Science.gov

Sample records for carbon dioxide laser

  1. Carbon dioxide laser guidelines.

    PubMed

    Krupa Shankar, Ds; Chakravarthi, M; Shilpakar, Rachana

    2009-07-01

    The carbon dioxide (CO(2)) laser is a versatile tool that has applications in ablative lasing and caters to the needs of routine dermatological practice as well as the aesthetic, cosmetic and rejuvenation segments. This article details the basics of the laser physics as applicable to the CO(2) laser and offers guidelines for use in many of the above indications. PMID:20808594

  2. Carbon Dioxide Laser Guidelines

    PubMed Central

    Krupa Shankar, DS; Chakravarthi, M; Shilpakar, Rachana

    2009-01-01

    The carbon dioxide (CO2) laser is a versatile tool that has applications in ablative lasing and caters to the needs of routine dermatological practice as well as the aesthetic, cosmetic and rejuvenation segments. This article details the basics of the laser physics as applicable to the CO2 laser and offers guidelines for use in many of the above indications. PMID:20808594

  3. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  4. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  5. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  6. Fractional Carbon Dioxide Laser Resurfacing

    PubMed Central

    Ramsdell, William M.

    2012-01-01

    Currently available ablative fractional CO2 lasers provide excellent results and diminish down time with fewer complications than previous generation CO2 lasers. Mechanisms of action, treatment parameters, as well as pre- and postoperative care will be discussed. PMID:23904820

  7. Carbon dioxide laser stomaplasty for tracheostomal stenosis.

    PubMed

    Sani, A

    1998-05-01

    A method of treating tracheostomal stenosis post-laryngectomy is described. The carbon dioxide (CO2) laser is used to fashion and ablate two triangular areas lateral to the stenosed stoma to provide an immediate enlarged stoma for comfortable breathing. This simple procedure is done under local anaesthesia, is almost bloodless, safe and takes just 10 minutes. Over the last five years eight patients underwent this procedure and seven had a satisfactory stoma without the need to use a tracheostomy tube. PMID:9747477

  8. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  9. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43... § 179.43 Carbon dioxide laser for etching food. Carbon dioxide laser light may be safely used for... consists of a carbon dioxide laser designed to emit pulsed infrared radiation with a wavelength of...

  10. Use of carbon dioxide laser in oral soft tissue procedures

    PubMed Central

    Garg, Nimit; Verma, Sunil; Chadha, Minni; Rastogi, Pavitra

    2015-01-01

    Lasers have been introduced in dentistry as an alternative to conventional knife surgery. The advantage to the operator includes a clean dry field that enhances visibility and reduces the procedure time. The patient benefits by minimal postoperative pain and swelling. The paper discusses use of carbon dioxide laser in five conditions commonly encountered in oral cavity. PMID:26668460

  11. TIR-1 carbon dioxide laser system for fusion

    NASA Astrophysics Data System (ADS)

    Adamovich, V. A.; Anisimov, V. N.; Afonin, E. A.; Baranov, V. Iu.; Borzenko, V. L.; Kozochkin, S. M.; Maliuta, D. D.; Satov, Iu. A.; Sebrant, A. Iu.; Smakovski, Iu. B.

    1980-03-01

    The paper examines the TIR-1 carbon dioxide laser system for fusion. The current efforts are concentrated on (1) the microsecond laser pulse plasma heating in solenoids and theta pinches, and (2) nanosecond CO2 laser utilization for inertial confinement fusion. The TIR-1 system was designed to develop nanosecond CO2 laser technology and to study laser-target interaction at 10 microns. This system consists of an oscillator-preamplifier that produces about 1-nsec laser pulse with an energy contrast ratio of 1 million, a large triple-pass amplifier, and a target chamber with diagnostic equipment.

  12. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  13. Superpulsed carbon dioxide laser: an update on cutaneous surgical applications

    NASA Astrophysics Data System (ADS)

    Wheeland, Ronald G.

    1990-06-01

    Superpulsing the carbon dioxide laser allows delivery of high energy pulses separated by short pauses during which tissue cooling can occur.1 This new technology can provide several important advantages in cutaneous surgery over similar procedures performed with conventional continuous discharge carbon dioxide laser systems. In the excisional mode, there is a two-thirds reduction in thermal necrosis of the wound edge.2 This should translate into more rapid healing3 and increased rate of gain in tensile strength. In the vaporizational mode, precise, superficial and bloodless ablation of multiple benign appendigeal tumors is possible with less thermal damage yielding excellent cosmetic results. The establishment through additional research of accurate laser parameters, pulse duration, peak energy levels, and frequency of pulses, will help improve the specificity of the laser-tissue interaction to provide even better surgical results.

  14. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  15. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  16. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  17. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  18. 21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear, nose, and throat microsurgical carbon dioxide..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear,...

  19. Treatment of cutaneous leishmaniasis using a carbon dioxide laser.

    PubMed Central

    Babajev, K. B.; Babajev, O. G.; Korepanov, V. I.

    1991-01-01

    Use of a carbon dioxide laser to vaporize the local lesions caused by cutaneous leishmaniasis is reported. A total of 108 patients have been treated in this way and followed up. The treatment reduces the management time of patients at least 1.5 times and is followed by satisfactory aesthetic outcomes. No recurrences have been observed among the 82 patients who have been followed up for 7 years. Images Fig. 1 Fig. 2 Fig. 3 PMID:1905204

  20. Solar pumped continuous wave carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  1. a Blackbody-Pumped Carbon Dioxide Laser

    NASA Astrophysics Data System (ADS)

    Insuik, Robin Joy

    A proof of concept experiment has been carried out to demonstrate the feasibility of using blackbody radiation to pump a gas laser. Building on earlier experiments in which optical gain was measured in a CO(,2) laser mixture exposed to blackbody radiation at a temperature of 1500(DEGREES)K, continuous wave oscillation of CO(,2) has been achieved, for the first time, using radiation from a blackbody cavity as the pump source. This was made possible by actively cooling the laser mixture as it was exposed to the radiation field of an electrically heated oven. Output power measurements are presented from a series of experiments using mixtures of CO(,2), He, and Ar. Maximum output power was obtained with a 20%CO(,2) - 15%He- 65%Ar mixture at pressures around 6-10 Torr. The output power was found to vary greatly with the gas temperature and the blackbody temperature. By varying these parameters output powers up to 8 mW have been achieved. The effects of the buffer gas are also shown to be important. Based on the experimental results, it is believed that the buffer gas is needed to inhibit diffusion of the excited species out of the laser mode volume. This diffusion leads to deactivation at the walls. Adding more CO(,2) results in a decrease in output power, indicating that the gas has a finite optical depth and the mode volume is not pumped if too much CO(,2) is present. A model which incorporates these effects is presented. The predicted small signal gains and powers based on this model adequately match the trends observed experimentally.

  2. Carbon dioxide laser resurfacing with fast recovery.

    PubMed

    Chajchir, Abel; Benzaquen, Iliana

    2005-01-01

    ABTRACT: Long sun exposure, in addition to ozone layer damage, produces structural damase to the normal skin. Injury to the dermal collagen and elastic fiber results in facial wrinkles. Photodamage to the skin is one of the most common sources of concern for patients visiting the plastic surgeon or dermatologist. Over the years, many alternative solutions have been developed. CO2 laser treatment is one of the alternatives bringing unique benefits and satisfactory results for both patient and surgeons. However, the initial problems of emotional discomfort, prolonged postoperative recovery and delayed return to normal activities have made patients reluctant to accept this method. This article discusses single-pass CO2 laser resurfacing with lower energy. Also, it proposes a technique that does not use wet gauze to remove the surface of the skin. This technique is applied in combination with an intensive skin care treatment. Different authors propose a single pass of CO2 laser with excellent results. With the reported method, identical long-lasting benefits are achieved, but the post-operative time is shorter. PMID:15803351

  3. Voice Outcome Following Carbon Dioxide Laser Assisted Microlaryngeal Surgery.

    PubMed

    Divakaran, Shilpa; Alexander, Arun; Vijayakumar, Sabarinath; Saxena, Sunil Kumar

    2015-12-01

    Very few studies have been conducted in South Indian population to evaluate glottic function and voice outcome following carbon dioxide (CO2) laser assisted microsurgery for benign lesions of the larynx. This is a descriptive study which aims at assessing the voice outcome (perceptual and acoustic) and vocal fold function (stroboscopic) following CO2 laser excision in benign vocal fold lesions. 50 adult patients with benign laryngeal lesions were selected to undergo CO2 laser excision in super-pulse mode at power setting of 6 watts. Perceptual analysis was done using GRBAS score. Voice analysis was done using Praat software and fundamental frequency, jitter, shimmer and harmonics to noise ratio were assessed. Stroboscopy was done to evaluate vocal fold function using glottic closure and mucosal wave pattern as parameters. Evaluation of these parameters was done pre-operatively and at 2, 6 weeks and 3 months post-operatively. Perceptual analysis revealed a significant improvement in the GRBAS score after surgery (p < 0.001). Acoustic analysis showed that all the parameters improved significantly after surgery (p < 0.001). Stroboscopy showed that vocal fold function improved in 98 % of patients in terms of completeness of glottic closure and regular, periodic mucosal wave. Super-pulse micro-spot carbon dioxide laser is a safe and effective treatment option for benign lesions of vocal folds, with excellent voice outcome. PMID:26693452

  4. Measurement of Carbon Dioxide Column via Space Borne Laser Absorption

    NASA Technical Reports Server (NTRS)

    Heaps, WIlliam S.

    2007-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.

  5. Efficiency of Carbon Dioxide Fractional Laser in Skin Resurfacing

    PubMed Central

    Petrov, Andrej

    2016-01-01

    AIM: The aim of the study was to confirm the efficiency and safety of the fractional CO2 laser in skin renewal and to check the possibility of having a synergistic effect in patients who besides carbon dioxide laser are treated with PRP (platelet-rich plasma) too. MATERIAL AND METHODS: The first group (Examined Group 1 or EG1) included 107 patients treated with fractional CO2 laser (Lutronic eCO2) as mono-therapy. The second group (Control Group or CG) covered 100 patients treated with neither laser nor plasma in the same period but subjected to local therapy with drugs or other physio-procedures under the existing protocols for treatment of certain diseases. The third group (Examined Group 2 or EG2) treated 25 patients with combined therapy of CO2 laser and PRP in the treatment of facial rejuvenation or treatment of acne scars. RESULTS: Patient’s satisfaction, in general, is significantly greater in both examined groups (EG1 and EG2) (p < 0.001). It was found the significant difference between control and examined group from the treatment in acne scar (Fisher exact two tailed p < 0.001). Patients satisfaction with the treatment effect in rejuvenation of the skin is significant (χ2 = 39.41; df = 4; p < 0.001). But, patients satisfaction from the treatment with HPV on the skin was significantly lower in examined group (treated with laser), p = 0.0002. CONCLUSION: Multifunctional fractional carbon dioxide laser used in treatment of patients with acne and pigmentation from acne, as well as in the treatment of scars from different backgrounds, is an effective and safe method that causes statistically significant better effect of the treatment, greater patients’ satisfaction, minimal side effects and statistically better response to the therapy, according to assessments by the patient and the therapist. PMID:27335599

  6. Fractional Carbon Dioxide Laser in Treatment of Acne Scars

    PubMed Central

    Petrov, Andrej; Pljakovska, Vesna

    2016-01-01

    BACKGROUND: Scars appear as a result of skin damage during the process of the skin healing. There are two types of acne scars, depending on whether there is a loss or accumulation of collagen: atrophic and hypertrophic. In 80-90% it comes to scars with loss of collagen compared to smaller number of hypertrophic scars and keloids. AIM: The aim of the study was to determine efficiency and safety of fractional carbon dioxide laser in the treatment of acne scars. MATERIAL AND METHODS: The study was carried out in Acibadem Sistina Clinical Hospital, Skopje at the Department of Dermatovenerology, with a total of 40 patients treated with fractional carbon dioxide laser (Lutronic eCO2). The study included patients with residual acne scars of a different type. RESULTS: Comedogenic and papular acne in our material were proportionately presented in 50% of cases, while the other half were the more severe clinical forms of acne - pustular inflammatory acne and nodulocystic acne that leave residual lesions in the form of second, third and fourth grade of scars. CONCLUSION: The experiences of our work confirm the world experiences that the best result with this method is achieved in dotted ice pick or V-shaped acne scars. PMID:27275326

  7. Improvement of Microstomia in Scleroderma after Carbon Dioxide Laser Treatment.

    PubMed

    Bennani, Imane; Lopez, Raphael; Bonnet, Delphine; Prevot, Gregoire; Constantin, Arnaud; Chauveau, Dominique; Paul, Carle; Bulai Livideanu, Cristina

    2016-01-01

    Limited mouth opening (LMO) is a frequent complication of systemic sclerosis (SS). Its management is complex and there are limited treatment options. We report four patients with SS and severe LMO [interincisal distance (IID) <30 mm] treated with pulsed carbon dioxide (CO2) laser. Pulsed CO2 laser treatment of the white lips was performed after all patients had signed a written informed consent in the absence of alternative treatment. Treatment was carried out under locoregional anaesthesia using a Sharplan 30C CO2 laser in the Silk Touch® resurfacing mode. One to three laser sessions were performed at intervals of 8-12 months between sessions. Assessments were performed at 3 and 12 months with measurement of the IID using a ruler, calculation of the Mouth Handicap in Systemic Sclerosis (MHISS) scale and global evaluation by the patients. Adverse events were also reported. In all four patients, an improvement in IID occurred 3 months after the first session with a mean gain of +5 mm (range: 2-7). At 12 months, a mean gain of +8.5 mm (range: 7-10) in IID was observed. The MHISS score decreased by a mean of •14 (range: 11-17). All patients showed improvement of lip flexibility or mouth opening, allowing better phonation and mastication and easier dental care. Adverse effects were transient erythema and/or dyschromia. CO2 laser appears to be effective and well tolerated in the improvement of LMO in SS. PMID:27403126

  8. Improvement of Microstomia in Scleroderma after Carbon Dioxide Laser Treatment

    PubMed Central

    Bennani, Imane; Lopez, Raphael; Bonnet, Delphine; Prevot, Gregoire; Constantin, Arnaud; Chauveau, Dominique; Paul, Carle; Bulai Livideanu, Cristina

    2016-01-01

    Limited mouth opening (LMO) is a frequent complication of systemic sclerosis (SS). Its management is complex and there are limited treatment options. We report four patients with SS and severe LMO [interincisal distance (IID) <30 mm] treated with pulsed carbon dioxide (CO2) laser. Pulsed CO2 laser treatment of the white lips was performed after all patients had signed a written informed consent in the absence of alternative treatment. Treatment was carried out under locoregional anaesthesia using a Sharplan 30C CO2 laser in the Silk Touch® resurfacing mode. One to three laser sessions were performed at intervals of 8-12 months between sessions. Assessments were performed at 3 and 12 months with measurement of the IID using a ruler, calculation of the Mouth Handicap in Systemic Sclerosis (MHISS) scale and global evaluation by the patients. Adverse events were also reported. In all four patients, an improvement in IID occurred 3 months after the first session with a mean gain of +5 mm (range: 2-7). At 12 months, a mean gain of +8.5 mm (range: 7-10) in IID was observed. The MHISS score decreased by a mean of •14 (range: 11-17). All patients showed improvement of lip flexibility or mouth opening, allowing better phonation and mastication and easier dental care. Adverse effects were transient erythema and/or dyschromia. CO2 laser appears to be effective and well tolerated in the improvement of LMO in SS.

  9. Research of fiber carbon dioxide sensing system based laser absorption spectrum

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Zhang, Tingting; Li, Yanfang; Zhao, Yanjie; Wang, Chang; Liu, Tongyu

    2012-02-01

    Carbon dioxide is one of the important gas need to be detected in coal mine safety. In the mine limited ventilation environment, Concentration of carbon dioxide directly affects the health of coal miners. Carbon dioxide is also one of important signature Gas in spontaneous combustion forecasting of coal goaf area, it is important to accurately detect concentration of carbon dioxide in coal goaf area. This paper proposed a fiber carbon dioxide online sensing system based on tunable diode laser spectroscopy. The system used laser absorption spectroscopy and optical fiber sensors combined, and a near-infrared wavelength 1608nm fiber-coupled distributed feedback laser (DFB) as a light source and a 7cm length gas cell, to achieve a high sensitivity concentration detection of carbon dioxide gas. The technical specifications of sensing system can basically meet the need of mine safety.

  10. Treatment of ranula using carbon dioxide laser--case series report.

    PubMed

    Lai, J B; Poon, C Y

    2009-10-01

    Ranulas are mucus extravasation phenomenon formed after trauma to the sublingual gland or mucus retention from the obstruction of the sublingual ducts. There are various methods for treating ranulas, including marsupialization with or without open packing, excision of ranula with or without removal of sublingual gland, and laser excision and vaporization of ranula. The authors present a case series report on the use of carbon dioxide laser treatment for ranula and a literature review of cases treated using carbon dioxide laser. The authors' experience and reports in the literature indicate that carbon dioxide laser excision of ranula is safe with minimal or no recurrence. PMID:19481422

  11. Low-fluence carbon dioxide laser irradiation of lentigines

    SciTech Connect

    Dover, J.S.; Smoller, B.R.; Stern, R.S.; Rosen, S.; Arndt, K.A.

    1988-08-01

    Low-fluence carbon dioxide (CO2) laser irradiation of skin has previously been shown to induce damage limited primarily to the epidermis. To evaluate whether this technique was therapeutically effective for pigmented epidermal lesions, ten lentigines caused by methoxsalen and ultraviolet light therapy were treated in one patient using the CO2 laser at fluences ranging from 3.0 to 7.7 J/cm2 for 0.1-s exposures with 4.5-mm spot size. Based on substantial clearing in seven of ten lesions treated, 146 solar lentigines were treated in five patients at fluences of 3.0, 3.7, or 4.4 J/cm2. Biopsies were performed on a total of 30 lesions immediately and 24 hours, seven days, and six weeks after irradiation. Of 125 lesions followed up clinically for six weeks, 12 cleared completely, 81 lightened substantially, and 28 remained unchanged. Only two demonstrated atrophic change. Hyperpigmentation or hypopigmentation did not occur. All lesions that improved had been treated at 3.7 or 4.4 J/cm2. Immediate histologic injury consisted of vacuolar and spindly change and subsequent vesiculation limited to the basilar epidermis. Twenty-four hours later there was epidermal necrosis with regeneration, 0.1 mm of dermal basophilia and stromal condensation, and a mild inflammatory infiltrate. These alterations were dose-dependent, with near complete epidermal necrosis and superficial dermal involvement at the highest fluence, and only focal epidermal necrosis at the lowest. At seven days, epidermal regeneration was complete with traces of melanin remaining in keratinocytes. Melanophages first appeared at seven days and persisted at six weeks, by which time the inflammatory infiltrate had cleared. No lentiginous proliferation was evident and epidermal pigmentation had become normal. Low-fluence CO2 laser irradiation is an effective means of damaging the epidermis with only minimal dermal change.

