Science.gov

Sample records for carbon fixation pathways

  1. Improving Carbon Fixation Pathways

    PubMed Central

    Ducat, Daniel C.

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that alternative pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials. PMID:22647231

  2. Improving carbon fixation pathways

    SciTech Connect

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  3. An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis.

    PubMed

    Poehlein, Anja; Schmidt, Silke; Kaster, Anne-Kristin; Goenrich, Meike; Vollmers, John; Thürmer, Andrea; Bertsch, Johannes; Schuchmann, Kai; Voigt, Birgit; Hecker, Michael; Daniel, Rolf; Thauer, Rudolf K; Gottschalk, Gerhard; Müller, Volker

    2012-01-01

    Synthesis of acetate from carbon dioxide and molecular hydrogen is considered to be the first carbon assimilation pathway on earth. It combines carbon dioxide fixation into acetyl-CoA with the production of ATP via an energized cell membrane. How the pathway is coupled with the net synthesis of ATP has been an enigma. The anaerobic, acetogenic bacterium Acetobacterium woodii uses an ancient version of this pathway without cytochromes and quinones. It generates a sodium ion potential across the cell membrane by the sodium-motive ferredoxin:NAD oxidoreductase (Rnf). The genome sequence of A. woodii solves the enigma: it uncovers Rnf as the only ion-motive enzyme coupled to the pathway and unravels a metabolism designed to produce reduced ferredoxin and overcome energetic barriers by virtue of electron-bifurcating, soluble enzymes. PMID:22479398

  4. An Ancient Pathway Combining Carbon Dioxide Fixation with the Generation and Utilization of a Sodium Ion Gradient for ATP Synthesis

    PubMed Central

    Poehlein, Anja; Schmidt, Silke; Kaster, Anne-Kristin; Goenrich, Meike; Vollmers, John; Thürmer, Andrea; Bertsch, Johannes; Schuchmann, Kai; Voigt, Birgit; Hecker, Michael; Daniel, Rolf; Thauer, Rudolf K.; Gottschalk, Gerhard; Müller, Volker

    2012-01-01

    Synthesis of acetate from carbon dioxide and molecular hydrogen is considered to be the first carbon assimilation pathway on earth. It combines carbon dioxide fixation into acetyl-CoA with the production of ATP via an energized cell membrane. How the pathway is coupled with the net synthesis of ATP has been an enigma. The anaerobic, acetogenic bacterium Acetobacterium woodii uses an ancient version of this pathway without cytochromes and quinones. It generates a sodium ion potential across the cell membrane by the sodium-motive ferredoxin:NAD oxidoreductase (Rnf). The genome sequence of A. woodii solves the enigma: it uncovers Rnf as the only ion-motive enzyme coupled to the pathway and unravels a metabolism designed to produce reduced ferredoxin and overcome energetic barriers by virtue of electron-bifurcating, soluble enzymes. PMID:22479398

  5. Widespread Occurrence of Two Carbon Fixation Pathways in Tubeworm Endosymbionts: Lessons from Hydrothermal Vent Associated Tubeworms from the Mediterranean Sea

    PubMed Central

    Thiel, Vera; Hügler, Michael; Blümel, Martina; Baumann, Heike I.; Gärtner, Andrea; Schmaljohann, Rolf; Strauss, Harald; Garbe-Schönberg, Dieter; Petersen, Sven; Cowart, Dominique A.; Fisher, Charles R.; Imhoff, Johannes F.

    2012-01-01

    Vestimentiferan tubeworms (siboglinid polychetes) of the genus Lamellibrachia are common members of cold seep faunal communities and have also been found at sedimented hydrothermal vent sites in the Pacific. As they lack a digestive system, they are nourished by chemoautotrophic bacterial endosymbionts growing in a specialized tissue called the trophosome. Here we present the results of investigations of tubeworms and endosymbionts from a shallow hydrothermal vent field in the Western Mediterranean Sea. The tubeworms, which are the first reported vent-associated tubeworms outside the Pacific, are identified as Lamellibrachia anaximandri using mitochondrial ribosomal and cytochrome oxidase I (COI) gene sequences. They harbor a single gammaproteobacterial endosymbiont. Carbon isotopic data, as well as the analysis of genes involved in carbon and sulfur metabolism indicate a sulfide-oxidizing chemoautotrophic endosymbiont. The detection of a hydrogenase gene fragment suggests the potential for hydrogen oxidation as alternative energy source. Surprisingly, the endosymbiont harbors genes for two different carbon fixation pathways, the Calvin-Benson-Bassham (CBB) cycle as well as the reductive tricarboxylic acid (rTCA) cycle, as has been reported for the endosymbiont of the vent tubeworm Riftia pachyptila. In addition to RubisCO genes we detected ATP citrate lyase (ACL – the key enzyme of the rTCA cycle) type II gene sequences using newly designed primer sets. Comparative investigations with additional tubeworm species (Lamellibrachia luymesi, Lamellibrachia sp. 1, Lamellibrachia sp. 2, Escarpia laminata, Seepiophila jonesi) from multiple cold seep sites in the Gulf of Mexico revealed the presence of acl genes in these species as well. Thus, our study suggests that the presence of two different carbon fixation pathways, the CBB cycle and the rTCA cycle, is not restricted to the Riftia endosymbiont, but rather might be common in vestimentiferan tubeworm endosymbionts

  6. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  7. Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum

    PubMed Central

    2012-01-01

    Background Phaeodactylum tricornutum is a unicellular diatom in the class Bacillariophyceae. The full genome has been sequenced (<30 Mb), and approximately 20 to 30% triacylglyceride (TAG) accumulation on a dry cell basis has been reported under different growth conditions. To elucidate P. tricornutum gene expression profiles during nutrient-deprivation and lipid-accumulation, cell cultures were grown with a nitrate to phosphate ratio of 20:1 (N:P) and whole-genome transcripts were monitored over time via RNA-sequence determination. Results The specific Nile Red (NR) fluorescence (NR fluorescence per cell) increased over time; however, the increase in NR fluorescence was initiated before external nitrate was completely exhausted. Exogenous phosphate was depleted before nitrate, and these results indicated that the depletion of exogenous phosphate might be an early trigger for lipid accumulation that is magnified upon nitrate depletion. As expected, many of the genes associated with nitrate and phosphate utilization were up-expressed. The diatom-specific cyclins cyc7 and cyc10 were down-expressed during the nutrient-deplete state, and cyclin B1 was up-expressed during lipid-accumulation after growth cessation. While many of the genes associated with the C3 pathway for photosynthetic carbon reduction were not significantly altered, genes involved in a putative C4 pathway for photosynthetic carbon assimilation were up-expressed as the cells depleted nitrate, phosphate, and exogenous dissolved inorganic carbon (DIC) levels. P. tricornutum has multiple, putative carbonic anhydrases, but only two were significantly up-expressed (2-fold and 4-fold) at the last time point when exogenous DIC levels had increased after the cessation of growth. Alternative pathways that could utilize HCO3- were also suggested by the gene expression profiles (e.g., putative propionyl-CoA and methylmalonyl-CoA decarboxylases). Conclusions The results indicate that P. tricornutum continued

  8. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism.

    PubMed

    Jahn, Ulrike; Huber, Harald; Eisenreich, Wolfgang; Hügler, Michael; Fuchs, Georg

    2007-06-01

    Ignicoccus hospitalis is an autotrophic hyperthermophilic archaeon that serves as a host for another parasitic/symbiotic archaeon, Nanoarchaeum equitans. In this study, the biosynthetic pathways of I. hospitalis were investigated by in vitro enzymatic analyses, in vivo (13)C-labeling experiments, and genomic analyses. Our results suggest the operation of a so far unknown pathway of autotrophic CO(2) fixation that starts from acetyl-coenzyme A (CoA). The cyclic regeneration of acetyl-CoA, the primary CO(2) acceptor molecule, has not been clarified yet. In essence, acetyl-CoA is converted into pyruvate via reductive carboxylation by pyruvate-ferredoxin oxidoreductase. Pyruvate-water dikinase converts pyruvate into phosphoenolpyruvate (PEP), which is carboxylated to oxaloacetate by PEP carboxylase. An incomplete citric acid cycle is operating: citrate is synthesized from oxaloacetate and acetyl-CoA by a (re)-specific citrate synthase, whereas a 2-oxoglutarate-oxidizing enzyme is lacking. Further investigations revealed that several special biosynthetic pathways that have recently been described for various archaea are operating. Isoleucine is synthesized via the uncommon citramalate pathway and lysine via the alpha-aminoadipate pathway. Gluconeogenesis is achieved via a reverse Embden-Meyerhof pathway using a novel type of fructose 1,6-bisphosphate aldolase. Pentosephosphates are formed from hexosephosphates via the suggested ribulose-monophosphate pathway, whereby formaldehyde is released from C-1 of hexose. The organism may not contain any sugar-metabolizing pathway. This comprehensive analysis of the central carbon metabolism of I. hospitalis revealed further evidence for the unexpected and unexplored diversity of metabolic pathways within the (hyperthermophilic) archaea. PMID:17400748

  9. Origin and mechanism of crassulacean acid metabolism in orchids as implied by comparative transcriptomics and genomics of the carbon fixation pathway.

    PubMed

    Zhang, Liangsheng; Chen, Fei; Zhang, Guo-Qiang; Zhang, Yong-Qiang; Niu, Shance; Xiong, Jin-Song; Lin, Zhenguo; Cheng, Zong-Ming Max; Liu, Zhong-Jian

    2016-04-01

    Crassulacean acid metabolism (CAM) is a CO2 fixation pathway that maximizes water-use efficiency (WUE), compared with the C3/C4 CO2 pathway, which permits CAM plants to adapt to arid environments. The CAM pathway provides excellent opportunities to genetically design plants, especially bioenergy crops, with a high WUE and better photosynthetic performance than C3/C4 in arid environments. The information available on the origin and evolution of CAM is scant, however. Here, we analyzed transcriptomes from 13 orchid species and two existing orchid genomes, covering CAM and C3 plants, with an emphasis on comparing 13 gene families involved in the complete carbon fixation pathway. The dosage of the core photosynthesis-related genes plays no substantial role in the evolution of CAM in orchids; however, CAM may have evolved primarily by changes at the transcription level of key carbon fixation pathway genes. We proposed that in both dark and light, CO2 is primarily fixed and then released through two metabolic pathways via known genes, such as PPC1, PPDK and PPCK. This study reports a comprehensive comparison of carbon fixation pathway genes across different photosynthetic plants, and reveals the importance of the level of expression of key genes in the origin and evolution of CAM. PMID:26959080

  10. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    PubMed Central

    2011-01-01

    Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK), which is regulated by a bifunctional enzyme, Regulatory Protein (RP). The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP) formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP), substrate levels (ATP and pyruvate) and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels). Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels. PMID:22024416

  11. Diurnal variations in pathways of photosynthetic carbon fixation in a freshwater cyanobacterium

    NASA Astrophysics Data System (ADS)

    Labiosa, R. G.; Arrigo, K. R.; Grossman, A.; Reddy, T. E.; Shrager, J.

    2003-04-01

    Understanding phytoplankton photosynthesis is critical to several fields including ecology and global biogeochemistry. The efficiency with which phytoplankton fix carbon depends upon the ambient light field, which is in turn dependent upon sun angle and the depth of mixing in the water column. In this pilot project, Synechocystis PCC 6803 was chosen as a model organism with which to study the molecular and physiological responses of phytoplankton to diurnal changes in light levels. Advantages of using this organism include that its genome has been sequenced, allowing the use of microarray technology, that it is readily grown as single colonies on plates and in liquid cultures, and that it is easy to manipulate genetically (generate and complement mutants). Axenic cultures of Synechocystis were grown under precisely controlled conditions in a "cyclodyne", a chemostat in which the light intensity cycles to mimic diurnal changes in light level, where the light consisted of sinusoidal daylight (400 μ mol photons m-2 s-1 at noon) followed by 12 hours of darkness for several weeks. After one week to allow the cells to acclimate to the light conditions, the cultures were sampled and extracted for RNA analysis every two hours over the course of several days. At these time points, absorption spectra, light scattering and chlorophyll a concentrations were determined. Initial results from Northern Blot hybridizations (examining RNA levels for individual genes) indicate that, the transcripts encoding photosynthetic proteins (i.e., PsbA2, PsaA and CpcB, in photosystem II, photosystem I, and phycobilisomes, respectively) are highest during the light. Initial results show that in the middle of the night, the psbA2 transcripts are 2-fold less while the psaA and cpcB are greater than 4-fold less than in the middle of the day. For the most part, the transcripts encoding photosynthetic proteins track the light cycle, although with different trends at daybreak and after night falls

  12. Evidence of Carbon Fixation Pathway in a Bacterium from Candidate Phylum SBR1093 Revealed with Genomic Analysis

    PubMed Central

    Wang, Zhiping; Guo, Feng; Liu, Lili; Zhang, Tong

    2014-01-01

    Autotrophic CO2 fixation is the most important biotransformation process in the biosphere. Research focusing on the diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these enzymes share 30∼50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and 30∼80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution and importance of the HPHB cycle in the biosphere. PMID:25310003

  13. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    SciTech Connect

    Hawkins, AB; Adams, MWW; Kelly, RM

    2014-03-25

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73 degrees C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA beta-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula.

