to a significant increase in workload capacity (increased efficiency)—most specifically at lower signal-to-noise ratios. These experimental results provide further evidence that configural processing plays a critical role in binaural masking release, and that these mechanisms may operate more strongly when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy. PMID:25202254

  16. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component.

    PubMed

    Haywood, Nicholas R; Undurraga, Jaime A; Marquardt, Torsten; McAlpine, David

    2015-01-01

    There has been continued interest in clinical objective measures of binaural processing. One commonly proposed measure is the binaural interaction component (BIC), which is obtained typically by recording auditory brainstem responses (ABRs)-the BIC reflects the difference between the binaural ABR and the sum of the monaural ABRs (i.e., binaural - (left + right)). We have recently developed an alternative, direct measure of sensitivity to interaural time differences, namely, a following response to modulations in interaural phase difference (the interaural phase modulation following response; IPM-FR). To obtain this measure, an ongoing diotically amplitude-modulated signal is presented, and the interaural phase difference of the carrier is switched periodically at minima in the modulation cycle. Such periodic modulations to interaural phase difference can evoke a steady state following response. BIC and IPM-FR measurements were compared from 10 normal-hearing subjects using a 16-channel electroencephalographic system. Both ABRs and IPM-FRs were observed most clearly from similar electrode locations-differential recordings taken from electrodes near the ear (e.g., mastoid) in reference to a vertex electrode (Cz). Although all subjects displayed clear ABRs, the BIC was not reliably observed. In contrast, the IPM-FR typically elicited a robust and significant response. In addition, the IPM-FR measure required a considerably shorter recording session. As the IPM-FR magnitude varied with interaural phase difference modulation depth, it could potentially serve as a correlate of perceptual salience. Overall, the IPM-FR appears a more suitable clinical measure than the BIC. PMID:26721925

  17. Modeling the utility of binaural cues for underwater sound localization.

    PubMed

    Schneider, Jennifer N; Lloyd, David R; Banks, Patchouly N; Mercado, Eduardo

    2014-06-01

    The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2°), and lower resolution toward the periphery (9°). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. PMID:24727491

  18. Binaural speech discrimination under noise in hearing-impaired listeners

    NASA Technical Reports Server (NTRS)

    Kumar, K. V.; Rao, A. B.

    1988-01-01

    This paper presents the results of an assessment of speech discrimination by hearing-impaired listeners (sensori-neural, conductive, and mixed groups) under binaural free-field listening in the presence of background noise. Subjects with pure-tone thresholds greater than 20 dB in 0.5, 1.0 and 2.0 kHz were presented with a version of the W-22 list of phonetically balanced words under three conditions: (1) 'quiet', with the chamber noise below 28 dB and speech at 60 dB; (2) at a constant S/N ratio of +10 dB, and with a background white noise at 70 dB; and (3) same as condition (2), but with the background noise at 80 dB. The mean speech discrimination scores decreased significantly with noise in all groups. However, the decrease in binaural speech discrimination scores with an increase in hearing impairment was less for material presented under the noise conditions than for the material presented in quiet.

  19. Optimal source distribution for binaural synthesis over loudspeakers

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takashi; Nelson, Philip A.

    2002-12-01

    When binaural sound signals are presented with loudspeakers, the system inversion involved gives rise to a number of problems such as a loss of dynamic range and a lack of robustness to small errors and room reflections. The amplification required by the system inversion results in loss of dynamic range. The control performance of such a system deteriorates severely due to small errors resulting from, e.g., misalignment of the system and individual differences in the head related transfer functions at certain frequencies. The required large sound radiation results in severe reflection which also reduces the control performance. A method of overcoming these fundamental problems is proposed in this paper. A conceptual monopole transducer is introduced whose position varies continuously as frequency varies. This gives a minimum processing requirement of the binaural signals for the control to be achieved and all the above problems either disappear or are minimized. The inverse filters have flat amplitude response and the reproduced sound is not colored even outside the relatively large ``sweet area.'' A number of practical solutions are suggested for the realization of such optimally distributed transducers. One of them is a discretization that enables the use of conventional transducer units.

  20. Binaural cues provide for a release from informational masking.

    PubMed

    Tolnai, Sandra; Dolležal, Lena-Vanessa; Klump, Georg M

    2015-10-01

    Informational masking (IM) describes the insensitivity of detecting a change in sound features in a complex acoustical environment when such a change could easily be detected in the absence of distracting sounds. IM occurs because of the similarity between deviant sound and distracting sounds (so-called similarity-based IM) and/or stimulus uncertainty stemming from trial-to-trial variability (so-called uncertainty-based IM). IM can be abolished if similarity-based or uncertainty-based IM are minimized. Here, we modulated similarity-based IM using binaural cues. Standard/deviant tones and distracting tones were presented sequentially, and level-increment thresholds were measured. Deviant tones differed from standard tones by a higher sound level. Distracting tones covered a wide range of levels. Standard/deviant tones and distracting tones were characterized by their interaural time difference (ITD), interaural level difference (ILD), or both ITD and ILD. The larger the ITD or ILD was, the better similarity-based IM was overcome. If both interaural differences were applied to standard/deviant tones, the release from IM was larger than when either interaural difference was used. The results show that binaural cues are potent cues to abolish similarity-based IM and that the auditory system makes use of multiple available cues. PMID:26413722

  1. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implants.

    PubMed

    Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y

    2016-07-01

    Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs. PMID:27475132

  2. Binaural loudness summation for speech presented via earphones and loudspeaker with and without visual cuesa)

    PubMed Central

    Epstein, Michael; Florentine, Mary

    2012-01-01

    Preliminary data [M. Epstein and M. Florentine, Ear. Hear. 30, 234–237 (2009)] obtained using speech stimuli from a visually present talker heard via loudspeakers in a sound-attenuating chamber indicate little difference in loudness when listening with one or two ears (i.e., significantly reduced binaural loudness summation, BLS), which is known as “binaural loudness constancy.” These data challenge current understanding drawn from laboratory measurements that indicate a tone presented binaurally is louder than the same tone presented monaurally. Twelve normal listeners were presented recorded spondees, monaurally and binaurally across a wide range of levels via earphones and a loudspeaker with and without visual cues. Statistical analyses of binaural-to-monaural ratios of magnitude estimates indicate that the amount of BLS is significantly less for speech presented via a loudspeaker with visual cues than for stimuli with any other combination of test parameters (i.e., speech presented via earphones or a loudspeaker without visual cues, and speech presented via earphones with visual cues). These results indicate that the loudness of a visually present talker in daily environments is little affected by switching between binaural and monaural listening. This supports the phenomenon of binaural loudness constancy and underscores the importance of ecological validity in loudness research. PMID:22559371

  3. Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba).

    PubMed

    Egnor, S E

    2001-10-01

    The effect of binaural decorrelation on the processing of interaural level difference cues in the barn owl (Tyto alba) was examined behaviorally and electrophysiologically. The electrophysiology experiment measured the effect of variations in binaural correlation on the first stage of interaural level difference encoding in the central nervous system. The responses of single neurons in the posterior part of the ventral nucleus of the lateral lemniscus were recorded to stimulation with binaurally correlated and binaurally uncorrelated noise. No significant differences in interaural level difference sensitivity were found between conditions. Neurons in the posterior part of the ventral nucleus of the lateral lemniscus encode the interaural level difference of binaurally correlated and binaurally uncorrelated noise with equal accuracy and precision. This nucleus therefore supplies higher auditory centers with an undegraded interaural level difference signal for sound stimuli that lack a coherent interaural time difference. The behavioral experiment measured auditory saccades in response to interaural level differences presented in binaurally correlated and binaurally uncorrelated noise. The precision and accuracy of sound localization based on interaural level difference was reduced but not eliminated for binaurally uncorrelated signals. The observation that barn owls continue to vary auditory saccades with the interaural level difference of binaurally uncorrelated stimuli suggests that neurons that drive head saccades can be activated by incomplete auditory spatial information. PMID:11763957

  4. Cortical representation of the combination of monaural and binaural unmasking.

    PubMed

    Uppenkamp, Stefan; Uhlig, Christian H; Verhey, Jesko L

    2013-01-01

    The audibility of a target tone is improved by introducing either -amplitude modulations that are coherent across different frequency channels of the masker (comodulation masking release, CMR) or interaural phase differences that are -different for target and masker (binaural masking-level difference, BMLD). Although the two effects are likely to be based on different processing strategies, they both result in improved figure-background decomposition for a target-in-noise situation. In this study, we analyzed the combination of CMR and BMLD for a -target tone in a masker with six 48-Hz-wide noise bands, distributed over a wide frequency range from 216 Hz to 2.78 kHz. Psychoacoustical detection thresholds for the tones in noise were determined for two masker conditions (comodulated or unmodulated bands) and two interaural phase differences of the target tone (0 or 180°). The mean results indicate that the effects of unmasking add independently. The lowest thresholds are found for the dichotic signal embedded in a -modulated masker with an overall threshold difference of about 16 dB compared to the -unmodulated condition with no binaural cues. Based on the psychoacoustic results, a set of 12 signal-masker configurations was selected individually to explore the representation of the audibility of the test tone in brain activation maps by means of auditory functional MR imaging. The comparison of the results for the combination of CMR and BMLD with the results for the separate effects indicates a large overlap of the activated brain regions, where a largely extended area is activated, covering primary auditory cortex and adjacent regions. The result is in agreement with previous fMRI studies on auditory masking, identifying specific regions in the auditory cortex representing a change of the audibility of a target tone in a noise masker, irrespective of the overall sound pressure level of the stimulus. PMID:23716250

  5. A high-density EEG investigation into steady state binaural beat stimulation.

    PubMed

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carey, Anne-Marie; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  6. A High-Density EEG Investigation into Steady State Binaural Beat Stimulation

    PubMed Central

    Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy

    2012-01-01

    Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others. PMID:22496862

  7. Binaural Benefit with and without a Bilateral Spectral Mismatch in Acoustic Simulations of Cochlear Implant Processing

    PubMed Central

    Yoon, Yang-soo; Shin, You-Ree; Fu, Qian-Jie

    2012-01-01

    Objectives This study investigated whether a spectral mismatch across ears influences the benefit of redundancy, squelch, and head shadow differently in speech perception using acoustic simulation of bilateral cochlear implant (CI) processing. Design Ten normal hearing subjects participated in the study, and acoustic simulations of CIs were used to test these subjects. Sentence recognition, presented unilaterally and bilaterally, was measured at +5 dB and +10 dB signal-to-noise ratios (SNRs) with bilaterally matched and mismatched conditions. Unilateral and bilateral CIs were simulated using 8-channel sine-wave vocoders. Binaural spectral mismatch was introduced by changing the relative simulated insertion depths across ears. Subjects were tested while listening with headphones; head-related transfer functions were applied before the vocoder processing to preserve natural interaural level and time differences. Results For both SNRs, greater and more consistent binaural benefit of squelch and redundancy occurred for the matched condition while binaural interference of squelch and redundancy occurred for the mismatched condition. However, significant binaural benefit of head shadow existed irrespective of spectral mismatches and SNRs. Conclusions The results suggest that bilateral spectral mismatch may have a negative impact on the binaural benefit of squelch and redundancy for bilateral CI users. The results also suggest that clinical mapping should be carefully administrated for bilateral CI users to minimize the difference in spectral patterns between the two CIs. PMID:22968427

  8. Modeling the effects of a single reflection on binaural speech intelligibility.

    PubMed

    Rennies, Jan; Warzybok, Anna; Brand, Thomas; Kollmeier, Birger

    2014-03-01

    Recently the influence of delay and azimuth of a single speech reflection on speech reception thresholds (SRTs) was systematically investigated using frontal, diffuse, and lateral noise [Warzybok et al. (2013). J. Acoust. Soc. Am. 133, 269-282]. The experiments showed that the benefit of an early reflection was independent of its azimuth and mostly independent of noise type, but that the detrimental effect of a late reflection depended on its direction relative to the noise. This study tests if different extensions of a binaural speech intelligibility model can predict these data. The extensions differ in the order in which binaural processing and temporal integration of early reflections take place. Models employing a correction for the detrimental effects of reverberation on speech intelligibility after performing the binaural processing predict SRTs in symmetric masking conditions (frontal, diffuse), but cannot predict the measured interaction of temporal and spatial integration. In contrast, a model extension accounting for the distinction between useful and detrimental reflections before the binaural processing stage predicts the data with an overall R(2) of 0.95. This indicates that any model framework predicting speech intelligibility in rooms should incorporate an interaction between binaural and temporal integration of reflections at a comparatively early stage. PMID:24606290

  9. Binaural masking level differences in actual and simulated bilateral cochlear implant listeners

    PubMed Central

    Lu, Thomas; Litovsky, Ruth; Zeng, Fan-Gang

    2010-01-01

    At present commercially available bilateral cochlear implants (CIs) improve their users’ speech understanding in noise but they employ two independent speech processors that cannot provide accurate and appropriate interaural level and time differences as seen binaurally in normal hearing (NH) listeners. Previous work suggests that binaural cues are accessible to bilateral CI users when presented to single pairs of pitch-matched electrodes, but the scope was limited and the mechanisms remained unclear. In this study, binaural masking level differences (BMLDs) were measured in five bilateral Nucleus-24 CI users over multiple pairs of pitch-matched electrodes. Average BMLD was 4.6±4.9 dB, but large individual variability prevented significance (p=0.09). Considering just the 125 Hz condition, as in previous work, phase (N0S0 vs N0Sπ) and electrode effects were significant. Compared with simulated bilateral CI users, actual bilateral CI users had proportionally higher thresholds for N0Sπ than N0S0. Together the present results suggest that the performance gap in BMLDs between CI and NH listeners is not due to a lack of sufficient acoustic cues in the temporal envelope domain but to a true binaural deficit related to a central mechanism in deprived binaural processing. PMID:20329848

  10. An evaluation of the performance of two binaural beamformers in complex and dynamic multitalker environments

    PubMed Central

    Best, Virginia; Mejia, Jorge; Freeston, Katrina; van Hoesel, Richard J.; Dillon, Harvey

    2016-01-01

    Objective Binaural beamformers are super-directional hearing aids created by combining microphone outputs from each side of the head. While they offer substantial improvements in SNR over conventional directional hearing aids, the benefits (and possible limitations) of these devices in realistic, complex listening situations have not yet been fully explored. In this study we evaluated the performance of two experimental binaural beamformers. Design Testing was carried out using a horizontal loudspeaker array. Background noise was created using recorded conversations. Performance measures included speech intelligibility, localisation in noise, acceptable noise level, subjective ratings, and a novel dynamic speech intelligibility measure. Study sample Participants were 27 listeners with bilateral hearing loss, fitted with BTE prototypes that could be switched between conventional directional or binaural beamformer microphone modes. Results Relative to the conventional directional microphones, both binaural beamformer modes were generally superior for tasks involving fixed frontal targets, but not always for situations involving dynamic target locations. Conclusions Binaural beamformers show promise for enhancing listening in complex situations when the location of the source of interest is predictable. PMID:26140298

  11. Extracting binaural information from simultaneous targets and distractors: Effects of amplitude modulation and asynchronous envelopes

    PubMed Central

    Stellmack, Mark A.; Byrne, Andrew J.; Viemeister, Neal F.

    2010-01-01

    When different components of a stimulus carry different binaural information, processing of binaural information in a target component is often affected. The present experiments examine whether such interference is affected by amplitude modulation and the relative phase of modulation of the target and distractors. In all experiments, listeners attempted to discriminate interaural time differences of a target stimulus in the presence of distractor stimuli with ITD=0. In Experiment 1, modulation of the distractors but not the target reduced interference between components. In Experiment 2, synthesized musical notes exhibited little binaural interference when there were slight asynchronies between different streams of notes (31 or 62 ms). The remaining experiments suggested that the reduction in binaural interference in the previous experiments was due neither to the complex spectra of the synthesized notes nor to greater detectability of the target in the presence of modulated distractors. These data suggest that this interference is reduced when components are modulated in ways that result in the target appearing briefly in isolation, not because of segregation cues. These data also suggest that modulation and asynchronies between modulators that might be encountered in real-world listening situations are adequate to reduce binaural interference to inconsequential levels. PMID:20815459

  12. Low-Frequency Envelope Sensitivity Produces Asymmetric Binaural Tuning Curves

    PubMed Central

    Agapiou, John P.; McAlpine, David

    2008-01-01

    Neurons in the auditory midbrain are sensitive to differences in the timing of sounds at the two ears—an important sound localization cue. We used broadband noise stimuli to investigate the interaural-delay sensitivity of low-frequency neurons in two midbrain nuclei: the inferior colliculus (IC) and the dorsal nucleus of the lateral lemniscus. Noise-delay functions showed asymmetries not predicted from a linear dependence on interaural correlation: a stretching along the firing-rate dimension (rate asymmetry), and a skewing along the interaural-delay dimension (delay asymmetry). These asymmetries were produced by an envelope-sensitive component to the response that could not entirely be accounted for by monaural or binaural nonlinearities, instead indicating an enhancement of envelope sensitivity at or after the level of the superior olivary complex. In IC, the skew-like asymmetry was consistent with intermediate-type responses produced by the convergence of ipsilateral peak-type inputs and contralateral trough-type inputs. This suggests a stereotyped pattern of input to the IC. In the course of this analysis, we were also able to determine the contribution of time and phase components to neurons' internal delays. These findings have important consequences for the neural representation of interaural timing differences and interaural correlation—cues critical to the perception of acoustic space. PMID:18753329

  13. Analog Binaural Circuits for Detecting and Locating Leaks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2003-01-01

    Very-large-scale integrated (VLSI) analog binaural signal-processing circuits have been proposed for use in detecting and locating leaks that emit noise in the ultrasonic frequency range. These circuits would be designed to function even in the presence of intense lower-frequency background noise that could include sounds associated with flow and pumping. Each of the proposed circuits would include the approximate electronic equivalent of a right and a left cochlea plus correlator circuits. A pair of transducers (microphones or accelerometers), corresponding to right and left ears, would provide the inputs to their respective cochleas from different locations (e.g., from different positions along a pipe). The correlation circuits plus some additional external circuits would determine the difference between the times of arrival of a common leak sound at the two transducers. Then the distance along the pipe from either transducer to the leak could be estimated from the time difference and the speed of sound along the pipe. If three or more pairs of transducers and cochlear/correlator circuits were available and could suitably be positioned, it should be possible to locate a leak in three dimensions by use of sound propagating through air.

  14. Subjective diffuseness of music signals convolved with binaural impulse responses

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Tronchin, Lamberto; Cocchi, Alessandro; Soeta, Yoshiharu

    2011-07-01

    The spatial impression of sound in a hall can be quantified using sound field factors such as the interaural cross-correlation coefficient (IACC) calculated from binaural impulse response (BIR), henceforth denoted by IACC IR. The subjective diffuseness for the listener is a spatial attribute which depends on factors associated both with the source signal and with the actual sound field, and is quantified using the IACC of the signal received by the listener, henceforth denoted by IACC SR. Therefore, the subjective diffuseness in a given hall may change with the music. The aims of this study are to estimate the IACC SR from the IACC IR and the factors, which is obtained from autocorrelation function (ACF) of music signal, and to evaluate the subjective diffuseness by these factors. First, the relationship between the IACC IR and IACC SR was investigated. Second, subjective diffuseness was measured by a psycho-acoustical experiment. As a result, the IACC SR could be estimated from the IACC IR of the BIR and the effective duration ( τe) from the ACF of music signal. It was found that the effects of BIRs on subjective diffuseness could be evaluated by IACC IR for almost all subjects, while the effects of music signals could be evaluated by the τe and the width of the peak at τ=0 ( Wϕ(0) ) of the ACF.