  12. Repigmentation of Hypopigmented Scars Using Combination of Fractionated Carbon Dioxide Laser with Topical Latanoprost Vs. Fractionated Carbon Dioxide Laser Alone

    PubMed Central

    Siadat, Amir Hossein; Rezaei, Reza; Asilian, Ali; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Raei, Mehdi; Hosseini, Seyed Mohsen

    2015-01-01

    Background: Fractionated carbon dioxide (CO2) can treat hypopigmented scars. Latanoprost is a prostaglandin analog used to treat glaucoma. It can cause adverse effects, such as periocular hyperpigmentation. The aim of this study was to assess the efficacy and safety of latanoprost plus CO2 laser on the repigmentation of hypopigmented scars. Patients and Methods: 28 patients with hypopigmented scars were divided randomly into two groups. The patients in group A were treated in six sessions (1-month intervals) with 10600-nm fractional CO2 laser plus latanoprost 0.005% and those of group B fractionated CO2 laser plus placebo (distilled water). Digital photographs were taken at baseline and 3 months after the last treatment session. The blinded dermatologist compared the photographs and evaluated the efficacy of treatment in the hypopigmented scars using a 4-scale point (grade 1-4). Patient satisfaction was scored from 0 to 10 on a visual analog scale. Results: Follow-up results 12 weeks after the last treatment session demonstrated that 11 of the 14 patients in group A had more than 50% improvement in hypopigmentation The difference in improvement of the two groups was statistically significant (P = 0.027). The mean of the VAS scores of patients in group A was 6.50 ± 1.45 and in group B 4.57 ± 1.6. The difference in mean satisfaction of the two groups was statistically significant (P = 0.003). Side effects were mild and resolved within 1 to 5 days. Conclusion: The fractional CO2 laser resurfacing plus topical latanoprost can be used as a safe and efficacious method to treat hypopigmented scars. PMID:26288404

  13. Clinical study on 71 anorectal cases treated by carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Li, Gui-hua

    1993-03-01

    This paper describes the effective result of carbon dioxide laser on type I and II internal hemorrhoids, mixed hemorrhoids, anal fissure or fistula, etc. At present, simple hemorrhoidectomy is less acceptable to patients for its excessive bleeding and severe pain during and after the operation. Therefore, the results of 71 anorectal cases of hemorrhoidectomy using carbon dioxide laser have been observed in our hospital. The rates of effective treatment and cure were 100% and 94.3%, respectively.

  14. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  15. Treatment of idiopathic guttate hypomelanosis with fractional carbon dioxide lasers.

    PubMed

    Goldust, Mohamad; Mohebbipour, Alireza; Mirmohammadi, Ramin

    2013-05-01

    Abstract Objective: Idiopathic guttate hypomelanosis (IGH) is an acquired leukoderma found in all races. The treatment of choice is still controversial. This study aimed at evaluating the effect of CO2FL on IGH. Methods: A total of 240 patients with IGH were enrolled. The hypopigmented lesions were treated using a 10 600-nm carbon dioxide fractional laser (CO2FL). Two months after a single treatment, physicians' clinical assessments were performed and the patients' overall satisfaction was evaluated. Results: 240 patients (40 men and 200 women) were followed. The mean age of the patients was 54.32 ± 8.64 years. The mean duration of IGH was 2.64 ± 0.36 years. Two months after a single treatment session, 115 patients (47.9%) exhibited more than 75% clinical improvement. 100 patients (41.6%) achieved 51-75% clinical improvement, whereas 25 patients (10.3%) showed 25-50% clinical improvement. In addition, 95 of the 240 patients (39.6%) were very satisfied with their clinical outcomes, 102 (42.5%) were satisfied and 43 patients (17.9%) were slightly satisfied. Conclusion: CO2FL might be very effective without any considerable side effects for the treatment of IGH. PMID:23656568

  16. First Airborne Laser Remote Measurements of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobbs, M. E.; Dobler, J.; Kooi, S.; Choi, Y.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2008-12-01

    A unique, multi-frequency, single-beam, laser absorption spectrometer (LAS) that operates at 1.57 μm has been developed for a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A prototype of the space-based LAS system was developed by ITT, and it has been successfully flight tested in five airborne campaigns conducted in different geographic regions over the last three years. Flight tests were conducted over Oklahoma, Michigan, New Hampshire, and Virginia under a wide range of atmospheric conditions. Remote LAS measurements were compared to high-quality in situ measurements obtained from instrumentation on the same aircraft on spirals under the ground track of the LAS. LAS flights were conducted over a wide range of land and water reflectances and in the presence of scattered clouds. An extensive data set of CO2 measurements has been obtained for evaluating the LAS performance. LAS CO2 measurements with a signal-to-noise in excess of 250 were obtained for a 1-s average over land and for a 10-s average over water. Absolute comparisons of CO2 remote and in situ measurements showed agreement over a range of altitudes to better than 2 percent. LAS oxygen (O2) measurements, which are needed to convert LAS CO2 density measurements to CO2 mixing ratios (XCO2), have been made in the 1.26-μm region in horizontal ground-based experiments and in initial flight tests. Details of flight test campaigns and measured versus modeled results are presented in this paper.

  17. LASCAT - DESIGN OF CATALYTIC MONOLITHS FOR CLOSED-CYCLE CARBON DIOXIDE LASERS

    NASA Technical Reports Server (NTRS)

    Guinn, K.

    1994-01-01

    Pulsed carbon dioxide lasers are useful in many areas, including aeronautics, space research, and weather monitoring. Most applications require a closed-cycle carbon dioxide laser, which is more portable and self-sustaining than an open-cycle system. Without a fresh carbon dioxide supply and provisions for byproduct disposal, the closed-cycle laser must recycle the carbon monoxide and oxygen gas produced by the lasing of carbon dioxide. The recombination of the carbon monoxide and oxygen gas byproducts to form a constant supply of carbon dioxide requires an active catalyst, which must be carefully designed to optimize laser performance in accordance with design requirements specific to the laser's application. LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) aids in the design of the monolith catalyst by simulating the results of design decisions on the performance of the laser. In portable laser systems, considerations of size, weight, and cost are critical. LASCAT provides the opportunity for the designer to explore trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop (a result of gas flow through the monolith), Oxygen gas conversion, and other variables. The program uses a flexible, simplified model of the monolith catalyst designed to determine the bulk-avarage gas temperature, composition, and pressure along its length. The user specifies values for the several parameters which define the catalyst's operating conditions, including monolith dimensions, gas inlet properties, thermal operation properties, and catalyst properties. LASCAT provides results which indicate whether the experimental design meets user-defined constraints such as limits on conversion rate, maximum gas temperature, and monolith weight. LASCAT is written in FORTRAN 77 and is designed for use with any text or character-based terminal or computer display. The program requires roughly 40 KB memory. LASCAT was developed

  18. The NASA high-power carbon dioxide laser - A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1977-01-01

    The NASA Lewis Research Center has designed and fabricated a closed-cycle, continuous wave (CW), carbon dioxide (CO2) high-power laser to support research for the identification and evaluation of possible high-power laser applications. The device is designed to generate up to 70 kW of laser power in annular-shape beams from 1 to 9 cm in diameter. Electric discharge, either self-sustained or electron-beam-sustained, is used for excitation. This laser facility can be used in two ways. First, it provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high-power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams, all of which are important whether the laser application is government or industry oriented. Second, the facility provides a well-defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  19. Use of the carbon dioxide laser in sterilization of endodontic reamers.

    PubMed

    Hooks, T W; Adrian, J C; Gross, A; Bernier, W E

    1980-03-01

    The object of this study was to test a new method of sterilizing endodontic instruments by using a carbon dioxide laser system. This was done by contaminating endodontic reamers with spores, exposing them to a CO2 laser beam, and checking for their viability by standard microbiologic techniques. It was found that 100 percent of the spores were killed by the CO2 laser. This holds promise as an effective method of sterilizing endodontic instruments in the future. PMID:6766545

  20. Wound healing in porcine skin following low-output carbon dioxide laser irradiation of the incision

    SciTech Connect

    Robinson, J.K.; Garden, J.M.; Taute, P.M.; Leibovich, S.J.; Lautenschlager, E.P.; Hartz, R.S.

    1987-06-01

    Wound healing of scalpel incisions to the depth of adipose tissue closed with conventional methods was compared with closure by low-output carbon dioxide laser irradiation. In 3 Pitman-Moore minipigs wound healing was evaluated at intervals from 1 to 90 days by the following methods: clinical variables of wound healing; formation of the basement membrane components bullous pemphigoid antigen, laminin, and fibronectin; and histological evaluation of the regeneration of the epidermis, neovascularization, and elastin and collagen formation. There was no significant difference in healing between wounds closed by the various conventional methods and by the low-output carbon dioxide laser.

  1. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43 Section 179.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources §...

  2. Ultrapulse carbon dioxide laser treatment of porokeratotic eccrine ostial and dermal duct nevus.

    PubMed

    Jain, Shalu; Sardana, Kabir; Garg, Vijay Kumar

    2013-01-01

    Porokeratotic eccrine ostial and dermal duct nevus (PEODDN) is a rare, benign, cutaneous hamartoma. Approximately 45 cases of PEODDN have been reported, with little information regarding treatment. We report a patient with PEODDN treated successfully using an ultrapulse carbon dioxide laser. PMID:22339989

  3. Electromagnetic system for the management of the output power of the carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Martsinukov, S. A.; Kostrin, D. K.; Chernigovskiy, V. V.; Lisenkov, A. A.

    2016-07-01

    The methods to control the output power of the gas-discharge lasers are shown. An electromagnetic system for the management of the output power of the carbon dioxide laser is described. The results of calculation and modeling of the magnetic field in the working gap of the electromagnetic system are presented. Experimental studies on the distribution of magnetic induction in the electromagnetic system are carried out.

  4. Carbon dioxide laser vaporization: Relationship of scar formation to power density

    SciTech Connect

    Dobry, M.M.; Padilla, R.S.; Pennino, R.P.; Hunt, W.C.

    1989-07-01

    A direct relationship exists between the power density of a carbon dioxide laser and the thickness of scars it produces in rat skin. Statistically significant positive relationships were noted between laser power and scar thickness at days 14, 21, and 32. The slope of the curve increased as the number of days elapsed. At day 32, the ratio of scar thickness to CO/sub 2/ laser power density delivered was 0.3 microns/W-cm/sup 2/. Scar formation took longer for completion at higher wattages of irradiation.

  5. JPL Carbon Dioxide Laser Absorption Spectrometer Data Processing Results for the 2010 Flight Campaign

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Spiers, Gary D.; Menzie, Robert T.; Christensen, Lance E.

    2011-01-01

    As a precursor to and validation of the core technology necessary for NASA's Active Sensing of CO2 Emissions over Nights, Days,and Seasons (ASCENDS) mission, we flew JPL's Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) in a campaign of five flights onboard NASA's DC-8 Airborne Laboratory in July 2010. This is the latest in a series of annual flight campaigns that began in 2006, and our first on the DC-8 aircraft.

  6. Carbon Dioxide Laser Microsurgical Median Glossotomy for Resection of Lingual Dermoid Cysts

    PubMed Central

    Corvers, Kristien; Hens, Greet; Meulemans, Jeroen; Delaere, Pierre; Hermans, Robert; Vander Poorten, Vincent

    2016-01-01

    Dermoid cysts are epithelial-lined cavities with skin adnexae in the capsule. Only 7% is present in the head and neck. Between 2004 and 2013, four patients with a lingual dermoid cyst underwent a microsurgical carbon dioxide laser resection via a median sagittal glossotomy approach. This approach is an elegant technique combining superior visualization, hemostasis, and little postoperative edema with good wound healing, allowing for perfect function preservation of the tongue. PMID:27504448

  7. Successful removal of a partial Siamese twin with a carbon dioxide laser.

    PubMed

    Joubert, M; Stephanov, S

    1983-11-26

    A case of a 'partial Siamese twin' is discussed, and the neurological signs and operative findings are recorded. The operation was performed with the aid of a carbon dioxide laser, which not only facilitated and expedited the procedure but also ensured minimal loss of blood. The wound broke down in part, but complete healing occurred within less than a month. At the time of discharge the baby showed no abnormal neurological signs. PMID:6635892

  8. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1988-01-01

    A computer program was written that allows the design of catalytic monoliths for closed-cycle carbon dioxide lasers. Using design parameters obtained from workers at NASA Langley Research Center and from the literature, several specific monoliths were designed and the results were communicated to the research group working on this project at Langley. Two oral presentations were made at NASA-sponsored workshops - at Langley in January 1988 and in Gainesville, Florida in May 1988.

  9. Selective Removal of Dental Composite using a Rapidly Scanned Carbon Dioxide Laser.

    PubMed

    Chan, Kenneth H; Fried, Daniel

    2011-01-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel. PMID:21927546

  10. Selective removal of dental composite using a rapidly scanned carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  11. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  12. CARBON DIOXIDE LASER SYSTEM TO MEASURE GASEOUS POLLUTANTS

    EPA Science Inventory

    The report concerns the continuation of work in the development of a gas laser system for air pollution monitoring over long paths, a kilometer or more, using infrared absorption. Modifications to a bread-board system for simultaneous detection of O3, NH3, C2H4 and the addition o...

  13. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.; Willetts, David V.

    1990-01-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  14. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Astrophysics Data System (ADS)

    Harris, Michael R.; Willetts, David V.

    1990-06-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  15. Comparison of the carbon dioxide laser and the radiofrequency unit for feline onychectomies.

    PubMed

    Burns, Sara M; Howerth, Elizabeth W; Rawlings, Clarence A; Cornell, Karen K; Radlinsky, Maryann G; Mauck, Jeffrey W

    2010-01-01

    This study compared the collateral tissue damage and incisional bridging with granulation tissue via histopathological examination following feline onychectomy performed by radiofrequency (RF) and carbon dioxide (CO(2)) laser. Two cats were euthanized, and their digits were harvested for histopathological evaluation on days 1, 3, and 7 post-onychectomy. Each digit was evaluated for total lesion width, total necrosis width, and degree of edema, hemorrhage, and inflammation. This study found few significant differences in collateral tissue damage between RF and CO(2) laser, but more incisional bridging by granulation tissue was noted with RF for feline onychectomies. These results indicate that RF for feline onychectomy is a reasonable alternative to CO(2) laser in regard to collateral tissue damage and bridging of the incision by granulation tissue. In addition, RF is not accompanied by the strict safety considerations and initial expense of acquisition of a CO(2) laser. PMID:21041330

  16. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1994-01-01

    The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.

  17. Selective Removal of Demineralization Using Near Infrared Cross Polarization Reflectance and a Carbon Dioxide Laser

    PubMed Central

    Chan, Kenneth H.; Fried, Daniel

    2012-01-01

    Lasers can ablate/remove tissue in a non-contact mode of operation and a pulsed laser beam does not interfere with the ability to image the tooth surface, therefore lasers are ideally suited for integration with imaging devices for image-guided ablation. Laser energy can be rapidly and efficiently delivered to tooth surfaces using a digitally controlled laser beam scanning system for precise and selective laser ablation with minimal loss of healthy tissues. Under the appropriate irradiation conditions such laser energy can induce beneficial chemical and morphological changes in the walls of the drilled cavity that can increase resistance to further dental decay and produce surfaces with enhanced adhesive properties to restorative materials. Previous studies have shown that images acquired using near-IR transillumination, optical coherence tomography and fluorescence can be used to guide the laser for selective removal of demineralized enamel. Recent studies have shown that NIR reflectance measurements at 1470-nm can be used to obtain images of enamel demineralization with very high contrast. The purpose of this study was to demonstrate that image guided ablation of occlusal lesions can be successfully carried out using a NIR reflectance imaging system coupled with a carbon dioxide laser operating at 9.3-μm with high pulse repetition rates. PMID:24357906

  18. Selective removal of demineralization using near infrared cross polarization reflectance and a carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2012-01-01

    Lasers can ablate/remove tissue in a non-contact mode of operation and a pulsed laser beam does not interfere with the ability to image the tooth surface, therefore lasers are ideally suited for integration with imaging devices for image-guided ablation. Laser energy can be rapidly and efficiently delivered to tooth surfaces using a digitally controlled laser beam scanning system for precise and selective laser ablation with minimal loss of healthy tissues. Under the appropriate irradiation conditions such laser energy can induce beneficial chemical and morphological changes in the walls of the drilled cavity that can increase resistance to further dental decay and produce surfaces with enhanced adhesive properties to restorative materials. Previous studies have shown that images acquired using near-IR transillumination, optical coherence tomography and fluorescence can be used to guide the laser for selective removal of demineralized enamel. Recent studies have shown that NIR reflectance measurements at 1470-nm can be used to obtain images of enamel demineralization with very high contrast. The purpose of this study was to demonstrate that image guided ablation of occlusal lesions can be successfully carried out using a NIR reflectance imaging system coupled with a carbon dioxide laser operating at 9.3-μm with high pulse repetition rates.

  19. Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band

    NASA Astrophysics Data System (ADS)

    Humphries, Seth David

    Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.