  14. Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway

    PubMed Central

    Hawkins, Aaron B.; Adams, Michael W. W.

    2014-01-01

    The extremely thermoacidophilic archaeon Metallosphaera sedula (optimum growth temperature, 73°C, pH 2.0) grows chemolithoautotrophically on metal sulfides or molecular hydrogen by employing the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) carbon fixation cycle. This cycle adds two CO2 molecules to acetyl coenzyme A (acetyl-CoA) to generate 4HB, which is then rearranged and cleaved to form two acetyl-CoA molecules. Previous metabolic flux analysis showed that two-thirds of central carbon precursor molecules are derived from succinyl-CoA, which is oxidized to malate and oxaloacetate. The remaining one-third is apparently derived from acetyl-CoA. As such, the steps beyond succinyl-CoA are essential for completing the carbon fixation cycle and for anapleurosis of acetyl-CoA. Here, the final four enzymes of the 3HP/4HB cycle, 4-hydroxybutyrate-CoA ligase (AMP forming) (Msed_0406), 4-hydroxybutyryl-CoA dehydratase (Msed_1321), crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase (Msed_0399), and acetoacetyl-CoA β-ketothiolase (Msed_0656), were produced recombinantly in Escherichia coli, combined in vitro, and shown to convert 4HB to acetyl-CoA. Metabolic pathways connecting CO2 fixation and central metabolism were examined using a gas-intensive bioreactor system in which M. sedula was grown under autotrophic (CO2-limited) and heterotrophic conditions. Transcriptomic analysis revealed the importance of the 3HP/4HB pathway in supplying acetyl-CoA to anabolic pathways generating intermediates in M. sedula metabolism. The results indicated that flux between the succinate and acetyl-CoA branches in the 3HP/4HB pathway is governed by 4-hydroxybutyrate-CoA ligase, possibly regulated posttranslationally by the protein acetyltransferase (Pat)/Sir2-dependent system. Taken together, this work confirms the final four steps of the 3HP/4HB pathway, thereby providing the framework for examining connections between CO2 fixation and central metabolism in M. sedula. PMID

  15. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean

    NASA Astrophysics Data System (ADS)

    Hügler, Michael; Sievert, Stefan M.

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  16. The Emergence and Early Evolution of Biological Carbon-Fixation

    PubMed Central

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a “phylometabolic” tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than

  17. De Novo Transcriptome Analysis of an Aerial Microalga Trentepohlia jolithus: Pathway Description and Gene Discovery for Carbon Fixation and Carotenoid Biosynthesis

    PubMed Central

    Li, Qianqian; Liu, Jianguo; Zhang, Litao; Liu, Qian

    2014-01-01

    Background Algae in the order Trentepohliales have a broad geographic distribution and are generally characterized by the presence of abundant β-carotene. The many monographs published to date have mainly focused on their morphology, taxonomy, phylogeny, distribution and reproduction; molecular studies of this order are still rare. High-throughput RNA sequencing (RNA-Seq) technology provides a powerful and efficient method for transcript analysis and gene discovery in Trentepohlia jolithus. Methods/Principal Findings Illumina HiSeq 2000 sequencing generated 55,007,830 Illumina PE raw reads, which were assembled into 41,328 assembled unigenes. Based on NR annotation, 53.28% of the unigenes (22,018) could be assigned to gene ontology classes with 54 subcategories and 161,451 functional terms. A total of 26,217 (63.44%) assembled unigenes were mapped to 128 KEGG pathways. Furthermore, a set of 5,798 SSRs in 5,206 unigenes and 131,478 putative SNPs were identified. Moreover, the fact that all of the C4 photosynthesis genes exist in T. jolithus suggests a complex carbon acquisition and fixation system. Similarities and differences between T. jolithus and other algae in carotenoid biosynthesis are also described in depth. Conclusions/Significance This is the first broad transcriptome survey for T. jolithus, increasing the amount of molecular data available for the class Ulvophyceae. As well as providing resources for functional genomics studies, the functional genes and putative pathways identified here will contribute to a better understanding of carbon fixation and fatty acid and carotenoid biosynthesis in T. jolithus. PMID:25254555

  18. Enzyme Regulation& Catalysis in Carbon Fixation Metabolism

    SciTech Connect

    Miziorko, Henry M

    2004-12-14

    The overall long term goal of this program is the elucidation of molecular events in carbon assimilation. It has become axiomatic that control of flux through metabolic pathways is effectively imposed at irreversible reactions situated early in those pathways. The current focal point of this project is phosphoribulokinase (PRK), which catalyzes formation of the carbon dioxide acceptor, ribulose 1,5-bisphosphate. This reaction represents an early irreversible step unique to Calvin's reductive pentose phosphate pathway. Predictably, the PRK reaction represents an important control point in carbon fixation, regulated by a light dependent thiol/disulfide exchange in eukaryotes and by allosteric effectors in prokaryotes. Characterization of naturally occurring mutants as well as gene knockout experiments substantiate the importance of PRK to in vivo control of carbon assimilation in both prokaryotes and eukaryotes. Thus, given the potential impact of enhancement or inhibition of PRK activity on energy (biomass/biofuel) production, elucidation of the molecular events that account for PRK activity is a significant scientific goal.

  19. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments.

    PubMed

    Dyksma, Stefan; Bischof, Kerstin; Fuchs, Bernhard M; Hoffmann, Katy; Meier, Dimitri; Meyerdierks, Anke; Pjevac, Petra; Probandt, David; Richter, Michael; Stepanauskas, Ramunas; Mußmann, Marc

    2016-08-01

    Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with (14)C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with (14)C-bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up >50% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles. PMID:26872043

  20. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  1. Carbon fixation by basalt-hosted microbial communities

    PubMed Central

    Orcutt, Beth N.; Sylvan, Jason B.; Rogers, Daniel R.; Delaney, Jennifer; Lee, Raymond W.; Girguis, Peter R.

    2015-01-01

    Oceanic crust is a massive potential habitat for microbial life on Earth, yet our understanding of this ecosystem is limited due to difficulty in access. In particular, measurements of rates of microbial activity are sparse. We used stable carbon isotope incubations of crustal samples, coupled with functional gene analyses, to examine the potential for carbon fixation on oceanic crust. Both seafloor-exposed and subseafloor basalts were recovered from different mid-ocean ridge and hot spot environments (i.e., the Juan de Fuca Ridge, the Mid-Atlantic Ridge, and the Loihi Seamount) and incubated with 13C-labeled bicarbonate. Seafloor-exposed basalts revealed incorporation of 13C-label into organic matter over time, though the degree of incorporation was heterogeneous. The incorporation of 13C into biomass was inconclusive in subseafloor basalts. Translating these measurements into potential rates of carbon fixation indicated that 0.1–10 nmol C g-1rock d-1 could be fixed by seafloor-exposed rocks. When scaled to the global production of oceanic crust, this suggests carbon fixation rates of 109–1012 g C year-1, which matches earlier predictions based on thermodynamic calculations. Functional gene analyses indicate that the Calvin cycle is likely the dominant biochemical mechanism for carbon fixation in basalt-hosted biofilms, although the reductive acetyl-CoA pathway and reverse TCA cycle likely play some role in net carbon fixation. These results provide empirical evidence for autotrophy in oceanic crust, suggesting that basalt-hosted autotrophy could be a significant contributor of organic matter in this remote and vast environment. PMID:26441854

  2. Carbon fixation by basalt-hosted microbial communities.

    PubMed

    Orcutt, Beth N; Sylvan, Jason B; Rogers, Daniel R; Delaney, Jennifer; Lee, Raymond W; Girguis, Peter R

    2015-01-01

    Oceanic crust is a massive potential habitat for microbial life on Earth, yet our understanding of this ecosystem is limited due to difficulty in access. In particular, measurements of rates of microbial activity are sparse. We used stable carbon isotope incubations of crustal samples, coupled with functional gene analyses, to examine the potential for carbon fixation on oceanic crust. Both seafloor-exposed and subseafloor basalts were recovered from different mid-ocean ridge and hot spot environments (i.e., the Juan de Fuca Ridge, the Mid-Atlantic Ridge, and the Loihi Seamount) and incubated with (13)C-labeled bicarbonate. Seafloor-exposed basalts revealed incorporation of (13)C-label into organic matter over time, though the degree of incorporation was heterogeneous. The incorporation of (13)C into biomass was inconclusive in subseafloor basalts. Translating these measurements into potential rates of carbon fixation indicated that 0.1-10 nmol C g(-1) rock d(-1) could be fixed by seafloor-exposed rocks. When scaled to the global production of oceanic crust, this suggests carbon fixation rates of 10(9)-10(12) g C year(-1), which matches earlier predictions based on thermodynamic calculations. Functional gene analyses indicate that the Calvin cycle is likely the dominant biochemical mechanism for carbon fixation in basalt-hosted biofilms, although the reductive acetyl-CoA pathway and reverse TCA cycle likely play some role in net carbon fixation. These results provide empirical evidence for autotrophy in oceanic crust, suggesting that basalt-hosted autotrophy could be a significant contributor of organic matter in this remote and vast environment. PMID:26441854

  3. Dark Carbon Fixation: An Important Process in Lake Sediments

    PubMed Central

    Santoro, Ana Lúcia; Bastviken, David; Gudasz, Cristian; Tranvik, Lars; Enrich-Prast, Alex

    2013-01-01

    Close to redox boundaries, dark carbon fixation by chemoautotrophic bacteria may be a large contributor to overall carbon fixation. Still, little is known about the relative importance of this process in lake systems, in spite the potentially high chemoautotrophic potential of lake sediments. We compared rates of dark carbon fixation, bacterial production and oxygen consumption in sediments from four Swedish boreal and seven tropical Brazilian lakes. Rates were highly variable and dark carbon fixation amounted up to 80% of the total heterotrophic bacterial production. The results indicate that non-photosynthetic carbon fixation can represent a substantial contribution to bacterial biomass production, especially in sediments with low organic matter content. PMID:23776549

  4. A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus.

    PubMed

    Herter, Sylvia; Fuchs, Georg; Bacher, Adelbert; Eisenreich, Wolfgang

    2002-06-01

    Phototrophic CO(2) assimilation by the primitive, green eubacterium Chloroflexus aurantiacus has been shown earlier to proceed in a cyclic mode via 3-hydroxypropionate, propionyl-CoA, succinyl-CoA, and malyl-CoA. The metabolic cycle could be closed by cleavage of malyl-CoA affording glyoxylate (the primary CO(2) fixation product) with regeneration of acetyl-CoA serving as the starter unit of the cycle. The pathway of glyoxylate assimilation to form gluconeogenic precursors has not been elucidated to date. We could now show that the incubation of cell extract with a mixture of glyoxylate and [1,2,3-(13)C(3)]propionyl-CoA afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalate and [1,2,2'-(13)C(3)]citramalate. Similar experiments using a partially purified protein fraction afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalyl-CoA and [1,2,2'-(13)C(3)]mesaconyl-CoA. Cell extracts of C. aurantiacus were also shown to catalyze the conversion of citramalate into pyruvate and acetyl-CoA in a succinyl-CoA-dependent reaction. The data suggest that glyoxylate obtained by the cleavage of malyl-CoA can be utilized by condensation with propionyl-CoA affording erythro-beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. This reaction sequence regenerates acetyl-CoA, which serves as the precursor of propionyl-CoA in the 3-hydroxypropionate cycle. Autotrophic CO(2) fixation proceeds by combination of the 3-hydroxypropionate cycle with the methylmalyl-CoA cycle. The net product of that bicyclic autotrophic CO(2) fixation pathway is pyruvate serving as an universal building block for anabolic reactions. PMID:11929869

  5. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  6. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.

    PubMed

    Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A

    2014-06-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments. PMID:24843170

  7. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation

    PubMed Central

    Könneke, Martin; Schubert, Daniel M.; Brown, Philip C.; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J.; Stahl, David A.; Berg, Ivan A.

    2014-01-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments. PMID:24843170

  8. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides.