  15. Dual-microphone and binaural noise reduction techniques for improved speech intelligibility by hearing aid users

    NASA Astrophysics Data System (ADS)

    Yousefian Jazi, Nima

    Spatial filtering and directional discrimination has been shown to be an effective pre-processing approach for noise reduction in microphone array systems. In dual-microphone hearing aids, fixed and adaptive beamforming techniques are the most common solutions for enhancing the desired speech and rejecting unwanted signals captured by the microphones. In fact, beamformers are widely utilized in systems where spatial properties of target source (usually in front of the listener) is assumed to be known. In this dissertation, some dual-microphone coherence-based speech enhancement techniques applicable to hearing aids are proposed. All proposed algorithms operate in the frequency domain and (like traditional beamforming techniques) are purely based on the spatial properties of the desired speech source and does not require any knowledge of noise statistics for calculating the noise reduction filter. This benefit gives our algorithms the ability to address adverse noise conditions, such as situations where interfering talker(s) speaks simultaneously with the target speaker. In such cases, the (adaptive) beamformers lose their effectiveness in suppressing interference, since the noise channel (reference) cannot be built and updated accordingly. This difference is the main advantage of the proposed techniques in the dissertation over traditional adaptive beamformers. Furthermore, since the suggested algorithms are independent of noise estimation, they offer significant improvement in scenarios that the power level of interfering sources are much more than that of target speech. The dissertation also shows the premise behind the proposed algorithms can be extended and employed to binaural hearing aids. The main purpose of the investigated techniques is to enhance the intelligibility level of speech, measured through subjective listening tests with normal hearing and cochlear implant listeners. However, the improvement in quality of the output speech achieved by the

  16. Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement

    PubMed Central

    Reedijk, Susan A.; Bolders, Anne; Colzato, Lorenza S.; Hommel, Bernhard

    2015-01-01

    Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences. PMID:26089802

  17. Rate-constrained source separation for speech enhancement in wireless-communicated binaural hearing aids

    NASA Astrophysics Data System (ADS)

    Ayllón, David; Gil-Pita, Roberto; Rosa-Zurera, Manuel

    2013-12-01

    A recent trend in hearing aids is the connection of the left and right devices to collaborate between them. Binaural systems can provide natural binaural hearing and support the improvement of speech intelligibility in noise, but they require data transmission between both devices, which increases the power consumption. This paper presents a novel sound source separation algorithm for binaural speech enhancement based on supervised machine learning and time-frequency masking. The system is designed considering the power restrictions in hearing aids, constraining both the computational cost of the algorithm and the transmission bit rate. The transmission schema is optimized using a tailored evolutionary algorithm that assigns a different number of bits to each frequency band. The proposed algorithm requires less than 10% of the available computational resources for signal processing and obtains good separation performance using bit rates lower than 64 kbps.

  18. Binaural advantages in users of bimodal and bilateral cochlear implant devices

    PubMed Central

    Kokkinakis, Kostas; Pak, Natalie

    2014-01-01

    This paper investigates to what extent users of bilateral and bimodal fittings should expect to benefit from all three different binaural advantages found to be present in normal-hearing listeners. Head-shadow and binaural squelch are advantages occurring under spatially separated speech and noise, while summation emerges when speech and noise coincide in space. For 14 bilateral or bimodal listeners, speech reception thresholds in the presence of four-talker babble were measured in sound-field under various speech and noise configurations. Statistical analysis revealed significant advantages of head-shadow and summation for both bilateral and bimodal listeners. Squelch was significant only for bimodal listeners. PMID:24437856

  19. Binaural Diplacusis and Its Relationship with Hearing-Threshold Asymmetry.

    PubMed

    Colin, David; Micheyl, Christophe; Girod, Anneline; Truy, Eric; Gallégo, Stéphane

    2016-01-01

    Binaural pitch diplacusis refers to a perceptual anomaly whereby the same sound is perceived as having a different pitch depending on whether it is presented in the left or the right ear. Results in the literature suggest that this phenomenon is more prevalent, and larger, in individuals with asymmetric hearing loss than in individuals with symmetric hearing. However, because studies devoted to this effect have thus far involved small samples, the prevalence of the effect, and its relationship with interaural asymmetries in hearing thresholds, remain unclear. In this study, psychometric functions for interaural pitch comparisons were measured in 55 subjects, including 12 normal-hearing and 43 hearing-impaired participants. Statistically significant pitch differences between the left and right ears were observed in normal-hearing participants, but the effect was usually small (less than 1.5/16 octave, or about 7%). For the hearing-impaired participants, statistically significant interaural pitch differences were found in about three-quarters of the cases. Moreover, for about half of these participants, the difference exceeded 1.5/16 octaves and, in some participants, was as large as or larger than 1/4 octave. This was the case even for the lowest frequency tested, 500 Hz. The pitch differences were weakly, but significantly, correlated with the difference in hearing thresholds between the two ears, such that larger threshold asymmetries were statistically associated with larger pitch differences. For the vast majority of the hearing-impaired participants, the direction of the pitch differences was such that pitch was perceived as higher on the side with the higher (i.e., 'worse') hearing thresholds than on the opposite side. These findings are difficult to reconcile with purely temporal models of pitch perception, but may be accounted for by place-based or spectrotemporal models. PMID:27536884

  20. Binaural Diplacusis and Its Relationship with Hearing-Threshold Asymmetry

    PubMed Central

    Colin, David; Micheyl, Christophe; Girod, Anneline; Truy, Eric; Gallégo, Stéphane

    2016-01-01

    Binaural pitch diplacusis refers to a perceptual anomaly whereby the same sound is perceived as having a different pitch depending on whether it is presented in the left or the right ear. Results in the literature suggest that this phenomenon is more prevalent, and larger, in individuals with asymmetric hearing loss than in individuals with symmetric hearing. However, because studies devoted to this effect have thus far involved small samples, the prevalence of the effect, and its relationship with interaural asymmetries in hearing thresholds, remain unclear. In this study, psychometric functions for interaural pitch comparisons were measured in 55 subjects, including 12 normal-hearing and 43 hearing-impaired participants. Statistically significant pitch differences between the left and right ears were observed in normal-hearing participants, but the effect was usually small (less than 1.5/16 octave, or about 7%). For the hearing-impaired participants, statistically significant interaural pitch differences were found in about three-quarters of the cases. Moreover, for about half of these participants, the difference exceeded 1.5/16 octaves and, in some participants, was as large as or larger than 1/4 octave. This was the case even for the lowest frequency tested, 500 Hz. The pitch differences were weakly, but significantly, correlated with the difference in hearing thresholds between the two ears, such that larger threshold asymmetries were statistically associated with larger pitch differences. For the vast majority of the hearing-impaired participants, the direction of the pitch differences was such that pitch was perceived as higher on the side with the higher (i.e., ‘worse’) hearing thresholds than on the opposite side. These findings are difficult to reconcile with purely temporal models of pitch perception, but may be accounted for by place-based or spectrotemporal models. PMID:27536884

  1. Perception of Binaural Cues Develops in Children Who Are Deaf through Bilateral Cochlear Implantation

    PubMed Central

    Gordon, Karen A.; Deighton, Michael R.; Abbasalipour, Parvaneh; Papsin, Blake C.

    2014-01-01

    There are significant challenges to restoring binaural hearing to children who have been deaf from an early age. The uncoordinated and poor temporal information available from cochlear implants distorts perception of interaural timing differences normally important for sound localization and listening in noise. Moreover, binaural development can be compromised by bilateral and unilateral auditory deprivation. Here, we studied perception of both interaural level and timing differences in 79 children/adolescents using bilateral cochlear implants and 16 peers with normal hearing. They were asked on which side of their head they heard unilaterally or bilaterally presented click- or electrical pulse- trains. Interaural level cues were identified by most participants including adolescents with long periods of unilateral cochlear implant use and little bilateral implant experience. Interaural timing cues were not detected by new bilateral adolescent users, consistent with previous evidence. Evidence of binaural timing detection was, for the first time, found in children who had much longer implant experience but it was marked by poorer than normal sensitivity and abnormally strong dependence on current level differences between implants. In addition, children with prior unilateral implant use showed a higher proportion of responses to their first implanted sides than children implanted simultaneously. These data indicate that there are functional repercussions of developing binaural hearing through bilateral cochlear implants, particularly when provided sequentially; nonetheless, children have an opportunity to use these devices to hear better in noise and gain spatial hearing. PMID:25531107

  2. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk

    PubMed Central

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S.

    2016-01-01

    Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style toward flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task—an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style toward more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias. PMID:27605922

  3. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk.

    PubMed

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S

    2016-01-01

    Increasing evidence suggests that cognitive-control processes can be configured to optimize either persistence of information processing (by amplifying competition between decision-making alternatives and top-down biasing of this competition) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration. We hypothesized that binaural beats in the gamma range bias the cognitive-control style toward flexibility, which in turn should increase the crosstalk between tasks in a dual-task paradigm. We replicated earlier findings that the reaction time in the first-performed task is sensitive to the compatibility between the responses in the first and the second task-an indication of crosstalk. As predicted, exposing participants to binaural beats in the gamma range increased this effect as compared to a control condition in which participants were exposed to a continuous tone of 340 Hz. These findings provide converging evidence that the cognitive-control style can be systematically biased by inducing particular internal states; that high-frequency binaural beats bias the control style toward more flexibility; and that different styles are implemented by changing the strength of local competition and top-down bias. PMID:27605922

  4. Frequency-Shift Detectors Bind Binaural as Well as Monaural Frequency Representations

    ERIC Educational Resources Information Center

    Carcagno, Samuele; Semal, Catherine; Demany, Laurent

    2011-01-01

    Previous psychophysical work provided evidence for the existence of automatic frequency-shift detectors (FSDs) that establish perceptual links between successive sounds. In this study, we investigated the characteristics of the FSDs with respect to the binaural system. Listeners were presented with sound sequences consisting of a chord of pure…

  5. The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer

    NASA Astrophysics Data System (ADS)

    Hawley, Monica L.; Litovsky, Ruth Y.; Culling, John F.

    2004-02-01

    The ``cocktail party problem'' was studied using virtual stimuli whose spatial locations were generated using anechoic head-related impulse responses from the AUDIS database [Blauert et al., J. Acoust. Soc. Am. 103, 3082 (1998)]. Speech reception thresholds (SRTs) were measured for Harvard IEEE sentences presented from the front in the presence of one, two, or three interfering sources. Four types of interferer were used: (1) other sentences spoken by the same talker, (2) time-reversed sentences of the same talker, (3) speech-spectrum shaped noise, and (4) speech-spectrum shaped noise, modulated by the temporal envelope of the sentences. Each interferer was matched to the spectrum of the target talker. Interferers were placed in several spatial configurations, either coincident with or separated from the target. Binaural advantage was derived by subtracting SRTs from listening with the ``better monaural ear'' from those for binaural listening. For a single interferer, there was a binaural advantage of 2-4 dB for all interferer types. For two or three interferers, the advantage was 2-4 dB for noise and speech-modulated noise, and 6-7 dB for speech and time-reversed speech. These data suggest that the benefit of binaural hearing for speech intelligibility is especially pronounced when there are multiple voiced interferers at different locations from the target, regardless of spatial configuration; measurements with fewer or with other types of interferers can underestimate this benefit.

  6. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response.

    PubMed

    Laumen, Geneviève; Ferber, Alexander T; Klump, Georg M; Tollin, Daniel J

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked noninvasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, the authors discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. The authors review how interaural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  7. Sound localization in the presence of multiple reflections using a binaurally integrated cross-correlation/auto-correlation mechanism.

    PubMed

    Braasch, Jonas

    2016-07-01

    A precedence effect model is described that can use a binaural signal to robustly localize a sound source in the presence of multiple reflections for the frontal horizontal plane. The model also estimates a room impulse response from a running binaural signal and determines the spatial locations and delays of early reflections, without any prior or additional knowledge of the source. A dual-layer cross-correlation/auto-correlation algorithm is used to determine the interaural time difference of the direct sound source component and to estimate a binaural activity pattern. PMID:27475205

  8. Binaural Fusion and Listening Effort in Children Who Use Bilateral Cochlear Implants: A Psychoacoustic and Pupillometric Study

    PubMed Central

    Steel, Morrison M.; Papsin, Blake C.; Gordon, Karen A.

    2015-01-01

    Bilateral cochlear implants aim to provide hearing to both ears for children who are deaf and promote binaural/spatial hearing. Benefits are limited by mismatched devices and unilaterally-driven development which could compromise the normal integration of left and right ear input. We thus asked whether children hear a fused image (ie. 1 vs 2 sounds) from their bilateral implants and if this “binaural fusion” reduces listening effort. Binaural fusion was assessed by asking 25 deaf children with cochlear implants and 24 peers with normal hearing whether they heard one or two sounds when listening to bilaterally presented acoustic click-trains/electric pulses (250 Hz trains of 36 ms presented at 1 Hz). Reaction times and pupillary changes were recorded simultaneously to measure listening effort. Bilaterally implanted children heard one image of bilateral input less frequently than normal hearing peers, particularly when intensity levels on each side were balanced. Binaural fusion declined as brainstem asymmetries increased and age at implantation decreased. Children implanted later had access to acoustic input prior to implantation due to progressive deterioration of hearing. Increases in both pupil diameter and reaction time occurred as perception of binaural fusion decreased. Results indicate that, without binaural level cues, children have difficulty fusing input from their bilateral implants to perceive one sound which costs them increased listening effort. Brainstem asymmetries exacerbate this issue. By contrast, later implantation, reflecting longer access to bilateral acoustic hearing, may have supported development of auditory pathways underlying binaural fusion. Improved integration of bilateral cochlear implant signals for children is required to improve their binaural hearing. PMID:25668423

  9. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    PubMed

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI. PMID:27197812

  10. Binaural simulation of virtual stage environments for evaluation by the solo violinist

    NASA Astrophysics Data System (ADS)

    Chu, William

    2004-10-01

    A unique computational and testing model for assessing solo violinists' response to various acoustical conditions on-stage was developed and shown to be an effective study tool. Realtime binaural auralizations of CATT-Acoustic models of several different virtual stage-acoustic designs were examined with a small group of professional violinists. Perceived differences as expressed by the subjects were discussed and explored in light of the specific measured acoustical descriptors available through the model. Unlike acoustical descriptors developed for audience receivers, ease of playing, support, and other soloist concerns do not necessarily show strong correlation between different subjects. It was found that this binaural simulation technique could provide a basis for developing a personal contextual vocabulary, to better understand the desired acoustical response of individual musicians.

  11. Techniques and applications for binaural sound manipulation in human-machine interfaces

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Wenzel, Elizabeth M.

    1990-01-01

    The implementation of binaural sound to speech and auditory sound cues (auditory icons) is addressed from both an applications and technical standpoint. Techniques overviewed include processing by means of filtering with head-related transfer functions. Application to advanced cockpit human interface systems is discussed, although the techniques are extendable to any human-machine interface. Research issues pertaining to three-dimensional sound displays under investigation at the Aerospace Human Factors Division at NASA Ames Research Center are described.

  12. Monaural and binaural hearing directivity in the bottlenose dolphin: evoked-potential study.

    PubMed

    Popov, Vladimir V; Supin, Alexander Ya; Klishin, Vladimir O; Bulgakova, Tatyana N

    2006-01-01

    Hearing thresholds as a function of sound-source azimuth were measured in bottlenose dolphins using an auditory evoked potential (AEP) technique. AEP recording from a region next to the ear allowed recording monaural responses. Thus, a monaural directivity diagram (a threshold-vs-azimuth function) was obtained. For comparison, binaural AEP components were recorded from the vertex to get standard binaural directivity diagrams. Both monaural and binaural diagrams were obtained at frequencies ranging from 8 to 128 kHz in quarter-octave steps. At all frequencies, the monaural diagram demonstrated asymmetry manifesting itself as: (1) lower thresholds at the ipsilateral azimuth as compared to the symmetrical contralateral azimuth and (2) ipsilateral shift of the lowest-threshold point. The directivity index increased with frequency: at the ipsilateral side it rose from 4.7 to 17.8 dB from 11.2 to 128 kHz, and from 10.5 to 15.6 dB at the contralateral side. The lowest-threshold azimuth shifted from 0 degrees at 90-128 kHz to 22.5 degrees at 8-11.2 kHz. The frequency-dependent variation of the lowest-threshold azimuth indicates the presence of two sound-receiving apertures at each head side: a high-frequency aperture with the axis directed frontally, and a low-frequency aperture with the axis directed laterally. PMID:16454317

  13. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)

    2002-01-01

    Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.

  14. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Johnson, Marty E.; Lalime, Aimee L.; Grosveld, Ferdinand W.; Rizzi, Stephen A.; Sullivan, Brenda M.

    2003-01-01

    Applying binaural simulation techniques to structural acoustic data can be very computationally intensive as the number of discrete noise sources can be very large. Typically, Head Related Transfer Functions (HRTFs) are used to individually filter the signals from each of the sources in the acoustic field. Therefore, creating a binaural simulation implies the use of potentially hundreds of real time filters. This paper details two methods of reducing the number of real-time computations required by: (i) using the singular value decomposition (SVD) to reduce the complexity of the HRTFs by breaking them into dominant singular values and vectors and (ii) by using equivalent source reduction (ESR) to reduce the number of sources to be analyzed in real-time by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. The ESR and SVD reduction methods can be combined to provide an estimated computation time reduction of 99.4% for the structural acoustic data tested. In addition, preliminary tests have shown that there is a 97% correlation between the results of the combined reduction methods and the results found with the current binaural simulation techniques

  15. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    PubMed

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. PMID:26541421

  16. Two crossed axonal projections contribute to binaural unmasking of frequency-following responses in rat inferior colliculus.

    PubMed

    Du, Yi; Ma, Tianfang; Wang, Qian; Wu, Xihong; Li, Liang

    2009-11-01

    Frequency-following responses (FFRs) are sustained potentials based on phase-locked neural activities elicited by low- to medium-frequency periodical sound waveforms. Human brainstem FFRs, which are able to encode some critical acoustic features of speech, can be unmasked by binaural processing. However, the underlying unmasking mechanisms have not previously been reported. In rats, most neurons in the inferior colliculus (IC) exhibit binaural responses which are affected by axonal projections from both the contralateral dorsal nucleus of the lateral lemniscus (DNLL) and the contralateral IC. The present study investigated whether the contralateral DNLL and the contralateral IC modulate binaural unmasking of FFRs recorded in the rat IC. The results show that IC FFRs to the rat pain call (chatter) were enhanced by local injection of the excitatory glutamate receptor antagonist kynurenic acid (KYNA) into the contralateral DNLL but were reduced by KYNA injection into the contralateral IC. Introducing a disparity between the interaural time difference (ITD) of the FFR-eliciting chatter and the ITD of the masking noise enhanced IC FFRs. Moreover, the ITD-disparity-induced FFR enhancement was weakened by injection of KYNA into either the contralateral DNLL or the contralateral IC when the ipsilateral chatter preceded the contralateral chatter. Thus, binaural hearing can improve IC FFRs against noise masking. More importantly, both inhibitory projections from the contralateral DNLL and excitatory projections from the contralateral IC modulate IC FFRs and play a role in forming binaural unmasking of IC FFRs. PMID:19840111

  17. Speech Perception in Noise in Normally Hearing Children: Does Binaural Frequency Modulated Fitting Provide More Benefit than Monaural Frequency Modulated Fitting?

    PubMed

    Mukari, Siti Zamratol-Mai Sarah; Umat, Cila; Razak, Ummu Athiyah Abdul

    2011-07-01

    The aim of the present study was to compare the benefit of monaural versus binaural ear-level frequency modulated (FM) fitting on speech perception in noise in children with normal hearing. Reception threshold for sentences (RTS) was measured in no-FM, monaural FM, and binaural FM conditions in 22 normally developing children with bilateral normal hearing, aged 8 to 9 years old. Data were gathered using the Pediatric Malay Hearing in Noise Test (P-MyHINT) with speech presented from front and multi-talker babble presented from 90°, 180°, 270° azimuths in a sound treated booth. The results revealed that the use of either monaural or binaural ear level FM receivers provided significantly better mean RTSs than the no-FM condition (P<0.001). However, binaural FM did not produce a significantly greater benefit in mean RTS than monaural fitting. The benefit of binaural over monaural FM varies across individuals; while binaural fitting provided better RTSs in about 50% of study subjects, there were those in whom binaural fitting resulted in either deterioration or no additional improvement compared to monaural FM fitting. The present study suggests that the use of monaural ear-level FM receivers in children with normal hearing might provide similar benefit as binaural use. Individual subjects' variations of binaural FM benefit over monaural FM suggests that the decision to employ monaural or binaural fitting should be individualized. It should be noted however, that the current study recruits typically developing normal hearing children. Future studies involving normal hearing children with high risk of having difficulty listening in noise is indicated to see if similar findings are obtained. PMID:26557323

  18. Auditory driving of the autonomic nervous system: Listening to theta-frequency binaural beats post-exercise increases parasympathetic activation and sympathetic withdrawal

    PubMed Central

    McConnell, Patrick A.; Froeliger, Brett; Garland, Eric L.; Ives, Jeffrey C.; Sforzo, Gary A.

    2014-01-01

    Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18–29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation. PMID:25452734

  19. 4D time-frequency representation for binaural speech signal processing

    NASA Astrophysics Data System (ADS)

    Mikhael, Raed; Szu, Harold H.