  20. Facial resurfacing using a high-energy, short-pulse carbon dioxide laser.

    PubMed

    Goodman, G J

    1996-08-01

    Facial skin resurfacing is now possible using short-pulse, high-energy carbon dioxide (CO2) lasers. The laser utilized in this particular paper is the Ultra-pulse CO2 laser. The Ultra-pulse laser represents the first CO2 laser able to vaporize tissue in a single pulse with the use of a large spot size. This laser utilizes the principles of selective photothermolysis. The high-power pulses are completed in less than the thermal relaxation time of skin, estimated to be less than 1 millisecond. This translates into rapid vaporization of tissue with little heat conduction to surrounding tissues. It also should allow a reproducibility of results between practitioners with set parameters not possible with previous CO2 lasers. Clinically, this laser is useful for the removal of skin lesions, and the resurfacing of areas of sun damage, wrinkles and scars. The immediate haemostasis and excellent visibility allows for precise vaporization of abnormal tissue. Rapid and pain-free wound healing is usual. The complication rate would appear to compare very favourably with dermabrasion and chemical peeling techniques. PMID:8771864

  1. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  2. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.; Badlani, Ajay

    1991-01-01

    The objective was to explore ways of making a monolithic form of catalyst for CO2 lasers. The approach chosen was to pelletize the catalyst material, Au/MnO2 powder, and epoxy the pellets to stainless steel sheets as structural supports. The CO oxidation reaction over Au/MnO2 powder was found to be first overall, and the reaction rate constant at room temperature was 4.4 +/- 0.3 cc/(g x sec). The activation energy was 5.7 kcal/mol. The BET surface area of the pellets was found to vary from 125 to 140 sq m/g between different batches of catalyst. Pellets epoxied to stainless steel strips showed no sign of fracture or dusting when subjected to thermal tests. Pellets can be dropped onto hard surfaces with chipping of edges but no breakage of the pellets. Mechanical strength tests performed on the pellets showed that the crush strength is roughly one-fourth of the pelletizing force. The apparent activity and activation energy over the pellets were found to be less than over the powdered form of the catalyst. The lower apparent activity and activation energy of the pellets are due to the fact that the internal surface area of a pellet is not exposed to the reactant concentration present in the flowing gas as a result of intrapellet diffusion resistance. Effectiveness factors varied from 0.44, for pellets having thickness of 2 mm and attached with epoxy to a stainless steel strip. The epoxy and the stainless steel strip were found to simply block off one of the circular faces of the pellets. The epoxy did not penetrate the pellets and block the active sites. The values of the effective diffusivities were estimated to be between 2.3 x 10(exp -3) and 4.9 x 10(exp -3) sq cm/s. With measurements performed on one powder sample and one pellet configuration, reasonable accurate predictions can be made of conversions that would be obtained with other pellet thickness and configurations.

  3. Enamel fusion using a carbon dioxide laser: A technique for sealing pits and fissures

    SciTech Connect

    Walsh, L.J.; Perham, S.J. )

    1991-05-01

    The well-established enhanced resistance of lased enamel to demineralization is the basis for clinical application of the carbon dioxide laser to caries prevention. This in vitro study examined the effect of focused infrared laser radiation on sound enamel and early pit and fissure caries. Low power levels (2-5 W) induced localized melting and resolidification of enamel with little surface destruction. For sound fissures, fusion of enamel from the lateral walls of the fissure eliminated the fissure space, providing a sealant effect; while in carious fissures, carious enamel was vaporized and adjacent sound enamel fused to partially eliminate the defect. The technique for enamel fusion using CO2 lasers has potential application for sealing pits and fissures and producing physicochemical alterations in enamel which may have preventive benefits.

  4. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  5. Laser therapy for the treatment of Hailey-Hailey disease: a systematic review with focus on carbon dioxide laser resurfacing.

    PubMed

    Falto-Aizpurua, L A; Griffith, R D; Yazdani Abyaneh, M A; Nouri, K

    2015-06-01

    Benign familial chronic pemphigus, or Hailey-Hailey disease (HHD), is a recurrent bullous dermatitis that tends to have a chronic course with frequent relapses. Long-term treatment options include surgery with skin grafting or dermabrasion. Both are highly invasive and carry significant risks and complications. More recently, 'laser-abrasion' has been described as a less invasive option with a better side-effect profile. In this article, we systematically review the safety and efficacy of carbon dioxide laser therapy as a long-term treatment option for HHD, as well as provide a review of other lasers that have been reported with this goal. A total of 23 patients who had been treated with a carbon dioxide laser were identified. After treatment, 10 patients (43%) had had no recurrence, 10 (43%) had greater than 50% improvement, 2 (8%) had less than 50% improvement and 1 (4%) patient had no improvement at all (follow-up period ranged from 4 to 144 months). Laser parameter variability was wide and adverse effects were minimal, including dyspigmentation and scarring. Reviewed evidence indicates this therapy offers a safe, effective treatment alternative for HHD with minimal risk of side-effects. Larger, well-designed studies are necessary to determine the optimal treatment parameters. PMID:25418614

  6. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.

    1989-01-01

    Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.

  7. Comparison of the erbium-yttrium aluminum garnet and carbon dioxide lasers for in vitro bone and cartilage ablation

    SciTech Connect

    Gonzalez, C.; van de Merwe, W.P.; Smith, M.; Reinisch, L. )

    1990-01-01

    The in vitro bone- and cartilage-ablation characteristics of the solid-state erbium:yttrium aluminum garnet laser were compared to those of the carbon dioxide laser. Ablations of fresh, frozen cadaver septal cartilage and maxillary sinus bone were performed using total energies between 1 and 6 J. Specimens were studied using hematoxylin and eosin stain and digitized, computer-assisted measurements of 35-mm photographs. Erbium-yttrium aluminum garnet-ablated bone averaged 5 microns of adjacent tissue thermal injury, compared with 67 microns with carbon dioxide-ablated bone. Erbium-yttrium aluminum garnet-ablated cartilage averaged 2 microns of adjacent tissue thermal injury, compared with 21 microns with the carbon dioxide-ablated cartilage. The tissue-ablation characteristics of the erbium-yttrium aluminum garnet laser are promising for future otolaryngologic applications.

  8. Treatment of Ankyloglossia with Carbon Dioxide (CO2) Laser in a Pediatric Patient

    PubMed Central

    Chiniforush, Nasim; Ghadimi, Sara; Yarahmadi, Nazli; Kamali, Abbas

    2013-01-01

    Introduction: Laser surgery as an alternative for conventional surgical procedure has gained special attention. Using Carbon Dioxide (CO2) laser has some benefits like less post-operative pain, swelling and infection, decrease in risk of metastasis and edema, and less bleeding providing dry sites for surgery. Case Report: A 12 years old boy with lingual frenum with indication for excision was referred to the laser department of Tehran University of medical sciences dental school.CO2 laser was used with 10600 nm wavelength, 1.5 W output power, 100 Hz frequency and 400 μsec pulse duration in non-contact mode. Results: The result of using CO2 laser was dry and bloodless field during operation, no post operative swelling, no pain or discomfort, with normal healing process. Conclusion: We suggest and stimulate the use of CO2 laser for soft tissue surgery because of elimination of suture, convenient coagulation, time saving, patients’ comfort and easy manipulation. PMID:25606307

  9. Oral leukoplakia treatment with the carbon dioxide laser: A systematic review of the literature.

    PubMed

    Mogedas-Vegara, Alfonso; Hueto-Madrid, Juan-Antonio; Chimenos-Küstner, Eduardo; Bescós-Atín, Coro

    2016-04-01

    We conducted a systematic review of the literature to evaluate treatment of oral leukoplakia with the carbon dioxide (CO2) laser. A comprehensive search of studies published between 1981 and 2015 and listed in the PubMed (National Library of Medicine, NCBI) database yielded 378 articles which were screened in detail. Relevant studies were selected according to predetermined inclusion and exclusion criteria. A total of 33 articles met the final inclusion criteria and were analysed in detail in accordance with the PRISMA-P statement. These full-text papers were classified as synopses (n = 7), recurrence and malignant transformation studies (n = 17), comparative studies between CO2 laser and cold knife surgery (n = 3) and studies evaluating the efficacy of CO2, Nd:YAG and KTP lasers. According to the literature the CO2 laser is the workhorse of oral leukoplakia treatment due to its effectiveness and low associated morbidity. However, randomized clinical trials are needed to compare CO2 laser with other lasers. The results of our systematic review showed that there is no consensus regarding the factors involved in higher recurrence and malignization rates, so further studies are needed. PMID:26920045

  10. Selective Removal of Residual Orthodontic Composite Using a Rapidly Scanned Carbon Dioxide Laser with Spectral Feedback

    NASA Astrophysics Data System (ADS)

    Hirasuna, Krista

    Background and Objective: Excessive heat accumulation within the tooth, incomplete removal of composite, and variable damage to the enamel are shortcomings of using conventional burs to remove residual orthodontic composite after debonding fixed appliances. The objective of this study was to determine if composite could be selectively removed from the enamel surface using a rapidly scanned carbon dioxide laser controlled by spectral feedback. Materials and Methods: A carbon dioxide laser operating at a wavelength of 9.3 microm with a pulse duration of 10-15 micros and a pulse repetition rate of ˜ 200 Hz was used to selectively remove composite from the buccal surfaces of 21 extracted teeth. GrenGloo(TM) composite was used to better visualize residual composite and the amount of enamel lost was measured with optical microscopy. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Results: The amount of enamel lost averaged 22.7microm +/- 8.9 and 25.3 microm +/- 9.4 for removal at 3.8 and 4.2 J/cm2, respectively. An average maximum temperature rise of 1.9°C +/- 1.5 was recorded, with no teeth approaching the critical value of 5.5°C. The average time of composite removal was 19.3 +/- 4.1 seconds. Conclusions: Residual orthodontic composite can be rapidly removed from the tooth surface using a rapidly scanned CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal damage to the underlying enamel surface.

  11. Fractional Carbon Dioxide Laser for Keratosis Pilaris: A Single-Blind, Randomized, Comparative Study

    PubMed Central

    Vachiramon, Vasanop; Anusaksathien, Pattarin; Kanokrungsee, Silada; Chanprapaph, Kumutnart

    2016-01-01

    Objective. Keratosis pilaris (KP) is a common condition which can frequently be cosmetically disturbing. Topical treatments can be used with limited efficacy. The objective of this study is to evaluate the effectiveness and safety of fractional carbon dioxide (CO2) laser for the treatment of KP. Patients and Methods. A prospective, randomized, single-blinded, intraindividual comparative study was conducted on adult patients with KP. A single session of fractional CO2 laser was performed to one side of arm whereas the contralateral side served as control. Patients were scheduled for follow-up at 4 and 12 weeks after treatment. Clinical improvement was graded subjectively by blinded dermatologists. Patients rated treatment satisfaction at the end of the study. Results. Twenty patients completed the study. All patients stated that the laser treatment improved KP lesions. At 12-week follow-up, 30% of lesions on the laser-treated side had moderate to good improvement according to physicians' global assessment (p = 0.02). Keratotic papules and hyperpigmentation appeared to respond better than the erythematous component. Four patients with Fitzpatrick skin type V developed transient pigmentary alteration. Conclusions. Fractional CO2 laser treatment may be offered to patients with KP. Dark-skinned patients should be treated with special caution. PMID:27247936

  12. Photodynamic Therapy with Ablative Carbon Dioxide Fractional Laser in Treatment of Actinic Keratosis

    PubMed Central

    Jang, Yong Hyun; Lee, Dong Jun; Shin, Jaeyoung; Kang, Hee Young; Lee, Eun-So

    2013-01-01

    Background Recently, photodynamic therapy (PDT) has been shown to be an effective first-line treatment for actinic keratosis (AK). However, a major limitation of PDT is the long incubation time required to allow penetration of the photosensitizer. Objective The aim of this study was to assess if pretreatment with an ablative carbon dioxide (CO2) fractional laser can reduce the incubation time of the photosensitizer. Methods Initially, 29 patients with a total of 34 AK lesions were treated with an ablative CO2 fractional laser at Ajou University Hospital between January and December 2010. Immediately after the laser treatment, topical 20% 5-aminolevulinic acid or methyl-aminolevulinate was applied to the AK lesions and incubated for 70 to 90 minutes. Then, the treated areas were illuminated with a red light source. Improvement was clinically or histologically assessed eight weeks after the treatment. Results In spite of the short incubation time, 24 lesions (70.6%) showed a complete response (CR) within three sessions of PDT (10 lesions a clinical CR and 14 lesions a clinical/histological CR). There were no significant side effects associated with the combination of ablative CO2 fractional laser and PDT. Conclusion Ablative CO2 fractional laser may be considered an additional treatment option for reducing the incubation time of the photosensitizer in PDT. PMID:24371387

  13. Proximal gastric vagotomy with carbon dioxide laser: Experimental studies in animals

    SciTech Connect

    Kadota, T.; Mimura, K.; Kanabe, S.; Ohsaki, Y.; Tamakuma, S. )

    1990-06-01

    Proximal gastric vagotomy has been widely used as a surgical treatment for peptic ulcer disease. However, it is technically complex and time-consuming. Moreover, it may cause circulatory problems in the gastric mucosa. We have reported a new method of blood flow-preserving vagotomy with a carbon dioxide laser (CO2 laser vagotomy) developed in our laboratory. To assess its efficacy, we used cysteamine-induced ulcer and measured gastric mucosal blood flow in rats. The incidence of cysteamine-induced ulcer formation was reduced significantly in the group that underwent CO{sub 2} laser vagotomy compared with a group treated with proximal gastric vagotomy. Gastric mucosal blood flow was significantly better in the CO{sub 2} laser vagotomy group. Long-term follow-up of acid reduction was evaluated in dogs by the pentagastrin-stimulation test. Acid reduction in dogs was satisfactory during the 12 months of this study. CO{sub 2} laser vagotomy is a new, easy, time-saving, and circulatory-preserving technique for peptic ulcer disease.

  14. Observations on pulpal response to carbon dioxide laser drilling of dentine in healthy human third molars.

    PubMed

    Nair, P N R; Baltensperger, M; Luder, H U; Eyrich, G K H

    2005-01-01

    Preservation of pulpal health is the primary prerequisite for successful application of laser systems in the hard tissue management of vital teeth. The purpose of this study was to investigate the short and long-term pulpal effects to cavity preparations in healthy human teeth using carbon dioxide (CO2) laser. A total of seven, healthy, third molars that were scheduled to be removed due to space problems were used. After the laser drilling, the occlusal cavities were closed temporarily, and the teeth were extracted 7 days (n=5) and 3 months (n=2) after the operation. The specimens were fixed, decalcified, subdivided and processed for light and transmission electron microscopy. Seven days postoperatively all the five teeth that had been irradiated with the CO2 laser did not reveal any pathological changes in the pulpo-dentine complex. Three months postoperatively the two teeth that were prepared with the laser showed subtle but distinct apposition of tertiary dentine that was lined with intact odontoblasts. One of the specimens at 3 months revealed the presence of a mild, but very circumscribed, pulpal infiltration of chronic inflammatory cells subjacent to the cavity preparation. The latter is unlikely to be due to a direct effect of the laser irradiation but a possible consequence of microleakage of oral antigens and/or other tissue-irritating molecules through the temporary restoration and the remaining dentine thickness (RDT). Although these preliminary histological results suggest that the CO2 laser under investigation induced only minimal response of the dentine-pulp complex when used as a hard-tissue drilling tool, with specific energy settings, pulse duration within thermal relaxation time and emitting radiations at 9.6 microm of wavelength, larger clinical trials involving various types of teeth are necessary to reach definite conclusions for large-scale clinical application of the laser device. PMID:15647971

  15. Use of the carbon dioxide laser in guided tissue regeneration wound healing in the beagle dog

    NASA Astrophysics Data System (ADS)

    Rossmann, Jeffrey A.; Parlar, Ates; Abdel-Ghaffar, Khaled A.; El-Khouli, Amr M.; Israel, Michael

    1996-04-01

    The concept of guided tissue regeneration (GTR) allowing cells from the periodontal ligament and alveolar bone to repopulate the treated root surface has shown the ability to obtain periodontal new attachment. Healing studies have also shown that conventional GTR therapy still does not exclude all the epithelium. This epithelial proliferation apically interferes with the establishment of the new connective tissue attachment to the root surface. The objective of this research study was to examine whether controlled de-epithelialization with the carbon dioxide laser during the healing phase after periodontal surgery, would retard the apical migration of the epithelium and thereby enhance the results obtained through guided tissue regeneration. Eight beagle dogs were used, the experimental side received de-epithelialization with the CO2 laser in conjunction with flap reflection and surgically created buccal osseous defects. Selected defects on each side were treated with ePTFE periodontal membranes. The laser de-epithelialization was repeated every 10 days until removal of the membranes. The control side received the same surgical treatment without laser application. This experimental design allowed histologic study of the new attachment obtained in defects treated with flap debridement with or without laser de-epithelialization and with or without ePTFE membranes. A statistical analysis was performed on the histometric data from 48 teeth in the 8 dogs after 4 months of healing. The results showed significant amounts of new attachment obtained from all four treatment modalities with no statistically significant differences for any one treatment. However, the trend towards enhanced regeneration with the combined treatment of laser and membrane vs. membrane alone or debridement alone was evident. The histologic analysis revealed a significant amount of newly formed `fat cementum' seen only on the laser treated teeth. This feature was the most remarkable finding of the

  16. Effect of carbon dioxide laser treatment on lesion progression in an intraoral model

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Fried, Daniel; Gansky, Stuart A.; Stookey, George K.; Dunipace, Ann J.

    2001-04-01

    Previous studies have shown that pretreatment of dental enamel by specific carbon dioxide laser conditions inhibited subsequent progression of caries-like lesions in vitro. The aim of the present study was to use an intra-oral model to determine whether similar inhibition is observed in the human mouth. A cross over study with 23 subjects and three regimens was used. Pre-formed varies-like lesions were made in extracted human enamel and exposed intra-orally in partial dentures in each subject to A) placebo dentifrice and no laser treatment, B) placebo dentifrice following laser pretreatment, or C) sodium fluoride dentifrice and no laser treatment during each of three study periods. Samples were assessed by micro radiography to compare the mineral loss before and after each treatment and drive a net change in mineral value. Overall P was not significantly different form L but both P and L were different from F. For those subjects who demineralized in P, L and F were significantly better than P, with L showing an 84 percent inhibition of further demineralization, but no enhancement of demineralization.

  17. Dynamics of pulsed laser ablation in high-density carbon dioxide including supercritical fluid state

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Kato, Toru; Stauss, Sven; Himeno, Shohei; Kato, Satoshi; Muneoka, Hitoshi; Baba, Motoyoshi; Suemoto, Tohru; Terashima, Kazuo

    2013-10-01

    To gain a better understanding of pulsed laser ablation (PLA) processes in high-density fluids, including gases, liquids, and supercritical fluids (SCFs), we have investigated the PLA dynamics in high-density carbon dioxide (CO2) using a time-resolved shadowgraph (SG) observation method. The SG images revealed that the PLA dynamics can be categorized into two domains that are separated by the gas-liquid coexistence curve and the Widom line, which forms a border between the gaslike and liquidlike domains of an SCF. Furthermore, a cavitation bubble observed in liquid CO2 near the critical point exhibited a particular characteristic: the formation of an inner bubble and an outer shell structure. The results indicate that the thermophysical properties of the reaction field generated by PLA can be dynamically tuned by controlling the solvent temperature and pressure, particularly near the critical point.

  18. Carbon dioxide concentrator

    NASA Technical Reports Server (NTRS)

    Williams, C. F.; Huebscher, R. G.

