Science.gov

Sample records for carbenoid cyclization-cycloaddition cascade

  1. Efficient construction of the oxatricyclo[6.3.1.0(0,0)]dodecane core of komaroviquinone using a cyclization/cycloaddition cascade of a rhodium carbenoid intermediate.

    PubMed

    Padwa, Albert; Boonsombat, Jutatip; Rashatasakhon, Paitoon; Willis, Jerremey

    2005-08-18

    The rhodium(II)-catalyzed cyclization/cycloaddition cascade of a o-carbomethoxyaryl diazo dione is described as a potential route to the oxatricyclo[6.3.1.0(0,0)]dodecane substructure of the icetexane diterpene komaroviquinone. The initially formed carbonyl ylide dipole prefers to cyclize to an epoxide at 25 degrees C but can be induced to undergo cycloaddition across the tethered pi-bond at higher temperatures. [reaction: see text] PMID:16092860

  2. General access to the vinca and tacaman alkaloids using a Rh(II)-catalyzed cyclization/cycloaddition cascade.

    PubMed

    England, Dylan B; Padwa, Albert

    2008-04-01

    The total synthesis of several members of the vinca and tacaman classes of indole alkaloids has been accomplished. The central step in the synthesis consists of an intramolecular [3+2]-cycloaddition reaction of an alpha-diazo indoloamide which delivers the pentacyclic skeleton of the natural product in excellent yield. The acid lability of the oxabicyclic structure was exploited to establish the trans-D/E ring fusion of (+/-)-3H-epivincamine (3). Finally, a base induced keto-amide ring contraction was utilized to generate the E-ring of the natural product. A variation of the cascade sequence of reactions used to synthesize (+/-)-3H-epivincamine was also employed for the synthesis of the tacaman alkaloids (+/-)-tacamonine and (+/-)-apotacamine. PMID:18318547

  3. Enantioselective Rhodium(I) Donor Carbenoid-Mediated Cascade Triggered by a Base-Free Decomposition of Arylsulfonyl Hydrazones.

    PubMed

    Torres, Òscar; Parella, Teodor; Solà, Miquel; Roglans, Anna; Pla-Quintana, Anna

    2015-11-01

    The reaction of diyne arylsulfonyl hydrazone substrates under rhodium(I)/BINAP catalysis gives access to sulfonated azacyclic frameworks in a highly enantioselective manner. This new cascade process considerably increases the molecular complexity by generating two C-C bonds, one C-S bond, and one C-H bond. Theoretical calculations, competitive experiments, and deuterium labeling have jointly been used to propose a mechanism that accounts for the reaction. The mechanism involves the formation of vinyl rhodium carbenoids, hydride migratory insertion, and intermolecular stereoselective nucleophilic attack. The last two steps are the key to the stereoselectivity of the process. PMID:26397988

  4. Synthesis of (+/-)-3H-epivincamine via a Rh(II)-triggered cyclization/cycloaddition cascade.

    PubMed

    England, Dylan B; Padwa, Albert

    2007-08-16

    A synthesis of (+/-)-3H-epivincamine is reported. Important steps include (1) a Rh(II)-catalyzed intramolecular [3+2]-cycloaddition of an alpha-diazo indolo amide, (2) a reductive ring opening of the cycloadduct, (3) a decarboethoxylation reaction, and (4) a base-induced keto-amide ring contraction. PMID:17658832

  5. Synthesis of (±)-3H-epivincamine via a Rh(II)-Triggered Cyclization/Cycloaddition Cascade

    PubMed Central

    England, Dylan B.

    2008-01-01

    A synthesis of (±)-3H-epivincamine is reported. Important steps include: (1) a Rh(II)-catalyzed intramolecular [3+2]-cycloaddition of an α-diazo indolo amide; (2) a reductive ring opening of the cycloadduct; (3) a decarboethoxylation reaction; and (4) a base-induced keto-amide ring contraction. PMID:17658832

  6. Gold Carbene or Carbenoid: Is There a Difference?

    PubMed Central

    Wang, Yahui; Muratore, Michael E; Echavarren, Antonio M

    2015-01-01

    By reviewing the recent progress on the elucidation of the structure of gold carbenes and the definitions of metal carbenes and carbenoids, we recommend to use the term gold carbene to describe gold carbene-like intermediates, regardless of whether the carbene or carbocation extreme resonance dominates. Gold carbenes, because of the weak metal-to-carbene π-back-donation and their strongly electrophilic reactivity, could be classified into the broader family of Fischer carbenes, although their behavior and properties are very specific. PMID:25786384

  7. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners.

    PubMed

    Molitor, Sebastian; Gessner, Viktoria H

    2016-06-27

    As a result of the increased polarity of the metal-carbon bond when going down the group of the periodic table, the heavier alkali metal organyl compounds are generally more reactive and less stable than their lithium congeners. We now report a reverse trend for alkali metal carbenoids. Simple substitution of lithium by the heavier metals (Na, K) results in a significant stabilization of these usually highly reactive compounds. This allows their isolation and handling at room temperature and the first structure elucidation of sodium and potassium carbenoids. The control of stability was used to control reactivity and selectivity. Hence, the Na and K carbenoids act as selective carbene-transfer reagents, whereas the more labile lithium systems give rise to product mixtures. Additional fine tuning of the M-C interaction by means of crown ether addition further allows for control of the stability and reactivity. PMID:27100278

  8. Chemoselective and stereoselective lithium carbenoid mediated cyclopropanation of acyclic allylic alcohols.

    PubMed

    Durán-Peña, M J; Flores-Giubi, M E; Botubol-Ares, J M; Harwood, L M; Collado, I G; Macías-Sánchez, A J; Hernández-Galán, R

    2016-03-01

    The reaction of geraniol with different lithium carbenoids generated from n-BuLi and the corresponding dihaloalkane has been evaluated. The reaction occurs in a chemo and stereoselective manner, which is consistent with a directing effect from the oxygen of the allylic moiety. Furthermore, a set of polyenes containing allylic hydroxyl or ether groups were chemoselectively and stereoselectively converted into the corresponding gem-dimethylcyclopropanes in one single step in moderate to good yields mediated by a lithium carbenoid generated in situ by the reaction of n-BuLi and 2,2-dibromopropane. PMID:26846582

  9. Enantioselective carbenoid insertion into C(sp3)–H bonds

    PubMed Central

    Santiago, J V

    2016-01-01

    Summary The enantioselective carbenoid insertion into C(sp3)–H bonds is an important tool for the synthesis of complex molecules due to the high control of enantioselectivity in the formation of stereogenic centers. This paper presents a brief review of the early issues, related mechanistic studies and recent applications on this chemistry area. PMID:27340479

  10. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.

    PubMed

    Archambeau, Alexis; Miege, Frédéric; Meyer, Christophe; Cossy, Janine

    2015-04-21

    Activation of unsaturated carbon-carbon bonds by means of transition metal catalysts is an exceptionally active research field in organic synthesis. In this context, due to their high ring strain, cyclopropenes constitute an interesting class of substrates that displays a versatile reactivity in the presence of transition metal catalysts. Metal complexes of vinyl carbenes are involved as key intermediates in a wide variety of transition metal-catalyzed ring-opening reactions of cyclopropenes. Most of the reported transformations rely on intermolecular or intramolecular addition of nucleophiles to these latter reactive species. This Account focuses specifically on the reactivity of carbenoids resulting from the ring-opening of cyclopropenes in cyclopropanation and C-H insertion reactions, which are arguably two of the most representative transformations of metal complexes of carbenes. Compared with the more conventional α-diazo carbonyl compounds, the use of cyclopropenes as precursors of metal carbenoids in intramolecular cyclopropanation or C-H insertion reactions has been largely underexploited. One of the challenges is to devise appropriately substituted and readily available cyclopropenes that would not only undergo regioselective ring-opening under mild conditions but also trigger the subsequent desired transformations with a high level of chemoselectivity and stereoselectivity. These goals were met by considering several substrates derived from the readily available 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines. In the case of 1,6-cyclopropene-enes, highly efficient and diastereoselective gold(I)-catalyzed ring-opening/intramolecular cyclopropanations were developed as a route to diversely substituted heterocycles and carbocycles possessing a bicyclo[4.1.0]heptane framework. The use of rhodium(II) catalysts enabled us to widen the scope of this transformation for the synthesis of medium-sized heterocyclic scaffolds

  11. Catalytic asymmetric benzylic C-H activation by means of carbenoid-induced C-H insertions.

    PubMed

    Davies, Huw M L; Jin, Qihui; Ren, Pingda; Kovalevsky, Andrey Yu

    2002-06-14

    Tetrakis[N-[4-dodecylphenyl)sulfonyl]-(S)-prolinate]dirhodium [Rh(2)(S-DOSP)(4)]-catalyzed decomposition of methyl aryldiazoacetates in the presence of substituted ethylbenzenes results in benzylic C-H activation by means of a rhodium-carbenoid-induced C-H insertion. A Hammet study showed that positive charge buildup occurred on the benzylic carbon in the transition state of the C-H activation step. C-H activation of toluene and isopropylbenzene is possible, but a competing double cyclopropanation occurs with these substrates. The C-H activation is highly regioselective and enantioselective, and in certain cases, moderate diastereoselectivity is also possible. PMID:12054951

  12. A water-soluble ruthenium glycosylated porphyrin catalyst for carbenoid transfer reactions in aqueous media with applications in bioconjugation reactions.

    PubMed

    Ho, Chi-Ming; Zhang, Jun-Long; Zhou, Cong-Ying; Chan, On-Yee; Yan, Jessie Jing; Zhang, Fu-Yi; Huang, Jie-Sheng; Che, Chi-Ming

    2010-02-17

    Water-soluble [Ru(II)(4-Glc-TPP)(CO)] (1, 4-Glc-TPP = meso-tetrakis(4-(beta-D-glucosyl)phenyl)porphyrinato dianion) is an active catalyst for the following carbenoid transfer reactions in aqueous media with good selectivities and up to 100% conversions: intermolecular cyclopropanation of styrenes (up to 76% yield), intramolecular cyclopropanation of an allylic diazoacetate (68% yield), intramolecular ammonium/sulfonium ylide formation/[2,3]-sigmatroptic rearrangement reactions (up to 91% yield), and intermolecular carbenoid insertion into N-H bonds of primary arylamines (up to 83% yield). This ruthenium glycosylated porphyrin complex can selectively catalyze alkylation of the N-terminus of peptides (8 examples) and mediate N-terminal modification of proteins (four examples) using a fluorescent-tethered diazo compound (15). A fluorescent group was conjugated to ubiquitin via 1-catalyzed alkene cyclopropanation with 15 in aqueous solution in two steps: (1) incorporation of an alkenic group by the reaction of N-hydroxysuccinimide ester 19 with ubiquitin and (2) cyclopropanation of the alkene-tethered Lys(6) ubiquitin (23) with the fluorescent-labeled diazoacetate 15 in the presence of a catalytic amount of 1. The corresponding cyclopropanation product (24) was obtained with approximately 55% conversion based on MALDI-TOF mass spectrometry. The products 23, 24, and the N-terminal modified peptides and proteins were characterized by LC-MS/MS and/or SDS-PAGE analyses. PMID:20088517

  13. A Rh(II)-catalyzed cycloaddition approach towards the synthesis of komaroviquinone

    PubMed Central

    Padwa, Albert; Chughtai, Majid J.; Boonsombat, Jutatip; Rashatasakhon, Paitoon

    2008-01-01

    Using a rhodium(II)-catalyzed cyclization/cycloaddition sequence as the key reaction step, the icetexane core of komaroviquinone was constructed by an intramolecular dipolar-cycloaddition of a carbonyl ylide dipole across a tethered π-bond. The ylide was arrived at by cyclization of a rhodium carbenoid intermediate onto a proximal ester group. Efforts towards the preparation of the required precursor for elaboration to the natural product are discussed. PMID:19461991

  14. Methylene transfer or carbometalation? A theoretical study to determine the mechanism of lithium carbenoid-promoted cyclopropanation reactions in aggregation and solvation States.

    PubMed

    Ke, Zhuofeng; Zhao, Cunyuan; Phillips, David Lee

    2007-02-01

    Density functional theory calculations for the lithium carbenoid-promoted cyclopropanations in aggregation and solvation states are presented in order to investigate the controversy of the mechanistic dichotomy, that is, the methylene-transfer mechanism and the carbometalation mechanism. The methylene-transfer mechanism represents the reaction reality, whereas the carbometalation pathway does not appear to compete significantly with the methylene-transfer pathway and should be ruled out as a major factor. A simple model calculation for monomeric lithium carbenoid-promoted cyclopropanations with ethylene in the gas phase is not sufficient to reflect the reaction conditions accurately or to determine the reaction mechanism since its result is inconsistent with the experimental facts. The aggregated lithium carbenoids are the most probable reactive species in the reaction system. The calculated reaction barriers of the methylene-transfer pathways are 10.1 and 8.0 kcal/mol for the dimeric (LiCH2F)2 and tetrameric (LiCH2F)4 species, respectively, compared with the reaction barrier of 16.0 kcal/mol for the monomeric LiCH2F species. In contrast, the reaction barriers of the carbometalation pathways are 26.8 kcal/mol for the dimeric (LiCH2F)2 and 33.9 kcal/mol for the tetrameric (LiCH2F)4 species, compared with the reaction barrier of 12.5 kcal/mol for the monomeric LiCH2F species. The effects of solvation were investigated by explicit coordination of the solvent molecules to the lithium centers. This solvation effect is found to enhance the methylene-transfer pathway, while it is found to impede the carbometalation pathway instead. The combined effects of the aggregation and solvation lead to barriers to reaction in the range of 7.2-9.0 kcal/mol for lithium carbenoid-promoted cyclopropanation reactions along the methylene-transfer pathway. Our computational results are in good agreement with the experimental observations. PMID:17253804

  15. A Double Asymmetric Hydrogenation Strategy for the Reduction of 1,1-Diaryl Olefins Applied to an Improved Synthesis of CuIPhEt, a C2-Symmetric N-Heterocyclic Carbenoid

    PubMed Central

    Spahn, Elizabeth; Albright, Abigail; Shevlin, Michael; Pauli, Larissa; Pfaltz, Andreas; Gawley, Robert E.

    2013-01-01

    A library of iridium and rhodium phosphine catalysts have been screened for the double asymmetric hydrogenation of 2,6-di-(1-phenylethenyl)-4-methyl aniline to produce the C2-symmetric aniline precursor of the N-heterocyclic carbenoid CuIPhEt. The best catalyst produced the desired enantiomer in 98.6% selectivity. This rare example of a highly selective hydrogenation of a 1,1-diaryl olefin enables a 4 step asymmetric synthesis of the C2-symmetric phenylethyl imidazolium ion (IPhEt) from p-toluidine and phenylacetylene, and its conversion to the hydrosilylation catalyst CuIPhEt. PMID:23383707

  16. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  17. Thermally cascaded thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Flaherty, R.

    1970-01-01

    High efficiency thermoelectric generator utilizes a high-temperature thermoelectric material in thermal series with a low-temperature material. A thermally cascaded generator increases system efficiency.

  18. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  19. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  20. 5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE CREEK FROM 100 YARDS WEST OF THE ROSTRUM (ROCK FORMATION ON SOUTH SIDE OF MERCED RIVER). HIGHWAY 140 IS AT BOTTOM OF FRAME. HIGHWAY 120, THE BIG OAK FLAT ROAD CROSSES FRAME JUST ABOVE CENTER. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  1. Unsteady Euler cascade analysis

    NASA Technical Reports Server (NTRS)

    Liu, Jong-Shang; Sockol, Peter M.

    1989-01-01

    The results of an investigation of the rotor-stator interaction phenomena in turbomachines are presented. Numerical study was carried out by solving the unsteady Euler equations in the blade-to-blade direction for a variety of cascade geometries. The problem of uneven rotor and stator blades is addressed by adopting the tilted time domain technique. Computed solutions are presented and discussed for a NACA 0012 type cascade and the first stage fuel turbopump of the Space Shuttle Main Engine (SSME).

  2. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  3. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  4. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  5. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  6. Collisional Cascades Revisited

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke; Pan, M.

