Science.gov

Sample records for carbon emission reductions

  1. Grid Expansion Planning for Carbon Emissions Reduction

    SciTech Connect

    Bent, Russell W.; Toole, Gasper L.

    2012-07-18

    There is a need to upgrade and expand electric power transmission and generation to meet specified renewable energy targets and simultaneously minimize construction cost and carbon emissions. Some challenges are: (1) Renewable energy sources have variable production capacity; (2) Deficiency of transmission capacity at desirable renewable generation locations; (3) Need to incorporate models of operations into planning studies; and (4) Prevent undesirable operational outcomes such as negative dispatch prices or curtailment of carbon neutral generation.

  2. Carbon reduction emissions in South Africa

    SciTech Connect

    Temchin, Jerome

    2002-02-28

    This project is a feasibility study for a control system for existing backup generators in South Africa. The strategy is to install a system to enable backup generators (BGs) to be dispatched only when a large generator fails. Using BGs to provide ''ten minute reserve'' will save energy and reduce emissions of greenhouse gases by an estimated nearly 500,000 tons of carbon dioxide per year.

  3. Black carbon emissions reductions from combustion of alternative jet fuels

    NASA Astrophysics Data System (ADS)

    Speth, Raymond L.; Rojo, Carolina; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Recent measurement campaigns for alternative aviation fuels indicate that black carbon emissions from gas turbines are reduced significantly with the use of alternative jet fuels that are low in aromatic content. This could have significant climate and air quality-related benefits that are currently not accounted for in environmental assessments of alternative jet fuels. There is currently no predictive way of estimating aircraft black carbon emissions given an alternative jet fuel. We examine the results from available measurement campaigns and propose a first analytical approximation (termed 'ASAF') of the black carbon emissions reduction associated with the use of paraffinic alternative jet fuels. We establish a relationship between the reduction in black carbon emissions relative to conventional jet fuel for a given aircraft, thrust setting relative to maximum rated thrust, and the aromatic volume fraction of the (blended) alternative fuel. The proposed relationship is constrained to produce physically meaningful results, makes use of only one free parameter and is found to explain a majority of the variability in measurements across the engines and fuels that have been tested.

  4. A Healthy Reduction in Oil Dependence and Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Higgins, M.

    2003-12-01

    Societal dependence on oil as an energy source for personal transportation leads to increasingly negative social consequences including climate change, air pollution, political and economic instability and habitat degradation. Our heavy reliance on the automobile for transportation, determined in part by urban sprawl, also contributes to the population's increasingly sedentary lifestyle and to a concomitant degradation in health. We have shown that widespread substitution of exercise, commensurate with previously recommended levels, through biking or walking instead of driving can substantially reduce oil consumption and carbon emissions. For example, if all individuals between the ages of 10 and 64 substituted one hour of cycling for driving the reduction in gasoline demand would be equivalent to the gas produced from 34.9 percent of current oil consumption. Relative to 1990 net US emissions, this constitutes a 10.9 percent reduction in carbon emissions. Therefore, substitution of exercise for driving could improve health, reduce carbon emissions and save more oil than even upper estimates of that contained in the Arctic National Wildlife Refuge.

  5. [Research on contribution decomposition by industry to China's carbon intensity reduction and carbon emission growth].

    PubMed

    Jiang, Jing-Jing; Ye, Bin; Ji, Jun-Ping; Ma, Xiao-Ming

    2014-11-01

    The binding carbon intensity index and the pilot "cap-and-trade" emission trading scheme are two important approaches currently applied by China to mitigate its greenhouse gases emissions. It is of great significance to research the influence mechanism of related factors by industry on the dynamics of national carbon intensity and emission, not only for setting industry-specified intensity reduction target but also for setting industry coverage of the ETS. Two LMDI models were applied in this paper to decompose industry contributions to the changes of China's carbon intensity and carbon emission during the period of 1996-2010. Empirical results showed that: The decline of national carbon intensity was jointly determined by the changes of carbon intensities and the added value proportions of all industries, and the impact of industry carbon intensities was larger. The increase of national carbon emission was jointly determined by the changes of carbon intensities and the added value of all industries. The former had inhibitory effect whist the latter had decisive promoting effect. The five industries making the largest contribution to the changes of national carbon emission and carbon intensity included industries of electricity, nonmetal mineral, ferrous metal, transportation service, chemical materials, which were followed by the industries of agriculture, coal mining and processing, petroleum and natural gas extraction. Petroleum refining and coking industry and construction industry made small contribution to the decline of national carbon intensity, but made large contribution to the growth of national carbon emission. The contributions of service industries to national carbon emission growth showed a rising trend, especially those of transportation service industry, wholesaling, retailing and catering service industry. PMID:25639120

  6. Electricity generation: options for reduction in carbon emissions.

    PubMed

    Whittington, H W

    2002-08-15

    Historically, the bulk production of electricity has been achieved by burning fossil fuels, with unavoidable gaseous emissions, including large quantities of carbon dioxide: an average-sized modern coal-burning power station is responsible for more than 10 Mt of CO(2) each year. This paper details typical emissions from present-day power stations and discusses the options for their reduction. Acknowledging that the cuts achieved in the past decade in the UK CO(2) emissions have been achieved largely by fuel switching, the remaining possibilities offered by this method are discussed. Switching to less-polluting fossil fuels will achieve some measure of reduction, but the basic problem of CO(2) emissions continues. Of the alternatives to fossil fuels, only nuclear power represents a zero-carbon large-scale energy source. Unfortunately, public concerns over safety and radioactive waste have still to be assuaged. Other approaches include the application of improved combustion technology, the removal of harmful gases from power-station flues and the use of waste heat to improve overall power-station efficiency. These all have a part to play, but many consider our best hope for emissions reduction to be the use of renewable energy. The main renewable energy contenders are assessed in this paper and realistic estimates of the contribution that each could provide are indicated. It appears that, in the time-scale envisaged by planners for reduction in CO(2) emission, in many countries renewable energy will be unlikely to deliver. At the same time, it is worth commenting that, again in many countries, the level of penetration of renewable energy will fall short of the present somewhat optimistic targets. Of renewable options, wind energy could be used in the short to medium term to cover for thermal plant closures, but for wind energy to be successful, the network will have to be modified to cope with wind's intermittent nature. Globally, hydroelectricity is currently the

  7. Predator-induced reduction of freshwater carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  8. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  9. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  10. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    PubMed

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C). PMID:24758145

  11. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  12. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California.

    PubMed

    Zhang, Hongliang; Magara-Gomez, Kento T; Olson, Michael R; Okuda, Tomoaki; Walz, Kenneth A; Schauer, James J; Kleeman, Michael J

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ±5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  13. The impacts of electricity dispatch protocols on the emission reductions due to wind power and carbon tax.

    PubMed

    Yu, Yang; Rajagopal, Ram

    2015-02-17

    Two dispatch protocols have been adopted by electricity markets to deal with the uncertainty of wind power but the effects of the selection between the dispatch protocols have not been comprehensively analyzed. We establish a framework to compare the impacts of adopting different dispatch protocols on the efficacy of using wind power and implementing a carbon tax to reduce emissions. We suggest that a market has high potential to achieve greater emission reduction by adopting the stochastic dispatch protocol instead of the static protocol when the wind energy in the market is highly uncertain or the market has enough adjustable generators, such as gas-fired combustion generators. Furthermore, the carbon-tax policy is more cost-efficient for reducing CO2 emission when the market operates according to the stochastic protocol rather than the static protocol. An empirical study, which is calibrated according to the data from the Electric Reliability Council of Texas market, confirms that using wind energy in the Texas market results in a 12% CO2 emission reduction when the market uses the stochastic dispatch protocol instead of the 8% emission reduction associated with the static protocol. In addition, if a 6$/ton carbon tax is implemented in the Texas market operated according to the stochastic protocol, the CO2 emission is similar to the emission level from the same market with a 16$/ton carbon tax operated according to the static protocol. Correspondingly, the 16$/ton carbon tax associated with the static protocol costs 42.6% more than the 6$/ton carbon tax associated with the stochastic protocol. PMID:25607824

  14. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was

  15. Carbon emissions reduction strategies in Africa from improved waste management: A review

    SciTech Connect

    Couth, R.; Trois, C.

    2010-11-15

    The paper summarises a literature review into waste management practices across Africa as part of a study to assess methods to reduce carbon emissions. Research shows that the average organic content for urban Municipal Solid Waste in Africa is around 56% and its degradation is a major contributor to greenhouse gas emissions. The paper concludes that the most practical and economic way to manage waste in the majority of urban communities in Africa and therefore reduce carbon emissions is to separate waste at collection points to remove dry recyclables by door to door collection, compost the remaining biogenic carbon waste in windrows, using the maturated compost as a substitute fertilizer and dispose the remaining fossil carbon waste in controlled landfills.

  16. Assessing 'Dangerous Climate Change': Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Demotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrum, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Conrad; VanSusteren, Lise; VonShuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of approx.500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of approx.1000 GtC, sometimes associated with 2 C global warming, would spur "slow" feedbacks and eventual warming of 3-4 C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  17. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    PubMed

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J; Hearty, Paul J; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  18. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    PubMed Central

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  19. Black carbon and fine particle emissions in Finnish residential wood combustion: Emission projections, reduction measures and the impact of combustion practices

    NASA Astrophysics Data System (ADS)

    Savolahti, Mikko; Karvosenoja, Niko; Tissari, Jarkko; Kupiainen, Kaarle; Sippula, Olli; Jokiniemi, Jorma

    2016-09-01

    Residential wood combustion (RWC) is a major source of black carbon (BC) and PM2.5 emissions in Finland. Making a robust assessment of emissions on a national level is a challenge due to the varying heater technologies and the effect of users' combustion practices. In this paper we present an update of the emission calculation scheme for Finnish RWC, including technology-specific emission factors based on national measurements. Furthermore, we introduce a transparent method to assess the impact of poor combustion practices on emissions. Using a Finnish emission model, we assessed the emissions in 2000, 2010 and 2030, as well as the cost-efficiency of potential emission reduction measures. The results show that RWC is the biggest source of both PM2.5 and BC emissions in Finland, accounting for 37% and 55% of the total respective emissions. It will also remain the biggest source in the future, and it's role may become even more pronounced if wood consumption continues to increase. Sauna stoves cause the most emissions and also show the biggest potential for emission reductions. Informational campaigns targeted to improve heater users' combustion practices appear as a highly cost-efficient measure, although their impact on country-level emissions was estimated to be relatively limited.

  20. The Production, Value, and Reduction Responsibility of Carbon Emissions through Electricity Consumption of Manufacturing Industries in South Korea and Thailand

    NASA Astrophysics Data System (ADS)

    Kitikun, Medhawin

    , manufacturing industries take full responsibility for emissions reductions by curtailing their use of energy without any subsidies from the government. Revenue function estimates provide measures of the differential costs imposed on different industries by emissions reductions. In the second scenario, emissions reductions are achieved by changing the mix of electricity generation technologies used by the power generation sector within the country. For the international case, I focus on the fairness of emission reduction responsibility among countries. To be fair to countries at different levels of development and with different rate of carbon emissions, I propose a new method to adjust the timing and rates of emission reductions based on a lifetime cumulative emission per capita.

  1. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    SciTech Connect

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-07-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

  2. Sensitivity of Surface Air Quality and Global Mortality to Global, Regional, and Sectoral Black Carbon Emission Reductions

    NASA Astrophysics Data System (ADS)

    Anenberg, S.; Talgo, K.; Dolwick, P.; Jang, C.; Arunachalam, S.; West, J.

    2010-12-01

    Black carbon (BC), a component of fine particulate matter (PM2.5) released during incomplete combustion, is associated with atmospheric warming and deleterious health impacts, including premature cardiopulmonary and lung cancer mortality. A growing body of literature suggests that controlling emissions may therefore have dual benefits for climate and health. Several studies have focused on quantifying the potential impacts of reducing BC emissions from various world regions and economic sectors on radiative forcing. However, the impacts of these reductions on human health have been less well studied. Here, we use a global chemical transport model (MOZART-4) and a health impact function to quantify the surface air quality and human health benefits of controlling BC emissions. We simulate a base case and several emission control scenarios, where anthropogenic BC emissions are reduced by half globally, individually in each of eight world regions, and individually from the residential, industrial, and transportation sectors. We also simulate a global 50% reduction of both BC and organic carbon (OC) together, since they are co-emitted and both are likely to be impacted by actual control measures. Meteorology and biomass burning emissions are for the year 2002 with anthropogenic BC and OC emissions for 2000 from the IPCC AR5 inventory. Model performance is evaluated by comparing to global surface measurements of PM2.5 components. Avoided premature mortalities are calculated using the change in PM2.5 concentration between the base case and emission control scenarios and a concentration-response factor for chronic mortality from the epidemiology literature.

  3. Air plasma gasification of RDF as a prospective method for reduction of carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Bratsev, A. N.; Kumkova, I. I.; Kuznetsov, V. A.; Popov, V. E.; Shtengel', S. V.; Ufimtsev, A. A.

    2011-03-01

    Waste disposal dumps are one of sources of carbonic gas penetration in the atmosphere. The waste is treated into RDF (refuse-derived fuel) and used in boilers for electric power or heat generation for decrease in carbonic gas emissions in the atmosphere. In industry power stations on the basis of the combined cycle have the highest efficiency of burning. The paper deals with the application of an air-plasma gasifier using the down draft scheme of RDF transformation into synthesis gas, which afterwards can be used in the combined cycle. Results of calculations of the process characteristics for various RDF compositions are presented. The advantage of the plasma method in comparison with autothermal one is shown. Experimental data are shown.

  4. Measurements of black and organic carbon emission factors for household coal combustion in China: implication for emission reduction.

    PubMed

    Chen, Yingjun; Zhi, Guorui; Feng, Yanli; Liu, Dongyan; Zhang, Gan; Li, Jun; Sheng, Guoying; Fu, Jiamo

    2009-12-15

    Household coal combustion is considered as the greatest emission source for black carbon (BC) and an important source for organic carbon (OC) in China. However, measurements on BC and OC emission factors (EF(BC) and EF(OC)) are still scarce, which result in large uncertainties in emission estimates. In this study, a detailed data set of EF(BC) and EF(OC) for household coal burning was presented on the basis of 38 coal/stove combination experiments. These experiments included 13 coals with a wide coverage of geological maturity which were tested in honeycomb-coal-briquette and raw-coal-chunk forms in three typical coal stoves. Averaged values of EF(BC) are 0.004 and 0.007 g/kg for anthracite in briquette and chunk forms and 0.09 and 3.05 g/kg for bituminous coal, respectively; EF(OC) are 0.06 and 0.10 g/kg for anthracite and 3.74 and 5.50 g/kg for bituminous coal in both forms, respectively. Coal maturity was found to be the most important influencing factor relative to coal's burning forms and the stove's burning efficiency, and when medium-volatile bituminous coals (MVB) are excluded from use, averaged EF(BC) and EF(OC) for bituminous coal decrease by 50% and 30%, respectively. According to these EFs, China's BC and OC emissions from the household sector in 2000 were 94 and 244 gigagrams (Gg), respectively. Compared with previous BC emission estimates for this sector (e.g., 465 Gg by Ohara et al., Atmos. Chem. Phys. 2007, 7, 4419-4444), a dramatic decrease was observed and was mainly attributed to the update of EFs. As suggested by this study, if MVB is prohibited as household fuel together with further promotion of briquettes, BC and OC emissions in this sector will be reduced by 80% and 34%, respectively, and then carbonaceous emissions can be controlled to a large extent in China. PMID:20000546

  5. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol).