    1972-01-01

    Passed exhaled air through electrochemical cell containing alkali metal carbonate aqueous solution, and utilizes platinized electrodes causing reaction of oxygen at cathode with water in electrolyte, producing hydroxyl ions which react with carbon dioxide to form carbonate ions.

  19. Interaction of carbon dioxide laser radiation with a nanotube array in the presence of a constant electric field

    SciTech Connect

    Sadykov, N. R.; Scorkin, N. A.

    2012-06-15

    The dependence of the current density on the leading edge width of the alternating (high-frequency) field amplitude is studied at various constant (or unsteady) fields. The dependence of amplified microwaves in the two-millimeter range on a longitudinal coordinate is determined. The problem of submillimeter radiation generation in a system of parallel carbon nanotubes exposed to two-frequency carbon dioxide (CO{sub 2} laser) laser radiation in the presence of a constant (or unsteady) field is studied. The possibility of using freely oriented carbon nanotubes parallel to each other is shown.

  20. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Pulsed 2-micron Laser Transmitter For Carbon Dioxide Sensing From Space

    NASA Astrophysics Data System (ADS)

    Singh, U. N.; Yu, J.; Bai, Y.; Petros, M.

    2011-12-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. Studies of the carbon cycle are limited by the tools available to precisely measure CO2 concentrations by remote sensing. Active sensing, using the Integrated Path Differential Absorption (IPDA) approach, permits measurements day and night, at all latitudes and seasons. The development of a high pulse energy 2-μm laser transmitter for high-precision CO2 measurements from space leverages years of NASA investment in solid-state laser technology. Under NASA Laser Risk Reduction Program, funded by Earth Science Technology Office, researchers at NASA Langley Research Center developed an injection seeded, high repetition rate, Q-switched Ho:YLF laser transmitter for CO2 Differential Absorption Lidar/IPDA (profile/column) measurements from ground and airborne platforms. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. NASA LaRC's 2-micron pulsed laser transmitter possesses advantages over current passive and CW active sensors. First, the pulsed format provides a built-in means for determining range to the scattering target and effectively filtering out the scattering from thin clouds and aerosols, thus eliminating a source of measurement bias. Second, by concentrating the laser energy into a pulse, sufficient backscatter signal strength can be obtained from aerosol scattering rather than relying on a hard target at a known distance. Third, the absorption line at the 2.05 μm band is ideally suited for the CO2 concentration measurement. In particular, the weighting function of 2 μm is optimum for measurement in the lower troposphere where the sources and sinks of CO2 are located. The planned laser transmitter development will lead to a Tm:Fiber pumped Ho:YLF laser transmitter capable of

  2. Feasibility and clinical outcomes of transoral robotic surgery and transoral robot-assisted carbon dioxide laser for hypopharyngeal carcinoma.

    PubMed

    Durmus, Kasim; Kucur, Cuneyt; Uysal, Ismail O; Dziegielewski, Peter T; Ozer, Enver

    2015-01-01

    Transoral robotic surgery (TORS) has been used as a novel procedure for squamous cell carcinoma of the laryngopharyngeal cancers with encouraging outcomes. The safety, feasibility, and efficacy regarding this approach have previously been demonstrated. There are several studies proposing the benefit of combining TORS with carbon dioxide (CO2) laser in resecting upper aerodigestive tract tumors. We report a series of patients with hypopharyngeal carcinoma treated with primary TORS with or without the flexible carbon dioxide (CO2) laser. All TORS resections were completed without any intraoperative complication. None required conversion to an open procedure. Clinical outcomes in this preliminary analysis indicate that magnified view, 3D visualization with the wristed instruments and tremor reduction technology of robotic experience, allow en bloc resection of early stage hypopharyngeal cancers. TORS with CO2 laser is a promising, minimally invasive surgical alternative for the treatment of hypopharyngeal tumors with comparable oncologic outcomes. PMID:25478973

  3. Indoor carbon dioxide monitoring with diode laser absorption at 2 μm

    NASA Astrophysics Data System (ADS)

    Li, Jinyi; Du, Zhenhui; Ma, Yiwen; Liu, Jingwang

    2015-05-01

    In order to investigate the variation of indoor carbon dioxide concentration and how it changes with human activities, a tunable diode laser absorption spectroscopy (TDLAS) system was used to monitor the indoor CO2 concentration. Based on Wavelength Modulation Spectroscopy double frequency detection (WMS-2f), the 2v1+v3 characteristic line (4991.26 cm-1) of CO2 was measured by a DFB laser. The measured concentration values were calibrated by means of a cell filled with reference gas. The results show that the daily average indoor CO2 concentrations is about 419ppm which is slightly higher than that of the outdoor and the changing range is between 380ppm and 510ppm in a day. The indoor CO2 concentration was influenced by the change of ventilation and indoor staff. The respiration of the indoor staff makes a greater impact on a relatively confined indoor CO2 concentration. The CO2 increasing rate is measured to be 80ppm/hour in the case of occupant density of 0.06 people/m3. Therefore, the staff crowded indoor should ventilate timely to prevent excessive CO2 causing people discomfort.

  4. Microscopic and ultrastructural modifications of postmenopausal atrophic vaginal mucosa after fractional carbon dioxide laser treatment.

    PubMed

    Zerbinati, Nicola; Serati, Maurizio; Origoni, Massimo; Candiani, Massimo; Iannitti, Tommaso; Salvatore, Stefano; Marotta, Francesco; Calligaro, Alberto

    2015-01-01

    Vaginal atrophy occurring during menopause is closely related to the dramatic decrease in ovarian estrogens due to the loss of follicular activity. Particularly, significant changes occur in the structure of the vaginal mucosa, with consequent impairment of many physiological functions. In this study, carried out on bioptic vaginal mucosa samples from postmenopausal, nonestrogenized women, we present microscopic and ultrastructural modifications of vaginal mucosa following fractional carbon dioxide (CO2) laser treatment. We observed the restoration of the vaginal thick squamous stratified epithelium with a significant storage of glycogen in the epithelial cells and a high degree of glycogen-rich shedding cells at the epithelial surface. Moreover, in the connective tissue constituting the lamina propria, active fibroblasts synthesized new components of the extracellular matrix including collagen and ground substance (extrafibrillar matrix) molecules. Differently from atrophic mucosa, newly-formed papillae of connective tissue indented in the epithelium and typical blood capillaries penetrating inside the papillae, were also observed. Our morphological findings support the effectiveness of fractional CO2 laser application for the restoration of vaginal mucosa structure and related physiological trophism. These findings clearly coupled with striking clinical relief from symptoms suffered by the patients before treatment. PMID:25410301

  5. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  6. Carbon Dioxide and Climate.

    ERIC Educational Resources Information Center

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  7. An Open-Path Tunable Diode Laser Sensor for Simultaneous Measurement of Methane And Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Bailey, D. M.; Adkins, E. M.; Wilson, E. L.; Miller, J. H. H.

    2014-12-01

    In a collaboration between NASA Goddard Space Flight Center, University of Alaska-Fairbanks, and George Washington University a study of the feedbacks to climate change caused by thawing permafrost has been initiated. An array of ground experiments at three unique permafrost sites will record permafrost depth, structure, meteorological data, and emissions of key greenhouse gases during a springtime permafrost thaw. Ground data will be linked to climate models and landscape structure from satellite imagery to gauge the magnitude of the feedbacks. GWU will deploy an open path instrument for independent measurement of ground-level carbon dioxide and methane. For several decades, our laboratory has developed diode laser absorption techniques using mid-infrared diode lasers as well as cavity- enhanced absorption measurements using near-infrared source. In the current project, we will continue to develop a system for open path measurements that builds on our past experience with deployment of multi-laser, multi species sensors. Spectral simulations suggest that at ambient levels of CO2 and CH4 (390 and 2 ppmV, respectively) we will observe extinction coefficients of ≈ 10-4 m-1 or ≈ 1% absorption over a 200 m path. Prior work in our laboratory suggests that a SNR in excess of 100 will be achievable at these absorption levels using wavelength-modulation techniques. Wavelength modulation spectroscopy entails applying a small amplitude modulation (on the order of the width of a spectral feature) to a laser's emitted frequency as it tunes through a spectrum. This is readily accomplished with near infrared telecom lasers whose frequency can be swept by varying the injection current going into the laser at fixed temperature. By sampling the detector's signal at a multiple of the modulation frequency, the resulting signal takes on the appearance of the spectrum's derivative. Typically, this is accomplished using a lock-in amplifier. To avoid the power burden of this

  8. Carbon dioxide laser vaporization of the inferior turbinate for allergic rhinitis: short-term results.

    PubMed

    Imamura, Shun-ichi; Honda, Hideyuki

    2003-12-01

    Carbon dioxide laser vaporization of the turbinate has recently become accepted as a common treatment for allergic rhinitis. Usually, only a single procedure is applied to minimize trauma. However, repeated procedures on separate days are often required to achieve an adequate effect. Therefore, we attempted a new method of vaporization and evaluated the outcome, and also tried to determine which patients have good indications for laser treatment. To widely and deeply vaporize the inferior turbinate, we repeated the procedure 3 times in 1 session after removing the carbon coating from the previous vaporization under nasal endoscopic observation. After the procedure, most patients experienced complete nasal obstruction for 2 or 3 days, but there was no intraoperative or postoperative bleeding or severe pain. All patients obtained improvement of their chief complaints and were satisfied 2 months after the operation. In particular, 60% of the patients were completely relieved of refractory nasal obstruction. Most patients were more satisfied with the effects than are those treated by the usual methods. Completely successful cases (improvement in all symptoms and complete satisfaction obtained) were selected and were compared with other cases. Favorable prognostic factors are more severe complaints, longer symptomatic periods, stronger allergic reactions, and worse nasal resistance and its greater improvement with administration of decongestant nasal drops. This method may be especially accepted by patients with severe complaints, in particular nasal obstruction, who do not experience enough relief with conservative therapies or have enough time to make frequent visits to an outpatient clinic over a period of several weeks. PMID:14703108

  9. Laser Based Instruments Using Differential Absorption Detection for Above and Below Ground Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Barr, J. L.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2008-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. A field experiment was conducted at the ZERT field site beginning July 9th, 2008 and ending August 7th, 2008 to test the performance of several CO2 detection instruments. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. A flow rate of 0.3 tons CO2/day was used for the entirety of this experiment. This paper describes the results from two laser based instruments that use differential absorption techniques to determine CO2 concentrations in real time both above and below the ground surface. Both instruments use a continuous wave (cw) temperature tunable distributed feedback (DFB) laser capable of tuning across several CO2 and water vapor absorption features between at 2003 nm and 2006 nm. The first instrument uses the DFB laser to measure path integrated atmospheric concentrations of CO2. The second instrument uses the temperature tunable DFB laser to monitor underground CO2 concentrations using a buried photonic bandgap optical fiber. The above ground instrument operated nearly continuously during the CO2 release experiment and an increase in atmospheric CO2 concentration above the release pipe of approximately 2.5 times higher than the background was observed. The underground instrument also operated continuously during the experiment and saw an increase in underground CO2 concentration of approximately 15 times higher than the background. These results from the 2008 ZERT field experiment demonstrate

  10. Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: Detection and protection

    SciTech Connect

    Sawchuk, W.S.; Weber, P.J.; Lowy, D.R.; Dzubow, L.M.

    1989-07-01

    Papillomavirus DNA has been reported recently in the vapor (smoke plume) derived from warts treated with carbon dioxide laser; this raises concerns for operator safety. We therefore have studied a group of human and bovine warts to define further the potential risk of wart therapy and to test whether a surgical mask could reduce exposure. Half of each wart was treated with carbon dioxide laser and the other half with electrocoagulation. The vapor produced by each form of therapy was collected with a dry filter vacuum apparatus and analyzed for the presence of papillomavirus. Vapor from human plantar warts was analyzed for the presence of human papillomavirus DNA, because there is no infectivity assay for human papillomavirus. Of plantar warts treated, five of eight laser-derived vapors and four of seven electrocoagulation-derived vapors were positive for human papillomavirus DNA. Greater amounts of papillomavirus DNA were usually recovered in the laser vapor than in the electrocoagulation vapor from the same wart. Bioassay readily detected infectious bovine papillomavirus in the vapor from bovine warts treated with either modality; more virus was present in laser-derived material. A surgical mask was found capable of removing virtually all laser- or electrocoagulation-derived virus, strongly suggesting that such masks can protect operators from potential inhalation exposure to papillomavirus.

  11. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  12. Application of Laser-Induced Bone Therapy by Carbon Dioxide Laser Irradiation in Implant Therapy

    PubMed Central

    Naka, Takahiro; Yokose, Satoshi

    2012-01-01

    This study evaluated the application of laser-induced bone therapy (LIBT) to reduce implant healing time in rat tibia. Twenty 10-week-old female Sprague-Dawlay rats were used. The rats received laser irradiation (laser group) or sham operation (control group) on either side of the tibia. Five days after invasion, titanium implants were inserted in proximal tibia. Five, 10, and 20 days after implant placement, tibiae were collected. After taking micro-CT and performing a torque test, the tibiae were decalcified and 8-μm-thick sections were prepared. Specimens were stained with hematoxylin and eosin. Results. Micro-CT images, removal torque values, and histomorphometric analysis data demonstrated a significantly accelerated bone formation in the laser group earlier in the healing process. Conclusion. The use of laser irradiation was effective in promoting bone formation and acquiring osseointegration of titanium implants inserted in rat tibia. LIBT may be suitable for use in implant therapy. PMID:22505900

  13. Fluid mixing technique increases the gain and output power of carbon dioxide laser systems

    NASA Technical Reports Server (NTRS)

    Cool, T. A.

    1970-01-01

    High speed flowing gas system provides uniform mixing in short times compared to flow transit times and carbon dioxide vibrational relaxation times. This system minimizes the effects of surrounding surfaces and provides a uniformly high gain that is independent of dimensions transverse to the flow direction.

  14. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  15. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  16. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K.; Lee, Inhee; Akbar, Sheikh A.

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  17. The role of vascular endothelial growth factor in fractional laser resurfacing with the carbon dioxide laser.

    PubMed

    Jiang, Xia; Ge, Hongmei; Zhou, Chuanqing; Chai, Xinyu; Ren, Qiu Shi

    2012-05-01

    The aim of this study was to analyze the role of vascular endothelial growth factor (VEGF) in mechanisms of cutaneous remodeling induced by fractional CO(2) laser treatment. The dorsal skin of Kunming mice was exposed to a single-pass fractional CO(2) laser treatment. Biopsies were taken 1 h, and 1, 3, 7, 14, 28 and 56 days after treatment. Skin samples VEGF expression was evaluated by immunohistochemistry and ELISA, fibroblasts by hematoxylin-eosin staining, and types I and III collagen by ELISA. Staining for VEGF was found in many types of cell including fibroblasts. The amount of VEGF in the skin of laser-treated areas had increased significantly compared to that in the control areas on days 1 and 3 (P < 0.05, P < 0.01, respectively), then decreased by day 7 after treatment and returned to the baseline level. The number of fibroblasts in the skin of the laser-treated areas had increased significantly compared to that in control areas on days 3, 7, 14, 28 and 56 after irradiation (P < 0.05, P < 0.01, P < 0.01, P < 0.01, P < 0.01, respectively). The amount of type I collagen was significantly higher in the skin of the laser-treated areas compared to that in control areas from day 28 to day 56 (P < 0.05, respectively), and type III collagen was significantly higher from day 3 to day 56 (P < 0.05, P < 0.05, P < 0.05, P < 0.05, P < 0.01, respectively). There was a positive correlation between the level of VEGF and fibroblast proliferation early stage after laser treatment (r = 0.853, P < 0.01), but there was no correlation after the first week (r = -0.124, P > 0.05). The amounts of type I and III collagen showed no significant correlations with the expression of VEGF in the late stages after laser treatment (r = 0.417, P > 0.05 and r = 0.340, P > 0.05, respectively). The results suggest that VEGF might be mainly involved in the early stages of wound healing, including the stages

  18. Performance Evaluation of a New, Tunable-Diode Laser Trace-Gas Analyzer for Isotope Ratios of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Sargent, S.

    2015-12-01

    Newly available interband cascade lasers (ICLs) have enabled the development of a family of tunable-diode laser trace-gas analyzers that do not require liquid nitrogen to cool the laser. The lasers are available in the 3000 to 6000 nm range, providing access to the strong mid-infrared absorption lines for important gases such as methane, nitrous oxide, and carbon dioxide. These ICLs are fabricated with distributed feedback to improve their stability and spectroscopic quality. A recently released trace-gas analyzer for carbon dioxide isotopes (TGA200A, Campbell Scientific, Inc.) was evaluated for short- and long-term precision using Allan variance. Accuracy and linearity of CO2 mole fraction was assessed with a set of seven NOAA standard reference gases ranging from 298.35 to 971.48 ppm. Dilution of high-concentration CO2 with CO2-free air demonstrated the linearity of isotope ratio measurements beyond 1000 ppm CO2. Two analyzer variants were tested: one for CO2, δ13C and δ18O; and the other for CO2 and δ13C at enhanced precision.

  19. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  20. Modeling of carbon monoxide oxidation kinetics over NASA carbon dioxide laser catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1989-01-01

    The recombination of CO and O2 formed by the dissociation of CO2 in a sealed CO2 laser discharge zone is examined. Conventional base-metal-oxide catalysts and conventional noble-metal catalysts are not effective in recombining the low O2/CO ratio at the low temperatures used by the lasers. The use of Pt/SnO2 as the noble-metal reducible-oxide (NMRO), or other related materials from Group VIIIA and IB and SnO2 interact synergistically to produce a catalytic activity that is substantially higher than either componet separately. The Pt/SnO2 and Pd/SnO2 were reported to have significant reaction rates at temperatures as low as -27 C, conditions under which conventional catalysts are inactive. The gas temperature range of lasers is 0 + or - 40 C. There are three general ways in which the NMRO composite materials can interact synergistically: one component altering the properties of another component; the two components each providing independent catalytic functions in a complex reaction mechanism; and the formation of catalytic sites through the combination of two components at the atomic level. All three of these interactions may be important in low temperature CO oxidation over NMRO catalysts. The effect of the noble metal on the oxide is discussed first, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  1. Correction method of bending loss in the hollow optical fiber for endoscopic submucosal dissection using carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Kusakari, Daisuke; Hazama, Hisanao; Awazu, Kunio

    2015-03-01

    Endoscopic submucosal dissection using carbon dioxide laser is a promising treatment of early digestive cancer because it can avoid the risk of perforation. Although a hollow optical fiber transmitting mid-infrared light has been used, it was observed that the irradiation effect was influenced by bending a gastrointestinal gastrointestinal endoscope due to the change in transmittance by the bending loss. Therefore, we quantitatively evaluated the change in the irradiation effect by bending the hollow optical fiber in the gastrointestinal endoscope and proposed a correction method to stabilize the irradiation effect. First, the relationship between the irradiated laser energy density and the incision depth for porcine stomach was measured by bending the head of the gastrointestinal endoscope. Next, the relationship between the bending angle of the head of the gastrointestinal endoscope and the temperature rise of the hollow optical fiber in the head of the gastrointestinal endoscope was measured during the laser irradiation. As a result, the laser energy density and the incision depth decreased as the bending angle increased, and linear correlation between the laser energy density and the incision depth was observed. It was found that the bending angle can be estimated by the ratio of the setting laser power to time derivative of the temporal profile of the temperature of the hollow optical fiber. In conclusion, it is suggested that the correction of the laser energy density and stabilization of the incision capability is possible by measuring the temporal profile of the temperature of the hollow optical fiber.