    2006-04-01

    Hearing is the ability to detect and process auditory information produced by the vibrating hair cilia residing in the corti of the ears to the auditory cortex of the brain via the auditory nerve. The primary and secondary corti of the brain interact with one another to distinguish and correlate the received information by distinguishing the varying spectrum of arriving frequencies. Binaural hearing is nature's way of employing the power inherent in working in pairs to process information, enhance sound perception, and reduce undesired noise. One ear might play a prominent role in sound recognition, while the other reinforces their perceived mutual information. Developing binaural hearing aid devices can be crucial in emulating the working powers of two ears and may be a step closer to significantly alleviating hearing loss of the inner ear. This can be accomplished by combining current speech research to already existing technologies such as RF communication between PDAs and Bluetooth. Ear Level Instrument (ELI) developed by Micro-tech Hearing Instruments and Starkey Laboratories is a good example of a digital bi-directional signal communicating between a PDA/mobile phone and Bluetooth. The agreement and disagreement of arriving auditory information to the Bluetooth device can be classified as sound and noise, respectively. Finding common features of arriving sound using a four coordinate system for sound analysis (four dimensional time-frequency representation), noise can be greatly reduced and hearing aids would become more efficient. Techniques developed by Szu within an Artificial Neural Network (ANN), Blind Source Separation (BSS), Adaptive Wavelets Transform (AWT), and Independent Component Analysis (ICA) hold many possibilities to the improvement of acoustic segmentation of phoneme, all of which will be discussed in this paper. Transmitted and perceived acoustic speech signal will improve, as the binaural hearing aid will emulate two ears in sound

  20. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    PubMed Central

    Ponnath, Abhilash; Farris, Hamilton E.

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437

  1. Prediction of the influence of reverberation on binaural speech intelligibility in noise and in quiet.

    PubMed

    Rennies, Jan; Brand, Thomas; Kollmeier, Birger

    2011-11-01

    Reverberation usually degrades speech intelligibility for spatially separated speech and noise sources since spatial unmasking is reduced and late reflections decrease the fidelity of the received speech signal. The latter effect could not satisfactorily be predicted by a recently presented binaural speech intelligibility model [Beutelmann et al. (2010). J. Acoust. Soc. Am. 127, 2479-2497]. This study therefore evaluated three extensions of the model to improve its predictions: (1) an extension of the speech intelligibility index based on modulation transfer functions, (2) a correction factor based on the room acoustical quantity "definition," and (3) a separation of the speech signal into useful and detrimental parts. The predictions were compared to results of two experiments in which speech reception thresholds were measured in a reverberant room in quiet and in the presence of a noise source for listeners with normal hearing. All extensions yielded better predictions than the original model when the influence of reverberation was strong, while predictions were similar for conditions with less reverberation. Although model (3) differed substantially in the assumed interaction of binaural processing and early reflections, its predictions were very similar to model (2) that achieved the best fit to the data. PMID:22087928

  2. Representation of binaural spatial cues in field L of the barn owl forebrain.

    PubMed

    Cohen, Y E; Knudsen, E I

    1998-02-01

    This study examined the representation of spatial information in the barn owl Field L, the first telencephalic processing stage of the classical auditory pathway. Field L units were recorded extracellularly, and their responses to dichotically presented interaural time differences (ITD) and interaural level differences (ILD) were tested. We observed a variety of tuning profiles in Field L. Some sites were not sensitive to ITD or ILD. Other sites, especially those in the high-frequency region, were highly selective for values of ITD and ILD. These sites had multipeaked (commonly called "phase ambiguous") ITD tuning profiles and were tuned for a single value of ILD. The tuning properties of these sites are similar to those seen in the lateral shell of the central nucleus of the inferior colliculus. Although the tuning properties of Field L sites were similar to those observed in the inferior colliculus, the functional organization of this spatial information was fundamentally different. Whereas in the inferior colliculus spatial information is organized into global topographics maps, in Field L spatial information is organized into local clusters, with sites having similar binaural tuning properties grouped together. The representation of binaural cues in Field L suggests that it is involved in auditory space processing but at a lower level of information processing than the auditory archistriatum, a forebrain area that is specialized for processing spatial information, and that the levels of information processing in the forebrain space processing pathway are remarkably similar to those in the well-known midbrain space processing pathway. PMID:9463449

  3. A function for binaural integration in auditory grouping and segregation in the inferior colliculus

    PubMed Central

    Shackleton, Trevor M.; Magezi, David A.; Palmer, Alan R.

    2014-01-01

    Responses of neurons to binaural, harmonic complex stimuli in urethane-anesthetized guinea pig inferior colliculus (IC) are reported. To assess the binaural integration of harmonicity cues for sound segregation and grouping, responses were measured to harmonic complexes with different fundamental frequencies presented to each ear. Simultaneously gated harmonic stimuli with fundamental frequencies of 125 Hz and 145 Hz were presented to the left and right ears, respectively, and recordings made from 96 neurons with characteristic frequencies >2 kHz in the central nucleus of the IC. Of these units, 70 responded continuously throughout the stimulus and were excited by the stimulus at the contralateral ear. The stimulus at the ipsilateral ear excited (EE: 14%; 10/70), inhibited (EI: 33%; 23/70), or had no significant effect (EO: 53%; 37/70), defined by the effect on firing rate. The neurons phase locked to the temporal envelope at each ear to varying degrees depending on signal level. Many of the cells (predominantly EO) were dominated by the response to the contralateral stimulus. Another group (predominantly EI) synchronized to the contralateral stimulus and were suppressed by the ipsilateral stimulus in a phasic manner. A third group synchronized to the stimuli at both ears (predominantly EE). Finally, a group only responded when the waveform peaks from each ear coincided. We conclude that these groups of neurons represent different “streams” of information but exhibit modifications of the response rather than encoding a feature of the stimulus, like pitch. PMID:25540219

  4. The neural substrate for binaural masking level differences in the auditory cortex.

    PubMed

    Gilbert, Heather J; Shackleton, Trevor M; Krumbholz, Katrin; Palmer, Alan R

    2015-01-01

    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12-15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population. PMID:25568115

  5. A function for binaural integration in auditory grouping and segregation in the inferior colliculus.

    PubMed

    Nakamoto, Kyle T; Shackleton, Trevor M; Magezi, David A; Palmer, Alan R

    2015-03-15

    Responses of neurons to binaural, harmonic complex stimuli in urethane-anesthetized guinea pig inferior colliculus (IC) are reported. To assess the binaural integration of harmonicity cues for sound segregation and grouping, responses were measured to harmonic complexes with different fundamental frequencies presented to each ear. Simultaneously gated harmonic stimuli with fundamental frequencies of 125 Hz and 145 Hz were presented to the left and right ears, respectively, and recordings made from 96 neurons with characteristic frequencies >2 kHz in the central nucleus of the IC. Of these units, 70 responded continuously throughout the stimulus and were excited by the stimulus at the contralateral ear. The stimulus at the ipsilateral ear excited (EE: 14%; 10/70), inhibited (EI: 33%; 23/70), or had no significant effect (EO: 53%; 37/70), defined by the effect on firing rate. The neurons phase locked to the temporal envelope at each ear to varying degrees depending on signal level. Many of the cells (predominantly EO) were dominated by the response to the contralateral stimulus. Another group (predominantly EI) synchronized to the contralateral stimulus and were suppressed by the ipsilateral stimulus in a phasic manner. A third group synchronized to the stimuli at both ears (predominantly EE). Finally, a group only responded when the waveform peaks from each ear coincided. We conclude that these groups of neurons represent different "streams" of information but exhibit modifications of the response rather than encoding a feature of the stimulus, like pitch. PMID:25540219

  6. Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins

    USGS Publications Warehouse

    Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.

    2006-01-01

    The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.

  7. The Neural Substrate for Binaural Masking Level Differences in the Auditory Cortex

    PubMed Central

    Gilbert, Heather J.; Krumbholz, Katrin; Palmer, Alan R.

    2015-01-01

    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12–15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population. PMID:25568115

  8. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing

    PubMed Central

    Adiloğlu, K.; Herzke, T.

    2015-01-01

    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. PMID:26721923

  9. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing.

    PubMed

    Backus, B; Adiloğlu, K; Herzke, T

    2015-01-01

    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. PMID:26721923

  10. The pattern of Fos expression in the rat auditory brainstem changes with the temporal structure of binaural electrical intracochlear stimulation.

    PubMed

    Jakob, Till F; Döring, Ulrike; Illing, Robert-Benjamin

    2015-04-01

    The immediate-early-gene c-fos with its protein product Fos has been used as a powerful tool to investigate neuronal activity and plasticity following sensory stimulation. Fos combines with Jun, another IEG product, to form the dimeric transcription factor activator protein 1 (AP-1) which has been implied in a variety of cellular functions like neuronal plasticity, apoptosis, and regeneration. The intracellular emergence of Fos indicates a functional state of nerve cells directed towards molecular and morphological changes. The central auditory system is construed to detect stimulus intensity, spectral composition, and binaural balance through neurons organized in a complex network of ascending, descending and commissural pathways. Here we compare monaural and binaural electrical intracochlear stimulation (EIS) in normal hearing and early postnatally deafened rats. Binaural stimulation was done either synchronously or asynchronously. The auditory brainstem of hearing and deaf rats responds differently, with a dramatically increasing Fos expression in the deaf group so as if the network had no pre-orientation for how to organize sensory activity. Binaural EIS does not result in a trivial sum of 2 independent monaural EIS, as asynchronous stimulation invokes stronger Fos activation compared to synchronous stimulation almost everywhere in the auditory brainstem. The differential response to synchronicity of the stimulation puts emphasis on the importance of the temporal structure of EIS with respect to its potential for changing brain structure and brain function in stimulus-specific ways. PMID:25708983

  11. The across frequency independence of equalization of interaural time delay in the equalization-cancellation model of binaural unmasking

    NASA Astrophysics Data System (ADS)

    Akeroyd, Michael A.

    2004-08-01

    The equalization stage in the equalization-cancellation model of binaural unmasking compensates for the interaural time delay (ITD) of a masking noise by introducing an opposite, internal delay [N. I. Durlach, in Foundations of Modern Auditory Theory, Vol. II., edited by J. V. Tobias (Academic, New York, 1972)]. Culling and Summerfield [J. Acoust. Soc. Am. 98, 785-797 (1995)] developed a multi-channel version of this model in which equalization was ``free'' to use the optimal delay in each channel. Two experiments were conducted to test if equalization was indeed free or if it was ``restricted'' to the same delay in all channels. One experiment measured binaural detection thresholds, using an adaptive procedure, for 1-, 5-, or 17-component tones against a broadband masking noise, in three binaural configurations (N0S180, N180S0, and N90S270). The thresholds for the 1-component stimuli were used to normalize the levels of each of the 5- and 17-component stimuli so that they were equally detectable. If equalization was restricted, then, for the 5- and 17-component stimuli, the N90S270 and N180S0 configurations would yield a greater threshold than the N0S180 configurations. No such difference was found. A subsequent experiment measured binaural detection thresholds, via psychometric functions, for a 2-component complex tone in the same three binaural configurations. Again, no differential effect of configuration was observed. An analytic model of the detection of a complex tone showed that the results were more consistent with free equalization than restricted equalization, although the size of the differences was found to depend on the shape of the psychometric function for detection.

  12. Availability of binaural cues for bilateral implant recipients and bimodal listeners with and without preserved hearing in the implanted ear

    PubMed Central

    Dorman, Michael F.; Sheffield, Sterling W.; Teece, Kate; Olund, Amy P.; Gifford, René H.

    2014-01-01

    The purpose of the current study was to examine the availability of binaural cues for adult, bilateral cochlear implant (CI) patients, bimodal patients and hearing preservation patients using a multiple baseline, observational study design. Speech recognition was assessed using the Bamford-Kowal-Bench Speech-In-Noise (BKB-SIN) test as well as the AzBio sentences [Spahr et al., 2012] presented in a multi-talker babble at +5 dB signal-to-noise ratio (SNR). Test conditions included speech at 0° with noise presented at 0° (S0N0), 90° (S0N90), and 270° (S0N270). Estimates of summation, head shadow (HS), squelch, and spatial release from masking (SRM) were calculated. Though none of the subject groups consistently showed access to binaural cues, the hearing preservation patients exhibited a significant correlation between summation and squelch whereas the bilateral and bimodal participants did not. That is, the two effects associated with binaural hearing—summation and squelch—were positively correlated for only the listeners with bilateral acoustic hearing. This finding provides evidence for the supposition that implant recipients with bilateral acoustic hearing have access to binaural cues which should, in theory, provide greater benefit in noisy listening environments. It is likely, however, that the chosen test environment negatively affected the outcomes. Specifically, the spatially separated noise conditions directed noise toward the mic port of the behind-the-ear (BTE) hearing aid and implant processor. Thus it is possible that in more realistic listening environments for which the diffuse noise is not directed toward the processor/hearing aid mic, hearing preservation patients have binaural hearing cues for improved speech understanding. PMID:24356514

  13. Spatial selectivity and binaural responses in the inferior colliculus of the great horned owl.

    PubMed

    Volman, S F; Konishi, M

    1989-09-01

    In this study we have investigated the processing of auditory cues for sound localization in the great horned owl (Bubo virginianus). Previous studies have shown that the barn owl, whose ears are asymmetrically oriented in the vertical plane, has a 2-dimensional, topographic representation of auditory space in the external division of the inferior colliculus (ICx). As in the barn owl, the great horned owl's ICx is anatomically distinct and projects to the optic tectum. Neurons in ICx respond over only a small range of azimuths (mean = 32 degrees), and azimuth is topographically mapped. In contrast to the barn owl, the great horned owl has bilaterally symmetrical ears and its receptive fields are not restricted in elevation. The binaural cues available for sound localization were measured both with cochlear microphonic recordings and with a microphone attached to a probe tube in the auditory canal. Interaural time disparity (ITD) varied monotonically with azimuth. Interaural intensity differences (IID) also changed with azimuth, but the largest IIDs were less than 15 dB, and the variation was not monotonic. Neither ITD nor IID varied systematically with changes in the vertical position of a sound source. We used dichotic stimulation to determine the sensitivity of ICx neurons to these binaural cues. Best ITD of ICx units was topographically mapped and strongly correlated with receptive-field azimuth. The width of ITD tuning curves, measured at 50% of the maximum response, averaged 72 microseconds. All ICx neurons responded only to binaural stimulation and had nonmonotonic IID tuning curves. Best IID was weakly, but significantly, correlated with best ITD (r = 0.39, p less than 0.05). The IID tuning curves, however, were broad (mean 50% width = 24 dB), and 67% of the units had best IIDs within 5 dB of 0 dB IID. ITD tuning was sensitive to variations in IID in the direction opposite to that expected for time-intensity trading, but the magnitude of this effect was only

  14. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time.

    PubMed

    Lüddemann, Helge; Kollmeier, Birger; Riedel, Helmut

    2016-02-01

    Brief deviations of interaural correlation (IAC) can provide valuable cues for detection, segregation and localization of acoustic signals. This study investigated the processing of such "binaural gaps" in continuously running noise (100-2000 Hz), in comparison to silent "monaural gaps", by measuring late auditory evoked potentials (LAEPs) and perceptual thresholds with novel, iteratively optimized stimuli. Mean perceptual binaural gap duration thresholds exhibited a major asymmetry: they were substantially shorter for uncorrelated gaps in correlated and anticorrelated reference noise (1.75 ms and 4.1 ms) than for correlated and anticorrelated gaps in uncorrelated reference noise (26.5 ms and 39.0 ms). The thresholds also showed a minor asymmetry: they were shorter in the positive than in the negative IAC range. The mean behavioral threshold for monaural gaps was 5.5 ms. For all five gap types, the amplitude of LAEP components N1 and P2 increased linearly with the logarithm of gap duration. While perceptual and electrophysiological thresholds matched for monaural gaps, LAEP thresholds were about twice as long as perceptual thresholds for uncorrelated gaps, but half as long for correlated and anticorrelated gaps. Nevertheless, LAEP thresholds showed the same asymmetries as perceptual thresholds. For gap durations below 30 ms, LAEPs were dominated by the processing of the leading edge of a gap. For longer gap durations, in contrast, both the leading and the lagging edge of a gap contributed to the evoked response. Formulae for the equivalent rectangular duration (ERD) of the binaural system's temporal window were derived for three common window shapes. The psychophysical ERD was 68 ms for diotic and about 40 ms for anti- and uncorrelated noise. After a nonlinear Z-transform of the stimulus IAC prior to temporal integration, ERDs were about 10 ms for reference correlations of ±1 and 80 ms for uncorrelated reference. Hence, a physiologically motivated

  15. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness

    PubMed Central

    Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas

    2016-01-01

    Objectives: This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Design: Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Results: Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a

  16. Binaural Simulation Experiments in the NASA Langley Structural Acoustics Loads and Transmission Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Silcox, Richard (Technical Monitor)

    2001-01-01

    A location and positioning system was developed and implemented in the anechoic chamber of the Structural Acoustics Loads and Transmission (SALT) facility to accurately determine the coordinates of points in three-dimensional space. Transfer functions were measured between a shaker source at two different panel locations and the vibrational response distributed over the panel surface using a scanning laser vibrometer. The binaural simulation test matrix included test runs for several locations of the measuring microphones, various attitudes of the mannequin, two locations of the shaker excitation and three different shaker inputs including pulse, broadband random, and pseudo-random. Transfer functions, auto spectra, and coherence functions were acquired for the pseudo-random excitation. Time histories were acquired for the pulse and broadband random input to the shaker. The tests were repeated with a reflective surface installed. Binary data files were converted to universal format and archived on compact disk.

  17. Spectral overlap and interaural time difference sensitivity: Possible role of binaural interference

    PubMed Central

    Brown, Christopher A.; Yost, William A.

    2015-01-01

    A follow-up experiment to those conducted by Brown and Yost [(2011). J. Acoust. Soc. Am. 130, 358–364; (2013). Basic Aspects of Hearing: Physiology and Perception (Springer, London, UK)] examined interaural time difference (ITD) discrimination for a low-frequency target noise band flanked by monotic noise bands that were either lower-frequency than the target band, higher-frequency, or both. The flanking bands were either spectrally contiguous with the target band or spectrally separated. Significant interference in ITD processing occurred in the presence of the high-frequency flanking band. Results are discussed by way of a comparison of the conditions in the present study to those in studies of binaural interference. The possible role of attention is also discussed. PMID:25994736

  18. Spectral overlap and interaural time difference sensitivity: possible role of binaural interference.

    PubMed

    Brown, Christopher A; Yost, William A

    2015-05-01

    A follow-up experiment to those conducted by Brown and Yost [(2011). J. Acoust. Soc. Am. 130, 358-364; (2013). Basic Aspects of Hearing: Physiology and Perception (Springer, London, UK)] examined interaural time difference (ITD) discrimination for a low-frequency target noise band flanked by monotic noise bands that were either lower-frequency than the target band, higher-frequency, or both. The flanking bands were either spectrally contiguous with the target band or spectrally separated. Significant interference in ITD processing occurred in the presence of the high-frequency flanking band. Results are discussed by way of a comparison of the conditions in the present study to those in studies of binaural interference. The possible role of attention is also discussed. PMID:25994736

  19. Lateral reflections are favorable in concert halls due to binaural loudness.

    PubMed

    Lokki, Tapio; Pätynen, Jukka

    2011-11-01

    A recent study on perceptual difference in simulated concert halls showed that a concert hall renders stronger sound with more bass when the temporal envelope of a signal is preserved in the reflections [Lokki et al., J. Acoust. Soc. Am. 129, EL223-EL228 (2011)]. In the same study the lateral reflections were shown to contribute to the perceived envelopment and openness. Moreover, the listening test results suggest that lateral reflections contribute to perception of sound source distance. Here, it is shown that lateral reflections are beneficial due to their increasing effect on binaural loudness-the phenomenon known well in psychoacoustics, but not in architectural acoustics. The reflections from the side are amplified more than median plane reflections, in particular at high frequencies, due to the shape of the human head. PMID:22088039

  20. Comparison between bilateral cochlear implants and Neurelec Digisonic(®) SP Binaural cochlear implant: speech perception, sound localization and patient self-assessment.

    PubMed

    Bonnard, Damien; Lautissier, Sylvie; Bosset-Audoit, Amélie; Coriat, Géraldine; Beraha, Max; Maunoury, Antoine; Martel, Jacques; Darrouzet, Vincent; Bébéar, Jean-Pierre; Dauman, René

    2013-01-01

    An alternative to bilateral cochlear implantation is offered by the Neurelec Digisonic(®) SP Binaural cochlear implant, which allows stimulation of both cochleae within a single device. The purpose of this prospective study was to compare a group of Neurelec Digisonic(®) SP Binaural implant users (denoted BINAURAL group, n = 7) with a group of bilateral adult cochlear implant users (denoted BILATERAL group, n = 6) in terms of speech perception, sound localization, and self-assessment of health status and hearing disability. Speech perception was assessed using word recognition at 60 dB SPL in quiet and in a 'cocktail party' noise delivered through five loudspeakers in the hemi-sound field facing the patient (signal-to-noise ratio = +10 dB). The sound localization task was to determine the source of a sound stimulus among five speakers positioned between -90° and +90° from midline. Change in health status was assessed using the Glasgow Benefit Inventory and hearing disability was evaluated with the Abbreviated Profile of Hearing Aid Benefit. Speech perception was not statistically different between the two groups, even though there was a trend in favor of the BINAURAL group (mean percent word recognition in the BINAURAL and BILATERAL groups: 70 vs. 56.7% in quiet, 55.7 vs. 43.3% in noise). There was also no significant difference with regard to performance in sound localization and self-assessment of health status and hearing disability. On the basis of the BINAURAL group's performance in hearing tasks involving the detection of interaural differences, implantation with the Neurelec Digisonic(®) SP Binaural implant may be considered to restore effective binaural hearing. Based on these first comparative results, this device seems to provide benefits similar to those of traditional bilateral cochlear implantation, with a new approach to stimulate both auditory nerves. PMID:23548561

  1. Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification.