    PubMed

    Farmer, Ryan M; Tabita, F Robert

    2015-11-01

    In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin-Benson-Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase. PMID:26306848

  9. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation

    PubMed Central

    Joshi, Hemalata M.; Tabita, F. Robert

    1996-01-01

    Photosynthesis, biological nitrogen fixation, and carbon dioxide assimilation are three fundamental biological processes catalyzed by photosynthetic bacteria. In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms. The absence of the Calvin–Benson–Bassham (CBB) reductive pentose phosphate CO2 fixation pathway removes an important route for the dissipation of excess reducing power. Thus, the mutant strains develop alternative means to remove these reducing equivalents, resulting in the synthesis of large amounts of nitrogenase even in the presence of ammonia. This response is under the control of a global two-component signal transduction system previously found to regulate photosystem biosynthesis and the transcription of genes required for CO2 fixation through the CBB pathway and alternative routes. In addition, this two-component system directly controls the ability of these bacteria to grow under nitrogen-fixing conditions. These results indicate that there is a molecular link between the CBB and nitrogen fixation process, allowing the cell to overcome powerful control mechanisms to remove excess reducing power generated by photosynthesis and carbon metabolism. Furthermore, these results suggest that the two-component system integrates the expression of genes required for the three processes of photosynthesis, nitrogen fixation, and carbon dioxide fixation. PMID:8962083

  10. Acetogenesis and the Wood-Ljungdahl Pathway of CO2 Fixation

    PubMed Central

    Ragsdale, Stephen W.; Pierce, Elizabeth

    2008-01-01

    I. Summary Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Wood-Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that have led to the identification of the key components and steps of this usual mechanism of CO and CO2 fixation. In this historical perspective, we have included reflections that hopefully will sketch the landscape of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then describe the properties of the genes and enzymes involved in the pathway and conclude with a section describing some major questions that remain unanswered. PMID:18801467

  11. Silanediol-catalyzed carbon dioxide fixation.

    PubMed

    Hardman-Baldwin, Andrea M; Mattson, Anita E

    2014-12-01

    Carbon dioxide is an abundant and renewable C1 source. However, mild transformations with carbon dioxide at atmospheric pressure are difficult to accomplish. Silanediols have been discovered to operate as effective hydrogen-bond donor organocatalysts for the atom-efficient conversion of epoxides to cyclic carbonates under environmentally friendly conditions. The reaction system is tolerant of a variety of epoxides and the desired cyclic carbonates are isolated in excellent yields. PMID:25328125

  12. Malate Synthesis by Dark Carbon Dioxide Fixation in Leaves 1

    PubMed Central

    Levi, Carolyn; Perchorowicz, John T.; Gibbs, Martin

    1978-01-01

    The rates of dark CO2 fixation and the label distribution in malate following dark 14CO2 fixation in a C-4 plant (maize), a C-3 plant (sunflower), and two Crassulacean acid metabolism plants (Bryophyllum calycinum and Kalanchoë diagremontianum leaves and plantlets) are compared. Within the first 30 minutes of dark 14CO2 fixation, leaves of maize, B. calycinum, and sunflower, and K. diagremontianum plantlets fix CO2 at rates of 1.4, 3.4, 0.23, and 1.0 μmoles of CO2/mg of chlorophyll· hour, respectively. Net CO2 fixation stops within 3 hours in maize and sunflower, but Crassulaceans continue fixing CO2 for the duration of the 23-hour experiment. A bacterial procedure using Lactobacillus plantarum ATCC No. 8014 and one using malic enzyme to remove the β-carboxyl (C4) from malate are compared. It is reported that highly purified malic enzyme and the bacterial method provide equivalent results. Less purified malic enzyme may overestimate the label in C4 as much as 15 to 20%. The contribution of carbon atom 1 of malate is between 18 and 21% of the total carboxyl label after 1 minute of dark CO2 fixation. Isotopic labeling in the two carboxyls approached unity with time. The rate of increase is greatest in sunflower leaves and Kalanchoë plantlets. In addition, Kalanchoë leaves fix 14CO2 more rapidly than Kalanchoë plantlets and the equilibration of the malate carboxyls occurs more slowly. The rates of fixation and the randomization are tissue-specific. The rate of fixation does not correlate with the rate of randomization of isotope in the malate carboxyls. PMID:16660319

  13. Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis

    PubMed Central

    Liew, Fungmin; Henstra, Anne M.; Winzer, Klaus; Köpke, Michael; Simpson, Sean D.

    2016-01-01

    ABSTRACT The future sustainable production of chemicals and fuels from nonpetrochemical resources and reduction of greenhouse gas emissions are two of the greatest societal challenges. Gas fermentation, which utilizes the ability of acetogenic bacteria such as Clostridium autoethanogenum to grow and convert CO2 and CO into low-carbon fuels and chemicals, could potentially provide solutions to both. Acetogens fix these single-carbon gases via the Wood-Ljungdahl pathway. Two enzyme activities are predicted to be essential to the pathway: carbon monoxide dehydrogenase (CODH), which catalyzes the reversible oxidation of CO to CO2, and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which combines with CODH to form a CODH/ACS complex for acetyl-CoA fixation. Despite their pivotal role in carbon fixation, their functions have not been confirmed in vivo. By genetically manipulating all three CODH isogenes (acsA, cooS1, and cooS2) of C. autoethanogenum, we highlighted the functional redundancies of CODH by demonstrating that cooS1 and cooS2 are dispensable for autotrophy. Unexpectedly, the cooS1 inactivation strain showed a significantly reduced lag phase and a higher growth rate than the wild type on H2 and CO2. During heterotrophic growth on fructose, the acsA inactivation strain exhibited 61% reduced biomass and the abolishment of acetate production (a hallmark of acetogens), in favor of ethanol, lactate, and 2,3-butanediol production. A translational readthrough event was discovered in the uniquely truncated (compared to those of other acetogens) C. autoethanogenum acsA gene. Insights gained from studying the function of CODH enhance the overall understanding of autotrophy and can be used for optimization of biotechnological production of ethanol and other commodities via gas fermentation. PMID:27222467

  14. Potential carbon dioxide fixation by industrially important microalgae.

    PubMed

    Sydney, Eduardo Bittencourt; Sturm, Wilerson; de Carvalho, Julio Cesar; Thomaz-Soccol, Vanete; Larroche, Christian; Pandey, Ashok; Soccol, Carlos Ricardo

    2010-08-01

    The present study aimed at investigating the carbon metabolism in terms of carbon dioxide fixation and its destination in microalgae cultivations. To this purpose, analysis of growth parameters, media of cultivation, biomass composition and productivity and nutrients balance were performed. Four microalgae suitable for mass cultivation were evaluated: Dunaliella tertiolecta SAD-13.86, Chlorella vulgaris LEB-104, Spirulina platensis LEB-52 and Botryococcus braunii SAG-30.81. Global rates of carbon dioxide and oxygen were determinated by a system developed in our laboratory. B. braunii presented the highest CO(2) fixation rate, followed by S. platensis,D. tertiolecta and C. vulgaris (496.98, 318.61, 272.4 and 251.64 mg L(-1)day(-1), respectively). Carbon dioxide fixated was mainly used for microalgal biomass production. Nitrogen, phosphorus (calcium for D. tertiolecta), potassium and magnesium consumption rates (mg gX(-1)) were evaluated for the four microalgae. Biomass composition presented a predominance of proteins but also a high amount of lipids, especially in D. tertiolecta and B. braunii. PMID:20350804

  15. Abundance and Distribution of Diagnostic Carbon Fixation Genes in a Deep-Sea Hydrothermal Gradient Ecosystem

    NASA Astrophysics Data System (ADS)

    Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.

    2010-12-01

    The walls of deep-sea hydrothermal vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) hydrothermal fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of hydrothermal chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in hydrothermal chimney walls provides an ideal setting to explore these relationships. Hydrothermal chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes identified in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature

  16. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park

    SciTech Connect

    Jennings, Ryan; Whitmore, Laura M.; Moran, James J.; Kreuzer, Helen W.; Inskeep, William P.

    2014-05-01

    The fixation of inorganic carbon (as carbon dioxide) has been documented in all three domains of life and results in the biosynthesis of a diverse suite of organic compounds that support the growth of heterotrophic organisms. The primary aim of this study was to assess the importance of carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of one of the dominant Fe(II)-oxidizing organisms (Metallosphaera yellowstonensis strain MK1) present in situ. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon fixation pathway were identified in pure-cultures of M. yellowstonensis strain MK1. Metagenome sequencing from the same environments also revealed genes for the 3-HP/4-HB pathway belonging to M. yellowstonensis populations, as well as genes for a complete reductive TCA cycle from Hydrogenobaculum spp. (Aquificales). Stable isotope (13CO2) labeling was used to measure the fixation of CO2 by M. yellowstonensis strain MK1, and in ex situ assays containing live Fe(III)-oxide microbial mats. Results showed that M. yellowstonensis strain MK1 fixes CO2 via the 3-HP/4-HB pathway with a fractionation factor of ~ 2.5 ‰. Direct analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C and microbial mat C showed that mat C is comprised of both DIC and non-DIC sources. The estimated contribution of DIC carbon to biomass C (> ~ 35%) is reasonably consistent with the relative abundance of known chemolithoautotrophs and corresponding CO2 fixation pathways detected in metagenome sequence. The significance of DIC as a major source of carbon for Fe-oxide mat communities provides a foundation for examining microbial interactions in these systems that are dependent on the activity of autotrophic organisms such as Hydrogenobaculum and Metallosphaera spp.

  17. Phytoplankton plasticity drives large variability in carbon fixation efficiency

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier

    2014-12-01

    Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.

  18. High CO2 subsurface environment enriches for novel microbial lineages capable of autotrophic carbon fixation

    NASA Astrophysics Data System (ADS)

    Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.

    2015-12-01

    Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.

  19. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    SciTech Connect

    Tabita, Fred Robert

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  20. A "footprint" of plant carbon fixation cycle functions during the development of a heterotrophic fungus.

    PubMed

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-01-01

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution. PMID:26263551

  1. Carboxylase Levels and Carbon Dioxide Fixation in Baker's Yeast

    PubMed Central

    Cazzulo, J. J.; Claisse, L. M.; Stoppani, A. O. M.

    1968-01-01

    Levels of pyruvate carboxylase (PC), phosphopyruvate carboxylase (PEPC), and malate dehydrogenase (decarboxylating) were compared in wild-type bakers' yeast (I), a cytoplasmic-respiratory mutant (II), a biotin-deficient wild-type yeast (III), and a biotin-deficient respiratory mutant (IV). PC activities were greatly reduced in III and IV, whereas PEPC was reduced in II and IV. Malate dehydrogenase (decarboxylating) could not be detected in any of the yeasts. With yeast I growing on glucose as the sole carbon source, PEPC decreased to negligible levels during the logarithmic phase of growth (glucose repression effect), whereas PC increased. Both enzymes reverted to their original levels during the stationary phase, when glucose in the medium was exhausted. In agreement with the leading role of PC for CO2 assimilation, the rates of 14CO2 fixation in yeasts I and II were approximately equal and were much higher than that in yeast IV. With I and II, most of the 14C was distributed similarly in oxalacetate derivatives; with yeast IV, most of 14C appeared in a compound apparently unrelated to CO2 fixation via C4-dicarboxylic acids. PMID:5732499

  2. Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants.

    PubMed

    Rosgaard, Lisa; de Porcellinis, Alice Jara; Jacobsen, Jacob H; Frigaard, Niels-Ulrik; Sakuragi, Yumiko

    2012-11-30

    Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria. PMID:22677697

  3. Variations in short term products of inorganic carbon fixation in exponential and stationary phase cultures of Aphanocapsa 6308.

    PubMed

    Weathers, P J; Allen, M M

    1978-03-01

    Aphanocapsa 6308 metabolizes both NaHCO3 and Na2CO3. The short term incorporation (5-s) metabolic pattern and the patterns of incorporation of bicarbonate for exponential versus stationary phase cultures differ, however. Cells were equilibrated for 10 min in air and distilled water prior to injection of either NaH14CO3 at pH 8.0, or Na214CO3 at pH 11.0. Hot ethanol extracts were analyzed via paper chromatography and autoradiography for products of CO2 fixation. At 5 s, malate (51.5%) predominates slightly as a primary bicarbonate fixation product over 3-phosphoglycerate (40.3%); 3-phosphoglycerate is the primary product of carbonate fixation. At 60 s, the carbonate and bicarbonate labelling patterns are similar. Cells in stationary phase fix in 5 s a greater proportion of bicarbonate into malate (36% vs. 14% for 3-phosphoglycerate) than do cells in exponential growth. Likewise, 60 s incorporations show a large amount of bicarbonate fixed into aspartate (30.9%) in stationary phase cells over that of exponential phase (11.6%). These data suggest an operative C4 pathway for purposes not related to carbohydrate synthesis but rather as compensation for the incomplete tricarboxylic acid cycle in cyanobacteria. The enhancement of both aspartate fixation and CO2 fixation into citrulline in stationary phase correlates with an increase in cyanophycin granule production which requires both aspartate and arginine. PMID:417691

  4. Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114.

    PubMed

    Tang, Kuo-Hsiang; Feng, Xueyang; Tang, Yinjie J; Blankenship, Robert E

    2009-01-01

    The Roseobacter clade of aerobic marine proteobacteria, which compose 10-25% of the total marine bacterial community, has been reported to fix CO(2), although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO(2) assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B(12) (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of (13)C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1) R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10-15% of protein carbon from CO(2); (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole carbon source. PMID:19794911

  5. Recovering of carbon fixation in a eucalyptus site after felling

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. M.; Pita, G. P. A.; Mateus, A.; Santos Pereira, J.

