Science.gov

Sample records for carbon capture technologies

  1. IMPACCT: Carbon Capture Technology

    SciTech Connect

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  2. Prospects for carbon capture and storage technologies

    SciTech Connect

    Soren Anderson; Richard Newell

    2003-01-15

    Carbon capture and storage (CCS) technologies remove carbon dioxide from flue gases for storage in geologic formations or the ocean. The study found that CCS is technically feasible and economically attractive within the range of carbon policies discussed domestically and internationally. Current costs are about $200 to $250 per ton of carbon, although costs are sensitive to fuel prices and other assumptions and could be reduced significantly through technical improvements. Near-term prospects favor CCS for certain industrial sources and electric power plants, with storage in depleted oil and gas reservoirs. Deep aquifers may provide an attractive longer-term storage option, whereas ocean storage poses greater technical and environmental uncertainty. Vast quantities of economically recoverable fossil fuels, sizable political obstacles to their abandonment, and inherent delay associated with developing alternative energy sources suggest that CCS should be seriously considered in the portfolio of options for addressing climate change, alongside energy efficiency and carbon-free energy. 61 refs., 5 figs., 5 tabs.

  3. Carbon capture and sequestration: integrating technology, monitoring, regulation

    SciTech Connect

    Elizabeth Wilson; David Gerard

    2007-03-15

    This book is a first systematic presentation of the technical, legal, and economic forces that must coalesce to realize carbon dioxide capture and geologic sequestration as a viable CO{sub 2} reduction strategy. It synthesizes key engineering data and explains the technological and legal conditions that must be in place for carbon sequestration to be realized. 49 ills.

  4. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    PubMed

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-01

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money. PMID:26630247

  5. Amine reclaiming technologies in post-combustion carbon dioxide capture.

    PubMed

    Wang, Tielin; Hovland, Jon; Jens, Klaus J

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture. Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance, and therefore purification of the solvents is needed to overcome these problems. This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC). Thermal reclaiming, ion exchange, and electrodialysis, although principally developed for sour gas sweetening, have also been tested for CO2 capture from flue gas. The three technologies all have their strengths and weaknesses, and further development is needed to reduce energy usage and costs. An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs. PMID:25597687

  6. Risk-Based Comparison of Carbon Capture Technologies

    SciTech Connect

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Jones, Edward

    2013-05-01

    In this paper, we describe an integrated probabilistic risk assessment methodological framework and a decision-support tool suite for implementing systematic comparisons of competing carbon capture technologies. Culminating from a collaborative effort among national laboratories under the Carbon Capture Simulation Initiative (CCSI), the risk assessment framework and the decision-support tool suite encapsulate three interconnected probabilistic modeling and simulation components. The technology readiness level (TRL) assessment component identifies specific scientific and engineering targets required by each readiness level and applies probabilistic estimation techniques to calculate the likelihood of graded as well as nonlinear advancement in technology maturity. The technical risk assessment component focuses on identifying and quantifying risk contributors, especially stochastic distributions for significant risk contributors, performing scenario-based risk analysis, and integrating with carbon capture process model simulations and optimization. The financial risk component estimates the long-term return on investment based on energy retail pricing, production cost, operating and power replacement cost, plan construction and retrofit expenses, and potential tax relief, expressed probabilistically as the net present value distributions over various forecast horizons.

  7. Carbon Smackdown: Carbon Capture

    ScienceCinema

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  8. Carbon Smackdown: Carbon Capture

    SciTech Connect

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  9. Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs).

    PubMed

    Sabouni, Rana; Kazemian, Hossein; Rohani, Sohrab

    2014-04-01

    In this study, a relevant literature has been reviewed focusing on the carbon dioxide capture technologies in general, such as amine-based absorption as conventional carbon dioxide capturing technology, aqueous ammonia-based absorption, membranes, and adsorption material (e.g., zeolites, and activated carbons). In more details, metal organic frameworks (MOFs) as new emerging technologies for carbon dioxide adsorption are discussed. The MOFs section is intended to provide a comprehensive overview of MOFs including material characteristics and synthesis, structural features, CO2 adsorption capacity, heat of adsorption and selectivity of CO2. PMID:24338107

  10. Advanced modeling to accelerate the scale up of carbon capture technologies

    SciTech Connect

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  11. Designing and Demonstrating a Master Student Project to Explore Carbon Dioxide Capture Technology

    ERIC Educational Resources Information Center

    Asherman, Florine; Cabot, Gilles; Crua, Cyril; Estel, Lionel; Gagnepain, Charlotte; Lecerf, Thibault; Ledoux, Alain; Leveneur, Sebastien; Lucereau, Marie; Maucorps, Sarah; Ragot, Melanie; Syrykh, Julie; Vige, Manon

    2016-01-01

    The rise in carbon dioxide (CO[subscript 2]) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO[subscript 2] that would otherwise be emitted from industrial processes and fossil fuel…

  12. Ranking of enabling technologies for oxy-fuel based carbon capture

    SciTech Connect

    Ochs, T.L.; Oryshchyn, D.L.; Ciferno, J.P.

    2007-06-01

    The USDOE National Energy Technology Laboratory (NETL) has begun a process to identify and rank enabling technologies that have significant impacts on pulverized coal oxy-fuel systems. Oxy-fuel combustion has been identified as a potential method for effectively capturing carbon in coal fired power plants. Presently there are a number of approaches for carbon capture via oxy-fuel combustion and it is important to order those approaches so that new research can concentrate on those technologies with high potentials to substantially lower the cost of reduced carbon electricity generation. NETL evaluates these technologies using computer models to determine the energy use of each technology and the potential impact of improvements in the technologies on energy production by a power plant. Near-term sub-critical boiler technologies are targeted for this analysis because: • most of the world continues to build single reheat sub-critical plants; • the overwhelming number of coal fired power plants requiring retrofit for CO2 capture are sub-critical plants. In addition, even in the realm of new construction, subcritical plants are common because they are well understood, easy to operate and maintain, fuel tolerant, and reliable. Following the initial investigation into sub-critical oxy-fuel technology, future investigations will move into the supercritical range.

  13. AGU Embassy Lecture Event Focuses on Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    March, Gabriella

    2010-09-01

    A program entitled “Carbon Capture and Storage (CCS)—Viable technology or risky gamble?” was the inaugural event of AGU's Embassy Lecture Series and part of the European Embassy Science Series. With many countries looking into ways to reduce carbon dioxide emissions, the 9 September event at the Germany Embassy in Washington, D. C., focused on the technological and commercial feasibility of CCS. Four speakers addressed questions including whether CCS can be implemented successfully on a commercial scale and if the technology is economically feasible with or without a cap and trade system, and whether the public will support CCS. They stressed the importance of good science, proper planning, and sound monitoring to ensure that the carbon captured will be stored permanently.

  14. Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies

    SciTech Connect

    Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu

    2015-06-18

    Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  15. Development of a Risk-Based Comparison Methodology of Carbon Capture Technologies

    SciTech Connect

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Thompson, Julie; Leclaire, Rene; Edward, Bryan; Jones, Edward

    2014-06-01

    Given the varying degrees of maturity among existing carbon capture (CC) technology alternatives, an understanding of the inherent technical and financial risk and uncertainty associated with these competing technologies is requisite to the success of carbon capture as a viable solution to the greenhouse gas emission challenge. The availability of tools and capabilities to conduct rigorous, risk–based technology comparisons is thus highly desirable for directing valuable resources toward the technology option(s) with a high return on investment, superior carbon capture performance, and minimum risk. To address this research need, we introduce a novel risk-based technology comparison method supported by an integrated multi-domain risk model set to estimate risks related to technological maturity, technical performance, and profitability. Through a comparison between solid sorbent and liquid solvent systems, we illustrate the feasibility of estimating risk and quantifying uncertainty in a single domain (modular analytical capability) as well as across multiple risk dimensions (coupled analytical capability) for comparison. This method brings technological maturity and performance to bear on profitability projections, and carries risk and uncertainty modeling across domains via inter-model sharing of parameters, distributions, and input/output. The integration of the models facilitates multidimensional technology comparisons within a common probabilistic risk analysis framework. This approach and model set can equip potential technology adopters with the necessary computational capabilities to make risk-informed decisions about CC technology investment. The method and modeling effort can also be extended to other industries where robust tools and analytical capabilities are currently lacking for evaluating nascent technologies.

  16. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  17. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology

    SciTech Connect

    Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2013-06-03

    FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ≥ 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

  18. Cryogenic Carbon Capture

    SciTech Connect

    2010-07-15

    IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

  19. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  20. Carbon Capture and Storage, 2008

    SciTech Connect

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  1. Demonstrating carbon capture

    SciTech Connect

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  2. Carbon Capture and Storage

    SciTech Connect

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  3. Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways

    SciTech Connect

    Dooley, James J.; Calvin, Katherine V.

    2011-04-18

    The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

  4. Marine ecotoxicity of nitramines, transformation products of amine-based carbon capture technology.

    PubMed

    Coutris, Claire; Macken, Ailbhe L; Collins, Andrew R; El Yamani, Naouale; Brooks, Steven J

    2015-09-15

    In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA

  5. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    NASA Astrophysics Data System (ADS)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  6. Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies.

    PubMed

    Turgman-Cohen, Salomon; Giannelis, Emmanuel P; Escobedo, Fernando A

    2015-08-19

    The structure and transport properties of physisorbed and chemisorbed CO2 in model polyamine liquids (hexamethylenediamine and diethylenetriamine) are studied via molecular dynamics simulations. Such systems are relevant to CO2 absorption processes where nonaqueous amines are used as absorbents (e.g., when impregnated or grafted onto mesoporous media or misted in the gas phase). It is shown that accounting for the ionic speciation resulting from CO2 chemisorption enabled us to capture the qualitative changes in extent of absorption and fluidity with time that are observed in thermogravimetric experiments. Simulations reveal that high enough concentration of reacted CO2 leads to strong intermolecular ionic interactions and the arrest of molecular translations. The transport properties obtained from the simulations of the ionic speciated mixtures are also used to construct an approximate continuum-level model for the CO2 absorption process that mimics thermogravimetric experiments. PMID:26200117

  7. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    Atmospheric CO2 concentrations increased an estimated 35% since preindustrial levels two centuries ago, reportedly due to the burning of fossil fuels combined with increased deforestation. In the U.S., energy-related activities account for 75% of anthropogenic greenhouse gas (GHG) emissions, with more than 50% from large stationary sources such as power plants and about one-third from transportation. Mitigation technologies for CO2 atmospheric stabilization based on energy and economic scenarios include coal-based power plant- carbon capture and storage (CCS), and the U.S. Department of Energy (DOE) is assessing CCS operations and supporting technologies at U.S. locations and opportunities abroad reported here. The Algerian In Salah Joint Industry Project injecting 1 million tons CO2 (MtCO2)/year into a gas field sandstone, and the Canadian Weyburn-Midale CO2 Monitoring and Storage Project injecting over 1.8 MtCO2/year into carbonate oil reservoirs are ongoing industrial-scale storage operations DOE participates in. DOE also supports mid-scale CCS demonstrations at the Australian Otway Project and CO2SINK in Germany. Enhanced oil recovery operations conducted for decades in west Texas and elsewhere have provided the industrial experience to build on, and early pilots such as Frio-I Texas in 2004 have spearheaded technology deployment. While injecting 1,600 tons of CO2 into a saline sandstone at Frio, time-lapse borehole and surface seismic detected P-wave velocity decreases and reflection amplitude changes resulting from the replacement of brine with CO2 in the reservoir. Just two of many cutting-edge technologies tested at Frio, these and others are now deployed by U.S. researchers with international teams to evaluate reservoir injectivity, capacity, and integrity, as well as to assess CO2 spatial distribution, trapping, and unlikely leakage. Time-lapse Vertical Seismic Profiling at Otway and microseismic at In Salah and Otway, monitor injection and reservoir

  8. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    SciTech Connect

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  9. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  10. Capturing carbon and saving coal

    SciTech Connect

    Johnson, J.

    2007-10-15

    Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.

  11. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect

    Juanes, Ruben

    2013-12-30

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  12. Lifetime of carbon capture and storage as a climate-change mitigation technology

    PubMed Central

    Szulczewski, Michael L.; MacMinn, Christopher W.; Herzog, Howard J.; Juanes, Ruben

    2012-01-01

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century. PMID:22431639

  13. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    SciTech Connect

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  14. Realistic costs of carbon capture

    SciTech Connect

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding

  15. Toward transformational carbon capture systems

    SciTech Connect

    Miller, David C.; Litynski, John T.; Brickett, Lynn A.; Morreale, Bryan D.

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  16. Natural materials for carbon capture.

    SciTech Connect

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  17. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  18. Annual Report: Carbon Capture (30 September 2012)

    SciTech Connect

    Luebke, David; Morreale, Bryan; Richards, George; Syamlal, Madhava

    2014-04-16

    Capture of carbon dioxide (CO{sub 2}) is a critical component in reducing greenhouse gas emissions from fossil fuel-based processes. The Carbon Capture research to be performed is aimed at accelerating the development of efficient, cost-effective technologies which meet the post-combustion programmatic goal of capture of 90% of the CO{sub 2} produced from an existing coal-fired power plant with less than a 35% increase in the cost of electricity (COE), and the pre-combustion goal of 90% CO{sub 2} capture with less than a 10% increase in COE. The specific objective of this work is to develop innovative materials and approaches for the economic and efficient capture of CO{sub 2} from coal-based processes, and ultimately assess the performance of promising technologies at conditions representative of field application (i.e., slip stream evaluation). The Carbon Capture research includes seven core technical research areas: post-combustion solvents, sorbents, and membranes; pre-combustion solvents, sorbents, and membranes; and oxygen (O{sub 2}) production. The goal of each of these tasks is to develop advanced materials and processes that are able to reduce the energy penalty and cost of CO{sub 2} (or O{sub 2}) separation over conventional technologies. In the first year of development, materials will be examined by molecular modeling, and then synthesized and experimentally characterized at lab scale. In the second year, they will be tested further under ideal conditions. In the third year, they will be tested under realistic conditions. The most promising materials will be tested at the National Carbon Capture Center (NCCC) using actual flue or fuel gas. Systems analyses will be used to determine whether or not materials developed are likely to meet the Department of Energy (DOE) COE targets. Materials which perform well and appear likely to improve in performance will be licensed for further development outside of the National Energy Technology Laboratory (NETL

  19. Coupled Climate-Economy-Biosphere (CoCEB) model - Part 2: Deforestation control and investment in carbon capture and storage technologies

    NASA Astrophysics Data System (ADS)

    Ogutu, K. B. Z.; D'Andrea, F.; Ghil, M.; Nyandwi, C.; Manene, M. M.; Muthama, J. N.