    PubMed

    Kuc, Roman

    2002-10-01

    Electronic travel aids (ETAs) for the blind commonly employ conventional time-of-flight sonars to provide range measurements, but their wide beams prevent accurate determination of object bearing. We describe a binaural sonar that detects objects over a wider bearing interval compared with a single transducer and also determines if the object lies to the left or right of the sonar axis in a robust manner. The sonar employs a pair of Polaroid 6500 ranging modules connected to Polaroid 7000 transducers operating simultaneously in a binaural array configuration. The sonar determines which transducer detects the echo first. An outward vergence angle between the transducers improves the first-echo detection reliability by increasing the delay between the two detected echoes, a consequence of threshold detection. We exploit this left/right detection capability in an ETA that provides vibrotactile feedback. Pager motors mount on both sides of the sonar, possibly worn on the user's wrists. The motor on the same side as the reflecting object vibrates with speed inversely related to range. As the sonar or object moves, vibration patterns provide landmark, motion and texture cues. Orienting the sonar at 45 degrees relative to the travel direction and passing a right-angle corner produces a characteristic vibrational pattern. When pointing the sonar at a moving object, such as a fluttering flag, the motors alternate in a manner to give the user a perception of the object motion. When the sonar translates or rotates to scan a foliage surface, the vibrational patterns are related to the surface scatterer distribution, allowing the user to identify the foliage. PMID:12374342

  2. Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction

    PubMed Central

    Yu, Jane J.; Young, Eric D.

    2013-01-01

    The tuning, binaural properties, and encoding characteristics of neurons in the central nucleus of the inferior colliculus (CNIC) were investigated to shed light on nonlinearities in the responses of these neurons. Results were analyzed for three types of neurons (I, O, and V) in the CNIC of decerebrate cats. Rate responses to binaural stimuli were characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the model were derived using broadband stimuli with random spectral shapes (RSS). This method revealed four characteristics of CNIC neurons: (1) Tuning curves derived from broadband stimuli have fixed (i. e., level tolerant) bandwidths across a 50–60 dB range of sound levels; (2) 1st-order contralateral weights (particularly for type I and O neurons) were usually larger in magnitude than corresponding ipsilateral weights; (3) contralateral weights were more important than ipsilateral weights when using the model to predict responses to untrained noise stimuli; and (4) 2nd-order weight functions demonstrate frequency selectivity different from that of 1st-order weight functions. Furthermore, while the inclusion of 2nd-order terms in the model usually improved response predictions related to untrained RSS stimuli, they had limited impact on predictions related to other forms of filtered broadband noise [e. g., virtual-space stimuli (VS)]. The accuracy of the predictions varied considerably by response type. Predictions were most accurate for I neurons, and less accurate for O and V neurons, except at the lowest stimulus levels. These differences in prediction performance support the idea that type I, O, and V neurons encode different aspects of the stimulus: while type I neurons are most capable of producing linear representations of spectral shape, type O and V neurons may encode spectral features or temporal stimulus properties in a manner not easily explained with the low-order model. Supported by NIH grant DC00115. PMID:23675323

  3. Intelligibility for Binaural Speech with Discarded Low-SNR Speech Components.

    PubMed

    Schoenmaker, Esther; van de Par, Steven

    2016-01-01

    Speech intelligibility in multitalker settings improves when the target speaker is spatially separated from the interfering speakers. A factor that may contribute to this improvement is the improved detectability of target-speech components due to binaural interaction in analogy to the Binaural Masking Level Difference (BMLD). This would allow listeners to hear target speech components within specific time-frequency intervals that have a negative SNR, similar to the improvement in the detectability of a tone in noise when these contain disparate interaural difference cues. To investigate whether these negative-SNR target-speech components indeed contribute to speech intelligibility, a stimulus manipulation was performed where all target components were removed when local SNRs were smaller than a certain criterion value. It can be expected that for sufficiently high criterion values target speech components will be removed that do contribute to speech intelligibility. For spatially separated speakers, assuming that a BMLD-like detection advantage contributes to intelligibility, degradation in intelligibility is expected already at criterion values below 0 dB SNR. However, for collocated speakers it is expected that higher criterion values can be applied without impairing speech intelligibility. Results show that degradation of intelligibility for separated speakers is only seen for criterion values of 0 dB and above, indicating a negligible contribution of a BMLD-like detection advantage in multitalker settings. These results show that the spatial benefit is related to a spatial separation of speech components at positive local SNRs rather than to a BMLD-like detection improvement for speech components at negative local SNRs. PMID:27080648

  4. Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter

    PubMed Central

    Chung, Yoojin; Delgutte, Bertrand

    2012-01-01

    Poor sensitivity to the interaural time difference (ITD) constrains the ability of human bilateral cochlear implant users to listen in everyday noisy acoustic environments. ITD sensitivity to periodic pulse trains degrades sharply with increasing pulse rate but can be restored at high pulse rates by jittering the interpulse intervals in a binaurally coherent manner (Laback and Majdak. Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci USA 105: 814–817, 2008). We investigated the neural basis of the jitter effect by recording from single inferior colliculus (IC) neurons in bilaterally implanted, anesthetized cats. Neural responses to trains of biphasic pulses were measured as a function of pulse rate, jitter, and ITD. An effect of jitter on neural responses was most prominent for pulse rates above 300 pulses/s. High-rate periodic trains evoked only an onset response in most IC neurons, but introducing jitter increased ongoing firing rates in about half of these neurons. Neurons that had sustained responses to jittered high-rate pulse trains showed ITD tuning comparable with that produced by low-rate periodic pulse trains. Thus, jitter appears to improve neural ITD sensitivity by restoring sustained firing in many IC neurons. The effect of jitter on IC responses is qualitatively consistent with human psychophysics. Action potentials tended to occur reproducibly at sparse, preferred times across repeated presentations of high-rate jittered pulse trains. Spike triggered averaging of responses to jittered pulse trains revealed that firing was triggered by very short interpulse intervals. This suggests it may be possible to restore ITD sensitivity to periodic carriers by simply inserting short interpulse intervals at select times. PMID:22592306

  5. Perceptually aligning apical frequency regions leads to more binaural fusion of speech in a cochlear implant simulation.

    PubMed

    Staisloff, Hannah E; Lee, Daniel H; Aronoff, Justin M

    2016-07-01

    For bilateral cochlear implant users, the left and right arrays are typically not physically aligned, resulting in a degradation of binaural fusion, which can be detrimental to binaural abilities. Perceptually aligning the two arrays can be accomplished by disabling electrodes in one ear that do not have a perceptually corresponding electrode in the other side. However, disabling electrodes at the edges of the array will cause compression of the input frequency range into a smaller cochlear extent, which may result in reduced spectral resolution. An alternative approach to overcome this mismatch would be to only align one edge of the array. By aligning either only the apical or basal end of the arrays, fewer electrodes would be disabled, potentially causing less reduction in spectral resolution. The goal of this study was to determine the relative effect of aligning either the basal or apical end of the electrode with regards to binaural fusion. A vocoder was used to simulate cochlear implant listening conditions in normal hearing listeners. Speech signals were vocoded such that the two ears were either predominantly aligned at only the basal or apical end of the simulated arrays. The experiment was then repeated with a spectrally inverted vocoder to determine whether the detrimental effects on fusion were related to the spectral-temporal characteristics of the stimuli or the location in the cochlea where the misalignment occurred. In Experiment 1, aligning the basal portion of the simulated arrays led to significantly less binaural fusion than aligning the apical portions of the simulated array. However, when the input was spectrally inverted, aligning the apical portion of the simulated array led to significantly less binaural fusion than aligning the basal portions of the simulated arrays. These results suggest that, for speech, with its predominantly low frequency spectral-temporal modulations, it is more important to perceptually align the apical portion of

  6. Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies.

    PubMed

    van Hoesel, Richard; Böhm, Melanie; Pesch, Jörg; Vandali, Andrew; Battmer, Rolf D; Lenarz, Thomas

    2008-04-01

    Four adult bilateral cochlear implant users, with good open-set sentence recognition, were tested with three different sound coding strategies for binaural speech unmasking and their ability to localize 100 and 500 Hz click trains in noise. Two of the strategies tested were envelope-based strategies that are clinically widely used. The third was a research strategy that additionally preserved fine-timing cues at low frequencies. Speech reception thresholds were determined in diotic noise for diotic and interaurally time-delayed speech using direct audio input to a bilateral research processor. Localization in noise was assessed in the free field. Overall results, for both speech and localization tests, were similar with all three strategies. None provided a binaural speech unmasking advantage due to the application of 700 micros interaural time delay to the speech signal, and localization results showed similar response patterns across strategies that were well accounted for by the use of broadband interaural level cues. The data from both experiments combined indicate that, in contrast to normal hearing, timing cues available from natural head-width delays do not offer binaural advantages with present methods of electrical stimulation, even when fine-timing cues are explicitly coded. PMID:18397030

  7. Speech intelligibility prediction in reverberation: Towards an integrated model of speech transmission, spatial unmasking, and binaural de-reverberation.

    PubMed

    Leclère, Thibaud; Lavandier, Mathieu; Culling, John F

    2015-06-01

    Room acoustic indicators of intelligibility have focused on the effects of temporal smearing of speech by reverberation and masking by diffuse ambient noise. In the presence of a discrete noise source, these indicators neglect the binaural listener's ability to separate target speech from noise. Lavandier and Culling [(2010). J. Acoust. Soc. Am. 127, 387-399] proposed a model that incorporates this ability but neglects the temporal smearing of speech, so that predictions hold for near-field targets. An extended model based on useful-to-detrimental (U/D) ratios is presented here that accounts for temporal smearing, spatial unmasking, and binaural de-reverberation in reverberant environments. The influence of the model parameters was tested by comparing the model predictions with speech reception thresholds measured in three experiments from the literature. Accurate predictions were obtained by adjusting the parameters to each room. Room-independent parameters did not lead to similar performances, suggesting that a single U/D model cannot be generalized to any room. Despite this limitation, the model framework allows to propose a unified interpretation of spatial unmasking, temporal smearing, and binaural de-reverberation. PMID:26093423

  8. Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals.

    PubMed

    Albeck, Y; Konishi, M

    1995-10-01

    1. Extracellular single-unit recording in anesthetized barn owls was used to study neuronal response to dichotic stimuli of variable binaural correlation (BC). Recordings were made in the output fibers of nucleus laminaris (NL), the anterior division of the ventral lateral lemniscal nucleus (VLVa), the core of the central nucleus of the inferior colliculus (ICcC), the lateral shell of the central nucleus of the inferior colliculus (ICcLS), and the external nucleus of the inferior colliculus (ICx). 2. The response of all neurons sensitive to interaural time difference (ITD) varied with BC. The relationship between BC and impulse number fits a linear, a parabolic, or a ramp model. A linear or parabolic model fits most neurons in low-level nuclei. Higher order neurons in ICx did not respond to noise bursts with strong negative binaural correlation, creating a ramp-like response to BC. 3. A neuron's ability to detect ITD varied as a function of BC. Conversely, a neuron's response to BC changed with ITD. Neurons in NL, VLVa, and ICcC show almost periodic ITD response curves. In these neurons peaks and troughs of ITD response curves diminished as BC decreased, creating a flat ITD response when BC = 0. When BC was set to -1, the most favorable ITD became the least favorable one and vice versa. The ITD response curve of ICx neurons usually has a single dominant peak. The response of those neurons to a negatively correlated noise pair (BC = -1) showed two ITD peaks, flanking the position of the primary peak. 4. The parabolic BC response of NL neurons fits the prediction of the cross-correlation model, assuming half-wave rectification of the sound by the cochlea. Linear response is not predicted by the model. However, the parabolic and the linear neurons probably do not belong to two distinct groups as the difference between them is not statistically significant. Thus, the cross-correlation model provides a good description of the binaural response not only in NL but also in

  9. Binaural interaction in human auditory brainstem response compared for tone-pips and rectangular clicks under conditions of auditory and visual attention.

    PubMed

    Ikeda, Kazunari

    2015-07-01

    Binaural interaction in the auditory brainstem response (ABR) represents the discrepancy between the binaural waveform and the sum of monaural ones. A typical ABR binaural interaction in humans is a reduction of the binaural amplitude compared to the monaural sum at the wave-V latency, i.e., the DN1 component. It has been considered that the DN1 is mainly elicited by high frequency components of stimuli whereas some studies have shown the contribution of low-to-middle frequency components to the DN1. To examine this issue, the present study compared the ABR binaural interaction elicited by tone pips (1 kHz, 10-ms duration) with the one by clicks (a rectangular wave, 0.1-ms duration) presented at 80 dB peak equivalent SPL and a fixed stimulus onset interval (180 ms). The DN1 due to tone pips was vulnerable compared to the click-evoked DN1. The pip-evoked DN1 was significantly detected under auditory attention whereas it failed to reach significance under visual attention. The click-evoked DN1 was robustly present for the two attention conditions. The current results might confirm the high frequency sound contribution to the DN1 elicitation. PMID:25776741

  10. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences.

    PubMed

    Laumen, Geneviève; Tollin, Daniel J; Beutelmann, Rainer; Klump, Georg M

    2016-07-01

    The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC. PMID:27173973

  11. Deriving content-specific measures of room acoustic perception using a binaural, nonlinear auditory model.

    PubMed

    van Dorp Schuitman, Jasper; de Vries, Diemer; Lindau, Alexander

    2013-03-01

    Acousticians generally assess the acoustic qualities of a concert hall or any other room using impulse response-based measures such as the reverberation time, clarity index, and others. These parameters are used to predict perceptual attributes related to the acoustic qualities of the room. Various studies show that these physical measures are not able to predict the related perceptual attributes sufficiently well under all circumstances. In particular, it has been shown that physical measures are dependent on the state of occupation, are prone to exaggerated spatial fluctuation, and suffer from lacking discrimination regarding the kind of acoustic stimulus being presented. Accordingly, this paper proposes a method for the derivation of signal-based measures aiming at predicting aspects of room acoustic perception from content specific signal representations produced by a binaural, nonlinear model of the human auditory system. Listening tests were performed to test the proposed auditory parameters for both speech and music. The results look promising; the parameters correlate with their corresponding perceptual attributes in most cases. PMID:23464027

  12. A Binaural Steering Beamformer System for Enhancing a Moving Speech Source

    PubMed Central

    Kayser, Hendrik; Baumgärtel, Regina M.; Rennebeck, Sanja; Dietz, Mathias; Hohmann, Volker

    2015-01-01

    In many daily life communication situations, several sound sources are simultaneously active. While normal-hearing listeners can easily distinguish the target sound source from interfering sound sources—as long as target and interferers are spatially or spectrally separated—and concentrate on the target, hearing-impaired listeners and cochlear implant users have difficulties in making such a distinction. In this article, we propose a binaural approach composed of a spatial filter controlled by a direction-of-arrival estimator to track and enhance a moving target sound. This approach was implemented on a real-time signal processing platform enabling experiments with test subjects in situ. To evaluate the proposed method, a data set of sound signals with a single moving sound source in an anechoic diffuse noise environment was generated using virtual acoustics. The proposed steering method was compared with a fixed (nonsteering) method that enhances sound from the frontal direction in an objective evaluation and subjective experiments using this database. In both cases, the obtained results indicated a significant improvement in speech intelligibility and quality compared with the unprocessed signal. Furthermore, the proposed method outperformed the nonsteering method. PMID:26721924

  13. Postnatal development of sound pressure transformations by the head and pinnae of the cat: Binaural characteristics

    PubMed Central

    Tollin, Daniel J.; Koka, Kanthaiah

    2009-01-01

    There are three acoustical cues to sound location: Interaural time differences (ITDs), interaural level differences (ILDs), and monaural spectral shape cues. During development, the increasing interaural distance and pinnae size associated with a growing head and pinnae result in localization cues that change continuously until maturation is complete. Here the authors report measurements of both the physical dimensions of the head and pinnae, as well as acoustical measurements of the binaural localization cues of cats aged 1.3 weeks to adulthood. For a given source location, ILD magnitude tended to increase with both frequency and age. Moreover, the range of significant ILD production (∼10 dB) shifted with age from higher to lower frequencies. ITD magnitude increased with age. Partial correlation analyses revealed that increasing pinnae size accounted for ∼31% of the variance in the development of ILDs while increasing head size accounted for virtually none. On the other hand, increases in both the head and pinnae sizes contributed to the development of the ITD cues accounting for ∼71% and ∼25% of the variance, respectively. ILD and ITD cues in cats reach maturity by ∼16 and ∼22 weeks, respectively, which match the time period over which the pinnae and head dimensions reach maturity. PMID:20000926

  14. Analysis of EEG activity in response to binaural beats with different frequencies.

    PubMed

    Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng

    2014-12-01

    When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. PMID:25448376

  15. A Binaural Steering Beamformer System for Enhancing a Moving Speech Source.

    PubMed

    Adiloğlu, Kamil; Kayser, Hendrik; Baumgärtel, Regina M; Rennebeck, Sanja; Dietz, Mathias; Hohmann, Volker

    2015-01-01

    In many daily life communication situations, several sound sources are simultaneously active. While normal-hearing listeners can easily distinguish the target sound source from interfering sound sources-as long as target and interferers are spatially or spectrally separated-and concentrate on the target, hearing-impaired listeners and cochlear implant users have difficulties in making such a distinction. In this article, we propose a binaural approach composed of a spatial filter controlled by a direction-of-arrival estimator to track and enhance a moving target sound. This approach was implemented on a real-time signal processing platform enabling experiments with test subjects in situ. To evaluate the proposed method, a data set of sound signals with a single moving sound source in an anechoic diffuse noise environment was generated using virtual acoustics. The proposed steering method was compared with a fixed (nonsteering) method that enhances sound from the frontal direction in an objective evaluation and subjective experiments using this database. In both cases, the obtained results indicated a significant improvement in speech intelligibility and quality compared with the unprocessed signal. Furthermore, the proposed method outperformed the nonsteering method. PMID:26721924

  16. Evaluation of Speech Intelligibility and Sound Localization Abilities with Hearing Aids Using Binaural Wireless Technology

    PubMed Central

    Ibrahim, Iman; Parsa, Vijay; Macpherson, Ewan; Cheesman, Margaret

    2012-01-01

    Wireless synchronization of the digital signal processing (DSP) features between two hearing aids in a bilateral hearing aid fitting is a fairly new technology. This technology is expected to preserve the differences in time and intensity between the two ears by co-ordinating the bilateral DSP features such as multichannel compression, noise reduction, and adaptive directionality. The purpose of this study was to evaluate the benefits of wireless communication as implemented in two commercially available hearing aids. More specifically, this study measured speech intelligibility and sound localization abilities of normal hearing and hearing impaired listeners using bilateral hearing aids with wireless synchronization of multichannel Wide Dynamic Range Compression (WDRC). Twenty subjects participated; 8 had normal hearing and 12 had bilaterally symmetrical sensorineural hearing loss. Each individual completed the Hearing in Noise Test (HINT) and a sound localization test with two types of stimuli. No specific benefit from wireless WDRC synchronization was observed for the HINT; however, hearing impaired listeners had better localization with the wireless synchronization. Binaural wireless technology in hearing aids may improve localization abilities although the possible effect appears to be small at the initial fitting. With adaptation, the hearing aids with synchronized signal processing may lead to an improvement in localization and speech intelligibility. Further research is required to demonstrate the effect of adaptation to the hearing aids with synchronized signal processing on different aspects of auditory performance. PMID:26557339

  17. Capturing Movement

    ERIC Educational Resources Information Center

    Lord, Lynda

    2007-01-01

    The idea for the art lesson presented in this article grew out of watching the lively actions of fourth grade students. Since drawing is the author's first love, she is always looking for new ways to teach it. This time, instead of setting up a still life, she decided to teach students how to capture their actions on paper. (Contains 5 online…

  18. Laser capture.

    PubMed

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  19. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber)

    PubMed Central

    Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J.; Koch, Ursula

    2016-01-01

    Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals. PMID:26760498

  20. The binaural masking level difference: cortical correlates persist despite severe brain stem atrophy in progressive supranuclear palsy

    PubMed Central

    Rowe, James B.; Ghosh, Boyd C. P.; Carlyon, Robert P.; Plack, Christopher J.; Gockel, Hedwig E.