    2013-01-01

    Collisional cascades are believed to be the primary mechanism operating in circumstellar dusty debris disks, and are thought to be important in the Kuiper and Asteroid belt. Collisional cascades transfer mass via destructive collisions from larger bodies to smaller ones. Their widespread occurrence and potential importance in understanding planet formation and planet-disk interactions have motivated detailed studies of collisional cascades. The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. We relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari (2005) can steepen to values as large as q = 3.26. These differences in the size distribution power law index are very important when estimating the total disk mass, including larger bodies, by extrapolating from the observed dust masses. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies in, for example, extrasolar debris disks may constrain the total mass in large bodies stirring the cascade as well as the colliding bodies

  7. Intra Nucleon Cascade Program

    Energy Science and Technology Software Center (ESTSC)

    1998-08-18

    The package consists of three programs ISABEL, EVA, and PACE-2. ISABEL and PACE-2 are part of the LAHET code. ISABEL is an intra-nucleon cascade program. The output cascades are used as directly as input files to the two evaporation programs EVA and PACE-2. EVA ignores the effect of the angular momentum of the excited nuclei on the deexcitation and also ignores the possibility of gamma emission as long as particle emission is energetically allowed. PACE-2more » takes full account of angular momentum effects including irast levels and gamma emission at all stages of the evaporation chain.« less

  8. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  9. 'Cascade Gold' raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  10. Cascaded thermoacoustic devices

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  11. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  12. Cascaded humidified advanced turbine

    SciTech Connect

    Nakhamkin, M.; Swenson, E.C.; Cohn, A.; Bradshaw, D.; Taylor, R.; Wilson, J.M.; Gaul, G.; Jahnke, F.; Polsky, M.

    1995-05-01

    This article describes how, by combining the best features of simple- and combined-cycle gas turbine power plants, the CHAT cycle concept offers power producers a clean, more efficient and less expensive alternative to both. The patented cascaded advanced turbine and its cascaded humidified advanced turbine (CHAT) derivative offer utilities and other power producers a practical advanced gas turbine power plant by combining commercially-available gas turbine and industrial compressor technologies in a unique way. Compared to combined-cycle plants, a CHAT power plant has lower emissions and specific capital costs-approximately 20 percent lower than what is presently available. Further, CHAT`s operating characteristics are especially well-suited to load following quick start-up scenarios and they are less susceptible to power degradation from higher ambient air temperature conditions.

  13. Superconducting cascade electron refrigerator

    SciTech Connect

    Camarasa-Gómez, M.; Giazotto, F.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.

    2014-05-12

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  14. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  15. Superconducting cascade electron refrigerator

    NASA Astrophysics Data System (ADS)

    Camarasa-Gómez, M.; Di Marco, A.; Hekking, F. W. J.; Winkelmann, C. B.; Courtois, H.; Giazotto, F.

    2014-05-01

    The design and operation of an electronic cooler based on a combination of superconducting tunnel junctions is described. The cascade extraction of hot-quasiparticles, which stems from the energy gaps of two different superconductors, allows for a normal metal to be cooled down to about 100 mK starting from a bath temperature of 0.5 K. We discuss the practical implementation, potential performance, and limitations of such a device.

  16. The Ufm1 Cascade

    PubMed Central

    Daniel, Jens; Liebau, Eva

    2014-01-01

    The ubiquitin-fold modifier 1 (Ufm1) is a posttranslational modifier that belongs to the ubiquitin-like protein (UBL) family. Ufm1 is present in nearly all eukaryotic organisms, with the exception of fungi. It resembles ubiquitin in its ability to be ligated to other proteins, as well as in the mechanism of ligation. While the Ufm1 cascade has been implicated in endoplasmic reticulum functions and cell cycle control, its biological role still remains poorly understood. In this short review, we summarize the current state of Ufm1 research and its potential role in human diseases, like diabetes, ischemic heart disease and cancer. PMID:24921187

  17. Cascade Error Projection Learning Algorithm

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  18. Cascade physics at CLAS12

    SciTech Connect

    Guo, Lei

    2009-01-01

    Cascade spectroscopy offers rich discovering opportunities that are essential to the current JLAB spectroscopy program at both CLAS, CLAS12 and GLUEX. Recent CLAS results have demonstrated the feasibility to study cascade resonances through photoproduction. The cross sections for the ground state cascade is observed to increase as a function of energy in the range of 2.8-5GeV. With the maximum achievable energy at CLAS12 with the current tagger being 6.3~GeV, cascade resonances up to 2.4~GeV are expected to be produced with reasonable rates. The possible addition of a RICH detector would certainly benefit physics programs requiring the detection of kaons, especially cascade physics.

  19. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  20. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  1. Interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J. R.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Höfling, S.

    2015-04-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron-hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3-6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm-2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT.

  2. Cascade Mtns. Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical

  3. Cascading Effects Following Intervention

    PubMed Central

    Patterson, Gerald R.; Forgatch, Marion S.; DeGarmo, David S.

    2010-01-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial (RCT) of a preventive intervention using Parent Management Training – Oregon Model (PMTO™). The social interaction learning (SIL) model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments. PMID:20883592

  4. Terahertz quantum cascade VECSEL

    NASA Astrophysics Data System (ADS)

    Xu, Luyao; Curwen, Christopher A.; Hon, Philip W. C.; Itoh, Tatsuo; Williams, Benjamin S.

    2016-03-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) have been successfully used in the visible and near-infrared to achieve high output power with excellent Gaussian beam quality. However, the concept of VECSEL has been impossible to implement for quantum-cascade (QC) lasers due to the "intersubband selection rule". We have recently demonstrated the first VECSEL in the terahertz range. The enabling component for the QC-VECSEL is an amplifying metasurface reflector composed of a sparse array of metallic sub-cavities, which allows the normally incident radiation to interact with the electrically pumped QC gain medium. In this work, we presented multiple design variations based on the first demonstrated THz QC-VECSEL, regarding the lasing frequencies, the output coupler and the intra-cavity aperture. Our work on THz QC-VECSEL initiates a new approach towards achieving scalable output power in combination with a diffraction-limited beam pattern for THz QC-lasers. The design variations presented in this work further demonstrate the practicality and potential of VECSEL approach to make ideal terahertz QC-laser sources.

  5. Design of choking cascade turns

    NASA Astrophysics Data System (ADS)

    Baird, J.

    1982-12-01

    Five different shock-positioning cascades, for short-radius turns in ramjet inlet diffusers, were designed and tested on the AFIT water table. These flow controllers were to perform the same function as the conventional arrangement of an aerodynamic grid and a long-radius turn. The tests were to determine the suitability of the water table for such experimentation, in addition to determining the flow-control capabilities and pressure recovery of the cascades. All five designs accomplished the flow-control function as designed, and two designs exhibited the same or better pressure recovery than the aerodynamic grid. The water table proved to be an excellent means of testing these cascades, primarily due to the ease of flow visualization in the tests done. The shock-positioning cascade, short-radius turn concept shows promise and should be tested further in gas-dynamic apparatus.

  6. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  7. Stochastic background of atmospheric cascades

    NASA Astrophysics Data System (ADS)

    Wilk, G.; WŁOdarczyk, Z.

    1993-06-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  8. Computation of inverse magnetic cascades

    SciTech Connect

    Montgomery, D.

    1981-10-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  9. Stochastic background of atmospheric cascades

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1993-06-15

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  10. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  11. The cascade high productivity language

    NASA Technical Reports Server (NTRS)

    Callahan, David; Chamberlain, Branford L.; Zima, Hans P.

    2004-01-01

    This paper describes the design of Chapel, the Cascade High Productivity Language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface.

  12. Cascading gravity is ghost free

    SciTech Connect

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  13. Interband Cascade Photovoltaic Cells

    SciTech Connect

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  14. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser. PMID:26072764

  15. Rescuing Ecosystems from Extinction Cascades

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  16. Autoregressive cascades on random networks

    NASA Astrophysics Data System (ADS)

    Iyer, Srikanth K.; Vaze, Rahul; Narasimha, Dheeraj

    2016-04-01

    A network cascade model that captures many real-life correlated node failures in large networks via load redistribution is studied. The considered model is well suited for networks where physical quantities are transmitted, e.g., studying large scale outages in electrical power grids, gridlocks in road networks, and connectivity breakdown in communication networks, etc. For this model, a phase transition is established, i.e., existence of critical thresholds above or below which a small number of node failures lead to a global cascade of network failures or not. Theoretical bounds are obtained for the phase transition on the critical capacity parameter that determines the threshold above and below which cascade appears or disappears, respectively, that are shown to closely follow numerical simulation results.

  17. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  18. Cascaded target normal sheath acceleration

    SciTech Connect

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  19. Characteristics for two kinds of cascading events

    NASA Astrophysics Data System (ADS)

    Zou, Sheng-Rong; Gu, Ai-Hua; Liu, Ai-Fen; Xu, Xiu-Lian; Wang, Jian; He, Da-Ren

    2011-04-01

    Avalanche or cascade failure is ubiquitous. We first classify the cascading phenomena into two categories: the cascading disasters which result in large-scale functional failures and the cascading events that do not lead to disasters. We elucidate that two important factors, the increasing amount of events and the acceleration of event frequency, can induce the crossover from the cascading phenomenon to the cascading disaster. Through a simplified sandpile model and a heuristic logistic map, we demonstrate that the dependence of the event number on the observation time behaves as a power-law and as an exponential for these two different cascading events, respectively. The analytic derivations are found to be consistent with several empirical observations. Our present findings contribute to the understanding of the transition between different cascading events, providing a basis for the further understanding of the transitions among more general critical events.

  20. Engineering Light: Quantum Cascade Lasers

    ScienceCinema

    Claire Gmachl

    2010-09-01

    Quantum cascade lasers are ideal for environmental sensing and medical diagnostic applications. Gmachl discusses how these lasers work, and their applications, including their use as chemical trace gas sensors. As examples of these applications, she briefly presents results from her field campaign at the Beijing Olympics, and ongoing campaigns in Texas, Maryland, and Ghana.

  1. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters. PMID:14566981

  2. Critical transitions in colliding cascades

    PubMed

    Gabrielov; Keilis-Borok; Zaliapin; Newman

    2000-07-01

    We consider here the interaction of direct and inverse cascades in a hierarchical nonlinear system that is continuously loaded by external forces. The load is applied to the largest element and is transferred down the hierarchy to consecutively smaller elements, thereby forming a direct cascade. The elements of the system fail (i. e., break down) under the load. The smallest elements fail first. The failures gradually expand up the hierarchy to the larger elements, thus forming an inverse cascade. Eventually the failures heal, ensuring that the system will function indefinitely. The direct and inverse cascades collide and interact. Loading triggers the failures, while failures release and redistribute the load. Notwithstanding its relative simplicity, this model reproduces the major dynamical features observed in seismicity, including the seismic cycle, intermittence of seismic regime, power-law energy distribution, clustering in space and time, long-range correlations, and a set of seismicity patterns premonitory to a strong earthquake. In this context, the hierarchical structure of the model crudely imitates a system of tectonic blocks spread by a network of faults (note that the behavior of such a network is different from that of a single fault). Loading mimics the impact of tectonic forces, and failures simulate earthquakes. The model exhibits three basic types of premonitory pattern reflecting seismic activity, clustering of earthquakes in space and time, and the range of correlation between the earthquakes. The colliding-cascade model seemingly exhibits regularities that are common in a wide class of complex hierarchical systems, not necessarily Earth specific. PMID:11088457

  3. PANEL CODE FOR PLANAR CASCADES

    NASA Technical Reports Server (NTRS)

    Mcfarland, E. R.

    1994-01-01

    The Panel Code for Planar Cascades was developed as an aid for the designer of turbomachinery blade rows. The effective design of turbomachinery blade rows relies on the use of computer codes to model the flow on blade-to-blade surfaces. Most of the currently used codes model the flow as inviscid, irrotational, and compressible with solutions being obtained by finite difference or finite element numerical techniques. While these codes can yield very accurate solutions, they usually require an experienced user to manipulate input data and control parameters. Also, they often limit a designer in the types of blade geometries, cascade configurations, and flow conditions that can be considered. The Panel Code for Planar Cascades accelerates the design process and gives the designer more freedom in developing blade shapes by offering a simple blade-to-blade flow code. Panel, or integral equation, solution techniques have been used for several years by external aerodynamicists who have developed and refined them into a primary design tool of the aircraft industry. The Panel Code for Planar Cascades adapts these same techniques to provide a versatile, stable, and efficient calculation scheme for internal flow. The code calculates the compressible, inviscid, irrotational flow through a planar cascade of arbitrary blade shapes. Since the panel solution technique is for incompressible flow, a compressibility correction is introduced to account for compressible flow effects. The analysis is limited to flow conditions in the subsonic and shock-free transonic range. Input to the code consists of inlet flow conditions, blade geometry data, and simple control parameters. Output includes flow parameters at selected control points. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 590K of 8 bit bytes. This program was developed in 1982.

  4. Bankruptcy Cascades in Interbank Markets

    PubMed Central

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  5. Cascade Chaotic System With Applications.

    PubMed

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level. PMID:25373135

  6. Bankruptcy cascades in interbank markets.

    PubMed

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  7. Lens Coupled Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  8. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  9. Quantum cascade lasers with dual-wavelength interdigitated cascades

    NASA Astrophysics Data System (ADS)

    Mosely, Trinesha S.; Straub, Axel; Gmachl, Claire; Colombelli, Raffaele; Troccoli, Mariano; Capasso, Federico; Sivco, Deborah L.; Cho, Alfred Y.

    2002-03-01

    A quantum cascade (QC) laser with a dual-wavelength interdigitated cascade is presented. Its active core consists of a stack of active regions and injectors designed for emission at one wavelength (8.0 μm) interleaved with a second stack emitting at a substantially different wavelength (9.5 μm), and the two injectors were designed to either bridge the 8.0 μm active region to the 9.5 μm one, or vice versa. Clear two-wavelength laser action is observed, demonstrating the viability of this approach to achieve multi-wavelength laser emission in the mid-infrared. Aside from providing two-wavelength operation, this laser design can also be used to test the role of charge transport in the injectors, which customarily bridge successive active regions together. We will present early results of this study. The work was partly supported by DARPA/US ARO under contract number DAAD19-00-C-0096. A. S. acknowledges the support of the Deutsche Studienstiftung. T. S. M. present address: Southern University and A&M College, Baton Rouge, LA.

  10. How sesquiterpenes modulate signaling cascades in cancers.

    PubMed

    Jabeen, S; Qureshi, M Z; Attar, R; Aslam, A; Kanwal, S; Khalid, S; Qureshi, J M; Aras Perk, A; Farooqi, A A; Ismail, M

    2016-01-01

    Data obtained from high-throughput technologies has started to shed light on the interplay between signal transduction cascades and chromatin modifications thus adding another layer of complexity to the already complex regulation of the protein network. Based on the insights gleaned from almost a decade of research, it has now been convincingly revealed that sesquiterpenes effectively modulated different intracellular signaling cascades in different cancers. In this review we summarize how sesquiterpenes mediated Wnt, Shh, Notch and TRAIL induced signaling cascades. PMID:27453282

  11. Cascade photo production at CLAS

    SciTech Connect

    Goetz, John; Hicks, Kenneth H.

    2014-09-01

    The famous discovery of the Omega in 1964 put the quark model on firm ground and since then a lot of effort has been spent on mapping out the baryonic and mesonic states. Over the following decades, many excited baryons with light quarks (up, down and strange) have been measured, but by most predictions, only a small percentage of those expected have been found. In this talk, I will discuss a newly developing technique using an (unflavored) photon beam to excite protons to doubly-strange "Cascade" (Xi) states. Advantages of such an experiment and associated difficulties will be presented, along with recent results from the CLAS detector at Jefferson Lab in Virginia.

  12. Logic synthesis of cascade circuits

    NASA Astrophysics Data System (ADS)

    Zakrevskii, A. D.

    The work reviews aspects of the logic design of cascade circuits, particularly programmable logic matrices. Effective methods for solving various problems of the analysis and synthesis of these devices are examined; these methods are based on a matrix representation of the structure of these devices, and a vector-matrix interpretation of certain aspects of Boolean algebra. Particular consideration is given to the theory of elementary matrix circuits, methods for the minimization of Boolean functions, the synthesis of programmable logic matrices, multilevel combinational networks, and the development of automata with memory.

  13. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph E-mail: pgary@lanl.gov

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  14. Lie cascades and Random Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Lovejoy, S.; Tchiguirinskaia, I.

    2009-04-01

    Lie cascades were defined as a broad generalization of scalar cascades (Schertzer and Lovejoy 1995, Tchiguirinskaia and Schertzer, 1996) with the help of (infinitesimal) sub-generators being white noise vector fields on manifolds, instead of being white noise scalar fields on vector spaces. Lie cascades were thus closely related to stochastic flows on manifolds as defined by Kunita (1990). However, the concept of random dynamical systems (Arnold,1998) allows to make a closer and simpler connection between stochastic differential equations and the dynamical system approach. In this talk, we point out some relationships between Lie cascades and random dynamical systems, and therefore to dynamical system approach.