    2015-04-01

    This study uses the global climate-economy-biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume - as in Part 1 - that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.

  20. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-01-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture. PMID:25652243

  1. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  2. TECHNOLOGY IN AN INTEGRATED ASSESSMENT MODEL: THE POTENTIAL REGIONAL DEPLOYMENT OF CARBON CAPTURE AND STORAGE IN THE CONTEXT OF GLOBAL CO2 STABILIZATION

    SciTech Connect

    Edmonds, James A.; Dooley, James J.; Kim, Son H.; Friedman, S. Julio; Wise, Marshall A.

    2007-11-19

    Technology is a critically important determinant of the cost of meeting any environmental objective. In this paper we examine the role of a particular technology, carbon dioxide capture and storage (CCS), in the stabilization of the concentration of atmospheric carbon dioxide (CO2). While CCS is not presently deployed at scale, it has the potential to deploy extensively during the course of the 21st century if concentrations of atmospheric CO2 are to be stabilized. The existing research literature has focused largely on the cost of capturing CO2, with the implicit assumption that storage options would be relatively cheap, plentiful and located in close proximity to future CO2 point sources. However, CO2 capture and storage will take place at the local and regional scale and will compete with other mitigation options that also exhibit local or regional differences. This paper provides an initial examination of the implications of regionally disaggregated demand for and supply of CO2 storage reservoirs within the context of a globally disaggregated, long-term analysis of both the geology and economics of CCS. This analysis suggests that some regions will see their ability to deploy CCS systems constrained by a lack of quality target reservoirs relative to the demand for storage placed upon these candidate geologic storage reservoirs by large stationary CO2 point sources within the region. Other regions appear to have sufficient storage capacity to easily carry them into the 22nd century. We examined the regional and global economic implications of the distribution of these sources and sinks in meeting various potential limits to atmospheric CO2 concentrations. This analysis confirms that CCS is an important potential response to climate change throughout the 21st century and a technology that can play a key role in controlling the cost of addressing climate change.

  3. New Technical Risk Management Development for Carbon Capture Process

    SciTech Connect

    Engel, David W.; Letellier, Bruce; Edwards, Brian; Leclaire, Rene; Jones, Edward

    2012-04-30

    The basic CCSI objective of accelerating technology development and commercial deployment of carbon capture technologies through the extensive use of numerical simulation introduces a degree of unfamiliarity and novelty that potentially increases both of the traditional risk elements. In order to secure investor confidence and successfully accelerate the marketability of carbon capture technologies, it is critical that risk management decision tools be developed in parallel with numerical simulation capabilities and uncertainty quantification efforts. The focus of this paper is on the development of a technical risk model that incorporates the specific technology maturity development (level).

  4. Policy Needs for Carbon Capture & Storage

    NASA Astrophysics Data System (ADS)

    Peridas, G.

    2007-12-01

    Climate change is one of the most pressing environmental problems of our time. The widespread consensus that exists on climate science requires deep cuts in greenhouse gas emissions, on the order of 50-80% globally from current levels. Reducing energy demand, increasing energy efficiency and sourcing our energy from renewable sources will, and should, play a key role in achieving these cuts. Fossil fuels however are abundant, relatively inexpensive, and still make up the backbone of our energy system. Phasing out fossil fuel use will be a gradual process, and is likely to take far longer than the timeframe dictated by climate science for reducing emissions. A reliable way of decarbonizing the use of fossil fuels is needed. Carbon capture and storage (CCS) has already proven to be a technology that can safely and effectively accomplish this task. The technological know-how and the underground capacity exist to store billions of tons of carbon dioxide in mature oil and gas fields, and deep saline formations. Three large international commercial projects and several other applications have proved this, but substantial barriers remain to be overcome before CCS becomes the technology of choice in all major emitting sectors. Government has a significant role to play in surmounting these barriers. Without mandatory limits on greenhouse gas emissions and a price on carbon, CCS is likely to linger in the background. The expected initial carbon price levels and their potential volatility under such a scheme dictates that further policies be used in the early years in order for CCS to be implemented. Such policies could include a new source performance standard for power plants, and a low carbon generation obligation that would relieve first movers by spreading the additional cost of the technology over entire sectors. A tax credit for capturing and permanently sequestering anthropogenic CO2 would aid project economics. Assistance in the form of loan guarantees for components

  5. Is Carbon Capture and Storage Really Needed?

    SciTech Connect

    Tsouris, Costas; Williams, Kent Alan; Aaron, D

    2010-01-01

    Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') In this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.

  6. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  7. 3 CFR - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 3 The President 1 2011-01-01 2011-01-01 false A Comprehensive Federal Strategy on Carbon Capture... Comprehensive Federal Strategy on Carbon Capture and Storage Memorandum for the Secretary of State the Secretary... deployment of clean coal technologies, particularly carbon capture and storage (CCS), will help position...

  8. Membrane-based systems for carbon capture and hydrogen purification

    SciTech Connect

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the

  9. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect

    2010-07-01

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  10. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  11. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  12. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE PAGESBeta

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  13. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  14. Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture

    SciTech Connect

    Zitney, S.

    2012-01-01

    Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2

  15. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  16. Capturing King Coal: deploying carbon capture and storage systems in the US at scale

    SciTech Connect

    Fernando, H.; Venezia, J.; Rigdon, C.; Verma, P.

    2008-05-15

    This paper examines the challenges in the deployment of carbon capture and storage (CCS) systems in the USA under the four broad categories of technology, policy, legal and regulatory framework, and investment, and their implications for CCS as part of the solution to mitigate adverse climate change impacts.

  17. Subsurface capture of carbon dioxide

    SciTech Connect

    Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.

    2014-07-22

    A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.

  18. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    SciTech Connect

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  19. Basic Research Needs for Carbon Capture: Beyond 2020

    SciTech Connect

    Alivisatos, Paul; Buchanan, Michelle

    2010-03-04

    This report is based on a SC/FE workshop on Carbon Capture: Beyond 2020, held March 4–5, 2010, to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The problem of thermodynamically efficient and scalable carbon capture stands as one of the greatest challenges for modern energy researchers. The vast majority of US and global energy use derives from fossil fuels, the combustion of which results in the emission of carbon dioxide into the atmosphere. These anthropogenic emissions are now altering the climate. Although many alternatives to combustion are being considered, the fact is that combustion will remain a principal component of the global energy system for decades to come. Today’s carbon capture technologies are expensive and cumbersome and energy intensive. If scientists could develop practical and cost-effective methods to capture carbon, those methods would at once alter the future of the largest industry in the world and provide a technical solution to one of the most vexing problems facing humanity. The carbon capture problem is a true grand challenge for today’s scientists. Postcombustion CO2 capture requires major new developments in disciplines spanning fundamental theoretical and experimental physical chemistry, materials design and synthesis, and chemical engineering. To start with, the CO2 molecule itself is thermodynamically stable and binding to it requires a distortion of the molecule away from its linear and symmetric arrangement. This binding of the gas molecule cannot be too strong, however; the sheer quantity of CO2 that must be captured ultimately dictates that the capture medium must be recycled over and over. Hence the CO2 once bound, must be released with relatively little energy input. Further, the CO2 must be rapidly and selectively pulled out of a mixture

  20. Designing Surface Monitoring Meshes for Geologic Carbon Capture and Storage Sites: Accurate Emissions Accounting for an Essential 2°C Mitigation Technology

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.; Swart, P. K.; Broad, K.

    2014-12-01

    Geologic carbon capture and storage (CCS) is a feasible solution to the international greenhouse gas (GHG) emissions problem and it has recently been called a "vital" mitigation tool by the International Energy Agency. However, there exists uncertainty concerning the terminal fate of stored carbon dioxide (CO2.) In this regard, reliable monitoring, verification and accounting (MVA) technologies are essential for making CCS publicly acceptable. Chiefly, MVA addresses safety and environmental concerns by providing a warning system to prevent or alleviate CO2 leakages. A secondary purpose of MVA technologies is to prove compliance with CO2 reduction standards through inventory verification. A key MVA tool for tracking CO2 leakages is surface (atmospheric) monitoring. Demonstrating its value, industry actors feel an impetus to invest in surface monitoring as a low-risk, high-value technology to mitigate liability in cases of potential leakages. Despite how necessary this tool is, to date, all surface monitoring mesh designs and best practices have been proposed locally, without discussion of standardization or optimization on a regional, national or international level. We identify the fundamental problem of surface monitoring mesh design as locating the monitoring sites to record CO2 levels over the designated geographic area at lowest cost with maximum impact. We approach this problem from both an operations research (OR) perspective and atmospheric dispersion perspective. From an OR perspective, we approach mesh design using multiobjective optimization models - we specify the relative placement of candidate sites, observation time interval, and optimality criteria. In the second approach, we model CO2 leakage scenarios to test the effectiveness of proposed mesh design from the first approach. We use atmospheric dispersion modeling softwares AERMOD and SCREEN3 - both tools developed by the United States Environmental Protection Agency and codified into law - for

  1. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined. PMID:27243042

  2. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  3. Electron capture in carbon dwarf supernovae

    NASA Technical Reports Server (NTRS)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  4. Carbon Farming as a Carbon Negative Technology

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  5. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects. PMID:17674718

  6. Emerging Technologies - Capturing Innovation with Technology

    SciTech Connect

    2012-12-01

    ET team research results are critical to achieving 50% energy savings across U.S. buildings within the next two decades. The ET team focuses on supporting research, development, and tech-to-market opportunities of high impact technologies, or those that demonstrate potential for achieving significant energy savings cost effectively.

  7. Layered solid sorbents for carbon dioxide capture

    SciTech Connect

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  8. A hybrid absorption–adsorption method to efficiently capture carbon

    PubMed Central

    Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan

    2014-01-01

    Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l−1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only −29 kJ mol−1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration. PMID:25296559

  9. A hybrid absorption-adsorption method to efficiently capture carbon

    NASA Astrophysics Data System (ADS)

    Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan

    2014-10-01

    Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l-1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only -29 kJ mol-1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration.

  10. Materials design for electrocatalytic carbon capture

    NASA Astrophysics Data System (ADS)

    Tan, Xin; Tahini, Hassan A.; Smith, Sean C.

    2016-05-01

    We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X-N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  11. Capture of carbon dioxide by hybrid sorption

    SciTech Connect

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  12. Development Trends in Porous Adsorbents for Carbon Capture.

    PubMed

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-01

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments. PMID:26422294

  13. Evaluation of a carbonic anhydrase mimic for industrial carbon capture.

    PubMed

    Floyd, William C; Baker, Sarah E; Valdez, Carlos A; Stolaroff, Joshuah K; Bearinger, Jane P; Satcher, Joe H; Aines, Roger D

    2013-09-01

    Zinc(II) cyclen, a small molecule mimic of the enzyme carbonic anhydrase, was evaluated under rigorous conditions resembling those in an industrial carbon capture process: high pH (>12), nearly saturated salt concentrations (45% K2CO3) and elevated temperatures (100-130 °C). We found that the catalytic activity of zinc cyclen increased with increasing temperature and pH and was retained after exposure to a 45% w/w K2CO3 solution at 130 °C for 6 days. However, high bicarbonate concentrations markedly reduced the activity of the catalyst. Our results establish a benchmark level of stability and provide qualitative insights for the design of improved small-molecule carbon capture catalysts. PMID:23883067

  14. Guidelines for carbon dioxide capture, transport and storage

    SciTech Connect

    Hanson, S.

    2008-07-01

    The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

  15. Modeling Carbon Dioxide Capture by Monoethanolamine Solvent with ASPEN Plus

    NASA Astrophysics Data System (ADS)

    Luo, Tianyi

    Fossil fuels provide approximately 80% of the world's energy demands. Methods for reducing CO2 emissions resulting from fossil fuels include increasing the efficiency of power plants and production processes, decreasing energy demands, in combination with CO2 capture and long term storage (CCS). CO2 capture technologies include post-combustion, pre-combustion, and oxyfuel combustion. The amine-based post-combustion CO2 capture from a coal-fired power plant was studied in this thesis. In case of post-combustion capture, CO2 can be captured by Monoethanolamine solvent (MEA), a primary ethanolamine. MEA can associate with H3O+ to form an ion MEAH+, and can react with CO2 to form a carbonate ion MEACOO-. Commercial code ASPEN Plus was used to simulate the process of CO2 capture and optimize the process parameters and required energy duty. The major part of thermal energy requirement is from the Absorber and Stripper columns. This suggests that process optimization should focus on the Absorption/Desorption process. Optimization results show that the gas-liquid reaction equilibrium is affected by several operating parameters including solvent flow rate, stream temperature, column operating pressure, flue gas composition, solvent concentration and absorber design. With optimized CO2 capture, the energy consumption for solvent regeneration (reboiler thermal duty) was decreased from 5.76 GJ/ton captured CO2 to 4.56 GJ/t CO2. On the other hand, the cost of CO2 capture (and sequestration) could be reduced by limiting size of the Absorber column and operating pressure.