    PubMed

    Zhang, Xinwen; Wang, Xiaoqing; Zhang, Jian; Huang, Xiaoyu; Wei, Dong; Lan, Wei; Hu, Zhen

    2016-10-01

    The purpose of this study was to evaluate the effect of mannitol as carbon source on nitrogen removal and nitrous oxide (N2O) emission during partial nitrification (PN) process. Laboratory-scale PN sequencing batch reactors (SBRs) were operated with mannitol and sodium acetate as carbon sources, respectively. Results showed that mannitol could remarkably reduce N2O-N emission by 41.03%, without influencing the removal efficiency of NH4(+)-N. However, it has a significant influence on nitrite accumulation ratio (NAR) and TN removal, which were 19.97% and 13.59% lower than that in PN with sodium acetate, respectively. Microbial analysis showed that the introduction of mannitol could increase the abundance of bacteria encoding nosZ genes. In addition, anti-oxidant enzymes (T-SOD, POD and CAT) activities were significantly reduced and the dehydrogenase activity had an obvious increase in mannitol system, indicating that mannitol could alleviate the inhibition of N2O reductase (N2OR) activities caused by high NO2(-)-N concentration. PMID:27423546

  6. Planning for future uncertainties in electric power generation; An analysis of transitional strategies for reduction of carbon and sulfur emissions

    SciTech Connect

    Tabors, R.D.; Monroe, B.L. III . Lab. for Electromagnetic and Electronic Systems)

    1991-11-01

    The objective of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gasses. The research used the EPRI Electric Generation Expansion Analysis System (EGEAS) utility optimization/simulation modeling structure and the EPRI developed regional utilities. It focuses on the North East and East Central region of the U.S. Strategies identified were fuel switching -- predominantly between coal and natural gas, mandated emission limits, and a carbon tax. The overall conclusions of the study are that using less (conservation) will always benefit Carbon Emissions but may or may not benefit Acid Rain emissions by the off setting forces of improved performance of new plant as opposed to reduced overall consumption of final product. Results of the study are highly utility and regional demand specific. The study showed, however, that significant reductions in both acid rain and global warming gas production could be achieved with relatively small increases in the overall cost of production of electricity and that the current dispatch logics available to the utility control rooms were adequate to reschedule dispatch to meet these objectives.

  7. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  8. Mamizu climate policy: an evaluation of Japanese carbon emissions reduction targets

    NASA Astrophysics Data System (ADS)

    Pielke, Roger A., Jr.

    2009-12-01

    This letter evaluates Japan's so-called 'Mamizu' climate policies proposed in mid-2009 in terms of the implied rates of decarbonization of the Japanese economy for short-term and long-term targets. The letter uses the Kaya identity to structure the evaluation, employing both a bottom up approach (based on projections of future Japanese population, economic growth, and technology) and a top down approach (deriving implied rates of decarbonization consistent with the targets and various rates of economic growth). Both approaches indicate that the Japanese economy would have to achieve rates of decarbonization of 2.6% to meet a 2020 target of reducing emissions by 15% below 2005 levels, and 5.0% to meet a 2050 target of an 80% reduction below 2005 levels. A target of 25% below 1990 emissions proposed by the opposition party (which subsequently formed a government following elections in August 2009) implies a rate of decarbonization of 4.6% annually to 2020. The letter argues that international criticism of Japanese Mamizu climate policy proposals as being too weak was unfounded, and if anything, the proposals may have been too ambitious. In either case, climate policy would be strengthened through the support of a diversity of approaches to decarbonization.

  9. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively. PMID:26923104

  10. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-02-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively.

  11. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively. PMID:26923104

  12. Renewable energy and its potential for carbon emissions reductions in developing countries: Methodology for technology evaluation. Case study application to Mexico

    SciTech Connect

    Corbus, D; Martinez, M; Rodriguez, L; Mark, J

    1994-08-01

    Many projects have been proposed to promote and demonstrate renewable energy technologies (RETs) in developing countries on the basis of their potential to reduce carbon emissions. However, no uniform methodology has been developed for evaluating RETs in terms of their future carbon emissions reduction potential. This study outlines a methodology for identifying RETs that have the potential for achieving large carbon emissions reductions in the future, while also meeting key criteria for commercialization and acceptability in developing countries. In addition, this study evaluates the connection between technology identification and the selection of projects that are designed to demonstrate technologies with a propensity for carbon emission reductions (e.g., Global Environmental Facility projects). Although this report applies the methodology to Mexico in a case study format, the methodology is broad based and could be applied to any developing country, as well as to other technologies. The methodology used in this report is composed of four steps: technology screening, technology identification, technology deployment scenarios, and estimates of carbon emissions reductions. The four technologies with the highest ranking in the technology identification process for the on-grid category were geothermal, biomass cogeneration, wind, and micro-/mini-hydro. Compressed natural gas (CNG) was the alternative that received the highest ranking for the transportation category.

  13. Optimal energy options under Clean Development Mechanism: Renewable energy projects for sustainable development and carbon emission reduction

    NASA Astrophysics Data System (ADS)

    Gilau, Asmerom M.

    This dissertation addresses two distinct objectives; designing cost-effective renewable energy powered projects including seawater reverse osmosis (SWRO), aquaculture, and ice-making plant, and analyzing the cost-effectiveness of these projects in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism. The results of SWRO analysis show that a wind powered system is the least expensive and a PV powered system the most expensive, with finished water costs of about 0.50 /m3 and 1.00 /m3, respectively. By international standards, these costs are competitive. The results of renewable energy powered commercial tilapia production indicate that a wind-diesel system has high potential for intensive tilapia production as well as carbon dioxide emission reductions. The study also investigates aeration failures in renewable energy powered tilapia production systems. With respect to the ice-making plant, unlike previous studies which consider nighttime operation only, we have found that a nighttime PV powered ice-making system is more expensive (1/kWh) than daytime ice-making system (0.70/kWh). Our optimal energy options analysis at project scale which includes SWRO, ice-making plant and household energy consumption for about 100 households shows that compared to diesel only energy option, PV-D, W-D, and PV-W-D hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy including 100% renewables have the lowest net present cost and they are already cost-effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries. Thus in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market oriented

  14. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  15. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. PMID:26081307

  16. Power plant emissions reduction

    SciTech Connect

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  17. 1992 Carbon emissions data

    SciTech Connect

    1995-12-31

    This article reports on the global total of carbon dioxide emissions from fossil-fuel burning and cement manufacture in 1992. The total estimate of 6097 million metric tons of carbon is essentially the same for 1990 and down slightly from 1991, but 7 of 9 geographical regions had increases.

  18. Low Emissions Aftertreatment and Diesel Emissions Reduction

    SciTech Connect

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature

  19. Reduction of the temperature sensitivity of minerotrophic fen methane emissions by simulated glacial atmospheric carbon dioxide starvation

    NASA Astrophysics Data System (ADS)

    Boardman, Carl P.; Gauci, Vincent; Fox, Andrew; Blake, Stephen; Beerling, David J.

    2013-06-01

    to the global wetland CH4 source strength in response to changes in orbital insolation patterns and atmospheric CO2 concentration ([CO2]a) are hypothesized to play an important role in determining glacial-interglacial variations in atmospheric CH4 concentration ([CH4]a). Here the interactive effects of temperature, a major controlling variable determining wetland CH4 flux, and the low [CO2]a of glacial intervals are investigated for the first time. We measured the temperature dependence of CH4 emissions from replicated mesocosms (n = 8 per CO2 treatment) collected from a minerotrophic fen and an ombrotrophic bog incubated in either ambient (c. 400 ppm) or glacial (c. 200 ppm) [CO2]a located in the United Kingdom. CH4 fluxes were measured at 5°C, 10°C, 15°C, 20°C, and 25°C and then in reverse order over a 20 day period under each [CO2]a treatment. Results showed that the Q10 temperature response of CH4 emissions from the Carex/Juncus-dominated fen declined significantly by approximately 39% under glacial [CO2]a (ambient [CO2]a = 2.60, glacial [CO2]a = 1.60; P < 0.01). By contrast, the response of CH4 emissions from the Sphagnum-dominated bog remained unaltered (ambient [CO2]a = 3.67, glacial [CO2]a = 3.67; P > 0.05). This contrasting response may be linked to differences in plant species assemblage and the varying impact of CO2 starvation on plant productivity and carbon availability in the rhizosphere. Furthermore, our results provide empirical evidence to support recent model-based indications that glacial-interglacial variations in [CH4]a may be explained by changes in wetland CH4 source strength in response to orbitally forced changes in climate and [CO2]a.

  20. Delay of actions involves large risks in estimations of economic damages and reduction ratios of carbon dioxide emission for lower climate targets.

    NASA Astrophysics Data System (ADS)

    Ishizaki, Y.; Emori, S.; Takahashi, K.; Shiogama, H.; Yokohata, T.

    2014-12-01

    Because future projections by AOGCMs require huge computer and human resources, simple climate models are used under a wide range of emission scenarios. The observation obtained in the past cannot provide a strong constraint on equilibrium climate sensitivity (ECS) and thus the future projections by simple climate models. However, when observations are obtained more in future, the uncertainty of future projections is expected to reduce. There is a public debate over whether to start to reduce carbon dioxide emissions now or to delay implementing mitigation policy in future. If the observation obtained in future can provide substantive benefits to climate policy, a climate policy of "wait and see", or a sequential-decision strategy for climate change would be useful. We investigated how much the uncertainty in economic damage and reduction ratios of CO2 emission, by which a climate target can be achieved, will reduce in future after future observation can be obtained. To conduct this, we first produced hypothetical observations of different ECSs using a simple climate model, and then validated whether the sequential decision strategy is useful or not for the estimations of economic damages and reduction ratios of carbon dioxide emissions. In low ECS, the magnitudes of the uncertainty for future projections in global mean SAT changes are small, and they reduce rapidly after observations are obtained in future. On the other hand, in high ECS, the magnitudes of the uncertainty for future projections in global mean SAT changes are large, and they still remain large in future. Because economic damages increase nonlinearly for the global mean SAT changes, the uncertainty of future projections in the economic damages is larger, and still remains larger after obtaining observations in future in high ECS. In particular, peaks of the pdfs of the economic damages shift to more serious values after obtaining observations in future in high ECS.

  1. The impact of future carbon dioxide emission reduction targets on U.S. electric sector water use

    NASA Astrophysics Data System (ADS)

    Cameron, Colin MacKay

    The U.S. electric sector's reliance on water makes it vulnerable to the impacts of climate change on water resources. Here we analyze how constraints on U.S. energy system carbon dioxide (CO2) emissions could affect water withdrawal and consumption in the U.S. electric sector through 2055. We use simulations of the EPA's U.S. 9-region (EPAUS9r) MARKAL least-cost optimization energy systems model with updated water use factors for electricity generating technologies. Model results suggest CO2 constraints could force the retirement of old power plants and drive increased use of low water-use renewable and nuclear power as well as natural gas CCS plants with more advanced cooling systems. These changes in electric sector technology mix reduce water withdrawal in all scenarios but increase water consumption in aggressive scenarios. Decreased electric sector water withdrawal would likely reduce electric sector vulnerability to climate change, but the rise in consumption could increase competition with other users.

  2. Carbon Emission Flow in Networks

    PubMed Central

    Kang, Chongqing; Zhou, Tianrui; Chen, Qixin; Xu, Qianyao; Xia, Qing; Ji, Zhen

    2012-01-01

    As the human population increases and production expands, energy demand and anthropogenic carbon emission rates have been growing rapidly, and the need to decrease carbon emission levels has drawn increasing attention. The link between energy production and consumption has required the large-scale transport of energy within energy transmission networks. Within this energy flow, there is a virtual circulation of carbon emissions. To understand this circulation and account for the relationship between energy consumption and carbon emissions, this paper introduces the concept of “carbon emission flow in networks” and establishes a method to calculate carbon emission flow in networks. Using an actual analysis of China's energy pattern, the authors discuss the significance of this new concept, not only as a feasible approach but also as an innovative theoretical perspective. PMID:22761988

  3. The Effect of Hands-on '"Energy-Saving House" Learning Activities on Elementary School Students' Knowledge, Attitudes, and Behavior Regarding Energy Saving and Carbon-Emissions Reduction

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Lin, Kuen-Yi; Guu, Yunn-Horng; Chang, Liang-Te; Lai, Chih-Chien

    2013-01-01

    Energy saving and carbon-emissions reduction (ESCER) are widely regarded as important issues for progress towards ensuring sustainable forms of economic development. This Taiwanese study focuses on the effects of a series of educational activities about ESCER on students' knowledge, attitudes and behavior. Sixty fifth-grade students from two…

  4. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  5. Two-step accelerated mineral carbonation and decomposition analysis for the reduction of CO₂ emission in the eco-industrial parks.

    PubMed

    Jung, Seok; Wang, Li Pang; Dodbiba, Gjergj; Fujita, Toyohisa

    2014-07-01

    Carbon dioxide (CO₂) emissions are a leading contributor to the negative effects of global warming. Globally, research has focused on effective means of reducing and mitigating CO₂ emissions. In this study, we examined the efficacy of eco-industrial parks (EIPs) and accelerated mineral carbonation techniques in reducing CO₂ emissions in South Korea. First, we used Logarithmic Mean Divisia Index (LMDI) analysis to determine the trends in carbon production and mitigation at the existing EIPs. We found that, although CO₂ was generated as byproducts and wastes of production at these EIPs, improved energy intensity effects occurred at all EIPs, and we strongly believe that EIPs are a strong alternative to traditional industrial complexes for reducing net carbon emissions. We also examined the optimal conditions for using accelerated mineral carbonation to dispose of hazardous fly ash produced through the incineration of municipal solid wastes at these EIPs. We determined that this technique most efficiently sequestered CO₂ when micro-bubbling, low flow rate inlet gas, and ammonia additives were employed. PMID:25079989

  6. Trading permanent and temporary carbon emissions credits

    SciTech Connect

    Marland, Gregg; Marland, Eric

    2009-08-01

    In this issue of Climatic Change, Van Kooten (2009) addresses an issue that has bedeviled negotiators since the drafting stage of the Kyoto Protocol. If we accept that increasing withdrawals of carbon dioxide from the atmpshere has the same net impact on the climate system as reducing emissions of carbon dioxide to the atmosphere, how do we design a system that allows trading of one for the other? As van Kooten expresses the challenge: 'The problem is that emissions reduction and carbon sequestration, while opposite sides of the same coin in some sense, are not directly comparable, thereby inhibiting their trade in carbon markets.' He explains: 'The difficulty centers on the length of time that mitigation strategies without CO{sub 2} from entering the atmosphere - the duration problem.' While reducing emissions of CO{sub 2} represents an essentially permanent benefit for the atmosphere, capturing CO{sub 2} that has been produced (whether capture is from the atmosphere or directly from, for example, the exhaust from power plants) there is the challenge of storing the carbon adn the risk that it will yet escape to the atmosphere. Permanent benefit to the atmosphere is often not assured for carbon sequestration activities. This is especially true if the carbon is taken up and stored in the biosphere - e.g. in forest trees or agricultural soils.

  7. Distributed Energy Resources for Carbon Emissions Mitigation

    SciTech Connect

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

  8. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    SciTech Connect

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regions or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.

  9. Building capacity for national level carbon Measurement, Reporting, and Verification (MRV) systems for a ``Reduction of Emissions from Deforestation and Degradation'' (REDD)

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Goetz, S. J.; Baccini, A.; Walker, W. S.; Ndunda, P.; Mekui, P.; Kellndorfer, J. M.; Knight, D.

    2010-12-01

    An international policy mechanism is under negotiation for compensating tropical nations that succeed in lowering their greenhouse gas emissions from tropical deforestation and forest degradation, responsible for approximately one-fifth of worldwide carbon emissions. One of the barriers to its success is the adoption of a unique MRV system and the participation of developing countries in carbon monitoring. A successful REDD policy must rely on a robust, scalable, cost effective method that will allow the Measurement Reporting and Verification from local to national scales, while also developing well-trained technical personnel to implement national REDD carbon monitoring systems. Participation of governments and forest stakeholders in forest and carbon monitoring methods at WHRC is achieved through ongoing technical workshops which include training of participants to collect field data to calibrate biomass models, and an annual Scholar’s Program where forest officers from the tropical regions of Latin America, Africa and Southeast Asia work with Woods Hole Research Center scientsts to improve skills in forest measurement and remote sensing monitoring techniques . Capacity building activities focus on technical aspects and approaches to forest-cover and carbon mapping and the use of satellite imagery together with ground-based measurement techniques in the development of forest cover and carbon-stock maps. After two years, the three-year project has involved more than 200 forest specialists from governments and NGOs in Bolivia, Cambodia, Colombia, the Democratic Republic of Congo, Gabon, Indonesia, Lao PDR, Kenya, Uganda, Vietnam and Zambia, among others with participation of ten scholars actively participating in the developement of National REDD plans for forest mapping and monitoring. Field Training Mbandaka- DR Congo 2010

  10. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II

    SciTech Connect

    Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-05-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  5. Towards a targetted emission reduction in Europe

    NASA Astrophysics Data System (ADS)

    Hordijk, Leen

    Currently 20 European countries have stated that they will reduce their SO 2-emissions by at least 30% in the years 1993-1995 based on 1980 emissions. Some countries will reduce more, e.g. France by 50 %. Although politically this is an important step, a more or less flat rate of emission reduction throughout Europe is not an efficient solution. The paper describes an alternate emission reduction targetted to those areas where depositions are high and taking into account the source-receptor relationships in Europe. The reductions are calculated by using the model RAINS which is being developed at IIASA. RAINS is a set of linked submodels dealing with energy scenarios, SO 2 emissions, abatement options, long-range transport, deposition, forest soil acidification and lake acidification. For the purpose of this paper an optimization algorithm developed by R. Shaw and J. Young (AES, Canada) has been connected with RAINS. The results show optimal reduction patterns in Europe for a number of different receptor areas and alternative energy scenarios.