    2014-01-01

    Under binaural listening conditions, the detection of target signals within background masking noise is substantially improved when the interaural phase of the target differs from that of the masker. Neural correlates of this binaural masking level difference (BMLD) have been observed in the inferior colliculus and temporal cortex, but it is not known whether degeneration of the inferior colliculus would result in a reduction of the BMLD in humans. We used magnetoencephalography to examine the BMLD in 13 healthy adults and 13 patients with progressive supranuclear palsy (PSP). PSP is associated with severe atrophy of the upper brain stem, including the inferior colliculus, confirmed by voxel-based morphometry of structural MRI. Stimuli comprised in-phase sinusoidal tones presented to both ears at three levels (high, medium, and low) masked by in-phase noise, which rendered the low-level tone inaudible. Critically, the BMLD was measured using a low-level tone presented in opposite phase across ears, making it audible against the noise. The cortical waveforms from bilateral auditory sources revealed significantly larger N1m peaks for the out-of-phase low-level tone compared with the in-phase low-level tone, for both groups, indicating preservation of early cortical correlates of the BMLD in PSP. In PSP a significant delay was observed in the onset of the N1m deflection and the amplitude of the P2m was reduced, but these differences were not restricted to the BMLD condition. The results demonstrate that although PSP causes subtle auditory deficits, binaural processing can survive the presence of significant damage to the upper brain stem. PMID:25231610

  1. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.

    PubMed

    Völker, Christoph; Warzybok, Anna; Ernst, Stephan M A

    2015-01-01

    A comprehensive evaluation of eight signal pre-processing strategies, including directional microphones, coherence filters, single-channel noise reduction, binaural beamformers, and their combinations, was undertaken with normal-hearing (NH) and hearing-impaired (HI) listeners. Speech reception thresholds (SRTs) were measured in three noise scenarios (multitalker babble, cafeteria noise, and single competing talker). Predictions of three common instrumental measures were compared with the general perceptual benefit caused by the algorithms. The individual SRTs measured without pre-processing and individual benefits were objectively estimated using the binaural speech intelligibility model. Ten listeners with NH and 12 HI listeners participated. The participants varied in age and pure-tone threshold levels. Although HI listeners required a better signal-to-noise ratio to obtain 50% intelligibility than listeners with NH, no differences in SRT benefit from the different algorithms were found between the two groups. With the exception of single-channel noise reduction, all algorithms showed an improvement in SRT of between 2.1 dB (in cafeteria noise) and 4.8 dB (in single competing talker condition). Model predictions with binaural speech intelligibility model explained 83% of the measured variance of the individual SRTs in the no pre-processing condition. Regarding the benefit from the algorithms, the instrumental measures were not able to predict the perceptual data in all tested noise conditions. The comparable benefit observed for both groups suggests a possible application of noise reduction schemes for listeners with different hearing status. Although the model can predict the individual SRTs without pre-processing, further development is necessary to predict the benefits obtained from the algorithms at an individual level. PMID:26721922

  2. Functional segregation of monaural and binaural selectivity in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2016-07-01

    Different fields of the auditory cortex can be distinguished by the extent and level tolerance of spatial selectivity. The mechanisms underlying the range of spatial tuning properties observed across cortical fields are unclear. Here, this issue was addressed in the pallid bat because its auditory cortex contains two segregated regions of response selectivity that serve two different behaviors: echolocation for obstacle avoidance and localization of prey-generated noise. This provides the unique opportunity to examine mechanisms of spatial properties in two functionally distinct regions. Previous studies have shown that spatial selectivity of neurons in the region selective for noise (noise-selective region, NSR) is level tolerant and shaped by interaural level difference (ILD) selectivity. In contrast, spatial selectivity of neurons in the echolocation region ('FM sweep-selective region' or FMSR) is strongly level dependent with many neurons responding to multiple distinct spatial locations for louder sounds. To determine the mechanisms underlying such level dependence, frequency, azimuth, rate-level responses and ILD selectivity were measured from the same FMSR neurons. The majority (∼75%) of FMSR neurons were monaural (ILD insensitive). Azimuth tuning curves expanded or split into multiple peaks with increasing sound level in a manner that was predicted by the rate-level response of neurons. These data suggest that azimuth selectivity of FMSR neurons depends more on monaural ear directionality and rate-level responses. The pallid bat cortex utilizes segregated monaural and binaural regions to process echoes and prey-generated noise. Together the pallid bat FMSR/NSR data provide mechanistic explanations for a broad range of spatial tuning properties seen across species. PMID:27233917

  3. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    PubMed Central

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  4. Acoustic space learning for sound-source separation and localization on binaural manifolds.

    PubMed

    Deleforge, Antoine; Forbes, Florence; Horaud, Radu

    2015-02-01

    In this paper, we address the problems of modeling the acoustic space generated by a full-spectrum sound source and using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A nonlinear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound-source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound-source direction. We extend this solution to deal with missing data and redundancy in real-world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods. PMID:25164245

  5. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.

    PubMed

    Młynarski, Wiktor

    2015-05-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a "panoramic" code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  6. Vocal behavior and vocal loading factors for preschool teachers at work studied with binaural DAT recordings.

    PubMed

    Södersten, Maria; Granqvist, Svante; Hammarberg, Britta; Szabo, Annika

    2002-09-01

    Preschool teachers are at risk for developing voice problems such as vocal fatigue and vocal nodules. The purpose of this report was to study preschool teachers' voice use during work. Ten healthy female preschool teachers working at daycare centers (DCC) served as subjects. A binaural recording technique was used. Two microphones were placed on both sides of the subject's head, at equal distance from the mouth, and a portable DAT recorder was attached to the subject's waist. Recordings were made of a standard reading passage before work (baseline) and of spontaneous speech during work. The recording technique allowed separate analyses of the level of the background noise, and of the subjects' voice sound pressure level, mean fundamental frequency, and total phonation time. Among the results, mean background noise level for the ten DCCs was 76.1 dBA (range 73.0-78.2), which is more than 20 dB higher than what is recommended where speech communication is important (50-55 dBA). The subjects spoke on an average of 9.1 dB louder (p < 0.0001), and with higher mean fundamental frequency (247 Hz) during work as compared to the baseline (202 Hz) (p < 0.0001). Mean phonation time for the group was 17%, which was considered high. It was concluded that preschool teachers do have a highly vocally demanding profession. Important steps to reduce the vocal loading for this occupation would be to decrease the background noise levels and include pauses so that preschool teachers can rest their voices. PMID:12395988

  7. Amplitude modulation detection by human listeners in reverberant sound fields: Carrier bandwidth effects and binaural versus monaural comparison

    PubMed Central

    Zahorik, Pavel; Kim, Duck O.; Kuwada, Shigeyuki; Anderson, Paul W.; Brandewie, Eugene; Collecchia, Regina; Srinivasan, Nirmal

    2012-01-01

    Previous work [Zahorik et al., POMA, 12, 050005 (2011)] has reported that for a broadband noise carrier signal in a simulated reverberant sound field, human sensitivity to amplitude modulation (AM) is higher than would be predicted based on the broadband acoustical modulation transfer function (MTF) of the listening environment. Interpretation of this result was complicated by the fact that acoustical MTFs of rooms are often quite different for different carrier frequency regions, and listeners may have selectively responded to advantageous carrier frequency regions where the effective acoustic modulation loss due to the room was less than indicated by a broadband acoustic MTF analysis. Here, AM sensitivity testing and acoustic MTF analyses were expanded to include narrowband noise carriers (1-octave and 1/3-octave bands centered at 4 kHz), as well as monaural and binaural listening conditions. Narrowband results were found to be consistent with broadband results: In a reverberant sound field, human AM sensitivity is higher than indicated by the acoustical MTFs. The effect was greatest for modulation frequencies above 32 Hz and was present whether the stimulation was monaural or binaural. These results are suggestive of mechanisms that functionally enhance modulation in reverberant listening. PMID:23437416

  8. The binaural performance of a cross-talk cancellation system with matched or mismatched setup and playback acoustics

    PubMed Central

    Akeroyd, Michael A.; Chambers, John; Bullock, David; Palmer, Alan R.; Summerfield, A. Quentin; Nelson, Philip A.; Gatehouse, Stuart

    2013-01-01

    Cross-talk cancellation is a method for synthesising virtual auditory space using loudspeakers. One implementation is the “Optimal Source Distribution” technique [T. Takeuchi and P. Nelson, J. Acoust. Soc. Am. 112, 2786-2797 (2002)], in which the audio bandwidth is split across three pairs of loudspeakers, placed at azimuths of ±90°, ±15°, and ±3°, conveying low, mid and high frequencies, respectively. A computational simulation of this system was developed and verified against measurements made on an acoustic system using a manikin. Both the acoustic system and the simulation gave a wideband average cancellation of almost 25 dB. The simulation showed that when there was a mismatch between the head-related transfer functions used to set up the system and those of the final listener, the cancellation was reduced to an average of 13 dB. Moreover, in this case the binaural ITDs and ILDs delivered by the simulation of the OSD system often differed from the target values. It is concluded that only when the OSD system is set up with “matched” head-related transfer functions can it deliver accurate binaural cues. PMID:17348528

  9. Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain.

    PubMed

    Chabot-Leclerc, Alexandre; MacDonald, Ewen N; Dau, Torsten

    2016-07-01

    This study proposes a binaural extension to the multi-resolution speech-based envelope power spectrum model (mr-sEPSM) [Jørgensen, Ewert, and Dau (2013). J. Acoust. Soc. Am. 134, 436-446]. It consists of a combination of better-ear (BE) and binaural unmasking processes, implemented as two monaural realizations of the mr-sEPSM combined with a short-term equalization-cancellation process, and uses the signal-to-noise ratio in the envelope domain (SNRenv) as the decision metric. The model requires only two parameters to be fitted per speech material and does not require an explicit frequency weighting. The model was validated against three data sets from the literature, which covered the following effects: the number of maskers, the masker types [speech-shaped noise (SSN), speech-modulated SSN, babble, and reversed speech], the masker(s) azimuths, reverberation on the target and masker, and the interaural time difference of the target and masker. The Pearson correlation coefficient between the simulated speech reception thresholds and the data across all experiments was 0.91. A model version that considered only BE processing performed similarly (correlation coefficient of 0.86) to the complete model, suggesting that BE processing could be considered sufficient to predict intelligibility in most realistic conditions. PMID:27475146

  10. The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment.

    PubMed

    Hassager, Henrik Gert; Gran, Fredrik; Dau, Torsten

    2016-05-01

    Individual binaural room impulse responses (BRIRs) were recorded at a distance of 1.5 m for azimuth angles of 0° and 50° in a reverberant room. Spectral details were reduced in either the direct or the reverberant part of the BRIRs by averaging the magnitude responses with band-pass filters. For various filter bandwidths, the modified BRIRs were convolved with broadband noise and listeners judged the perceived position of the noise when virtualized over headphones. Only reductions in spectral details of the direct part obtained with filter bandwidths broader than one equivalent rectangular bandwidth affected externalization. Reductions in spectral details of the reverberant part had only little influence on externalization. In both conditions, externalization was not as pronounced at 0° as at 50°. To characterize the auditory processes that may be involved in the perception of externalization, a quantitative model is proposed. The model includes an echo-suppression mechanism, a filterbank describing the frequency selectivity in the cochlea and a binaural stage that measures the deviations of the interaural level differences between the considered input and the unmodified input. These deviations, integrated across frequency, are then mapped to a value that corresponds to the perceived externalization. PMID:27250190

  11. The Binaural Masking-Level Difference of Mandarin Tone Detection and the Binaural Intelligibility-Level Difference of Mandarin Tone Recognition in the Presence of Speech-Spectrum Noise

    PubMed Central

    Ho, Cheng-Yu; Li, Pei-Chun; Chiang, Yuan-Chuan; Young, Shuenn-Tsong; Chu, Woei-Chyn

    2015-01-01

    Binaural hearing involves using information relating to the differences between the signals that arrive at the two ears, and it can make it easier to detect and recognize signals in a noisy environment. This phenomenon of binaural hearing is quantified in laboratory studies as the binaural masking-level difference (BMLD). Mandarin is one of the most commonly used languages, but there are no publication values of BMLD or BILD based on Mandarin tones. Therefore, this study investigated the BMLD and BILD of Mandarin tones. The BMLDs of Mandarin tone detection were measured based on the detection threshold differences for the four tones of the voiced vowels /i/ (i.e., /i1/, /i2/, /i3/, and /i4/) and /u/ (i.e., /u1/, /u2/, /u3/, and /u4/) in the presence of speech-spectrum noise when presented interaurally in phase (S0N0) and interaurally in antiphase (SπN0). The BILDs of Mandarin tone recognition in speech-spectrum noise were determined as the differences in the target-to-masker ratio (TMR) required for 50% correct tone recognitions between the S0N0 and SπN0 conditions. The detection thresholds for the four tones of /i/ and /u/ differed significantly (p<0.001) between the S0N0 and SπN0 conditions. The average detection thresholds of Mandarin tones were all lower in the SπN0 condition than in the S0N0 condition, and the BMLDs ranged from 7.3 to 11.5 dB. The TMR for 50% correct Mandarin tone recognitions differed significantly (p<0.001) between the S0N0 and SπN0 conditions, at –13.4 and –18.0 dB, respectively, with a mean BILD of 4.6 dB. The study showed that the thresholds of Mandarin tone detection and recognition in the presence of speech-spectrum noise are improved when phase inversion is applied to the target speech. The average BILDs of Mandarin tones are smaller than the average BMLDs of Mandarin tones. PMID:25835987

  12. Capturing Callisto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter's outermost large moon, Callisto, as the spacecraft flew past Jupiter in late February. New Horizons' closest approach distance to Jupiter was 2.3 million kilometers (1.4 million miles), not far outside Callisto's orbit, which has a radius of 1.9 million kilometers (1.2 million miles). However, Callisto happened to be on the opposite side of Jupiter during the spacecraft's pass through the Jupiter system, so these images, taken from 4.7 million kilometers (3.0 million miles) and 4.2 million kilometers (2.6 million miles) away, are the closest of Callisto that New Horizons obtained.

    Callisto's ancient, crater-scarred surface makes it very different from its three more active sibling satellites, Io, Europa and Ganymede. Callisto, 4,800 kilometers (3000 miles) in diameter, displays no large-scale geological features other than impact craters, and every bright spot in these images is a crater. The largest impact feature on Callisto, the huge basin Valhalla, is visible as a bright patch at the 10 o'clock position. The craters are bright because they have excavated material relatively rich in water ice from beneath the dark, dusty material that coats most of the surface.

    The two images show essentially the same side of Callisto -- the side that faces Jupiter -- under different illumination conditions. The images accompanied scans of Callisto's infrared spectrum with New Horizons' Linear Etalon Imaging Spectral Array (LEISA). The New Horizons science team designed these scans to study how the infrared spectrum of Callisto's water ice changes as lighting and viewing conditions change, and as the ice cools through Callisto's late afternoon. The infrared spectrum of water ice depends slightly on its temperature, and a goal of New Horizons when it reaches the Pluto system (in 2015) is to use the water ice features in the spectrum of Pluto's moon Charon, and

  13. A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex

    PubMed Central

    Eustaquio-Martín, Almudena; Stohl, Joshua S.; Wolford, Robert D.; Schatzer, Reinhold; Wilson, Blake S.

    2016-01-01

    Objectives: In natural hearing, cochlear mechanical compression is dynamically adjusted via the efferent medial olivocochlear reflex (MOCR). These adjustments probably help understanding speech in noisy environments and are not available to the users of current cochlear implants (CIs). The aims of the present study are to: (1) present a binaural CI sound processing strategy inspired by the control of cochlear compression provided by the contralateral MOCR in natural hearing; and (2) assess the benefits of the new strategy for understanding speech presented in competition with steady noise with a speech-like spectrum in various spatial configurations of the speech and noise sources. Design: Pairs of CI sound processors (one per ear) were constructed to mimic or not mimic the effects of the contralateral MOCR on compression. For the nonmimicking condition (standard strategy or STD), the two processors in a pair functioned similarly to standard clinical processors (i.e., with fixed back-end compression and independently of each other). When configured to mimic the effects of the MOCR (MOC strategy), the two processors communicated with each other and the amount of back-end compression in a given frequency channel of each processor in the pair decreased/increased dynamically (so that output levels dropped/increased) with increases/decreases in the output energy from the corresponding frequency channel in the contralateral processor. Speech reception thresholds in speech-shaped noise were measured for 3 bilateral CI users and 2 single-sided deaf unilateral CI users. Thresholds were compared for the STD and MOC strategies in unilateral and bilateral listening conditions and for three spatial configurations of the speech and noise sources in simulated free-field conditions: speech and noise sources colocated in front of the listener, speech on the left ear with noise in front of the listener, and speech on the left ear with noise on the right ear. In both bilateral and

  14. Behavioural sensitivity to binaural spatial cues in ferrets: evidence for plasticity in the duplex theory of sound localization

    PubMed Central

    Keating, Peter; Nodal, Fernando R; King, Andrew J

    2014-01-01

    For over a century, the duplex theory has guided our understanding of human sound localization in the horizontal plane. According to this theory, the auditory system uses interaural time differences (ITDs) and interaural level differences (ILDs) to localize low-frequency and high-frequency sounds, respectively. Whilst this theory successfully accounts for the localization of tones by humans, some species show very different behaviour. Ferrets are widely used for studying both clinical and fundamental aspects of spatial hearing, but it is not known whether the duplex theory applies to this species or, if so, to what extent the frequency range over which each binaural cue is used depends on acoustical or neurophysiological factors. To address these issues, we trained ferrets to lateralize tones presented over earphones and found that the frequency dependence of ITD and ILD sensitivity broadly paralleled that observed in humans. Compared with humans, however, the transition between ITD and ILD sensitivity was shifted toward higher frequencies. We found that the frequency dependence of ITD sensitivity in ferrets can partially be accounted for by acoustical factors, although neurophysiological mechanisms are also likely to be involved. Moreover, we show that binaural cue sensitivity can be shaped by experience, as training ferrets on a 1-kHz ILD task resulted in significant improvements in thresholds that were specific to the trained cue and frequency. Our results provide new insights into the factors limiting the use of different sound localization cues and highlight the importance of sensory experience in shaping the underlying neural mechanisms. PMID:24256073

  15. Effect of monaural and binaural stimulation on cytoplasmic RNA content in cells of the central nucleus of the cat inferior colliculus.

    PubMed

    Shmigidina, G N

    1981-01-01

    A cytophotometric study of sections stained with gallocyanin and chrome alum showed that monaural stimulation for 2 h and binaural stimulation for 1.5 h with rhythmic noise signals led to a marked increase in the cytoplasmic RNA content per cell in the principal and large multipolar neurons of the dorsal and ventral parts of the ventrolateral region of the central nucleus of the inferior colliculus. The increase in cytoplasmic RNA content in the principal cells of the ipsi- and contralateral parts of this nucleus relative to the stimulated ear in the case of monaural stimulation and the increase in RNA content in response to binaural stimulation suggests a uniform distribution of bilaterally converging connections from the lower nuclei of the auditory system on the principal cells. The increase in cytoplasmic RNA in the large multipolar cells of the contralateral central nucleus in response to monaural stimulation is evidence of the predominantly contralateral projection to these cells. The results are evidence of convergence of binaural influences on the principal and large multipolar cells of the central nucleus of the inferior colliculus. PMID:6173796

  16. Binaural interactions develop in the auditory brainstem of children who are deaf: effects of place and level of bilateral electrical stimulation.