  15. Contingency Analysis of Cascading Line Outage Events

    SciTech Connect

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  16. Cascade control and defense in complex networks.

    PubMed

    Motter, Adilson E

    2004-08-27

    Complex networks with a heterogeneous distribution of loads may undergo a global cascade of overload failures when highly loaded nodes or edges are removed due to attacks or failures. Since a small attack or failure has the potential to trigger a global cascade, a fundamental question regards the possible strategies of defense to prevent the cascade from propagating through the entire network. Here we introduce and investigate a costless strategy of defense based on a selective further removal of nodes and edges, right after the initial attack or failure. This intentional removal of network elements is shown to drastically reduce the size of the cascade. PMID:15447153

  17. Dynamics and structure of energetic displacement cascades

    SciTech Connect

    Averback, R.S.; Diaz de la Rubia, T.; Benedek, R.

    1987-12-01

    This paper summarizes recent progress in the understanding of energetic displacement cascades and the primary state of damage in metals. On the theoretical side, the availability of supercomputers has greatly enhanced our ability to simulate cascades by molecular dynamics. Recent application of this simulation technique to Cu and Ni provides new insight into the dynamics of cascade processes. On the experimental side, new data on ion beam mixing and in situ electron microscopy studies of ion damage at low temperatures reveal the role of the thermodynamic properties of the material on cascade dynamics and structure. 38 refs., 9 figs.

  18. Tri-bimaximal Mixing from Cascades

    SciTech Connect

    Takahashi, Ryo

    2008-11-23

    We investigate fermion mass matrices of the cascade form which lead to the tri-bimaximal mixing in the lepton sector. The cascade neutrino matrix predicts a parameter-independent relation among the observables, which are the neutrino mixing angles and mass squared differences. The relation predicts that the atmospheric neutrino mixing angle is close to maximal. We also study phenomenological aspect of the cascade form in supersymmetric theory, which are lepton flavor violation and thermal leptogenesis. A dynamical realivation of the cascade mass matrix are also presented in U(1) flavor theory.

  19. Cascade decays of hollow ions

    SciTech Connect

    Omar, G. ); Hahn, Y. )

    1991-05-01

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe{sup 14+} ions with the initial 1{ital s}, 2{ital s}, and 2{ital p} vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1{ital s} holes is analyzed, and the result compared with that for the case of one 1{ital s} hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts.

  20. Lifespans of Cascade Arc volcanoes

    NASA Astrophysics Data System (ADS)

    Calvert, A. T.

    2015-12-01

    Compiled argon ages reveal inception, eruptive episodes, ages, and durations of Cascade stratovolcanoes and their ancestral predecessors. Geologic mapping and geochronology show that most Cascade volcanoes grew episodically on multiple scales with periods of elevated behavior lasting hundreds of years to ca. 100 kyr. Notable examples include the paleomag-constrained, few-hundred-year-long building of the entire 15-20 km3 Shastina edifice at Mt. Shasta, the 100 kyr-long episode that produced half of Mt. Rainier's output, and the 30 kyr-long episode responsible for all of South and Middle Sister. Despite significant differences in timing and rates of construction, total durations of active and ancestral volcanoes at discrete central-vent locations are similar. Glacier Peak, Mt. Rainier, Mt. Adams, Mt. Hood, and Mt. Mazama all have inception ages of 400-600 ka. Mt. St. Helens, Mt. Jefferson, Newberry Volcano, Mt. Shasta and Lassen Domefield have more recent inception ages of 200-300 ka. Only the Sisters cluster and Mt. Baker have established eruptive histories spanning less than 50 kyr. Ancestral volcanoes centered 5-20 km from active stratocones appear to have similar total durations (200-600 kyr), but are less well exposed and dated. The underlying mechanisms governing volcano lifecycles are cryptic, presumably involving tectonic and plumbing changes and perhaps circulation cycles in the mantle wedge, but are remarkably consistent along the arc.

  1. Physics of interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Vurgaftman, I.; Bewley, W. W.; Merritt, C. D.; Canedy, C. L.; Kim, C. S.; Abell, J.; Meyer, J. R.; Kim, M.

    2012-01-01

    The interband cascade laser (ICL) is a unique device concept that combines the effective parallel connection of its multiple-quantum-well active regions, interband active transitions, and internal generation of electrons and holes at a semimetallic interface within each stage of the device. The internal generation of carriers becomes effective under bias, and the role of electrical injection is to replenish the carriers consumed by recombination processes. Major strides have been made toward fundamentally understanding the rich and intricate ICL physics, which has in turn led to dramatic improvements in the device performance. In this article, we review the physical principles of the ICL operation and designs of the active region, electron and hole injectors, and optical waveguide. The results for state-of- the-art ICLs spanning the 3-6 μm wavelength range are also briefly reviewed. The cw threshold input powers at room temperature are more than an order of magnitude lower than those for quantum cascade lasers throughout the mid-IR spectral range. This will lengthen battery lifetimes and greatly relax packaging and size/weight requirements for fielded sensing systems.

  2. Cascade Harvest’ red raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  3. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  4. Cascade Error Projection: An Efficient Hardware Learning Algorithm

    NASA Technical Reports Server (NTRS)

    Duong, T. A.

    1995-01-01

    A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.

  5. 2. LOOKING EAST AT PARKING AREA BETWEEN TAMARACK AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING EAST AT PARKING AREA BETWEEN TAMARACK AND CASCADE CREEK BRIDGES. RAILING AT RIGHT EDGE IS THE EAST END OF TAMARACK BRIDGE. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  6. MAPK Cascades in Guard Cell Signal Transduction

    PubMed Central

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M.

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  7. MAPK Cascades in Guard Cell Signal Transduction.

    PubMed

    Lee, Yuree; Kim, Yun Ju; Kim, Myung-Hee; Kwak, June M

    2016-01-01

    Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK) cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions. PMID:26904052

  8. Stochastic annealing simulation of cascades in metals

    SciTech Connect

    Heinisch, H.L.

    1996-04-01

    The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.

  9. Diversity Cascades and Malaria Vectors

    PubMed Central

    CARLSON, JOHN C.; DYER, LEE A.; OMLIN, FRANCOIS X.; BEIER, JOHN C.

    2009-01-01

    The interactions between predator diversity and primary consumer abundance can include direct effects and indirect, cascading effects. Understanding these effects on immature Anopheles mosquitoes is important in sub-Saharan Africa, where most cases of malaria occur. Aquatic predators and immature mosquitoes were collected from shallow pools of varying age previously excavated by brickmakers in the western highlands of Kenya. Path analysis showed an indirect negative effect of habitat age on An. gambiae (Giles, 1902) mediated by effects on predator diversity. Disturbance resets habitats to an earlier successional stage, diminishing predator diversity and increasing An. gambiae populations. The increase in vector abundance as a result of reduced predator diversity highlights the public health value in conserving native insect diversity. PMID:19496413

  10. Weak Interactions and Instability Cascades.

    PubMed

    Kadoya, Taku; McCann, Kevin S

    2015-01-01

    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting). PMID:26219561

  11. The Geant4 Bertini Cascade

    SciTech Connect

    Wright, D. H.; Kelsey, M. H.

    2015-12-01

    One of the medium energy hadron–nucleus interaction models in the Geant4 simulation toolkit is based partly on the Bertini intranuclear cascade model. Since its initial appearance in the toolkit, this model has been largely re-written in order to extend its physics capabilities and to reduce its memory footprint. Physics improvements include extensions in applicable energy range and incident particle types, and improved hadron–nucleon cross-sections and angular distributions. Interfaces have also been developed which allow the model to be coupled with other Geant4 models at lower and higher energies. The inevitable speed reductions due to enhanced physics have been mitigated by memory and CPU efficiency improvements. Details of these improvements, along with selected comparisons of the model to data, are discussed.

  12. Cascades in interdependent flow networks

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio

    2016-06-01

    In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.

  13. The Geant4 Bertini Cascade

    NASA Astrophysics Data System (ADS)

    Wright, D. H.; Kelsey, M. H.

    2015-12-01

    One of the medium energy hadron-nucleus interaction models in the GEANT4 simulation toolkit is based partly on the Bertini intranuclear cascade model. Since its initial appearance in the toolkit, this model has been largely re-written in order to extend its physics capabilities and to reduce its memory footprint. Physics improvements include extensions in applicable energy range and incident particle types, and improved hadron-nucleon cross-sections and angular distributions. Interfaces have also been developed which allow the model to be coupled with other GEANT4 models at lower and higher energies. The inevitable speed reductions due to enhanced physics have been mitigated by memory and CPU efficiency improvements. Details of these improvements, along with selected comparisons of the model to data, are discussed.

  14. Compact Quantum Cascade Laser Transmitter

    SciTech Connect

    Anheier, Norman C.; Hatchell, Brian K.; Gervais, Kevin L.; Wojcik, Michael D.; Krishnaswami, Kannan; Bernacki, Bruce E.

    2009-04-01

    ): In this paper we present design considerations, thermal and optical modeling results, and device performance for a ruggedized, compact laser transmitter that utilizes a room temperature quantum cascade (QC) laser source. The QC laser transmitter is intended for portable mid-infrared (3-12 µm) spectroscopy applications, where the atmospheric transmission window is relatively free of water vapor interference and where the molecular rotational vibration absorption features can be used to detect and uniquely identify chemical compounds of interest. Initial QC laser-based sensor development efforts were constrained by the complications of cryogenic operation. However, improvements in both QC laser designs and fabrication processes have provided room-temperature devices that now enable significant miniaturization and integration potential for national security, environmental monitoring, atmospheric science, and industrial safety applications.

  15. Cascades on clique-based graphs

    NASA Astrophysics Data System (ADS)

    Hackett, Adam; Gleeson, James P.

    2013-06-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of highly clustered random graphs introduced by Gleeson [J. P. Gleeson, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.036107 80, 036107 (2009)]. A condition for the existence of global cascades is also derived. Applications of this approach include analyses of percolation, and Watts's model. We show how our techniques can be used to study the effects of in-group bias in cascades on social networks.

  16. Cascade Screening in Familial Hypercholesterolemia: Advancing Forward.

    PubMed

    Santos, Raul D; Frauches, Thiago S; Chacra, Ana P M

    2015-01-01

    Familial hypercholesterolemia is a genetic disorder associated with elevated LDL-cholesterol and high lifetime cardiovascular risk. Both clinical and molecular cascade screening programs have been implemented to increase early definition and treatment. In this systematic review, we discuss the main issues found in 65 different articles related to cascade screening and familial hypercholesterolemia, covering a range of topics including different types/strategies, considerations both positive and negative regarding cascade screening in general and associated with the different strategies, cost and coverage consideration, direct and indirect contact with patients, public policy around life insurance and doctor-patient confidentiality, the "right to know," and public health concerns regarding familial hypercholesterolemia. PMID:26194978

  17. Gust Response Analysis of a Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Gorla, R. S. R.; Reddy, T. S. R.; Reddy, D. R.; Kurkov, A. P.

    2001-01-01

    A study was made of the gust response of an annular turbine cascade using a two-dimensional Navier Stokes code. The time-marching CFD code, NPARC, was used to calculate the unsteady forces due to the fluid flow. The computational results were compared with a previously published experimental data for the annular cascade reported in the literature. Reduced frequency, Mach number and angle of incidence were varied independently and the gust velocity was sinusoidal. For the high inlet velocity case, the cascade was nearly choked.

  18. Cascade-able spin torque logic gates with input-output isolation

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2015-06-01

    Spin torque majority gate (STMG) is one of the promising options for beyond-complementary metal-oxide-semiconductor non-volatile logic circuits for normally-off computing. Modeling of prior schemes demonstrated logic completeness using majority operation and nonlinear transfer characteristics. However significant problems arose with cascade-ability and input output isolation manifesting as domain walls (DWs) stopping, reflecting off ends of wires or propagating back to the inputs. We introduce a new scheme to enable cascade-ability and isolation based on (a) in-plane DW automotion in interconnects, (b) exchange coupling of magnetization between two FM layers, and (c) ‘round-about’ topology for the majority gate. We performed micro-magnetic simulations that demonstrate switching operation of this STMG scheme. These circuits were verified to enable isolation of inputs from output signals and to be cascade-able without limitations.

  19. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  20. Quantum Cascade Laser Frequency Combs

    NASA Astrophysics Data System (ADS)

    Faist, Jérôme; Villares, Gustavo; Scalari, Giacomo; Rösch, Markus; Bonzon, Christopher; Hugi, Andreas; Beck, Mattias

    2016-06-01

    It was recently demonstrated that broadband quantum cascade lasers can operate as frequency combs. As such, they operate under direct electrical pumping at both mid-infrared and THz frequencies, making them very attractive for dual-comb spectroscopy. Performance levels are continuously improving, with average powers over 100mW and frequency coverage of 100 cm-1 in the mid-infrared region. In the THz range, 10mW of average power and 600 GHz of frequency coverage are reported. As a result of the very short upper state lifetime of the gain medium, the mode proliferation in these sources arises from four-wave mixing rather than saturable absorption. As a result, their optical output is characterized by the tendency of small intensity modulation of the output power, and the relative phases of the modes to be similar to the ones of a frequency modulated laser. Recent results include the proof of comb operation down to a metrological level, the observation of a Schawlow-Townes broadened linewidth, as well as the first dual-comb spectroscopy measurements. The capability of the structure to integrate monothically nonlinear optical elements as well as to operate as a detector shows great promise for future chip integration of dual-comb systems.

  1. Cascade Error Projection: A New Learning Algorithm

    NASA Technical Reports Server (NTRS)

    Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.

    1995-01-01

    A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.

  2. Modeling and analysis of cascade solar cells

    NASA Technical Reports Server (NTRS)

    Ho, F. D.

    1986-01-01

    A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed.

  3. MAP kinase cascades: scaffolding signal specificity.

    PubMed

    van Drogen, Frank; Peter, Matthias

    2002-01-22

    Scaffold proteins organize many MAP kinase pathways by interacting with several components of these cascades. Recent studies suggest that scaffold proteins provide local activation platforms that contribute to signal specificity by insulating different MAP kinase pathways. PMID:11818078

  4. HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30

    Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional He is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.

  5. Displacement Cascade Damage Production in Metals

    SciTech Connect

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    2015-01-01

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.

  6. Signalling pathways: jack of all cascades.

    PubMed

    Cahill, M A; Janknecht, R; Nordheim, A

    1996-01-01

    The transcription factors that bind the c-fos promoter element SRE are targeted by multiple, independent signalling cascades; the identities of these signalling pathways and their modes of activation are being elucidated. PMID:8805215

  7. SAMPLING CHARGED PARTICLES WITH CASCADE IMPACTORS

    EPA Science Inventory

    The report discusses three sets of experiments which demonstrate that a cascade impactor sampling a charged aerosol may yield a particle size distribution measurement that deviates from the time distribution. The distributions indicated more large particles and fewer small partic...

  8. Network effects, cascades and CCP interoperability

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Hu, Haibo; Pritsker, Matthew

    2014-03-01

    To control counterparty risk, financial regulations such as the Dodd Frank Act are increasingly requiring standardized derivatives trades to be cleared by central counterparties (CCPs). It is anticipated that in the near-term future, CCPs across the world will be linked through interoperability agreements that facilitate risk-sharing but also serve as a conduit for transmitting shocks. This paper theoretically studies a network with CCPs that are linked through interoperability arrangements, and studies the properties of the network that contribute to cascading failures. The magnitude of the cascading is theoretically related to the strength of network linkages, the size of the network, the logistic mapping coefficient, a stochastic effect and CCP's defense lines. Simulations indicate that larger network effects increase systemic risk from cascading failures. The size of the network N raises the threshold value of shock sizes that are required to generate cascades. Hence, the larger the network, the more robust it will be.

  9. Determining the direction of a turbulent cascade

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cerbus, Rory

    2015-11-01

    In two-dimensional (2D) turbulence, one expects a cascade of energy to larger spatial scales, while the enstrophy cascade is to smaller ones. Here we present a new tool to study cascades using simple ideas borrowed from information theory. It is entirely unrelated to the Navier-Stoke's equations or any scaling arguments. We use the conditional entropy (conditioned uncertainty) of velocity fluctuations on one scale conditioned on another larger or smaller scale. If the entropy is larger after conditioning on larger scales rather than smaller ones, then the cascade is to smaller scales. By varying the scale of the velocity fluctuations used in the conditioning, we can test both direction and locality. We use these tools on experimental data taken from a flowing soap film, an approximately 2D turbulent flow. The Reynolds number is varied over a wide range to determine the entropy's scaling with Reynolds number OIST.