  6. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis. PMID:24053762

  7. The economic impacts of emission reduction policies

    SciTech Connect

    Hanson, D.A.

    1992-01-01

    Environmental expenditures, or environmental tax revenues, e.g., carbon taxes are potentially significant components of the US macroeconomy. This paper presents a simple model of the role of environmental abatement expenditures and/or emission taxes from the viewpoint of economic efficiency, welfare and potential macroeconomic effects.

  8. The economic impacts of emission reduction policies

    SciTech Connect

    Hanson, D.A.

    1992-07-01

    Environmental expenditures, or environmental tax revenues, e.g., carbon taxes are potentially significant components of the US macroeconomy. This paper presents a simple model of the role of environmental abatement expenditures and/or emission taxes from the viewpoint of economic efficiency, welfare and potential macroeconomic effects.

  9. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  10. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  11. General aviation piston-engine exhaust emission reduction

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.; Houtman, W. H.; Westfield, W. T.; Duke, L. C.; Rezy, B. J.

    1977-01-01

    To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls.

  12. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  13. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  14. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New Mexico (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New Mexico. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in New Mexico to be $1.1 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,117 million gallons.

  15. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Massachusetts (Fact Sheet)

    SciTech Connect

    Lantz, E.; Tegen, S.

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Massachusetts. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Massachusetts to be $1.4 billion, annual CO2 reductions are estimated at 2.6 million tons, and annual water savings are 1,293 million gallons.

  16. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Tennessee (Fact Sheet)

    SciTech Connect

    Lantz, E.; Tegen, S.

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Tennessee. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Tennessee to be $1.2 billion, annual CO2 reductions are estimated at 2.4 million tons, and annual water savings are 1,321 million gallons.

  17. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  18. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Wisconsin (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Wisconsin. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Wisconsin to be $1.1 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,476 million gallons.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Montana (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Montana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Montana to be $1.2 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,207 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Pennsylvania. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Pennsylvania to be $1.2 billion, annual CO2 reductions are estimated at 3.4 million tons, and annual water savings are 1,837 million gallons.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in West Virginia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in West Virginia. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in West Virginia to be $1.0 billion, annual CO2 reductions are estimated at 3.3 million tons, and annual water savings are 1,763 million gallons.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in South Dakota (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in South Dakota. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in South Dakota to be $1.1 billion, annual CO2 reductions are estimated at 4.0 million tons, and annual water savings are 1,795 million gallons.

  4. Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios

    NASA Astrophysics Data System (ADS)

    Winijkul, Ekbordin; Bond, Tami C.

    2016-01-01

    Cooking, heating, and other activities in the residential sector are major sources of indoor and outdoor air pollution, especially when solid fuels are used to provide energy. Because of their deleterious effects on the atmosphere and human health, multinational strategies to reduce emissions have been proposed. This study examines the effects of some possible policies, considering realistic factors that constrain mitigation: end-uses, spatial constraints involving proximity to forest or electricity, existing technology, and assumptions about user behavior. Reduction scenarios are applied to a year-2010, spatially distributed baseline of emissions of particulate matter, black carbon, organic carbon, nitrogen oxides, methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide. Scenarios explored are: (1) cleanest current stove, where we assume that existing technology in each land type is applied to burn existing fuels; (2) stove standards, where we assume that stoves are designed to meet performance standards; and (3) clean fuels, where users adopt the cleanest fuels plausible in each land type. We assume that people living in forest access areas continue to use wood regardless of available fuels, so the clean-fuels scenario leads to a reduction in emissions of 18-25%, depending on the pollutant, across the study region. Cleaner stoves preferentially affect land types with forest access, where about half of the fuel is used; emission reductions range from 25 to 82%, depending on the pollutant. If stove performance standards can be met, particulate matter emissions are reduced by 62% for the loosest standards and 95% for the tightest standards, and carbon monoxide is reduced by 40% and 62% for the loosest and tightest standards. Reductions in specific regions and countries depend on the existing fuel mixture and the population division among land types, and are explored for Latin America, Africa, East Asia, South Asia, and Southeast Asia.

  5. Nitrous oxide emission reduction in temperate biochar-amended soils

    NASA Astrophysics Data System (ADS)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  6. Carbon emission from farm operations.

    PubMed

    Lal, R

    2004-09-01

    This manuscript is a synthesis of the available information on energy use in farm operations, and its conversion into carbon equivalent (CE). A principal advantage of expressing energy use in terms of carbon (C) emission as kg CE lies in its direct relation to the rate of enrichment of atmospheric concentration of CO2. Synthesis of the data shows that estimates of emissions in kg CE/ha are 2-20 for different tillage operations, 1-1.4 for spraying chemicals, 2-4 for drilling or seeding and 6-12 for combine harvesting. Similarly, estimates of C emissions in kg CE/kg for different fertilizer nutrients are 0.9-1.8 for N, 0.1-0.3 for P2O5, 0.1-0.2 for K20 and 0.03-0.23 for lime. Estimates of C emission in kg CE/kg of active ingredient (a.i.) of different pesticides are 6.3 for herbicides, 5.1 for insecticides and 3.9 for fungicides. Irrigation, lifting water from deep wells and using sprinkling systems, emits 129+/-98 kg CE for applying 25 cm of water and 258+/-195 for 50 cm of water. Emission for different tillage methods are 35.3 kg CE/ha for conventional till, 7.9 kg CE/ha for chisel till or minimum till, and 5.8 kg CE/ha for no-till method of seedbed preparation. In view of the high C costs of major inputs, sustainable management of agricultural ecosystems implies that an output/input ratio, expressed either as gross or net output of C, must be >1 and has an increasing trend over time. PMID:15196846

  7. Summary of emissions reduction technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1977-01-01

    The NASA emissions reduction contract programs for EPA aircraft engine classes P2 (turboshaft engines), T1 (jet engines with thrust under 8000 lb), T4 (JT8D) engines), and T2 (jet engines with thrust over 8000 lb) are discussed. The most important aspects of these programs, the commonality of approaches used, the test results, and assessments regarding applications of the derived technology are summarized.

  8. Methods for reduction of charging emissions

    SciTech Connect

    Schuecker, F.J.; Schulte, H.

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  9. Emission reductions to meet deposition criteria

    NASA Astrophysics Data System (ADS)

    Smith, F. B.

    The paper assumes Governments are willing and able to reduce national emissions of pollution to protect the environment. Sulphur dioxide is examined as an important example. Although not necessarily true at the present time, it further assumes: (i) that the cost of reducing these emissions from different industries (and other source types) are known, and that these costs include the secondary consequences of emission control (for example, possible resulting unemployment); (ii) that maximum deposition criteria ( mdc) have been established on some appropriate grid (above which undesirable environmental damage will occur) and that in some gridsquares these mdc are currently being exceeded; and (iii) that priorities for reducing the deposition may be ascribed for each gridsquare. The highest priority may reflect concern over excessive levels of heavy metals in drinking water drawn from wells used by remote homesteads, for example. Gridsquares where more gradual, and hopefully reversible, damage is taking place would be given a rather lower priority. The paper seeks to establish maximum levels of emission in each gridsquare which will result in depositions nowhere exceeding the mdc (on the scale of a gridsquare). It also offers a means of selecting an optimum staged reduction strategy whereby emissions are reduced gradually towards the ultimate maximum levels, and at each stage of the reduction, gives the maximum benefit for the capital outlay consistent with the priorities and costs outlined above. The paper utilizes a very simple analytical model of the deposition field resulting from a single emission. The model is tuned to give the best comparison with the 1985 sulphur deposition field obtained using the much more complex EMEP MSC-W Lagrangian model used operationally for acid-rain analyses in Europe.

  10. CARBON EMISSIONS ECONOMIC INTENSITY INDEX (CEEII)

    EPA Science Inventory

    The core concept of the CEEII is to understand, at the state level, the carbon emissions from energy consumption in relation to the value of the activity that generates the emissions. The CEEII treats carbon emissions as an input to producing the activity’s value and assesses th...

  11. Cermet Filters for Diesel Engine Emissions Reduction

    SciTech Connect

    Kong, Peter Chuen Sun

    2001-08-01

    Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.

  12. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  13. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  14. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  15. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  16. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  17. Atmospheric emissions from a passenger ferry with selective catalytic reduction.

    PubMed

    Nuszkowski, John; Clark, Nigel N; Spencer, Thomas K; Carder, Daniel K; Gautam, Mridul; Balon, Thomas H; Moynihan, Paul J

    2009-01-01

    The two main propulsion engines on Staten Island Ferry Alice Austen (Caterpillar 3516A, 1550 hp each) were fitted with selective catalytic reduction (SCR) aftertreatment technology to reduce emissions of oxides of nitrogen (NOx). After the installation of the SCR system, emissions from the ferry were characterized both pre- and post-aftertreatment. Prior research has shown that the ferry operates in four modes, namely idle, acceleration, cruise, and maneuvering modes. Emissions were measured for both engines (designated NY and SI) and for travel in both directions between Manhattan and Staten Island. The emissions characterization used an analyzer system, a data logger, and a filter-based particulate matter (PM) measurement system. The measurement of NOx, carbon monoxide (CO), and carbon dioxide (CO2) were based on federal reference methods. With the existing control strategy for the SCR urea injection, the SCR provided approximately 64% reduction of NOx for engine NY and 36% reduction for engine SI for a complete round trip with less than 6.5 parts per million by volume (ppmv) of ammonia slip during urea injection. Average reductions during the cruise mode were 75% for engine NY and 47% for engine SI, which was operating differently than engine NY. Reductions for the cruise mode during urea injection typically exceeded 94% from both engines, but urea was injected only when the catalyst temperature reached a 300 degrees C threshold pre- and postcatalyst. Data analysis showed a total NOx mass emission split with 80% produced during cruise, and the remaining 20% spread across idle, acceleration, and maneuvering. Examination of continuous NOx data showed that higher reductions of NOx could be achieved on both engines by initiating the urea injection at an earlier point (lower exhaust temperature) in the acceleration and cruise modes of operation. The oxidation catalyst reduced the CO production 94% for engine NY and 82% for engine SI, although the high CO levels

  18. Spatial indeterminacy and power sector carbon emissions accounting

    NASA Astrophysics Data System (ADS)

    Jiusto, J. Scott

    Carbon emission indicators are essential for understanding climate change processes, and for motivating and measuring the effectiveness of carbon reduction policy at multiple scales. Carbon indicators also play an increasingly important role in shaping cultural discourses and politics about nature-society relations and the roles of the state, markets and civil society in creating sustainable natural resource practices and just societies. The analytical and political significance of indicators is tied closely to their objective basis: how accurately they account for the places, people, and processes responsible for emissions. In the electric power sector, however, power-trading across geographic boundaries prevents a simple, purely objective spatial attribution of emissions. Using U.S. states as the unit of analysis, three alternative methods of accounting for carbon emissions from electricity use are assessed, each of which is conceptually sound and methodologically rigorous, yet produces radically different estimates of individual state emissions. Each method also implicitly embodies distinctly different incentive structures for states to enact carbon reduction policies. Because none of the three methods can be said to more accurately reflect "true" emissions levels, I argue the best method is that which most encourages states to reduce emissions. Energy and carbon policy processes are highly contested, however, and thus I examine competing interests and perspectives shaping state energy policy. I explore what it means, philosophically and politically, to predicate emissions estimates on both objectively verifiable past experience and subjectively debatable policy prescriptions for the future. Although developed here at the state scale, the issues engaged and the carbon accounting methodology proposed are directly relevant to carbon analysis and policy formation at scales ranging from the local to the international.

  19. Field Emission and Nanostructure of Carbon Films

    SciTech Connect

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

  20. The carbon emissions of Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, H.; Bi, J.; Zhang, R.; Liu, M.

    2012-03-01

    As increasing urbanization has become a national policy priority for economic growth in China, cities have become important players in efforts to reduce carbon emissions. However, their efforts have been hampered by the lack of specific and comparable carbon emission inventories. Comprehensive carbon emission inventories, which present both a relatively current snapshot and also show how emissions have changed over the past several years, of twelve Chinese cities were developed using bottom-up approach. Carbon emissions in most of Chinese cities rose along with economic growth from 2004 to 2008. Yet per capita carbon emissions varied between the highest and lowest emitting cities by a factor of nearly 7. Average per capita carbon emissions varied across sectors, including industrial energy consumption (64.3%), industrial processes (10.2%), transportation (10.6%), household energy consumption (8.0%), commercial energy consumption (4.3%) and waste processing (2.5%). The levels of per capita carbon emissions in China's cities were higher than we anticipated before comparing them with the average of global cities. This is mainly due to the major contribution of industry sector encompassing industrial energy consumption and industrial processes to the total carbon emissions of Chinese cities.

  1. Carbon dioxide reduction by the Bosch process

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.

    1975-01-01

    Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.

  2. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects. PMID:17674718

  3. Exoelectron Emission of a Carbon Nanomaterial

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Slesarev, A. I.; Tkachev, A. G.

    2008-03-01

    The exoemission properties of a Taunite carbon nanomaterial consisting of nanosized multiwalled nanotubes and nanofibers were investigated by thermally stimulated exoelectron emission (TSEE). The TSEE spectra of the carbon nanomaterial differed from the spectra of pressed graphite. It was assumed that defect—adsorbate complexes were emission-active centers on the surface of the nanomaterial

  4. The Uncertain Carbon Emissions in China

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Guan, D.; Zhang, Q.

    2014-12-01

    Anthropogenic fossil fuel emissions are considered as being well understood with a low uncertainty (9.1 ± 0.5Gt C yr-1). Yet emissions from developing countries have a higher uncertainty, and their increasing trend hence causes the global emission uncertainty to increase with time. By using full transparency emission inventory which the energy consumption, fuel heating values, carbon content and oxidation rate reported separately in sectoal level, here we found new 1.5 Gt C yr-1 (15% of global total) uncertainties of carbon emission inventory, which mainly contributed by the mass energy use and various consumption coal quality in China and India. Increment of coal's carbon emission in China and India are equivalent to 130 % of global total coal's emission growth during 2008-2010, various reported heating value and carbon content of coal consumption result in the different estimates of carbon emission in China and India up to 1.5 C yr-1. These new emerging uncertainties implies a significant mis-estimation of human induced carbon emissions and a new dominating factor in contributing the global carbon budget residual.

  5. Nitrogenase Reduction of Carbon-Containing Compounds

    PubMed Central

    Seefeldt, Lance C.; Yang, Zhi-Yong; Duval, Simon; Dean, Dennis R.

    2013-01-01

    Nitrogenase is an enzyme found in many bacteria and archaea that catalyzes biological dinitrogen fixation, the reduction of N2 to NH3, accounting for the major input of fixed nitrogen into the biogeochemical N cycle. In addition to reducing N2 and protons, nitrogenase can reduce a number of small, non-physiological substrates. Among these alternative substrates are included a wide array of carbon containing compounds. These compounds have provided unique insights into aspects of the nitrogenase mechanism. Recently, it was shown that carbon monoxide (CO) and carbon dioxide (CO2) can also be reduced by nitrogenase to yield hydrocarbons, opening new insights into the mechanism of small molecule activation and reduction by this complex enzyme as well as providing clues for the design of novel molecular catalysts. PMID:23597875

  6. Direct carbon dioxide emissions from civil aircraft

    NASA Astrophysics Data System (ADS)

    Grote, Matt; Williams, Ian; Preston, John

    2014-10-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  7. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R.; Trois, C.