  2. Excellent Aesthetic and Functional Outcome After Fractionated Carbon Dioxide Laser Skin Graft Revision Surgery: Case Report and Review of Laser Skin Graft Revision Techniques.

    PubMed

    Ho, Derek; Jagdeo, Jared

    2015-11-01

    Skin grafts are utilized in dermatology to reconstruct a defect secondary to surgery or trauma of the skin. Common indications for skin grafts include surgical removal of cutaneous malignancies, replacement of tissue after burns or lacerations, and hair transplantation in alopecia. Skin grafts may be cosmetically displeasing, functionally limiting, and significantly impact patient's quality-of-life. There is limited published data regarding skin graft revision to enhance aesthetics and function. Here, we present a case demonstrating excellent aesthetic and functional outcome after fractionated carbon dioxide (CO2) laser skin graft revision surgery and review of the medical literature on laser skin graft revision techniques. PMID:26580878

  3. High-Performance Carbon Monoxide Oxidation Catalysts Engineered for Carbon Dioxide Lasers

    NASA Astrophysics Data System (ADS)

    Gardner, Steven Dwayne

    1990-01-01

    The low-temperature CO oxidation activity of numerous materials has been evaluated in order to develop efficient catalysts for use in CO_2 lasers. The materials were screened for activity in small, stoichiometric concentrations of CO and O_2 at temperatures near 55^circC. An Au/MnO_{rm x} catalyst was synthesized which exhibited exceptional CO oxidation activity while maintaining negligible performance decay over a period of at least 70 days. The data suggest that Au/MnO_{rm x} has potential applications in air purification and CO gas sensing as well. Extensive surface characterization data from Pt/SnO _{rm x} and Au/MnO _{rm x} catalysts are reported which relate surface composition and chemical state information to corresponding CO oxidation activity data. Ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES), angle-resolved Auger electron spectroscopy (ARAES) and X-ray photoelectron spectroscopy (XPS) were utilized to observe the behavior of these surfaces as a function of numerous pretreatments which alter their catalytic activity. The results suggest that Pt(OH)_2 and Pt/Sn alloy formation may play a key role in the CO oxidation mechanism on Pt/SnO_{ rm x} surfaces. A Pt_3 Sn alloy was subsequently characterized before and after H_2 reduction to study its surface characteristics. Surface characterization of Au/MnO_ {rm x} and MnO_{ rm x} was performed in order to elucidate the CO oxidation mechanism. The spectral data yield evidence that the enhanced CO oxidation activity of Au/MnO _{rm x} is related to Mn present primarily as Mn_3O _4 with substantial amounts of water or hydroxyl groups. The spectra are consistent with very small Au particles which may exist in an oxidized state. The behavior of Au/MnO_{rm x} and MnO_{rm x} toward an inert pretreatment suggests the possibility of a Au -MnO_{rm x} interaction.

  4. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  5. Recent progress in development of a laser based, ultra-high precision isotope monitor for carbon dioxide

    NASA Astrophysics Data System (ADS)

    Nelson, David; McManus, Barry; Herndon, Scott; Zahniser, Mark

    2015-04-01

    Greenhouse gas (GHG) emissions are the primary drivers of global climate change and hence there is a crucial need to quantify their sources and sinks. A general technique to help constrain source and sink strengths in GHG exchange processes is the analysis of the relative proportions of isotopic variants of GHG's. Very high precision measurements of isotopologue ratios are necessary in order to identify sources and sinks because the characteristic changes are small. The standard method of isotopologue measurement has been mass spectrometry, but this technique typically requires significant sample preparation and relatively high instrument maintenance. Laser spectroscopy has the potential to ease these burdens and also to allow easy separation of interfering isobars such as 13C-CO2 and 17O-CO2. We present recent results demonstrating ultra-high precision measurements of carbon dioxide isotope ratios which have the potential to rival the accuracy of mass spectrometric measurements. These measurements were performed using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). We have obtained isotopic measurement precisions of ~10 per meg for both 13C-CO2 and 18O-CO2 while measuring ambient air samples with continuous flow. We have also developed a method for analyzing air samples from canisters by alternately and rapidly trapping sample gas and reference gas in the optical cell. The ultimate goal is to create an automated, ultra-high accuracy carbon dioxide isotope monitor able to quantify small (~100 standard ml), discreet air samples. We will also discuss current instrument performance results and prospects for the measurement of the clumped isotopes of carbon dioxide in ambient air samples.

  6. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  7. Comparison of a CO2 (Carbon Dioxide) Laser and Tissue Glue with Conventional Surgical Techniques in Circumcision

    PubMed Central

    Mungnirandr, Akkrapol; Wiriyakamolphan, Suwanna; Ruangtrakool, Ravit; Ngerncham, Monawat; Tumrongsombutsakul, Sureerat; Leumcharoen, Bungorn

    2015-01-01

    Introduction: CO2 (Carbon Dioxide) laser application in circumcision, for cutting and coagulation, has been reported to have excellent results. Also, tissue glue has been reported to have advantages over sutures for approximation of wound edges. Most previous studies focused on comparisons between CO2 laser and scalpel, or between tissue glue and sutures. This study prospectively compared the results and complications CO2 laser and tissue glue, with standard surgical techniques in circumcision. Methods: Thirty boys were prospectively divided into two groups. Group 1 (n = 17) underwent circumcision by scalpel with approximation of the wound edges using chromic catgut sutures. Group 2 (n = 13) underwent circumcision with CO2 laser and approximation of the wound edges using tissue glue. Patient age, indications for surgery, operative time, wound swelling, bleeding, wound infection, local irritation, pain score, and cosmetic appearance were recorded. Results: Group 1 had a significantly longer operative time (P= 0.011), higher rate of local irritation (P= 0.016), and poorer cosmetic appearance (P< 0.001) than group 2. Bleeding only occurred in one patient in group 1. There were no significant differences in pain score, wound infection rate, or cost of surgery between the two groups. Conclusions: CO2 laser and tissue glue have advantages over standard surgical techniques in circumcision, with a significantly shorter operative time, lower rate of local irritation, and better cosmetic appearance. The cost of surgery is similar between the two groups. PMID:25699165

  8. Carbon dioxide adsorbent study

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B. S.

    1973-01-01

    A study was initiated on the feasibility of using the alkali metal carbonate - bi-carbonate solid-gas reaction to remove carbon dioxide from the atmosphere of an EVA life support system. The program successfully demonstrates that carbon dioxide concentrations could be maintained below 0.1 mole per cent using this chemistry. Further a practical method for distributing the carbonates in a coherent sheet form capable of repeated regeneration (50 cycles) at modest temperatures (423 K), without loss in activity was also demonstrated. Sufficiently high reaction rates were shown to be possible with the carbonate - bi-carbonate system such that EVA hardware could be readily designed. Experimental and design data were presented on the basis of which two practical units were designed. In addition to conventional thermally regenerative systems very compact units using ambient temperature cyclic vacuum regeneration may also be feasible. For a one man - 8 hour EVA unit regenerated thermally at the base ship a system volume of 14 liters is estimated.

  9. Surface and mineral changes of enamel with different remineralizing agents in conjunction with carbon-dioxide laser

    PubMed Central

    Mohan, Ajit George; Ebenezar, A. V. Rajesh; Ghani, Mohamed Fayas; Martina, Leena; Narayanan, Ashwin; Mony, Bejoy

    2014-01-01

    Aim: The aim of this study was to evaluate the surface/mineral changes on enamel before and after the application of acidulated phosphate fluoride (APF) gel, fluoride enhanced hydroxyapatite gel and propolis in conjunction with carbon-dioxide (CO2) laser. Materials and Methods: Crowns of 40 human maxillary central incisors were collected and were divided into four groups of 10 each: Topical fluoride application only, topical fluoride application followed by CO2 laser irradiation, CO2 laser irradiation followed by topical fluoride application and CO2 laser irradiation before and after topical fluoride application. The 10 crowns in each group was again sectioned into four equal parts of mesio-incisal, disto-incisal, mesio-cervical and disto-cervical sections rendering 40 samples in each group. Each group was again subdivided into four subgroups: Subgroup C - untreated enamel surface (control). Subgroup A - APF gel application, subgroup R - fluoride enhanced hydroxyapatite gel application and subgroup P - propolis application. The surface morphology of the test samples were analyzed by scanning electron microscopy and mineral changes by energy dispersion X-ray spectrophotometer. Results: Total mineral content is maximum in Group 4A (CO2 laser irradiation before and after APF gel application) and calcium/phosphate ratio is highest in Group 4R (CO2 laser irradiation before and after Remin-Pro application). Group 2A (APF gel application followed by CO2 laser irradiation) has the maximum fluoride retention. Conclusion: Laser irradiation of enamel through a topically applied APF gel is effective in the prophylaxis and management of dental caries. PMID:24966758

  10. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of some of the widely-varied terrain of the martian south polar residual cap. The landforms here are composed mainly of frozen carbon dioxide. Each year since MGS arrived in 1997, the scarps that bound each butte and mesa, or line the edges of each pit, in the south polar region, have changed a little bit as carbon dioxide is sublimed away. The scarps retreat at a rate of about 3 meters (3 yards) per martian year. Most of the change occurs during each southern summer.

    Location near: 86.7oS, 9.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  11. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  12. Frozen Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a south polar residual cap landscape, formed in frozen carbon dioxide. There is no place on Earth that one can go to visit a landscape covering thousands of square kilometers with frozen carbon dioxide, so mesas, pits, and other landforms of the martian south polar region are as alien as they are beautiful. The scarps of the south polar region are known from thousands of other MGS MOC images to retreat at a rate of about 3 meters (3 yards) per martian year, indiating that slowly, over the course of the MGS mission, the amount of carbon dioxide in the martian atmosphere has probably been increasing.

    Location near: 86.9oS, 25.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  13. Carbon Dioxide Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.

  14. The Effect of Carbon Dioxide (CO2) Laser on Sandblasting with Large Grit and Acid Etching (SLA) Surface

    PubMed Central

    Foroutan, Tahereh; Ayoubian, Nader

    2013-01-01

    Introduction: The purpose of this study was to investigate the effect of 6W power Carbon Dioxide Laser (CO2) on the biologic compatibility of the Sandblasting with large grit and acid etching (SLA) titanium discs through studying of the Sarcoma Osteogenic (SaOS-2) human osteoblast-like cells viability. Methods: Sterilized titanium discs were used together with SaOS-2 human osteoblast-like cells. 6 sterilized SLA titanium discs of the experimental group were exposed to irradiation by CO2 laser with a power of 6W and 10.600nm wavelength, at fixed frequency of 80Hz during 45 seconds in both pulse and non-contact settings. SaOS-2 human osteoblast-like cells were incubated under 37°C in humid atmosphere (95% weather, 5% CO2) for 72 hours. MTT test was performed to measure the ratio level of cellular proliferation. Results: The results indicated that at 570nm wavelength, the 6W CO2 laser power have not affected the cellular viability. Conclusion: CO2 laser in 6w power has had no effect on the biologic compatibility of the SLA titanium surface PMID:25606313

  15. Transendoscopic and freehand use of flexible hollow fibers for carbon dioxide laser surgery in the upper airway of the horse: a preliminary report

    NASA Astrophysics Data System (ADS)

    Palmer, Scott E.

    1991-05-01

    Hollow plastic fibers lined with metal and dielectric films that transmit carbon dioxide laser energy were evaluated for clinical use in upper airway surgery of the horse. These flexible waveguides were used both freehand and through the biopsy channel of an endoscope to incise, coagulate and vaporize tissues in the pharynx and larynx of 4 horses.

  16. The carbon dioxide laser: an alternative surgery technique for the treatment of common cutaneous tumors in dogs

    PubMed Central

    2014-01-01

    Background Tumors of the skin and subcutaneous tissue are the largest group of canine neoplasms. Total excision is still the most effective method for treatment of these skin tumors. For its universal properties the carbon dioxide (CO2) laser appears to be an excellent surgical instrument in veterinary surgery. Laser techniques are alternatives to traditional methods for the surgical management of tumors. The aim of this study was to compare various types of laser techniques in skin oncologic surgery: excision, ablation and mixed technique and to suggest which technique of CO2 laser procedure is the most useful in particular case of tumors in dogs. Findings The study was performed on 38 privately-owned dogs with total number of 40 skin tumors of different type removed by various CO2 laser operation techniques from 2010–2013. The treatment effect was based on the surgical wound evaluation, the relative time of healing and possible local recurrence of the tumor after 3 months post surgery. Local recurrence was observed in two cases. The study showed that in 30 cases time needed for complete resection of lesions was less than 10 minutes. Time of healing was longer than 12 days in 6 cases (42.8%) with tumor excision and in 14 cases (87.5%) where excision with ablation technique was performed. Conclusions The advantages of the CO2 laser surgery were better hemostasis, precision of working, non-contact dissection, less instruments at the site of operation and minimum traumatization of the surrounding tissues. PMID:24393628

  17. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE PAGESBeta

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. Lastly, we demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  18. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    PubMed Central

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Scott Zaccheo, T.; Pernini, Timothy G.

    2016-01-01

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement. PMID:27453761

  19. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE PAGESBeta

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  20. Recent Progress in Development of a Laser Based, Ultra-High Precision Isotope Monitor for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Nelson, D. D.; McManus, J. B.; Herndon, S. C.; Zahniser, M. S.

    2015-12-01

    Greenhouse gas (GHG) emissions are the primary drivers of global climate change and hence there is a crucial need to quantify their sources and sinks. A general technique to help constrain source and sink strengths in GHG exchange processes is the analysis of the relative proportions of isotopic variants of GHG's. Very high precision measurements of isotopologue ratios are necessary in order to identify sources and sinks because the characteristic changes are small. The standard method of isotopologue measurement has been mass spectrometry, but this technique typically requires significant sample preparation and relatively high instrument maintenance. Laser spectroscopy has the potential to ease these burdens and also to allow easy separation and analysis of interfering isobars such as 13C-CO2 and 17O-CO2. We present recent results demonstrating ultra-high precision measurements of carbon dioxide isotope ratios which rival the accuracy of mass spectrometric measurements. These measurements were performed using Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS). We have developed a method for analyzing air samples from canisters by alternately and rapidly trapping sample gas and working reference gas in the optical cell. Using this technique, we have obtained isotopic measurement precisions of ~7 per meg for both 13C-CO2 and 18O-CO2 while measuring trapped ambient air samples with volumes as small as 200 ml with a 16 minute measurement duration. The figure shows a histogram of 2 minute measurements. Our current measurement precision for 17O-CO2 is 30 per meg, but we expect to reduce this to 10 per meg by working in a better spectral region. Our ultimate goal is to create an automated, ultra-high accuracy carbon dioxide isotope monitor able to quantify 13C-, 18O-, and 17O-CO2at the 10 per meg level using small (~100 standard ml), discreet air samples. We will also discuss recent progress in the measurement of the clumped isotopes of carbon dioxide in

  1. Carbon dioxide laser ablation of dermatosis papulosa nigra: high satisfaction and few complications in patients with pigmented skin.

    PubMed

    Ali, Faisal R; Bakkour, Waseem; Ferguson, Janice E; Madan, Vishal

    2016-04-01

    Dermatosis papulosa nigra (DPN) is a common condition of pigmented skin. Whilst lesions are benign, they may be symptomatic or cosmetically disfiguring. Ablative lasers have previously been reported as a useful therapeutic modality in DPN. We report the largest case series to date of patients with DPN ablated with the carbon dioxide (CO2) laser. A retrospective case note review was conducted of all patients with DPN treated in our laser clinic in the last five years, and a post-treatment telephone survey was undertaken to assess patient satisfaction. Forty-five patients were identified, with a median age of 41 years (range 25-74 years), of whom 37 (82 %) were female. The median number of treatments undertaken was three (range 1-10). Of the 18 respondents to the telephone survey, when asked to grade their satisfaction with the procedure out of 10, median response was 9.5 (range 6-10) with nine patients citing the maximum score of 10. All patients replied that their confidence had improved following the procedure and that they would recommend the treatment to other patients. Five respondents (28 %) reported recurrence of a few lesions following CO2 laser ablation; the remaining 13 respondents (72 %) reported no recurrence of DPN. No respondents reported any other post-procedural complications (including scarring, hypopigmentation and hyperpigmentation). We advocate use of the CO2 laser as a safe, convenient means of treating DPN, with a high degree of patient satisfaction, low recurrence rate and few complications. PMID:26868030

  2. Comparison of vasovasostomy techniques in rats utilizing conventional microsurgical suture, carbon dioxide laser, and fibrin tissue adhesives.