  16. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    SciTech Connect

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D.; Sun, Xin; Sundaresan, S.; Sahinidis, Nikolaos V.; Zitney, Stephen E.; Bhattacharyya, D.; Agarwal, Deb; Tong, Charles; Lin, Guang; Dale, Crystal; Engel, Dave; Calafiura, Paolo; Beattie, Keith; Shinn, John

    2012-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify

  17. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    PubMed

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future. PMID:23586307

  18. Biochemical Capture and Removal of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  19. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. PMID:27005790

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  1. Sustainability of energy and carbon capture and storage for Turkey

    NASA Astrophysics Data System (ADS)

    Alpsar, Cengiz

    This study, as study herein, is intended to approach a different way to provide sustainability of energy and environment by different aspects for Turkey. This study investigates the potential of renewable energy sources in Turkey for non-emissions of GHG and elaborates on a carbon capture and storage technology by creating a roadmap for Turkey. The main purpose of this study is to make a roadmap about carbon capture and storage (CCS) for Turkey to use as it proceeds. As one of the members of International Panel of Climate Change, which signed Kyoto protocol, it must adapt its acts and regulations. In addition, this study concentrates on the sustainable energy potential of Turkey, although the study investigated only the alternative energy resources suitable for Turkey: solar, wind, geothermal, bio-energy, and hydropower. There are huge numbers of potential renewable energy sources, and given Turkey's total energy demand of 106.3 million tons equivalent petroleum in 2010, only solar potential would be able to eventually supply the total demand, but energy from the wind and hydropower are sufficient to provide partial amounts. This study might help policy makers in their decisions regarding CCS technology. Currently, there are various technical and non-technical economic and social challenges that prevent CCS from become an extensively used commercial technology. This document discusses them and presents goals for each research pathway.

  2. IPCC special report on carbon dioxide capture and storage

    SciTech Connect

    Bert Metz; Ogunlade Davidson; Heleen de Coninck; Manuela Loos; Leo Meyer

    2005-07-01

    This Intergovernmental Panel on Climate Change (IPCC) Special Report provides information for policymakers, scientists and engineers in the field of climate change and reduction of CO{sub 2} emissions. It describes sources, capture, transport, and storage of CO{sub 2}. It also discusses the costs, economic potential, and societal issues of the technology, including public perception and regulatory aspects. Storage options evaluated include geological storage, ocean storage, and mineral carbonation. Notably, the report places CO{sub 2} capture and storage in the context of other climate change mitigation options, such as fuel switch, energy efficiency, renewables and nuclear energy. This report shows that the potential of CO{sub 2} capture and storage is considerable, and the costs for mitigating climate change can be decreased compared to strategies where only other climate change mitigation options are considered. The importance of future capture and storage of CO{sub 2} for mitigating climate change will depend on a number of factors, including financial incentives provided for deployment, and whether the risks of storage can be successfully managed. The volume includes a Summary for Policymakers approved by governments represented in the IPCC, and a Technical Summary. 5 annexes.

  3. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  4. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  5. Carbon capture retrofits and the cost of regulatory uncertainty

    SciTech Connect

    Reinelt, P.S.; Keith, D.W.

    2007-07-01

    Power generation firms confront impending replacement of an aging coal-fired fleet in a business environment characterized by volatile natural gas prices and uncertain carbon regulation. We develop a stochastic dynamic programming model of firm investment decisions that minimizes the expected present value of future power generation costs under uncertain natural gas and carbon prices. We explore the implications of regulatory uncertainty on generation technology choice and the optimal timing of investment, and assess the implications of these choices for regulators. We find that interaction of regulatory uncertainty with irreversible investment always raises the social cost of carbon abatement. Further, the social cost of regulatory uncertainty is strongly dependent on the relative competitiveness of IGCC plants, for which the cost of later carbon capture retrofits is comparatively small, and on the firm's ability to use investments in natural gas generation as a transitional strategy to manage carbon regulation uncertainty. Without highly competitive IGCC or low gas prices, regulatory uncertainty can increase the expected social cost of reducing emissions by 40 to 60%.

  6. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture.

    PubMed

    Merle, Geraldine; Fradette, Sylvie; Madore, Eric; Barralet, Jake E

    2014-06-17

    Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent. PMID:24856780

  7. The Effectiveness of Classroom Capture Technology

    ERIC Educational Resources Information Center

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  8. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  9. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  10. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. PMID:27090405

  11. Computational Tools for Accelerating Carbon Capture Process Development

    SciTech Connect

    Miller, David

    2013-01-01

    The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

  12. Post combustion carbon dioxide capture using amine functionalized carbon nanotubes: A review

    NASA Astrophysics Data System (ADS)

    Dash, Sukanta K.

    2016-04-01

    Many technological viable options available for post combustion CO2 capture (PCC) from fossil fuel based power plants, such as amine absorption, adsorption, membrane separation, cryogenic separation processes. Out of these technological pathways adsorption using carbon nanotubes (CNTs) has shown potential advantages compared to other techniques for CO2 capture from flue gas streams which is evident form published literature from various research groups. Considering the recent developments, this work presents a state-of-the-art review on CO2 capture process using CNTs, amine functionalized CNTs and membrane based CNTs. One of the major challenges in developing CNT adsorption technology lies in the choice and development of an adsorbent material that can efficiently adsorb and also easily desorb and concentrate the captured CO2 with low energy input. This review work consists of a number of interdisciplinary research activities that are focused on the feasibility of developing a small scale carbon capture and storage (CCS) based on the adsorption properties of chemically functionalized CNTs. Another recent development for CO2 separation from flue gas is the application of membrane-based CNTs. Membrane based CO2 separation invites several advantages such as no need of an additional chemical or physical solvent; low energy use; simple process, hence easy to operate. In this work analysis and literature reviews carried out in the recent development in CNTs and membrane based CNTs for CO2 adsorption and separation to update the recent progress in this area. Finally a comparison with amine absorption process and retrofitting option has been discussed with few recommendations.

  13. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems

  14. Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    SciTech Connect

    Presto, A.A.; Granite, E.J.

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  15. Capture and manipulation of hybrid DNAs by carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Li, Zhenhai; Yang, Wei

    2010-05-01

    When approached from both sides, a piece of single-duplex-single DNA may be drawn into the inlets of two bundles of carbon nanotubes. This provides opportunities to manipulate the DNA by two bundles of nanotubes. The capture and manipulation processes envisaged above are simulated by molecular dynamics in this work. The radius of the carbon nanotube and the ambient temperature show the effects on the spontaneous insertion of DNA strands. This procedure, if successful, could be used for capturing expectant sdsDNAs, with subsequent manipulation to pull or to unzip the captured DNA.

  16. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review.

    PubMed

    Creamer, Anne Elise; Gao, Bin

    2016-07-19

    The persistent increase in atmospheric CO2 from anthropogenic sources makes research directed toward carbon capture and storage imperative. Current liquid amine absorption technology has several drawbacks including hazardous byproducts and a high-energy requirement for regeneration; therefore, research is ongoing to develop more practical methods for capturing CO2 in postcombustion scenarios. The unique properties of carbon-based materials make them specifically promising for CO2 adsorption at low temperature and moderate to high partial pressure. This critical review aims to highlight the development of carbon-based solid sorbents for postcombustion CO2 capture. Specifically, it provides an overview of postcombustion CO2 capture processes with solid adsorbents and discusses a variety of carbon-based materials that could be used. This review focuses on low-cost pyrogenic carbon, activated carbon (AC), and metal-carbon composites for CO2 capture. Further, it touches upon the recent progress made to develop metal organic frameworks (MOFs) and carbon nanomaterials and their general CO2 sorption potential. PMID:27257991

  17. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  18. Progress and new developments in carbon capture and storage

    SciTech Connect

    Plasynski, S.I.; Litynski, J.T.; McIlvried, H.G.; Srivastava, R.D.

    2009-07-01

    Growing concern over the impact on global climate change of the buildup of greenhouse gases (GHGs) in the atmosphere has resulted in proposals to capture carbon dioxide (CO{sub 2}) at large point sources and store it in geologic formations, such as oil and gas reservoirs, unmineable coal seams, and saline formations, referred to as carbon capture and storage (CCS). There are three options for capturing CO{sub 2} from point sources: post-combustion capture, pre-combustion capture, and oxy-combustion. Several processes are available to capture CO{sub 2}, and new or improved processes are under development. However, CO{sub 2} capture is the most expensive part of CCS, typically accounting for 75% of overall cost. CCS will benefit significantly from the development of a lower cost post-combustion CO{sub 2} capture process that can be retrofitted to existing power plants. Once captured, the CO{sub 2} is compressed to about 150 atm and pipelined at supercritical conditions to a suitable storage site. Oil and gas reservoirs, because they have assured seals and are well characterized, are promising early opportunity sites. Saline formations are much more extensive and have a huge potential storage capacity, but are much less characterized. Several commercial and a number of pilot CCS projects are underway around the world.

  19. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  20. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2013)

    SciTech Connect

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D.; Sundaresan, S.; Sun, Xin; Storlie, C.; Bhattacharyya, D.; Tong, Charles; Zitney, Stephen E; Dale, Crystal; Engel, Dave; Agarwal, Deb; Calafiura, Paolo; Shinn, John

    2014-03-05

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories’ core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI’s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI’s academic participants (Carnegie Mellon University, Princeton University, West

  1. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  2. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  3. NITROGEN-SELECTIVE MEMBRANE FOR CARBON CAPTURE

    EPA Science Inventory

    Dense membrane technology will be tested and applied under conditions that optimize the separation of N2 from CO2 from post-combustion flue gas. This membrane technology will help in retrofitting existing coal-fired power plants so as to comply with emission regulations.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  5. Comparative study of metal-organic frameworks for carbon capture applications

    NASA Astrophysics Data System (ADS)

    Simmons, Jason; Zhou, Wei; Wu, Hui; Yildirim, Taner

    2010-03-01

    With the current prevalence of hydrocarbon-based energy sources, carbon capture and sequestration are essential technologies for minimizing the emission of carbon dioxide and the resulting increased atmospheric concentration of CO2. Current technologies based on absorption require high temperature regeneration of the solvent, ultimately leading to significantly decreased efficiency and increased cost. Development of an adsorption-based technology, based on physical adsorption in optimized porous media, would greatly reduce the regeneration costs. Here we discuss the carbon capture performance of a range of metal-organic frameworks (MOFs), including both high surface area materials as well as those with sites that have been engineered to have enhanced binding. In particular, we demonstrate that MOFs can capture significant amounts of CO2 and that the CO2 can be readily removed from the MOF using standard pressure/vacuum swing techniques, yielding cyclic capture capacities in excess of 5 mmol/g. Further, we discuss the role of pore geometry and surface chemistry in the capacity of CO2 that can be removed in order to best optimize these materials. Lastly, we will address the effect of flue gas impurities on the carbon capture performance of these MOFs.

  6. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    -current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  7. Capture of green-house carbon dioxide in Portland cement

    SciTech Connect

    Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

    1993-12-31

    A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

  8. Biotechnology for the acceleration of carbon dioxide capture and sequestration.

    PubMed

    Savile, Christopher K; Lalonde, James J

    2011-12-01

    The potential for enzymatic acceleration of carbon dioxide capture from combustion products of fossil fuels has been demonstrated. Carbonic anhydrase (CA) accelerates post combustion CO(2) capture, but available CAs are woefully inadequate for the harsh conditions employed in most of these processes. In this review, we summarize recent approaches to improve CA, and processes employing this enzyme, to maximize the benefit from this extremely fast biocatalyst. Approaches to overcoming limitations include sourcing CAs from thermophilic organisms, using protein engineering to evolve thermo-tolerant enzymes, immobilizing the enzyme for stabilization and confinement to cooler regions and process modifications that minimize the (thermo-, solvent) stress on the enzyme. PMID:21737251

  9. Chemically modified carbonic anhydrases useful in carbon capture systems

    SciTech Connect

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  10. LanzaTech- Capturing Carbon. Fueling Growth.

    SciTech Connect

    2014-03-07

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  11. CO(2) capture from dilute gases as a component of modern global carbon management.

    PubMed

    Jones, Christopher W

    2011-01-01

    The growing atmospheric CO(2) concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO(2) from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO(2) capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO(2) directly from ambient air (air capture) as a means of reducing the global atmospheric CO(2) concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. PMID:22432609

  12. Deployment models for commercialized carbon capture and storage.

    PubMed

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  13. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    PubMed

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-01

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface. PMID:27379462

  14. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    DOE PAGESBeta

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; Tong, Charles H.; Sahinidis, Nikolaos V.; Miller, David C.

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  15. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    SciTech Connect

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; Tong, Charles H.; Sahinidis, Nikolaos V.; Miller, David C.

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification through PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.

  16. Energy department pulls out of carbon-capture project

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2015-03-01

    A project aiming to demonstrate carbon capture and sequestration (CCS) from a coal-fired power plant is set to be cancelled after the US Department of Energy (DOE) announced it will withdraw its 1bn in support for the initiative.

  17. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for

  18. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface. PMID:17948811

  19. Impact of sulfur oxides on mercury capture by activated carbon

    SciTech Connect

    Albert A. Presto; Evan J. Granite

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACI, mercury capture was tested under varying conditions of SO{sub 2} and SO{sub 3} concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO{sub 2} concentration in the SFG, but the presence of SO{sub 3} inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H{sub 2}SO{sub 4} impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface. 30 refs., 3 figs., 2 tabs.

  20. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    PubMed

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner. PMID:27109255

  1. Rapid setting of portland cement by greenhouse carbon dioxide capture

    SciTech Connect

    Wagh, A.S.; Singh, D.; Knox, L.J.