    2009-04-01

    Espirra site (38°38'N,8°36'W) is located in a 300ha Eucalyptus globulus plantation, with a Mediterranean type climate with a mean annual precipitation of 709mm and a mean annual air temperature of 15.9°C. The plantation was established in 1986 with about 1100 trees ha-1. A 33m observation tower was installed in 2002, with an ultrasonic Gill anemometer R2, an open path analyzer IRGA LI-7500 and a microclimate unit at its top. A harvesting of trees was made at the end of the 2nd rotation period, from November to December 2006. During the last four years of the second rotation the coppice were 20m height. Harvesting was planned in order to initiate a new 12 year productive cycle. In October 2008 a first thinning was made in three fourths of emerging stems from stumps. At this stage the forest trees had a mean height of 6m. For the 2002-2006 period, mean annual values of carbon net ecosystem exchange (NEE), gross production(GPP) and ecosystem respiration(Reco) were -533.3 gCm-2, 1628.6 gCm-2 and 1095.2 gCm-2. Seasonal patterns of carbon fixation for the five years showed a decrease in July-August periods due to highest air temperatures, atmospheric water vapour deficits and stomata partial closure to prevent water transpiration losses. For the period 2002-2006, the dry year of 2005 with a precipitation of about 390 mm, corresponded to the smaller carbon fixation of 390 gCm-2. Similarly, values of Reco, GPP and estimated leaf area index (less than three) were also minimal in 2005. Water use efficiency, WUE (ratio GPP/precipitation) was maximum in summer periods and in driest years, reaching values of about 12g/L-1. Recovery of carbon sink capacity, after the felling, begun after August 2007. The 2007 and 2008 annual NEE values were respectively 105.8 gCm-2 and -35.78 gCm-2. This negative value of NEE for 2008 is indicative of a carbon sink recovery. Annual Reco values for 2007 and 2008 were respectively 1059.03 gCm-2 and 1148.21 gCm-2. For GPP the annual values of

  6. Phytoplankton carbon fixation, chlorophyll-biomass and diagnostic pigments in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Poulton, Alex J.; Holligan, Patrick M.; Hickman, Anna; Kim, Young-Nam; Adey, Tim R.; Stinchcombe, Mark C.; Holeton, Claire; Root, Sarah; Woodward, E. Malcolm S.

    2006-07-01

    We have made daily measurements of phytoplankton pigments, size-fractionated (<2 and >2-μm) carbon fixation and chlorophyll- a concentration during four Atlantic Meridional Transect (AMT) cruises in 2003-04. Surface rates of carbon fixation ranged from <0.2-mmol C m -3 d -1 in the subtropical gyres to 0.2-0.5-mmol C m -3 d -1 in the tropical equatorial Atlantic. Significant intercruise variability was restricted to the subtropical gyres, with higher chlorophyll- a concentrations and carbon fixation in the subsurface chlorophyll maximum during spring in either hemisphere. In surface waters, although picoplankton (<2-μm) represented the dominant fraction in terms of both carbon fixation (50-70%) and chlorophyll- a (80-90%), nanoplankton (>2-μm) contributions to total carbon fixation (30-50%) were higher than to total chlorophyll- a (10-20%). However, in the subsurface chlorophyll maximum picoplankton dominated both carbon fixation (70-90%) and chlorophyll- a (70-90%). Thus, in surface waters chlorophyll-normalised carbon fixation was 2-3 times higher for nanoplankton and differences in picoplankton and nanoplankton carbon to chlorophyll- a ratios may lead to either higher or similar growth rates. These low chlorophyll-normalised carbon fixation rates for picoplankton may also reflect losses of fixed carbon (cell leakage or respiration), decreases in photosynthetic efficiency, grazing losses during the incubations, or some combination of all these. Comparison of nitrate concentrations in the subsurface chlorophyll maximum with estimates of those required to support the observed rates of carbon fixation (assuming Redfield stoichiometry) indicate that primary production in the chlorophyll maximum may be light rather than nutrient limited.

  7. CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation

    PubMed Central

    Dangel, Andrew W.

    2015-01-01

    Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts. PMID:26324454

  8. CbbR, the Master Regulator for Microbial Carbon Dioxide Fixation.

    PubMed

    Dangel, Andrew W; Tabita, F Robert

    2015-11-01

    Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts. PMID:26324454

  9. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus.

    PubMed

    Toledo-Cervantes, Alma; Morales, Marcia; Novelo, Eberto; Revah, Sergio

    2013-02-01

    An indigenous microalga was isolated from the springs in Cuatro Ciénegas, México. It was morphologically identified as Scenedesmus obtusiusculus and cultivated in bubble-column photobioreactors in batch operation mode. This microalga grows at 10% of carbon dioxide (CO(2)) showing a maximum CO(2) fixation rate of 970gm(-3)d(-1). The microalga, without any nutrient limitation, contained 20% of nonpolar lipids with a biomass productivity of 500gm(-3)d(-1) and a maximum biomass concentration of around 6,000gm(-3) at 5% CO(2) and irradiance of 134μmolm(-2)s(-1). Furthermore, it was observed that the microalga stored 55.7% of nonpolar lipids when 5% CO(2) was fed at 0.8vvm and 54.7μmolm(-2)s(-1) under nitrogen starvation. The lipid profile included C16:0, C18:0, C18:1n9t, C18:1n9c, C18:3n6 with a productivity of 200g lipid m(-3)d(-1). Therefore, the microalga may have biotechnological potential producing lipids for biodiesel. PMID:23334023

  10. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge.

    PubMed

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-01-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2-0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology. PMID:26439402

  11. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-10-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2-0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology.

  12. Facile Carbon Fixation to Performic Acids by Water-Sealed Dielectric Barrier Discharge

    PubMed Central

    Kawasaki, Mitsuo; Morita, Tatsuo; Tachibana, Kunihide

    2015-01-01

    Carbon fixation refers to the conversion of carbon dioxide (CO2) to organic materials, as commonly performed in nature through photosynthesis by plants and other autotrophic organisms. The creation of artificial carbon fixation processes is one of the greatest challenges for chemistry to solve the critical environmental issue concerning the reduction of CO2 emissions. We have developed an electricity-driven facile CO2 fixation process that yields performic acid, HCO2OH, from CO2 and water at neutral pH by dielectric barrier discharge with an input electric power conversion efficiency of currently 0.2−0.4%. This method offers a promising future technology for artificial carbon fixation on its own, and may also be scaled up in combination with e.g., the post-combustion CO2 capture and storage technology. PMID:26439402

  13. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  14. Carbon dioxide fixation by Metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park.

    PubMed

    Jennings, Ryan M; Whitmore, Laura M; Moran, James J; Kreuzer, Helen W; Inskeep, William P

    2014-05-01

    The fixation of inorganic carbon has been documented in all three domains of life and results in the biosynthesis of diverse organic compounds that support heterotrophic organisms. The primary aim of this study was to assess carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of a dominant Fe(II)-oxidizing organism (Metallosphaera yellowstonensis strain MK1) originally isolated from these environments. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon dioxide fixation pathway were identified in M. yellowstonensis strain MK1. Highly similar M. yellowstonensis genes for this pathway were identified in metagenomes of replicate Fe(III)-oxide mats, as were genes for the reductive tricarboxylic acid cycle from Hydrogenobaculum spp. (Aquificales). Stable-isotope ((13)CO2) labeling demonstrated CO2 fixation by M. yellowstonensis strain MK1 and in ex situ assays containing live Fe(III)-oxide microbial mats. The results showed that strain MK1 fixes CO2 with a fractionation factor of ∼2.5‰. Analysis of the (13)C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C, and microbial mat C showed that mat C is from both DIC and non-DIC sources. An isotopic mixing model showed that biomass C contains a minimum of 42% C of DIC origin, depending on the fraction of landscape C that is present. The significance of DIC as a major carbon source for Fe(III)-oxide mat communities provides a foundation for examining microbial interactions that are dependent on the activity of autotrophic organisms (i.e., Hydrogenobaculum and Metallosphaera spp.) in simplified natural communities. PMID:24532073

  15. Carbon Dioxide Fixation by Metallosphaera yellowstonensis and Acidothermophilic Iron-Oxidizing Microbial Communities from Yellowstone National Park

    PubMed Central

    Jennings, Ryan M.; Whitmore, Laura M.; Moran, James J.

    2014-01-01

    The fixation of inorganic carbon has been documented in all three domains of life and results in the biosynthesis of diverse organic compounds that support heterotrophic organisms. The primary aim of this study was to assess carbon dioxide fixation in high-temperature Fe(III)-oxide mat communities and in pure cultures of a dominant Fe(II)-oxidizing organism (Metallosphaera yellowstonensis strain MK1) originally isolated from these environments. Protein-encoding genes of the complete 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) carbon dioxide fixation pathway were identified in M. yellowstonensis strain MK1. Highly similar M. yellowstonensis genes for this pathway were identified in metagenomes of replicate Fe(III)-oxide mats, as were genes for the reductive tricarboxylic acid cycle from Hydrogenobaculum spp. (Aquificales). Stable-isotope (13CO2) labeling demonstrated CO2 fixation by M. yellowstonensis strain MK1 and in ex situ assays containing live Fe(III)-oxide microbial mats. The results showed that strain MK1 fixes CO2 with a fractionation factor of ∼2.5‰. Analysis of the 13C composition of dissolved inorganic C (DIC), dissolved organic C (DOC), landscape C, and microbial mat C showed that mat C is from both DIC and non-DIC sources. An isotopic mixing model showed that biomass C contains a minimum of 42% C of DIC origin, depending on the fraction of landscape C that is present. The significance of DIC as a major carbon source for Fe(III)-oxide mat communities provides a foundation for examining microbial interactions that are dependent on the activity of autotrophic organisms (i.e., Hydrogenobaculum and Metallosphaera spp.) in simplified natural communities. PMID:24532073

  16. Computational protein design enables a novel one-carbon assimilation pathway.

    PubMed

    Siegel, Justin B; Smith, Amanda Lee; Poust, Sean; Wargacki, Adam J; Bar-Even, Arren; Louw, Catherine; Shen, Betty W; Eiben, Christopher B; Tran, Huu M; Noor, Elad; Gallaher, Jasmine L; Bale, Jacob; Yoshikuni, Yasuo; Gelb, Michael H; Keasling, Jay D; Stoddard, Barry L; Lidstrom, Mary E; Baker, David

    2015-03-24

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway. PMID:25775555

  17. Computational protein design enables a novel one-carbon assimilation pathway

    PubMed Central

    Siegel, Justin B.; Smith, Amanda Lee; Poust, Sean; Wargacki, Adam J.; Bar-Even, Arren; Louw, Catherine; Shen, Betty W.; Eiben, Christopher B.; Tran, Huu M.; Noor, Elad; Gallaher, Jasmine L.; Bale, Jacob; Yoshikuni, Yasuo; Gelb, Michael H.; Keasling, Jay D.; Stoddard, Barry L.; Lidstrom, Mary E.; Baker, David

    2015-01-01

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway. PMID:25775555

  18. Computational protein design enables a novel one-carbon assimilation pathway

    SciTech Connect

    Siegel, JB; Smith, AL; Poust, S; Wargacki, AJ; Bar-Even, A; Louw, C; Shen, BW; Eiben, CB; Tran, HM; Noor, E; Gallaher, JL; Bale, J; Yoshikuni, Y; Gelb, MH; Keasling, JD; Stoddard, BL; Lidstrom, ME; Baker, D

    2015-03-09

    We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway.

  19. Fixation of atmospheric carbon dioxide by a cadmium(II) macrocyclic complex.

    PubMed

    Janzen, Daron E; Botros, Maikel E; VanDerveer, Donald G; Grant, Gregory J

    2007-12-01

    A crystal structure showing an unusual trinuclear Cd(II) cluster bridged in mu3 fashion by a carbonate ligand is reported. The carbonate ion is formed by fixation of atmospheric carbon dioxide from the corresponding cadmium mononuclear complex containing an aza crown ether. PMID:18271488

  20. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    SciTech Connect

    Feist, AM; Nagarajan, H; Rotaru, AE; Tremblay, PL; Zhang, T; Nevin, KP; Lovley, DR; Zengler, K

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We

  1. Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater.