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  8. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    SciTech Connect

    Thompson,G.; Gautam, M; Clark, N; Lyons, D; Carder, D; Riddle, W; Barnett, R; Rapp, B; George, S

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM

  9. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  10. The Uncertain Carbon Emissions in China (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Guan, D.

    2013-12-01

    Anthropogenic fossil fuel emissions are considered as being well understood with a low uncertainty (9.1 × 0.5Gt C yr-1). By using full transparency emission inventory which the energy consumption, fuel heating values, carbon content and oxidation rate reported separately in sectoal level, here we found new 2.1 Gt C yr-1 (23% of global total) uncertainties of carbon emission inventory, which mainly contributed by the mass energy use and consumption coal quality in China and by misunderstanding of fuel quality in international fossil fuel trade. Increment of coal's carbon emission in China and India are equivalent to 130 % of global total coal's emission growth during 2008-2010, by using macro energy statistics and bottom up coal mine datasets, the difference carbon emission estimates from China and India can up to 1.32 C yr-1. Emissions from international trade of coal could produce another 0.08 Gt C yr-1 uncertainty. These new emerging 1.4 Gt C yr-1 uncertainties implies a significant mis-estimation of human induced carbon emissions and a new dominating factor in contributing the global carbon budget residual.

  11. The carbon emissions of Chinese cities

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhang, R.; Liu, M.; Bi, J.

    2012-07-01

    As increasing urbanization has become a national policy priority for economic growth in China, cities have become important players in efforts to reduce carbon emissions. However, their efforts have been hampered by the lack of specific and comparable carbon emission inventories. Comprehensive carbon emission inventories for twelve Chinese cities, which present both a relatively current snapshot and also show how emissions have changed over the past several years, were developed using a bottom-up approach. Carbon emissions in most Chinese cities rose along with economic growth from 2004 to 2008. Yet per capita carbon emissions varied between the highest and lowest emitting cities by a factor of nearly 7. Average contributions of sectors to per capita emissions for all Chinese cities were 65.1% for industrial energy consumption, 10.1% for industrial processes, 10.4% for transportation, 7.7% for household energy consumption, 4.2% for commercial energy consumption and 2.5% for waste processing. However, these shares are characterized by considerable variability due to city-specific factors. The levels of per capita carbon emissions in China's cities were higher than we anticipated before comparing them with the average of ten cities in other parts of the world. This is mainly due to the major contribution of the industry sector in Chinese cities.

  12. Options for lowering U.S. carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Bierbaum, Rosina M.; Friedman, Robert M.; Levenson, Howard; Rapoport, Richard D.; Sundt, Nick

    1992-03-01

    The United States can decrease its emissions of carbon dioxide (CO2) to as much as 35 percent below 1987 levels within the next 25 years by adopting an aggressive package of policies crossing all sectors of the economy. Such emissions reductions will be difficult to achieve and may be costly, but no major technological breakthroughs are needed. In this paper, we identify a ``Tough'' package of energy conservation, energy supply, and forest managment practices to accomplish this level of emissions reductions. We also present a package of cost-effective, ``Moderate'' technical options, which if adopted, would hold CO2 emissions to about 15-percent increase over 1987 levels by 2015. In constrast, if the United State takes not new actions to curb energy use, CO2 emissions will likely rise 50 percent during that time. A variety of Federal policy initiatives will be required to achieve large reductions in U.S. CO2 emissions. Such policy actions will have to include both regulatory ``push'' and market ``pull'' mechanisms--including performance standards, tax incentive programs, carbon-emission or energy taxes, labeling and efficiency ratings, and research, development, and demostration activities.

  13. Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.

    PubMed

    Breeze, Paul

    2008-11-13

    Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020. PMID:18757277

  14. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  15. Propagation of uncertainty in carbon emission scenarios through the global carbon cycle

    SciTech Connect

    Keller, A.A.; Goldstein, R.A. )

    1994-09-01

    The authors used the GLOCO model, which is a carbon cycling model that considers seven terrestrial biomes, two oceans and one atmosphere, to evaluate the rise in atmospheric CO[sub 2] concentration, (pCO[sub 2]) and the partitioning of carbon to the global compartments (ocean, atmosphere and terrestrial) as a function of time for a number of possible anthropogenic carbon emission scenarios, based on different energy policies as developed by the Energy Modeling Forum (EMF-12). The authors then evaluated the possible uncertainty in carbon emission scenarios and the propagation of this uncertainty in carbon emission scenarios and the propagation of this uncertainty throughout the model to obtain an envelope for the rise in pCO[sub 2]. Large fluctuations in the input signal are smoothed by the carbon cycle, resulting in more than a four-fold reduction in uncertainty in the output signal (pCO[sub 2]). In addition, they looked at the effect that other model variables have on the pCO[sub 2] envelope, specifically the ratio of carbon to nitrogen in the emissions. The carbon to nitrogen ratio (C:N) will vary throughout the next century depending on the mix on energy sources chosen. More nitrogen in the emissions can produce a cofertilization effect in the terrestrial biomes, which would lead to sequestration of additional carbon. The uncertainty in C:N will enlarge the pCO[sub 2] uncertainty envelope by up to 20 ppm.

  16. Carbon Footprint of Telemedicine Solutions - Unexplored Opportunity for Reducing Carbon Emissions in the Health Sector

    PubMed Central

    Holmner, Åsa; Ebi, Kristie L.; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    Background The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. Objectives To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. Methods A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Results Replacing physical visits with telemedicine appointments resulted in a significant 40–70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Conclusions Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints. PMID:25188322

  17. Reduction of chlorofluorocarbon emissions from refrigeration systems

    SciTech Connect

    Cordova, A.; Kennicott, M.A.

    1992-09-01

    Recently enacted State and Federal legislation, (The Clean Air Act and Colorado Senate Bill 77), and the implementation of regulations for each, forbid the intentional release of ozone depleting chlorofluorocarbons(CFCs) from refrigeration and air conditioning systems to the atmosphere. In addition, an international agreement (The Montreal Protocol), calls for CFC manufacturing reductions, which began in 1991, and eventual discontinuation. The declining supply and resultant escalating costs of CFCs are additional driving forces toward conservation and reuse of present refrigerant resources. Rocky Flats Plant (RFP) currently has an estimated 42,000 pounds of CFCs in refrigeration and air conditioning systems. The purpose of this paper is to discuss steps being taken at RFP toward the abatement of CFC releases. The main thrust of our efforts is the use of a refrigerant management system, used to recover and recycle our current CFC stock. Additional methods of further reducing CFC emissions will also be discussed. These include the installation of state-of-the-art oil filtration systems on major chiller units, installation of spring-loaded pressure relief valves and the retrofitting of major chiller units to accept less harmful, alternative refrigerants.

  18. Reduction of chlorofluorocarbon emissions from refrigeration systems

    SciTech Connect

    Cordova, A.; Kennicott, M.A.

    1992-01-01

    Recently enacted State and Federal legislation, (The Clean Air Act and Colorado Senate Bill 77), and the implementation of regulations for each, forbid the intentional release of ozone depleting chlorofluorocarbons(CFCs) from refrigeration and air conditioning systems to the atmosphere. In addition, an international agreement (The Montreal Protocol), calls for CFC manufacturing reductions, which began in 1991, and eventual discontinuation. The declining supply and resultant escalating costs of CFCs are additional driving forces toward conservation and reuse of present refrigerant resources. Rocky Flats Plant (RFP) currently has an estimated 42,000 pounds of CFCs in refrigeration and air conditioning systems. The purpose of this paper is to discuss steps being taken at RFP toward the abatement of CFC releases. The main thrust of our efforts is the use of a refrigerant management system, used to recover and recycle our current CFC stock. Additional methods of further reducing CFC emissions will also be discussed. These include the installation of state-of-the-art oil filtration systems on major chiller units, installation of spring-loaded pressure relief valves and the retrofitting of major chiller units to accept less harmful, alternative refrigerants.

  19. Potential of Reduction in CO2 Emission by Biomass Power Generation with Thinning Residues

    NASA Astrophysics Data System (ADS)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    In Japan, forest thinning residues as woody biomass have potential to increase domestic primary energy supply, because there still remain many conifer plantations where thinning is not carried out. However, taking the reduction in carbon stock in forests into account, the additional thinning for energy supply may not contribute to the reduction in CO2 emission. Considering the change in the carbon stock in forests, this paper discusses the potential of reduction in CO2 emission by biomass power generation with thinning residues. As power generation systems with thinning residues, co-firing with coal in a utility's power station and a molten carbonate fuel cell (MCFC) with gasification system are taken into account. The results suggest that the co-firing of woody biomass supplied by the additional thinning at utilities' coal-fired power stations has a potential for reducing overall CO2 emission.

  20. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury

  1. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  2. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  3. Nox Emission Reduction in Commercial Jets Through Water Injection

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Ossello, Chris; Snyder, Chris

    2002-01-01

    This paper discusses a method of the nitrogen oxides (NOx) emission reduction through the injection of water in commercial turbofan engines during the takeoff and climbout cycles. In addition to emission reduction, this method can significantly reduce turbine temperature during the most demanding operational modes (takeoff and climbout) and increase engine reliability and life.

  4. 75 FR 80833 - Shipboard Air Emission Reduction Technology Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ..., 2008, issue of the Federal Register (73 FR 3316). Background and Purpose The U.S. implemented the Clean... SECURITY Coast Guard Shipboard Air Emission Reduction Technology Report AGENCY: Coast Guard, DHS. ACTION..., in conjunction with the Environmental Protection Agency, on Ship Emission Reduction Technology...

  5. Indirect carbon reduction by residential vegetation and planting strategies in Chicago, USA.

    PubMed

    Jo, H K; McPherson, E G

    2001-02-01

    Concern about climate change has evoked interest in the potential for urban vegetation to help reduce the levels of atmospheric carbon. This study applied computer simulations to try to quantify the modifying effects of existing vegetation on the indirect reduction of atmospheric carbon for two residential neighborhoods in north-west Chicago. The effects of shading, evapotranspiration, and windspeed reduction were considered and were found to have decreased carbon emissions by 3.2 to 3.9% per year for building types in study block 1 where tree cover was 33%, and -0.2 to 3.8% in block 2 where tree cover was 11%. This resulted in a total annual reduction of carbon emission averaging 158.7 (+/- 12.8) kg per residence in block 1 and 18.1 (+/- 5.4) kg per residence in block 2. Windspeed reduction greatly contributed to the decrease of carbon emission. However, shading increased annual carbon emission from the combined change in heating and cooling energy use due to many trees in the wrong locations, which increase heating energy use during the winter. The increase of carbon emission from shading is somewhat specific to Chicago, due in part to the large amount of clean, nuclear-generated cooling energy and the long heating season. In Chicago, heating energy is required for about eight months from October to May and cooling energy is used for the remaining 4 months from June to September. If fossil fuels had been the primary source for cooling energy and the heating season had been shorter, the shading effects on the reduction of carbon emission would be greater. Planting of large trees close to the west wall of buildings, dense planting on the north, and avoidance of planting on the south are recommended to maximize indirect carbon reduction by residential vegetation, in Chicago and other mid and high-latitude cities with long heating seasons. PMID:11381773

  6. Managing carbon emissions in China through building energy efficiency.

    PubMed

    Li, Jun; Colombier, Michel

    2009-06-01

    This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework. PMID:19344996

  7. The carbon dioxide emissions game: Playing the net

    SciTech Connect

    Richards, K.R.; Edmonds, J.A.; Rosenthal, D.H.; Wise, M.

    1993-06-01

    Concern about rising concentrations of carbon dioxide in the earth`s atmosphere has led to calls for the United States and other countries to reduce carbon emissions. These concerns resulted in the signing of the Framework Convention on Climate Change at the United Nations Conference on the Environment and Development in Rio de Janeiro in June 1992. The Framework calls for nations to develop action plans for limiting emissions of carbon and other greenhouse gases. In December 1992, in accordance with the Framework, the US Government released for public comment its National Action Plan for Global Climate Change (US Department of State, 1992). The Action Plan detailed steps for reducing carbon emissions by 93 to 130 million metric tons (MMT) by 2000. Some of the steps included in the Action Plan were reforming regulations, setting energy standards, promoting research and development of new energy technologies, expanding the use of alternative-fueled vehicles, and planting trees to sequester carbon. This paper explores the economic implications of implementing a much larger tree-planting program than the one presented in the Action Plan. Whereas the Action Plan estimated that 5 to 9 MMT of carbon (MMTC) could be sequestered in 2000 (with perhaps threefold increases in sequestration in later years when trees are growing the fastest), the program being considered in this analysis annually sequesters as much as 231 MMTC during its peak years. Our analysis focuses on how much the costs of stabilizing US carbon emissions at 1990 levels are reduced when economic criteria alone determine the number of trees that will be used. Our results show that when the focus is shifted from stabilization of gross emissions to net emissions the cost reductions are dramatic, about 20 to 80 percent depending on the assumed cost of trees. Political and institutional obstacles to the formation of such a cost effective response are explored in the conclusions.

  8. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.

    PubMed

    Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

    2013-01-01

    Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved. PMID:24074024

  9. Allowable carbon emissions lowered by multiple climate targets.

    PubMed

    Steinacher, Marco; Joos, Fortunat; Stocker, Thomas F

    2013-07-11

    Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions. PMID:23823728

  10. Can reducing black carbon emissions counteract global warming?

    SciTech Connect

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  11. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs. PMID:24943886

  12. Coal companies hope to receive carbon credits for methane reductions

    SciTech Connect

    2007-09-30

    Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The example they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.

  13. Hydrogen sensing characteristics from carbon nanotube field emissions

    NASA Astrophysics Data System (ADS)

    Dong, Changkun; Luo, Haijun; Cai, Jianqiu; Wang, Fuquan; Zhao, Yangyang; Li, Detian

    2016-03-01

    An innovative hydrogen sensing concept is demonstrated based on the field emission from multi-walled carbon nanotubes, where the low emission currents rise in proportion to hydrogen partial pressures above 10-9 Torr. Experimental and first principles studies reveal that the sensing mechanism is attributed to the effective work function reduction from dissociative hydrogen chemisorption. The embedded Ni catalyst would assist both the hydrogen dissociation and work function reduction. This technique is promising to build miniature low cost hydrogen sensors for multiple applications. This work is valuable for studies of nanocarbon-gas reaction mechanisms and the work function properties in adsorption related applications, including field emission, hydrogen storage, energy cells, and gas sensing.

  14. Hydrogen sensing characteristics from carbon nanotube field emissions.

    PubMed

    Dong, Changkun; Luo, Haijun; Cai, Jianqiu; Wang, Fuquan; Zhao, Yangyang; Li, Detian

    2016-03-14

    An innovative hydrogen sensing concept is demonstrated based on the field emission from multi-walled carbon nanotubes, where the low emission currents rise in proportion to hydrogen partial pressures above 10(-9) Torr. Experimental and first principles studies reveal that the sensing mechanism is attributed to the effective work function reduction from dissociative hydrogen chemisorption. The embedded Ni catalyst would assist both the hydrogen dissociation and work function reduction. This technique is promising to build miniature low cost hydrogen sensors for multiple applications. This work is valuable for studies of nanocarbon-gas reaction mechanisms and the work function properties in adsorption related applications, including field emission, hydrogen storage, energy cells, and gas sensing. PMID:26890686

  15. Exercise based transportation reduces oil consumption and carbon emissions

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.

    2004-12-01

    Current abuse and misrepresentation of science hinders society's ability to address climate change. Scientific abuse results, in part, from a widespread perception that curbing emissions will require substantial economic, political, or personal sacrifice. Here I provide one example to illustrate that this perception is false. Simply walking or biking the amount recommended for a healthy lifestyle could reduce carbon emissions up to 11 percent if the distances traveled were substituted for car travel. This level of exercise is also sufficient to eliminate obese and overweight conditions in a few years without draconian diet plans. A reduction in carbon dioxide emissions of roughly 35 percent is possible if the revenue saved through decreased health care spending on obesity is redirected toward carbon abatement. This emissions reduction far exceeds that required by the Kyoto Protocol at no net cost. Finally, widespread substitution of driving with distances traveled during recommended daily exercise would considerably ease societal dependence on oil, which leads not only to climate change but also to air pollution, political and economic instability and habitat degradation. Thus, exercise based transportation constitutes a potentially favorable alternative to the energy and diet plans that are currently under consideration and a substantial step toward dealing with the threat of climate change.