  10. A DATA REDUCTION SYSTEM FOR CASCADE IMPACTORS

    EPA Science Inventory

    The report describes a computer-based data reduction system for cascade impactors. The system utilizes impactor-specific calibration information, together with operating conditions and other pertinent information (e.g., stage weights, sampling duration), to determine particle siz...

  11. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 2: Translation mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.

  12. Forward and Inverse Cascades in EMHD Turbulence

    NASA Astrophysics Data System (ADS)

    Cho, Jungyeon

    2016-05-01

    Electron magnetohydrodynamics (EMHD) provides a simple fluid-like description of physics below the proton gyro-scale in collisionless plasmas, such as the solar wind. In this paper, we discuss forward and inverse cascades in EMHD turbulence in the presence of a strong mean magnetic field. Similar to Alfvén waves, EMHD waves, or EMHD perturbations, propagate along magnetic field lines. Therefore, two types of EMHD waves can exist: waves moving parallel to and waves moving anti-parallel to the the magnetic field lines. For energy cascade in EMHD turbulence, the relative amplitudes of opposite-traveling waves are important. When the amplitudes are balanced, we will see fully-developed forward cascade with a k -7/3 energy spectrum and a scale-dependent anisotropy. On the other hand, when the amplitudes are imbalanced, we will see inverse cascade, as well as (presumably not fully developed) forward cascade. The underlying physics for the inverse cascade is magnetic helicity conservation.

  13. Emergence of event cascades in inhomogeneous networks.

    PubMed

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-01-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network. PMID:27625183

  14. High Efficiency Cascade Solar Cells

    SciTech Connect

    Shuguang Deng, Seamus Curran, Igor Vasiliev

    2010-09-28

    This report summarizes the main work performed by New Mexico State University and University of Houston on a DOE sponsored project High Efficiency Cascade Solar Cells. The main tasks of this project include materials synthesis, characterization, theoretical calculations, organic solar cell device fabrication and test. The objective of this project is to develop organic nano-electronic-based photovoltaics. Carbon nanotubes and organic conjugated polymers were used to synthesize nanocomposites as the new active semiconductor materials that were used for fabricating two device architectures: thin film coating and cascade solar cell fiber. Chemical vapor deposition technique was employed to synthesized a variety of carbon nanotubes (single-walled CNT, doubled-walled CNT, multi-walled CNT, N-doped SWCNT, DWCNT and MWCNT, and B-doped SWCNT, DWCNT and MWCNT) and a few novel carbon structures (CNT-based nanolance, nanocross and supported graphene film) that have potential applications in organic solar cells. Purification procedures were developed for removing amorphous carbons from carbon nanotubes, and a controlled oxidation method was established for partial truncation of fullerene molecules. Carbon nanotubes (DWCNT and DWCNT) were functionalized with fullerenes and dyes covalently and used to form nanocomposites with conjugated polymers. Biologically synthesized Tellurium nanotubes were used to form composite with the conjugated polymers as well, which generated the highest reported optical limiting values from composites. Several materials characterization technique including SEM/TEM, Raman, AFM, UV-vis, adsorption and EDS were employed to characterize the physical and chemical properties of the carbon nanotubes, the functionalized carbon nanotubes and the nanocomposites synthesized in this project. These techniques allowed us to have a spectroscopic and morphological control of the composite formation and to understand the materials assembled. A parallel 136-CPU

  15. Duality cascade in brane inflation

    SciTech Connect

    Bean, Rachel; Chen Xingang; Hailu, Girma; Henry Tye, S-H; Xu Jiajun E-mail: xgchen@mit.edu E-mail: tye@lepp.cornell.edu

    2008-03-15

    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario, where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude compared to that in previously studied large field models. In the IR DBI scenario, where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.

  16. Hydrogen for X-group exchange in CH3X, X = Cl, Br, I, OMe and NMe2 byMonomeric [1,2,4-(Me3C)3C5H2]2CeH: Experimental and Computational Support for a Carbenoid Mechanism

    SciTech Connect

    Werkema, Evan; Andersen, Richard; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile

    2009-05-15

    The reaction between [1,2,4-(Me3C)3C5H2]2CeH, referred to as Cp'2CeH, andCH3X where X is Cl, Br, I, OMe and NMe2, are described. The reactions fall intothree distinct classes. Class a, where X = Cl, Br and I rapidly form Cp'2CeX and CH4without formation of identifiable intermediates in the 1H NMR spectra. Class b, whereX = OMe proceeds rapidly to Cp'2Ce(eta2-CH2OMe) and H2 and then to Cp'2CeOMeand CH4. The methoxymethyl derivative is sufficiently stable to be isolated andcharacterized and it is rapidly converted to Cp'2CeOMe in presence of BPh3. Class c,where X = NMe2 does not result in formation of Cp'2CeNMe2, but deuterium labelingexperiments show that H for D exchange occurs in NMe3. Density functionalcalculations DFT(B3PW91) on the reaction of (C5H5)2CeH, referred to as Cp2CeH,and CH3X show that the barrier for alpha-CH activation, resulting in formation ofCp2Ce(eta2-CH2X), proceeds with a relatively low activation barrier (DeltaG++) but thesubsequent ejection of CH2 and trapping by H2 has a higher barrier; the height of thesecond barrier lies in the order F, Cl, Br, I< OMe<< NMe2, consistent with theexperimental studies. The DFT calculations also show that the two-step reaction,which proceeds through a carbenoid intermediate, has a lower barrier than a directone-step sigma bond metathesis mechanism. The reaction of Cp2CeCH2OMe and BPh3 is calculated to be a low barrier process and the ylide, CH2(+)BPh3(-), is a transition state and not an intermediate.

  17. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.; Zierke, W. C.

    1986-01-01

    The purpose of NASA Research Grant NSG-3264 is to characterize the flowfield about an airfoil in a cascade at chord Reynolds number(R sub C)near 5 x 10 to the 5th power. The program is experimental and combines laser Doppler velocimeter (LDV) measurements with flow visualization techniques in order to obtain detailed flow data, e.g., boundary layer profiles, points of separation and the transition zone, on a cascade of highly-loaded compressor blades. The information provided by this study is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process. Summarized is the research activity for the period 1 December 1985 through 1 June 1986. Progress made from 1 June 1979 through 1 December 1985 is presented. Detailed measurements have been completed at the initial cascade angle of 53 deg. (incidence angle 5 degrees). A three part study, based on that data, has been accepted as part of the 1986 Gas Turbine Conference and will be submitted for subsequent journal publication. Also presented are data for a second cascade angle of 45 deg (an incidence angle of 3 degrees).

  18. Stability of Helium Clusters during Displacement Cascades

    SciTech Connect

    Yang, Li; Zu, Xiaotao T.; Xiao, H. Y.; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Wang, Zhiguo; Liu, K. Z.

    2007-02-01

    The interaction of displacement cascades with helium-vacancy clusters is investigated using molecular dynamics simulations. The He-vacancy clusters initially consist of 20 vacancies with a Helium-to-vacancy ratio ranging from 0.2 to 3. The primary knock-on atom (PKA) energy, Ep, varies from 2 keV to 10 keV, and the PKA direction is chosen such that a displacement cascade is able to directly interact with a helium-vacancy cluster. The simulation results show that the effect of displacement cascades on a helium-vacancy cluster strongly depends on both the helium-to-vacancy ratio and the PKA energy. For the same PKA energy, the size of helium-vacancy clusters increases with the He/V ratio, but for the same ratio, the cluster size changes more significantly with increasing PKA energy. It has been observed that the He-vacancy clusters can be dissolved when the He/V ratio less than 1, but they are able to re-nucleate during the thermal spike phase, forming small He-V nuclei. When the He/V ratio is larger than 1, the He-V clusters can absorb a number of vacancies produced by displacement cascades, forming larger He-V clusters. These results are discussed in terms of PKA energy, helium-to-vacancy ratio, number of vacancies produced by cascades, and mobility of helium atoms.

  19. On the edge of an inverse cascade.

    PubMed

    Seshasayanan, Kannabiran; Benavides, Santiago Jose; Alexakis, Alexandros

    2014-11-01

    We demonstrate that systems with a parameter-controlled inverse cascade can exhibit critical behavior for which at the critical value of the control parameter the inverse cascade stops. In the vicinity of such a critical point, standard phenomenological estimates for the energy balance will fail since the energy flux towards large length scales becomes zero. We demonstrate this using the computationally tractable model of two-dimensional (2D) magnetohydrodynamics in a periodic box. In the absence of any external magnetic forcing, the system reduces to hydrodynamic fluid turbulence with an inverse energy cascade. In the presence of strong magnetic forcing, the system behaves as 2D magnetohydrodynamic turbulence with forward energy cascade. As the amplitude of the magnetic forcing is varied, a critical value is met for which the energy flux towards the large scales becomes zero. Close to this point, the energy flux scales as a power law with the departure from the critical point and the normalized amplitude of the fluctuations diverges. Similar behavior is observed for the flux of the square vector potential for which no inverse flux is observed for weak magnetic forcing, while a finite inverse flux is observed for magnetic forcing above the critical point. We conjecture that this behavior is generic for systems of variable inverse cascade. PMID:25493730

  20. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  1. High frequency energy cascades in inviscid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Costa, Adam Smith N.; de Araújo, J. M.; Cohen, Nir; Lucena, Liacir S.; Viswanathan, G. M.

    2014-04-01

    With the aim of gaining insight into the notoriously difficult problem of energy and vorticity cascades in high dimensional incompressible flows, we take a simpler and very well understood low dimensional analog and approach it from a new perspective, using the Fourier transform. Specifically, we study, numerically and analytically, how kinetic energy moves from one scale to another in solutions of the hyperbolic or inviscid Burgers equation in one spatial dimension (1D). We restrict our attention to initial conditions which go to zero as x→±∞. The main result we report here is a Fourier analytic way of describing the cascade process. We find that the cascade proceeds by rapid growth of a crossover scale below which there is asymptotic power law decay of the magnitude of the Fourier transform.

  2. Optical filtering enabled by cascaded parametric amplification.

    PubMed

    McKinstrie, C J; Dailey, J M; Agarwal, A; Toliver, P

    2016-06-27

    A cascaded parametric amplifier consists of a first parametric amplifier, which amplifies an input signal and generates an idler, which is a copy of the signal, a signal processor, which controls the phases of the signal and idler, and a second parametric amplifier, which combines the signal and idler in a phase-sensitive manner. In this paper, cascaded parametric amplification is modeled and the conditions required to maximize the constructive-destructive extinction ratio are determined. The results show that a cascaded parametric amplifier can be operated as a filter: A desired signal-idler pair is amplified, whereas undesired signal-idler pairs are deamplified. For the desired signal and idler, the noise figures of the filtering process (input signal-to-noise ratio divided by the output ratios) are only slightly higher than those of the copying process: Signal-processing functionality can be achieved with only a minor degradation in signal quality. PMID:27410581

  3. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  4. Geothermal systems of the Cascade Range

    USGS Publications Warehouse

    Muffler, L.J.; Bacon, Charles R.; Duffield, W.A.

    1982-01-01

    In the central and southern Cascade Range, plate convergence is oblique, and Quaternary volcanism produces mostly basalt and mafic andesite; large andesite-dacite composite volcanoes and silicic dome fields occur in restricted areas of long-lived igneous activity. To the north, plate convergence is normal, producing widely spaced centers in which mafic lavas are minor. Most Cascade volcanoes are short-lived and unlikely to be underlain at shallow levels by large magma bodies that could support high-temperature geothermal systems. Such systems are known, however, near Meager Mountain, at Newberry Volcano, and near Lassen Peak. Persistent fumaroles occur on several major composite volcanoes, but drilling to date has been insufficient to determine whether exploitable geothermal reservoirs occur at depth. Thermal springs away from the major volcanic centers are few and generally inconspicuous. However, significant geothermal systems along and west of the Cascade Range may well be masked by abundant cold ground water.

  5. Cascade enzymatic reactions for efficient carbon sequestration.

    PubMed

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  6. Bifurcations analysis of turbulent energy cascade

    SciTech Connect

    Divitiis, Nicola de

    2015-03-15

    This note studies the mechanism of turbulent energy cascade through an opportune bifurcations analysis of the Navier–Stokes equations, and furnishes explanations on the more significant characteristics of the turbulence. A statistical bifurcations property of the Navier–Stokes equations in fully developed turbulence is proposed, and a spatial representation of the bifurcations is presented, which is based on a proper definition of the fixed points of the velocity field. The analysis first shows that the local deformation can be much more rapid than the fluid state variables, then explains the mechanism of energy cascade through the aforementioned property of the bifurcations, and gives reasonable argumentation of the fact that the bifurcations cascade can be expressed in terms of length scales. Furthermore, the study analyzes the characteristic length scales at the transition through global properties of the bifurcations, and estimates the order of magnitude of the critical Taylor-scale Reynolds number and the number of bifurcations at the onset of turbulence.

  7. Tandem Mass Spectrum Identification via Cascaded Search.

    PubMed

    Kertesz-Farkas, Attila; Keich, Uri; Noble, William Stafford

    2015-08-01

    Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide-spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion. PMID:26084232

  8. Fundamental Investigation of Circumferentially Varying Stator Cascades

    NASA Astrophysics Data System (ADS)

    Farnsworth, John A. N.

    2011-12-01

    The fundamentals of circumferentially varying stator cascades and their interactions with a downstream fixed pitch propeller were investigated experimentally utilizing multiple measurement techniques. The flow physics associated with the isolated circumferentially varying, or cyclic, stator cascade was studied in a wind tunnel environment through string tuft flow visualization, 2-D PIV, Stereoscopic PIV, and static surface pressure measurements. The coupled wake physics of the cyclic stator cascade with propeller were then investigated in a water tunnel using Stereo PIV. Finally, the global performance of components and the coupled system were quantified through force and moment measurements on the model in the water tunnel. A cyclic distribution of the stators' deflections resulted in non-axisymmetric distributions of the surface pressure and the flow field downstream of the stator array. In the model near wake the flow field is associated with secondary flow patterns in the form of coherent streamwise vortical structures that can be described by potential flow mechanisms. The collective pitch distribution of the stators produces a flow field that resembles a potential Rankine vortex, whereas the cyclic pitch distribution generates a flow pattern that can be described by a potential vortex pair in a cross flow. The stator distribution alone produces a significant side force that increases linearly with stator pitch amplitude. When a propeller is incorporated downstream from the cyclic cascade the side force from the stator cascade is reduced, but a small vertical force and pitching moment are created. The generation of these secondary forces and moments can be related to the redistribution of the tangential flow from the cyclic cascade into the axial direction by the retreating and advancing blade states of the fixed pitch propeller.

  9. Tandem Mass Spectrum Identification via Cascaded Search

    PubMed Central

    2016-01-01

    Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide–spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion. PMID:26084232

  10. Experimental studies of cascade phenomena in metals

    SciTech Connect

    Jenkins, M.L.; Kirk, M.A.; Phythian, W.J.

    1992-06-01

    We review recent ion-irradiation experiments which have been performed to investigate the collapse of displacement cascades to dislocation loops in a range of metals and alloys. Many of the results including the dependencies of the collapse probabilities on irradiation temperature, and ion dose, energy and mass, can be explained within the framework of a thermal spike/cascade melting model which has been suggested by computer molecular dynamics simulations. Other aspects, such as the dependence of collapse propabilities on the crystal structure and the effects of alloying and impurities, are less well understood.

  11. Temperature cascade control of distillation columns

    SciTech Connect

    Wolff, E.A.; Skogestad, S.

    1996-02-01

    This paper examines how difficult control tasks are enhanced by introducing secondary measurements, creating control cascades. Temperature is much used as secondary measurement because of cheap implementation and quick and accurate response. Distillation is often operated in this manner due to slow or lacking composition measurements, although the benefits have hardly been investigated closely, especially for multivariable control applications. The authors therefore use distillation as the example when quantifying improvements in interaction and disturbance rejection. They also give analytical expressions for the secondary controller gain. The improvements are reached through simple cascade operation of the control system and require no complicated estimator function.