    PubMed

    Wang, Wenguo; Yang, Chuang; Tang, Xiaoyu; Zhu, Qili; Pan, Ke; Cai, Denggao; Hu, Qichun; Ma, Danwei

    2015-10-01

    The ability to fix carbon and energy in swine wastewater of duckweeds was investigated using Spirodela polyrhiza as the model species. Cultures of S. polyrhiza were grown in dilutions of both original swine wastewater (OSW) and anaerobic digestion effluent (ADE) based on total ammonia nitrogen (TAN). Results showed that elevated concentrations of TAN caused decreased growth, carbon fixation, and energy production rates, particularly just after the first rise in two types of swine wastewater. Also, OSW was more suitable for S. polyrhiza cultivation than ADE. Maximum carbon and energy fixation were achieved at OSW-TAN concentrations of 12.08 and 13.07 mg L(-1), respectively. Photosynthetic activity of S. polyrhiza could be inhibited by both nutrient stress (in high-concentration wastewater) and nutrient limitation (in low-concentration wastewater), affecting its growth and ability for carbon-energy fixation. PMID:26036587

  2. A “footprint” of plant carbon fixation cycle functions during the development of a heterotrophic fungus

    PubMed Central

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-01-01

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution. PMID:26263551

  3. [Regulation of alternative CO[sub 2] fixation pathways in procaryotic and eucaryotic photosynthetic organisms

    SciTech Connect

    Not Available

    1992-01-01

    The major goal of this project is to determine how microorganisms regulate the assimilation of CO[sup 2] via pathways alternative to the usual Calvin reductive pentose phosphate scheme. In particular, we are interest in the molecular basis for switches in CO[sub 2] metabolic paths. Several earlier studies had indicated that purple nonsulfur photosynthetic bacteria assimilate significant amounts of CO[sub 2] via alternative non-Calvin routes. We have deleted the gene that encodes. RubisCo (ribulose bisphosphate carboxylase/oxygenase) in both the Rhodobacter sphaeroids and Rhodospirillum rubrum. The R. sphaeroides RubisCO deletion strain (strain 16) could not grow under photoheterotrophic conditions with malate as electron donor and CO[sub 2] as the electron acceptor; however the R. rub RubisCO deletion strain (strain I-19) could. Over the past year we have sought to physiologically characterize strain 16PHC. We found that, 16PHC exhibited rates of whole-cell CO[sub 2] fixation which were significantly higher than strain 16. Strain 16PHC could not grow photolithoautotrophically in a CO[sub 2] atmosphere; however, CO[sub 2] fixation catalyzed by photoheterotrophically grown 16PHC was repressed by the addition of DMSO. Likewise, we found that cells initially grown in the presence of DMSO could induce the CO[sub 2] fixation system when DMSO was removed. Thus, these results suggested that both PHC and I-19 could be used to study alternative CO[sub 2] fixation reactions and their significance in R. sphaexoides and R. rubrum.

  4. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Cleveland, Cory C.; Lawrence, David M.; Bonan, Gordon B.

    2015-04-01

    Uncertainties in terrestrial carbon (C) cycle projections increase uncertainty of potential climate feedbacks. Efforts to improve model performance often include increased representation of biogeochemical processes, such as coupled carbon-nitrogen (N) cycles. In doing so, models are becoming more complex, generating structural uncertainties in model form that reflect incomplete knowledge of how to represent underlying processes. Here, we explore structural uncertainties associated with biological nitrogen fixation (BNF) and quantify their effects on C cycle projections. We find that alternative plausible structures to represent BNF result in nearly equivalent terrestrial C fluxes and pools through the twentieth century, but the strength of the terrestrial C sink varies by nearly a third (50 Pg C) by the end of the twenty-first century under a business-as-usual climate change scenario representative concentration pathway 8.5. These results indicate that actual uncertainty in future C cycle projections may be larger than previously estimated, and this uncertainty will limit C cycle projections until model structures can be evaluated and refined.

  5. A model for diurnal patterns of carbon fixation in a Precambrian microbial mat based on a modern analog

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.

    1991-01-01

    Microbial mat communities are one of the first and most prevalent biological communities known from the Precambrian fossil record. These fossil mat communities are found as laminated sedimentary rock structures called stromatolites. Using a modern microbial mat as an analog for Precambrian stromatolites, a study of carbon fixation during a diurnal cycle under ambient conditions was undertaken. The rate of carbon fixation depends primarily on the availability of light (consistent with photosynthetic carbon fixation) and inorganic carbon, and not nitrogen or phosphorus. Atmospheric PCO2 is thought to have decreased from 10 bars at 4 Ga (10(9) years before present) to approximately 10(-4) bars today, implying a change in the availability of inorganic carbon for carbon fixation. Experimental manipulation of levels of inorganic carbon to levels that may have been available to Precambrian mat communities resulted in increased levels of carbon fixation during daylight hours. Combining these data with models of daylength during the Precambrian, models are derived for diurnal patterns of photosynthetic carbon fixation in a Precambrian microbial mat community. The models suggest that, even in the face of shorter daylengths during the Precambrian, total daily carbon fixation has been declining over geological time, with most of the decrease having occurred during the Precambrian.

  6. Carbon dioxide fixation and respiration relationships observed during closure experiments in Biosphere 2

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William; Allen, John P.

    Biosphere 2 enclosed several ecosystems - ones analogous to rainforest, tropical savannah, thornscrub, desert, marsh and coral reef - and a diverse agro-ecology, with dozens of food crops, in virtual material isolation from Earth's environment. This permits a detailed examination of fixation and respiration from the continuous record of carbon dioxide concentration from sensors inside the facility. Unlike the Earth, all the ecosystems were active during sunlight hours, while phyto and soil respiration dominated nighttime hours. This resulted in fluctuations of as much as 600-700 ppm CO2 daily during days of high sunlight input. We examine the relationships between daytime fixation as driven by photosynthesis to nighttime respiration and also fixation and respiration as related to carbon dioxide concentration. Since carbon dioxide concentrations varied from near Earth ambient levels to over 3000 ppm (during low-light winter months), the response of the plant communities and impact on phytorespiration and soil respiration may be of relevance to the global climate change research community. An investigation of these dynamics will also allow the testing of models predicting the response of community metabolism to variations in sunlight and degree of previous net carbon fixation.

  7. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    PubMed Central

    Feist, Adam M.; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P.; Lovley, Derek R.; Zengler, Karsten

    2014-01-01

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. PMID:24762737

  8. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean

    PubMed Central

    Mattes, Timothy E; Nunn, Brook L; Marshall, Katharine T; Proskurowski, Giora; Kelley, Deborah S; Kawka, Orest E; Goodlett, David R; Hansell, Dennis A; Morris, Robert M

    2013-01-01

    Bacteria and archaea in the dark ocean (>200 m) comprise 0.3–1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean. PMID:23842654

  9. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    NASA Astrophysics Data System (ADS)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2

  10. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow.

    PubMed

    Sun, Yaqi; Casella, Selene; Fang, Yi; Huang, Fang; Faulkner, Matthew; Barrett, Steve; Liu, Lu-Ning

    2016-05-01

    Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO2 fixation. The central CO2-fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO2-fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of β-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that β-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO2 fixation. PMID:26956667

  11. The effect of nutrients on carbon and nitrogen fixation by the UCYN-A-haptophyte symbiosis.

    PubMed

    Krupke, Andreas; Mohr, Wiebke; LaRoche, Julie; Fuchs, Bernhard M; Amann, Rudolf I; Kuypers, Marcel M M

    2015-07-01

    Symbiotic relationships between phytoplankton and N2-fixing microorganisms play a crucial role in marine ecosystems. The abundant and widespread unicellular cyanobacteria group A (UCYN-A) has recently been found to live symbiotically with a haptophyte. Here, we investigated the effect of nitrogen (N), phosphorus (P), iron (Fe) and Saharan dust additions on nitrogen (N2) fixation and primary production by the UCYN-A-haptophyte association in the subtropical eastern North Atlantic Ocean using nifH expression analysis and stable isotope incubations combined with single-cell measurements. N2 fixation by UCYN-A was stimulated by the addition of Fe and Saharan dust, although this was not reflected in the nifH expression. CO2 fixation by the haptophyte was stimulated by the addition of ammonium nitrate as well as Fe and Saharan dust. Intriguingly, the single-cell analysis using nanometer scale secondary ion mass spectrometry indicates that the increased CO2 fixation by the haptophyte in treatments without added fixed N is likely an indirect result of the positive effect of Fe and/or P on UCYN-A N2 fixation and the transfer of N2-derived N to the haptophyte. Our results reveal a direct linkage between the marine carbon and nitrogen cycles that is fuelled by the atmospheric deposition of dust. The comparison of single-cell rates suggests a tight coupling of nitrogen and carbon transfer that stays balanced even under changing nutrient regimes. However, it appears that the transfer of carbon from the haptophyte to UCYN-A requires a transfer of nitrogen from UCYN-A. This tight coupling indicates an obligate symbiosis of this globally important diazotrophic association. PMID:25535939

  12. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".

    PubMed

    Rasigraf, Olivia; Kool, Dorien M; Jetten, Mike S M; Sinninghe Damsté, Jaap S; Ettwig, Katharina F

    2014-04-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic

  13. Autotrophic Carbon Dioxide Fixation via the Calvin-Benson-Bassham Cycle by the Denitrifying Methanotroph “Candidatus Methylomirabilis oxyfera”

    PubMed Central

    Kool, Dorien M.; Jetten, Mike S. M.; Sinninghe Damsté, Jaap S.; Ettwig, Katharina F.

    2014-01-01

    Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. “Candidatus Methylomirabilis oxyfera” is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, “Ca. Methylomirabilis oxyfera” encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by “Ca. Methylomirabilis oxyfera” via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an “Ca. Methylomirabilis oxyfera” enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either 13CH4 or [13C]bicarbonate revealed that “Ca. Methylomirabilis oxyfera” biomass and lipids became significantly more enriched in 13C after incubation with 13C-labeled bicarbonate (and unlabeled methane) than after incubation with 13C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in “Ca. Methylomirabilis oxyfera.” Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by “Ca. Methylomirabilis oxyfera” bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a

  14. Chemoautotrophic Carbon Fixation Rates and Active Bacterial Communities in Intertidal Marine Sediments

    PubMed Central

    Boschker, Henricus T. S.; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W. C.; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, the Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m−2 d−1. Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)−1, which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  15. Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments.

    PubMed

    Boschker, Henricus T S; Vasquez-Cardenas, Diana; Bolhuis, Henk; Moerdijk-Poortvliet, Tanja W C; Moodley, Leon

    2014-01-01

    Chemoautotrophy has been little studied in typical coastal marine sediments, but may be an important component of carbon recycling as intense anaerobic mineralization processes in these sediments lead to accumulation of high amounts of reduced compounds, such as sulfides and ammonium. We studied chemoautotrophy by measuring dark-fixation of 13C-bicarbonate into phospholipid derived fatty acid (PLFA) biomarkers at two coastal sediment sites with contrasting sulfur chemistry in the Eastern Scheldt estuary, The Netherlands. At one site where free sulfide accumulated in the pore water right to the top of the sediment, PLFA labeling was restricted to compounds typically found in sulfur and ammonium oxidizing bacteria. At the other site, with no detectable free sulfide in the pore water, a very different PLFA labeling pattern was found with high amounts of label in branched i- and a-PLFA besides the typical compounds for sulfur and ammonium oxidizing bacteria. This suggests that other types of chemoautotrophic bacteria were also active, most likely Deltaproteobacteria related to sulfate reducers. Maximum rates of chemoautotrophy were detected in first 1 to 2 centimeters of both sediments and chemosynthetic biomass production was high ranging from 3 to 36 mmol C m(-2) d(-1). Average dark carbon fixation to sediment oxygen uptake ratios were 0.22±0.07 mol C (mol O2)(-1), which is in the range of the maximum growth yields reported for sulfur oxidizing bacteria indicating highly efficient growth. Chemoautotrophic biomass production was similar to carbon mineralization rates in the top of the free sulfide site, suggesting that chemoautotrophic bacteria could play a crucial role in the microbial food web and labeling in eukaryotic poly-unsaturated PLFA was indeed detectable. Our study shows that dark carbon fixation by chemoautotrophic bacteria is a major process in the carbon cycle of coastal sediments, and should therefore receive more attention in future studies on

  16. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.

    PubMed

    Oguz, Merve T; Robinson, Kevin G; Layton, Alice C; Sayler, Gary S

    2006-02-01

    Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge. PMID:16436292

  17. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    PubMed Central

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-01-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191

  18. Assessment of carbon fibre composite fracture fixation plate using finite element analysis.

    PubMed

    Saidpour, Seyed H

    2006-07-01

    In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress shielding in the layer of bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. In this study a novel forearm internal fracture fixation plate made from short carbon fibre reinforced plastic (CFRP) was used in an attempt to address the problem. Accordingly, it has been possible to analyse the stress distribution in the composite plates using finite-element modelling. A three-dimensional, quarter-symmetric finite element model was generated for the plate system. The stress state in the underlying bone was examined for several loading conditions. Based on the analytical results the composite plate system is likely to reduce stress-shielding effects at the fracture site when subjected to bending and torsional loads. The design of the plate was further optimised by reducing the width around the innermost holes. PMID:16732432

  19. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  20. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    SciTech Connect

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  1. [Regulation of alternative CO{sub 2} fixation pathways in procaryotic and eucaryotic photosynthetic organisms]. Progress report

    SciTech Connect

    Not Available

    1992-12-31

    The major goal of this project is to determine how microorganisms regulate the assimilation of CO{sup 2} via pathways alternative to the usual Calvin reductive pentose phosphate scheme. In particular, we are interest in the molecular basis for switches in CO{sub 2} metabolic paths. Several earlier studies had indicated that purple nonsulfur photosynthetic bacteria assimilate significant amounts of CO{sub 2} via alternative non-Calvin routes. We have deleted the gene that encodes. RubisCo (ribulose bisphosphate carboxylase/oxygenase) in both the Rhodobacter sphaeroids and Rhodospirillum rubrum. The R. sphaeroides RubisCO deletion strain (strain 16) could not grow under photoheterotrophic conditions with malate as electron donor and CO{sub 2} as the electron acceptor; however the R. rub RubisCO deletion strain (strain I-19) could. Over the past year we have sought to physiologically characterize strain 16PHC. We found that, 16PHC exhibited rates of whole-cell CO{sub 2} fixation which were significantly higher than strain 16. Strain 16PHC could not grow photolithoautotrophically in a CO{sub 2} atmosphere; however, CO{sub 2} fixation catalyzed by photoheterotrophically grown 16PHC was repressed by the addition of DMSO. Likewise, we found that cells initially grown in the presence of DMSO could induce the CO{sub 2} fixation system when DMSO was removed. Thus, these results suggested that both PHC and I-19 could be used to study alternative CO{sub 2} fixation reactions and their significance in R. sphaexoides and R. rubrum.