  16. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  17. Will peak oil accelerate carbon dioxide emissions?

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  18. REDUCTION OF CO2 EMISSIONS FROM MOBILE SOURCES BY ALTERNATIVE FUELS DERIVED FROM BIOMASS

    EPA Science Inventory

    The paper discusses process options for utilizing biomass to obtain greatest reduction of carbon dioxide (CO2) emissions from motor vehicles at least cost. (NOTE: The Energy Policy Act of 1992 seeks to displace 30% of the U.S. petroleum requirement by the year 2010 with an altern...

  19. The Megacities Carbon Project: measuring urban carbon emissions

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Kort, E. A.; Miller, C. E.

    2012-12-01

    Carbon emissions from cities represent the single largest human contribution to climate change. Robust verification of emission changes due to growth or stabilization policies requires that we establish measurement baselines today and begin monitoring representative megacities immediately. An observing system designed to monitor the localized enhancements ("urban domes") of carbon dioxide and methane associated with cities must include a tiered set of surface, airborne, and satellite sensors and a framework for integrating top-down (atmospheric) and bottom-up (activity) data. We present a vision, strategy, requirements, and roadmap for an international effort to assess directly the carbon emission trends of the world's megacities. We describe a new coordinated pilot project for the megacities of Los Angeles and Paris that leverages and extends established measurement infrastructure in those cities and techniques being developed in methodological studies of smaller cities.

  20. Black carbon reduction will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  1. Reduction of Carbon Monoxide. Past Research Summary

    DOE R&D Accomplishments Database

    Schrock, R. R.

    1982-01-01

    Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

  2. Reduction of carbon monoxide. Past research summary

    SciTech Connect

    Schrock, R.R.

    1981-10-01

    Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

  3. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. PMID:27428600

  4. Wildfire effects on carbon stocks and emissions in fuels treated forests (Invited)

    NASA Astrophysics Data System (ADS)

    North, M.; Hurteau, M.

    2010-12-01

    The large carbon stores of many of the worlds’ forests are prone to reversal from wildfire. Fuels treatments can reduce wildfire emissions but at an immediate carbon reduction cost. Comparing these tradeoffs in forest burned by wildfire, we found treatments reduced wildfire emissions by 58% but total carbon loss, including biomass removed, was higher than in untreated forest. However with only 3% of trees alive, untreated forests have more than 70% of their carbon in decomposing stocks likely making them a carbon source for several decades. In wildfire burned forest, fuels treatments have a higher immediate carbon loss ‘cost’, but a significant long-term benefit in avoided emissions from decomposition and reductions in carbon storage.

  5. Human factors engineering for the TERF (Tritium Emissions Reduction Facility) project. [Tritium Emissions Reduction Facility

    SciTech Connect

    Hedley, W.H.; Adams, F.S. ); Wells, J.E. )

    1990-12-14

    The Tritium Emissions Reduction Facility (TERF) is being built by EG G Mound Applied Technologies to provide improved control of the tritium emissions from gas streams being processed. Mound handles tritium in connection with production, development, research, disassembly, recovery, and surveillance operations. During these operations, a small fraction of the tritium being processed escapes from its original containment. The objective of this report is to describe the human factors engineering as performed in connection with the design, construction, and testing of the TERF as required in DOE Order 6430.1A, section 1300-12. Human factors engineering has been involved at each step of the process and was considered during the preliminary research on tritium capture before selecting the specific process to be used. Human factors engineering was also considered in determining the requirements for the TERF and when the specific design work was initiated on the facility and the process equipment. Finally, human factors engineering was used to plan the specific acceptance tests that will be made during TERF installation and after its completion. These tests will verify the acceptability of the final system and its components. 16 refs., 8 figs.

  6. Global cost estimates of reducing carbon emissions through avoided deforestation

    PubMed Central

    Kindermann, Georg; Obersteiner, Michael; Sohngen, Brent; Sathaye, Jayant; Andrasko, Kenneth; Rametsteiner, Ewald; Schlamadinger, Bernhard; Wunder, Sven; Beach, Robert

    2008-01-01

    Tropical deforestation is estimated to cause about one-quarter of anthropogenic carbon emissions, loss of biodiversity, and other environmental services. United Nations Framework Convention for Climate Change talks are now considering mechanisms for avoiding deforestation (AD), but the economic potential of AD has yet to be addressed. We use three economic models of global land use and management to analyze the potential contribution of AD activities to reduced greenhouse gas emissions. AD activities are found to be a competitive, low-cost abatement option. A program providing a 10% reduction in deforestation from 2005 to 2030 could provide 0.3–0.6 Gt (1 Gt = 1 × 105 g) CO2·yr−1 in emission reductions and would require $0.4 billion to $1.7 billion·yr−1 for 30 years. A 50% reduction in deforestation from 2005 to 2030 could provide 1.5–2.7 Gt CO2·yr−1 in emission reductions and would require $17.2 billion to $28.0 billion·yr−1. Finally, some caveats to the analysis that could increase costs of AD programs are described. PMID:18650377

  7. Reduction of hydrocarbon emissions can be costly

    SciTech Connect

    Menke, T.R.

    1997-12-31

    The purpose of this paper is to share the Lone Star Greencastle Indiana Plant`s, experiences with changing raw materials in the kiln feed to reduce hydrocarbons emissions. The original change of the plant`s kiln feed composition was made in July of 1995. The plant changed the kiln feed composition for the first time since the plant opened. Shale was replaced in the kiln feed composition with clay, mill scale, and foundry sand, solely to reduce hydrocarbon emissions. At the time it was something that had to be done to keep burning liquid waste, in order to comply with the BIF Tier II limit of 20 ppm of hydrocarbon emissions. The change of raw materials did accomplish what it was supposed to by reducing the hydrocarbon emissions under the allowable limit. Plant personnel did not want to change raw materials, but did not have much of a choice, and had no idea of the repercussions that would follow. I will discuss the positives and negatives of the different raw mix compositions. 3 figs., 13 tabs.

  8. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  9. Reduced environmental emissions and carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural ecosystems can play a significant role in the production and consumption of greenhouse gases, specifically, carbon dioxide. Information is needed on the mechanism and magnitude of gas generation and emission from agricultural soils with specific emphasis on tillage mechanisms. The objec...

  10. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  11. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  12. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  13. The Land Use Planning Imperative: Applying Carbon Emissions Analyses

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Havens, G.

    2007-12-01

    which demonstrates the impact of those emissions. This session presents a new approach and methodology for integrating calculating carbon emissions and land use planning to increase the accessibility of carbon dioxide emissions data, transforming our conception of how the built environment can function in a more sustainable way. The emergence of the public and institutional interest in reducing carbon emissions advances the question of how climate science may be applied and translated for a public audience to develop effective, measurable carbon reduction strategies. Building on the growing momentum in the higher education sector in the United States, land use planners are grappling with the integration of carbon reduction and the transformation of the built environment, particularly at college campuses. A critical first step in reducing carbon emissions is to complete a greenhouse gas inventory. In recent years, universities have adopted challenges to become climate neutral through operations, buildings, and transportation. This session will present two case studies at universities of how land use planning integrates scientific data and suggested methodology from the IPCC, the Chicago Climate Exchange, the Kyoto Protocol, and various other climate action registries in order to demonstrate a university's contribution to global warming. By developing a methodology for calculating CO2 emissions, land use planning and climate science can collectively formulate strategies for a more sustainable future.

  14. Characterizing the carbon emissions of megacities

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Gurney, K. R.; Hutyra, L.; Miller, C. E.; Kort, E. A.; Rao, P.; Eldering, A.

    2014-12-01

    Anthropogenic carbon emissions from cities and their power plants represent the single largest human contribution to climate change. Many cities with large fossil-fuel CO2 and CH4 fluxes are undergoing rapid change due to development, urbanization, energy sector transformations and/or climate mitigation actions. Meanwhile, flux estimation uncertainties at these finer spatial scales remain significantly larger than those at the continental and national scales addressed by traditional carbon estimation techniques. Improved quantification and understanding of underlying processes at the urban scale will not only provide policy-relevant information and improve the understanding of urban dynamics and future scenarios, but will translate into better global-scale anthropogenic flux estimates, and advance our understanding of carbon cycle and climate feedbacks across multiple scales. An observing system including a tiered set of surface, airborne, and satellite sensors combined with process-based flux quantification from the bottom-up, can be focused spatially and sectorally to address these challenges. A thoughtfully crafted research program that is grounded in sustained, dense observations relevant to estimating urban carbon fluxes and their controlling processes and is focused on a statistically significant sample of cities will advance our understanding of the carbon cycle. We describe the Megacities Carbon Project as an example for developing and validating the integrated application of atmospheric observations from localized surface networks, aircraft campaigns, and satellites with an analytical construct for linking atmospheric information with the human activities that drive emissions.

  15. Combustor concepts for aircraft gas turbine low-power emissions reduction

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved.

  16. Combustor concepts for aircraft gas turbine low-power emissions reduction

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Three combustor concepts have been designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the Hot Wall Combustor employs a thermal barrier coating and impingement cooled liners, the Recuperative Cooling Combustor preheats the air before entering the combustion chamber, and the Catalytic Converter Combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultra-low levels of unburned hydrocarbons and carbon monoxide emissions can be achieved with this technology.

  17. Carbon dioxide emissions from international air freight

    NASA Astrophysics Data System (ADS)

    Howitt, Oliver J. A.; Carruthers, Michael A.; Smith, Inga J.; Rodger, Craig J.

    2011-12-01

    Greenhouse gas emissions from international air transport were excluded from reduction targets under the Kyoto Protocol, partly because of difficulties with quantifying and apportioning such emissions. Although there has been a great deal of recent research into calculating emissions from aeroplane operations globally, publicly available emissions factors for air freight emissions are scarce. This paper presents a methodology to calculate the amount of fuel burnt and the resulting CO 2 emissions from New Zealand's internationally air freighted imports and exports in 2007. This methodology could be applied to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements, and assumptions on mean passenger loadings and the mass of passengers and air freight, CO 2 emissions factors of 0.82 kg CO 2 per t-km and 0.69 kg CO 2 per t-km for short-haul and long-haul journeys, respectively, were calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports and exports was calculated to be 0.21 Mt and 0.17 Mt respectively, with corresponding CO 2 emissions of 0.67 Mt and 0.53 Mt.

  18. Sharing global CO2 emission reductions among one billion high emitters

    PubMed Central

    Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo

    2009-01-01

    We present a framework for allocating a global carbon reduction target among nations, in which the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we build up a global CO2 distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO2-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by “Business as Usual” projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO2 would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO2 emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled. PMID:19581586

  19. How Effective are Cooperative Emission Reduction Policies?

    NASA Astrophysics Data System (ADS)

    Moberg, C. C.

    2006-12-01

    Management of air resources in the United States is a highly contentious endeavor based in application of cutting-edge scientific research. New policies created to facilitate better science-based management of air resources are one example of ho integrating research practice with scientific goals can benefit society at large. Wisconsin's Environmental Cooperation Pilot Program (ECPP) and Green Tier Law (GT) are state initiatives that attempt to recast the relationship between government regulators and regulated firms by increasing the degree of emission flexibility allowed under Wisconsin's permitting process. While still in their infancy, these programs have attracted a large degree of national attention for the innovative mechanisms they incorporate to reach this goal. Specifically, their mandated use of Environmental Management Systems (EMSs) as a prerequisite for program eligibility has drawn both praise and ire from various observers both within the state and in the country at large. This study analyzes the effect of this program on each participating firm's emissions of criteria air pollutants from 1990 through 2004. Conclusions drawn through the statistical evaluation are supported by interviews with both regulators and participating firms. Results show that the programs have succeeded in certain specific cases by greatly improving a firm's air emissions, but that the mean trend for all participants is much less significant. Using the Wisconsin activities as case studies, we examine the potential for joint public-private cooperation as an conduit for incorporating scientific results into policy and private action. "Lessons learned" from ECPP and GT are identified, and used to suggest future directions in air quality policy.

  20. Field emission study of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Xin

    Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work

  1. Tracing Fuel Component Carbon in the Emissions from Diesel Engines

    SciTech Connect

    Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

    2002-10-14

    The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

  2. Tracing fuel component carbon in the emissions from diesel engines

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Mueller, Charles J.; Martin, Glen C.; Cheng, A. S.; Dibble, Robert W.; Frantz, Brian R.

    2004-08-01

    The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place 14C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in 14C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific 14C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO2, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable 14C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of 14C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

  3. Global civil aviation black carbon emissions.

    PubMed

    Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H

    2013-09-17

    Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions. PMID:23844612

  4. Adaptive engine injection for emissions reduction

    DOEpatents

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  5. Electrocatalytic Reduction of Carbon Dioxide to Methane

    NASA Technical Reports Server (NTRS)

    Sammells, Anthony F.; Spiegel, Ella F.

    2008-01-01

    A room-temperature electrocatalytic process that effects the overall chemical reaction CO2 + 2H2O yields CH4 + 2O2 has been investigated as a means of removing carbon dioxide from air and restoring oxygen to the air. The process was originally intended for use in a spacecraft life-support system, in which the methane would be vented to outer space. The process may also have potential utility in terrestrial applications in which either or both of the methane and oxygen produced might be utilized or vented to the atmosphere. A typical cell used to implement the process includes a polymer solid-electrolyte membrane, onto which are deposited cathode and anode films. The cathode film is catalytic for electrolytic reduction of CO2 at low overpotential. The anode film is typically made of platinum. When CO2 is circulated past the cathode, water is circulated past the anode, and a suitable potential is applied, the anode half-cell reaction is 4H2O yields 2O2 + 8H(+) + 8e(-). The H(+) ions travel through the membrane to the cathode, where they participate in the half-cell reaction CO2 + 8H(+) + 8e(-) yields CH4 + 2H2O.

  6. In-home demonstration of the reduction of woodstove emissions from the use of densified logs

    SciTech Connect

    Barnett, S.G.; Bighouse, R.D.

    1992-07-07

    There is a need to reduce emissions from conventional wood stoves in the short-term while stove replacement takes place over the longer term. One possible is to use fuels that would burn cleaner than cordwood. Densified fuels have been commercially available for years and offer such a possibility. The objective of this project was to evaluate the emissions and efficiency performance of two commercially available densified log types in homes and compare their performance with cordwood. Researchers measured particulate matter (PM), carbon monoxide (CO), and volatile organic matter (VOC) emissions. Both total VOC and methane values are presented. Each home used an Automated Woodstove Emissions Sampler system, developed for the EPA and Bonneville Power Administration, in a series of four week-long tests for each stove. The sequence of tests in each stove was cordwood, Pres-to-Logs, Eco-Logs, and a second, confirming test using Pres-to-Logs. Results show an average reduction of 52% in PM grams per hour emissions overall for the nine stoves using Pres-to-Logs. All nine stoves displayed a reduction in PM emissions. CO emissions were more modestly reduced by 27%, and VOCs were reduced 39%. The emissions reduction percentage was similar for both types of stoves.

  7. In-Home Demonstration of the Reduction of Woodstove Emissions from the Use of Densified Logs.

    SciTech Connect

    Barnett, Stockton G.; Bidhouse, Roger D.

    1992-07-07

    There is a need to reduce emissions from conventional wood stoves in the short-term while stove replacement takes place over the longer term. One possible is to use fuels that would burn cleaner than cordwood. Densified fuels have been commercially available for years and offer such a possibility. The objective of this project was to evaluate the emissions and efficiency performance of two commercially available densified log types in homes and compare their performance with cordwood. Researchers measured particulate matter (PM), carbon monoxide (CO), and volatile organic matter (VOC) emissions. Both total VOC and methane values are presented. Each home used an Automated Woodstove Emissions Sampler system, developed for the EPA and Bonneville Power Administration, in a series of four week-long tests for each stove. The sequence of tests in each stove was cordwood, Pres-to-Logs, Eco-Logs, and a second, confirming test using Pres-to-Logs. Results show an average reduction of 52% in PM grams per hour emissions overall for the nine stoves using Pres-to-Logs. All nine stoves displayed a reduction in PM emissions. CO emissions were more modestly reduced by 27%, and VOCs were reduced 39%. The emissions reduction percentage was similar for both types of stoves.