    1994-04-01

    Following the work by Berger et al. on rapid setting of calcium silicates by carbonation, a method of high-volume capture of CO{sub 2} in portland cement has been developed. Typically, 10--24 wt. % of CO{sub 2} produced by the calcination of calcium carbonate during clinkering, may be captured, and the set cement acquires most of its full strength in less than a day. The approach will have economic advantages in fabrication of precast structures, in emergency development of infrastructure during natural disasters, and in defense applications. Moreover, it will help the cement industry comply with the Clean Air Act of 1990 by sequestering the greenhouse carbon dioxide.

  2. The Environmental and Economic Sustainability of Carbon Capture and Storage

    PubMed Central

    Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter

    2011-01-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  3. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  4. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    None, None

    2011-05-11

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  5. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect

    None, None

    2014-07-14

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived flue gas and syngas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived flue gas and syngas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development paths to commercialization. During the calendar year 2013 portion of the Budget Period Four reporting period, efforts at the NCCC focused on post-combustion CO2 capture, gasification, and pre-combustion CO2 capture technology testing. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of post-combustion, testing was conducted on an enzyme-based technology, advanced solvents from two major developers, and a gas separation membrane. During the year, the gasification process was operated for three test runs, supporting development of water-gas shift and COS hydrolysis catalysts, a mercury sorbent, and several gasification support technologies. Syngas produced during gasification operation was also used for pre-combustion capture technologies, including gas separation membranes from three different technology developers, a CO2 sorbent, and CO2 solvents.

  6. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE PAGESBeta

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  7. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    SciTech Connect

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commercially attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.

  8. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    NASA Astrophysics Data System (ADS)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  9. The national carbon capture center at the power systems development facility

    SciTech Connect

    None, None

    2012-09-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  10. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson; Santosh Gangwal; Ya Liang; Tyler Moore; Margaret Williams; Douglas P. Harrison

    2004-09-30

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-11-01

    Laboratory studies were conducted to investigate dry, regenerable, alkali carbonate-based sorbents for the capture of CO{sub 2} from power plant flue gas. Electrobalance, fixed-bed and fluid-bed reactors were used to examine both the CO{sub 2} capture and sorbent regeneration phases of the process. Sodium carbonate-based sorbents (calcined sodium bicarbonate and calcined trona) were the primary focus of the testing. Supported sodium carbonate and potassium carbonate sorbents were also tested. Sodium carbonate reacts with CO{sub 2} and water vapor contained in flue gas at temperatures between 60 and 80 C to form sodium bicarbonate, or an intermediate salt (Wegscheider's salt). Thermal regeneration of this sorbent produces an off-gas containing equal molar quantities of CO{sub 2} and H{sub 2}O. The low temperature range in which the carbonation reaction takes place is suited to treatment of coal-derived flue gases following wet flue gas desulfurization processes, but limits the concentration of water vapor which is an essential reactant in the carbonation reaction. Sorbent regeneration in an atmosphere of CO{sub 2} and water vapor can be carried out at a temperature of 160 C or higher. Pure CO{sub 2} suitable for use or sequestration is available after condensation of the H{sub 2}O. Flue gas contaminants such as SO{sub 2} react irreversibly with the sorbent so that upstream desulfurization will be required when sulfur-containing fossil fuels are used. Approximately 90% CO{sub 2} capture from a simulated flue gas was achieved during the early stages of fixed-bed reactor tests using a nominal carbonation temperature of 60 C. Effectively complete sorbent carbonation is possible when the fixed-bed test is carried out to completion. No decrease in sorbent activity was noted in a 15-cycle test using the above carbonation conditions coupled with regeneration in pure CO{sub 2} at 160 C. Fluidized-bed reactor tests of up to five cycles were conducted. Carbonation of sodium

  12. Water Challenges for Geologic Carbon Capture and Sequestration

    NASA Astrophysics Data System (ADS)

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-04-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use.

  13. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  14. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect

    Sholl, David; Jones, Christopher

    2013-03-13

    material improvements that could substantially reduce these costs. The most critical conclusions from our work are that (i) CO{sub 2} capture from ambient air using moderate temperature cyclic adsorption processes is technically feasible and (ii) the operational costs of realistic versions of these processes are moderate enough to encourage future development of this technology. Because of the very modest net investment that has been made in R&D associated with this approach from all sources worldwide (relative to the massive public and private investment that has been made in technologies for CO{sub 2} from concentrated point sources), our results strongly suggest that continued development of air capture is justified.

  15. The National Carbon Capture Center at the Power Systems Development Facility: Topical Report

    SciTech Connect

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  16. Protolytic carbon film technology

    SciTech Connect

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  17. Carbon capture and sequestration: identifying and managing risks - article no. 1

    SciTech Connect

    Alexandra B. Klass; Elizabeth J. Wilson

    2009-07-01

    Carbon capture and geologic sequestration (CCS) technology promises to provide deep emissions cuts, particularly from coal power generation, but deploying CCS creates risks of its own. This article first considers the risks associated with CCS, which involves capturing CO{sub 2} emissions from industrial sources and power plants, transporting the CO{sub 2} by pipeline, and injecting it underground for permanent sequestration. The article then suggests ways in which these risks can be minimized and managed and considers more broadly when or if CCS should be deployed or whether its use should be limited or rejected in favor of other solutions.

  18. Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture.

    PubMed

    Ge, Chao; Song, Jian; Qin, Zhangfeng; Wang, Jianguo; Fan, Weibin

    2016-07-27

    A series of sustainable porous carbon materials were prepared from waste polyurethane foam and investigated for capture of CO2. The effects of preparation conditions, such as precarbonization, KOH to carbon precursor weight ratio, and activation temperature, on the porous structure and CO2 adsorption properties were studied for the purpose of controlling pore sizes and nitrogen content and developing high-performance materials for capture of CO2. The sample prepared at optimum conditions shows CO2 adsorption capacities of 6.67 and 4.33 mmol·g(-1) at 0 and 25 °C under 1 bar, respectively, which are comparable to those of the best reported porous carbons prepared from waste materials. The HCl treatment experiment reveals that about 80% of CO2 adsorption capacity arises from physical adsorption, while the other 20% is due to the chemical adsorption originated from the interaction of basic N groups and CO2 molecules. The relationship between CO2 uptake and pore size at different temperatures indicates that the micropores with pore size smaller than 0.86 and 0.70 nm play a dominant role in the CO2 adsorption at 0 and 25 °C, respectively. It was found that the obtained carbon materials exhibited high recyclability and high selectivity to adsorption of CO2 from the CO2 and N2 mixture. PMID:27376177

  19. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    SciTech Connect

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  20. Investigating carbonate formation in urban soils as a method for capture and storage of atmospheric carbon.

    PubMed

    Washbourne, C-L; Renforth, P; Manning, D A C

    2012-08-01

    This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8±4.7% wt CaCO(3). Isotopic analysis demonstrated δ(18)O values between -9.4‰ and -13.3‰ and δ(13)C values between -7.4‰ and -13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4±8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO(2) in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO(2) has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO(2)) removal rate of 12.5 kg CO(2) Mg(-1) yr(-1). There is the potential for capture and storage of a further 27.3 kg CO(2) Mg(-1) in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO(2) as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils. PMID:22683756

  1. Hunt for improved carbon capture picks up speed

    SciTech Connect

    2010-01-01

    A high-throughput metal-organic framework synthesis instrument in action. Berkeley Lab chemist Jeffrey Long's lab will soon host a round-the-clock, robotically choreographed hunt for carbon-hungry materials. The Berkeley Lab chemist leads a diverse team of scientists whose goal is to quickly discover materials that can efficiently strip carbon dioxide from a power plant's exhaust, before it leaves the smokestack and contributes to climate change. They're betting on a recently discovered class of materials called metal-organic frameworks, which boast a record-shattering internal surface area. A sugar cube-sized piece, if unfolded and flattened, would more than blanket a football field. The crystalline material can also be tweaked to absorb specific molecules. More: http://newscenter.lbl.gov/feature-stories/2010/05/26/carbon-capture-search/

  2. Carbon dioxide capture from existing coal-fired power plants

    SciTech Connect

    2006-12-15

    During 1999-2001 ALSTOM Power Inc.'s Power Plant Laboratories and others evaluated the feasibility of alternate CO{sub 2} capture technologies applied to an existing US coal-fired electric power plant. The power plant analysed was the Conesville No. 5 unit, operated by AEP of Columbus, Ohio. This unit is a nominal 450 MW, pulverized coal-fired, subcritical pressure steam plant. One of the CO{sub 2} capture concepts investigated was a post-combustion system, which used the Kerr-McGee/ABB Lummus Global, Inc.'s commercial MEA process. More than 96% of CO{sub 2} was removed, compressed, and liquefied for usage or sequestration from the flue gas. Based on results from this study a follow-up study is investigating the post-combustion capture systems with amine scrubbing as applied to the Conesville No. 5 unit. The study evaluated the technical and economic impacts of removing CO{sub 2} from a typical existing US coal-fired electric power plant using advanced amine-based post combustion CO{sub 2} capture systems. The primary impacts are quantified in terms of plant electrical output reduction, thermal efficiency, CO{sub 2} emissions, retrofit investment costs, and the incremental cost of generating electricity resulting from the addition of the CO{sub 2} capture systems. An advanced amine CO{sub 2} scrubbing system is used for CO{sub 2} removal from the flue gas stream. Four (90%, 70%, 50%, and 30%) CO{sub 2} capture levels were investigated in this study. These results indicate that the advanced amine provided significant improvement to the plant performance and economics. Comparing results with recent literature results for advanced amine based capture systems (Econamine FG{sup +} and KS-1) as applied to utility scale coal fired power plants shows very similar impacts.

  3. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I.; Heintz, Y.J.; Ilconich, J.B.

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  4. A Virtual Reality Dance Training System Using Motion Capture Technology

    ERIC Educational Resources Information Center

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  5. Perspectives on Carbon Capture and Sequestration in the United States

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle Mei-Ling

    Overall, this dissertation examines a sequence of important interconnected issues: the perspectives of potential and actual CCS host communities, the perspectives of the environmental community on the rationality of CCS as viable mitigation solution for the United States, and strategies for engaging with the public on CCS. Much of the research in this dissertation is original work addressing major interdisciplinary gaps in existing literature as well as in industry and government public engagement practice. Each of the chapters is a stand-alone paper that provides a unique contribution to a series of different types of carbon management technologies and academic disciplines. They are assembled together to provide a unique integrated evaluation of these related problems. Collectively, these chapters capture some of the major challenges facing mitigation technology engagement from the potentially time consuming need for careful social site characterization to the opportunities for using citizen-guided marketing methods to identify factors that may enhance effective public engagement. Chapters 2 and 3 are essays on the perspectives of potential and actual CCS host communities. Chapter 2 finds that host communities in California's Central Valley are more concerned with the social risks of hosting a CCS project (e.g. fear of neglect should something go wrong) rather than with the technical risks of the technology. Chapter 3 finds that host communities across the US are more concerned with social risks, and want a say in how those risks should be mitigated. This Chapter concludes with a discussion of how a 'social site characterization' conducted along side a traditional site characterization when evaluating the potential for a CCS project may be a good way to both encourage positive relationships with community members and mitigate potential concerns. Chapter 4 is an essay on the perspectives of the environmental community towards the potential of CCS as a viable

  6. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  7. Process analysis of CO{sub 2} capture from flue gas using carbonation/calcination cycles

    SciTech Connect

    Li, Z.S.; Cai, N.S.; Croiset, E.

    2008-07-15

    Process analysis of CO{sub 2} capture from flue gas using Ca-based carbonation/calcination cycles is presented here. A carbonation/calcination system is composed essentially of two reactors (an absorber and a regenerator) with Ca-based sorbent circulating between the two reactors (assumed here as fluidized beds). CO{sub 2} is, therefore, transferred from the absorber to the regenerator. Because of the endothermicity of the calcination reaction, a certain amount of coal is burned with pure oxygen in the regenerator. Detailed mass balance, heat balance and cost of electricity and CO{sub 2} mitigation for the carbonation/calcination cycles with three Ca-based sorbents in dual fluidized beds were calculated and analyzed to study the effect of the Ca-based sorbent activity decay on CO{sub 2} capture from flue gas. The three sorbents considered were: limestone, dolomite and CaO/Ca{sub 12}Al{sub 14}O{sub 33} (75/25 wt %) sorbent. All results, including the amount of coal and oxygen required, are presented with respect to the difference in calcium oxide conversion between the absorber and the regenerator, which is an important design parameter. Finally, costs of electricity and CO{sub 2} mitigation costs using carbonation/calcination cycles for the three sorbents were estimated. The results indicate that the economics of the carbonation/calcination process compare favorably with competing technologies for capturing CO{sub 2}.

  8. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; A. Frank Seibert; J. Tim Cullinane; Terraun Jones

    2003-01-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. The rigorous Electrolyte Non-Random Two-Liquid (electrolyte-NRTL) model has been regressed to represent CO{sub 2} solubility in potassium carbonate/bicarbonate solutions. An analytical method for piperazine has been developed using a gas chromatograph. Funding has been obtained and equipment has been donated to provide for modifications of the existing pilot plant system with stainless steel materials.

  9. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  10. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect

    2012-12-31

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO{sub 2} capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO{sub 2} capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO{sub 2} capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO{sub 2} solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

  11. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  12. Application of halloysite nanotubes for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Kim, Jinsoo; Rubino, Ilaria; Lee, Joo-Youp; Choi, Hyo-Jick

    2016-04-01

    Halloysite is a naturally occurring clay, with physical structure represented by halloysite nanotubes (HNTs). We investigated the potential applicability of HNTs for carbon dioxide (CO2) capture, using two amine-functionalized HNTs: (3-aminopropyl) triethoxysilane (APTES)-grafted HNTs and polyethylenimine (PEI)-impregnated HNTs. APTES-HNTs and PEI-HNTs resulted in 5.6 and 30 wt. % (in sorbent) in functionalization onto HNTs, respectively. Capture efficiency was higher in APTES-HNTs at lower temperatures, while it was maximum in PEI-HNTs at 70°C–75 °C. At 75 °C, adsorption/desorption tests showed that 95% of the two reactions occurred within 30 min, and exhibited 0.15 and 0.21 millimole of CO2 adsorption capacity per millimole of amine group for APTES-HNTs and PEI-HNTs, respectively. During 10 cycles of CO2 adsorption/desorption, there was no significant decrease in sorbent weight and adsorption capacity in both HNTs. These results show that inherent structural features of HNTs can be easily tailored for the development of operational condition-specific CO2 capture system.