  2. PH-NEUTRAL CONCRETE FOR ATTACHED MICROALGAE AND ENHANCED CARBON DIOXIDE FIXATION - PHASE I

    SciTech Connect

    Kerry M. Dooley; F. Carl Knopf; Robert P. Gambrell

    1999-05-31

    The novelty/innovation of the proposed work is as follows. Supercritical carbon dioxide (SC-CO {sub 2})-based extrusion and molding technology can be used to produce significantly improved (in terms of strength/unit weight, durability, hardness and chemical resistance) cement-based products. SC-CO{sub 2} can rapidly convert the calcium hydroxide in cured cement to calcium carbonate, which increases the density and unconfined compressive strength in the treated region. In cured concrete, this treated region is typically a several-mm thick layer (generally <{approx}5mm, unless treatment time is excessive). However, we have found that by treating the entire cement matrix with SC-CO{sub 2} as part of the curing process, we can carbonate it rapidly, regardless of the thickness. By ''rapidly'' we mean simultaneous carbonation/curing in < 5 ks even for large cement forms, compared to typical carbonation times of several days or even years at low pressures. Carbonation changes the pH in the treated region from {approx}13 to {approx}8, almost exactly compatible with seawater. Therefore the leaching rates from these cements is reduced. These cement improvements are directed to the development of strong but thin artificial reefs, to which can be attached microalgae used for the enhanced fixation of CO{sub 2}. It is shown below that attached microalgae, as algal beds or reefs, are more efficient for CO{sub 2} fixation by a factor of 20, compared to the open ocean on an area basis. We have performed preliminary tests of the pH-neutral cements of our invention for attachment of microalgae populations. We have found pH-neutral materials which attach microalgae readily. These include silica-enriched (pozzolanic) cements, blast-furnace slags and fly ash, which are also silica-rich. We have already developed technology to simultaneously foam, carbonate and cure the cements; this foaming process further increases cement surface areas for microalgae attachment, in some cases to >10 m

  3. Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans

    PubMed Central

    Lawrenz, Evelyn; Silsbe, Greg; Capuzzo, Elisa; Ylöstalo, Pasi; Forster, Rodney M.; Simis, Stefan G. H.; Prášil, Ondřej; Kromkamp, Jacco C.; Hickman, Anna E.; Moore, C. Mark; Forget, Marie-Hélèn; Geider, Richard J.; Suggett, David J.

    2013-01-01

    Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and 14C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e− (mol C)−1 with a mean of 10.9±6.91 mol e− mol C)−1. Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φe,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φe,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φe,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while

  4. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry

    PubMed Central

    Sharwood, Robert E.; Sonawane, Balasaheb V.; Ghannoum, Oula; Whitney, Spencer M.

    2016-01-01

    Plants operating C3 and C4 photosynthetic pathways exhibit differences in leaf anatomy and photosynthetic carbon fixation biochemistry. Fully understanding this underpinning biochemical variation is requisite to identifying solutions for improving photosynthetic efficiency and growth. Here we refine assay methods for accurately measuring the carboxylase and decarboxylase activities in C3 and C4 plant soluble protein. We show that differences in plant extract preparation and assay conditions are required to measure NADP-malic enzyme and phosphoenolpyruvate carboxylase (pH 8, Mg2+, 22 °C) and phosphoenolpyruvate carboxykinase (pH 7, >2mM Mn2+, no Mg2+) maximal activities accurately. We validate how the omission of MgCl2 during leaf protein extraction, lengthy (>1min) centrifugation times, and the use of non-pure ribulose-1,5-bisphosphate (RuBP) significantly underestimate Rubisco activation status. We show how Rubisco activation status varies with leaf ontogeny and is generally lower in mature C4 monocot leaves (45–60% activation) relative to C3 monocots (55–90% activation). Consistent with their >3-fold lower Rubisco contents, full Rubisco activation in soluble protein from C4 leaves (<5min) was faster than in C3 plant samples (<10min), with addition of Rubisco activase not required for full activation. We conclude that Rubisco inactivation in illuminated leaves primarily stems from RuBP binding to non-carbamylated enzyme, a state readily reversible by dilution during cellular protein extraction. PMID:27122573

  5. Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry.

    PubMed

    Sharwood, Robert E; Sonawane, Balasaheb V; Ghannoum, Oula; Whitney, Spencer M

    2016-05-01

    Plants operating C3 and C4 photosynthetic pathways exhibit differences in leaf anatomy and photosynthetic carbon fixation biochemistry. Fully understanding this underpinning biochemical variation is requisite to identifying solutions for improving photosynthetic efficiency and growth. Here we refine assay methods for accurately measuring the carboxylase and decarboxylase activities in C3 and C4 plant soluble protein. We show that differences in plant extract preparation and assay conditions are required to measure NADP-malic enzyme and phosphoenolpyruvate carboxylase (pH 8, Mg(2+), 22 °C) and phosphoenolpyruvate carboxykinase (pH 7, >2mM Mn(2+), no Mg(2+)) maximal activities accurately. We validate how the omission of MgCl2 during leaf protein extraction, lengthy (>1min) centrifugation times, and the use of non-pure ribulose-1,5-bisphosphate (RuBP) significantly underestimate Rubisco activation status. We show how Rubisco activation status varies with leaf ontogeny and is generally lower in mature C4 monocot leaves (45-60% activation) relative to C3 monocots (55-90% activation). Consistent with their >3-fold lower Rubisco contents, full Rubisco activation in soluble protein from C4 leaves (<5min) was faster than in C3 plant samples (<10min), with addition of Rubisco activase not required for full activation. We conclude that Rubisco inactivation in illuminated leaves primarily stems from RuBP binding to non-carbamylated enzyme, a state readily reversible by dilution during cellular protein extraction. PMID:27122573

  6. [Regulation of alternative CO{sub 2} fixation pathways in prokaryotic and eukaryotic photosynthetic organisms]. Progress report, June 15, 1991--June 14, 1993

    SciTech Connect

    Tabita, R.

    1993-12-31

    The goal of this project to determine how photosynthetic microorganisms regulate the assimilation of CO{sub 2} via pathways alternative to the usual Calvin-Benson-Bassham reductive pentose phosphate scheme, particularly in the molecular basis for switches in CO{sub 2} metabolic paths. We have identified proteins on one-dimensional and two-dimensional SDS gels that appear differentially expressed in R. sphaeroides strain 16PHC which may be due to a mutation or change in some locus that controls the expression of several genes and their products. Similar observations were made relative to R. rubrum I-19 and the wild-type, namely that additional protein bands were observed in extracts of I-19 compared to the wild-type when both were grown photoheterotrophically with malate as electron donor and CO{sub 2} as the obligatory electron acceptor. The results of Tn5 mutagenesis of R. sphaeroides 16PHC resulted in the isolation of several strains that effectively changed back to the 16 phenotype; i.e., no malate-dependent phototrophic growth with CO{sub 2} as electron acceptor. We have found that both wild-type R. sphaeroides and R. rubrum, and the respective RubisCO negative mutant strains, are all capable of photolithoautotrophic growth using reduced sulfur compounds as electron donors and CO{sub 2} as the sole carbon source and electron acceptor. The fact that the RubisCO negative are capable of photoautotrophic growth is an exciting development for us because it proves that alternative or nonCalvin CO{sub 2} fixation pathways are extremely important to the overall carbon metabolism of these organisms. Moreover, wild-type strains turn off the synthesis of RubisCO under these cultural conditions. Thus, there appears to be separate autotrophic CO{sub 2} fixation pathways in these organisms, and a major emphasis has been placed to identify how these bacteria can grow autotrophically and fix CO{sub 2} in the absence of RubisCO.

  7. Heterocystous Cyanobacteria in Microbialites Play an Important Role in N2 Fixation and Carbonate Mineral Precipitation

    NASA Astrophysics Data System (ADS)

    Alcantara-Hernandez, R. J.

    2015-12-01

    Lake Alchichica is a maars type crater-lake located in Central Mexico (pH > 8.9, EC ~13.39 mS cm-1). This limnological system harbors two types of microbialites that can be found around the entire perimeter of the lake (Fig. 1). These structures are representative examples of complex and diverse microbiological assemblages, where microbial activity promotes lithification by trapping, binding and/or precipitating detrital or chemical sediments. Previous studies determined that the microbialites of Lake Alchichica fix N2 to thrive under the N-limiting conditions of the lake, and that these nitrogenase activity peaks are related to heterocystous cyanobacteria that couple photosynthesis to N2 fixation during daylight periods. Heterocystous cyanobacteria (Nostocales) together with Oscillatoriales (non-heterocystous filamentous cyanobacteria) and other cyanobacterial groups have been described as the most abundant cyanobacteria in Alchichica microbialites, and in lithifying mats. Our results suggest that heterocystous cyanobacteria play an important role not only by fixing N2 for biomass construction, but also because their heterocysts host in their external cell membranes main sites for carbonate mineral precipitation including calcium carbonates and siderite. Previous research has shown that the heterocyst is the specialized site for cellular respiration associated to the pH decrease of vegetative/photosynthetic cells, contributing thus to the precipitation of carbonates and the accretion of the organosedimentary structure

  8. Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans

    DOE PAGESBeta

    Nazem-Bokaee, Hadi; Gopalakrishnan, Saratram; Ferry, James G.; Wood, Thomas K.; Maranas, Costas D.

    2016-01-17

    Methanosarcina acetivorans is a model archaeon with renewed interest due to its unique reversible methane production pathways. However, the mechanism and relevant pathways implicated in (co)utilizing novel carbon substrates in this organism are still not fully understood. This paper provides a comprehensive inventory of thermodynamically feasible routes for anaerobic methane oxidation, co-reactant utilization, and maximum carbon yields of major biofuel candidates by M. acetivorans. Here, an updated genome-scale metabolic model of M. acetivorans is introduced (iMAC868 containing 868 genes, 845 reactions, and 718 metabolites) by integrating information from two previously reconstructed metabolic models (i.e., iVS941 and iMB745), modifying 17 reactions,more » adding 24 new reactions, and revising 64 gene-proteinreaction associations based on newly available information. The new model establishes improved predictions of growth yields on native substrates and is capable of correctly predicting the knockout outcomes for 27 out of 28 gene deletion mutants. By tracing a bifurcated electron flow mechanism, the iMAC868 model predicts thermodynamically feasible (co)utilization pathway of methane and bicarbonate using various terminal electron acceptors through the reversal of the aceticlastic pathway. In conclusion, this effort paves the way in informing the search for thermodynamically feasible ways of (co)utilizing novel carbon substrates in the domain Archaea.« less

  9. Genomic signatures of fifth autotrophic carbon assimilation pathway in bathypelagic Crenarchaeota.

    PubMed

    La Cono, Violetta; Smedile, Francesco; Ferrer, Manuel; Golyshin, Peter N; Giuliano, Laura; Yakimov, Michail M

    2010-09-01

    Marine Crenarchaeota, ubiquitous and abundant organisms in the oceans worldwide, remain metabolically uncharacterized, largely due to their low cultivability. Identification of candidate genes for bicarbonate fixation pathway in the Cenarchaeum symbiosum A was an initial step in understanding the physiology and ecology of marine Crenarchaeota. Recent cultivation and genome sequencing of obligate chemoautotrophic Nitrosopumilus maritimus SCM1 were a major breakthrough towards understanding of their functioning and provide a valuable model for experimental validation of genomic data. Here we present the identification of multiple key components of 3-hydroxipropionate/4-hydroxybutyrate cycle, the fifth pathway in carbon fixation, found in data sets of environmental sequences representing uncultivated superficial and bathypelagic Crenarchaeota from Sargasso sea (GOS data set) and KM3 (Mediterranean Sea) and ALOHA (Atlantic ocean) stations. These organisms are likely to use acetyl-CoA/propionyl-CoA carboxylase(s) as CO₂-fixing enzyme(s) to form succinyl-CoA, from which one molecule of acetyl-CoA is regenerated via 4-hydroxybutyrate cleavage and another acetyl-CoA to be the pathway product. The genetic distinctiveness and matching sympatric abundance imply that marine crenarchaeal genotypes from the three different geographic sites share similar ecophysiological properties, and therefore may represent fundamental units of marine ecosystem functioning. To couple results of sequence comparison with the dark ocean primary production, dissolved inorganic carbon fixation rates were measured at KM3 Station (3000 m depth, Eastern Mediterranean Sea), i.e. at the same site and depth used for metagenomic library construction. PMID:21255356

  10. High cell-specific rates of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon sp. at low temperatures in the Baltic Sea.