  8. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    NASA Astrophysics Data System (ADS)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  9. In Brief: Reducing black carbon emissions could immediately reduce global temperature increases

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    A new assessment by the United Nations Environment Programme (UNEP) shows that measures to reduce emissions of black carbon, or soot, which is produced through burning of wood and other biofuels as well as by some industrial processes, could improve public health and help to significantly reduce projected global temperature increases. The Integrated Assessment of Black Carbon and Tropospheric Ozone highlights how specific measures targeting black carbon and other emissions from fossil fuel extraction, residential wood-burning cooking, diesel vehicles, waste management, agriculture, and small industries could affect climate. Full implementation of a variety of measures to reduce black carbon and methane emissions could reduce future global warming by about 0.5°C, the assessment found. Reducing black carbon could have substantial benefits in the Arctic, the Himalayas, and other snow-covered regions because black carbon that settles on top of snow absorbs heat, speeding melting of snow and ice. Black carbon emission reductions would affect global temperatures more quickly than carbon dioxide emission reductions. Furthermore, reducing black carbon emissions would improve public health in the regions that emit large amounts of the harmful air pollutant.

  10. NOx Emission Reduction by Oscillating combustion

    SciTech Connect

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  11. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  12. Impact of historical air pollution emissions reductions on nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Loughner, C.; Tzortziou, M.; Duffy, M.; Duncan, B. N.; Hains, J.; Pickering, K. E.; Yoshida, Y.; Follette-Cook, M. B.

    2013-12-01

    There have been significant NOx emissions reductions since 2002 in the eastern and central US through a combination of the Environmental Protection Agency (EPA) NOx State Implementation Plan (SIP) call, which required 22 states and the District of Columbia to regulate NOx emissions to mitigate ozone transport, the NOx Budget Trading Program, subsequent EPA rules, court-orders, and state regulations. As reported by the EPA's National Emissions Inventory (NEI), NOx emissions nationwide have been reduced by 37% between 2002 and 2011. The benefit of these emissions reductions on decreasing nitrogen deposition onto terrestrial and aquatic ecosystems will be presented by comparing CMAQ air quality model simulations for July 2011 from a 12 km domain over the eastern US and a 4 km domain over the Mid-Atlantic with anthropogenic emissions appropriate for 2002 and 2011. Previously we showed that the historical emissions reductions from 2002 to 2011 prevented 9 to 13 ozone standard exceedance days throughout much of the Ohio River Valley and 3 to 9 ozone exceedance days throughout the Baltimore-Washington metropolitan area for the month of July 2011. Here, we focus on how the historical emissions reductions decreased nitrogen deposition, subsequently benefiting terrestrial and aquatic ecosystems. The base case simulation with emissions appropriate for 2011 everywhere was evaluated with ground-, ship-, aircraft-, and satellite-based observations, which include measurements made during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) and GeoCAPE-CBODAQ (Geostationary Coastal and Air Pollution Events-Chesapeake Bay Oceanographic Campaign with DISCOVER-AQ) field campaigns.

  13. Earth system responses to cumulative carbon emissions

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2015-07-01

    Information on the relationship between cumulative fossil carbon emissions and multiple climate targets are essential to design emission mitigation and climate adaptation strategies. In this study, the transient responses in different climate variables are quantified for a large set of multi-forcing scenarios extended to year 2300 towards stabilization and in idealized experiments using the Bern3D-LPJ carbon-climate model. The model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte-Carlo type framework. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.88 °C (68 % confidence interval (c.i.): 1.28 to 2.69 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and in steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic Meridional Overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The slopes of the relationships change when CO2 is stabilized. The Transient Climate Response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the Equilibrium Climate Sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models, but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  14. Greenhouse gas emission accounting and management of low-carbon community.

    PubMed

    Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

    2012-01-01

    As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO₂ emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO₂ emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

  15. Greenhouse Gas Emission Accounting and Management of Low-Carbon Community

    PubMed Central

    Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

    2012-01-01

    As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO2 emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO2 emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

  16. Power Plant Emission Reductions Using a Generation Performance Standard

    EIA Publications

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  17. Emissions reductions from expanding state-level renewable portfolio standards.

    PubMed

    Johnson, Jeremiah X; Novacheck, Joshua

    2015-05-01

    In the United States, state-level Renewable Portfolio Standards (RPS) have served as key drivers for the development of new renewable energy. This research presents a method to evaluate emissions reductions and costs attributable to new or expanded RPS programs by integrating a comprehensive economic dispatch model and a renewable project selection model. The latter model minimizes incremental RPS costs, accounting for renewable power purchase agreements (PPAs), displaced generation and capacity costs, and net changes to a state's imports and exports. We test this method on potential expansions to Michigan's RPS, evaluating target renewable penetrations of 10% (business as usual or BAU), 20%, 25%, and 40%, with varying times to completion. Relative to the BAU case, these expanded RPS policies reduce the CO2 intensity of generation by 13%, 18%, and 33% by 2035, respectively. SO2 emissions intensity decreased by 13%, 20%, and 34% for each of the three scenarios, while NOx reductions totaled 12%, 17%, and 31%, relative to the BAU case. For CO2 and NOx, absolute reductions in emissions intensity were not as large due to an increasing trend in emissions intensity in the BAU case driven by load growth. Over the study period (2015 to 2035), the absolute CO2 emissions intensity increased by 1% in the 20% RPS case and decreased by 6% and 22% for the 25% and 40% cases, respectively. Between 26% and 31% of the CO2, SO2, and NOx emissions reductions attributable to the expanded RPS occur in neighboring states, underscoring the challenges quantifying local emissions reductions from state-level energy policies with an interconnected grid. Without federal subsidies, the cost of CO2 mitigation using an RPS in Michigan is between $28 and $34/t CO2 when RPS targets are met. The optimal renewable build plan is sensitive to the capacity credit for solar but insensitive to the value for wind power. PMID:25884101

  18. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  19. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction

    NASA Astrophysics Data System (ADS)

    Kumar, Bijandra; Asadi, Mohammad; Pisasale, Davide; Sinha-Ray, Suman; Rosen, Brian A.; Haasch, Richard; Abiade, Jeremiah; Yarin, Alexander L.; Salehi-Khojin, Amin

    2013-12-01

    The development of an efficient catalyst system for the electrochemical reduction of carbon dioxide into energy-rich products is a major research topic. Here we report the catalytic ability of polyacrylonitrile-based heteroatomic carbon nanofibres for carbon dioxide reduction into carbon monoxide, via a metal-free, renewable and cost-effective route. The carbon nanofibre catalyst exhibits negligible overpotential (0.17 V) for carbon dioxide reduction and more than an order of magnitude higher current density compared with the silver catalyst under similar experimental conditions. The carbon dioxide reduction ability of carbon nanofibres is attributed to the reduced carbons rather than to electronegative nitrogen atoms. The superior performance is credited to the nanofibrillar structure and high binding energy of key intermediates to the carbon nanofibre surfaces. The finding may lead to a new generation of metal-free and non-precious catalysts with much greater efficiency than the existing noble metal catalysts.

  20. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    PubMed

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects. PMID:21305889

  1. The 11 Micron Emissions of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Goebel, J. H.; Cheeseman, P.; Gerbault, F.

    1995-08-01

    A new classification scheme of the IRAS LRS carbon stars is presented. It comprises the separation of 718 probable carbon stars into 12 distinct self-similar spectral groupings. Continuum temperatures are assigned and range from 470 to 5000 K. Three distinct dust species are identifiable: SiC, α: C-H, and MgS. In addition to the narrow 11+ microns emission feature that is commonly attributed to SiC, a broad 11+ microns emission feature, that is correlated with the 8.5 and 7.7 microns features, is found and attributed to α:C-H. SiC and α:C-H band strengths are found to correlate with the temperature progression among the Classes. We find a spectral sequence of Classes that reflects the carbon star evolutionary sequence of spectral types, or alternatively developmental sequences of grain condensation in carbon-rich circumstellar shells. If decreasing temperature corresponds to increasing evolution, then decreasing temperature corresponds to increasing C/O resulting in increasing amounts of carbon rich dust, namely α: C-H. If decreasing the temperature corresponds to a grain condensation sequence, then heterogeneous, or induced nucleation scenarios are supported. SiC grains precede α: C-H and form the nuclei for the condensation of the latter material. At still lower temperatures, MgS appears to be quite prevalent. No 11.3 microns PAH features are identified in any of the 718 carbon stars. However, one of the coldest objects, IRAS 15048-5702, and a few others, displays an 11.9 microns emission feature characteristic of laboratory samples of coronene. That feature corresponds to the C-H out of plane deformation mode of aromatic hydrocarbon. This band indicates the presence of unsaturated, sp3, hydrocarbon bonds that may subsequently evolve into saturated bonds, sp2, if, and when, the star enters the planetary nebulae phase of stellar evolution. The effusion of hydrogen from the hydrocarbon grain results in the evolution in wavelength of this 11.9 microns emission

  2. The 11 Micron Emissions of Carbon Stars

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Cheeseman, P.; Gerbault, F.

    1995-01-01

    A new classification scheme of the IRAS LRS carbon stars is presented. It comprises the separation of 718 probable carbon stars into 12 distinct self-similar spectral groupings. Continuum temperatures are assigned and range from 470 to 5000 K. Three distinct dust species are identifiable: SiC, alpha:C-H, and MgS. In addition to the narrow 11 + micron emission feature that is commonly attributed to SiC, a broad 11 + micron emission feature, that is correlated with the 8.5 and 7.7 micron features, is found and attributed to alpha:C-H. SiC and alpha:C-H band strengths are found to correlate with the temperature progression among the Classes. We find a spectral sequence of Classes that reflects the carbon star evolutionary sequence of spectral types, or alternatively developmental sequences of grain condensation in carbon-rich circumstellar shells. If decreasing temperature corresponds to increasing evolution, then decreasing temperature corresponds to increasing C/O resulting in increasing amounts of carbon rich dust, namely alpha:C-H. If decreasing the temperature corresponds to a grain condensation sequence, then heterogeneous, or induced nucleation scenarios are supported. SiC grains precede alpha:C-H and form the nuclei for the condensation of the latter material. At still lower temperatures, MgS appears to be quite prevalent. No 11.3 micron PAH features are identified in any of the 718 carbon stars. However, one of the coldest objects, IRAS 15048-5702, and a few others, displays an 11.9 micron emission feature characteristic of laboratory samples of coronene. That feature corresponds to the C-H out of plane deformation mode of aromatic hydrocarbon. This band indicates the presence of unsaturated, sp(sup 3), hydrocarbon bonds that may subsequently evolve into saturated bonds, sp(sup 2), if, and when, the star enters the planetary nebulae phase of stellar evolution. The effusion of hydrogen from the hydrocarbon grain results in the evolution in wavelength of this

  3. Scenarios of U.S. Carbon Reductions: Potential Impacts of Energy-Efficient and Low-Carbon Technologies by 2010 and Beyond

    SciTech Connect

    Brown, M.A.

    1997-01-01

    This report presents the results of a study conducted by five US Department of Energy national laboratories that quantifies the potential for energy-efficient and low-carbon technologies to reduce carbon emissions in the US. The stimulus for this study derives from a growing recognition that any national effort to reduce the growth of greenhouse gas emissions must consider ways of increasing the productivity of energy use. To add greater definition to this view, they quantify the reductions in carbon emissions that can be attained through the improved performance and increased penetration of efficient and low-carbon technologies by the year 2010. They also take a longer-term perspective by characterizing the potential for future research and development to produce further carbon reductions over the next quarter century. As such, this report makes a strong case for the value of energy technology research, development, demonstration, and diffusion as a public response to global climate change. Three overarching conclusions emerge from their analysis of alternative carbon reduction scenarios. First, a vigorous national commitment to develop and deploy cost-effective energy-efficient and low-carbon technologies could reverse the trend toward increasing carbon emissions. Along with utility sector investments, such a commitment could halt the growth in US energy consumption and carbon emissions so that levels in 2010 are close to those in 1997 (for energy) and in 1990 (for carbon). It must be noted that such a vigorous national commitment would have to go far beyond current efforts. Second, if feasible ways are found to implement the carbon reductions, the cases analyzed in the study are judged to yield energy savings that are roughly equal to or greater than costs. Third, a next generation of energy-efficient and low-carbon technologies promises to enable the continuation of an aggressive pace of carbon reductions over the next quarter century.

  4. Theoretical studies of the reduction of ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Li, Tao; Balbuena, Perla B.

    2000-02-01

    A mechanism for the reduction of ethylene carbonate proposed by D. Aurbach, M.D. Levi, E. Levi and A. Schechter [J. Phys. Chem. B 101 (1997) 2195] is analyzed using quantum ab initio and classical transition state theory methods. The reduction reaction leads to open-chain anion products. The two-electron transfer reduction mechanism forming carbonate and ethylene di-carbonate radical anions is thermodynamically feasible. The first electron transfer is the rate-determining step. Further reaction of the carbonate ion with lithium ion or with another ethylene carbonate molecule yields Li 2CO 3 as the most probable product, with lithium ethylene di-carbonate most likely to be present at high solvent concentrations.

  5. EMISSIONS REDUCTION DATA FOR GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS

    EPA Science Inventory

    This study measured the pollutant emission reduction potential of 29 photovoltaic (PV) systems installed on residential and commercial building rooftops across the U.S. from 1993 through 1997. The U.S. Environmental Protection Agency (EPA) and 21 electric power companies sponsor...

  6. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  7. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  8. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  9. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  10. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  11. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    SciTech Connect

    Yang, Yayun; Zhao, Tao; Wang, Yanan Shi, Zhaohui

    2015-11-15

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions, and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.

  12. Options for reducing carbon dioxide emissions

    SciTech Connect

    Rosenfeld, A.H.; Price, L.

    1991-08-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

  13. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  14. China's Energy and Carbon Emissions Outlook to 2050

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-02-15

    As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and

  15. Environment, Renewable Energy and Reduced Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Sen, S.; Khazanov, G.; Kishimoto, Y.

    2011-01-01

    Increased energy security and reduced carbon emissions pose significant challenges for science and technology. However, they also create substantial opportunities for innovative research and development. In this review paper, we highlight some of the key opportunities and mention public policies that are needed to enable the efforts and to maximize the probability of their success. Climate is among the uttermost nonlinear behaviors found around us. As recent studies showed the possible effect of cosmic rays on the Earth's climate, we investigate how complex interactions between the planet and its environment can be responsible for climate anomalies.

  16. Climate and mortality changes due to reductions in household cooking emissions

    NASA Astrophysics Data System (ADS)

    Bergman, Tommi; Mielonen, Tero; Arola, Antti; Kokkola, Harri

    2016-04-01

    Household cooking is a significant cause for health and environmental problems in the developing countries. There are more than 3 billion people who use biomass for fuel in cooking stoves in their daily life. These cooking stoves use inadequate ventilation and expose especially women and children to indoor smoke. To reduce problems of the biomass burning, India launched an initiative to provide affordable and clean energy solutions for the poorest households by providing clean next-generation cooking stoves. The improved cooking stoves are expected to improve outdoor air quality and to reduce the climate-active pollutants, thus simultaneously slowing the climate change. Previous research has shown that the emissions of black carbon can be decreased substantially, as much as 90 % by applying better technology in cooking stoves. We have implemented reasonable (50% decrease) and best case (90% decrease) scenarios of the reductions in black and organic carbon due to improved cooking stoves in India into ECHAM-HAMMOZ aerosol-climate model. The global simulations of the scenarios will be used to study how the reductions of emissions in India affect the pollutant concentrations and radiation. The simulated reductions in particulate concentrations will also be used to estimate the decrease in mortality rates. Furthermore, we will study how the emission reductions would affect the global climate and mortality if a similar initiative would be applied in other developing countries.

  17. Development of a carbon formation reactor for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, G.

    1985-01-01

    Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.

  18. Catalyst cartridge for carbon dioxide reduction unit

    NASA Technical Reports Server (NTRS)

    Holmes, R. F. (Inventor)

    1973-01-01

    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall.