  13. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  14. Microbial Electrolytic Carbon Capture for Carbon Negative and Energy Positive Wastewater Treatment.

    PubMed

    Lu, Lu; Huang, Zhe; Rau, Greg H; Ren, Zhiyong Jason

    2015-07-01

    Energy and carbon neutral wastewater management is a major goal for environmental sustainability, but current progress has only reduced emission rather than using wastewater for active CO2 capture and utilization. We present here a new microbial electrolytic carbon capture (MECC) approach to potentially transform wastewater treatment to a carbon negative and energy positive process. Wastewater was used as an electrolyte for microbially assisted electrolytic production of H2 and OH(-) at the cathode and protons at the anode. The acidity dissolved silicate and liberated metal ions that balanced OH(-), producing metal hydroxide, which transformed CO2 in situ into (bi)carbonate. Results using both artificial and industrial wastewater show 80-93% of the CO2 was recovered from both CO2 derived from organic oxidation and additional CO2 injected into the headspace, making the process carbon-negative. High rates and yields of H2 were produced with 91-95% recovery efficiency, resulting in a net energy gain of 57-62 kJ/mol-CO2 captured. The pH remained stable without buffer addition and no toxic chlorine-containing compounds were detected. The produced (bi)carbonate alkalinity is valuable for wastewater treatment and long-term carbon storage in the ocean. Preliminary evaluation shows promising economic and environmental benefits for different industries. PMID:26076212

  15. Development of moving bed simulation model for carbon capture from fossil energy systems.

    SciTech Connect

    Kim, H.; Miller, D.

    2011-01-01

    The capture and separation of carbon dioxide (CO2) has been identified as a high-priority topic to cope with global climate change. Fossil fuels currently supply the most of the world's energy needs, and their utilization is the major source of the anthropogenic CO2 emission [1]. Particularly, the existing coal-fired power plants annually emit about 2 billion tons of CO2 which is equivalent to two-thirds of the total emissions from U.S. power sector [2]. Therefore, it is critical to develop the cost-effective technologies to mitigate this problem. There are three options for capture for capturing CO2 from fossil energy system: post-combustion capture, pre-combustion capture, and oxy-combustion. Among them, post-combustion capture has the greatest near-term potential for reducing CO2 emission, because it can be applied to the existing coal-fired power plant with relative ease through a retrofit. The current commercially available solvent-based processes have advantages of fast kinetics and strong reactions, however only at a significant cost and efficiency penalty. Recently, various solid sorbents are being explored for one of promising CO2 capture technology, which are expected to reduce energy requirement and water usage with the approaches of fluidized or moving bed. However, solids are inherently more difficult to work with than liquids and no large scale system has yet been commercialized. In this study, we developed the rigorous 1-D PDE model for moving beds in Aspen Custom Modeler; the entire system consists of adsorbers, regenerators, and auxiliary equipment. The simulation result will be expected to compare with those of other post-combustion processes. We will deal with not only advantages of lower capital costs and power requirements but also problems associated with pressure drop and heat transfer.

  16. Fastener Capture Plate Technology to Contain On-Orbit Debris

    NASA Technical Reports Server (NTRS)

    Eisenhower, Kevin

    2010-01-01

    The Fastener Capture Plate technology was developed to solve the problem of capturing loose hardware and small fasteners, items that were not originally intended to be disengaged in microgravity, thus preventing them from becoming space debris. This technology was incorporated into astronaut tools designed and successfully used on NASA s Hubble Space Telescope Servicing Mission #4. The technology s ultimate benefit is that it allows a very time-efficient method for disengaging fasteners and removing hardware while minimizing the chances of losing parts or generating debris. The technology aims to simplify the manual labor required of the operator. It does so by optimizing visibility and access to the work site and minimizing the operator's need to be concerned with debris while performing the operations. It has a range of unique features that were developed to minimize task time, as well as maximize the ease and confidence of the astronaut operator. This paper describes the technology and the astronaut tools developed specifically for a complicated on-orbit repair, and it includes photographs of the hardware being used in outer space.

  17. CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy

    NASA Astrophysics Data System (ADS)

    Keith, D. W.

    2002-05-01

    for global climate policy are examined using DIAM [2], a stylized integrated assessment model. We find that air capture can fundamentally alter the temporal dynamics of global warming mitigation. The reason for this is that air capture differs from conventional mitigation in three key aspects. First, it removes emissions from any part of the economy with equal ease or difficulty, so its cost provides an absolute cap on the cost of mitigation. Second, it permits reduction in concentrations faster than the natural carbon cycle: the effects of irreversibility are thus partly alleviated. Third, because it is less coupled with the energy system, air capture may offer stronger economies of scale and smaller adjustment costs than the more conventional mitigation technologies. Air capture limits the total cost of a worst-case climate scenario. In an optimal sequential decision framework with uncertainty, existence of air capture decreases the need for near-term precautionary abatement. Like geoengineering, air capture thus poses a moral hazard. 1. S. Elliott, et al. Compensation of atmospheric CO2 buildup through engineered chemical sinkage. Geophys. Res. Let., 28:1235-1238, 2001. 2. Minh Ha-Duong, Michael J. Grubb, and Jean-Charles Hourcade. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature, 390: 270-274, 1997.

  18. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  19. The energy-water nexus and the role of carbon capture and sequestration.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Shuster, Erik; Castillo, Cesar; Kobos, Peter Holmes

    2010-10-01

    There is growing evidence of human induced climate change. Various legislation has been introduced to cap carbon emissions. Fossil powered electric generation is responsible for over 30% of the U.S. emissions. Carbon Capture and Sequestration (CCS) technology is water and energy intensive. The project's objectives are: (1) Explore water consumption implications associated with full deployment of a Carbon Capture and Storage (CCS) future; (2) Identify vulnerable areas in which water resources may be too limited to enable full deployment of CCS technology; and (3) Implement project with the cooperation of the National Energy Technology Laboratory (NETL) and DOE Office of Policy and International Affairs. Thermoelectric consumption projected to increase by 3.7 BGD due to CCS by 2035, a doubling over 2004. This increase is equivalent to projected growth in consumption by all other sectors. Demand is not equally distributed across the U.S. 18.5% of this future demand is located in watershed prone to surface and groundwater stress. 30% of current and future demand is located in watersheds prone to drought stress.

  20. Flexible Electrostatic Technology for Capture and Handling Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew; Bryan, Tom; Horwitz, Chris; Rakoczy, John; Waggoner, Jason

    2015-01-01

    To NASA unfunded & planned missions: This new capability to sense proximity, flexibly align to, and attractively grip and capture practically any object in space without any pre-designed physical features or added sensors or actuators will enable or enhance many of MSFC's strategic emphasis areas in space transportation, and space systems such as: 1. A Flexible Electrostatic gripper can enable the capture, gripping and releasing of an extraterrestrial sample of different minerals or a sample canister (metallic or composite) without requiring a handle or grapple fixture.(B) 2. Flexible self-aligning in-space capture/soft docking or berthing of ISS resupply vehicles, pressurized modules, or nodes for in-space assembly and shielding, radiator, and solar Array deployment for space habitats (C) 3. The flexible electrostatic gripper when combined with a simple steerable extendible boom can grip, position, and release objects of various shapes and materials with low mass and power without any prior handles or physical accommodations or surface contamination for ISS experiment experiments and in-situ repair.(F)(G) 4. The Dexterous Docking concept previously proposed to allow simple commercial resupply ships to station-keep and capture either ISS or an Exploration vehicle for supply or fluid transfer lacked a self-sensing, compliant, soft capture gripper like FETCH that could retract and attach to a CBM. (I) 5. To enable a soft capture and de-orbit of a piece of orbital debris will require self-aligning gripping and holding an object wherever possible (thermal coverings or shields of various materials, radiators, solar arrays, antenna dishes) with little or no residual power while adding either drag or active low level thrust.(K) 6. With the scalability of the FETCH technology, small satellites can be captured and handled or can incorporate FETCH gripper to dock to and handle other small vehicles and larger objects for de-orbiting or mitigating Orbital debris (L) 7. Many of

  1. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amornvadee Veawab

    2006-09-30

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.

  2. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  3. CO{sub 2} CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect

    Gary T. Rochelle; J.Tim Cullinane; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas

    2005-01-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Thermodynamic modeling predicts that the heat of desorption of CO{sub 2} from 5m K+/2.5 PZ from 85 kJ/mole at 40 C to 30 kJ/mole at 120 C. Mass transfer modeling of this solvent suggests that carbonate and general salt concentration play a major role in catalyzing the rate of reaction of CO{sub 2} with piperazine. Stripper modeling suggests that with the multipressure stripper, the energy consumption with a generic solvent decreases by 15% as the heat of desorption is decreased from 23.8 to 18.5 kcal/gmol. A second pilot plant campaign with 5m K+/2.5 PZ was successfully completed.

  4. Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis.

    PubMed

    Wang, Tao; Lackner, Klaus S; Wright, Allen B

    2013-01-14

    An ideal chemical sorbent for carbon dioxide capture from ambient air (air capture) must have a number of favourable properties, such as environmentally benign behaviour, a high affinity for CO(2) at very low concentration (400 ppm), and a low energy cost for regeneration. The last two properties seem contradictory, especially for sorbents employing thermal swing adsorption. On the other hand, thermodynamic analysis shows that the energy cost of an air capture device need only be slightly larger than that of a flue gas scrubber. The moisture swing separation process studied in this paper provides a novel approach to low cost CO(2) capture from air. The anionic exchange resin sorbent binds CO(2) when dry and releases it when wet. A thermodynamic model with coupled phase and chemical equilibria is developed to study the complex H(2)O-CO(2)-resin system. The moisture swing behaviour is compatible with hydration energies changing with the activity of water on the resin surfaces. This activity is in turn set by the humidity. The rearrangement of hydration water on the resin upon the sorption of a CO(2) molecule is predicted as a function of the humidity and temperature. Using water as fuel to drive the moisture swing enables an economical, large-scale implementation of air capture. By generating CO(2) with low partial pressures, the present technology has implications for in situ CO(2) utilizations which require low pressure CO(2) gas rather than liquid CO(2). PMID:23172123

  5. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture

  6. An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration

    SciTech Connect

    Simon, A J

    2009-08-21

    As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

  7. Long-term impacts of air capture technologies on optimal climate strategies under economic uncertainties

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.

    2014-12-01

    Despite widespread attention to the consequences of climate change, tangible and concerted progress toward mitigation of the adverse effects of greenhouse-gas (GHG) emissions has yet to be coordinated among various national and international agents. The energy objectives set by such initiatives as 'Sustainable Energy for All' partially help slow down the global warming in short term, but the risks posed by GHG emissions would persist for a long time. This fact makes negative emission solutions more appealing as a part of the climate protection efforts. Here I use integrated assessment modeling to investigate the potential added value of air capture technologies as a complement for more conventional solutions such as carbon capture and storage, and the use of renewables. Thermodynamic limits of air capture technologies are used as a general guideline for the estimation of the performance of air capture technologies. Optimal long-run climate strategies are discussed taking into account the uncertainties in the impact of CO2 concentration on the Global Wealth Product, and possible scenarios that result in an overshoot beyond the 2°C warming limit.

  8. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage

    EPA Science Inventory

    Among various clean energy technologies, one innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. With a relatively pure CO2 strea...

  9. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    PubMed Central

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; Bresson, Jamie A.; Lakhapatri, Satish L.; Solis, Earl O. P.; Fox, Richard J.; Broering, James M.; Benoit, Michael R.; Zimmerman, Sabrina A.; Novick, Scott J.; Liang, Jack; Lalonde, James J.

    2014-01-01

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability and alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. At pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction. PMID:25368146

  10. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    USGS Publications Warehouse

    Carr, T.R.; Iqbal, A.; Callaghan, N.; Dana-Adkins-Heljeson; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  11. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    SciTech Connect

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  12. An early deployment strategy for carbon capture, utilisation, and storage

    SciTech Connect

    Carter, L.D.

    2012-11-01

    This report describes the current use of CO2 for EOR, and discusses potential expansion of EOR using CO2 from power plants. Analysis of potential EOR development in the USA, where most current CO2-based EOR production takes place, indicates that relatively low cost, traditional sources of CO2 for EOR (CO2 domes and CO2 from natural gas processing plants) are insufficient to exploit the full potential of EOR. To achieve that full potential will require use of CO2 from combustion and gasification systems, such as fossil fuel power plants, where capture of CO2 is more costly. The cost of current CCUS systems, even with the revenue stream for sale of the CO2 for EOR, is too high to result in broad deployment of the technology in the near term. In the longer term, research and development may be sufficient to reduce CO2 capture costs to a point where CCUS would be broadly deployed. This report describes a case study of conditions in the USA to explore a financial incentive to promote early deployment of CCUS, providing a range of immediate benefits to society, greater likelihood of reducing the long-term cost of CCUS, and greater likelihood of broad deployment of CCUS and CCS in the long term. Additionally, it may be possible to craft such an incentive in a manner that its cost is more than offset by taxes flowing from increased domestic oil production. An example of such an incentive is included in this report.

  13. Analysis and Comparison of Carbon Capture & Sequestration Policies

    NASA Astrophysics Data System (ADS)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  14. Energy-efficient stirred-tank photobioreactors for simultaneous carbon capture and municipal wastewater treatment.