    PubMed

    Svedén, Jennie B; Adam, Birgit; Walve, Jakob; Nahar, Nurun; Musat, Niculina; Lavik, Gaute; Whitehouse, Martin J; Kuypers, Marcel M M; Ploug, Helle

    2015-12-01

    Aphanizomenon is a widespread genus of nitrogen (N2)-fixing cyanobacteria in lakes and estuaries, accounting for a large fraction of the summer N2-fixation in the Baltic Sea. However, information about its cell-specific carbon (C)- and N2-fixation rates in the early growth season has not previously been reported. We combined various methods to study N2-fixation, photosynthesis and respiration in field-sampled Baltic Sea Aphanizomenon sp. during early summer at 10°C. Stable isotope incubations at in situ light intensities during 24 h combined with cell-specific secondary ion mass spectrometry showed an average net N2-fixation rate of 55 fmol N cell(-1) day(-1). Dark net N2-fixation rates over a course of 12 h were 20% of those measured in light. C-fixation, but not N2-fixation, was inhibited by high ambient light intensities during daytime. Consequently, the C:N fixation ratio varied substantially over the diel cycle. C- and N2-fixation rates were comparable to those reported for Aphanizomenon sp. in August at 19°C, using the same methods. High respiration rates (23% of gross photosynthesis) were measured with (14)C-incubations and O2-microsensors, and presumably reflect the energy needed for high N2-fixation rates. Hence, Aphanizomenon sp. is an important contributor to N2-fixation at low in situ temperatures in the early growth season. PMID:26511856

  11. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  12. Identification of Missing Genes and Enzymes for Autotrophic Carbon Fixation in Crenarchaeota▿ †

    PubMed Central

    Ramos-Vera, W. Hugo; Weiss, Michael; Strittmatter, Eric; Kockelkorn, Daniel; Fuchs, Georg

    2011-01-01

    Two autotrophic carbon fixation cycles have been identified in Crenarchaeota. The dicarboxylate/4-hydroxybutyrate cycle functions in anaerobic or microaerobic autotrophic members of the Thermoproteales and Desulfurococcales. The 3-hydroxypropionate/4-hydroxybutyrate cycle occurs in aerobic autotrophic Sulfolobales; a similar cycle may operate in autotrophic aerobic marine Crenarchaeota. Both cycles form succinyl-coenzyme A (CoA) from acetyl-CoA and two molecules of inorganic carbon, but they use different means. Both cycles have in common the (re)generation of acetyl-CoA from succinyl-CoA via identical intermediates. Here, we identified several missing enzymes/genes involved in the seven-step conversion of succinyl-CoA to two molecules of acetyl-CoA in Thermoproteus neutrophilus (Thermoproteales), Ignicoccus hospitalis (Desulfurococcales), and Metallosphaera sedula (Sulfolobales). The identified enzymes/genes include succinyl-CoA reductase, succinic semialdehyde reductase, 4-hydroxybutyrate-CoA ligase, bifunctional crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase, and beta-ketothiolase. 4-Hydroxybutyryl-CoA dehydratase, which catalyzes a mechanistically intriguing elimination of water, is well conserved and rightly can be considered the key enzyme of these two cycles. In contrast, several of the other enzymes evolved from quite different sources, making functional predictions based solely on genome interpretation difficult, if not questionable. PMID:21169482

  13. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii1

    PubMed Central

    Bailleul, Benjamin; Berne, Nicolas

    2015-01-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP+ oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. PMID:25931521

  14. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii.

    PubMed

    Godaux, Damien; Bailleul, Benjamin; Berne, Nicolas; Cardol, Pierre

    2015-06-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. PMID:25931521

  15. The Majority of Free-Living Autotrophic Bacteria use the Reductive TCA Cycle for Carbon Fixation at Deep-Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Campbell, B. J.; Cary, C.

    2003-12-01

    Deep-sea hydrothermal vents support large micro and macroscopic communities, without the input of photosynthesis. Autotrophic production at these vents is based on hydrothermal vent fluid chemistry. Primary production has been thought to occur mainly via hydrogen sulfide oxidation through the Calvin-Benson pathway, as measured by the presence of Rubisco in endosymbionts of several invertebrate hosts. Recently, we characterized two fosmids from a large insert library of the epsilon Proteobacterial episymbionts of Alvinella pompejana. Both contained sequences encoding ATP citrate lyase, a key enzyme in the reverse TCA cycle, an alternate carbon dioxide fixation pathway. Previous investigators have demonstrated the dominance of the epsilon subdivision in the free-living bacterial communities at hydrothermal vents. Based on these results, our working hypothesis is: The rTCA cycle is the dominant pathway for carbon fixation in the free-living bacterial communities at hydrothermal vents. A selection of free-living bacterial communities from various geographic locations (9N, East Pacific Rise and Guaymas Basin) were screened for the presence, diversity and expression (via RT-PCR) of Rubisco (forms I and II) and ATP citrate lyase. Our results indicate that the ATP citrate lyase gene is diverse and is consistently expressed in several types of vent communities. The two forms of Rubisco are not consistently present or expressed in the same environments. These results indicate that chemoautotrophic production in the free-living bacterial communities at deep-sea hydrothermal vents is dominated by bacteria that utilize the rTCA cycle, and parallels the phylogenetic dominance of members of the epsilon subdivision of Proteobacteria.

  16. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow1[OPEN

    PubMed Central

    Sun, Yaqi; Casella, Selene

    2016-01-01

    Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO2 fixation. The central CO2-fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO2-fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of β-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that β-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO2 fixation. PMID:26956667

  17. Carbon-Fixation Rates and Associated Microbial Communities Residing in Arid and Ephemerally Wet Antarctic Dry Valley Soils

    PubMed Central

    Niederberger, Thomas D.; Sohm, Jill A.; Gunderson, Troy; Tirindelli, Joëlle; Capone, Douglas G.; Carpenter, Edward J.; Cary, S. Craig

    2015-01-01

    Carbon-fixation is a critical process in severely oligotrophic Antarctic Dry Valley (DV) soils and may represent the major source of carbon in these arid environments. However, rates of C-fixation in DVs are currently unknown and the microorganisms responsible for these activities unidentified. In this study, C-fixation rates measured in the bulk arid soils (<5% moisture) ranged from below detection limits to ∼12 nmol C/cc/h. Rates in ephemerally wet soils ranged from ∼20 to 750 nmol C/cc/h, equating to turnover rates of ∼7–140 days, with lower rates in stream-associated soils as compared to lake-associated soils. Sequencing of the large subunit of RuBisCO (cbbL) in these soils identified green-type sequences dominated by the 1B cyanobacterial phylotype in both arid and wet soils including the RNA fraction of the wet soil. Red-type cbbL genes were dominated by 1C actinobacterial phylotypes in arid soils, with wetted soils containing nearly equal proportions of 1C (actinobacterial and proteobacterial signatures) and 1D (algal) phylotypes. Complementary 16S rRNA and 18S rRNA gene sequencing also revealed distinct differences in community structure between biotopes. This study is the first of its kind to examine C-fixation rates in DV soils and the microorganisms potentially responsible for these activities. PMID:26696969

  18. Fixation stability dictates the differentiation pathway of periosteal progenitor cells in fracture repair

    PubMed Central

    Hagiwara, Y.; Dyment, N.A.; Jiang, X.; Huang, J.; Ackert-Bicknell, C.; Adams, D.J.; Rowe, D.W.

    2016-01-01

    This study compared fracture repair stabilized by intramedullary pin (IMP) or external fixation (EF) in GFP reporter mice. A modified IMP was used as control while EF utilized six needles inserted transversely through the tibia and into a segment of a syringe barrel. X-rays taken at days 0, 14, and 35 showed that IMP resulted in significant three-dimensional deformity with a large callus while EF showed minimal deformity and callus formation. Cryohistological analysis of IMP at day 14 confirmed a large ColX- RFPchry+ callus surrounded by woven bone (Col3.6-GFPcyan) and TRAP+ osteoclasts with mature bone (hOC-GFPtpz) at the base. By day 35, cartilaginous components had been resorbed and an outer cortical shell (OCS) showed evidence of inward modeling. In contrast, the EF at day 14 showed no evidence of cartilage formation. Instead, periosteal-derived osteoblasts (Col3.6-GFPcyan) entered the fracture cleft and formed woven bone that spanned the marrow space. By day 35, mature bone had formed that was contiguous with the opposing cortical bone. Fracture site stability greatly affects the cellular response during repair and must be considered in the preclinical models that test therapies for improving fracture healing. PMID:25639792

  19. Fixation stability dictates the differentiation pathway of periosteal progenitor cells in fracture repair.

    PubMed

    Hagiwara, Yusuke; Dyment, Nathaniel A; Jiang, Xi; Jiang Ping, Huang; Ackert-Bicknell, Cheryl; Adams, Douglas J; Rowe, David W

    2015-07-01

    This study compared fracture repair stabilized by intramedullary pin (IMP) or external fixation (EF) in GFP reporter mice. A modified IMP was used as control while EF utilized six needles inserted transversely through the tibia and into a segment of a syringe barrel. X-rays taken at days 0, 14, and 35 showed that IMP resulted in significant three-dimensional deformity with a large callus while EF showed minimal deformity and callus formation. Cryohistological analysis of IMP at day 14 confirmed a large ColX-RFPchry+ callus surrounded by woven bone (Col3.6-GFPcyan) and TRAP+ osteoclasts with mature bone (hOC-GFPtpz) at the base. By day 35, cartilaginous components had been resorbed and an outer cortical shell (OCS) showed evidence of inward modeling. In contrast, the EF at day 14 showed no evidence of cartilage formation. Instead, periosteal-derived osteoblasts (Col3.6-GFPcyan) entered the fracture cleft and formed woven bone that spanned the marrow space. By day 35, mature bone had formed that was contiguous with the opposing cortical bone. Fracture site stability greatly affects the cellular response during repair and must be considered in the preclinical models that test therapies for improving fracture healing. PMID:25639792

  20. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production.

    PubMed

    Zhao, Xin; Zhou, Yan; Huang, Sheng; Qiu, Duanyang; Schideman, Lance; Chai, Xiaoli; Zhao, Youcai

    2014-03-01

    The characteristics of cultivating high-density microalgae-bacteria consortium with landfill leachate was tested in this study. Landfill leachate was collected from Laogang landfill operated for over 10 years in Shanghai, China. The maximum biomass concentration of 1.58g L(-1) and chlorophyll a level of 22mg L(-1) were obtained in 10% leachate spike ratio. Meanwhile, up to 90% of the total nitrogen in landfill leachate was removed in culture with 10% leachate spike ratio with a total nitrogen concentration of 221.6mg L(-1). The fluorescence peak of humic-like organic matters red shifted to longer wavelengths by the end of culture, indicating that microalgae-bacteria consortium was effective for treating landfill leachate contaminants. Furthermore, with the leachate spike ratio of 10%, the maximum lipid productivity and carbon fixation were 24.1 and 65.8mg L(-1)d(-1), respectively. Results of this research provide valuable information for optimizing microalgae culture in landfill leachate. PMID:24525217

  1. Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface.

    PubMed

    Probst, Alexander J; Weinmaier, Thomas; Raymann, Kasie; Perras, Alexandra; Emerson, Joanne B; Rattei, Thomas; Wanner, Gerhard; Klingl, Andreas; Berg, Ivan A; Yoshinaga, Marcos; Viehweger, Bernhard; Hinrichs, Kai-Uwe; Thomas, Brian C; Meck, Sandra; Auerbach, Anna K; Heise, Matthias; Schintlmeister, Arno; Schmid, Markus; Wagner, Michael; Gribaldo, Simonetta; Banfield, Jillian F; Moissl-Eichinger, Christine

    2014-01-01

    Subsurface microbial life contributes significantly to biogeochemical cycling, yet it remains largely uncharacterized, especially its archaeal members. This 'microbial dark matter' has been explored by recent studies that were, however, mostly based on DNA sequence information only. Here, we use diverse techniques including ultrastuctural analyses to link genomics to biology for the SM1 Euryarchaeon lineage, an uncultivated group of subsurface archaea. Phylogenomic analyses reveal this lineage to belong to a widespread group of archaea that we propose to classify as a new euryarchaeal order ('Candidatus Altiarchaeales'). The representative, double-membraned species 'Candidatus Altiarchaeum hamiconexum' has an autotrophic metabolism that uses a not-yet-reported Factor420-free reductive acetyl-CoA pathway, confirmed by stable carbon isotopic measurements of archaeal lipids. Our results indicate that this lineage has evolved specific metabolic and structural features like nano-grappling hooks empowering this widely distributed archaeon to predominate anaerobic groundwater, where it may represent an important carbon dioxide sink. PMID:25425419

  2. Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres.