    PubMed

    Gordon, Karen A; Salloum, Claire; Toor, Gurvinder S; van Hoesel, Richard; Papsin, Blake C

    2012-03-21

    Bilateral cochlear implants (CIs) might promote development of binaural hearing required to localize sound sources and hear speech in noise for children who are deaf. These hearing skills improve in children implanted bilaterally but remain poorer than normal. We thus questioned whether the deaf and immature human auditory system is able to integrate input delivered from bilateral CIs. Using electrophysiological measures of brainstem activity that include the Binaural Difference (BD), a measure of binaural processing, we showed that a period of unilateral deprivation before bilateral CI use prolonged response latencies but that amplitudes were not significantly affected. Tonotopic organization was retained to some extent as evidenced by an elimination of the BD with large mismatches in place of stimulation between the two CIs. Smaller place mismatches did not affect BD latency or amplitude, indicating that the tonotopic organization of the auditory brainstem is underdeveloped and/or not well used by CI stimulation. Finally, BD amplitudes decreased when the intensity of bilateral stimulation became weighted to one side and this corresponded to a perceptual shift of sound away from midline toward the side of increased intensity. In summary, bilateral CI stimulation is processed by the developing human auditory brainstem leading to perceptual changes in sound location and potentially improving hearing for children who are deaf. PMID:22442083

  17. The observation of theta wave modulation on brain training by 5 Hz-binaural beat stimulation in seven days.

    PubMed

    Yamsa-Ard, Traisak; Wongsawat, Yodchanan

    2015-08-01

    Traditional buddhist meditation method maybe easy for someone with high experience. However, for the beginner, it is very difficult to keep mental concentration with the tradition way for more than 5 minutes. This research aims to observe effect of the new method for meditation in various analysis methods. A piano music mixed with a 5 Hz (theta band enhancement) binaural beat frequency was used to modulate the brain signals continuously for 7 days. Male of the average age of 33.5±3.84 and female of the average age of 28.6±2.49 were participated. All participants were acquired EEGs twice, before the experiment and seven days after the experiment. We also proposed the observations on the changes of absolute powers, relative powers and brain connectivity (coherence) of the participants. After seven days of training, the absolute power, relative power, and coherence were clearly closer to the normative database. We can initially say that the recommended meditation method can efficiently mimic the effect of having the traditional buddhist meditation on enhancing the delta and theta powers in the brain. PMID:26737822

  18. Sound localization in common vampire bats: acuity and use of the binaural time cue by a small mammal.

    PubMed

    Heffner, Rickye S; Koay, Gimseong; Heffner, Henry E

    2015-01-01

    Passive sound-localization acuity and the ability to use binaural time and intensity cues were determined for the common vampire bat (Desmodus rotundus). The bats were tested using a conditioned suppression/avoidance procedure in which they drank defibrinated blood from a spout in the presence of sounds from their right, but stopped drinking (i.e., broke contact with the spout) whenever a sound came from their left, thereby avoiding a mild shock. The mean minimum audible angle for three bats for a 100-ms noise burst was 13.1°-within the range of thresholds for other bats and near the mean for mammals. Common vampire bats readily localized pure tones of 20 kHz and higher, indicating they could use interaural intensity-differences. They could also localize pure tones of 5 kHz and lower, thereby demonstrating the use of interaural time-differences, despite their very small maximum interaural distance of 60 μs. A comparison of the use of locus cues among mammals suggests several implications for the evolution of sound localization and its underlying anatomical and physiological mechanisms. PMID:25618037

  19. Sound localization in common vampire bats: Acuity and use of the binaural time cue by a small mammal

    PubMed Central

    Heffner, Rickye S.; Koay, Gimseong; Heffner, Henry E.

    2015-01-01

    Passive sound-localization acuity and the ability to use binaural time and intensity cues were determined for the common vampire bat (Desmodus rotundus). The bats were tested using a conditioned suppression/avoidance procedure in which they drank defibrinated blood from a spout in the presence of sounds from their right, but stopped drinking (i.e., broke contact with the spout) whenever a sound came from their left, thereby avoiding a mild shock. The mean minimum audible angle for three bats for a 100-ms noise burst was 13.1°—within the range of thresholds for other bats and near the mean for mammals. Common vampire bats readily localized pure tones of 20 kHz and higher, indicating they could use interaural intensity-differences. They could also localize pure tones of 5 kHz and lower, thereby demonstrating the use of interaural time-differences, despite their very small maximum interaural distance of 60 μs. A comparison of the use of locus cues among mammals suggests several implications for the evolution of sound localization and its underlying anatomical and physiological mechanisms. PMID:25618037

  20. A new asymmetric directional microphone algorithm with automatic mode-switching ability for binaural hearing support devices.

    PubMed

    Kim, Jinryoul; Nam, Kyoung Won; Yook, Sunhyun; Jang, Dong Pyo; Kim, In Young; Hong, Sung Hwa

    2015-06-01

    For hearing support devices, it is important to minimize the negative effect of ambient noises for speech recognition but also, at the same time, supply natural ambient sounds to the hearing-impaired person. However, conventional fixed bilateral asymmetric directional microphone (DM) algorithms cannot perform in such a way when the DM-mode device and a dominant noise (DN) source are placed on the same lateral hemisphere. In this study, a new binaural asymmetric DM algorithm that can overcome the defects of conventional algorithms is proposed. The proposed algorithm can estimate the position of a specific DN in the 90°-270° range and switch directional- and omnidirectional-mode devices automatically if the DM-mode device and the DN are placed in opposite lateral hemispheres. Computer simulation and KEMAR mannequin recording tests demonstrated that the performance of the conventional algorithm deteriorated when the DM-mode device and the DN were placed in the opposite hemisphere; in contrast, the performance of the proposed algorithm was consistently maintained regardless of directional variations in the DN. Based on these experimental results, the proposed algorithm may be able to improve speech quality and intelligibility for hearing-impaired persons who have similar degrees of hearing impairment in both ears. PMID:25597956

  1. Video Screen Capture Basics

    ERIC Educational Resources Information Center

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  2. Binaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl: local organization but no space map.

    PubMed

    Cohen, Y E; Knudsen, E I

    1995-07-01

    We identified a region in the archistriatum of the barn owl forebrain that contains neurons sensitive to auditory stimuli. Nearly all of these neurons are tuned for binaural localization cues. The archistriatum is known to be the primary source of motor-related output from the avian forebrain and, in barn owls, contributes to the control of gaze, much like the frontal eye fields in monkeys. The auditory region is located in the medial portion of the archistriatum, at the level of the anterior commissure, and is within the region of the archistriatum from which head saccades can be elicited by electrical microstimulation (see preceding companion article, Knudsen et al., 1995). Free-field measurements revealed that auditory sites have large, spatial receptive fields. However, within these large receptive fields, responses are tuned sharply for sound source location. Dichotic measurements showed that auditory sites are tuned broadly for frequency and that the majority are tuned to particular values of interaural time differences and interaural level differences, the principal cues used by barn owls for sound localization. The tuning of sites to these binaural cues is essentially independent of sound level. The auditory properties of units in the medial archistriatum are similar to those of units in the optic tectum, a structure that also contributes to gaze control. Unlike the optic tectum, however, the auditory region of the archistriatum does not contain a single, continuous auditory map of space. Instead, it is organized into dorsoventral clusters of sites with similar binaural (spatial) tuning. The different representations of auditory space in closely related structures in the forebrain (archistriatum) and midbrain (optic tectum) probably reflect the fact that the forebrain contributes to a wide variety of sensorimotor tasks more complicated than gaze control. PMID:7623142

  3. Relating hearing loss and executive functions to hearing aid users' preference for, and speech recognition with, different combinations of binaural noise reduction and microphone directionality.

    PubMed

    Neher, Tobias

    2014-01-01

    Knowledge of how executive functions relate to preferred hearing aid (HA) processing is sparse and seemingly inconsistent with related knowledge for speech recognition outcomes. This study thus aimed to find out if (1) performance on a measure of reading span (RS) is related to preferred binaural noise reduction (NR) strength, (2) similar relations exist for two different, non-verbal measures of executive function, (3) pure-tone average hearing loss (PTA), signal-to-noise ratio (SNR), and microphone directionality (DIR) also influence preferred NR strength, and (4) preference and speech recognition outcomes are similar. Sixty elderly HA users took part. Six HA conditions consisting of omnidirectional or cardioid microphones followed by inactive, moderate, or strong binaural NR as well as linear amplification were tested. Outcome was assessed at fixed SNRs using headphone simulations of a frontal target talker in a busy cafeteria. Analyses showed positive effects of active NR and DIR on preference, and negative and positive effects of, respectively, strong NR and DIR on speech recognition. Also, while moderate NR was the most preferred NR setting overall, preference for strong NR increased with SNR. No relation between RS and preference was found. However, larger PTA was related to weaker preference for inactive NR and stronger preference for strong NR for both microphone modes. Equivalent (but weaker) relations between worse performance on one non-verbal measure of executive function and the HA conditions without DIR were found. For speech recognition, there were relations between HA condition, PTA, and RS, but their pattern differed from that for preference. Altogether, these results indicate that, while moderate NR works well in general, a notable proportion of HA users prefer stronger NR. Furthermore, PTA and executive functions can account for some of the variability in preference for, and speech recognition with, different binaural NR and DIR settings. PMID

  4. Relating hearing loss and executive functions to hearing aid users' preference for, and speech recognition with, different combinations of binaural noise reduction and microphone directionality

    PubMed Central

    Neher, Tobias

    2014-01-01

    Knowledge of how executive functions relate to preferred hearing aid (HA) processing is sparse and seemingly inconsistent with related knowledge for speech recognition outcomes. This study thus aimed to find out if (1) performance on a measure of reading span (RS) is related to preferred binaural noise reduction (NR) strength, (2) similar relations exist for two different, non-verbal measures of executive function, (3) pure-tone average hearing loss (PTA), signal-to-noise ratio (SNR), and microphone directionality (DIR) also influence preferred NR strength, and (4) preference and speech recognition outcomes are similar. Sixty elderly HA users took part. Six HA conditions consisting of omnidirectional or cardioid microphones followed by inactive, moderate, or strong binaural NR as well as linear amplification were tested. Outcome was assessed at fixed SNRs using headphone simulations of a frontal target talker in a busy cafeteria. Analyses showed positive effects of active NR and DIR on preference, and negative and positive effects of, respectively, strong NR and DIR on speech recognition. Also, while moderate NR was the most preferred NR setting overall, preference for strong NR increased with SNR. No relation between RS and preference was found. However, larger PTA was related to weaker preference for inactive NR and stronger preference for strong NR for both microphone modes. Equivalent (but weaker) relations between worse performance on one non-verbal measure of executive function and the HA conditions without DIR were found. For speech recognition, there were relations between HA condition, PTA, and RS, but their pattern differed from that for preference. Altogether, these results indicate that, while moderate NR works well in general, a notable proportion of HA users prefer stronger NR. Furthermore, PTA and executive functions can account for some of the variability in preference for, and speech recognition with, different binaural NR and DIR settings. PMID

  5. Capture Their Attention: Capturing Lessons Using Screen Capture Software

    ERIC Educational Resources Information Center

    Drumheller, Kristina; Lawler, Gregg

    2011-01-01

    When students miss classes for university activities such as athletic and academic events, they inevitably miss important class material. Students can get notes from their peers or visit professors to find out what they missed, but when students miss new and challenging material these steps are sometimes not enough. Screen capture and recording…

  6. Cryogenic Carbon Capture

    SciTech Connect

    2010-07-15

    IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

  7. Blind people are more sensitive than sighted people to binaural sound-location cues, particularly inter-aural level differences.

    PubMed

    Nilsson, Mats E; Schenkman, Bo N

    2016-02-01

    Blind people use auditory information to locate sound sources and sound-reflecting objects (echolocation). Sound source localization benefits from the hearing system's ability to suppress distracting sound reflections, whereas echolocation would benefit from "unsuppressing" these reflections. To clarify how these potentially conflicting aspects of spatial hearing interact in blind versus sighted listeners, we measured discrimination thresholds for two binaural location cues: inter-aural level differences (ILDs) and inter-aural time differences (ITDs). The ILDs or ITDs were present in single clicks, in the leading component of click pairs, or in the lagging component of click pairs, exploiting processes related to both sound source localization and echolocation. We tested 23 blind (mean age = 54 y), 23 sighted-age-matched (mean age = 54 y), and 42 sighted-young (mean age = 26 y) listeners. The results suggested greater ILD sensitivity for blind than for sighted listeners. The blind group's superiority was particularly evident for ILD-lag-click discrimination, suggesting not only enhanced ILD sensitivity in general but also increased ability to unsuppress lagging clicks. This may be related to the blind person's experience of localizing reflected sounds, for which ILDs may be more efficient than ITDs. On the ITD-discrimination tasks, the blind listeners performed better than the sighted age-matched listeners, but not better than the sighted young listeners. ITD sensitivity declines with age, and the equal performance of the blind listeners compared to a group of substantially younger listeners is consistent with the notion that blind people's experience may offset age-related decline in ITD sensitivity. PMID:26433052

  8. Predicting binaural responses from monaural responses in the gerbil medial superior olive.

    PubMed

    Plauška, Andrius; Borst, J Gerard; van der Heijden, Marcel

    2016-06-01

    Accurate sound source localization of low-frequency sounds in the horizontal plane depends critically on the comparison of arrival times at both ears. A specialized brainstem circuit containing the principal neurons of the medial superior olive (MSO) is dedicated to this comparison. MSO neurons are innervated by segregated inputs from both ears. The coincident arrival of excitatory inputs from both ears is thought to trigger action potentials, with differences in internal delays creating a unique sensitivity to interaural time differences (ITDs) for each cell. How the inputs from both ears are integrated by the MSO neurons is still debated. Using juxtacellular recordings, we tested to what extent MSO neurons from anesthetized Mongolian gerbils function as simple cross-correlators of their bilateral inputs. From the measured subthreshold responses to monaural wideband stimuli we predicted the rate-ITD functions obtained from the same MSO neuron, which have a damped oscillatory shape. The rate of the oscillations and the position of the peaks and troughs were accurately predicted. The amplitude ratio between dominant and secondary peaks of the rate-ITD function, captured in the width of its envelope, was not always exactly reproduced. This minor imperfection pointed to the methodological limitation of using a linear representation of the monaural inputs, which disregards any temporal sharpening occurring in the cochlear nucleus. The successful prediction of the major aspects of rate-ITD curves supports a simple scheme in which the ITD sensitivity of MSO neurons is realized by the coincidence detection of excitatory monaural inputs. PMID:27009164

  9. Overriding auditory attentional capture.

    PubMed

    Dalton, Polly; Lavie, Nilli

    2007-02-01

    Attentional capture by color singletons during shape search can be eliminated when the target is not a feature singleton (Bacon & Egeth, 1994). This suggests that a "singleton detection" search strategy must be adopted for attentional capture to occur. Here we find similar effects on auditory attentional capture. Irrelevant high-intensity singletons interfered with an auditory search task when the target itself was also a feature singleton. However, singleton interference was eliminated when the target was not a singleton (i.e., when nontargets were made heterogeneous, or when more than one target sound was presented). These results suggest that auditory attentional capture depends on the observer's attentional set, as does visual attentional capture. The suggestion that hearing might act as an early warning system that would always be tuned to unexpected unique stimuli must therefore be modified to accommodate these strategy-dependent capture effects. PMID:17557587

  10. Testing the Capture Magnet

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of a model capture magnet was taken after an experiment in a Mars simulation chamber at the University of Aarhus, Denmark. It has some dust on it, but not as much as that on the Mars Exploration Rover Spirit's capture magnet. The capture and filter magnets on both Mars Exploration Rovers were delivered by the magnetic properties team at the Center for Planetary Science, Copenhagen, Denmark.

  11. Improving speech-in-noise recognition for children with hearing loss: Potential effects of language abilities, binaural summation, and head shadow

    PubMed Central

    Nittrouer, Susan; Caldwell-Tarr, Amanda; Tarr, Eric; Lowenstein, Joanna H.; Rice, Caitlin; Moberly, Aaron C.

    2014-01-01

    Objective: This study examined speech recognition in noise for children with hearing loss, compared it to recognition for children with normal hearing, and examined mechanisms that might explain variance in children’s abilities to recognize speech in noise. Design: Word recognition was measured in two levels of noise, both when the speech and noise were co-located in front and when the noise came separately from one side. Four mechanisms were examined as factors possibly explaining variance: vocabulary knowledge, sensitivity to phonological structure, binaural summation, and head shadow. Study sample: Participants were 113 eight-year-old children. Forty-eight had normal hearing (NH) and 65 had hearing loss: 18 with hearing aids (HAs), 19 with one cochlear implant (CI), and 28 with two CIs. Results: Phonological sensitivity explained a significant amount of between-groups variance in speech-in-noise recognition. Little evidence of binaural summation was found. Head shadow was similar in magnitude for children with NH and with CIs, regardless of whether they wore one or two CIs. Children with HAs showed reduced head shadow effects. Conclusion: These outcomes suggest that in order to improve speech-in-noise recognition for children with hearing loss, intervention needs to be comprehensive, focusing on both language abilities and auditory mechanisms. PMID:23834373

  12. Spatial capture-recapture

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Sollmann, Rahel; Gardner, Beth

    2013-01-01

    Spatial Capture-Recapture provides a revolutionary extension of traditional capture-recapture methods for studying animal populations using data from live trapping, camera trapping, DNA sampling, acoustic sampling, and related field methods. This book is a conceptual and methodological synthesis of spatial capture-recapture modeling. As a comprehensive how-to manual, this reference contains detailed examples of a wide range of relevant spatial capture-recapture models for inference about population size and spatial and temporal variation in demographic parameters. Practicing field biologists studying animal populations will find this book to be a useful resource, as will graduate students and professionals in ecology, conservation biology, and fisheries and wildlife management.

  13. Structure-based modeling of head-related transfer functions towards interactive customization of binaural sound systems

    NASA Astrophysics Data System (ADS)

    Gupta, Navarun

    2003-10-01

    One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield "Model HRTFs" that can create elevation effects. Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this

  14. Demonstrating carbon capture

    SciTech Connect

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  15. Intelsat VI Capture Attempt

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The first single crewmember EVA capture attempt of the Intelsat VI as seen from Endeavour's aft flight deck windows. EVA Mission Specialist Pierre Thuot standing on the Remote Manipulator System (RMS) end effector platform, with the satellite capture bar attempting to attach it to the free floating communications satellite.

  16. IMPACCT: Carbon Capture Technology

    SciTech Connect

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  17. Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human.

    PubMed

    Wang, Yuan; Sakano, Hitomi; Beebe, Karisa; Brown, Maile R; de Laat, Rian; Bothwell, Mark; Kulesza, Randy J; Rubel, Edwin W

    2014-06-15

    Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders. PMID:24318628

  18. Spatial Knowledge Capture Library

    Energy Science and Technology Software Center (ESTSC)

    2005-05-16

    The Spatial Knowledge Capture Library is a set of algorithms to capture regularities in shapes and trajectories through space and time. We have applied Spatial Knowledge Capture to model the actions of human experts in spatial domains, such as an AWACS Weapons Director task simulation. The library constructs a model to predict the expert’s response to sets of changing cues, such as the movements and actions of adversaries on a battlefield, The library includes amore » highly configurable feature extraction functionality, which supports rapid experimentation to discover causative factors. We use k-medoid clustering to group similar episodes of behavior, and construct a Markov model of system state transitions induced by agents’ actions.« less

  19. AKM capture device

    NASA Technical Reports Server (NTRS)

    Harwell, William D.

    1987-01-01

    In an effort to recover the Westar and Palapa satellites and the considerable investment each represented, NASA and Hughes undertook the Satellite Retrieval Mission. The mechanism used to capture each of the errant satellites was the AKM (Apogee Kick Motor) Capture Device (ACD), also referred to as the Stinger. The ACD had three interface requirements: interface with the Manned Maneuvering Unit (MMU) for transportation to and stabilization of the spacecrafts; interface with each satellite for retrieval; and finally, interface with the Shuttle's Remote Manipulator System (RMS or robot arm) for satellite transport back to the Orbiter's payload bay. The majority of the design requirements were associated with the capture and release of the satellites. In addition to these unique requirements, the general EVA, RMS grapple, and RMS manipulation requirements applied. These requirements included thermal, glare, snag, RMS runaway and crewman safety considerations.

  20. Contingent Attentional Capture

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Folk, Charles L.

    1994-01-01

    Four experiments address the degree of top-down selectivity in attention capture by feature singletons through manipulations of the spatial relationship and featural similarity of target and distractor singletons in a modified spatial cuing paradigm. Contrary to previous studies, all four experiments show that when searching for a singleton target, an irrelevant featural singleton captures attention only when defined by the same feature value as the target. Experiments 2, 3, and 4 provide a potential explanation for this empirical discrepancy by showing that irrelevant singletons can produce distraction effects that are independent of shifts of spatial attention. The results further support the notion that attentional capture is contingent on top-down attention control settings but indicates that such settings can be instantiated at the level of feature values.

  1. US Spacesuit Knowledge Capture

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen

    2011-01-01

    The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes

  2. Resistance gene capture.

    PubMed

    Rowe-Magnus, D A; Mazel, D

    1999-10-01

    Integrons are the primary mechanism for antibiotic-resistance gene capture and dissemination among Gram-negative bacteria. The recent finding of super-integron structures in the genomes of several bacterial species has expanded their role in genome evolution and suggests that they are the source of mobile multi-resistant integrons. PMID:10508722

  3. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  4. Neutron capture therapies

    SciTech Connect

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  5. Attention Capture by Faces

    ERIC Educational Resources Information Center

    Langton, Stephen R. H.; Law, Anna S.; Burton, A. Mike; Schweinberger, Stefan R.