    PubMed

    Ball, R A; Steinberg, J; Wilson, L A; Loughlin, K R

    1993-05-01

    An evaluation of vas reanastomoses in rats comparing suture only, carbon dioxide (CO2) laser-assisted, and fibrin-based tissue adhesive was performed in our laboratory. A cohort of 60 known fertile male Sprague Dawley rats initially underwent lower midline abdominal exploration and transection of their vas deferens bilaterally, followed by immediate microsurgical vasovasostomy by one of the three experimental methods. All groups initially had the severed vasa ends coapted by two or three transmural (mucosa through serosa) sutures of 10-0 nylon under an operating microscope. The conventionally sutured group had an additional four to six nylon 10-0 sutures placed externally in the serosa only to complete the anastomosis. The CO2 laser-assisted group underwent laser welding with denaturation of the serosa to seal the anastomosis. A fibrin-based tissue adhesive, produced by combining human cryoprecipitate and thrombin, was placed topically over the coapted vas ends to seal the anastomosis in the third group. Postoperative evaluation revealed similarities among the three surgical groups with the fibrin-based tissue adhesive group resulting in the highest patency rate (89%) and pregnancy rate (85%) as well as the lowest granulation rate (18%) and shortest operative time (27 minutes). The laser-assisted group resulted in the lowest pregnancy rate (68%), while the sewn anastomosis group had the lowest patency rate (76%). Both laser-assisted and conventionally sewn vasectomy reversals required significantly longer operative time (39 and 46 minutes, respectively) compared with the fibrin-based tissue adhesive-assisted procedures (p < 0.01). This study provides evidence that alternative microsurgical techniques may be utilized to perform uncomplicated, expeditious, and successful vasectomy reversals. PMID:8488619

  3. A novel method of carbon dioxide clumped isotope analysis with tunable infra-red laser direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Prokhorov, Ivan; Kluge, Tobias; Janssen, Christof

    2016-04-01

    Precise clumped isotopes analysis of carbon dioxide opens up new horizons of atmospheric and biogeochemical research. Recent advances in laser and spectroscopic techniques provides us necessary instrumentation to access extremely low sub-permill variations of multiply-substituted isotopologues. We present an advanced analysis method of carbon dioxide clumped isotopes using direct absorption spectroscopy. Our assessments predict the ultimate precision of the new method on the sub-permill level comparable to state of the art mass spectrometry. Among the most auspicious intrinsic properties of this method we highlight genuine Δ16O13C18O and Δ16O13C18O measurements without isobaric interference, measurement cycle duration of several minutes versus hours for mass spectrometric analysis, reduced sample size of ˜ 10 μmol and high flexibility, allowing us to perform in-situ measurements. The pilot version of the instrument is being developed in an international collaboration framework between Heidelberg University, Germany and Pierre and Marie Curie University, Paris, France. It employs two continuous interband quantum cascade lasers tuned at 4.439 μm and 4.329 μm to measure doubly ( 16O13C18O, 16O13C17O) and singly ( 16O12C16O, 16O13C16O, 16O12C17O, 16O12C18O) substituted isotopologues, respectively. Two identical Herriot cells are filled with dry pure CO2 sample and reference gas at working pressure of 1 ‑ 10 mbar. Cells provide optical path lengths of ˜ 17 m for the laser tuned at doubly substituted isotopologues lines and use a single pass for the laser tuned at the stronger lines of singly substituted isotopologues. Light outside of the gas cells is coupled into optical fiber to avoid absorption by ambient air CO2. Simulations predict sub-permill precision at working pressure of 1 mbar and room temperature stabilised at the ±10 mK level. Our prime target is to apply the proposed method for continuous in-situ analysis of CO2. We are foreseeing potential

  4. Simultaneous Measurements of Leaf and Soil Carbon Dioxide Flux Using a Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Hunt, J. E.; Barbour, M. M.

    2007-12-01

    A portable photosynthesis system (Li-6400, Li-Cor, NE) and a through-flow soil chamber were used to continuously measure the gas exchange of leaf and below ground components in pots containing corn, Triticale and a non-planted control. Temperature was kept constant through-out the experiment, and measurements were made at 4 min intervals over a full diurnal light cycle. A tunable diode laser (TGA100A, Campbell Scientific, UT) was used to measure the concentration and stable isotopic composition (δ13C and δ18O) of the air entering and exiting both chambers. End-member isotope values were determined by short-term incubation of component parts in Tedlar bags, and the evolved gas was measured with the laser. These data were used to determine the isotopic signature of CO2 derived from root respiration, microbial respiration of plant derived exudates and soil organic matter (SOM) to allow the partitioning of the total flux into component parts. The δ13C of SOM respiration was identical when measured with the soil chamber on the control pots and when using incubated samples from the same pots. However, incubation of the potting mix in the other treatments was more enriched (corn) and more depleted (Triticale) than the control, indicating that end-member determination of the original SOM was confounded by exudates from the plants. Using a mixing model to partition the soil respiration, and the δ13C of SOM from the control pots, corn roots contributed 25% and Triticale 72% of the below-ground respiration. Incubation of soil with the roots removed allowed non-root respiration to be partitioned into contributions from pre-existing SOM and more recent plant derived exudates for corn (23% recent carbon) and Triticale (36% recent carbon).

  5. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  6. Ex vivo investigations of laser auricular cartilage reshaping with carbon dioxide spray cooling in a rabbit model

    PubMed Central

    Wu, Edward C.; Sun, Victor; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Jia, Wangcun; Nelson, J. Stuart; Wong, Brian J. F.

    2014-01-01

    Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12–14 J/cm2 per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33–85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50–70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress. PMID:23307439

  7. Real Time in Flight Detection of Methane, Nitrous Oxide, Carbon Dioxide and Nitric Oxide Using a Chirped QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Duxbury, G.; Langford, N.

    2009-06-01

    Frequency down-chirped long pulse quantum cascade laser spectrometers have proved to be useful tools for measuring trace levels of atmospheric gases. In this contribution we show that a resolution of ca. 0.005 cm^{-1} may be achieved using a pulsed laser. We also demonstrate the sensitivity of these instruments via two examples of the use of these spectrometers for in flight measurements of trace concentrations. These comprise two series of low level flights in the small NERC Dornier aircraft over the South Wales peninsula in the UK. The recent results obtained in February 2009 using a three channel instrument designed by Cascade Technologies are compared with those made using our single channel instrument in 2007. One of the main changes made in the current instrument is the replacement of the fast liquid nitrogen cooled MCT detector used in the earlier flights by an even greater bandwidth, Peltier cooled, MCT detector, which has proved to give better detectivity as well as better resolution. It also eliminates the reliance on liquid nitrogen.The altitudes of the flights ranged from about 500 to 800 m. The gases detected in the original flights were methane, nitrous oxide and water.The wavelength micro-windows chosen for the flight in February 2009 were set to detect nitrous oxide, nitric oxide and carbon dioxide. K. G. Hay, S. Wright, G. Duxbury and N. Langford App. Phys. B, 329 2008.

  8. Promising Option for Treatment of Striae Alba: Fractionated Microneedle Radiofrequency in Combination with Fractional Carbon Dioxide Laser

    PubMed Central

    Fatemi Naeini, Farahnaz; Behfar, Shadi; Abtahi-Naeini, Bahareh; Keyvan, Shima; Pourazizi, Mohsen

    2016-01-01

    Background. A consistent treatment has not been proposed for treatment of Striae Alba (SA). The present study was designed to compare the fractionated microneedle radiofrequency (FMR) alone and in combination with fractional carbon dioxide laser (FMR + CO2) in the treatment of SA. Methods. Forty-eight pairs of SA from six patients were selected. Right or left SAs were randomly assigned to one of the treatment groups. The surface area of the SA before and after treatment and clinical improvement using a four-point scale were measured at the baseline, after one and three months. Results. The mean age of the patients was 30.17 ± 5.19 years. The mean difference of the surface area between pre- and posttreatment in the FMR + CO2 group was significantly higher than that in the FMR group (p = 0.003). Clinical improvement scales showed significantly higher improvement in the FMR + CO2 group than in the FMR group in the first and second follow-up (p = 0.002 and 0.004, resp.). There were no major persistence side-effects in both groups. Conclusions. The results showed that FMR + CO2 laser was more effective than FMR alone in the treatment of SA. PMID:27069471

  9. Use of a carbon dioxide laser for surgical management of cutaneous masses in horses: 65 cases (1993-2004)

    NASA Astrophysics Data System (ADS)

    Hawkins, Jan F.; McCauley, Charles T.

    2005-04-01

    The purpose of this study was to evaluate the outcome of horses treated for cutaneous masses with the carbon dioxide (CO2) laser. The records of 65 horses were examined. Surgery was performed under general anesthesia or standing under sedation and local anesthesia. Excision was performed freehand using a focused beam with power settings ranging from 10 to 32 Watts in a continuous mode. Following en bloc removal of masses the subcutaneous tissue and wound margins were photovaporized using a defocused beam. Follow-up information was obtained via telephone interview with owners or referring veterinarians Cutaneous masses were divided into three groups: sarcoid (29), neoplasia including squamous cell carcinoma (15), melanoma (6), schwanoma (2), fibroma (1), and fibrosarcoma (1), and non-neoplastic masses (11). Mass reoccurrence developed in 8 of 29 (28%) sarcoids and 4 of 14 (29%) squamous cell carcinoma. No reoccurrence was reported for horses diagnosed with melanoma, schwanoma, fibrosarcoma, fibroma, or any of the non-neoplastic masses. Sixty of 63 owners (95%) reported that they were satisfied with the outcome of the procedure. This study demonstrates that the CO2 laser is an effective means of treating cutaneous masses in horses.

  10. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  11. Carbon dioxide/dewpoint monitor

    NASA Technical Reports Server (NTRS)

    Luczkowski, S.

    1977-01-01

    The portable Carbon Dioxide/Dewpoint Monitor was designed to permit measurements of carbon dioxide partial pressure and dewpoint and ambient gas temperature at any place within the Saturn Workshop. It required no vehicle interface other than storage. All components necessary for operation, including battery power source, were incorporated in the instrument.

  12. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario

    2015-01-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  13. Development and Preliminary Tests of an Open-Path Airborne Diode Laser Absorption Instrument for Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Diskin, G. S.; DiGangi, J. P.; Yang, M. M.; Rana, M.; Slate, T. A.

    2015-12-01

    Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight intercomparison data have been obtained and will be discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.

  14. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of the south polar residual cap at full MOC resolution, 1.5 m (5 ft) per pixel. During each of the three summers since the start of the MGS mapping mission in March 1999, the scarps that form mesas and pits in the 'Swiss cheese'-like south polar terrain have retreated an average of about 3 meters (1 yard). The material is frozen carbon dioxide; another 3 meters or so of each scarp is expected to be removed during the next summer, in late 2005. This image is located near 86.0oS, 350.8oW, and covers an area about 1.5 km (0.9 mi) wide. Sunlight illuminates the scene from the top/upper left.

  15. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. PMID:26081307

  16. Carbon dioxide: atmospheric overload

    SciTech Connect

    Not Available

    1980-04-01

    The level of carbon dioxide in the atmosphere is increasing and may double within the next century. The result of this phenomenon, climatic alterations, will adversely affect crop production, water supplies, and global temperatures. Sources of CO2 include the combustion of fossil fuels, photosynthesis, and the decay of organic matter in soils. The most serious effect of possible climatic changes could occur along the boundaries of arid and semiarid regions. Shifts is precipitation patterns could accelerate the processes of desertification. An increase of 5..cap alpha..C in the average temperature of the top 1000 m of ocean water would raise sea level by 2 m. CO2 releases to the atmosphere can be reduced by controlling emissions from fossil fuel-fired facilities and by careful harvesting of forest regions. (3 photos, 5 references)

  17. Low-output carbon dioxide laser for cutaneous wound closure of scalpel incisions: comparative tensile strength studies of the laser to the suture and staple for wound closure

    SciTech Connect

    Garden, J.M.; Robinson, J.K.; Taute, P.M.; Lautenschlager, E.P.; Leibovich, S.J.; Hartz, R.S.

    1986-01-01

    The low-output carbon dioxide (CO/sub 2/) laser was used for cutaneous wound closure of scalpel incisions. Cutaneous scalpel incisions were placed over the dorsum of three minipigs and were then closed by either the laser, sutures, or staples. At multiple time points after wound closure, up to day 90, the tensile strengths of these wounds were comparatively evaluated. All wounds, including those closed with the laser, clinically appeared to heal similarly with no evidence of wound dehiscence or infection. Tensile strength studies revealed similar sigmoid curves for all wound closure modalities with low initial tensile strengths up to days 14 to 21, which afterwards increased rapidly, with a plateau toward day 90. From our study, it appears that the CO/sub 2/ laser, in the low-output mode, can be used for cutaneous wound closure and that similar clinical healing and tensile strength measurements are obtained relative to the conventional cutaneous wound closure modalities of the suture or staple.

  18. In Vivo Laser Cartilage Reshaping with Carbon Dioxide Spray Cooling in a Rabbit Ear Model: A Pilot Study

    PubMed Central

    Kuan, Edward C.; Hamamoto, Ashley A.; Sun, Victor; Nguyen, Tony; Manuel, Cyrus T.; Protsenko, Dmitry E.; Wong, Brian J.F.; Nelson, J. Stuart; Jia, Wangcun

    2014-01-01

    BACKGROUND/OBJECTIVES Similar to conventional cryogen spray cooling, carbon dioxide (CO2) spray may be used in combination with laser cartilage reshaping (LCR) to produce cartilage shape change while minimizing cutaneous thermal injury. Recent ex vivo evaluation of LCR with CO2 cooling in a rabbit model has identified a promising initial parameter space for in vivo safety and efficacy evaluation. This pilot study aimed to evaluate shape change and cutaneous injury following LCR with CO2 cooling in 5 live rabbits. STUDY DESIGN/MATERIALS AND METHODS The midportion of live rabbit ears were irradiated with a 1.45 μm wavelength diode laser (12 J/cm2) with simultaneous CO2 spray cooling (85 ms duration, 4 alternating heating/cooling cycles per site, 5 to 6 irradiation sites per row for 3 rows per ear). Experimental and control ears (no LCR) were splinted in the flexed position for 30 days following exposure. A total of 5 ears each were allocated to the experimental and control groups. RESULTS Shape change was observed in all irradiated ears (mean 70 ± 3°), which was statistically different from control (mean 37 ± 11 °, p = 0.009). No significant thermal cutaneous injury was observed, with preservation of the full thickness of skin, microvasculature, and adnexal structures. Confocal microscopy and histology demonstrated an intact and viable chondrocyte population surrounding irradiated sites. CONCLUSIONS LCR with CO2 spray cooling can produce clinically significant shape change in the rabbit auricle while minimizing thermal cutaneous and cartilaginous injury and frostbite. This pilot study lends support for the potential use of CO2 spray as an adjunct to existing thermal-based cartilage reshaping modalities. An in vivo systematic evaluation of optimal laser dosimetry and cooling parameters is required. PMID:25557008

  19. Dissociation and regeneration kinetics of carbon dioxide in the active medium of sealed-off transverse RF-excited CO{sub 2} lasers

    SciTech Connect

    Vesnov, I G

    2010-06-23

    An improved mathematical model describing the dissociation and regenerations kinetics of carbon dioxide in the active medium of sealed-off transverse RF-excited CO{sub 2} lasers is presented. It is shown that the calculation of the active medium composition of such lasers requires the equations of the gas-mixture kinetics to take into account the diffuse flow of oxygen atoms on metal electrodes and on the surface of heterogeneous catalysts used to reduce the degree of the carbon dioxide dissociation. The rate constants of the heterogeneous recombination reaction CO + O {yields} CO{sub 2} on the surface of alumina ceramics and Al{sub 2}O{sub 3} are determined. (active media)

  20. The formation of carbonic and silicon dioxide structured films through the decomposition of molecules on the surface of ionic crystals under the action of IR femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Kompanets, V. O.; Laptev, V. B.; Pigul’skii, S. V.; Ryabov, E. A.; Chekalin, S. V.; Blank, V. D.; Denisov, V. N.; Kravchuk, K. S.; Kulnitskiy, B. A.; Perezhogin, I. A.

    2016-06-01

    This study relates to the formation of carbon and silicon dioxide films that occurs as a result of the decomposition of organic and silicon-containing molecules on the surface of ionic crystals under IR femtosecond laser radiation of moderate intensity (~1011 W cm‑2) without molecular decomposition in the gas phase. We found that transparent graphite oxide films formed in the case of CO2 molecule decomposition.

  1. Carbon dioxide laser ablation with immediate autografting in a full-thickness porcine burn model.

    PubMed Central

    Glatter, R D; Goldberg, J S; Schomacker, K T; Compton, C C; Flotte, T J; Bua, D P; Greaves, K W; Nishioka, N S; Sheridan, R L

    1998-01-01

    OBJECTIVE: To compare the long-term clinical and histologic outcome of immediate autografting of full-thickness burn wounds ablated with a high-power continuous-wave CO2 laser to sharply débrided wounds in a porcine model. SUMMARY BACKGROUND DATA: Continuous-wave CO2 lasers have performed poorly as tools for burn excision because the large amount of thermal damage to viable subeschar tissues precluded successful autografting. However, a new technique, in which a high-power laser is rapidly scanned over the eschar, results in eschar vaporization without significant damage to underlying viable tissues, allowing successful immediate autografting. METHODS: Full-thickness paravertebral burn wounds measuring 36 cm2 were created on 11 farm swine. Wounds were ablated to adipose tissue 48 hours later using either a surgical blade or a 150-Watt continuous-wave CO2 laser deflected by an x-y galvanometric scanner that translated the beam over the tissue surface, removing 200 microm of tissue per scan. Both sites were immediately autografted and serially evaluated clinically and histologically for 180 days. RESULTS: The laser-treated sites were nearly bloodless. The mean residual thermal damage was 0.18+/-0.05 mm. The mean graft take was 96+/-11% in manual sites and 93+/-8% in laser sites. On postoperative day 7, the thickness of granulation tissue at the graft-wound bed interface was greater in laser-debrided sites. By postoperative day 180, the manual and laser sites were histologically identical. Vancouver scar assessment revealed no differences in scarring at postoperative day 180. CONCLUSIONS: Long-term scarring, based on Vancouver scar assessments and histologic evaluation, was equivalent at 6 months in laser-ablated and sharply excised sites. Should this technology become practical, the potential clinical implications include a reduction in surgical blood loss without sacrifice of immediate engraftment rates or long-term outcome. Images Figure 1. Figure 2. Figure 3

  2. New technique for feline carbon dioxide laser onychectomy by resection of the redundant epidermis of the ungual crest

    NASA Astrophysics Data System (ADS)

    Young, William P.

    2000-05-01

    A new technique for feline carbon dioxide laser onychectomy can further minimize postoperative pain and complications in any age animal. This procedure is accomplished by resection of the redundant epidermis over the ungual crest. Resection of the redundant epidermis allows complete dissection and removal of the claw from a strictly cranio-dorsal approach, thereby minimizing trauma to the surrounding tissues and post- operative complications. The laser setting is preferred at four to six watts continuous power. The epidermis of the ungual crest is resected in a circumferential manner at its most distal edge. This tissue is pushed proximally over the ungual crest. A second circumferential incision is made 3 mm proximal to the first incision. Deeper subcutaneous fascia is also pushed proximally over the ungual crest. An incision of the extensor tendon is made at its insertion on the ungual crest keeping the redundant epidermis proximal to this incision. The incision through the extensor tendon is continued deeper to the synovium of PII and PIII. Gentle traction in a palmar direction will disarticulate the joint space between PII and PIII. Incisions into the lateral and medial collateral ligaments from a cranio-dorsal origin in palmar direction further disarticulate the joint. Care must be exercised to preserve all epidermal tissue lying immediately adjacent to the collateral ligaments. Continual palmar traction will expose the base of PIII and the insertion of the flexor tendon. A dorsal incision is made into the flexor tendon in a palmar direction. Extreme palmar rotation of PIII will allow the dissection of the subcutaneous tissue of the pad from PIII. The redundant epidermal tissue will now cover the majority of the onychectomy site. No sutures or tissue adhesive are advised.