  19. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    NASA Astrophysics Data System (ADS)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-03-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  20. Effect of Carbon and Energy Source on Bacterial Chromate Reduction

    SciTech Connect

    Smith, William Aaron; Apel, William Arnold; Petersen, J. N.; Peyton, Brent Michael

    2002-07-01

    Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.

  1. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry.

    PubMed

    Chuai, Xiaowei; Huang, Xianjin; Lu, Qinli; Zhang, Mei; Zhao, Rongqin; Lu, Junyu

    2015-11-01

    China is undergoing rapid urbanization, enlarging the construction industry, greatly expanding built-up land, and generating substantial carbon emissions. We calculated both the direct and indirect carbon emissions from energy consumption (anthropogenic emissions) in the construction sector and analyzed built-up land expansion and carbon storage losses from the terrestrial ecosystem. According to our study, the total anthropogenic carbon emissions from the construction sector increased from 3,905×10(4) to 103,721.17×10(4) t from 1995 to 2010, representing 27.87%-34.31% of the total carbon emissions from energy consumption in China. Indirect carbon emissions from other industrial sectors induced by the construction sector represented approximately 97% of the total anthropogenic carbon emissions of the sector. These emissions were mainly concentrated in seven upstream industry sectors. Based on our assumptions, built-up land expansion caused 3704.84×10(4) t of carbon storage loss from vegetation between 1995 and 2010. Cropland was the main built-up land expansion type across all regions. The study shows great regional differences. Coastal regions showed dramatic built-up land expansion, greater carbon storage losses from vegetation, and greater anthropogenic carbon emissions. These regional differences were the most obvious in East China followed by Midsouth China. These regions are under pressure for strong carbon emissions reduction. PMID:26421527

  2. Reduction of power supply EMI emission by switching frequency modulation

    SciTech Connect

    Lin, F.; Chen, D.Y. . Virginia Power Electronics Center)

    1994-01-01

    Electro-Magnetic Interference (EMI) emission is always of grave concern for power electronic circuit designers. Due to rapid switching of high current and high voltage, interference emission is a serious problem in switching power circuits. Many products fail to make it to the market because of their failure to comply with the government EMI regulations. Numerous companies have cited EMI problems as the culprit in the delay of their product introduction. EMI noise reduction is generally accomplished by three means: suppression of noise source, isolation of noise coupling path, and filter/shielding. In this paper, another means of EMI noise reduction is proposed. By modulating the PWM frequency of power supply, it is possible to modify noise emission spectrum so that it can pass government EMI regulations. In the paper, measurement of EMI noise is first reviewed. Noise sources of a power switching circuit are then described. The theoretical and the experimental results of the reduction of EMI noise emission by sinewave frequency modulation to distribute the power of the fundamental harmonics onto frequency sideband are discussed.

  3. Costs, emissions reductions, and vehicle repair: evidence from Arizona.

    PubMed

    Ando, A; McConnell, V; Harrington, W

    2000-04-01

    The Arizona inspection and maintenance (I/M) program provides one of the first opportunities to examine the costs and effectiveness of vehicle emission repair. This paper examines various aspects of emission reductions, fuel economy improvements, and repair costs, drawing data from over 80,000 vehicles that failed the I/M test in Arizona between 1995 and the first half of 1996. We summarize the wealth of data on repair from the Arizona program and highlight its limitations. Because missing or incomplete cost information has been a serious shortcoming for the evaluation of I/M programs, we develop a method for estimating repair costs when they are not reported. We find surprising evidence that almost one quarter of all vehicles that take the I/M test are never observed to pass the test. Using a statistical analysis, we provide some information about the differences between the vehicles that pass and those that do not. Older, more polluting vehicles are much more likely never to pass the I/M test, and their expected repair costs are much higher than those for newer cars. This paper summarizes the evidence on costs and emission reductions in the Arizona program, comparing costs and emissions reductions between cars and trucks. Finally, we examine the potential for more cost-effective repair, first through an analysis of tightening I/M cut points and then by calculating the cost savings of achieving different emission reduction goals when the most cost-effective repairs are made first. PMID:10786002

  4. Irreversible climate change due to carbon dioxide emissions.

    PubMed

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  5. Irreversible climate change due to carbon dioxide emissions

    PubMed Central

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  6. The carbon reduction research of teaching staff commuting aided by Google Earth: taking Guangzhou University as an example

    NASA Astrophysics Data System (ADS)

    Xie, Hongyu; Wang, Xixiang; Zhao, Meichan; Zhao, Huaqing; Lin, Zhien

    2008-10-01

    In this paper, taking Guangzhou University as an example, carbon reduction of teaching staff commuting was researched. Firstly, considering carbon emission of teaching staff commuting is come from the fuel consumption of vehicle used to trip, the routes, schedule, vehicle type, fuel type and fuel consumption per 100 km of service express bus, public bus and private car were investigated from relevant department and web questionnaire in office automation system. Secondly, the routes of service express bus, public bus and private car were drawn in Google earth browser to measure distance. Thirdly, combined the bus schedule, school calendar, curriculum timetable of teacher and fuel consumption per 100 km of all kinds of vehicle, the fuel consumption of service express bus, public bus and private car were computed. Fourthly, carbon emission was calculated according to net calorific factor and calorie carbon emission factors of fuel. Finally, the measures of carbon reduction were discussed. The research results show that teaching staff commuting emitted 455.433 tons carbon in 2005-2006 academic year. And reducing usage rate of private car and adding new service express bus line are efficient measure of carbon reduction. Former measure can reduce 33.6891 tons carbon and about 7.4% of original emission. The latter can reduce 7.6317 tons and about 1.68% of original emission.

  7. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina."The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding," said Michael Zammit Cutajar, executive secretary of the convention. "In Buenos Aires, governments will try to establish the rules of the game for reaching these targets.""

  8. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina.“The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding,” said Michael Zammit Cutajar, executive secretary of the convention. “In Buenos Aires, governments will try to establish the rules of the game for reaching these targets."”

  9. Carbon dioxide emission from bamboo culms.

    PubMed

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P

    2016-05-01

    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. PMID:26802362

  10. A Theory for How Global Warming Mechanistically Depends on Cumulative Carbon Emissions Over Time

    NASA Astrophysics Data System (ADS)

    Goodwin, P.; Williams, R. G.; Ridgwell, A. J.

    2014-12-01

    Climate model experiments reveal that transient global warming is nearly proportional to cumulative carbon emissions on multi-decadal to millennial timescales. However, it is not quantitatively understood how this near linear dependence between warming and cumulative carbon emissions arises in transient climate simulations, nor why the proportionality of warming is largely independent of emission scenario. Here, we present the first theoretical equation for how global warming depends on cumulative carbon emissions over time for an atmosphere-ocean system. For the present, our theory identifies a sensitivity of surface warming to emission of 1.5±0.7 K for every 1000 Pg of carbon emitted, reducing by only 10 to 20% by the end of the century and beyond. The sensitivity remaining nearly constant over time is due to partially-opposing thermal and carbon responses in a coupled atmosphere-ocean, as well as reflecting how warming is proportional to cumulative carbon emissions after many centuries. Incorporating estimates of terrestrial carbon uptake into our analysis reduces the sensitivity of surface warming to 1.1±0.5 K for every 1000 Pg of carbon emitted, but does not significantly alter the percentage reduction in warming sensitivity over the 21st century. Our theory provides an analytical framework to interpret model projections of global warming.

  11. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  12. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    PubMed

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should

  13. Greenhouse gas and criteria emission benefits through reduction of vessel speed at sea.

    PubMed

    Khan, M Yusuf; Agrawal, Harshit; Ranganathan, Sindhuja; Welch, William A; Miller, J Wayne; Cocker, David R

    2012-11-20

    Reducing emissions from ocean-going vessels (OGVs) as they sail near populated areas is a widely recognized goal, and Vessel Speed Reduction (VSR) is one of several strategies that is being adopted by regulators and port authorities. The goal of this research was to measure the emission benefits associated with greenhouse gas and criteria pollutants by operating OGVs at reduced speed. Emissions were measured from one Panamax and one post-Panamax class container vessels as their vessel speed was reduced from cruise to 15 knots or below. VSR to 12 knots yielded carbon dioxide (CO(2)) and nitrogen oxides (NO(x)) emissions reductions (in kg/nautical mile (kg/nmi)) of approximately 61% and 56%, respectively, as compared to vessel cruise speed. The mass emission rate (kg/nmi) of PM(2.5) was reduced by 69% with VSR to 12 knots alone and by ~97% when coupled with the use of the marine gas oil (MGO) with 0.00065% sulfur content. Emissions data from vessels while operating at sea are scarce and measurements from this research demonstrated that tidal current is a significant parameter affecting emission factors (EFs) at lower engine loads. Emissions factors at ≤20% loads calculated by methodology adopted by regulatory agencies were found to underestimate PM(2.5) and NO(x) by 72% and 51%, respectively, when compared to EFs measured in this study. Total pollutant emitted (TPE) in the emission control area (ECA) was calculated, and emission benefits were estimated as the VSR zone increased from 24 to 200 nmi. TPE(CO2) and TPE(PM2.5) estimated for large container vessels showed benefits for CO(2) (2-26%) and PM(2.5) (4-57%) on reducing speeds from 15 to 12 knots, whereas TPE(CO2) and TPE(PM2.5) for small and medium container vessels were similar at 15 and 12 knots. PMID:22974075

  14. Laser-induced light emission from carbon nanoparticles

    SciTech Connect

    Osswald, S.; Behler, K.; Gogotsi, Y.

    2008-10-01

    Strong absorption of light in a broad wavelength range and poor thermal conductance between particles of carbon nanomaterials, such as nanotubes, onions, nanodiamond, and carbon black, lead to strong thermal emission (blackbody radiation) upon laser excitation, even at a very low (milliwatts) power. The lasers commonly used during Raman spectroscopy characterization of carbon can cause sample heating to very high temperatures. While conventional thermometry is difficult in the case of nanomaterials, Raman spectral features, such as the G band of graphitic carbon and thermal emission spectra were used to estimate the temperature during light emission that led to extensive graphitization and evaporation of carbon nanomaterials, indicating local temperatures exceeding 3500 deg. C.

  15. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-01

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions. PMID:22663136

  16. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material.

    PubMed

    González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E

    2016-09-15

    The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. PMID:27233044

  17. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China.

    PubMed

    Shen, Guofeng

    2015-11-01

    Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide (CO), total suspended particles (TSPs), PM2.5, organic carbon (OC), elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%-88% CO, 74%-99% TSP, 73%-76% PM2.5, 64%-98% OC, 92%-99% EC and 80%-83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%-97% CO, 73%-87% TSP, 79%-88% PM2.5, 94%-96% OC, 91%-99% EC and 63%-96% PAH reduction compared to biomass burning. The adoption of gas fuels (i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves. PMID:26574082

  18. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikainen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvarinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2015-05-01

    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m-2 by 2030 with some regional increases, for example, over India (up to 0.84 W m-2). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m-2 by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  19. An optimal control model for reducing and trading of carbon emissions

    NASA Astrophysics Data System (ADS)

    Guo, Huaying; Liang, Jin

    2016-03-01

    A stochastic optimal control model of reducing and trading for carbon emissions is established in this paper. With considerations of reducing the carbon emission growth and the price of the allowances in the market, an optimal policy is searched to have the minimum total costs to achieve the agreement of emission reduction targets. The model turns to a two-dimension HJB equation problem. By the methods of reducing dimension and Cole-Hopf transformation, a semi-closed form solution of the corresponding HJB problem under some assumptions is obtained. For more general cases, the numerical calculations, analysis and comparisons are presented.

  20. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  1. Assessment of atmospheric mercury emission reduction measures relevant for application in Poland

    SciTech Connect

    Hlawiczka, S.; Fudala, J.

    2008-03-15

    Fuel combustion for heat and power generation, together with cement production, were the most significant sources of anthropogenic atmospheric mercury emission in Poland in 2003, with 57 and 27% of Hg emission, respectively. It was found that in Poland, Hg emission reduction measures need to be focused on the energy generation sector. Sorbent injection upstream of an electrostatic precipitator or fabric filter, mercury oxidation upstream of a wet or dry flue gas desulphurisation installation, together with Hg capture on sorbents, should be considered as priority in Polish conditions. This refers mainly to fuel combustion processes but also to the production of cement. For economic reasons it seems advisable that, apart from activated carbons as sorbents, application of zeolites obtained from power plant fly ash should also be considered. Application of primary methods seems to be very promising in Polish conditions, although they should be considered rather as an additional option apart from sorbent injection as the best option. Switching from coal to liquid and gaseous fuels shows the highest potential for reducing Hg emission. For chlorine production using the mercury cell electrolysis method, strict monitoring of Hg emissions and good housekeeping of Hg releasing processes seems a promising approach, but the main activity should focus on changing mercury-based technologies into membrane cell methods. Emission abatement potential for the atmospheric mercury in Poland has been roughly assessed, showing that in perspective of 2015, the emission could be reduced to about 25% of the anthropogenic atmospheric Hg emission in 2003.

  2. Augmentor emissions reduction technology program. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.

    1977-01-01

    Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.

  3. [Monitoring gas concentration from carbon emissions by remote sensing].

    PubMed

    Wang, Li-Wen; Wei, Ya-Xing

    2012-06-01

    Global climate warming has become the focus question of international global climate change research, and is an important factor influencing world economy, political situation, and ecological environment. Produced carbon emission gases such as CO2, CH4, N2O, etc. caused by human activity are the main reason for global warming. In order to forecast future climate change and construct accurate carbon cycle model, monitoring accuracy of gas concentration from carbon emission must be improved. In the present paper, the newest progress in the international research results about monitoring gas concentration from carbon emissions by remote sensing was considered, monitoring method for carbon emissions was introduced, and remotely sensed monitoring technology about gas concentration from carbon emissions (including thermal infrared, sun spectrum, active remote sensing monitoring technology) was stated. In detail, several present and future satellite sensors were introduced (including TOVS, AIRS, IASI, SCIAMACHY, GOSAT, OCO, A-SCOPE and ASCENDS), and monitoring results achieved by these sensors were analyzed. PMID:22870656

  4. Investigation of reductive dechlorination supported by natural organic carbon

    USGS Publications Warehouse

    Rectanus, H.V.; Widdowson, M.A.; Chapelle, F.H.; Kelly, C.A.; Novak, J.T.

    2007-01-01

    Because remediation timeframes using monitored natural attenuation may span decades or even centuries at chlorinated solvent sites, new approaches are needed to assess the long-term sustainability of reductive dechlorination in ground water systems. In this study, extraction procedures were used to investigate the mass of indigenous organic carbon in aquifer sediment, and experiments were conducted to determine if the extracted carbon could support reductive dechlorination of chloroethenes. Aquifer sediment cores were collected from a site without an anthropogenic source of organic carbon where organic carbon varied from 0.02% to 0.12%. Single extraction results showed that 1% to 28% of sediment-associated organic carbon and 2% to 36% of the soft carbon were removed depending on nature and concentration of the extracting solution (Nanopure water; 0.1%, 0.5%, and 1.0% sodium pyrophosphate; and 0.5 N sodium hydroxide). Soft carbon is defined as organic carbon oxidized with potassium persulfate and is assumed to serve as a source of biodegradable carbon within the aquifer. Biodegradability studies demonstrated that 20% to 40% of extracted organic carbon was biodegraded aerobically and anaerobically by soil microorganisms in relatively brief tests (45 d). A five-step extraction procedure consisting of 0.1% pyrophosphate and base solutions was investigated to quantify bioavailable organic carbon. Using the extracted carbon as the sole electron donor source, tetrachloroethene was transformed to cis-1,2- dichloroethene and vinyl chloride in anaerobic enrichment culture experiments. Hydrogen gas was produced at levels necessary to sustain reductive dechlorination (>1 nM). ?? 2007 National Ground Water Association.