  12. Cascaded metasurfaces for broadband antenna isolation

    NASA Astrophysics Data System (ADS)

    Shrekenhamer, David; Miragliotta, Joseph A.; Scott, Robert; Jablon, Allan; Friedman, Jerry; Harshbarger, Derek; Sievenpiper, Daniel F.

    2015-09-01

    In this paper, we present a computational and experimental design of a metasurface for broadband microwave antenna isolation. Our current emphasis is on the development of a high-impedance surface (HIS) that enables broadband isolation between transmit and receive antennas. For our specific HIS, we have formed a cascade of HIS unit cells and have thus expanded the isolation to provide 56 dB/meter over one octave (7.5 to 18 GHz) relative to the bare metal ground plane. Computational models are used to design the cascaded structure to assure maximum isolation amplitude and bandwidth.

  13. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification.

    PubMed

    Thomsen, Mads S; Wernberg, Thomas; Altieri, Andrew; Tuya, Fernando; Gulbransen, Dana; McGlathery, Karen J; Holmer, Marianne; Silliman, Brian R

    2010-08-01

    The importance of positive interactions is increasingly acknowledged in contemporary ecology. Most research has focused on direct positive effects of one species on another. However, there is recent evidence that indirect positive effects in the form of facilitation cascades can also structure species abundances and biodiversity. Here we conceptualize a specific type of facilitation cascade-the habitat cascade. The habitat cascade is defined as indirect positive effects on focal organisms mediated by successive facilitation in the form of biogenic formation or modification of habitat. Based on a literature review, we demonstrate that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds. Habitat cascades are characterized by a hierarchy of facilitative interactions in which a basal habitat former (typically a large primary producer, e.g., a tree) creates living space for an intermediate habitat former (e.g., an epiphyte) that in turn creates living space for the focal organisms (e.g., spiders, beetles, and mites). We then present new data on a habitat cascade common to soft-bottom estuaries in which a relatively small invertebrate provides basal habitat for larger intermediate seaweeds that, in turn, generate habitat for focal invertebrates and epiphytes. We propose that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former. We also discuss how humans create, modify, and destroy habitat cascades via global habitat destruction, climatic change, over-harvesting, pollution, or transfer of invasive species. Finally, we outline future directions for research that will lead to a better understanding of habitat cascades. PMID:21558196

  14. OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERALL VIEW OF CASCADE CANAL COMPANY CRIB DAM, LOOKING UPSTREAM FROM DIRECTION OF KACHESS DAM. VIEW TO NORTH - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  15. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  16. Modeling and simulation of cascading contingencies

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  17. Forecasting Social Unrest Using Activity Cascades.

    PubMed

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  18. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  19. Forecasting Social Unrest Using Activity Cascades

    PubMed Central

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J.; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen “on the ground.” Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  20. Staged energy cascades for the LUX FEL

    SciTech Connect

    Penn, G.

    2004-07-27

    Designs and simulation studies for harmonic cascades, consisting of multiple stages of harmonic generation in free electron lasers (FELs), are presented as part of the LUX R&D project to design ultrafast, high photon energy light sources for basic science. Beam energies of 1.1, 2.1, and 3.1 GeV, corresponding to each pass through a recirculating linac, have independent designs for the harmonic cascade. Simulations were performed using the GENESIS FEL code, to obtain predictions for the performance of these cascades over a wide range of photon energies in terms of the peak power and laser profile. The output laser beam consists of photon energies of up to 1 keV, with durations of the order of 200 fs or shorter. The contribution of shot noise to the laser output is minimal, however fluctuations in the laser and electron beam properties can lead to variations in the FEL output. The sensitivity of the cascade to electron beam properties and misalignments is studied, taking advantage of the fact that GENESIS is a fully 3-dimensional code.

  1. Cascaded frequency doublers for broadband laser radiation

    SciTech Connect

    Andreev, N F; Vlasova, K V; Davydov, V S; Kulikov, S M; Makarov, A I; Sukharev, Stanislav A; Freidman, Gennadii I; Shubin, S V

    2012-10-31

    A new scheme of a cascaded converter of the first harmonic of broadband cw laser radiation into the second harmonic (SH) with compensation for the group walk-off in cascades is proposed and investigated. The conditions under which high conversion coefficients of broadband ({approx}33 cm{sup -1}) single-mode fibre laser radiation with low peak power ({approx}300 W) into the SH are determined for frequency doublers based on the most promising LBO crystal. Conversion of cw radiation with an average power of 300 W and efficiency {eta} = 4.5 % into the SH is obtained in a single LBO crystal. Effect of coherent addition of SH radiation excited in different cascades is demonstrated for two- and three-stage schemes. The expected conversion efficiencies, calculated disregarding loss but taking into account real aberrations of elements, are 18 % and 38 %, respectively. The effect of pumping depletion begins to manifest itself in the third cascade of a three-stage converter; it may reduce the latter value to {approx}30 %. (nonlinear optical phenomena)

  2. The Attention Cascade Model and Attentional Blink

    ERIC Educational Resources Information Center

    Shih, Shui-I

    2008-01-01

    An attention cascade model is proposed to account for attentional blinks in rapid serial visual presentation (RSVP) of stimuli. Data were collected using single characters in a single RSVP stream at 10 Hz [Shih, S., & Reeves, A. (2007). "Attentional capture in rapid serial visual presentation." "Spatial Vision", 20(4), 301-315], and single words,…

  3. Nested Canalyzing, Unate Cascade, and Polynomial Functions.

    PubMed

    Jarrah, Abdul Salam; Raposa, Blessilda; Laubenbacher, Reinhard

    2007-09-15

    This paper focuses on the study of certain classes of Boolean functions that have appeared in several different contexts. Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. In the same context, polynomial functions over finite fields have been used to develop network inference methods for gene regulatory networks. Finally, unate cascade functions have been studied in the design of logic circuits and binary decision diagrams. This paper shows that the class of nested canalyzing functions is equal to that of unate cascade functions. Furthermore, it provides a description of nested canalyzing functions as a certain type of Boolean polynomial function. Using the polynomial framework one can show that the class of nested canalyzing functions, or, equivalently, the class of unate cascade functions, forms an algebraic variety which makes their analysis amenable to the use of techniques from algebraic geometry and computational algebra. As a corollary of the functional equivalence derived here, a formula in the literature for the number of unate cascade functions provides such a formula for the number of nested canalyzing functions. PMID:18437250

  4. Electrically Tunable Terahertz Quantum-Cascade Lasers

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Soidel, Alexander; Mansour, Kamjou

    2006-01-01

    Improved quantum-cascade lasers (QCLs) are being developed as electrically tunable sources of radiation in the far infrared spectral region, especially in the frequency range of 2 to 5 THz. The structures of QCLs and the processes used to fabricate them have much in common with those of multiple- quantum-well infrared photodetectors.

  5. Cascaded frequency doublers for broadband laser radiation

    NASA Astrophysics Data System (ADS)

    Andreev, N. F.; Vlasova, K. V.; Davydov, V. S.; Kulikov, S. M.; Makarov, A. I.; Sukharev, Stanislav A.; Freidman, Gennadii I.; Shubin, S. V.

    2012-10-01

    A new scheme of a cascaded converter of the first harmonic of broadband cw laser radiation into the second harmonic (SH) with compensation for the group walk-off in cascades is proposed and investigated. The conditions under which high conversion coefficients of broadband (~33 cm-1) single-mode fibre laser radiation with low peak power (~300 W) into the SH are determined for frequency doublers based on the most promising LBO crystal. Conversion of cw radiation with an average power of 300 W and efficiency η = 4.5 % into the SH is obtained in a single LBO crystal. Effect of coherent addition of SH radiation excited in different cascades is demonstrated for two- and three-stage schemes. The expected conversion efficiencies, calculated disregarding loss but taking into account real aberrations of elements, are 18 % and 38 %, respectively. The effect of pumping depletion begins to manifest itself in the third cascade of a three-stage converter; it may reduce the latter value to ~30 %.

  6. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 1: Torsion mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.

  7. Multiperiod quantum-cascade nanoheterostructures: Epitaxy and diagnostics

    SciTech Connect

    Egorov, A. Yu. Brunkov, P. N.; Nikitina, E. V.; Pirogov, E. V.; Sobolev, M. S.; Lazarenko, A. A.; Baidakova, M. V.; Kirilenko, D. A.; Konnikov, S. G.

    2014-12-15

    Advances in the production technology of multiperiod nanoheterostructures of quantum-cascade lasers with 60 cascades by molecular-beam epitaxy (MBE) on an industrial multiple-substrate MBE machine are discussed. The results obtained in studying the nanoheterostructures of quantum-cascade lasers by transmission electron microscopy, high-resolution X-ray diffraction analysis, and photoluminescence mapping are presented.

  8. Convergence Analysis of a Cascade Architecture Neural Network

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Stubberub, Allen R.; Daud, Taher; Thakoor, Anil

    1997-01-01

    In this paper, we present a mathematical foundation, including a convergence analysis, for cascading architecture neural networks. From this, a mathematical foundation for the casade correlation learning algorithm can also be found. Furthermore, it becomes apparent that the cascade correlation scheme is a special case of an efficient hardware learning algorithm called Cascade Error Projection.

  9. Quantum Cascade Lasers Modulation and Applications

    NASA Astrophysics Data System (ADS)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  10. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  11. Environmental solid particle effects on compressor cascade performance

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.

  12. Cascade morphology transition in bcc metals

    SciTech Connect

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas; Stoller, Roger E.; Wirth, Brian D.; Kurtz, Richard J.

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, $b$, in the defect production curve as a function of cascade energy ($N_F$$ \\sim$$E_{MD}^b$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $\\mu$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $\\mu$ as a function of displacement threshold energy, $E_d$, is presented for bcc metals.

  13. Results from Grimethorpe PFBC turbine cascade tests

    SciTech Connect

    Not Available

    1986-12-01

    The test program at the Grimethorpe Pressurized Fluidized-Bed Combustion (PFBC) facility included an assessment of the potential for deposition, corrosion, and erosion of gas turbine blade materials when exposed to PFBC off gases. Flue gas from the combustor was fed through three stages of cyclones before entering the cascade. The impulse foils were approximately the size and shape of the first stage blades in the GE MS-1002 gas turbine. The cascade operated through three test series, accumulating a total of 649 hours. The conditions experienced are summarized. The paper lists the alloys tested, and discusses the efficiency of the cyclones, the particle size distribution of the dusts not removed by the cyclones, and corrosion of the turbine blades. 4 references, 1 figure, 2 tables.

  14. Single mode terahertz quantum cascade amplifier

    SciTech Connect

    Ren, Y. Wallis, R.; Shah, Y. D.; Jessop, D. S.; Degl'Innocenti, R.; Klimont, A.; Kamboj, V.; Beere, H. E.; Ritchie, D. A.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-mode radiation output is demonstrated.

  15. Cascade morphology transition in bcc metals.

    PubMed

    Setyawan, Wahyu; Selby, Aaron P; Juslin, Niklas; Stoller, Roger E; Wirth, Brian D; Kurtz, Richard J

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N(F) ~ E(MD)(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, μ, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of μ as a function of displacement threshold energy, E(d), is presented for bcc metals. PMID:25985256

  16. Cascade properties of shear Alfven wave turbulence

    NASA Technical Reports Server (NTRS)

    Bondeson, A.

    1985-01-01

    Nonlinear three-wave interactions of linear normal modes are investigated for two-dimensional incompressible magnetohydrodynamics and the weakly three-dimensional Strauss equations in the case where a strong uniform background field B0 is present. In both systems the only resonant interaction affecting Alfven waves is caused by the shear of the background field plus the zero frequency components of the perturbation. It is shown that the Alfven waves are cascaded in wavenumber space by a mechanism equivalent to the resonant absorption at the Alfven resonance. For large wavenumbers perpendicular to B0, the cascade is described by Hamilton's ray equations, dk/dt = -(first-order) partial derivative of omega with respect to vector r, where omega includes the effects of the zero frequency perturbations.

  17. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  18. Cascade Apartments: Deep Energy Multifamily Retrofit

    SciTech Connect

    Gordon, A.; Mattheis, L.; Kunkle, R.; Howard, L.; Lubliner, M.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  19. Bowtie plasmonic quantum cascade laser antenna.

    PubMed

    Yu, Nanfang; Cubukcu, Ertugrul; Diehl, Laurent; Bour, David; Corzine, Scott; Zhu, Jintian; Höfler, Gloria; Crozier, Kenneth B; Capasso, Federico

    2007-10-01

    We report a bowtie plasmonic quantum cascade laser antenna that can confine coherent mid-infrared radiation well below the diffraction limit. The antenna is fabricated on the facet of a mid-infrared quantum cascade laser and consists of a pair of gold fan-like segments, whose narrow ends are separated by a nanometric gap. Compared with a nano-rod antenna composed of a pair of nano-rods, the bowtie antenna efficiently suppresses the field enhancement at the outer ends of the structure, making it more suitable for spatially-resolved high-resolution chemical and biological imaging and spectroscopy. The antenna near field is characterized by an apertureless near-field scanning optical microscope; field confinement as small as 130 nm is demonstrated at a wavelength of 7.0 mum. PMID:19550597

  20. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Lin, S.

    1985-01-01

    A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.

  1. Evolution of Vertebrate Phototransduction: Cascade Activation

    PubMed Central

    Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.

    2016-01-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  2. Absorption spectroscopy with quantum cascade lasers

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  3. Evolution of Vertebrate Phototransduction: Cascade Activation.

    PubMed

    Lamb, Trevor D; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C; Davies, Wayne I L; Hart, Nathan S; Collin, Shaun P; Hunt, David M

    2016-08-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  4. Cascaded phase-preserving multilevel amplitude regeneration.

    PubMed

    Roethlingshoefer, Tobias; Onishchukov, Georgy; Schmauss, Bernhard; Leuchs, Gerd

    2014-12-29

    The performance of cascaded in-line phase-preserving amplitude regeneration using nonlinear amplifying loop mirrors has been studied in numerical simulations. As an example of a spectrally efficient modulation format with two amplitude states and multiple phase states, the regeneration performance of a star-16QAM format, basically an 8PSK format with two amplitude levels, was evaluated. An increased robustness against amplified spontaneous emission and nonlinear phase noise was observed resulting in a significantly increased transmission distance. PMID:25607142

  5. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  6. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.

    1981-01-01

    Some redesign of the cascade facility was necessary in order to incoporate the requirements of the LDA system into the design. Of particular importance was the intended use of a combination of suction upstream of the blade pack with diverging pack walls, as opposed to blade pack suction alone, for spanwise dimensionality control. An ARL blade was used to redo some tests using this arrangement. Preliminary testing and boundary layer measurements began on the double circular arc blades.

  7. Vortex knot cascade in polynomial skein relations

    NASA Astrophysics Data System (ADS)

    Ricca, Renzo L.

    2016-06-01

    The process of vortex cascade through continuous reduction of topological complexity by stepwise unlinking, that has been observed experimentally in the production of vortex knots (Kleckner & Irvine, 2013), is shown to be reproduced in the branching of the skein relations of knot polynomials (Liu & Ricca, 2015) used to identify topological complexity of vortex systems. This observation can be usefully exploited for predictions of energy-complexity estimates for fluid flows.

  8. Modeling techniques for quantum cascade lasers

    SciTech Connect

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  9. Cascade Raman soliton fiber ring laser

    SciTech Connect

    Gouveia-Neto, A.S.; Gomes, A.S.L.; Taylor, J.R.; Ainslie, B.J.; Craig, S.P.

    1987-11-01

    Pulses as short as 200 fsec at 1.5 ..mu..m and 230 fsec at 1.6 ..mu..m have been generated through a cascade Raman, solitonlike process in a fiber ring oscillator. A dispersion-shifted (lambda/sub 0/ = 1.46 ..mu..m) single-mode fiber was used as the gain medium, which was synchronously pumped by a cw mode-locked Nd:YAG laser operated at 1.32 ..mu..m.