  3. Spectrophone stabilization and offset tuning of a carbon dioxide waveguide laser

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Menzies, R. T.; Oppenheim, U. P.

    1983-01-01

    A sensitive spectrophone containing CO2 gas is incorporated into a feedback loop to stabilize the frequency of a CO2 waveguide laser. First or second harmonic detection combined with a zero offset feature and the relatively high operating pressure of the laser allows continuous tuning of the stabilized frequency over a 400 MHz range. Frequency stability of better than + or - 1 MHz is achieved.

  4. 1579 NM Fiber Laser Source for Spaceborne Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Cézard, Nicolas; Lombard, Laurent; Le Gouët, Julien; Goular, Didier; Bresson, Alexandre; Dolfi-Bouteyre, Agnès; Canat, Guillaume

    2016-06-01

    We report on the development of a 1579 nm pulsed fiber laser source with high peak-power, intended to be used as a lidar source for CO2 monitoring from space. We first discuss water-vapor sensitivity of spaceborne CO2 measurements by lidar and point the interest of the 1579 nm wavelength with that respect. Then we detail the current development status of the pulsed fiber laser source.

  5. Reducing carbon dioxide to products

    SciTech Connect

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  6. Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements.

    PubMed

    Menzies, Robert T; Tratt, David M

    2003-11-20

    We discuss the spectroscopic requirements for a laser absorption spectrometer (LAS) approach to high-precision carbon dioxide (CO2) measurements in the troposphere. Global-scale, high-precision CO2 measurements are highly desirable in an effort to improve understanding and quantification of the CO2 sources and sinks and their impact on global climate. We present differential absorption sounding characteristics for selected LAS transmitter laser wavelengths, emphasizing the effects of atmospheric temperature profile uncertainties. Candidate wavelengths for lower-troposphere measurements are identified in the CO2 bands centered near 1.57, 1.60, and 2.06 microm. PMID:14658457

  7. Recuperative supercritical carbon dioxide cycle

    SciTech Connect

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  8. a Study of Small Solid-State Switched Tea Carbon Dioxide Lasers

    NASA Astrophysics Data System (ADS)

    Sylvan, Alan

    Available from UMI in association with The British Library. This thesis records the results of a theoretical and experimental investigation into the use of all solid -state exciters with small corona preionised TEA CO _2 lasers. To overcome the limitations of existing semiconductor devices energy pulse compression techniques were utilised. High energy efficiency at low repetition rates was provided by the use of unreset ferrite magnetic cores in a magnetic pulse compressor. A high repetition rate laser system was also produced and operated at 1kHz producing 18 W of optical power. In order to further improve energy efficiency a number of different laser exciter topologies were evaluated. The successful operation of a thyristor stack driven laser enabled a comparative study with a conventional hydrogen thyratron drive circuit to be undertaken. It was found that all solid-state exciters could be as energy efficient as conventional drive techniques. The desire to minimise the amount of pulse energy switched by semiconductor elements lead to an examination of photoswitching methods in which the laser head acts as its own switch. Finally, long optical pulse generation was achieved by the use of pulser sustainer techniques which enabled optical pulses over 20 mus long to be produced.

  9. Transoral carbon dioxide laser sialolithectomy with topical anaesthesia. A simple, effective, and minimally invasive method.

    PubMed

    Yang, S-W; Chen, T-A

    2011-02-01

    Sialolithiasis frequently causes a variable degree of inflammation of the submandibular gland and stone removal can be a critical issue when incursion is deep, causing neck infection or abscess formation. The authors present their 6-year experience of performing sialolithectomy with CO(2) laser. Nineteen patients with stones in Wharton's duct were treated with CO(2) laser. Topical anaesthesia was applied by maintaining the patient in an upright position after spraying 10% lidocaine onto the oral cavity. The laser was set up in continuous mode at 4-6 W with a focusing spot. Locating the stone was accomplished by manual palpation or lacrimal probe insertion with or without the aid of radiological images. The success rate was 95%; only one procedure was unsuccessful, necessitating stone removal under general anaesthesia. Mean stone size was 0.37 cm. Only one patient developed ranula after laser surgery. The results suggest that transoral CO(2) laser sialolithectomy is simple and safe, with a low incidence of complications, and can be readily managed on an out-patient basis. This technique can be chosen for first-line treatment of sialolithiasis in cases where the stone is above the hilum of Wharton's duct. PMID:21050722

  10. Carbon dioxide laser tissue welding: an alternative technique for tubal anastomosis?

    PubMed

    Wallwiener, D; Meyer, A; Bastert, G

    1997-01-01

    Microsurgical tubal anastomosis is the gold standard for treatment of tubal occlusion. The present study was performed to establish the feasibility of tubal anastomosis by welding tissue with a defocused CO2-laser beam during laparotomy and with an endoscope. In an animal experiment, 70 white New Zealand rabbits were randomized in 2 study groups (E1, E2) and 3 control groups (C1, C2, C3) as follows: C1, 10 animals, no operation, as controls for the efficiency of the insemination technique; C2, 5 animals, spontaneous healing after tubal segment resection, to quantify spontaneous recanalization of the tube; C3, 15 animals, microsurgical end-to-end adaption after tubal segment resection; E1, 20 animals, laser welded anastomosis after segment resection via laparotomy; E2, 20 animals, laparoscopic laser welded anastomosis after segment resection. The pregnancy rate in C1 was 80%. None of the animals in C2 but 60% of the rabbits in C3 conceived. After sutureless anastomosis by laser welding 50% of the laparotomized, and 40% of the laparoscopically operated group became pregnant. Morphological examination of the oviducts after relaparotomy showed comparable patency rates of 70% in C3, 70% in E1, and 65% in E2. Whereas no dehiscence of anastomoses was observed in C3, 20% of the welded tubes in E1 and 22.5% in E2 were dehiscent. Tubal anastomosis took approximately three times as long laparoscopically as during laparotomy. Thus, laser welding as a sutureless alternative technique of tubal anastomosis should be viewed critically. A reduction of sutures through laser-assisted anastomosis might, however, be considered. PMID:9612164

  11. Comparative bactericidal exposures for selected oral bacteria using carbon dioxide laser radiation

    SciTech Connect

    Dederich, D.N.; Pickard, M.A.; Vaughn, A.S.; Tulip, J.; Zakariasen, K.L. )

    1990-01-01

    Although relatively high CO{sub 2} laser energies have been shown to sterilize root canals, the response of several bacterial strains to decreasing exposures of CO{sub 2} laser energy remains unknown. Freshly grown bacterial cells were irradiated on glass microscope coverslips. A comparison of equivalent energy exposures with differing parameters was made on the bacterial viability. No statistically significant difference was found in the energy required to kill closely related bacterial species. However, the energy density required to kill greater than 99.5% of the bacteria is less than 200 J/cm{sup 2}, much less than that shown to sterilize in a previous study.

  12. Infrared image construction with computer-generated reflection holograms. [using carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.; Rugh, R. W.; Gallagher, N. C.

    1977-01-01

    Computer-generated reflection holograms hold substantial promise as a means of carrying out complex machining, marking, scribing, welding, soldering, heat treating, and similar processing operations simultaneously and without moving the work piece or laser beam. In the study described, a photographically reduced transparency of a 64 x 64 element Lohmann hologram was used to make a mask which, in turn, was used (with conventional photoresist techniques) to produce a holographic reflector. Images from a commercial CO2 laser (150W TEM(00)) and the holographic reflector are illustrated and discussed.

  13. The Tea-Carbon Dioxide Laser as a Means of Generating Ultrasound in Solids

    NASA Astrophysics Data System (ADS)

    Taylor, Gregory Stuart

    1990-01-01

    Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to characterise the interaction between pulsed, high power, 10.6 mu m radiation and solids. The work is considered both in the general context of laser generation of ultrasound and specifically to gain a deeper understanding of the interaction between a laser supported plasma and a solid. The predominant experimental tools used are the homodyne Michelson interferometer and a range of electromagnetic acoustic transducers. To complement the ultrasonic data, various plasma inspection techniques, such as high speed, streak camera photography and reflection photometry, have been used to correlate the plasma properties with those of the ultrasonic transients. The work involving the characterisation of a laser supported plasma with a solid, which is based on previous experimental and theoretical analysis, gives an increased understanding of the plasma's ultrasonic generation mechanism. The ability to record the entire plasma-sample interaction, time history yields information of the internal dynamics of the plasma growth and shock wave generation. The interaction of the radiation with a solid is characterised in both the plasma breakdown and non-breakdown regimes by a wide ultrasonic source. The variation in source diameter enables the transition from a point to a near planar ultrasonic source to be studied. The resultant ultrasonic modifications are examined in terms of the wave structure and the directivity pattern. The wave structure is analysed in terms of existing wide source, bulk wave theories and extended to consider the effects on surface and Lamb waves. The directivity patterns of the longitudinal and shear waves are analysed in terms of top-hat and non -uniform source profiles, giving additional information into the radiation-solid interaction. The wide, one dimensional source analysis is continued to a two dimensional, extended ultrasonic source

  14. Infrared Pulse-laser Long-path Absorption Measurement of Carbon Dioxide Using a Raman-shifted Dye Laser

    NASA Technical Reports Server (NTRS)

    Minato, Atsushi; Sugimoto, Nobuo; Sasano, Yasuhiro

    1992-01-01

    A pulsed laser source is effective in infrared laser long-path absorption measurements when the optical path length is very long or the reflection from a hard target is utilized, because higher signal-to-noise ratio is obtained in the detection of weak return signals. We have investigated the performance of a pulse-laser long-path absorption system using a hydrogen Raman shifter and a tunable dye laser pumped by a Nd:YAG laser, which generates second Stokes radiation in the 2-micron region.

  15. Three-body fragmentation dynamics of carbon-dioxide dimers induced by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fan, Yameng; Wu, Chengyin; Xie, Xiguo; Wang, Peng; Zhong, Xunqi; Shao, Yun; Sun, Xufei; Liu, Yunquan; Gong, Qihuang

    2016-06-01

    We experimentally studied three-body fragmentation dynamics of (CO2)23+ generated by intense femtosecond laser fields. Three-dimensional momentum vectors as well as kinetic energies were measured for correlated fragmental ions using the technology of coincidence measurement. The results demonstrate that sequential fragmentation channel dominates for three-body fragmentation of (CO2)23+, in which the weak van der Waals bond breaks first and then one strong covalent bond.

  16. [Carcinoma in situ of the penis rapidly progressing after carbon dioxide laser treatment].

    PubMed

    Tsukamoto, Tetsuro; Yonese, Junji; Kin, Taisei; Samejima, Takeshi; Hasegawa, Yuichi; Fukui, Iwao; Ishikawa, Yuichi

    2002-03-01

    Laser treatment is considered to be effective in treating carcinoma in situ of the penis. We, however, report a case with carcinoma in situ of the penis which developed invasive carcinoma and inguinal lymphnode metastases only 6 months after the laser treatment. A 74-year-old man with pseudophimosis presented with redness of the glans penis. A physical examination revealed thick erythema, 12 millimeters in diameter, around the external urethral meatus. Histologically, biopsy revealed squamous cell carcinoma in situ. No metastasis was suspected by physical examination and imaging studies. Although the lesion appeared to slightly extend into the urethra, it was primarily treated with the CO2 laser. Six months after the treatment, however, local recurrence was confirmed by the touch smear cytology, resulting in the partial amputation of the penis. The histopathological examination revealed subepithelial and marked lymphatic invasion of the tumor and positive margin in the urethral stump (squamous cell carcinoma in situ). Further, since bilateral superficial inguinal lymphnode swelling appeared, total amputation of the penis with perineal urethrotomy and pelvic/inguinal lymphnode dissection was performed subsequently. The metastases to bilateral inguinal lymphnodes were confirmed histologically. The patient received adjuvant chemotherapy and has been alive and well without evidence of disease 40 months after the initial treatment. PMID:11968805

  17. Photodynamic Therapy with Ablative Carbon Dioxide Fractional Laser for Treating Bowen Disease

    PubMed Central

    Kim, Sue Kyung; Park, Ji-Youn; Song, Hyo Sang; Kim, You-Sun

    2013-01-01

    Background Topical photodynamic therapy (PDT) has been increasingly used to treat malignant skin tumors including the Bowen disease. However, patients could be displeased with the long incubation time required for conventional PDT. Objective We evaluated the efficacy and safety of PDT with a short incubation time of ablative CO2 fractional laser pretreatment for treating Bowen disease. Methods Ten patients were included. Just before applying the topical photosensitizer, all lesions were treated with ablative CO2 fractional laser, following the application of methyl aminolevulinate and irradiation with red light (Aktilite CL 128). Histological confirmation, rebiopsy, and clinical assessments were performed. Adverse events were also recorded. Results Five of the ten (50%) lesions showed a complete response (CR) within three PDT sessions. After four treatment sessions, all lesions except one penile shaft lesion (90%) achieved clinical and histological CR or clinical CR only. The average number of treatments to CR was 3.70±1.70. The treatments showed favorable cosmetic outcomes and no serious adverse events. Conclusion The results suggest that pretreatment with an ablative fractional CO2 laser before PDT has similar treatment efficacy and requires a shorter photosensitizer incubation time compared with the conventional PDT method. PMID:24003277

  18. Nanosecond Carbon-Dioxide Laser Interaction with a Dense Helium Z-Pinch Plasma.

    NASA Astrophysics Data System (ADS)

    Voss, David Frederick

    A short pulse CO(,2) laser system was constructed to investigate the interaction of intense electromagnetic radiation with dense plasma. The laser was focused perpendicular to the axis of a linear helium Z-pinch plasma and properties of the transmitted beam were monitored. Transmitted beam intensity and spatial distribution were measured as functions of incident intensity and interaction time. The short pulse laser system consisted of a single -mode oscillator, pulse switch, amplifiers, and focusing optics. The oscillator was a transversely-excited atmospheric pressure (TEA) discharge module having an intracavity CW gain tube for single-mode operation. The pulse selector was a germanium semiconductor reflection switch controlled by a pulse-transmission model (PTM) ruby laser. Switched 10.6 micron pulses were preamplified in a triple-pass double -discharge TEA module and boosted to maximum power in a commercial large aperture amplifier. The laser beam from the final amplifier was focused onto the plasma by a modified Newtonian telescope. The system was capable of producing 4 nanosecond (full width at half maximum) pulses containing up to 2.7 joules. The focused intensity on target is greater than 10('12) W/cm('2) in a 125 micron diameter focal spot. The plasma was a pulsed linear Z-pinch having a peak density of 4 x 10('19)/cm('3) in a 3 mm column at a temperature of 20 eV. The plasma density is known from holographic interferometry, and the temperature was inferred from visible wavelength spectroscopy and x-ray diagnostics. Depending on the time of laser incidence, the highly collisional plasma provided either an overdense or an underdense target. Previous work with 40 nanosecond pulses revealed penetration of the critical region of the plasma. The transmitted pulse was strongly modified, and the transmitted spatial distribution was characteristic of diffraction through a hard, circular aperture. No penetration was observed with the 4 nanosecond pulses incident on

  19. Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned Carbon Dioxide Laser

    SciTech Connect

    Bass, I L; Draggoo, V; Guss, G M; Hackel, R P; Norton, M A

    2006-04-06

    Economic operation of the National Ignition Facility at the Lawrence Livermore National Laboratory depends on controlling growth of laser damage in the large, high cost optics exposed to UV light at 351 nm. Mitigation of the growth of damage sites on fused silica surfaces greater than several hundred microns in diameter has been previously reported by us using galvanometer scanning of a tightly focused 10.6 {micro}m CO{sub 2} laser spot over an area encompassing the laser damage. Further investigation revealed that fused silica vapor re-deposited on the surface as ''debris'' led to laser damage at unexpectedly low fluences when exposed to multiple laser shots at 351 nm. Additionally, laser power and spatial mode fluctuations in the mitigation laser led to poor repeatability of the process. We also found that the shape of the mitigation pit could produce downstream intensification that could damage other NIF optics. Modifications were made to both the laser system and the mitigation process in order to address these issues. Debris was completely eliminated by these changes, but repeatability and downstream intensification issues still persist.

  20. In vivo study of necrosis on the liver tissue of Wistar rats: a combination of photodynamic therapy and carbon dioxide laser ablation

    NASA Astrophysics Data System (ADS)

    Rego, R. F.; Nicolodelli, G.; Araujo, M. T.; Tirapelli, L. F.; Araujo-Moreira, F. M.; Bagnato, V. S.

    2013-07-01

    Photodynamic therapy (PDT) is known to be limited to applications in large volume tumors due to its limited penetration. Therefore, a combination of PDT and carbon dioxide (CO2) laser ablation may constitute a potential protocol to destroy bulk tumors because it involves an association of these two techniques allowing the removal of visible lesions with a high selectivity of destruction of remnant tumors. The main aim of this study is to investigate the most appropriate procedure to combine use of a CO2 laser and PDT on livers of healthy rats, and to analyze different techniques of this treatment using three types of photosensitizers (PSs). Forty eight animals were separated to form six groups: (1) only CO2 laser ablation, (2) drug and CO2 laser ablation, (3) only PDT, (4) drug and light (PDT) followed by CO2 laser ablation, (5) ablated with CO2 laser followed by PDT, and (6) drug followed by CO2 laser ablation and light. For each group, three types of photosensitization were used: topical 5-aminolevulinic acid (ALA), intravenous ALA and intravenous Photogem®. Thirty hours after the treatments, the animals were sacrificed and the livers removed. The depth of necrosis was analyzed and measured, considering microscopic and macroscopic aspects. The results show that the effects of the PDT were considerably enhanced when combined with CO2 laser ablation, especially when the PDT was performed before the CO2 laser ablation.

  1. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  2. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was

  3. Carbon Dioxide - Our Common "Enemy"

    NASA Technical Reports Server (NTRS)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  4. Solid-State 2-Micron Laser Transmitter Advancement for Wind and Carbon Dioxide Measurements From Ground, Airborne, and Space-Based Lidar Systems

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed

    2008-01-01

    NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.