    PubMed

    Mohammed, K; Ahammad, S Z; Sallis, P J; Mota, C R

    2014-01-01

    Algal based wastewater treatment (WWT) technologies are attracting renewed attention because they couple energy-efficient sustainable treatment with carbon capture, and reduce the carbon footprint of the process. A low-cost energy-efficient mixed microalgal culture-based pilot WWT system, coupled with carbon dioxide (CO2) sequestration, was investigated. The 21 L stirred-tank photobioreactors (STPBR) used light-emitting diodes as the light source, resulting in substantially reduced operational costs. The STPBR were operated at average optimal light intensity of 582.7 μmol.s(-1).m(-2), treating synthetic municipal wastewater containing approximately 250, 90 and 10 mg.L(-1) of soluble chemical oxygen demand (SCOD), ammonium (NH4-N), and phosphate, respectively. The STPBR were maintained for 64 days without oxygen supplementation, but had a supply of CO2 (25 mL.min(-1), 25% v/v in N2). Relatively high SCOD removal efficiency (>70%) was achieved in all STPBR. Low operational cost was achieved by eliminating the need for mechanical aeration, with microalgal photosynthesis providing all oxygenation. The STPBR achieved an energy saving of up to 95%, compared to the conventional AS system. This study demonstrates that microalgal photobioreactors can provide effective WWT and carbon capture, simultaneously, in a system with potential for scaling-up to municipal WWT plants. PMID:24845328

  15. Prospective life-cycle modeling of a carbon capture and storage system using metal-organic frameworks for CO2 capture

    SciTech Connect

    Sathre, R; Masanet, E

    2013-01-01

    Metal-organic frameworks (MOFs) are promising new material media for carbon dioxide (CO2) capture. Their tunable adsorption patterns may allow relatively efficient separation of gases, e.g. from power plant exhaust. Here we conduct scenario-based prospective life-cycle system modeling to estimate the potentials and implications of large-scale MOF application for post-combustion carbon capture and storage (CCS), and estimate the source and magnitude of uncertainties. The methodological approach includes parametric system modeling to quantify relations between system components; scenario projections of plausible pathways for system scale-up; proxy data on analogous materials and processes; and uncertainty analysis of parameter significance. We estimate the system-wide material and energy flows and economic costs associated with projected large-scale CCS deployment. We compare the performance of a MOF-based system to currently more mature amine-based capture technology. We discuss balancing two critical factors that determine the success of CO2 capture media: thermodynamic efficiency of the capture/regeneration cycle, and life-cycle embodied energy and cost of the material and its ancillary systems.

  16. Managing uncertainties: the making of the IPCC's special report on carbon dioxide capture and storage.

    PubMed

    Narita, Daiju

    2012-01-01

    Carbon dioxide capture and storage (CCS) is a technology that receives growing recognition because of its extremely great in mitigating climate change. However, uncertainties concerning the viability of this approach exist. With this background, the Intergovernmental Panel on Climate Change (IPCC) published a report in 2005 assessing of CCS. This article discusses the compilation process of the report, based on information collected through interviews with key participants and document research, highlighting how CCS's key uncertainties were estimated in the face of two disparate needs: scientific rigor and policy relevance. PMID:22530489

  17. Cost-effective synthesis of amine-tethered porous materials for carbon capture.

    PubMed

    Lu, Weigang; Bosch, Mathieu; Yuan, Daqiang; Zhou, Hong-Cai

    2015-02-01

    A truly cost-effective strategy for the synthesis of amine-tethered porous polymer networks (PPNs) has been developed. A network containing diethylenetriamine (PPN-125-DETA) exhibits a high working capacity comparable to current state-of-art technology (30 % monoethanolamine solutions), yet it requires only one third as much energy for regeneration. It has also been demonstrated to retain over 90 % capacity after 50 adsorption-desorption cycles of CO2 in a temperature-swing adsorption process. The results suggest that PPN-125-DETA is a very promising new material for carbon capture from flue gas streams. PMID:25314657

  18. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  19. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    NASA Astrophysics Data System (ADS)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  20. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive. PMID:25531980

  1. Learning through a portfolio of carbon capture and storage demonstration projects

    NASA Astrophysics Data System (ADS)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  2. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS. PMID:25811231

  3. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes

    SciTech Connect

    Scholes, C.; Kentish, S.; Stevens, G.

    2009-07-01

    The capture of carbon dioxide by membrane gas separation has been identified as one potential solution to reduce greenhouse gas emissions. In particular, the application of membranes to CO{sub 2} capture from both pre- and post-combustion strategies is of interest. For membrane technology to become commercially viable in CO{sub 2} capture, a number of factors need to be overcome, one being the role of minor components in the process on membrane performance. This review considers the effects of minor components in both pre- and post-combustion use of polymeric membranes for CO{sub 2} capture. In particular, gases such as SOx, NOx, CO, H{sub 2}S, NH3, as well as condensable water and hydrocarbons are reviewed in terms of their permeability through polymeric membranes relative to CO{sub 2}, as well as their plasticization and aging effects on membrane separation performance. A major conclusion of the review is that while many minor components can affect performance both through competitive sorption and plasticization, much remains unknown. This limits the selection process for membranes in this application.

  4. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride.

    PubMed

    Oh, Youngtak; Le, Viet-Duc; Maiti, Uday Narayan; Hwang, Jin Ok; Park, Woo Jin; Lim, Joonwon; Lee, Kyung Eun; Bae, Youn-Sang; Kim, Yong-Hyun; Kim, Sang Ouk

    2015-09-22

    Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications. PMID:26267150

  5. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines

    SciTech Connect

    Graeme Puxty; Robert Rowland; Andrew Allport; Qi Yang; Mark Bown; Robert Burns; Marcel Maeder; Moetaz Attalla

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO{sub 2}) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO{sub 2} capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO{sub 2} absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO{sub 2} absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation. 30 refs., 8 figs.

  6. Cumulative Radiative Forcing Implications of Deployment Strategies for Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Sathre, R. C.; Masanet, E.

    2011-12-01

    Carbon capture and storage (CCS) is increasingly discussed as a potential means of mitigating the climate disruption associated with fossil fuel use. Some technologies for capturing, transporting, and sequestering carbon dioxide (CO2) are already mature, while others technologies under development may lead to more cost- and energy-efficient CCS systems. Various elements of CCS systems are currently in operation at relatively small scale, but will need to be scaled up very substantially in order to make a significant contribution to climate change mitigation. Because the rate of fossil fuel CO2 emission is continuing to increase and the emitted CO2 will remain in the atmosphere for long time periods, the speed at which CCS is deployed will strongly affect the cumulative CO2 emission and the climate impacts. To better understand these issues, in this analysis we integrate scenario forecasting of energy supply systems, life cycle emission modeling, and time-dependent calculations of cumulative radiative forcing. We develop a series of CCS deployment scenarios that describe plausible future trajectories for CCS implementation in the US electric power plant fleet. The scenarios incorporate dimensions such as speed of deployment build-out, year of initiating deployment, efficiency of capture technology, and installation in new power plants vs. retrofitting existing plants. We conduct life cycle greenhouse gas (GHG) emissions analyses of each scenario to estimate annual emission profiles of CO2, CH4, and N2O over a 90-year time horizon, from 2010 to 2100. We then model the atmospheric dynamics of the emitted GHGs including atmospheric decay and instantaneous radiative forcing patterns over time. Finally, we determine the cumulative radiative forcing of each scenario, which we use as a proxy for surface temperature change and resulting disruption to physical, ecological and social systems. The results show strong climate mitigation benefits of early, aggressive

  7. Mercury capture by native fly ash carbons in coal-fired power plants

    PubMed Central

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  8. Mercury capture by native fly ash carbons in coal-fired power plants.

    PubMed

    Hower, James C; Senior, Constance L; Suuberg, Eric M; Hurt, Robert H; Wilcox, Jennifer L; Olson, Edwin S

    2010-08-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  9. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model

  10. Global carbon management using air capture and geosequestration at remote locations

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.; Goldberg, D.

    2014-12-01

    CO2 emissions need not only stop; according the IPCC, emissions need to turn negative. This requires means to remove CO2 from air and store it safely and permanently. We outline a combination of secure geosequestration and direct capture of CO2 from ambient air to create negative emissions at remote locations. Operation at remote sites avoids many difficulties associated with capture at the source, where space for added equipment is limited, good storage sites are in short supply, and proximity to private property engenders resistance. Large Igneous Provinces have been tested as secure CO2 reservoirs. CO2 and water react with reservoir rock to form stable carbonates, permanently sequestering the carbon. Outfitting reservoirs in large igneous provinces far from human habitation with ambient air capture systems creates large CO2 sequestration sites. Their remoteness offers advantages in environmental security and public acceptance and, thus, can smooth the path toward CO2 stabilization. Direct capture of CO2 from ambient air appears energetically and economically viable and could be scaled up quickly. Thermodynamic energy requirements are very small and a number of approaches have shown to be energy efficient in practice. Sorbent technologies include supported organoamines, alkaline brines, and quaternary ammonium based ion-exchange resins. To demonstrate that the stated goals of low cost and low energy consumption can be reached at scale, public research and demonstration projects are essential. We suggest co-locating air capture and geosequestration at sites where renewable energy resources can power both activities. Ready renewable energy would also allow for the co-production of synthetic fuels. Possible locations with large wind and basalt resources include Iceland and Greenland, the north-western United States, the Kerguelen plateau, Siberia and Morocco. Capture and sequestration in these reservoirs could recover all of the emissions of the 20th century and

  11. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  12. Does GOSAT capture the true seasonal cycle of carbon dioxide?

    NASA Astrophysics Data System (ADS)

    Lindqvist, H.; O'Dell, C. W.; Basu, S.; Boesch, H.; Chevallier, F.; Deutscher, N.; Feng, L.; Fisher, B.; Hase, F.; Inoue, M.; Kivi, R.; Morino, I.; Palmer, P. I.; Parker, R.; Schneider, M.; Sussmann, R.; Yoshida, Y.

    2015-11-01

    The seasonal cycle accounts for a dominant mode of total column CO2 (XCO2) annual variability and is connected to CO2 uptake and release; it thus represents an important quantity to test the accuracy of the measurements from space. We quantitatively evaluate the XCO2 seasonal cycle of the Greenhouse Gases Observing Satellite (GOSAT) observations from the Atmospheric CO2 Observations from Space (ACOS) retrieval system and compare average regional seasonal cycle features to those directly measured by the Total Carbon Column Observing Network (TCCON). We analyse the mean seasonal cycle amplitude, dates of maximum and minimum XCO2, as well as the regional growth rates in XCO2 through the fitted trend over several years. We find that GOSAT/ACOS captures the seasonal cycle amplitude within 1.0 ppm accuracy compared to TCCON, except in Europe, where the difference exceeds 1.0 ppm at two sites, and the amplitude captured by GOSAT/ACOS is generally shallower compared to TCCON. This bias over Europe is not as large for the other GOSAT retrieval algorithms (NIES v02.21, RemoTeC v2.35, UoL v5.1, and NIES PPDF-S v.02.11), although they have significant biases at other sites. We find that the ACOS bias correction partially explains the shallow amplitude over Europe. The impact of the co-location method and aerosol changes in the ACOS algorithm were also tested and found to be few tenths of a ppm and mostly non-systematic. We find generally good agreement in the date of minimum XCO2 between ACOS and TCCON, but ACOS generally infers a date of maximum XCO2 2-3 weeks later than TCCON. We further analyse the latitudinal dependence of the seasonal cycle amplitude throughout the Northern Hemisphere and compare the dependence to that predicted by current optimized models that assimilate in situ measurements of CO2. In the zonal averages, models are consistent with the GOSAT amplitude to within 1.4 ppm, depending on the model and latitude. We also show that the seasonal cycle of XCO2

  13. Using Modern Technologies to Capture and Share Indigenous Astronomical Knowledge

    NASA Astrophysics Data System (ADS)

    Nakata, Martin; Hamacher, Duane W.; Warren, John; Byrne, Alex; Pagnucco, Maurice; Harley, Ross; Venugopal, Srikumar; Thorpe, Kirsten; Neville, Richard; Bolt, Reuben

    2014-06-01

    Indigenous Knowledge is important for Indigenous communities across the globe and for the advancement of our general scientific knowledge. In particular, Indigenous astronomical knowledge integrates many aspects of Indigenous Knowledge, including seasonal calendars, navigation, food economics, law, ceremony, and social structure. Capturing, managing, and disseminating this knowledge in the digital environment poses a number of challenges, which we aim to address using a collaborative project emerging between experts in the higher education, library, archive and industry sectors. Using Microsoft's WorldWide Telescope and Rich Interactive Narratives technologies, we propose to develop software, media design, and archival management solutions to allow Indigenous communities to share their astronomical knowledge with the world on their terms and in a culturally sensitive manner.

  14. Development of Novel Carbon Sorbents for CO{sub 2} Capture

    SciTech Connect

    Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer; Perez, Jordi; Nagar, Anoop; Sanjurjo, Angel

    2013-11-30

    An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which > 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal

  15. Growth and activity of reservoir microorganisms under carbon capture and storage conditions

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Krüger, Martin

    2015-04-01

    Carbon capture and storage is a technology to decelerate global warming by reducing CO2 emissions into the atmosphere. To ensure safe long-term storage of CO2 in the underground a number of factors need to be considered. One of them is microbial activity in storage reservoirs, which can lead to the formation of acidic metabolites, H2S or carbonates which then might affect injectivity, permeability, pressure build-up and long-term operability. Our research focused on the effect of high CO2 concentrations on growth and activity of selected thermophilic fermenting and sulphate-reducing bacteria isolated from deep reservoirs. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a certain sterilizing effect on cells. This effect was not observed in control cultures with 100 bar of hydrostatic pressure. However, when provided with a surface for attachment, CO2-inhibited cells restarted growth after CO2 release. The same was observed for organisms able to form spores. Further experiments will examine physiological and molecular properties of the model organism allowing for prediction of its sensitivity and/or adaptability to carbon dioxide in potential future storage sites.