  10. HIV treatment cascade in tuberculosis patients

    PubMed Central

    Lessells, Richard J.; Swaminathan, Soumya; Godfrey-Faussett, Peter

    2015-01-01

    Purpose of review Globally, the number of deaths associated with tuberculosis (TB) and HIV coinfection remains unacceptably high. We review the evidence around the impact of strengthening the HIV treatment cascade in TB patients and explore recent findings about how best to deliver integrated TB/HIV services. Recent findings There is clear evidence that the timely provision of antiretroviral therapy (ART) reduces mortality in TB/HIV coinfected adults. Despite this, globally in 2013, only around a third of known HIV-positive TB cases were treated with ART. Although there is some recent evidence exploring the barriers to achieve high coverage of HIV testing and ART initiation in TB patients, our understanding of which factors are most important and how best to address these within different health systems remains incomplete. There are some examples of good practice in the delivery of integrated TB/HIV services to improve the HIV treatment cascade. However, evidence of the impact of such strategies is of relatively low quality for informing integrated TB/HIV programming more broadly. In most settings, there remain barriers to higher-level organizational and functional integration. Summary There remains a need for commitment to patient-centred integrated TB/HIV care in countries affected by the dual epidemic. There is a need for better quality evidence around how best to deliver integrated services to strengthen the HIV treatment cascade in TB patients, both at primary healthcare level and within community settings. PMID:26352390

  11. Reconciliation of Cascade Impaction during Wet Nebulization.

    PubMed

    Solomita, Mario; Smaldone, Gerald C

    2009-03-01

    Cascade impaction is an important tool for measuring aerosol distributions from wet nebulizers; however, results vary depending on laboratory and technique. The focus of this study was to reconcile the contribution of particle evaporation to these reported differences. To measure the effect of evaporation, we compared aerosol distributions from circuits ventilated with humidified air, ambient air, and a nonventilated, standing cloud circuit using low-flow cascade impaction (1.0 L/min). Aerosol distributions were similar for the humidified/ventilated and standing cloud models [mass median aerodynamic diameter (MMAD) 3.4 microm, and 3.6 microm Aero-Eclipse, 5.8 and 5.1 microm Misty-Neb, 3.8 and 3.2 microm Pari LC Plus]. In the ventilated/ambient air model, smaller particle sizes were measured (2.2 microm AeroEclipse, 2.4 microm Misty-Neb, 2.1 microm Pari LC Plus). Techniques of cascade impaction significantly affected measured aerosol distributions. MMAD were defined by nebulizer type and conditions of particle evaporation not by impactor. Aerosol mixing with ambient air caused evaporation and shrinkage of particles, and accounts for differences between laboratories. Patients breathing from nebulizers may entrain ambient air possibly affecting deposition. PMID:19392585

  12. Cascade laser applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  13. Gasdynamic evaluation of choking cascade turns

    NASA Astrophysics Data System (ADS)

    Perez, D. R.

    1984-12-01

    Uses for ram air in airborne vehicles are increasing along with the need for sophisticated ducting of the compressed air. Inlets operating supercritically, a normal shock in the subsonic diffuser, and use an aerodynamic grid to control the normal shock position to a region of low total pressure losses are discussed. Turning of the flow requires long radius curves to maintain the total pressure. This study combines the internal shock positioning and flow turning into a flow choking cascade turn with a short radius. Several sets of 90 degree turning sections, for turning compressed air, were selected, designed, and tested gas dynamically. Two of the turn sections were totally subsonic and only turned the air flow. Two other sections turned and choked the flow during supercritical inlet operation. These flow controllers perform the same function as an aerodynamic grid and flow turning vanes used in current internal compressible airflow designs. These tests correlated the suitability of using a water table versus a gas dynamic apparatus for determining the flow control capabilities and pressure recovery of the cascades. The subsonic only turning section gave the best pressure recovery and total pressure distribution along the turning axis, but allowed the supercritical internal shock to move towards large shock/boundary layer interaction. The two shock positioning cascades provided good internal shock control with only slightly lower pressure recovery. Further investigation is needed for the effects of back pressure fluctuations on the flow dynamics.

  14. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, M. A.; Mahajan, A. J.; Keith, T. G., Jr.; Stefko, G. L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  15. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time-marching Full-Potential cascade solver are developed and verified. In the first method, the Influence Coefficient method, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response method, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers using both flat plates and actual airfoils.

  16. Prediction of Cascading Failures in Spatial Networks

    PubMed Central

    Shunkun, Yang; Dan, Lu

    2016-01-01

    Cascading overload failures are widely found in large-scale parallel systems and remain a major threat to system reliability; therefore, they are of great concern to maintainers and managers of different systems. Accurate cascading failure prediction can provide useful information to help control networks. However, for a large, gradually growing network with increasing complexity, it is often impractical to explore the behavior of a single node from the perspective of failure propagation. Fortunately, overload failures that propagate through a network exhibit certain spatial-temporal correlations, which allows the study of a group of nodes that share common spatial and temporal characteristics. Therefore, in this study, we seek to predict the failure rates of nodes in a given group using machine-learning methods. We simulated overload failure propagations in a weighted lattice network that start with a center attack and predicted the failure percentages of different groups of nodes that are separated by a given distance. The experimental results of a feedforward neural network (FNN), a recurrent neural network (RNN) and support vector regression (SVR) all show that these different models can accurately predict the similar behavior of nodes in a given group during cascading overload propagation. PMID:27093054

  17. Analysis of Cascading Failure in Gene Networks

    PubMed Central

    Sun, Longxiao; Wang, Shudong; Li, Kaikai; Meng, Dazhi

    2012-01-01

    It is an important subject to research the functional mechanism of cancer-related genes make in formation and development of cancers. The modern methodology of data analysis plays a very important role for deducing the relationship between cancers and cancer-related genes and analyzing functional mechanism of genome. In this research, we construct mutual information networks using gene expression profiles of glioblast and renal in normal condition and cancer conditions. We investigate the relationship between structure and robustness in gene networks of the two tissues using a cascading failure model based on betweenness centrality. Define some important parameters such as the percentage of failure nodes of the network, the average size-ratio of cascading failure, and the cumulative probability of size-ratio of cascading failure to measure the robustness of the networks. By comparing control group and experiment groups, we find that the networks of experiment groups are more robust than that of control group. The gene that can cause large scale failure is called structural key gene. Some of them have been confirmed to be closely related to the formation and development of glioma and renal cancer respectively. Most of them are predicted to play important roles during the formation of glioma and renal cancer, maybe the oncogenes, suppressor genes, and other cancer candidate genes in the glioma and renal cancer cells. However, these studies provide little information about the detailed roles of identified cancer genes. PMID:23248647

  18. Degravitation features in the cascading gravity model

    NASA Astrophysics Data System (ADS)

    Moyassari, Parvin; Minamitsuji, Masato

    2013-07-01

    We obtain the effective gravitational equations on the codimension-2 and codimension-1 branes in the cascading gravity model. We then apply our formulation to the cosmological case and obtain the effective Friedmann equations on the codimension-2 brane, which are generically given in terms of integro-differential equations. Adopting an approximation for which the thickness of the codimension-2 brane is much smaller than the Hubble horizon, we study the Minkowski and de Sitter codimension-2 brane solutions. Studying the cosmological solutions shows that the cascading model exhibits the features necessary for degravitation of the cosmological constant. We also show that only the branch which does not have the smooth limit to the self-accelerating branch in the five-dimensional model in the absence of the bulk gravity can satisfy the null energy condition as the criterion of the stability. Note that our solutions are obtained in a different setup from that of the original cascading gravity model in the sense that the codimension-1 brane contains matter fields other than the pure tension.

  19. Energy flow along the medium-induced parton cascade

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    2016-05-01

    We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.

  20. Heat cascading regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  1. The current disequilibrium of North Cascade glaciers

    NASA Astrophysics Data System (ADS)

    Pelto, Mauri S.

    2006-03-01

    Three lines of evidence indicate that North Cascade (Washington, USA) glaciers are currently in a state of disequilibrium. First, annual balance measured on nine glaciers yields a mean cumulative balance for the 1984-2004 period of -8.58 m water equivalent (w.e.), a net loss of ice thickness exceeding 9.5 m. This is a significant loss for glaciers that average 30-50 m in thickness, representing 18-32% of their entire volume.Second, longitudinal profiles completed in 1984 and 2002 on 12 North Cascade glaciers confirm this volume change indicating a loss of -5.7 to -6.3 m in thickness (5.0-5.6 m w.e.) between 1984 and 2002, agreeing well with the measured cumulative balance of -5.52 m w.e. for the same period. The change in thickness on several glaciers has been equally substantial in the accumulation zone and the ablation zone, indicating that there is no point to which the glacier can retreat to achieve equilibrium. Substantial thinning along the entire length of a glacier is the key indicator that a glacier is in disequilibrium.Third, North Cascade glacier retreat is rapid and ubiquitous. All 47 glaciers monitored are currently undergoing significant retreat or, in the case of four, have disappeared. Two of the glaciers where mass balance observations were begun, Spider Glacier and Lewis Glacier, have disappeared. The retreat since 1984 of eight Mount Baker glaciers that were all advancing in 1975 has averaged 297 m. These observations indicate broad regional continuity in glacial response to climate.

  2. Stopping pions in high-energy nuclear cascades.

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  3. Multiplicative cascades and seismicity in natural time

    SciTech Connect

    Sarlis, N. V.; Skordas, E. S.; Varotsos, P. A.

    2009-08-15

    Natural time chi enables the distinction of two origins of self-similarity, i.e., the process memory and the process increments infinite variance. Employing multiplicative cascades in natural time, the most probable value of the variance kappa{sub 1}(ident to-{sup 2}) is explicitly related with the parameter b of the Gutenberg-Richter law of randomly shuffled earthquake data. Moreover, the existence of temporal and magnitude correlations is studied in the original earthquake data. Magnitude correlations are larger for closer in time earthquakes, when the maximum interoccurrence time varies from half a day to 1 min.

  4. Cascaded integrated waveguide linear microcavity filters

    NASA Astrophysics Data System (ADS)

    Pruessner, Marcel W.; Stievater, Todd H.; Goetz, Peter G.; Rabinovich, William S.; Urick, Vincent J.

    2013-07-01

    We experimentally demonstrate cascaded Fabry-Perot microcavity filters fabricated on silicon-on-insulator substrates. The cavities are formed by etching three sets of quarter-wavelength trenches along a rib waveguide, each set forming a Bragg reflector. Various configurations are examined with a view towards maximizing the filter extinction and minimizing the linewidth. We investigate the origin of spurious cavity modes and show how these are minimized. The effect of mode-splitting due to inter-cavity coupling is suppressed by increasing the reflectivity of the center mirror. Experimental results compare well with transfer matrix predictions.

  5. Cascades of Fano resonances in Mie scattering

    NASA Astrophysics Data System (ADS)

    Rybin, M. V.; Sinev, I. S.; Samusev, K. B.; Limonov, M. F.

    2014-03-01

    The interference nature of resonant Mie scattering, which is described within the Fano model, has been demonstrated. The interference is caused by interaction of an incident electromagnetic wave with reemitted waves that correspond to eigenmodes of a scattering particle. Mie scattering due to the interference can be represented in the form of cascades of resonance lines of different shapes, each of which is described by the classical Fano formula. The effect is observed in resonant light scattering by an arbitrary body of revolution and discussed in detail using the example of scattering by an infinite homogeneous dielectric cylinder.

  6. Atom localization with double-cascade configuration

    NASA Astrophysics Data System (ADS)

    Gordeev, Maksim Yu; Efremova, Ekaterina A.; Rozhdestvensky, Yuri V.

    2016-03-01

    We investigate the one-dimensional (1D) and two-dimensional (2D) atom localization of a four-level system in a double-cascade configuration. We demonstrate the possibility of 1D localization in the field of a standing wave, 2D localization in the field of two standing waves and 2D localization only in the field of running waves by using different configurations of driven waves on transitions. In addition, for each configuration we reached a high-precision atom localization in one of the states at scales much smaller than the wavelength of the incident optical radiation.

  7. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Griffin, Tom; Grosvenor, Kevin T.; Hořava, Petr; Yan, Ziqi

    2015-12-01

    Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion ω ˜kn (n =2 ,3 ,… ), whose naturalness is protected by polynomial shift symmetries. Here, we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of n changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.

  8. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  9. Cascade impactor and jet plate for same

    DOEpatents

    Dahlin, Robert S.; Farthing, William E.; Landham Jr., Edward C.

    2004-02-03

    A sampling system and method for sampling particulate matter from a high-temperature, high-pressure gas stream. A cyclone sampler for use at high temperatures and pressures, and having threadless sacrificial connectors is disclosed. Also disclosed is an improved cascade impactor including jet plates with integral spacers, and alignment features provided for aligning the jet plates with their associated collection substrates. An activated bauxite alkali collector is disclosed, and includes an alumina liner. The sampling system can be operated remotely or locally, and can be permanently installed or configured as a portable system.

  10. Brine rejection and cascades in the Arctic

    NASA Astrophysics Data System (ADS)

    Postlethwaite, C.; Luneva, M.

    2012-04-01

    The formation of sea ice is accompanied by brine rejection, where the ice releases much of its salt into the underlying water. This causes densification of the seawater which consequently sinks. On the continental shelf the dense plume may reach all the way to the sea bed. If the horizontal density gradient is sufficient, a dense water cascade can occur, transporting the brine down the continental slope and ultimately into the deep ocean. The fate of this brine is poorly represented in ocean models because (1) the coarse horizontal resolution does not capture the small scale over which brine release occurs and (2) the coarse vertical resolution cannot resolve the dense water cascades that transport the dense brine from the continental shelf into the deep ocean. This work focuses on exploring ways of altering the vertical grid of an ocean model in order to allow the transport of brine from the Arctic Shelf to Arctic Basin via dense cascades. We present results from a 7 km and 18km resolution pan-Arctic ocean/sea ice model (NEMO SHELF - LIM2). Idealised model experiments indicate that using a hybrid vertical grid enables the model to resolve dense water flows down and along the Arctic continental slope. The hybrid coordinates include stretching the vertical grid to align with the seabed topography in shallow shelf waters (sigma coordinates) and allowing it to be horizontal when the water depth is greater (z coordinates). It also involves limiting how steep the grid cells can slope when there is steep topography. A passive tracer that tracks the salt introduced to the ocean when ice forms and brine is rejected was included in the model. Initial pan-Arctic experiments using realistic forcing and initial conditions suggest that with the improved vertical grid the brine tracer crosses the shelf break but the locations where the tracer enters the deep Arctic Basin are limited. As the Arctic moves towards being seasonally ice covered, brine transport pathways are likely to

  11. Spin Glass Computations and Ruelle's Probability Cascades

    NASA Astrophysics Data System (ADS)

    Arguin, Louis-Pierre

    2007-03-01

    We study the Parisi functional, appearing in the Parisi formula for the pressure of the SK model, as a functional on Ruelle's Probability Cascades (RPC). Computation techniques for the RPC formulation of the functional are developed. They are used to derive continuity and monotonicity properties of the functional retrieving a theorem of Guerra. We also detail the connection between the Aizenman-Sims-Starr variational principle and the Parisi formula. As a final application of the techniques, we rederive the Almeida-Thouless line in the spirit of Toninelli but relying on the RPC structure.

  12. Kelvin waves cascade in superfluid turbulence.

    PubMed

    Kivotides, D; Vassilicos, J C; Samuels, D C; Barenghi, C F

    2001-04-01

    We study numerically the interaction of four initial superfluid vortex rings in the absence of any dissipation or friction. We find evidence for a cascade of Kelvin waves generated by individual vortex reconnection events which transfers energy to higher and higher wave numbers k. After the vortex reconnections occur, the energy spectrum scales as k(-1) and the curvature spectrum becomes flat. These effects highlight the importance of Kelvin waves and reconnections in the transfer of energy within a turbulent vortex tangle. PMID:11290112

  13. Atomistic Simulation of Displacement Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Weber, William J.; Corrales, Louis R.; BP McGrail and GA Cragnolino

    2002-05-06

    Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.

  14. Pair Cascades in Blazars and Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Roustazadeh Sheikhyousefi, Parisa

    2012-05-01

    Recently some intermediate BL Lac objects (IBL), low frequency peak BL Lac objects (LBL) and flat spectrum radio quasars (FSRQs) were detected as very high energy gamma-ray sources (VHE; E > 100 GeV) by the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope (MAGIC), the High Energy Stereoscopic System (H.E.S.S) and the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These discoveries suggest that VHE gamma-rays may be produced in all types of active galactic nuclei (AGN) and that this is not only a common property of high frequency peaked BL Lac objects (HBL). The detection of the radio galaxies M87, Cen A and NGC 1275 supports this idea. In those AGN, VHE photons may interact with low energy photons from the broadline region (BLR), accretion disk around the black hole or thermal infrared photons form a dust torus by photon-photon pair production if the total center-of-momentum frame energy is above threshold to produce an electron-positron pair. These particles can produce new high energy photons by Compton up-scattering, and again these high energy photons can interact with soft photons to produce a pair of particles. This process will continue, leading to a shower (cascade) of particles and radiation. As the shower develops, it will expand laterally. This may explain the detection of the radio galaxies as VHE gamma-ray sources. The central part of my Ph.D. research work deals with the theoretical simulation of very high energy gamma-ray induced pair cascades in blazars and radio galaxies. Gamma-rays from the core of the AGN interact with low energy photons from the AGN environment and produce pairs of electrons and positrons resulting in Compton supported pair cascades. I developed a Monte Carlo code which treats the processes of gamma-gamma absorption and pair production, gamma-ray and electron/positron propagation, and Compton scattering, tracking particle trajectories in full 3-dimensional geometry. I showed that even for a very weak

  15. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  16. Free Energy Cascade in Gyrokinetic Turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-02-04

    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a (strongly) local, forward (from large to small scales) cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large-eddy-simulation techniques for gyrokinetics.