    2008-01-01

    We report three experiments that investigate whether faces are capable of capturing attention when in competition with other non-face objects. In Experiment 1a participants took longer to decide that an array of objects contained a butterfly target when a face appeared as one of the distracting items than when the face did not appear in the array.…

  6. Carbon Smackdown: Carbon Capture

    ScienceCinema

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  7. Carbon Smackdown: Carbon Capture

    SciTech Connect

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  8. Capturing the Market

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2009-01-01

    Digital lecture capture and broadcast solutions have been around for only about 10 years, but are poised for healthy growth. Frost & Sullivan research analysts estimate that the market (which amounts to $25 million currently) will quadruple by 2013. It's still dominated by a few key players, however: Sonic Foundry holds a hefty 40 percent-plus…

  9. Advanced Telemetry Data Capturing

    SciTech Connect

    Paschke, G.A.

    2000-05-16

    This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

  10. Target activated frame capture

    NASA Astrophysics Data System (ADS)

    Roberts, G. Marlon; Fitzgerald, James; McCormack, Michael; Steadman, Robert

    2008-04-01

    Over the past decade, technological advances have enabled the use of increasingly intelligent systems for battlefield surveillance. These systems are triggered by a combination of external devices including acoustic and seismic sensors. Such products are mainly used to detect vehicles and personnel. These systems often use infra-red imagery to record environmental information, but Textron Defense Systems' Terrain Commander is one of a small number of systems which analyze these images for the presence of targets. The Terrain Commander combines acoustic, infrared, magnetic, seismic, and visible spectrum sensors to detect nearby targets in military scenarios. When targets are detected by these sensors, the cameras are triggered and images are captured in the infrared and visible spectrum. In this paper we discuss a method through which such systems can perform target tracking in order to record and transmit only the most pertinent surveillance images. This saves bandwidth which is crucial because these systems often use communication systems with throughputs below 2400bps. This method is expected to be executable on low-power processors at frame rates exceeding 10HZ. We accomplish this by applying target activated frame capture algorithms to infra-red video data. The target activated frame capture algorithms combine edge detection and motion detection to determine the best frames to be transmitted to the end user. This keeps power consumption and bandwidth requirements low. Finally, the results of the algorithm are analyzed.

  11. Capturing nature's diversity.

    PubMed

    Pascolutti, Mauro; Campitelli, Marc; Nguyen, Bao; Pham, Ngoc; Gorse, Alain-Dominique; Quinn, Ronald J

    2015-01-01

    Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a

  12. Capturing Nature's Diversity

    PubMed Central

    Pascolutti, Mauro; Campitelli, Marc; Nguyen, Bao; Pham, Ngoc; Gorse, Alain-Dominique; Quinn, Ronald J.

    2015-01-01

    Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a

  13. Capturing Darwin's dream.

    PubMed

    Glenn, Travis C; Faircloth, Brant C

    2016-09-01

    Evolutionary biologists from Darwin forward have dreamed of having data that would elucidate our understanding of evolutionary history and the diversity of life. Sequence capture is a relatively old DNA technology, but its use is growing rapidly due to advances in (i) massively parallel DNA sequencing approaches and instruments, (ii) massively parallel bait construction, (iii) methods to identify target regions and (iv) sample preparation. We give a little historical context to these developments, summarize some of the important advances reported in this special issue and point to further advances that can be made to help fulfill Darwin's dream. PMID:27454358

  14. Capturing the Daylight Dividend

    SciTech Connect

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  15. Sensitivity to Interaural Time Differences Conveyed in the Stimulus Envelope: Estimating Inputs of Binaural Neurons Through the Temporal Analysis of Spike Trains.

    PubMed

    Dietz, Mathias; Wang, Le; Greenberg, David; McAlpine, David

    2016-08-01

    Sound-source localization in the horizontal plane relies on detecting small differences in the timing and level of the sound at the two ears, including differences in the timing of the modulated envelopes of high-frequency sounds (envelope interaural time differences (ITDs)). We investigated responses of single neurons in the inferior colliculus (IC) to a wide range of envelope ITDs and stimulus envelope shapes. By a novel means of visualizing neural activity relative to different portions of the periodic stimulus envelope at each ear, we demonstrate the role of neuron-specific excitatory and inhibitory inputs in creating ITD sensitivity (or the lack of it) depending on the specific shape of the stimulus envelope. The underlying binaural brain circuitry and synaptic parameters were modeled individually for each neuron to account for neuron-specific activity patterns. The model explains the effects of envelope shapes on sensitivity to envelope ITDs observed in both normal-hearing listeners and in neural data, and has consequences for understanding how ITD information in stimulus envelopes might be maximized in users of bilateral cochlear implants-for whom ITDs conveyed in the stimulus envelope are the only ITD cues available. PMID:27294694

  16. Perceptual objects capture attention.

    PubMed

    Yeshurun, Yaffa; Kimchi, Ruth; Sha'shoua, Guy; Carmel, Tomer

    2009-06-01

    A recent study has demonstrated that the mere organization of some elements in the visual field into an object attracts attention automatically [Kimchi, R., Yeshurun, Y., & Cohen-Savransky, A. (2007). Automatic, stimulus-driven attentional capture by objecthood. Psychonomic Bulletin & Review, 14(1), 166-172]. We tested whether similar results will emerge when the target is not a part of the object and with simplified task demands. A matrix of 16 black L elements in various orientations preceded the presentation of a Vernier target. The target was either added to the matrix (Experiment 1), or appeared after its offset (Experiment 2). On some trials four elements formed a square-like object, and on some of these trials the target appeared in the center of the object. No featural uniqueness or abrupt onset was associated with the object and it did not predict the target location or the direction of the target's horizontal offset. Performance was better when the target appeared in the center of the object than in a different location than the object, even when the target appeared after the matrix offset. These findings support the hypothesis that a perceptual object captures attention (Kimchi et al., 2007), and demonstrate that this automatic deployment of attention to the object is robust and involves a spatial component. PMID:18299141

  17. Passive Ball Capture Joint

    NASA Technical Reports Server (NTRS)

    Cloyd, Richard A. (Inventor); Bryan, Thomas C. (Inventor)

    2003-01-01

    A passive ball capture joint has a sleeve with a plurality of bores distributed about a circumference thereof and formed therethrough at an acute angle relative to the sleeve's longitudinal axis. A spring-loaded retainer is slidingly fitted in each bore and is biased such that, if allowed, will extend at least partially into the sleeve to retain a ball therein. A ring, rotatably mounted about the bores, has an interior wall defining a plurality of shaped races that bear against the spring-loaded retainers. A mechanized rotational force producer is coupled to the ring. The ring can be rotated from a first position (that presses the retainers into the sleeve to lock the ball in place) to a second position (that allows the retainers to springback out of the sleeve to release the ball).

  18. Capturing the uncultivated majority

    SciTech Connect

    Green, Brian D.; Keller, Martin

    2007-04-02

    The metagenomic analysis of environmental microbialcommunities continues to be a rapidly developing area of study. DNAisolation, the first step in capturing the uncultivated majority, hasseen many advances in recent years. Protocols have been developed todistinguish DNA from live versus dead cells and to separate extracellularfrom intracellular DNA. Looking to increase our understanding of the rolethat members of a microbial community play in ecological processes,several techniques have been developed that are enabling greater indepthanalysis of environmental metagenomes. These include the development ofenvironmental gene tags and the serial analysis of 16S rRNA gene sequencetags. In addition, new screening methods have been designed to select forspecific functional genes within metagenomic libraries. Finally, newcultivation methods continue to be developed to improve our ability tocapture a greater diversity of microorganisms within theenvironment.

  19. Fragment capture device

    DOEpatents

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  20. Robust automated knowledge capture.

    SciTech Connect

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  1. Capture-ejector satellites

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Eldred, C. H.; Martin, J. A.

    1983-01-01

    A satellite in the form of a large rotating rim which can be used to boost spacecraft from low-Earth orbit to higher orbits is described. The rim rotates in the plane of its orbit such that the lower portion of the rim is traveling at suborbital velocity, while the upper portion is travelling at greater than orbital velocity. Ascending spacecraft or payloads arrive at the lowest portion of the rim at suborbital velocities, where the payloads are released on a trajectory for higher orbits; descending payloads employ the reverse procedure. Electric thrusters placed on the rim maintain rim rotational speed and altitude. From the standpoint of currently known materials, the capture-ejector concept may be useful for relatively small velocity increments.

  2. Particle capture device

    DOEpatents

    Jayne, John T.; Worsnop, Douglas R.

    2016-02-23

    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  3. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media. PMID:11538362

  4. Lunar Sulfur Capture System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  5. The physics of intact capture

    NASA Technical Reports Server (NTRS)

    Tsou, Peter; Griffiths, D. J.; Albee, A. L.

    1994-01-01

    The ability to capture projectiles intact at hypervelocities in underdense media open a new area of study in physics. Underdense material behaves markedly different than solid, liquid, or gas upon hypervelocity impact. This new phenomenon enables applications in science that would either not be possible or would be very costly by other means. This phenomenon has been fully demonstrated in the laboratory and validated in space. Even more interesting is the fact that this hypervelocity intact capture was accomplished passively. A better understanding of the physics of intact capture will lead to improvements in intact capture. A collection of physical observations of this phenomenon is presented here.

  6. Resource capture by single leaves

    SciTech Connect

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  7. Inland capture fisheries

    PubMed Central

    Welcomme, Robin L.; Cowx, Ian G.; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-01-01

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production. PMID:20713391

  8. Captured by Aliens

    NASA Astrophysics Data System (ADS)

    Achenbach, Joel

    2000-03-01

    Captured by Aliens is a long and twisted voyage from science to the supernatural and back again. I hung out in Roswell, N.M., spent time with the Mars Society, met a guy who was figuring out the best way to build a spaceship to go to Alpha Centauri. I visited the set of the X-Files and talked to Mulder and Scully. One day over breakfast I was told by NASA administrator Dan Goldin, We live in a fog, man! He wants the big answers to the big questions. I spent a night in the base of a huge radio telescope in the boondocks of West Virginia, awaiting the signal from the aliens. I was hypnotized in a hotel room by someone who suspected that I'd been abducted by aliens and that this had triggered my interest in the topic. In the last months of his life, I talked to Carl Sagan, who believed that the galaxy riots with intelligent civilizations. He's my hero, for his steadfast adherence to the scientific method. What I found in all this is that the big question that needs immediate attention is not what's out THERE, but what's going on HERE, on Earth, and why we think the way we do, and how we came to be here in the first place.

  9. Capture-recapture methodology

    USGS Publications Warehouse

    Gould, William R.; Kendall, William L.

    2013-01-01

    Capture-recapture methods were initially developed to estimate human population abundance, but since that time have seen widespread use for fish and wildlife populations to estimate and model various parameters of population, metapopulation, and disease dynamics. Repeated sampling of marked animals provides information for estimating abundance and tracking the fate of individuals in the face of imperfect detection. Mark types have evolved from clipping or tagging to use of noninvasive methods such as photography of natural markings and DNA collection from feces. Survival estimation has been emphasized more recently as have transition probabilities between life history states and/or geographical locations, even where some states are unobservable or uncertain. Sophisticated software has been developed to handle highly parameterized models, including environmental and individual covariates, to conduct model selection, and to employ various estimation approaches such as maximum likelihood and Bayesian approaches. With these user-friendly tools, complex statistical models for studying population dynamics have been made available to ecologists. The future will include a continuing trend toward integrating data types, both for tagged and untagged individuals, to produce more precise and robust population models.

  10. Vehicle capture system

    NASA Astrophysics Data System (ADS)

    Tacke, Kenneth L.

    1998-12-01

    Primex Aerospace Company, under contract with the U.S. Army Armament Research Development & Engineering Center (ARDEC), has developed a portable vehicle capture system for use at vehicle checkpoints. Currently when a vehicle does not stop at a checkpoint, there are three possible reactions: let the vehicle go unchallenged, pursue the vehicle or stop the vehicle with lethal force. This system provides a non-lethal alternative that will stop and contain the vehicle. The system is completely portable with the heaviest component weighing less than 120 pounds. It can be installed with no external electrical power or permanent anchors required. In its standby mode, the system does not impede normal traffic, but on command erects a barrier in less than 1.5 seconds. System tests have been conducted using 5,100 and 8.400 pound vehicles, traveling at speeds up to 45 mph. The system is designed to minimize vehicle damage and occupant injury, typically resulting in deceleration forces of less than 2.5 gs on the vehicle. According to the drivers involved in tests at 45 mph, the stopping forces feel similar to a panic stop with the vehicle brakes locked. The system is completely reusable and be rapidly reset.

  11. Intact capture of cosmic dust

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1991-01-01

    The focus of this development effort is to capture dust particles at hypervelocities intact and unmelted in order to preserve volatile organics. At the same time, the capture process must minimize any organic elemental or compound contamination to prevent any compromise of exobiological analyses. Inorganic silicate aerogel has been developed as a successful capture medium to satisfy both requirements of intact capture and minimal organic contamination. Up to 6 km/s, silicate projectiles from a few microns up to 100 microns have been captured intact without any melting and with minimal loss of mass. Carbon in silicate aerogel can be reduced to less than 1 part in 1000 and hydrogen 3 parts in 1000 when baked in air. Under controlled inert gas environments, additional hydrocarbon reduction can be achieved.

  12. River Capture in Disequilibrium Landscapes

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Perron, J.; Willett, S.; Goren, L.

    2013-12-01

    The process of river piracy or river capture has long drawn interest as a potential mechanism by which drainage basins large and small evolve towards an equilibrium state. River capture transfers both drainage area and drainage lines from one river basin to another, which can cause large, abrupt shifts in network topology, drainage divide positions, and river incision rates. Despite numerous case studies in which river capture has been proposed to have occurred, there is no general, mechanistic framework for understanding the controls on river capture, nor are there quantitative criteria for determining if capture has occurred. Here we use new metrics of landscape disequilibrium to first identify landscapes in which drainage reorganization is occurring. These metrics are based on a balance between an integral of the contributing drainage area and elevation. In an analysis of rivers in the Eastern United States we find that many rivers are in a state of disequilibrium and are experiencing recent or ongoing area exchange between basins. In these disequilibrium basins we find widespread evidence for network rearrangement via river capture at multiple scales. We then conduct numerical experiments with a 2-D landscape evolution model to explore the conditions in which area exchange among drainage basins is likely to occur as discrete capture events as opposed to continuous divide migration. These experiments indicate that: (1) capture activity increases with the degree of disequilibrium induced by persistent spatial gradients in tectonic forcing or by temporal changes in climate or tectonic forcing; (2) capture activity is strongly controlled by the initial planform drainage network geometry; and (3) capture activity scales with the fluvial incision rate constant in the river power erosion law.

  13. Carbon Capture and Storage

    SciTech Connect

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  14. Iodine neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  15. Neutron capture reactions at DANCE

    SciTech Connect

    Bredeweg, T. A.

    2008-05-12

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4{pi} BaF{sub 2} array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 {mu}g) and/or radioactive (< or approx. 100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on {sup 241,243}Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio ({alpha} = {sigma}{sub {gamma}}/{sigma}{sub f}) for {sup 235}U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  16. Neutron capture reactions at DANCE

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (<~100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  17. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  18. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  19. ISS Update: Capturing a Dragon

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly talks with Melanie Miller, Robotics Officer, about the capture of the SpaceX Dragon commercial cargo craft by the Expedition 33 crew of the International Spa...

  20. Radiative capture reactions in astrophysics

    SciTech Connect

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  1. ISS Update: Capturing a Dragon

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly talks with space station training instructors Jeff Tuxhorn and Graeme Newman, who trained the space station crews on how to capture SpaceX’s Dragon spacecr...

  2. Resonance capture at arbitrary inclination

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2015-01-01

    Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1:5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180° with 5° increments totalling nearly 6 × 105 numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10°,110°]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60°,130°]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.

  3. Toward transformational carbon capture systems

    SciTech Connect

    Miller, David C.; Litynski, John T.; Brickett, Lynn A.; Morreale, Bryan D.

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  4. Neutron densities from muon capture

    NASA Astrophysics Data System (ADS)

    Huan Ching, Chiang; Oset, Eulogio

    1991-10-01

    We show that, because of Pauli blocking and renormalization of the weak currents in nuclei, the muon capture rates are rather sensitive to the neutron distributions. We also show that, because of intrinsic theoretical uncertainties, neutron radia cannot be determined with precision but some reasonable limits can be given. However, the ratio of capture rates in different isotopes serves to determine the neutron radii of the isotopes provided the neutron density distribution for one of them is known.

  5. Capture of the gaze does not capture the mind.

    PubMed

    Lange, Elke B; Starzynski, Christian; Engbert, Ralf

    2012-08-01

    Sudden visual changes attract our gaze, and related eye movement control requires attentional resources. Attention is a limited resource that is also involved in working memory--for instance, memory encoding. As a consequence, theory suggests that gaze capture could impair the buildup of memory respresentations due to an attentional resource bottleneck. Here we developed an experimental design combining a serial memory task (verbal or spatial) and concurrent gaze capture by a distractor (of high or low similarity to the relevant item). The results cannot be explained by a general resource bottleneck. Specifically, we observed that capture by the low-similar distractor resulted in delayed and reduced saccade rates to relevant items in both memory tasks. However, while spatial memory performance decreased, verbal memory remained unaffected. In contrast, the high-similar distractor led to capture and memory loss for both tasks. Our results lend support to the view that gaze capture leads to activation of irrelevant representations in working memory that compete for selection at recall. Activation of irrelevant spatial representations distracts spatial recall, whereas activation of irrelevant verbal features impairs verbal memory performance. PMID:22648605

  6. Capturing carbon and saving coal

    SciTech Connect

    Johnson, J.

    2007-10-15

    Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.

  7. CHAOTIC CAPTURE OF NEPTUNE TROJANS

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David

    2009-06-15

    Neptune Trojans (NTs) are swarms of outer solar system objects that lead/trail planet Neptune during its revolutions around the Sun. Observations indicate that NTs form a thick cloud of objects with a population perhaps {approx}10 times more numerous than that of Jupiter Trojans and orbital inclinations reaching {approx}25 deg. The high inclinations of NTs are indicative of capture instead of in situ formation. Here we study a model in which NTs were captured by Neptune during planetary migration when secondary resonances associated with the mean-motion commensurabilities between Uranus and Neptune swept over Neptune's Lagrangian points. This process, known as chaotic capture, is similar to that previously proposed to explain the origin of Jupiter's Trojans. We show that chaotic capture of planetesimals from an {approx}35 Earth-mass planetesimal disk can produce a population of NTs that is at least comparable in number to that inferred from current observations. The large orbital inclinations of NTs are a natural outcome of chaotic capture. To obtain the {approx}4:1 ratio between high- and low-inclination populations suggested by observations, planetary migration into a dynamically excited planetesimal disk may be required. The required stirring could have been induced by Pluto-sized and larger objects that have formed in the disk.

  8. Adaptive capture of expert behavior

    SciTech Connect

    Jones, R.D.; Barrett, C.L.; Hand, U.; Gordon, R.C.

    1994-08-01

    The authors smoothed and captured a set of expert rules with adaptive networks. The motivation for doing this is discussed. (1) Smoothing leads to stabler control actions. (2) For some sets of rules, the evaluation of the rules can be sped up. This is important in large-scale simulations where many intelligent elements are present. (3) Variability of the intelligent elements can be achieved by adjusting the weights in an adaptive network. (4) After capture has occurred, the weights can be adjusted based on performance criteria. The authors thus have the capability of learning a new set of rules that lead to better performance. The set of rules the authors chose to capture were based on a set of threat determining rules for tank commanders. The approach in this paper: (1) They smoothed the rules. The rule set was converted into a simple set of arithmetic statements. Continuous, non-binary inputs, are now permitted. (2) An operational measure of capturability was developed. (3) They chose four candidate networks for the rule set capture: (a) multi-linear network, (b) adaptive partial least squares, (c) connectionist normalized local spline (CNLS) network, and (d) CNLS net with a PLS preprocessor. These networks were able to capture the rule set to within a few percent. For the simple tank rule set, the multi-linear network performed the best. When the rules were modified to include more nonlinear behavior, CNLS net performed better than the other three nets which made linear assumptions. (4) The networks were tested for robustness to input noise. Noise levels of plus or minus 10% had no real effect on the network performance. Noise levels in the plus or minus 30% range degraded performance by a factor of two. Some performance enhancement occurred when the networks were trained with noisy data. (5) The scaling of the evaluation time was calculated. (6) Human variation can be mimicked in all the networks by perturbing the weights.