  16. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    SciTech Connect

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  17. Front page or "buried" beneath the fold? Media coverage of carbon capture and storage.

    PubMed

    Boyd, Amanda D; Paveglio, Travis B

    2014-05-01

    Media can affect public views and opinions on science, policy and risk issues. This is especially true of a controversial emerging technology that is relatively unknown. The study presented here employs a media content analysis of carbon capture and storage (CCS), one potential strategy to reduce greenhouse gas emissions. The authors analyzed all mentions of CCS in two leading Canadian national newspapers and two major western regional newspapers from the first article that discussed CCS in 2004 to the end of 2009 (825 articles). An in-depth content analysis was conducted to examine factors relating to risk from CCS, how the technology was portrayed and if coverage was negatively or positively biased. We conclude by discussing the possible impact of media coverage on support or opposition to CCS adoption. PMID:23825250

  18. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marus Hiilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2006-12-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion rate in 5 M MEA/1,2M PZ is 22 mpy. With 1 wt% heat stable salt, the corrosion rate increases by 50% to 160% in the order: thiosulfate< oxalatecarbonate is ineffective in the absence of oxygen, but 50 to 250 ppm reduces corrosion to less than 2 mpy in the presence of oxygen.

  19. Workshop on Particle Capture, Recovery and Velocity/Trajectory Measurement Technologies

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    A workshop on particle capture, recovery, and velocity/trajectory measurement technologies was held. The primary areas covered were: (1) parent-daughter orbit divergence; (2) trajectory sensing; (3) capture medium development: laboratory experiments, and (4) future flight opportunities.

  20. Inorganic membranes for carbon capture and power generation

    NASA Astrophysics Data System (ADS)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  1. Inorganic membranes for carbon capture and power generation

    NASA Astrophysics Data System (ADS)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  2. The role of stakeholders in developing an international regulatory framework for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Augustin, C. M.; Broad, K.; Swart, P. K.

    2011-12-01

    It is estimated that carbon capture and storage (CCS) could be used to achieve between 15% and 55% of the carbon emission reductions necessary to avoid dangerous levels of climate change. It is also believed that achieving emission reduction goals will be less costly with CCS than without it. The expansion of active CCS sites over the past decade, from three to 53 demonstrates the value that industry sees in CCS as a transition technology for governments seeking to reduce their CO2 emissions. However, to continue developing CCS for industry scale implementation, it is essential to provide the regulatory certainty needed to foster energy industry wide adoption of CCS. Existing CCS regulatory regimes are inadequate, fragmented and contradictory. There is a need for comprehensive, unifying regulations for CCS that are flexible enough to adapt as the technology develops. Governments are limited by the fact that carbon capture and storage is a multidisciplinary issue that touches on the fields of oil drilling, groundwater quality, greenhouse gas management, air quality, and risk management. Though it is in part a technological, environmental and management issue there is also a complex political element to tackling the CCS problem. Due to its cross-cutting nature, CCS regulations should be based off the best practices and standards developed by industry stakeholders. Industry standards are stakeholder developed and consensus based, created through a democratic and collaborative process by bodies such as the International Standards Organization, the National Institutes of Standards and Testing (USA), ASTM International, and the Canadian Standards Organization. Standards can typically be broken down into six general categories: test methods, specifications, classifications, practices, guides, and terminology. These standards are created by stakeholders across the industry and across geographic boundaries to create an trade-wide, rather than nationwide, consensus and

  3. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    SciTech Connect

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  4. Carbon Dioxide Capture: Covalent Organic Frameworks for CO2 Capture (Adv. Mater. 15/2016).

    PubMed

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-01

    Covalent organic frameworks (COFs) serve as ideal platforms that can selectively adsorb and separate CO2 from gas mixtures. On page 2855, R. Zou, Y. Zhao, and Y. Zeng highlight research progress in this area, compare recent achievements, and present fundamental principles. Different strategies to improve the CO2 capture capability of COFs are elaborated and the capture performance of representative COFs is analyzed. PMID:27075837

  5. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    PubMed

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation. PMID:20195442

  6. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    SciTech Connect

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  7. Carbon Dioxide Capture by Superbase-Derived Protic Ionic Liquids

    SciTech Connect

    Dai, Sheng; Luo, Huimin; Li, Haoran; Wang, Chongmin; Jiang, Deen

    2010-01-01

    Protic ionic liquids (PILs) from a superbase and fluorinated alcohol, imidazole, pyrrolinone, or phenol were designed to capture CO{sub 2} based on the reactivity of their anions to CO{sub 2}. These PILs are capable of rapid and reversible capture of about one equivalent of CO{sub 2}, which is superior to those sorption systems based on traditional aprotic ILs.

  8. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  9. Flightweight Carbon Nanotube Magnet Technology

    NASA Technical Reports Server (NTRS)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  10. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs).

    PubMed

    Wang, Xin; Feng, Yujie; Liu, Jia; Lee, He; Li, Chao; Li, Nan; Ren, Nanqi

    2010-08-15

    Due to increased discharge of CO(2) is incurring problems, CO(2) sequestration technologies require substantial development. By introducing anodic off gas into an algae grown cathode (Chlorella vulgaris), new microbial carbon capture cells (MCCs) were constructed and demonstrated here to be an effective technology for CO(2) emission reduction with simultaneous voltage output without aeration (610+/-50 mV, 1000 Omega). Maximum power densities increased from 4.1 to 5.6 W/m(3) when the optical density (OD) of cathodic algae suspension increased from 0.21 to 0.85 (658 nm). Compared to a stable voltage of 706+/-21 mV (1000 Omega) obtained with cathodic dissolved oxygen (DO) of 6.6+/-1.0 mg/L in MCC, voltage outputs decreased from 654 to 189 mV over 70 h in the control reactor (no algae) accompanied with a decrease in DO from 7.6 to 0.9 mg/L, indicating that cathode electron acceptor was oxygen. Gas analysis showed that all the CO(2) generated from anode was completely eliminated by catholyte, and the soluble inorganic carbon was further converted into algal biomass. These results showed the possibility of a new method for simultaneous carbon fixing, power generation and biodiesel production during wastewater treatment without aeration. PMID:20547055

  11. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks

    SciTech Connect

    Li, JR; Ma, YG; McCarthy, MC; Sculley, J; Yu, JM; Jeong, HK; Balbuena, PB; Zhou, HC

    2011-08-01

    Reducing anthropogenic CO2 emission and lowering the concentration of greenhouse gases in the atmosphere has quickly become one of the most urgent environmental issues of our age. Carbon capture and storage (CCS) is one option for reducing these harmful CO2 emissions. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance. Metal-organic frameworks (MOFs), a new class of crystalline porous materials constructed by metal-containing nodes bonded to organic bridging ligands hold great potential as adsorbents or membrane materials in gas separation. In this paper, we review the research progress (from experimental results to molecular simulations) in MOFs for CO2 adsorption, storage, and separations (adsorptive separation and membrane-based separation) that are directly related to CO2 capture. (C) 2011 Elsevier B.V. All rights reserved.

  12. Microbially enhanced carbon capture and storage - from pores to cores (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. C.; Cunningham, A. B.; Spangler, L.; Gerlach, R.

    2010-12-01

    During the operation of Geologic Carbon Capture and Storage (CCS) and the injection of supercritical CO2 into underground formations, microbe-rock-fluid interactions occur. These interactions may be important for controlling the ultimate fate of the injected CO2, and may also be manipulated to enhance the storage of the CO2, via mineral-trapping, solubility trapping, formation trapping, and leakage reduction. We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials. Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to supercritical CO2, and facilitate the conversion of gaseous and supercritical CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Ongoing microscopy and modelling studies aim to understand these processes at both the pore- and core-scale in order to facilitate larger scale understanding and potential manipulation for biologically based CCS engineering. Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO2 leakage mitigation technologies, which can be applied either before CO2 injection or as a remedial measure around injection wells.

  13. The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.

    PubMed

    Minic, Zoran; Thongbam, Premila D

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885

  14. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  15. Characterization of carbonic anhydrase II from Chlorella vulgaris in bio-CO2 capture.

    PubMed

    Li, Li; Fu, Ming-Lai; Zhao, Yong-Hao; Zhu, Yun-Tian

    2012-11-01

    Carbonic anhydrase II (CA II) can catalyze the reversible hydration reaction of CO(2) at a maximum of 1.4 × 10(6) molecules of CO(2) per second. The crude intracellular enzyme extract containing CA II was derived from Chlorella vulgaris. A successful CO(2) capture experiment with the presence of calcium had been conducted on the premise that the temperature was conditioned at a scope of 30-40 °C, that the biocatalyst-nurtured algal growth period lasted 3 days, and that pH ranged from7.5 to 8.5. Ions of K(+), Na(+), Ca(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Mn(2+), and Zn(2+) at 0.01, 0.1, and 0.5 M were found to exhibit no more than 30 % inhibition on the residual activity of the biocatalyst. It is reasonable to expect that calcification catalyzed by microalgae presents an alternative to geological carbon capture and sequestration through a chain of fundamental researches carried on under the guidance of sequestration technology. PMID:22821342

  16. Carbon Capture Simulation Initiative: a case study in multiscale modeling and new challenges.

    PubMed

    Miller, David C; Syamlal, Madhava; Mebane, David S; Storlie, Curt; Bhattacharyya, Debangsu; Sahinidis, Nikolaos V; Agarwal, Deb; Tong, Charles; Zitney, Stephen E; Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran; Ryan, Emily; Engel, Dave; Dale, Crystal

    2014-01-01

    Advanced multiscale modeling and simulation have the potential to dramatically reduce the time and cost to develop new carbon capture technologies. The Carbon Capture Simulation Initiative is a partnership among national laboratories, industry, and universities that is developing, demonstrating, and deploying a suite of such tools, including basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, high-resolution filtered computational-fluid-dynamics (CFD) submodels, validated high-fidelity device-scale CFD models with quantified uncertainty, and a risk-analysis framework. These tools and models enable basic data submodels, including thermodynamics and kinetics, to be used within detailed process models to synthesize and optimize a process. The resulting process informs the development of process control systems and more detailed simulations of potential equipment to improve the design and reduce scale-up risk. Quantification and propagation of uncertainty across scales is an essential part of these tools and models. PMID:24797817

  17. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    PubMed Central

    Minic, Zoran; Thongbam, Premila D.

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture. PMID:21673885

  18. Synergistic Carbon Dioxide Capture and Conversion in Porous Materials.

    PubMed

    Zhang, Yugen; Lim, Diane S W

    2015-08-24

    Global climate change and excessive CO2 emissions have caused widespread public concern in recent years. Tremendous efforts have been made towards CO2 capture and conversion. This has led to the development of numerous porous materials as CO2 capture sorbents. Concurrently, the conversion of CO2 into value-added products by chemical methods has also been well-documented recently. However, realizing the attractive prospect of direct, in situ chemical conversion of captured CO2 into other chemicals remains a challenge. PMID:26216701

  19. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Andrew Sexton; Jason Davis; Marcus Hilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2007-03-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best K{sup +}/PZ solvent, 4.5 m K{sup +}/4.5 m PZ, requires equivalent work of 31.8 kJ/mole CO{sub 2} when used with a double matrix stripper and an intercooled absorber. The oxidative degradation of piperazine or organic acids is reduced significantly by inhibitor A, but the production of ethylenediamine is unaffected. The oxidative degradation of piperazine in 7 m MEA/2 m PZ is catalyzed by Cu{sup ++}. The thermal degradation of MEA becomes significant at 120 C. The solubility of potassium sulfate in MEA/PZ solvents is increased at greater CO{sub 2} loading. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion

  20. Direct Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic Pigment: Quinacridone**

    PubMed Central

    Apaydin, Dogukan Hazar; Głowacki, Eric Daniel; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2014-01-01

    Limiting anthropogenic carbon dioxide emissions constitutes a major issue faced by scientists today. Herein we report an efficient way of controlled capture and release of carbon dioxide using nature inspired, cheap, abundant and non-toxic, industrial pigment namely, quinacridone. An electrochemically reduced electrode consisting of a quinacridone thin film (ca. 100 nm thick)on an ITO support forms a quinacridone carbonate salt. The captured CO2 can be released by electrochemical oxidation. The amount of captured CO2 was quantified by FT-IR. The uptake value for electrochemical release process was 4.61 mmol g−1. This value is among the highest reported uptake efficiencies for electrochemical CO2 capture. For comparison, the state-of-the-art aqueous amine industrial capture process has an uptake efficiency of ca. 8 mmol g−1. PMID:24849072

  1. Direct electrochemical capture and release of carbon dioxide using an industrial organic pigment: quinacridone.

    PubMed

    Apaydin, Dogukan Hazar; Głowacki, Eric Daniel; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2014-06-23

    Limiting anthropogenic carbon dioxide emissions constitutes a major issue faced by scientists today. Herein we report an efficient way of controlled capture and release of carbon dioxide using nature inspired, cheap, abundant and non-toxic, industrial pigment namely, quinacridone. An electrochemically reduced electrode consisting of a quinacridone thin film (ca. 100 nm thick) on an ITO support forms a quinacridone carbonate salt. The captured CO2 can be released by electrochemical oxidation. The amount of captured CO2 was quantified by FT-IR. The uptake value for electrochemical release process was 4.61 mmol g(-1). This value is among the highest reported uptake efficiencies for electrochemical CO2 capture. For comparison, the state-of-the-art aqueous amine industrial capture process has an uptake efficiency of ca. 8 mmol g(-1). PMID:24849072

  2. Application of the sol-gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics.

    PubMed

    Broda, Marcin; Kierzkowska, Agnieszka M; Müller, Christoph R

    2012-02-13

    An option for reducing the release of greenhouse gases into the atmosphere is the implementation of CO(2) capture and storage (CCS) technologies. However, the costs associated with capturing CO(2) by using the currently available technology of amine scrubbing are very high. An emerging second-generation CO(2) capture technology is the use of calcium-based sorbents, which exploit the carbonation and calcination reactions of CaO, namely, CaO+CO(2) ↔CaCO(3). Naturally occurring Ca-based sorbents are inexpensive, but show a very rapid decay of CO(2) uptake capacity with cycle number. Here, we report the development of synthetic Ca-based CO(2) sorbents using a sol-gel technique. Using this technique, we are able to synthesize a nanostructured material that possesses a high surface area and pore volume and shows excellent CO(2) capture characteristics over many cycles. Furthermore, we are able to establish a clear relationship between the structure of the sorbent and its performance. After 30 cycles of calcination and carbonation, the best material possessed a CO(2) uptake capacity of 0.51 g of CO(2) per gram of sorbent; a value that is about 250 % higher than that for naturally occurring Havelock limestone. PMID:22298422

  3. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    SciTech Connect

    Sjostrom, Sharon

    2015-09-30

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was primarily the result of sorbent circulation limitations at operating

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-04-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  5. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  6. Reviews and synthesis: Carbon capture and storage monitoring - an integrated biological, biophysical and chemical approach

    NASA Astrophysics Data System (ADS)

    Hicks, N.; Vik, U.; Taylor, P.; Ladoukakis, E.; Park, J.; Kolisis, F.; Stahl, H.; Jakobsen, K. S.