  5. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  6. Recent progress in development of infrared laser based instruments for real-time ambient measurements of isotopologues of carbon dioxide, water, methane, nitrous oxide and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Nelson, David; McManus, Barry; Shorter, Joanne; Zahniser, Mark; Ono, Shuhei

    2014-05-01

    The capacity for real time precise in situ measurements of isotopic ratios of a variety of trace gases at ambient concentrations continues to create new opportunities for the study of the exchanges and fluxes of gases in the environment. Aerodyne Research has made rapid progress in laser based instruments since our introduction in 2007 of the first truly field worthy instrument for real time measurements of isotopologues of carbon dioxide. We have focused on two instrument design platforms, with either one or two lasers. Absorption cells with more than 200 meters path length allow precise measurements of trace gases with low ambient concentrations. Most of our systems employ mid infrared quantum cascade lasers. However, recently available 3 micron antimonide based diode lasers are also proving useful for isotopic measurements. By substituting different lasers and detectors, we can simultaneously measure the isotopic composition of a variety of gases, including: H2O, CO2, CH4, N2O and CO. Our newest instrument for true simultaneous measurement of isotopologues of CO2 (12CO2, 13CO2, 12C18O16O) has (1 s) precision better than 0.1 per mil for both ratios. The availability of 10 Hz measurements allows measurement of isotopic fluxes via eddy correlation. The single laser instrument fits in a 19 inch rack and is only 25 cm tall. A two laser instrument is larger, but with that instrument we can also measure clumped isotopes of CO2, with 1 second precisions of: 2.3 per mil for 13C18O16O, and 6.7 per mil for 13C17O16O. The sample size for such a measurement corresponds to 0.2 micromole of pure CO2. Another variation on the two laser instrument simultaneously measures isotopologues of CO2 (12CO2, 13CO2, 12C18O16O) and H2O (H216O, H218O, HD16O). Preliminary results for water ratio precisions (in 1s) are 0.1 per mil for H218O and 0.3 per mil for HD16O, simultaneous (1 s) precisions for isotopologues of CO2 of ~0.1 per mil. Methane, nitrous oxide and carbon monoxide have such

  7. Observation of in vivo morphologic changes after carbon dioxide ablative fractional laser in a mouse model using noninvasive imaging modalities and comparison with histologic examination.

    PubMed

    Yoo, Kwang Ho; Kwon, Tae Rin; Kim, So Young; Song, Yi Seop; Cheon, Young Sook; Kim, Yu Mi; Yeo, In Kwon; Ko, Eun Jung; Li, Kapsok; Kim, Myeung Nam; Kim, Beom Joon

    2014-01-01

    Ablative fractional carbon dioxide (CO2) lasers have been widely used for several types of cosmetic dermatosis. A number of previous studies have evaluated this technique in animals or human beings by observing morphologic changes using an invasive modality such as skin biopsy. In this study, we assessed in vivo skin changes after CO2 ablative fractional laser treatment in a mouse model using noninvasive imaging modalities (Folliscope(®) and Visioscan 98(®)), and each results was compared with data from histologic examination. An ablative fractional CO2 laser was applied with different pulse energy between 7 to 35 mJ/microspot. As results of above methods, we also confirmed that the CO2 ablative fractional laser generated injuries with increasing width and depth with increasing pulse energy. Although numerous papers have described application of this laser in vivo skin specimens, our study evaluated the feasibility of using relative noninvasive imaging modalities for assessing the outcome of laser ablation. Based on our data, we suggest that these technologies may be useful alternative modalities for assessing laser ablation that are easier to perform and less invasive than skin biopsy. PMID:25041574

  8. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes; Zhang, Yinzhi; Kuchta, Matthew E.; Andresen, John M.; Fauth, Dan J.

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  9. High capacity carbon dioxide sorbent

    SciTech Connect

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  10. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a...

  11. Carbon dioxide transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  12. Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kirby, Brian James

    This dissertation introduces infrared planar laser- induced fluorescence (IR PLIF) techniques for visualization of species that lack convenient electronic transitions and are therefore unsuitable for more traditional electronic PLIF measurements. IR PLIF measurements can generate high signal levels that scale linearly with both laser energy and species concentration, thereby demonstrating advantages over Raman and multiphoton PLIF techniques. IR PLIF is shown to be a straightforward and effective tool for visualization of CO and CO2 in reactive flows. The slow characteristic times of vibrational relaxation and the large mole fractions of CO and CO2 in typical flows lead to high IR PLIF signal levels, despite the low emission rates typical of vibrational transitions. Analyses of rotational energy transfer (RET) and vibrational energy transfer (VET) show that excitation schemes in either linear (weak) or saturated (strong) limits may be developed, with the fluorescence collected directly from the laser-excited species or indirectly from bath gases in vibrational resonance with the laser-excited species. Use of short (~1 μs) exposures (for CO) or short exposures combined with long-pulse, high-pulse-energy excitation (for CO2) minimizes unwanted signal variation due to spatially-dependent VET rates. Results are presented for flows ranging from room- temperature mixing to a benchmark CH4 laminar diffusion flame. Linear excitation is appropriate for CO due to its slow vibrational relaxation. However, linear excitation is not well-suited for CO2 imaging due to fast H 2O-enhanced VET processes and the attendant difficulty in interpreting the resulting signal. Saturated excitation using a CO2 laser (or combined CO2 laser-OPO) technique is most appropriate for CO 2, as it generates high signal and minimizes spatial variations in fluorescence quantum yield. Since IR PLIF is applicable to most IR-active species, it has a high potential for expanding the diagnostic

  13. Modelling Sublimation of Carbon Dioxide

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  14. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  15. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  16. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  17. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  18. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  19. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  20. Effects of carbon dioxide, Nd:YAG and carbon dioxide-Nd:YAG combination lasers at high energy densities on synthetic hydroxyaptite.

    PubMed

    Meurman, J H; Voegel, J C; Rauhamaa-Mäkinen, R; Gasser, P; Thomann, J M; Hemmerle, J; Luomanen, M; Paunio, I; Frank, R M

    1992-01-01

    The aim of this study was to determine the crystalline structure and chemical alterations of synthetic hydroxyapatite after irradiation with either CO2, Nd:YAG or CO2-Nd:YAG combination lasers at high energy densities of 500-3,230 J.cm2. Further, dissolution kinetics of the lased material were analysed and compared with those of unlased apatite. Electron microscopy showed that the lased material consisted of two kinds of crystals. From the micrographs their diameters varied from 600 to 1,200 A and from 3,000 to 6,000 A, respectively. The larger crystals showed 6.9-Angström periodic lattice fringes in the transmission electron microscope. alpha-Tricalcium phosphate (TCP) was identified by X-ray diffraction. Selective-area electron diffraction identified the large crystals to consist of tricalcium phosphate while the smaller crystals were probably hydroxyapatite. Assays of dissolution kinetics showed that at these high energy densities lased material dissolved more rapidly than unlased synthetic hydroxyapatite due to the higher solubility of TCP. PMID:1325875

  1. Efficacy of Punch Elevation Combined with Fractional Carbon Dioxide Laser Resurfacing in Facial Atrophic Acne Scarring: A Randomized Split-face Clinical Study

    PubMed Central

    Faghihi, Gita; Nouraei, Saeid; Asilian, Ali; Keyvan, Shima; Abtahi-Naeini, Bahareh; Rakhshanpour, Mehrdad; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen

    2015-01-01

    Background: A number of treatments for reducing the appearance of acne scars are available, but general guidelines for optimizing acne scar treatment do not exist. The aim of this study was to compare the clinical effectiveness and side effects of fractional carbon dioxide (CO2) laser resurfacing combined with punch elevation with fractional CO2 laser resurfacing alone in the treatment of atrophic acne scars. Materials and Methods: Forty-two Iranian subjects (age range 18–55) with Fitzpatrick skin types III to IV and moderate to severe atrophic acne scars on both cheeks received randomized split-face treatments: One side received fractional CO2 laser treatment and the other received one session of punch elevation combined with two sessions of laser fractional CO2 laser treatment, separated by an interval of 1 month. Two dermatologists independently evaluated improvement in acne scars 4 and 16 weeks after the last treatment. Side effects were also recorded after each treatment. Results: The mean ± SD age of patients was 23.4 ± 2.6 years. Clinical improvement of facial acne scarring was assessed by two dermatologists blinded to treatment conditions. No significant difference in evaluation was observed 1 month after treatment (P = 0.56). Their evaluation found that fractional CO2 laser treatment combined with punch elevation had greater efficacy than that with fractional CO2 laser treatment alone, assessed 4 months after treatment (P = 0.02). Among all side effects, coagulated crust formation and pruritus at day 3 after fractional CO2 laser treatment was significant on both treatment sides (P < 0.05). Conclusion: Concurrent use of fractional laser skin resurfacing with punch elevation offers a safe and effective approach for the treatment of acne scarring. PMID:26538695

  2. A Comparison between the Effects of Glucantime, Topical Trichloroacetic Acid 50% plus Glucantime, and Fractional Carbon Dioxide Laser plus Glucantime on Cutaneous Leishmaniasis Lesions

    PubMed Central

    Jaffary, Fariba; Nilforoushzadeh, Mohammad Ali; Siadat, Amirhossein; Haftbaradaran, Elaheh; Ansari, Nazli; Ahmadi, Elham

    2016-01-01

    Background. Cutaneous leishmaniasis is an endemic disease in Iran. Pentavalent antimonial drugs have been the first line of therapy in cutaneous leishmaniasis for many years. However, the cure rate of these agents is still not favorable. This study was carried out to compare the efficacies of intralesional glucantime with topical trichloroacetic acid 50% (TCA 50%) + glucantime and fractional carbon dioxide laser + glucantime in the treatment of cutaneous leishmaniasis. Methods. A total of 90 patients were randomly divided into three groups of 30 to be treated with intralesional injection of glucantime, a combination of topical TCA 50% and glucantime, or a combination of fractional laser and glucantime. The overall clinical improvement and changes in sizes of lesions and scars were assessed and compared among three groups. Results. The mean duration of treatment was 6.1 ± 2.1 weeks in all patients (range: 2–12 weeks) and 6.8 ± 1.7, 5.2 ± 1.0, and 6.3 ± 3.0 weeks in glucantime, topical TCA plus glucantime, and fractional laser plus glucantime groups, respectively (P = 0.011). Complete improvement was observed in 10 (38.5%), 27 (90%), and 20 (87%) patients of glucantime, glucantime + TCA, and glucantime + laser groups, respectively (P < 0.001). Conclusion. Compared to glucantime alone, the combination of intralesional glucantime and TCA 50% or fractional CO2 laser had significantly higher and faster cure rate in patients with cutaneous leishmaniasis. PMID:27148363

  3. Oxygen and carbon dioxide sensing

    NASA Technical Reports Server (NTRS)

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)

    2012-01-01

    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  4. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  5. Method for carbon dioxide sequestration

    SciTech Connect

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  6. Summer Ice and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Kukla, G.; Gavin, J.

    1981-10-01

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  7. Summer ice and carbon dioxide

    SciTech Connect

    Kukla, G.; Gavin, J.

    1981-10-30

    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and reseach ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55/sup o/ and 80/sup o/N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  8. Carbon dioxide review 1982

    SciTech Connect

    Clark, W.C.

    1982-01-01

    The buildup of CO/sub 2/ is a reality, monitored with increasing precision since 1957 and inferred for much earlier dates. A statistical section gives the monitored values to 1980, as well as a review of a long series of measurements made at Mauna Loa by the pioneers of such monitoring, Charles D. Keeling, Robert B. Bacastow, and Timothy P. Whorf. The book discusses internal transport processes in the ocean, of ocean-atmosphere interaction, of the magnitude of forest and soil carbon wastage, of the future course of fossil-fuel consumption. Yet something else emerges, too: if the CO/sub 2/ buildup continues; if the big general circulation models are right about its impact on climate, and if we have not miscalculated the potential role of the oceans, then we face a climatic change in the next century and a half like nothing the post-glacial world, and hence civilized humanity, has seen.

  9. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  10. Synthesis of fluoropolymers in supercritical carbon dioxide

    SciTech Connect

    Guan, Z.; Combes, J.R.; Elsbernd, C.S.; DeSimone, J.M.

    1993-12-31

    The authors` research is focus on the synthesis of fluopolymers is supercritical carbon dioxide. The authors reported earlier the successful homogenous free radical polymerization of a series of highly fluorinated acrylic type monomers in supercritical carbon dioxide. Now it is found that a highly fluorinated styrenic polymer also exhibits very high solubility in carbon dioxide. The fluorinated styrenic polymer was synthesized in supercritical carbon dioxide using homogenous free radical polymerization and was characterized by {sup 1}HNMR, FTIR etc. Some semicrystalline fluoropolymers were also synthesized in supercritical carbon but the polymerization were heterogenous under the condition used. Various conventional nonfluorinated monomers were copolymerized with the fluorinated monomers and the copolymerizations were homogenous at very high nonfluorinated monomer feed ratio. The incorporation of nonfluorinated units onto the fluoropolymer chains increases their solubility greatly in organic solvents. The polymers synthesized in carbon dioxide will be furtherly characterized and the authors will continue the efforts on synthesizing polymers using carbon dioxide as polymerization medium.

  11. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  12. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  13. Experimental carbon dioxide laser brain lesions and intracranial dynamics. Part 2. Effect on brain water content and its response to acute therapy

    SciTech Connect

    Tiznado, E.G.; James, H.E.; Moore, S.

    1985-04-01

    Experimental brain lesions were created over the left parietooccipital cortex of the albino rabbit through the intact dura mater with high radiating carbon dioxide laser energy. The brain water content was studied 2, 6, and 24 hours after the insult. Another two groups of animals received acute therapy with either dexamethasone (1 mg/kg) or furosemide (1 mg/kg). In all groups, Evans blue extravasation uniformly extended from the impact crater into the surrounding white matter. The brain water content in the gray matter was elevated from the control value by 2 hours after impact and remained elevated at 6 and 24 hours. The white matter brain water content did not increase until 6 hours after impact and remained elevated in the 24-hour group. After dexamethasone treatment, there was a significant decrease of water in the gray matter, but not in the white matter. With furosemide therapy, there was no reduction of gray or white matter brain water.

  14. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  15. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  16. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  17. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  18. Carbon dioxide disposal in solid form

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Sharp, D.H.; Wendt, C.H.

    1995-12-31

    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  19. Silanediol-catalyzed carbon dioxide fixation.

    PubMed

    Hardman-Baldwin, Andrea M; Mattson, Anita E

    2014-12-01

    Carbon dioxide is an abundant and renewable C1 source. However, mild transformations with carbon dioxide at atmospheric pressure are difficult to accomplish. Silanediols have been discovered to operate as effective hydrogen-bond donor organocatalysts for the atom-efficient conversion of epoxides to cyclic carbonates under environmentally friendly conditions. The reaction system is tolerant of a variety of epoxides and the desired cyclic carbonates are isolated in excellent yields. PMID:25328125

  20. Carbon Dioxide for pH Control

    SciTech Connect

    Wagonner, R.C.

    2001-08-16

    Cardox, the major supplier of carbon dioxide, has developed a diffuser to introduce carbon dioxide into a water volume as small bubbles to minimize reagent loss to the atmosphere. This unit is integral to several configurations suggested for treatment to control alkalinity in water streams.

  1. Simulations of Carbon Dioxide Cloud Formation at the Martian Poles

    NASA Astrophysics Data System (ADS)

    Colaprete, A.; Toon, O. B.

    1999-09-01

    The Mars Orbiter Laser Altimeter (MOLA) experiment flying onboard the Mars Global Surveyor has observed echoes from cloud tops above the north polar cap. Due to the location and time of year that these clouds are forming, it has been assumed that these clouds consist primarily of carbon dioxide ice particles. The structure of these echoes suggests that a number of these clouds may be the product of buoyancy or gravity waves (Zuber et al., 1998). While the presence of carbon dioxide clouds in the Martian atmosphere is generally accepted, how and where they form is still not understood and little is known about the physics of carbon dioxide particle formation. Recently, Glandorf et al. (personal communication) measured the critical saturation ratio required for carbon dioxide to nucleate onto ice. From this measurement, using nucleation theory, the contact parameter between ice and carbon dioxide under Martian conditions was determined. Using the nucleation rates measured by Glandorf et al. we have developed a 2D time dependent microphyical simulation of carbon dioxide clouds forming in the Mars polar regions. In this simulation we explore the mechanism of cloud initiation by orographic waves and compare our results to MOLA observations.

  2. Carbon dioxide sequestration by mineral carbonation

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin David C.; O'Connor William K.; Penner Larry R.

    2003-11-01

    Concerns about global warming caused by the increasing concentration of carbon dioxide and other greenhouse gases in the earth’s atmosphere have resulted in the need for research to reduce or eliminate emissions of these gases. Carbonation of magnesium and calcium silicate minerals is one possible method to achieve this reduction. It is possible to carry out these reactions either in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals) or ex situ (above ground in a more traditional chemical processing plant). Research at the Department of Energy’s Albany Research Center has explored both of these routes. This paper will explore parameters that affect the direct carbonation of magnesium silicate minerals serpentine (Mg3Si2O5(OH)4) and olivine (Mg2SiO4) to produce magnesite (MgCO3), as well as the calcium silicate mineral, wollastonite (CaSiO3), to form calcite (CaCO3). The Columbia River Basalt Group is a multi-layered basaltic lava plateau that has favorable mineralogy and structure for storage of CO2. Up to 25% combined concentration of Ca, Fe2+, and Mg cations could react to form carbonates and thus sequester large quantities of CO2. Core samples from the Columbia River Basalt Group were reacted in an autoclave for up to 2000 hours at temperatures and pressures to simulate in situ conditions. Changes in core porosity, secondary minerals, and solution chemistry were measured.

  3. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-01-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture. PMID:25652243

  4. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  5. Electrocatalysts for carbon dioxide conversion

    SciTech Connect

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  6. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    PubMed

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  7. Carbon dioxide cleaning pilot project

    SciTech Connect

    Knight, L.; Blackman, T.E.

    1994-01-21

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved.

  8. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  9. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  10. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity. PMID:23901504

  11. Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy

    SciTech Connect

    Raman, R N; Matthews, M J; Adams, J J; Demos, S G

    2010-02-01

    Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO{sub 2} laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO{sub 2} laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica ({approx}1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

  12. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  13. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  14. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  15. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  16. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  17. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  18. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  19. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  20. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  1. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  2. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  3. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  4. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  5. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  6. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  7. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  8. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  9. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  10. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  11. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  12. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  13. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  14. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  15. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  16. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  17. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  18. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  19. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  20. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11... Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into...

  1. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  2. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  3. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... permit the release of carbon dioxide gas to prevent a buildup of pressure that could rupture...

  4. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  5. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8... Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space...

  6. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626... AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...

  7. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  8. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  9. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  10. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817... Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or...