  5. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikäinen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvärinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2014-12-01

    The global aerosol-climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. Four different emissions scenarios are applied for 2030 (two of them applied also for 2020) and the results are compared against reference year 2005. Two of the scenarios are based on current legislation reductions, one shows the maximum potential of reductions that can be achieved by technical measures, and the last one is targeted to short-lived climate forcers (SLCFs). We have analysed the results in terms of global means and additionally focused on 8 sub-regions. Based on our results, aerosol burdens overall show decreasing trend, but in some locations, such as India, the burdens could increase significantly. This has impact on the direct aerosol effect (DRE), which could reduce globally 0.06-0.4 W m-2 by 2030, but can increase over India (up to 0.84 W m-2). The global values depend on the scenario and are lowest with the targeted SLCF simulation. The cloud radiative effect could decline 0.25-0.82 W m-2 by 2030 and occurs mostly over oceans, whereas the DRE effect is mostly over land. Our results show that targeted emission reduction measures can be a~much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  6. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    SciTech Connect

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  7. Reduction mechanisms of pyrite cinder-carbon composite pellets

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-jian; Xing, Xiang-dong; Zhang, Jian-liang; Cao, Ming-ming; Jiao, Ke-xin; Ren, Shan

    2012-11-01

    The non-isothermal reduction mechanisms of pyrite cinder-carbon composite pellets were studied at laboratory scale under argon (Ar) atmosphere. The composite pellets as well as the specimens of separate layers containing pyrite cinder and coal were tested. The degree of reduction was measured by mass loss. The microstructures of the reduced composite pellets were characterized by scanning electron microscopy (SEM). It is found that the reduction processes of the composite pellets may be divided into four stages: reduction via CO and H2 from volatiles in coal at 673-973 K, reduction via H2 and C produced by cracking of hydrocarbon at 973-1123 K, direct reduction by carbon via gaseous intermediates at 1123-1323 K, and direct reduction by carbon at above 1323 K. Corresponding to the four stages, the apparent activation energies ( E) for the reduction of the composite pellets are 86.26, 78.54, 72.01, and 203.65 kJ·mol-1, respectively.

  8. Effects of a zeolite-selective catalytic reduction system on comprehensive emissions from a heavy-duty diesel engine.

    PubMed

    Liu, Z Gerald; Berg, Devin R; Schauer, James J

    2008-10-01

    The effects of a zeolite urea-selective catalytic reduction (SCR) aftertreatment system on a comprehensive spectrum of chemical species from diesel engine emissions were investigated in this study. Representative samples were collected with a newly developed source dilution sampling system after an aging process designed to simulate atmospheric dilution and cooling conditions. Samples were analyzed with established procedures and compared between the measurements taken from a baseline heavy-duty diesel engine and also from the same engine equipped with the exhaust aftertreatment system. The results have shown significant reductions for nitrogen oxides (NOx), carbon monoxide, total hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and organic carbon (OC) emissions. Additionally, less significant yet notable reductions were observed for particulate matter mass and metals emissions. Furthermore, the production of new species was not observed with the addition of the zeolite urea-SCR system joined with a downstream oxidation catalyst. PMID:18939772

  9. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  10. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions. PMID:21910443

  11. Reductions in emissions from deforestation from Indonesia's moratorium on new oil palm, timber, and logging concessions.

    PubMed

    Busch, Jonah; Ferretti-Gallon, Kalifi; Engelmann, Jens; Wright, Max; Austin, Kemen G; Stolle, Fred; Turubanova, Svetlana; Potapov, Peter V; Margono, Belinda; Hansen, Matthew C; Baccini, Alessandro

    2015-02-01

    To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas ("concessions") for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17-127%, 44-129%, or 3.1-11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia's moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241-615 MtCO2e (2.8-7.2%) lower without leakage, or 213-545 MtCO2e (2.5-6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30-7.50/tCO2e (mandatory) or $12.95-19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed. PMID:25605880

  12. Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China

    PubMed Central

    Xu, Xibao; Tan, Yan; Chen, Shuang; Yang, Guishan; Su, Weizhong

    2015-01-01

    Carbon reduction at the household level is an integral part of carbon mitigation. This study analyses the characteristics, effects, contributing factors and policies for urban household carbon emissions in the Yangtze River Delta of China. Primary data was collected through structured questionnaire surveys in three cities in the region – Nanjing, Ningbo, and Changzhou in 2011. The survey data was first used to estimate the magnitude of household carbon emissions in different urban contexts. It then examined how, and to what extent, each set of demographic, economic, behavioral/cognitive and spatial factors influence carbon emissions at the household level. The average of urban household carbon emissions in the region was estimated to be 5.96 tonnes CO2 in 2010. Energy consumption, daily commuting, garbage disposal and long-distance travel accounted for 51.2%, 21.3%, 16.0% and 11.5% of the total emission, respectively. Regulating rapidly growing car-holdings of urban households, stabilizing population growth, and transiting residents’ low-carbon awareness to household behavior in energy saving and other spheres of consumption in the context of rapid population aging and the growing middle income class are suggested as critical measures for carbon mitigation among urban households in the Yangtze River Delta. PMID:25884853

  13. Variability of building environmental assessment tools on evaluating carbon emissions

    SciTech Connect

    Ng, S. Thomas Chen Yuan Wong, James M.W.

    2013-01-15

    With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: Black-Right-Pointing-Pointer Carbon emission evaluation in building environmental assessment schemes are studied. Black-Right-Pointing-Pointer Simulative carbon emission is modeled for building environmental assessment schemes. Black-Right-Pointing-Pointer Carbon assessments focus primarily on operational stage instead of entire lifecycle. Black-Right-Pointing-Pointer Baseline and benchmark of carbon assessment vary greatly among BEA

  14. EVALUATION OF VOC (VOLATILE CARBON) EMISSIONS FROM WASTEWATER SYSTEMS (SECONDARY EMISSIONS)

    EPA Science Inventory

    The technical objective of this project was to obtain data for evaluating volatile carbon (VOC) emissions from wastewater treatment facilities for the synthetic organic chemicals manufacturing industry (SOCMI). VOC emissions data were obtained using the Concentration-Profile tech...

  15. Using Carbon Emissions Data to "Heat Up" Descriptive Statistics

    ERIC Educational Resources Information Center

    Brooks, Robert

    2012-01-01

    This article illustrates using carbon emissions data in an introductory statistics assignment. The carbon emissions data has desirable characteristics including: choice of measure; skewness; and outliers. These complexities allow research and public policy debate to be introduced. (Contains 4 figures and 2 tables.)

  16. Synthesis and field emission properties of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Hou, Kun

    This dissertation focuses on developing carbon nanostructures for application as the electron emissive material in novel back-gated triode field emission devices. The synthesis, characterization, and field emission properties of carbon nanostructures, including 1-D carbon nanofibers (CNF), 2-D carbon nanosheets (CNS), and chromium oxide coated carbon nanosheets (CrOx-CNS), are presented in this work. First, we have fabricated aligned carbon nanofiber based back-gated triode field emission devices and confirmed the operation of these devices. 1-D carbon nanofibers were directly synthesized on blank TiW substrates using direct current plasma enhanced chemical vapor deposition. It was found that the morphology of carbon nanofibers could be tuned from spaghetti-like to aligned by adjusting the applied plasma power. Field emission properties of spaghetti-like and aligned carbon nanofibers on blank TiW substrates were studied using the cartridge holder assembly. Results demonstrated that spaghetti-like carbon nanofibers had better field emission performance than aligned carbon nanofibers, however, the electrostatic simulation of the triode device demonstrated that aligned carbon nanofibers should yield the best device performance. Second, we have demonstrated that carbon nanosheets, a 2-D carbon nanostructure developed by our group, were a competitive electron emissive material for application as the cold cathode in vacuum microelectronic devices. Carbon nanosheets were synthesized on a variety of substrates, without the need for catalysts, by radio frequency plasma enhanced chemical vapor deposition. Materials characterization results revealed that carbon nanosheets consisting of vertically oriented ultra-thin graphitic sheets terminating with 1-3 graphene layers were hundreds of nanometers in length and height but less than 4 nm in thickness. By using the diode holder assembly, field emission properties of carbon nanosheets were studied from a broad perspective

  17. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  18. Portal provides access for carbon reduction.

    PubMed

    Baillie, Jonathan

    2012-01-01

    How the lessons learned from a concerted Marks & Spencer sustainability drive that was established, and subsequently enthusiastically championed by, the retailer's then CEO and chairman, Sir Stuart Rose, could be translated to an NHS under fierce pressure to cut its own carbon footprint, was the subject of a morning keynote session at November's Healthcare Estates 2011 conference in Manchester. The session also saw the official launch of a new online portal, established jointly by BRE and the University College London Hospitals NHS Foundation Trust, which will enable NHS Trusts to share experience, and obtain valuable advice and guidance, to assist them in their efforts to be 'greener'. HEJ editor Jonathan Baillie reports. PMID:22332312

  19. Energy use and carbon emissions: Non-OECD countries

    SciTech Connect

    Not Available

    1994-12-01

    This report surveys world energy use and carbon emissions patterns, with particular emphasis on the non-OECD countries. The non OECD is important not only because it currently makes up 84% of world population, but because its energy consumption, carbon emissions, population, and grow domestic product have all been growing faster than OECD`s. This presentation has seven major sections: (1) overview of key trends in non-OECD energy use and carbon emissions since 1970; (2) Comparison and contrasting energy use and carbon emissions for five major non OEDC regions (former Soviet Union and eastern Europe, Pacific Rim including China, Latin America, other Asia; Africa; 3-7) presentation of aggregate and sectoral energy use and carbon emissions data for countries within each of the 5 regions.

  20. Diagnosing the uncertainty and detectability of emission reductions for REDD + under current capabilities: an example for Panama

    NASA Astrophysics Data System (ADS)

    Pelletier, Johanne; Ramankutty, Navin; Potvin, Catherine

    2011-04-01

    In preparation for the deployment of a new mechanism that could address as much as one fifth of global greenhouse gas emissions by reducing emissions from deforestation and forest degradation (REDD +), important work on methodological issues is still needed to secure the capacity to produce measurable, reportable, and verifiable emissions reductions from REDD + in developing countries. To contribute to this effort, we have diagnosed the main sources of uncertainty in the quantification of emission from deforestation for Panama, one of the first countries to be supported by the Forest Carbon Partnership Facility of the World Bank and by UN-REDD. Performing sensitivity analyses using a land-cover change emissions model, we identified forest carbon stocks and the quality of land-cover maps as the key parameters influencing model uncertainty. The time interval between two land-cover assessments, carbon density in fallow and secondary forest, and the accuracy of land-cover classifications also affect our ability to produce accurate estimates. Further, we used the model to compare emission reductions from five different deforestation reduction scenarios drawn from governmental input. Only the scenario simulating a reduction in deforestation by half succeeds in crossing outside the confidence bounds surrounding the baseline emission obtained from the uncertainty analysis. These results suggest that with current data, real emission reductions in developing countries could be obscured by their associated uncertainties. Ways of addressing the key sources of error are proposed, for developing countries involved in REDD + , for improving the accuracy of their estimates in the future. These new considerations confirm the importance of current efforts to establish forest monitoring systems and enhance capabilities for REDD + in developing countries.

  1. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  2. Real-world energy use and emission rates for idling long-haul trucks and selected idle reduction technologies.

    PubMed

    Frey, H Christopher; Kuo, Po-Yao

    2009-07-01

    Long-haul freight trucks typically idle for 2000 or more hours per year, motivating interest in reducing idle fuel use and emissions using auxiliary power units (APUs) and shore-power (SP). Fuel-use rates are estimated based on electronic control unit (ECU) data for truck engines and measurements for APU engines. Engine emission factors were measured using a portable emission measurement system. Indirect emissions from SP were based on average utility grid emission factors. Base engine fuel use and APU and SP electrical load were analyzed for 20 trucks monitored for more than 1 yr during 2.76 million mi of activity within 42 U.S. states. The average base engine fuel use varied from 0.46 to 0.65 gal/hr. The average APU fuel use varied from 0.24 to 0.41 gal/hr. Fuel-use rates are typically lowest in mild weather, highest in hot or cold weather, and depend on engine speed (revolutions per minute [RPM]). Compared with the base engine, APU fuel use and emissions of carbon dioxide (CO2) and sulfur dioxide (SO2) are lower by 36-47%. Oxides of nitrogen (NO(x)) emissions are lower by 80-90%. Reductions in particulate matter (PM), carbon monoxide (CO), and hydrocarbon emissions vary from approximately 10 to over 50%. SP leads to more substantial reductions, except for SO2. The actual achievable reductions will be lower because only a fraction of base engine usage will be replaced by APUs, SP, or both. Recommendations are made for reducing base engine fuel use and emissions, accounting for variability in fuel use and emissions reductions, and further work to quantify real-world avoided fuel use and emissions. PMID:19645270

  3. The role of carbon dioxide in ammonia emission from manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emission from manure is a significant loss of fixed N from agricultural systems, and contributes to air pollution and ecosystem degradation. Despite the development of numerous mathematical models for predicting ammonia emission, the interactions between carbon dioxide emission, manure pH, a...

  4. Inorganic carbon and emission of ammonia from manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal agriculture, and manure in particular, is a major source of ammonia emissions, and numerous models have been developed for predicting ammonia emission from manure. However, even the most comprehensive models are often inaccurate. Ammonia emission is complicated by volatilization of carbon dio...

  5. Pathways of human development and carbon emissions embodied in trade

    NASA Astrophysics Data System (ADS)

    Steinberger, Julia K.; Timmons Roberts, J.; Peters, Glen P.; Baiocchi, Giovanni

    2012-02-01

    It has long been assumed that human development depends on economic growth, that national economic expansion in turn requires greater energy use and, therefore, increased greenhouse-gas emissions. These interdependences are the topic of current research. Scarcely explored, however, is the impact of international trade: although some nations develop socio-economically and import high-embodied-carbon products, it is likely that carbon-exporting countries gain significantly fewer benefits. Here, we use new consumption-based measures of national carbon emissions to explore how the relationship between human development and carbon changes when we adjust national emission rates for trade. Without such adjustment of emissions, some nations seem to be getting far better development `bang' for the carbon `buck' than others, who are showing scant gains for disproportionate shares of global emissions. Adjusting for the transfer of emissions through trade explains many of these outliers, but shows that further socio-economic benefits are accruing to carbon-importing rather than carbon-exporting countries. We also find that high life expectancies are compatible with low carbon emissions but high incomes are not. Finally, we see that, despite strong international trends, there is no deterministic industrial development trajectory: there is great diversity in pathways, and national histories do not necessarily follow the global trends.

  6. Wind Energy and Air Emission Reduction Benefits: A Primer

    SciTech Connect

    Jacobson, D.; High, C.

    2008-02-01

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  7. EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Zhu, Rong; Ma, Guo-hong

    2016-02-01

    As a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

  8. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  9. Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation

    NASA Astrophysics Data System (ADS)

    Friedlingstein, P.; Solomon, S.; Plattner, G.-K.; Knutti, R.; Ciais, P.; Raupach, M. R.

    2011-12-01

    Long-term future warming is primarily constrained by cumulative emissions of carbon dioxide. Previous studies have estimated that humankind has already emitted about 50% of the total amount allowed if warming, relative to pre-industrial, is to stay below 2°C (refs , ). Carbon dioxide emissions will thus need to decrease substantially in the future if this target is to be met. Here we show how links between near-term decisions, long-term behaviour and climate sensitivity uncertainties constrain options for emissions mitigation. Using a model of intermediate complexity, we explore the implications of non-zero long-term global emissions, combined with various near-term mitigation rates or delays in action. For a median climate sensitivity, a long-term 90% emission reduction relative to the present-day level is incompatible with a 2°C target within the coming millennium. Zero or negative emissions can be compatible with the target if medium to high emission-reduction rates begin within the next two decades. For a high climate sensitivity, however, even negative emissions would require a global mitigation rate at least as great as the highest rate considered feasible by economic models to be implemented within the coming decade. Only a low climate sensitivity would allow for a longer delay in mitigation action and a more conservative mitigation rate, and would still require at least 90% phase-out of emissions thereafter.

  10. The reduction of SiO2 with carbon in a plasma

    NASA Technical Reports Server (NTRS)

    Coldwell, D. M.; Roques, R. A.

    1977-01-01

    The feasibility of a process for the reduction of low impurity silica (SiO2) with carbon in a plasma heat source was investigated. An RF induction plasma reactor was fabricated and used to optimize process variables. Maximum silicon content of the product was 33% by weight. Emission spectrographic analysis of this product showed a reduction in some impurity levels of one to two orders of magnitude. While the plasma approach proved technically feasible, poor heat transfer from the plasma to the reactant and low yield make the process economically unattractive for large-scale use.