    2015-06-01

    Carbon capture and storage (CCS) is a developing technology that seeks to mitigate against the impact of increasing anthropogenic carbon dioxide (CO2) production by capturing CO2 from large point source emitters. After capture the CO2 is compressed and transported to a reservoir where it is stored for geological time scales. Potential leakages from CCS projects, where stored CO2 migrates through the overlaying sediments, are likely to have severe implications on benthic and marine ecosystems. Nonetheless, prokaryotic response to elevated CO2 concentrations has been suggested as one of the first detectable warnings if a CO2 leakage should occur. Applying properties of prokaryotic communities (i.e. community composition and metabolic status) as a novel CO2 monitoring application is highly reliable within a multidisciplinary framework, where deviations from the baseline can easily be identified. In this paper we review current knowledge about the impact of CO2 leakages on marine sediments from a multidisciplinary-based monitoring perspective. We focus on aspects from the fields of biology, geophysics, and chemistry, and discuss a case study example. We argue the importance of an integrative multidisciplinary approach, incorporating biogeochemistry, geophysics, microbial ecology and modelling, with a particular emphasis on metagenomic techniques and novel bioinformatics, for future CCS monitoring. Within this framework, we consider that an effective CCS monitoring programme will ensure that large-scale leakages with potentially devastating effects for the overlaying ecosystem are avoided. Furthermore, the multidisciplinary approach suggested here for CCS monitoring is generic, and can be adapted to other systems of interest.

  7. Optimal Synthesis of a Pulverized Coal Power Plant with Carbon Capture

    SciTech Connect

    Prakash R. Kotecha; Juan M. Salazar; Stephen Zitney

    2009-01-01

    Coal constitutes an important source of fuel for the production of power in the United States. For instance, in January 2009, pulverized coal (PC) power plants alone contributed to over 45 percent of the Nation's total electric power production. However, PC power plants also contribute to increased emissions of greenhouse gases principally carbon-dioxide (CO2). Recently, various carbon capture strategies have been under active investigation so as to make these plants compete with the more environmental friendly renewable energy sources. One such technology that has received considerable success is the capture of CO2 by an amine-based solvent extraction process. However, an aqueous absorption/stripping technology when used in a PC power plant can reduce the net power output of the plant by as much as 20-40%. The energy penalty comes from heating up the solvent in the regenerator, balancing the enthalpy of reaction, and water stripping. This energy penalty poses considerable limitations on commercial viability of the solvent extraction process and, as a result, various energy-saving modifications have been proposed in the literature ranging from the use of hybrid solvents to novel stripper configurations. In this paper, we show that the energy penalty can be further reduced by heat integration of various PC plant components with the carbon capture system. In addition to the release of greenhouse gases to the environment, PC plants also consume a large amount of freshwater. It is estimated that subcritical and supercritical PC plants have water losses of 714 gal/MWh and 639 gal/MWh, respectively. Water loss is based on an overall balance of the plant source and exit streams. This includes coal moisture, air humidity, process makeup, cooling tower makeup (equivalent to evaporation plus blowdown), process losses (including losses through reactions, solids entrainment, and process makeup/blowdown) and flue gas losses. The primary source of water used in PC power plants

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2002-10-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  9. Carbon Capture by a Continuous, Regenerative Ammonia-Based Scrubbing Process

    SciTech Connect

    Resnik, K.P.; Yeh, J.T.; Pennline, H.W.

    2006-10-01

    Overview: To develop a knowledge/data base to determine whether an ammonia-based scrubbing process is a viable regenerable-capture technique that can simultaneously remove carbon dioxide, sulfur dioxide, nitric oxides, and trace pollutants from flue gas.

  10. Updated ice core record captures industrial era carbon variability

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-09-01

    In 1999, researchers published data from ice cores collected at Law Dome, a research site in East Antarctica. These data are distinguished by their high time resolution and by their overlap with modern measurements, providing one of the most important records of how the atmosphere's chemical composition changed over the past 1000 years. Air trapped in bubbles in the ice core let researchers measure the concentration of carbon dioxide and other gases and analyze the ratio of carbon-13 to carbon-12 isotopes in the atmospheric carbon dioxide. Burning fossil fuel releases carbon dioxide that is depleted in carbon-13 isotopes, and the Law Dome record provided evidence that modern increases in atmospheric carbon dioxide are due to anthropogenic activity. In a new study, Rubino et al., a team that includes some of the authors from the original analysis, use novel tools and techniques to update their ice core record.

  11. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  13. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.

    PubMed

    Xiang, Zhonghua; Mercado, Rocio; Huck, Johanna M; Wang, Hui; Guo, Zhanhu; Wang, Wenchuan; Cao, Dapeng; Haranczyk, Maciej; Smit, Berend

    2015-10-21

    Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer-Emmett-Teller (BET) specific surface areas of 430-3624 m(2) g(-1), and a broad range of pore volumes of 0.24-3.50 cm(3) g(-1), all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal-organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of

  14. Deciding between carbon trading and carbon capture and sequestration: an optimisation-based case study for methanol synthesis from syngas.

    PubMed

    Üçtuğ, Fehmi Görkem; Ağralı, Semra; Arıkan, Yıldız; Avcıoğlu, Eray

    2014-01-01

    The economic and technical feasibility of carbon capture and sequestration (CCS) systems are gaining importance as CO2 emission reduction is becoming a more pressing issue for parties from production sectors. Public and private entities have to comply with national schemes imposing tighter limits on their emission allowances. Often these parties face two options as whether to invest in CCS or buy carbon credits for the excess emissions above their limits. CCS is an expensive system to invest in and to operate. Therefore, its feasibility depends on the carbon credit prices prevailing in the markets now and in the future. In this paper we consider the problem of installing a CCS unit in order to ensure that the amount of CO2 emissions is within its allowable limits. We formulate this problem as a non-linear optimisation problem where the objective is to maximise the net returns from pursuing an optimal mix of the two options described above. General Algebraic Modelling Systems (GAMS) software was used to solve the model. The results were found to be sensitive to carbon credit prices and the discount rate, which determines the choices with respect to the future and the present. The model was applied to a methanol synthesis plant as an example. However, the formulation can easily be extended to any production process if the CO2 emissions level per unit of physical production is known. The results showed that for CCS to be feasible, carbon credit prices must be above 15 Euros per ton. This value, naturally, depends on the plant-specific data, and the costs we have employed for CCS. The actual prices (≈5 Euros/ton CO2) at present are far from encouraging the investors into CCS technology. PMID:24246850

  15. Early public impressions of terrestrial carbon capture and storage in a coal-intensive state.

    PubMed

    Carley, Sanya R; Krause, Rachel M; Warren, David C; Rupp, John A; Graham, John D

    2012-07-01

    While carbon capture and storage (CCS) is considered to be critical to achieving long-term climate-protection goals, public concerns about the CCS practice could pose significant obstacles to its deployment. This study reports findings from the first state-wide survey of public perceptions of CCS in a coal-intensive state, with an analysis of which factors predict early attitudes toward CCS. Nearly three-quarters of an Indiana sample (N = 1001) agree that storing carbon underground is a good approach to protecting the environment, despite 80% of the sample being unaware of CCS prior to participation in the two-wave survey. The majority of respondents do not hold strong opinions about CCS technology. Multivariate analyses indicate that support for CCS is predicted by a belief that humankind contributes to climate change, a preference for increased use of renewable energy, and egalitarian and individualistic worldviews, while opposition to CCS is predicted by self-identified political conservatism and by selective attitudes regarding energy and climate change. Knowledge about early impressions of CCS can help inform near-term technology decisions at state regulatory agencies, utilities, and pipeline companies, but follow-up surveys are necessary to assess how public sentiments evolve in response to image-building efforts with different positions on coal and CCS. PMID:22681614

  16. Capturing carbon dioxide as a polymer from natural gas

    NASA Astrophysics Data System (ADS)

    Hwang, Chih-Chau; Tour, Josiah J.; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B.; Tour, James M.

    2014-06-01

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and 13C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

    2003-01-01

    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

  18. New Adsorption Cycles for Carbon Dioxide Capture and Concentration

    SciTech Connect

    James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

    2008-07-31

    The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been

  19. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    SciTech Connect

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energy technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  1. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  2. Generation, capture, and utilization of industrial carbon dioxide.

    PubMed

    Hunt, Andrew J; Sin, Emily H K; Marriott, Ray; Clark, James H

    2010-03-22

    As a carbon-based life form living in a predominantly carbon-based environment, it is not surprising that we have created a carbon-based consumer society. Our principle sources of energy are carbon-based (coal, oil, and gas) and many of our consumer goods are derived from organic (i.e., carbon-based) chemicals (including plastics, fabrics and materials, personal care and cleaning products, dyes, and coatings). Even our large-volume inorganic-chemicals-based industries, including fertilizers and construction materials, rely on the consumption of carbon, notably in the form of large amounts of energy. The environmental problems which we now face and of which we are becoming increasingly aware result from a human-induced disturbance in the natural carbon cycle of the Earth caused by transferring large quantities of terrestrial carbon (coal, oil, and gas) to the atmosphere, mostly in the form of carbon dioxide. Carbon is by no means the only element whose natural cycle we have disturbed: we are transferring significant quantities of elements including phosphorus, sulfur, copper, and platinum from natural sinks or ores built up over millions of years to unnatural fates in the form of what we refer to as waste or pollution. However, our complete dependence on the carbon cycle means that its disturbance deserves special attention, as is now manifest in indicators such as climate change and escalating public concern over global warming. As with all disturbances in materials balances, we can seek to alleviate the problem by (1) dematerialization: a reduction in consumption; (2) rematerialization: a change in what we consume; or (3) transmaterialization: changing our attitude towards resources and waste. The "low-carbon" mantra that is popularly cited by organizations ranging from nongovernmental organizations to multinational companies and from local authorities to national governments is based on a combination of (1) and (2) (reducing carbon consumption though greater

  3. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  4. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  5. Capturing and sequestering carbon by enhancing the natural carbon cycle: Prelimary identification of basic science needs and opportunities

    SciTech Connect

    Benson, S.M.

    1997-07-01

    This document summarizes proceedings and conclusions of a US DOE workshop. The purpose of the workshop was to identify the underlying research needed to answer the following questions: (1) Can the natural carbon cycle be used to aid in stabilizing or decreasing atmospheric CO{sub 2} and CH{sub 4} by: (a) Increasing carbon capture; (b) Preventing carbon from returning to the atmosphere through intermediate (<100 years) to long-term sequestration (> 100 years)?; and (2) What kind of ecosystem management practices could be used to achieve this? Three working groups were formed to discuss the terrestrial biosphere, oceans, and methane. Basic research needs identified included fundamental understanding of carbon cycling and storage in soils, influence of climate change and anthropogenic emissions on the carbon cycle, and carbon capture and sequestration in oceans. 2 figs., 4 tabs.

  6. "Not in (or under) my backyard": Geographic proximity and public acceptance of carbon capture and storage facilities.

    PubMed

    Krause, Rachel M; Carley, Sanya R; Warren, David C; Rupp, John A; Graham, John D

    2014-03-01

    Carbon capture and storage (CCS) is an innovative technical approach to mitigate the problem of climate change by capturing carbon dioxide emissions and injecting them underground for permanent geological storage. CCS has been perceived both positively, as an innovative approach to facilitate a more environmentally benign use of fossil fuels while also generating local economic benefits, and negatively, as a technology that prolongs the use of carbon-intensive energy sources and burdens local communities with prohibitive costs and ecological and human health risks. This article extends existing research on the "not in my backyard" (NIMBY) phenomenon in a direction that explores the public acceptance of CCS. We utilize survey data collected from 1,001 residents of the coal-intensive U.S. state of Indiana. Over 80% of respondents express support for the general use of CCS technology. However, 20% of these initial supporters exhibit a NIMBY-like reaction and switch to opposition as a CCS facility is proposed close to their communities. Respondents' worldviews, their beliefs about the local economic benefits that CCS will generate, and their concerns about its safety have the greatest impact on increasing or decreasing the acceptance of nearby facilities. These results lend valuable insights into the perceived risks associated with CCS technology and the possibilities for its public acceptance at both a national and local scale. They may be extended further to provide initial insights into likely public reactions to other technologies that share a similar underground dimension, such as hydraulic fracturing. PMID:24117789

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  8. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  9. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  10. Amine enriched solid sorbents for carbon dioxide capture

    DOEpatents

    Gray, McMahan L.; Soong, Yee; Champagne, Kenneth J.

    2003-04-15

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.