  17. Plant MAPK cascades: Just rapid signaling modules?

    PubMed Central

    Boudsocq, Marie; Danquah, Agyemang; de Zélicourt, Axel; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and long-term plant stress responses. PMID:26313321

  18. Single-mode tapered quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Rauter, Patrick; Menzel, Stefan; Gokden, B.; K. Goyal, Anish; Wang, Christine A.; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-05-01

    We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 μm, where nine devices feature single-mode operation at peak powers between 0.3 and 1.6 W at room temperature. High output power and excellent beam quality with peak brightness values up to 1.6 MW cm-2 sr-1 render these two-terminal devices highly suitable for stand-off spectroscopy applications.

  19. The metal interconnected cascade solar cell

    SciTech Connect

    LaRue, R.A.; Borden, P.G.; Dietze, W.T.; Gregory, P.E.; Ludowise, M.J.

    1982-09-01

    A cascade cell employing a new type of interconnect is described. It uses a groove etch and metallization process to connect the base of the top cell to the emitter of the bottom cell. The best cell yielded 21.3% efficiency under conditions of AM3, 130 suns, 50/sup 0/C, with the result not corrected for grid coverage. Other features include a 1.2-micron thick 1.82-eV ALGaAs top cell with a BSF under the base and an n/p heteroface GaAs bottom cell that is stable during top cell growth.

  20. Cascaded Mach–Zehnder interferometer tunable filters

    NASA Astrophysics Data System (ADS)

    Ovvyan, A. P.; Gruhler, N.; Ferrari, S.; Pernice, W. H. P.

    2016-06-01

    By cascading compact and low-loss Mach–Zehnder interferometers (MZIs) embedded within nanophotonic circuits we realize thermo-optically tunable optical filters for the visible wavelength range. Through phase tuning in either arm of the MZI, the filter response with maximum extinction can be shifted beyond one free-spectral range with low electrical power consumption. The working wavelength of our device is aligned with the emission wavelength of the silicon vacancy color center in diamond around 740 nm where we realize a filter depth beyond 36.5 dB. Our approach allows for efficient isolation of the emitted signal intensity in future hybrid nanodiamond-nanophotonic circuits.

  1. External cavity coherent quantum cascade laser array

    NASA Astrophysics Data System (ADS)

    Vallon, Raphael; Parvitte, Bertrand; Bizet, Laurent; De Naurois, Guy Mael; Simozrag, Bouzid; Maisons, Grégory; Carras, Mathieu; Zeninari, Virginie

    2016-05-01

    We report on the development of a coherent quantum cascade laser array that consists in the fabrication of multi-stripes array. The main characteristic of this kind of source is that an anti-symmetrical signature with two lobes is obtained in the far field. Taking advantage of this drawback, a grating is aligned with one lobe of the source. Thus a Littrow configuration is designed that permit to obtain a wide tunability of the source. First results are presented and a preliminary test of the source is realized by measurements on acetone.

  2. The comparison of extraction of energy in two-cascade and one-cascade targets

    NASA Astrophysics Data System (ADS)

    Dolgoleva, G. V.; Ponomarev, I. V.

    2016-01-01

    The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of "burning" of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy. The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.

  3. Boise Cascade Mill Energy Assessment (Boise Cascade Mill, International Falls, MN)

    SciTech Connect

    2000-12-01

    An integrated effluent heat reduction and water conservation study was performed at the Boise Cascade plant in International Falls, MN. The implementation of 4 projects and 2 process modifications are projected to remove 45.6 Btu/hr from the effluent.

  4. Applications of TIERRAS for underground particle cascade simulations

    SciTech Connect

    Tueros, M. J.

    2010-11-24

    In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

  5. Cascaded Gamma Rays as a Probe of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  6. Computer modeling results on all-Si cascade solar cells

    NASA Technical Reports Server (NTRS)

    Sparks, P. D.; Allen, F. G.; Daud, T.

    1984-01-01

    The properties of a cascade solar cell made entirely of silicon are investigated numerically with the goal of developing an optimal silicon solar cell grown by molecular-beam epitaxy. The cascade cell is modeled as two standard back-surface field cells with abrupt junctions connected by a tunnel junction. A cascade cell would have approximately twice the open-circuit voltage of a single cell. If the minority carriers generated in the front cell can be reflected before reaching the tunnel junction, then the cascade cell will show an increase in efficiency over a single cell by a percentage point.

  7. Large-scale separation and hysteresis in cascades

    NASA Technical Reports Server (NTRS)

    Rothmayer, A. P.; Smith, F. T.

    1985-01-01

    An approach using a two-dimensional thin aerofoil, allied with the theory of viscous bluff-body separation, is used to study the initial cross-over from massive separation to an attached flow in a single-row unstaggered cascade. Analytic solutions are developed for the limit of small cascade-spacing. From the analytic solutions several interesting features of the cascade are examined, including multiple-solution branches and multiple regions of hysteresis. In addition, numerical results are presented for several selected aerofoils. Some of the aerofoils are found to contain markedly enlarged regions of hysteresis for certain critical cascade spacings.

  8. A meta-analysis of the freshwater trophic cascade.

    PubMed Central

    Brett, M T; Goldman, C R

    1996-01-01

    The generality of the trophic cascade has been an intensely debated topic among ecologists. We conducted a meta-analysis of 54 separate enclosure and pond experiments that measured the response of the zooplankton and phytoplankton to zooplanktivorous fish treatments. These results provide unequivocal support for the trophic cascade hypothesis in freshwater food webs. Zooplanktivorous fish treatments resulted in reduced zooplankton biomass and increased phytoplankton biomass. The trophic cascade was weakly dampened at the level of the phytoplankton. However, the response of the phytoplankton to the trophic cascade was highly skewed, with very strong responses in slightly more than one-third of the cases and weak responses in the others. PMID:11607694

  9. Overflow cascades in liquid-infused substrates

    NASA Astrophysics Data System (ADS)

    Jacobi, I.; Wexler, J. S.; Stone, H. A.

    2015-08-01

    Liquid-infused patterned surfaces offer a promising new platform for generating omniphobic surface coatings. However, the liquid infused in these surfaces is susceptible to shear-driven dewetting. Recent work [Wexler et al., "Shear-driven failure of liquid-infused surfaces," Phys. Rev. Lett. 114, 168301 (2015)] has shown how the substrate pattern in these surfaces can be designed to exploit capillary forces in order to retain infused lubricants against the action of an immiscible shear flow. In this study, we explore the behavior of the infused lubricant when external shear causes the lubricant to overflow finite or "dead-end" surface features, resulting in either temporary or permanent lubricant loss. Microfluidic experiments illustrate how both geometry and chemical Marangoni stresses within liquid-infused surfaces generate an overflow cascade in which the lubricant escapes from the substrate and forms droplets on the surface, after which the droplets depin and are washed away by the external shear flow, allowing the overflow to repeat. General guidelines are developed to estimate the onset of the different stages of the cascade with the aim of providing additional robustness criteria for the design of future liquid-infused surfaces.

  10. Quantum dot quantum cascade infrared photodetector

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi; Liu, Feng-Qi; Liu, Shu-Man; Wang, Zhan-Guo

    2014-04-01

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski-Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 1011 and 4.83 × 106 Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

  11. Quantum dot quantum cascade infrared photodetector

    SciTech Connect

    Wang, Xue-Jiao; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Jun-Qi E-mail: fqliu@semi.ac.cn; Liu, Feng-Qi E-mail: fqliu@semi.ac.cn; Liu, Shu-Man; Wang, Zhan-Guo

    2014-04-28

    We demonstrate an InAs quantum dot quantum cascade infrared photodetector operating at room temperature with a peak detection wavelength of 4.3 μm. The detector shows sensitive photoresponse for normal-incidence light, which is attributed to an intraband transition of the quantum dots and the following transfer of excited electrons on a cascade of quantum levels. The InAs quantum dots for the infrared absorption were formed by making use of self-assembled quantum dots in the Stranski–Krastanov growth mode and two-step strain-compensation design based on InAs/GaAs/InGaAs/InAlAs heterostructure, while the following extraction quantum stairs formed by LO-phonon energy are based on a strain-compensated InGaAs/InAlAs chirped superlattice. Johnson noise limited detectivities of 3.64 × 10{sup 11} and 4.83 × 10{sup 6} Jones at zero bias were obtained at 80 K and room temperature, respectively. Due to the low dark current and distinct photoresponse up to room temperature, this device can form high temperature imaging.

  12. Cascade Distiller System Performance Testing Interim Results

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  13. Cascaded clocks measurement and simulation findings

    NASA Technical Reports Server (NTRS)

    Chislow, Don; Zampetti, George

    1994-01-01

    This paper will examine aspects related to network synchronization distribution and the cascading of timing elements. Methods of timing distribution have become a much debated topic in standards forums and among network service providers (both domestically and internationally). Essentially these concerns focus on the need to migrate their existing network synchronization plans (and capabilities) to those required for the next generation of transport technologies (namely, the Synchronous Digital Hierarchy (SDH), Synchronous Optical Networks (SONET), and Asynchronous Transfer Mode (ATM). The particular choices for synchronization distribution network architectures are now being evaluated and are demonstrating that they can indeed have a profound effect on the overall service performance levels that will be delivered to the customer. The salient aspects of these concerns reduce to the following: (1) identifying that the devil is in the details of the timing element specifications and the distribution of timing information (i.e., small design choices can have a large performance impact); (2) developing a standardized method of performance verification that will yield unambiguous results; and (3) presentation of those results. Specifically, this will be done for two general cases: an ideal input, and a noisy input to a cascaded chain of slave clocks.

  14. Multiplicative-cascade dynamics in pole balancing

    NASA Astrophysics Data System (ADS)

    Harrison, Henry S.; Kelty-Stephen, Damian G.; Vaz, Daniela V.; Michaels, Claire F.

    2014-06-01

    Pole balancing is a key task for probing the prospective control that organisms must engage in for purposeful action. The temporal structure of pole-balancing behaviors will reflect the on-line operation of control mechanisms needed to maintain an upright posture. In this study, signatures of multifractality are sought and found in time series of the vertical angle of a pole balanced on the fingertip. Comparisons to surrogate time series reveal multiplicative-cascade dynamics and interactivity across scales. In addition, simulations of a pole-balancing model generating on-off intermittency [J. L. Cabrera and J. G. Milton, Phys. Rev. Lett. 89, 158702 (2002), 10.1103/PhysRevLett.89.158702] were analyzed. Evidence of multifractality is also evident in simulations, though comparing simulated and participant series reveals a significantly greater contribution of cross-scale interactivity for the latter. These findings suggest that multiplicative-cascade dynamics are an extension of on-off intermittency and play a role in prospective coordination.

  15. Trophic cascade alters ecosystem carbon exchange

    PubMed Central

    Strickland, Michael S.; Hawlena, Dror; Reese, Aspen; Bradford, Mark A.; Schmitz, Oswald J.

    2013-01-01

    Trophic cascades—the indirect effects of carnivores on plants mediated by herbivores—are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a 13C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems. PMID:23776213

  16. Heavy quarkonium cascades in the glueball model

    SciTech Connect

    Zuk, J.; Joshi, G.C.

    1984-05-01

    The OZI ciolating two pion cascades between /sup 3/Si states of heavy quarkonium (V' ..-->.. V/sup pipi/) are studied in the Freund--Nambu model. When interpreted in the context of QCD, this model implies that OZI violation results from mixing with an intermediate glueball state. It is found that for an appropriate flavour--symmetry--breaking scheme, cascades between the same quantum numbers are satisfactorily described by varying only the quarkonium masses. Some predictions are made. But, the observed suppression of GAMMA(..gamma..'' ..-->.. ..gamma pi pi..)/GAMMA(..gamma..' ..-->.. ..gamma pi pi..)= indicates that the QQ bound state nature of heavy quarkonia is an important consideration in these decays. We show that the quarkonium couplings depend on overlap integrals between the wavefunctions of the mesons present at the decay vertex. We discuss various models that exploit the non-relativistic nature of heavy quarkonia, and from which such overlap integrals are derived in terms of ''charmonium--model'' radial wavefunctions.

  17. Frequency division using a micromechanical resonance cascade

    SciTech Connect

    Qalandar, K. R. Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L.; Strachan, B. S.; Shaw, S. W.

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  18. Inverse Energy Cascades in Rotating Turbulence

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. L.; Marino, R.; Mininni, P.; Pouquet, A.

    2013-12-01

    We present the results of direct numerical simulations (DNS) of rapidly rotating turbulent flows on grids of 20483 grid points that are forced at intermediate scales. Injection of energy at such scales at small Rossby numbers (~0.04) leads to a direct cascade toward small scales and an inverse cascade toward large scales. These results essentially validate those obtained using large eddy simulation (LES) (Sen et al., PRE 86:036319 (2012)): for a (helical) forcing that injects energy largely in 2D modes, the large scale energy spectrum scales as kperp-5/3, consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology; for a nonhelical isotropic forcing, the large scale energy spectrum scales as kperp-3. The (helical) anisotropic forcing DNS solution, like that of the LES models, shows a k-1 isotropic energy spectrum, which Sen et al. attribute to a large scale shear. The higher resolution of the DNS runs allows us to carry out probability distribution and conditional analyses that show that this interpretation may, in fact, be consistent with wall-bounded turbulent shear flow.

  19. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-07-01

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  20. Flow characteristics of the Cascade granular blanket

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1985-04-15

    Analysis of a single granule on a rotating cone shows that for the 35/sup 0/ half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer.

  1. Cascaded clocks measurement and simulation findings

    NASA Astrophysics Data System (ADS)

    Chislow, Don; Zampetti, George

    1994-05-01

    This paper will examine aspects related to network synchronization distribution and the cascading of timing elements. Methods of timing distribution have become a much debated topic in standards forums and among network service providers (both domestically and internationally). Essentially these concerns focus on the need to migrate their existing network synchronization plans (and capabilities) to those required for the next generation of transport technologies (namely, the Synchronous Digital Hierarchy (SDH), Synchronous Optical Networks (SONET), and Asynchronous Transfer Mode (ATM). The particular choices for synchronization distribution network architectures are now being evaluated and are demonstrating that they can indeed have a profound effect on the overall service performance levels that will be delivered to the customer. The salient aspects of these concerns reduce to the following: (1) identifying that the devil is in the details of the timing element specifications and the distribution of timing information (i.e., small design choices can have a large performance impact); (2) developing a standardized method of performance verification that will yield unambiguous results; and (3) presentation of those results. Specifically, this will be done for two general cases: an ideal input, and a noisy input to a cascaded chain of slave clocks.

  2. Quaternary Magmatism in the Cascades - Geologic Perspectives

    USGS Publications Warehouse

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  3. Aerodynamic development and investigation of turbine transonic rotor blade cascades

    NASA Astrophysics Data System (ADS)

    Mayorskiy, E. V.; Mamaev, B. I.

    2015-05-01

    An intricate nature of the pattern in which working fluid flows over transonic blade cascades generates the need for experimentally studying their characteristics in designing them. Three cascades having identical main geometrical parameters and differing from one another only in the suction side curvature in the outlet area between the throat and trailing edge were tested in optimizing the rotor blade cascade for the reduced flow outlet velocity λ2 ≈ 1. In initial cascade 1, its curvature decreased monotonically toward the trailing edge. In cascade 2, the suction side curvature near the trailing edge was decreased, but the section near the throat had a larger curvature. In cascade 3, a profile with inverse concavity near the trailing edge was used. The cascades were blown at λ2 = 0.7-1.2 and at different incidence angles. The distribution of pressure over the profiles, profile losses, and the outlet angle were measured. Cascade 1 showed efficient performance in the design mode and under the conditions of noticeable deviations from it with respect to the values of λ2 and incidence angle. In cascade 2, flow separation zones were observed at the trailing edge, as well as an increased level of losses. Cascade 3 was found to be the best one: it had reduced positive pressure gradients as compared with cascade 1, and the relative reduction of losses in the design mode was equal to 24%. The profiles with inverse concavity on the suction side near the trailing edge were recommended for being used in heavily loaded turbine stages.