  9. Capturing Attention When Attention "Blinks"

    ERIC Educational Resources Information Center

    Wee, Serena; Chua, Fook K.

    2004-01-01

    Four experiments addressed the question of whether attention may be captured when the visual system is in the midst of an attentional blink (AB). Participants identified 2 target letters embedded among distractor letters in a rapid serial visual presentation sequence. In some trials, a square frame was inserted between the targets; as the only…

  10. EDOS Data Capture for ALOS

    NASA Technical Reports Server (NTRS)

    McLemore, Bruce; Cordier, Guy R.; Wood, Terri; Gamst, Harek

    2012-01-01

    In 2008, NASA's Earth Sciences Missions Operations (ESMO) at Goddard Space Flight Center (GSFC) directed the Earth Observing System Data Operations System (EDOS) project to provide a prototype system to assess the feasibility of high rate data capture for the Japan Aerospace Exploration Agency's (JAXA) Advanced Land Observing Satellite (ALOS) spacecraft via NASA's Tracking and Data Relay Satellite System (TDRSS). The key objective of this collaborative effort between NASA and JAXA was to share science data collected over North and South America previously unavailable due to limitations in ALOS downlink capacity. EDOS provided a single system proof-of-concept in 4 months at White Sands TDRS Ground Terminal The system captured 6 ALOS events error-free at 277 Mbps and delivered the data to the Alaska Satellite Facility (ASF) within 3 hours (May/June '08). This paper describes the successful rapid prototyping approach which led to a successful demonstration and agreement between NASA and JAXA for operational support. The design of the operational system will be discussed with emphasis on concurrent high-rate data capture, Level-O processing, real-time display and high-rate delivery with stringent latency requirements. A similar solution was successfully deployed at Svalbard, Norway to support the Suomi NPP launch (October 2011) and capture all X-band data and provide a 30-day backup archive.

  11. Orbital electron capture by the nucleus

    NASA Technical Reports Server (NTRS)

    Bambynek, W.; Behrens, H.; Chen, M. H.; Crasemann, B.; Fitzpatrick, M. L.; Ledingham, K. W. D.; Genz, H.; Mutterer, M.; Intemann, R. L.

    1976-01-01

    The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases.

  12. Natural materials for carbon capture.

    SciTech Connect

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  13. Spacecraft capture and docking system

    NASA Technical Reports Server (NTRS)

    Kong, Kinyuen (Inventor); Rafeek, Shaheed (Inventor); Myrick, Thomas (Inventor)

    2001-01-01

    A system for capturing and docking an active craft to a passive craft has a first docking assembly on the active craft with a first contact member and a spike projecting outwardly, a second docking assembly on the passive craft having a second contact member and a flexible net deployed over a target area with an open mesh for capturing the end of the spike of the active craft, and a motorized net drive for reeling in the net and active craft to mate with the passive craft's docking assembly. The spike has extendable tabs to allow it to become engaged with the net. The net's center is coupled to a net spool for reeling in. An alignment funnel has inclined walls to guide the net and captured spike towards the net spool. The passive craft's docking assembly includes circumferentially spaced preload wedges which are driven to lock the wedges against the contact member of the active craft. The active craft's docking assembly includes a rotary table and drive for rotating it to a predetermined angular alignment position, and mating connectors are then engaged with each other. The system may be used for docking spacecraft in zero or low-gravity environments, as well as for docking underwater vehicles, docking of ancillary craft to a mother craft in subsonic flight, in-flight refueling systems, etc.

  14. Realistic costs of carbon capture

    SciTech Connect

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding

  15. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  16. Target capture and target ghosts

    NASA Astrophysics Data System (ADS)

    Auerbach, Steven P.

    1996-05-01

    Optimal detection methods for small targets rely on whitened matched filters, which convolve the measured data with the signal model, and whiten the result with the noise covariance. In real-world implementations of such filters, the noise covariance must be estimated from the data, and the resulting covariance estimate may be corrupted by presence of the target. The resulting loss in SNR is called 'target capture'. Target capture is often thought to be a problem only for bright targets. This presentation shows that target capture also arises for dim targets, leading to an SNR loss which is independent of target strength and depends on the averaging method used to estimate the noise covariance. This loss is due to a 'coherent beat' between the true noise and that portion of the estimated noise covariance due to the target. This beat leads to 'ghost targets', which diminish the target SNR by producing a negative target ghost at the target's position. A quantitative estimate of this effect will be given, and shown to agree with numerical results. The effect of averaging on SNR is also discussed for data scenes with synthetic injected targets, in cases where the noise covariance is estimated using 'no target' data. For these cases, it is shown that the so-called 'optimal' filter, which uses the true noise covariance, is actually worse than a 'sub-optimal' filter which estimates the noise from scene. This apparent contradiction is resolved by showing that the optimal filter is best if the same filter is used for many scenes, but is outperformed by a filter adapted to a specific scene.

  17. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  18. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  19. Carbon Capture and Storage, 2008

    SciTech Connect

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  20. 49 CFR 563.9 - Data capture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. The EDR must capture and record the data elements for events in accordance with the following conditions and circumstances: (a) In...

  1. 49 CFR 563.9 - Data capture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. Link to an amendment published at 76 FR 47489, Aug. 5, 2011. The EDR must capture and record the data elements for events in...

  2. 49 CFR 563.9 - Data capture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. The EDR must capture and record the data elements for events in accordance with the following conditions and circumstances: (a) In...

  3. 49 CFR 563.9 - Data capture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. The EDR must capture and record the data elements for events in accordance with the following conditions and circumstances: (a) In...

  4. 49 CFR 563.9 - Data capture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. The EDR must capture and record the data elements for events in accordance with the following conditions and circumstances: (a) In...

  5. The Effectiveness of Classroom Capture Technology

    ERIC Educational Resources Information Center

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  6. Adaptive capture of expert knowledge

    SciTech Connect

    Barrett, C.L.; Jones, R.D.; Hand, Un Kyong |

    1995-05-01

    A method is introduced that can directly acquire knowledge-engineered, rule-based logic in an adaptive network. This adaptive representation of the rule system can then replace the rule system in simulated intelligent agents and thereby permit further performance-based adaptation of the rule system. The approach described provides both weight-fitting network adaptation and potentially powerful rule mutation and selection mechanisms. Nonlinear terms are generated implicitly in the mutation process through the emergent interaction of multiple linear terms. By this method it is possible to acquire nonlinear relations that exist in the training data without addition of hidden layers or imposition of explicit nonlinear terms in the network. We smoothed and captured a set of expert rules with an adaptive network. The motivation for this was to (1) realize a speed advantage over traditional rule-based simulations; (2) have variability in the intelligent objects not possible by rule-based systems but provided by adaptive systems: and (3) maintain the understandability of rule-based simulations. A set of binary rules was smoothed and converted into a simple set of arithmetic statements, where continuous, non-binary rules are permitted. A neural network, called the expert network, was developed to capture this rule set, which it was able to do with zero error. The expert network is also capable of learning a nonmonotonic term without a hidden layer. The trained network in feedforward operation is fast running, compact, and traceable to the rule base.

  7. The elements of design knowledge capture

    NASA Technical Reports Server (NTRS)

    Freeman, Michael S.

    1988-01-01

    This paper will present the basic constituents of a design knowledge capture effort. This will include a discussion of the types of knowledge to be captured in such an effort and the difference between design knowledge capture and more traditional knowledge base construction. These differences include both knowledge base structure and knowledge acquisition approach. The motivation for establishing a design knowledge capture effort as an integral part of major NASA programs will be outlined, along with the current NASA position on that subject. Finally the approach taken in design knowledge capture for Space Station will be contrasted with that used in the HSTDEK project.

  8. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  9. Earth-Mars transfers with ballistic capture

    NASA Astrophysics Data System (ADS)

    Topputo, F.; Belbruno, E.

    2015-04-01

    We construct a new type of transfer from the Earth to Mars, which ends in ballistic capture. This results in substantial savings in capture from that of a classical Hohmann transfer under certain assumptions as well as an alternate way for spacecraft to transfer to Mars. This is accomplished by first becoming captured at Mars, very distant from the planet, and then from there, following a ballistic capture transfer to a desired altitude within a ballistic capture set. This is achieved by using stable sets, which are sets of initial conditions whose orbits satisfy a definition of orbital stability. This transfer type may be of interest for Mars missions because of low capture , flexibility of launch period from the Earth, moderate flight time, and the benign nature of the capture process.

  10. Capture of uncontrolled satellites - A flight demonstration

    NASA Technical Reports Server (NTRS)

    Lenox, H. M.

    1984-01-01

    NASA is presently exploring concepts, systems, and devices for capturing uncontrolled or non-operational satellites. Understanding of this type capture involves development of requirements and options, analyses of approaches, and extensive ground simulations. The verification of an approach is expected to require flight demonstrations of the concepts and hardware to assure confidence in application. This paper addresses a flight demonstration involving the Shuttle, an Orbital Maneuvering Vehicle (OMV), a capture mechanism, and a target vehicle capable of providing characteristic motion. A mission scenario is projected which demonstrates a capture concept, mission sequencing, capture vehicle potential, and overall capture possibilities with man-in-the-loop control. The proposed demonstration is considered a stepping stone to more demanding capture requirements. On-orbit activities are deliberately constrained to existing technology and projected systems and hardware capability for the year 1990.

  11. Small Particles Intact Capture Experiment (SPICE)

    NASA Astrophysics Data System (ADS)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  12. Small Particles Intact Capture Experiment (SPICE)

    NASA Technical Reports Server (NTRS)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  13. Boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Haque, A. M.; Moschini, G.; Valkovic, Vlado; Zafiropoulos, D.

    1995-03-01

    The final goal of any radiotherapy project is to expose the tumor as the target to a lethal dose of ionizing radiation, sparing thereby the surrounding healthy tissues to a maximum extent. Precise treatment is nevertheless essential for cure, since the danger exists that the tumor might re-establish itself if every cancer cell is not destroyed. The conventional therapy treatments existing to date, e.g., surgery, radiation therapy, and chemotherapy, have been successful in curing some kinds of cancers, but still there are many exceptions. In the following, the progress of a promising therapy tool, called the boron neutron capture therapy (BNCT), which has made its dynamic evolution in recent years, is briefly described. The approach towards clinical trials with BNCT is described in detail.

  14. Brownian motion using video capture

    NASA Astrophysics Data System (ADS)

    Salmon, Reese; Robbins, Candace; Forinash, Kyle

    2002-05-01

    Although other researchers had previously observed the random motion of pollen grains suspended in water through a microscope, Robert Brown's name is associated with this behaviour based on observations he made in 1828. It was not until Einstein's work in the early 1900s however, that the origin of this irregular motion was established to be the result of collisions with molecules which were so small as to be invisible in a light microscope (Einstein A 1965 Investigations on the Theory of the Brownian Movement ed R Furth (New York: Dover) (transl. Cowper A D) (5 papers)). Jean Perrin in 1908 (Perrin J 1923 Atoms (New York: Van Nostrand-Reinhold) (transl. Hammick D)) was able, through a series of painstaking experiments, to establish the validity of Einstein's equation. We describe here the details of a junior level undergraduate physics laboratory experiment where students used a microscope, a video camera and video capture software to verify Einstein's famous calculation of 1905.

  15. Bad data packet capture device

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Vranas, Pavlos

    2010-04-20

    An apparatus and method for capturing data packets for analysis on a network computing system includes a sending node and a receiving node connected by a bi-directional communication link. The sending node sends a data transmission to the receiving node on the bi-directional communication link, and the receiving node receives the data transmission and verifies the data transmission to determine valid data and invalid data and verify retransmissions of invalid data as corresponding valid data. A memory device communicates with the receiving node for storing the invalid data and the corresponding valid data. A computing node communicates with the memory device and receives and performs an analysis of the invalid data and the corresponding valid data received from the memory device.

  16. Subsurface capture of carbon dioxide

    SciTech Connect

    Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.

    2014-07-22

    A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.

  17. Workshop on neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  18. Neutron capture therapy for melanoma

    SciTech Connect

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  19. Direct-Semidirect Thermal Neutron Capture Calculations

    SciTech Connect

    Arbanas, G; Dietrich, F S; Kerman, A K

    2005-12-20

    A method for computing direct-semidirect (DSD) neutron radiative capture is presented and applied to thermal neutron capture on {sup 19}F, {sup 27}Al, {sup 28,29.30}Si, {sup 35,37}Cl, {sup 39,41}K, {sup 56}Fe, and {sup 238}U, in support of data evaluation effort at the O.R.N.L. The DSD method includes both direct and semidirect capture; the latter is a core-polarization term in which the giant dipole resonance is formed. We study the effects of a commonly used ''density'' approximation to the EM operator and find it to be unsatisfactory for the nuclei considered here. We also study the magnitude of semidirect capture relative to the pure direct capture. Furthermore, we compare our results with those obtained from another direct capture code (Tedca [17]). We also compare our results with those obtained from analytical expression for external capture derived by Lane and Lynn [3], and its extension to include internal capture [7]. To estimate the effect of nuclear deformation on direct capture, we computed direct thermal capture on {sup 238}U with and without imposition of spherical symmetry. Direct capture for a spherically symmetric {sup 238}U was approximately 6 mb, while a quadrupole deformation of 0.215 on the shape of {sup 238}U lowers this cross section down to approximately 2 mb. This result suggests that effects of nuclear deformation on direct capture warrant a further study. We also find out that contribution to the direct capture on {sup 238}U from the nuclear interior significantly cancels that coming from the exterior region, and hence both contributions must be taken into account. We reproduced a well known discrepancy between the computed and observed branching ratios in {sup 56}Fe(n,{gamma}). This will lead us to revisit the concept of doorway states in the particle-hole model.

  20. Accelerators and Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Burlon, A. A.; Kreiner, A. J.; Valda, A.

    2002-08-01

    Within the frame of Accelerator Based Boron Neutron Capture Therapy (AB-BNCT), the 7Li (p,n) 7Be reaction, relatively near its energy threshold is one of the most promising, due to its high yield and low neutron energy. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron flux. The 10B(n,αγ)7Li boron neutron capture reaction produces a 0.478 MeV gamma ray in 94% of the cases. The neutron yield was measured through the detection of this gamma ray using a hyperpure germanium detector with an anti-Compton shield. In addition, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4×108 cm-2s-1mA-1 was obtained at 4.2 cm from the phantom surface. In order to optimize the design of the neutron production target and the beam shaping assembly extensive Monte Carlo Neutron and Photon (MCNP) simulations have been performed. Neutron fields from a thick LiF and a Li metal target (with both a D2O-graphite and a Al/AlF3-graphite moderator/reflector assembly) were evaluated along the centerline of a head and a whole body phantom. Simulations were carried out for 1.89, 2.0 and 2.3 MeV proton beams. The results show that it is more advantageous to irradiate the target with 2.3 MeV near-resonance protons, instead of very near threshold, because of the higher neutron yield at this energy. On the other hand, the Al/AlF3-graphite exhibits a more efficient performance than D2O in terms of tumor to maximum healthy tissue dose ratio. Treatment times of less than 15 min and tumor control probabilities larger than 98% are obtained for a 50 mA, 2.3 MeV proton beam. The alternative neutron-producing reaction 13C(d,n) is also briefly reviewed. A

  1. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  2. Techniques for capturing bighorn sheep lambs

    USGS Publications Warehouse

    Smith, Joshua B.; Walsh, Daniel P.; Goldstein, Elise J.; Parsons, Zachary D.; Karsch, Rebekah C.; Stiver, Julie R.; Cain, James W.; Raedeke, Kenneth J.; Jenks, Jonathan A.

    2014-01-01

    Low lamb recruitment is a major challenge facing managers attempting to mitigate the decline of bighorn sheep (Ovis canadensis), and investigations into the underlying mechanisms are limited because of the inability to readily capture and monitor bighorn sheep lambs. We evaluated 4 capture techniques for bighorn sheep lambs: 1) hand-capture of lambs from radiocollared adult females fitted with vaginal implant transmitters (VITs), 2) hand-capture of lambs of intensively monitored radiocollared adult females, 3) helicopter net-gunning, and 4) hand-capture of lambs from helicopters. During 2010–2012, we successfully captured 90% of lambs from females that retained VITs to ≤1 day of parturition, although we noted differences in capture rates between an area of high road density in the Black Hills (92–100%) of South Dakota, USA, and less accessible areas of New Mexico (71%), USA. Retention of VITs was 78% with pre-partum expulsion the main cause of failure. We were less likely to capture lambs from females that expelled VITs ≥1 day of parturition (range = 80–83%) or females that were collared without VITs (range = 60–78%). We used helicopter net-gunning at several sites in 1999, 2001–2002, and 2011, and it proved a useful technique; however, at one site, attempts to capture lambs led to lamb predation by golden eagles (Aquila chrysaetos). We attempted helicopter hand-captures at one site in 1999, and they also were successful in certain circumstances and avoided risk of physical trauma from net-gunning; however, application was limited. In areas of low accessibility or if personnel lack the ability to monitor females and/or VITs for extended periods, helicopter capture may provide a viable option for lamb capture.

  3. TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS

    PubMed Central

    Jones, Matthew R.; Good, Jeffrey M.

    2016-01-01

    The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993

  4. Light capture by human cones.

    PubMed Central

    Chen, B; Makous, W

    1989-01-01

    1. The variation in visual efficiency of light with varying pupillary entry (the Stiles-Crawford effect) was measured to determine the proportion of light incident on the cones that escapes them without recovery by other cones. 2. The variation in detectability of interference fringes with varying pupillary entry of the interfering beams was measured to determine the proportion of incident light that was recaptured by cones in the dark stripes after escaping cones in the bright stripes of the fringes. 3. By exclusion, these observations determine the variation, with varying pupillary entry, in the proportion of incident light that was captured and absorbed by the first cones it entered. 4. Some 70-90% of the light absorbed by the cones when it passes through the centre of the pupil, is entirely lost to the visual system if it passes instead through the margin of the (dilated) pupil. 5. Over half the light that cones absorb when the light enters the margin of the pupil is light that has previously passed through other cones. 6. If the spread of recaptured light is assumed to be Gaussian, its standard deviation is at most one minute of visual angle. 7. Such recaptured light makes a previously unknown contribution to the various Stiles-Crawford effects. PMID:2607444

  5. Opportunity Captures 'Lion King' Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Opportunity Captures 'Lion King' Panorama (QTVR)

    This approximate true-color panorama, dubbed 'Lion King,' shows 'Eagle Crater' and the surrounding plains of Meridiani Planum. It was obtained by the Mars Exploration Rover Opportunity's panoramic camera on sols 58 and 60 using infrared (750-nanometer), green (530-nanometer) and blue (430-nanometer) filters.

    This is the largest panorama obtained yet by either rover. It was taken in eight segments using six filters per segment, for a total of 558 images and more than 75 megabytes of data. Additional lower elevation tiers were added to ensure that the entire crater was covered in the mosaic.

    This panorama depicts a story of exploration including the rover's lander, a thorough examination of the outcrop, a study of the soils at the near-side of the lander, a successful exit from Eagle Crater and finally the rover's next desination, the large crater dubbed 'Endurance'.

  6. Neutron capture in the r-process

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Mumpower, Matthew; Hix, William Raphael; Jones, K. L.

    2010-01-01

    Recently we have shown that neutron capture rates on nuclei near stability significantly influence the r-process abundance pattern. We discuss the different mechanisms by which the abundance pattern is sensitive to the capture rates and identify key nuclei whose rates are of particular im- portance. Here we consider nuclei in the A = 130 and A = 80 regions.

  7. Visual Field Asymmetry in Attentional Capture

    ERIC Educational Resources Information Center

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  8. Experiences in Personal Lecture Video Capture

    ERIC Educational Resources Information Center

    Chandra, Surendar

    2011-01-01

    The ability of lecture videos to capture the different modalities of a class interaction make them a good review tool. Multimedia capable devices are ubiquitous among contemporary students. Many lecturers are leveraging this popularity by distributing videos of lectures. They depend on the university to provide the video capture infrastructure.…

  9. Perceptions of Presentation Capture in Counselor Education

    ERIC Educational Resources Information Center

    Gibson, Robert; Miller, Ann

    2011-01-01

    Lecture/presentation capture is a gradually emerging technology at many colleges and universities and will likely increase in use because students prefer courses that offer online lectures over traditional classes that do not. Many capture products also allow faculty to segment and edit lectures, add/exchange notations, view lectures on mobile…

  10. Phase Errors and the Capture Effect

    SciTech Connect

    Blair, J., and Machorro, E.

    2011-11-01

    This slide-show presents analysis of spectrograms and the phase error of filtered noise in a signal. When the filtered noise is smaller than the signal amplitude, the phase error can never exceed 90{deg}, so the average phase error over many cycles is zero: this is called the capture effect because the largest signal captures the phase and frequency determination.