  4. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park....

  5. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park....

  6. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park....

  7. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park....

  8. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park....

  9. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  10. Quantum cascade lasers with an integrated polarization mode converter.

    PubMed

    Dhirhe, D; Slight, T J; Holmes, B M; Hutchings, D C; Ironside, C N

    2012-11-01

    We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet. PMID:23187389

  11. RECONFIGURING POWER SYSTEMS TO MINIMIZE CASCADING FAILURES: MODELS AND ALGORITHMS

    SciTech Connect

    Bienstock, Daniel

    2014-04-11

    the main goal of this project was to develop new scientific tools, based on optimization techniques, with the purpose of controlling and modeling cascading failures of electrical power transmission systems. We have developed a high-quality tool for simulating cascading failures. The problem of how to control a cascade was addressed, with the aim of stopping the cascade with a minimum of load lost. Yet another aspect of cascade is the investigation of which events would trigger a cascade, or more appropriately the computation of the most harmful initiating event given some constraint on the severity of the event. One common feature of the cascade models described (indeed, of several of the cascade models found in the literature) is that we study thermally-induced line tripping. We have produced a study that accounts for exogenous randomness (e.g. wind and ambient temperature) that could affect the thermal behavior of a line, with a focus on controlling the power flow of the line while maintaining safe probability of line overload. This was done by means of a rigorous analysis of a stochastic version of the heat equation. we incorporated a model of randomness in the behavior of wind power output; again modeling an OPF-like problem that uses chance-constraints to maintain low probability of line overloads; this work has been continued so as to account for generator dynamics as well.

  12. Thermoelectrically cooled interband cascade laser for field measurements

    NASA Astrophysics Data System (ADS)

    Christensen, Lance E.; Mansour, Kamjou; Yang, Rui Q.

    2010-11-01

    The development of interband cascade lasers from concept to packaged devices is briefly reviewed. The application of a single-mode, mid-IR (3.27-μm) interband cascade laser packaged with a thermoelectric cooler for field measurements of methane and water is described.

  13. A simple model of global cascades on random networks

    PubMed Central

    Watts, Duncan J.

    2002-01-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascades—herein called global cascades—that occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable. PMID:16578874

  14. Eruptive history of South Sister, Oregon Cascades

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.; Calvert, A.T.

    2011-01-01

    South Sister is southernmost and highest of the Three Sisters, three geologically dissimilar stratovolcanoes that together form a spectacular 20km reach along the Cascade crest in Oregon. North Sister is a monotonously mafic edifice as old as middle Pleistocene, Middle Sister a basalt-andesite-dacite cone built between 48 and 14ka, and South Sister is a basalt-free edifice that alternated rhyolitic and intermediate modes from 50ka to 2ka (largely contemporaneous with Middle Sister). Detailed mapping, 330 chemical analyses, and 42 radioisotopic ages show that the oldest exposed South Sister lavas were initially rhyolitic ~50ka. By ~37ka, rhyolitic lava flows and domes (72-74% SiO2) began alternating with radially emplaced dacite (63-68% SiO2) and andesite (59-63% SiO2) lava flows. Construction of a broad cone of silicic andesite-dacite (61-64% SiO2) culminated ~30ka in a dominantly explosive sequence that began with crater-forming andesitic eruptions that left fragmental deposits at least 200m thick. This was followed at ~27ka by growth of a steeply dipping summit cone of agglutinate-dominated andesite (56-60.5% SiO2) and formation of a summit crater ~800m wide. This crater was soon filled and overtopped by a thick dacite lava flow and then by >150m of dacitic pyroclastic ejecta. Small-volume dacite lavas (63-67% SiO2) locally cap the pyroclastic pile. A final sheet of mafic agglutinate (54-56% SiO2) - the most mafic product of South Sister - erupted from and drapes the small (300-m-wide) present-day summit crater, ending a summit-building sequence that lasted until ~22ka. A 20kyr-long-hiatus was broken by rhyolite eruptions that produced (1) the Rock Mesa coulee, tephra, and satellite domelets (73.5% SiO2) and (2) the Devils Chain of ~20 domes and short coulees (72.3-72.8% SiO2) from N-S vent alignments on South Sister's flanks. The compositional reversal from mafic summit agglutinate to recent rhyolites epitomizes the frequently changing compositional modes of the

  15. Multipoint inverse design of an infinite cascade of airfoils

    NASA Astrophysics Data System (ADS)

    Selig, M. S.

    1994-04-01

    This paper describes a method for the design of an infinite cascade in incompressible flow. The method is based on conformal mapping and does not allow for multipoint design. The cascade blade is to determined is divided into a number of segments. Over each segment, the velocity distribution is prescribed together with an inlet or outlet flow angle at which this velocity distributions is to be achieved. In this way multipoint design requirements can be met. It is necessary to satisfy several conditions that arise to guarantee compatibility with the inlet and outlet flow as well as closure of the cascade blade. Satisfaction of these conditions does not necessarily result in a cascade with all of the desired characteristucs. For example, the cascade blades may be bulbous or crossed. Through Newtonian iteration, however, the desired characteristics may be prescribed directly. Four examples will be illustrated to demonstrate the capability of the method.

  16. The emerging roles of serine protease cascades in the epidermis.

    PubMed

    Ovaere, Petra; Lippens, Saskia; Vandenabeele, Peter; Declercq, Wim

    2009-09-01

    It has become clear in recent years that serine proteases have an important role in epidermal homeostasis, and the signaling cascades are gradually being identified. For example, matriptase, prostasin and furin are implicated in a cascade that could activate ENaC, leading to epidermal barrier formation and hydration, probably in part through their involvement in filaggrin processing. Kallikreins can form a signaling cascade to coordinate corneocyte desquamation. Knowledge is also emerging about how endogenous inhibitors, calcium and pH control these cascades. It is becoming clear that some skin pathologies are associated with deregulated serine protease activity. Therefore, a deeper knowledge of the regulation of these serine protease cascades could form the basis for development of appropriate treatments for skin disorders such as Netherton syndrome. PMID:19726197

  17. Geothermal segmentation of the Cascade Range in the USA

    USGS Publications Warehouse

    Guffanti, Marianne; Muffler, L.J.; Mariner, R.H.; Sherrod, D.R.; Smith, James G.; Blackwell, D.D.; Weaver, C.S.

    1990-01-01

    Characteristics of the crustal thermal regime of the Quaternary Cascades vary systematically along the range. Spatially congruent changes in volcanic vent distribution, volcanic extrusion rate, hydrothermal discharge rate, and regional conductive heat flow define 5 geothermal segments. These segments are, from north to south: (1) the Washington Cascades north of Mount Rainier, (2) the Cascades from Mount Rainier to Mount Hood, (3) the Oregon Cascades from south of Mount Hood to the California border, (4) northernmost California, including Mount Shasta and Medicine Lake volcano, and (5) the Lassen region of northern California. This segmentation indicates that geothermal resource potential is not uniform in the Cascade Range. Potential varies from high in parts of Oregon to low in Washington north of Mount Rainier.

  18. A statistical analysis of mesoscale rainfall as a random cascade

    NASA Technical Reports Server (NTRS)

    Gupta, Vijay K.; Waymire, Edward C.

    1993-01-01

    The paper considers the random cascade theory for spatial rainfall. Particular attention was given to the following four areas: (1) the relationship of the random cascade theory of rainfall to the simple scaling and the hierarchical cluster-point-process theories, (2) the mathematical foundations for some of the formalisms commonly applied in the develpment of statistical cascade theory, (3) the empirical evidence for a random cascade theory of rainfall, and (4) the way of using data for making estimates of parameters and for making statistical inference within this theoretical framework. An analysis of space-time rainfall data is presented. Cascade simulations are carried out to provide a comparison with methods of analysis that are applied to the rainfall data.

  19. Monolithic cascade-type solar cells

    NASA Technical Reports Server (NTRS)

    Yamamoto, S.; Shibukawa, A.; Yamaguchi, M.

    1985-01-01

    Solar cells consist of a semiconductor base, a bottom cell with a band-gap energy of E1, and a top cell with a band-gap energy of E2, and 0.96 E1 1.36 eV and (0.80 E + 0.77) eV E2 (0.80 E1 + 0.92) eV. A monolithic cascade-type solar cell was prepared with an n(+)-type GaAs base, a GaInAs bottom solar cell, and a GaAiInAs top solar cell. The surface of the cell is coated with a SiO antireflection film. The efficiency of the cell is 32%.

  20. Modeling a mountain basin sediment cascade

    NASA Astrophysics Data System (ADS)

    Bennett, Georgie; Molnar, Peter; McArdell, Brian; Burlando, Paolo

    2013-04-01

    Mountain basins are most sensitive to climate change because of the dependence of snow and ice melt processes, surface weathering and erosion on air temperature, combined with their rapid rainfall-runoff response. Consequently, sediment yield from mountain basins will also likely be related to climate variability. Constructing sediment budgets is the first step towards understanding the interaction of climate and earth-surface processes. Recently, mountain basin sediment transfer has been conceptualized as a sediment cascade in which, following erosion, sediment travels through multiple cycles of storage and remobilization before exiting the basin. However, few studies have extended this concept beyond the identification and quantification of individual processes and storage units. In this study we have developed a probabilistic sediment cascade model based on a sediment budget spanning more than 4 decades in the Illgraben, an active, debris-flow prone basin in the Swiss Alps. We use this model to investigate the role of thresholds and hydrological and sediment storage dynamics in the transformation of the observed probability distribution of slope failures into that of debris flows. The sediment cascade model consists of a hydrological and sediment module, both of which are based on a spatially lumped storage reservoir representation of the involved physical processes. Water and sediment are generated and routed according to conceptual rules and thresholds which we define and calibrate based on observations. We run simulations with stochastic sediment input drawn from the power-law distribution of slope failures and observed climatic variables (precipitation and air temperature) at the daily resolution for the period 2000-2009, and investigate the outputs of the model in terms of (1) the probability distribution and (2) the timing of sediment discharge events compared to observed debris flows. The triggering of debris flows in our model is conditioned by the

  1. Compressible turbulence: the cascade and its locality.

    PubMed

    Aluie, Hussein

    2011-04-29

    We prove that interscale transfer of kinetic energy in compressible turbulence is dominated by local interactions. In particular, our results preclude direct transfer of kinetic energy from large-scales to dissipation scales, such as into shocks, in high Reynolds number turbulence as is commonly believed. Our assumptions on the scaling of structure functions are weak and enjoy compelling empirical support. Under a stronger assumption on pressure dilatation cospectrum, we show that mean kinetic and internal energy budgets statistically decouple beyond a transitional conversion range. Our analysis establishes the existence of an ensuing inertial range over which mean subgrid scale kinetic energy flux becomes constant, independent of scale. Over this inertial range, mean kinetic energy cascades locally and in a conservative fashion despite not being an invariant. PMID:21635038

  2. Infrared microcalorimetric spectroscopy using quantum cascade lasers

    SciTech Connect

    Morales Rodriguez, Marissa E; Senesac, Larry R; Rajic, Slobodan; Lavrik, Nickolay V; Smith, Barton; Datskos, Panos G

    2013-01-01

    We have investigated an infrared (IR) microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules absorbed on the surface of uncooled thermal micromechanical detectors. IR microcalorimetric spectroscopy requires no chemical specific coatings and the chemical specificity of the presented method is a consequence of the wavelength-specific absorption of IR photons from tunable quantum cascade lasers due to vibrational spectral bands of the analyte. We have obtained IR photothermal spectra for trace concentrations of RDX and a monolayer of 2-mercaptoethanol, over the wavelength region from 6 to 10 m. We found that in this wavelength region both chemicals exhibit a number of photothermal absorption features that are in good agreement with their respective IR spectra.

  3. High brightness angled cavity quantum cascade lasers

    SciTech Connect

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  4. Diagonal-transition quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Detz, Hermann; MacFarland, Don; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Baumgartner, Oskar; Kosina, Hans

    2014-09-01

    We demonstrate the concept of diagonal transitions for quantum cascade detectors (QCD). Different to standard, vertical QCDs, here the active transition takes place between two energy levels in adjacent wells. Such a scheme has versatile advantages. Diagonal transitions generally yield a higher extraction efficiency and a higher resistance than vertical transitions. This leads to an improved overall performance, although the absorption strength of the active transition is smaller. Since the extraction is not based on resonant tunneling, the design is more robust, with respect to deviations from the nominal structure. In a first approach, a peak responsivity of 16.9 mA/W could be achieved, which is an improvement to the highest shown responsivity of a QCD for a wavelength of 8 μm at room-temperature by almost an order of magnitude.

  5. Cascaded generation of coherent Raman dissipative solitons.

    PubMed

    Kharenko, Denis S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Babin, Sergey A

    2016-01-01

    The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum. PMID:26696187

  6. Cascading ecological effects of eliminating fishery discards.

    PubMed

    Heath, Michael R; Cook, Robin M; Cameron, Angus I; Morris, David J; Speirs, Douglas C

    2014-01-01

    Discarding by fisheries is perceived as contrary to responsible harvesting. Legislation seeking to end the practice is being introduced in many jurisdictions. However, discarded fish are food for a range of scavenging species; so, ending discarding may have ecological consequences. Here we investigate the sensitivity of ecological effects to discarding policies using an ecosystem model of the North Sea--a region where 30-40% of trawled fish catch is currently discarded. We show that landing the entire catch while fishing as usual has conservation penalties for seabirds, marine mammals and seabed fauna, and no benefit to fish stocks. However, combining landing obligations with changes in fishing practices to limit the capture of unwanted fish results in trophic cascades that can benefit birds, mammals and most fish stocks. Our results highlight the importance of considering the broader ecosystem consequences of fishery management policy, since species interactions may dissipate or negate intended benefits. PMID:24820200

  7. Transonic turbine blade cascade testing facility

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Camperchioli, William P.; Lopez, Isaac

    1992-01-01

    NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed.

  8. Estimation of Renyi exponents in random cascades

    USGS Publications Warehouse

    Troutman, Brent M.; Vecchia, Aldo V.

    1999-01-01

    We consider statistical estimation of the Re??nyi exponent ??(h), which characterizes the scaling behaviour of a singular measure ?? defined on a subset of Rd. The Re??nyi exponent is defined to be lim?????0 [{log M??(h)}/(-log ??)], assuming that this limit exists, where M??(h) = ??i??h(??i) and, for ??>0, {??i} are the cubes of a ??-coordinate mesh that intersect the support of ??. In particular, we demonstrate asymptotic normality of the least-squares estimator of ??(h) when the measure ?? is generated by a particular class of multiplicative random cascades, a result which allows construction of interval estimates and application of hypothesis tests for this scaling exponent. Simulation results illustrating this asymptotic normality are presented. ?? 1999 ISI/BS.

  9. Atomistic Simulation of Collision Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-09-01

    Defect production in energetic collision cascades in zircon has been studied by molecular dynamics simulation using a partial charge model combined with the Ziegler-Biersack-Littmark potential. Energy dissipation, defect accumulation, Si-O-Si polymerization, and Zr coordination number were examined for 10 keV and 30 keV U recoils simulated in the constant NVE ensemble. For both energies an amorphous core was produced with features similar to that of melt quenched zircon. Disordered Si ions in this core were polymerized with an average degree of polymerization of 1.5, while disordered Zr ions showed a coordination number of about 6 in agreement with EXAFS results. These results suggest that nano-scale phase separation into silica- and zirconia-rich regions occurs in the amorphous core.

  10. Cascade Models of Turbulence and Mixing

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    1997-01-01

    This note describes two kinds of work on turbulence. First it describes a simplified model of turbulent energy-cascades called the GOY model. Second it mentions work on a model of mixing in fluids. In addition to a brief historical discussion, I include some mention of our own work carried on at the University of Chicago by Jane Wang, Detlef Lohse, Roberto Benzi, Norbert Schörghofer, Scott Wunsch, Tong Zhou and myself. Our own studies are in large measure the outgrowth of a paper by M. H. Jensen, G. Paladin, and A. Vulpiani [1]. I mention this connection with some sadness because I recall Paladin's recent death in a mountain accident.