    PubMed

    Chameides, W L; Walker, J C

    1981-12-01

    A thermochemical-hydrodynamic model of the production of trace species by electrical discharges has been used to estimate the rates of fixation of C and N by lightning in the primitive atmosphere. Calculations for various possible mixtures of CH4, CO2, CO, N2, H2, and H2O reveal that the prime species produced were probably HCN and NO and that the key parameter determining the rates of fixation was the ratio of C atoms to O atoms in the atmosphere. Atmospheres with C more abundant than O have large HCN fixation rates, in excess of 10(17) molecules J-1, but small NO yields. However, when O is more abundant than C, the NO fixation rate approaches 10(17) molecules J-1 while the HCN yield is small. The implications for the evolution of life are discussed. PMID:6276836

  3. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation.

    PubMed

    Kleinert, Aleysia; Venter, Mauritz; Kossmann, Jens; Valentine, Alexander

    2014-11-01

    It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth. PMID:25155758

  4. Role of dark carbon dioxide fixation in root nodules of soybean. [Rhizobium japonicum

    SciTech Connect

    King, B.J.; Layzell, D.B.; Canvin, D.T.

    1986-05-01

    The magnitude and role of dark Co/sub 2/ fixation were examined in nodules of intact soybean plants (Harosoy 63 x Rhizobium japonicum strain USDA 16). The estimated rate of nodule dark CO/sub 2/ fixation, based on a 2 minute pulse-feed with /sup 14/CO/sub 2/ under saturating conditions, was 102 micromoles per gram dry weight per hour. This was equivalent to 14% of net nodule respiration. Only 18% of this CO/sub 2/ fixation was estimated to be required for organic and amino acid synthesis for growth and export processes. The major portion (75-92%) of fixed label was released as CO/sub 2/ within 60 minutes. The labeling pattern during pulse-chase experiments was consistent with CO/sub 2/ fixation by phosphoenolpyruvate carboxylase. During the chase, the greatest loss of label occurred in organic acids. Exposure of nodulated roots to Ar:O/sub 2/(80:20) did not affect dark CO/sub 2/ fixation, while exposure to O/sub 2/:CO/sub 2/(95:5) resulted in 54% inhibition. From these results, it was concluded that at least 66% of dark CO/sub 2/ fixation in soybean may be involved with the production of organic acids, which when oxidized would be capable of providing at least 48% of the requirement for ATP equivalents to support nitrogenase activity.

  5. Phytoplankton Productivity in an Arctic Fjord (West Greenland): Estimating Electron Requirements for Carbon Fixation and Oxygen Production

    PubMed Central

    Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian; Markager, Stiig; Glud, Ronnie Nøhr

    2015-01-01

    Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (ΚC) and oxygen (O2) production (ΚO2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify ΚC and ΚO2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a ΚC of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)−1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a ΚC of 11.2 ± 1.3 mol é (mol C)−1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)−1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)−1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates. PMID:26218096

  6. Carbon Dioxide Fixation and Related Properties in Sections of the Developing Green Maize Leaf 1

    PubMed Central

    Perchorowicz, John T.; Gibbs, Martin

    1980-01-01

    Light and dark 14CO2 assimilation, pulse-chase (14CO2 followed by 12CO2) labeling experiments both in the light and in the dark, photorespiratory activity and some enzymes (ribulose 1,5-bisphosphate (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, and NADP-malic enzyme) were followed in sections of 2.5 centimeters from the base (younger tissue) to the tip (oldest tissue) of the green maize leaf. Tissue was taken from the third leaf of 12- to 16-day-old plants consisting of sections 0 to 2.5 centimeters (base), 4.5 to 7.0 centimeters (center) and 9.0 to 11.5 centimeters (top) measured from the base. Some of these properties were also determined in the intact leaves of 4-day-old maize plants. Electron microscopy indicated a Kranz anatomy in all sections. Differentiation into mesophyll granal chloroplasts and bundle sheath agranal chloroplasts had taken place only in the center and top pieces. All of the sections contained PEP carboxylase, RuBP carboxylase, and NADP-malic enzyme. The ratio of PEP:RuBP carboxylase increased from 3.03 (top) to 4.66 (base) whereas the PEP carboxylase:NADP-malic enzyme ratio rose from 2.87 (top) to 9.57 (base). Under conditions of light or dark, the majority of the newly incorporated 14CO2 was found in malate and aspartate in all sections and in 4-day-old leaves. The 14C-labeling pattern typical of C4 plants was present in the center and top sections and to a lesser extent in the 4-day-old leaves. In the base tissue, the percentage of radioactivity in malate and aspartate remained relatively constant both during photosynthesis and pulse-chase experiments. In contrast, radioactivity in glycerate-3-phosphate decreased with time coupled to an increase in sugar phosphates. To account for the isotopic pattern in the base tissue, parallel fixation by PEP carboxylase and RuBP carboxylase was proposed with the photosynthetic carbon reduction cycle functioning to some extent independently within the bundle sheath chloroplasts. The

  7. Enhancing Carbon Fixation by Metabolic Engineering: A Model System of Complex Network Modulation

    SciTech Connect

    Dr. Gregory Stephanopoulos

    2008-04-10

    In the first two years of this research we focused on the development of a DNA microarray for transcriptional studies in the photosynthetic organism Synechocystis and the elucidation of the metabolic pathway for biopolymer synthesis in this organism. In addition we also advanced the molecular biological tools for metabolic engineering of biopolymer synthesis in Synechocystis and initiated a series of physiological studies for the elucidation of the carbon fixing pathways and basic central carbon metabolism of these organisms. During the last two-year period we focused our attention on the continuation and completion of the last task, namely, the development of tools for basic investigations of the physiology of these cells through, primarily, the determination of their metabolic fluxes. The reason for this decision lies in the importance of fluxes as key indicators of physiology and the high level of information content they carry in terms of identifying rate limiting steps in a metabolic pathway. While flux determination is a well-advanced subject for heterotrophic organisms, for the case of autotrophic bacteria, like Synechocystis, some special challenges had to be overcome. These challenges stem mostly from the fact that if one uses {sup 13}C labeled CO{sub 2} for flux determination, the {sup 13}C label will mark, at steady state, all carbon atoms of all cellular metabolites, thus eliminating the necessary differentiation required for flux determination. This peculiarity of autotrophic organisms makes it imperative to carry out flux determination under transient conditions, something that had not been accomplished before. We are pleased to report that we have solved this problem and we are now able to determine fluxes in photosynthetic organisms from stable isotope labeling experiments followed by measurements of label enrichment in cellular metabolites using Gas Chromatography-Mass Spectrometry. We have conducted extensive simulations to test the method and

  8. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, N.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2015-10-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation at PSII (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific, over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5 fold changes in the conversion factor coupling ETRRCII and carbon fixation (Φe:C / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light, and correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and the conversion factor Φe:C / nPSII has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  9. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  10. Simultaneous Quantification of Active Carbon- and Nitrogen-Fixing Communities and Estimation of Fixation Rates Using Fluorescence In Situ Hybridization and Flow Cytometry

    PubMed Central

    Shepard, Alicia K.; Raes, Eric J.; Waite, Anya M.; Quigg, Antonietta

    2014-01-01

    Understanding the interconnectivity of oceanic carbon and nitrogen cycles, specifically carbon and nitrogen fixation, is essential in elucidating the fate and distribution of carbon in the ocean. Traditional techniques measure either organism abundance or biochemical rates. As such, measurements are performed on separate samples and on different time scales. Here, we developed a method to simultaneously quantify organisms while estimating rates of fixation across time and space for both carbon and nitrogen. Tyramide signal amplification fluorescence in situ hybridization (TSA-FISH) of mRNA for functionally specific oligonucleotide probes for rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase; carbon fixation) and nifH (nitrogenase; nitrogen fixation) was combined with flow cytometry to measure abundance and estimate activity. Cultured samples representing a diversity of phytoplankton (cyanobacteria, coccolithophores, chlorophytes, diatoms, and dinoflagellates), as well as environmental samples from the open ocean (Gulf of Mexico, USA, and southeastern Indian Ocean, Australia) and an estuary (Galveston Bay, Texas, USA), were successfully hybridized. Strong correlations between positively tagged community abundance and 14C/15N measurements are presented. We propose that these methods can be used to estimate carbon and nitrogen fixation in environmental communities. The utilization of mRNA TSA-FISH to detect multiple active microbial functions within the same sample will offer increased understanding of important biogeochemical cycles in the ocean. PMID:25172848

  11. Preferential remineralization of dissolved organic phosphorus and non-Redfield DOM dynamics in the global ocean: Impacts on marine productivity, nitrogen fixation, and carbon export

    NASA Astrophysics Data System (ADS)

    Letscher, Robert T.; Moore, J. Keith

    2015-03-01

    Selective removal of nitrogen (N) and phosphorus (P) from the marine dissolved organic matter (DOM) pool has been reported in several regional studies. Because DOM is an important advective/mixing pathway of carbon (C) export from the ocean surface layer and its non-Redfieldian stoichiometry would affect estimates of marine export production per unit N and P, we investigated the stoichiometry of marine DOM and its remineralization globally using a compiled DOM data set. Marine DOM is enriched in C and N compared to Redfield stoichiometry, averaging 317:39:1 and 810:48:1 for C:N:P within the degradable and total bulk pools, respectively. Dissolved organic phosphorus (DOP) is found to be preferentially remineralized about twice as rapidly with respect to the enriched C:N stoichiometry of marine DOM. Biogeochemical simulations with the Biogeochemical Elemental Cycling model using Redfield and variable DOM stoichiometry corroborate the need for non-Redfield dynamics to match the observed DOM stoichiometry. From our model simulations, preferential DOP remineralization is found to increase the strength of the biological pump by ~9% versus the case of Redfield DOM cycling. Global net primary productivity increases ~10% including an increase in marine nitrogen fixation of ~26% when preferential DOP remineralization and direct utilization of DOP by phytoplankton are included. The largest increases in marine nitrogen fixation, net primary productivity, and carbon export are observed within the western subtropical gyres, suggesting the lateral transfer of P in the form of DOP from the productive eastern and poleward gyre margins may be important for sustaining these processes downstream in the subtropical gyres.

  12. Engineering the Cyanobacterial Carbon Concentrating Mechanism for Enhanced CO2 Capture and Fixation

    SciTech Connect

    Sandh, Gustaf; Cai, Fei; Shih, Patrick; Kinney, James; Axen, Seth; Salmeen, Annette; Zarzycki, Jan; Sutter, Markus; Kerfeld, Cheryl

    2011-06-02

    In cyanobacteria CO2 fixation is localized in a special proteinaceous organelle, the carboxysome. The CO2 fixation enzymes are encapsulated by a selectively permeable protein shell. By structurally and functionally characterizing subunits of the carboxysome shell and the encapsulated proteins, we hope to understand what regulates the shape, assembly and permeability of the shell, as well as the targeting mechanism and organization of the encapsulated proteins. This knowledge will be used to enhance CO2 fixation in both cyanobacteria and plants through synthetic biology. The same strategy can also serve as a template for the production of modular synthetic bacterial organelles. Our research is conducted using a variety of techniques such as genomic sequencing and analysis, transcriptional regulation, DNA synthesis, synthetic biology, protein crystallization, Small Angle X-ray Scattering (SAXS), protein-protein interaction assays and phenotypic characterization using various types of cellular imaging, e.g. fluorescence microscopy, Transmission Electron Microscopy (TEM), and Soft X-ray Tomography (SXT).

  13. Biomass production, nutrient cycling, and carbon fixation by Salicornia brachiata Roxb.: A promising halophyte for coastal saline soil rehabilitation.

    PubMed

    Rathore, Aditya P; Chaudhary, Doongar R; Jha, Bhavanath

    2016-08-01

    In order to increase our understanding of the interaction of soil-halophyte (Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling-C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor. PMID:26852782

  14. Carbon budgets and energy transition pathways

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; van Soest, Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo

    2016-07-01

    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate and the deployment of low-carbon technology. Here, we show typical values for these indicators for different carbon budgets, using the recently compiled IPCC scenario database, and discuss how these vary as a function of non-CO2 forcing, energy use and policy delay. For carbon budgets of 2000 GtCO2 and less over the 2010–2100 period, supply of low carbon technologies needs to be scaled up massively from today’s levels, unless energy use is relatively low. For the subgroup of scenarios with a budget below 1000 GtCO2 (consistent with >66% chance of limiting global warming to below 2 °C relative to preindustrial levels), the 2050 contribution of low-carbon technologies is generally around 50%–75%, compared to less than 20% today (range refers to the 10–90th interval of available data).

  15. Will Elevated Carbon Dioxide Concentration Amplify the Benefits of Nitrogen Fixation in Legumes?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current evidence suggests there are three key features of the response of legumes to elevated [CO2]: (1) unlike other non-leguminous C3 plants, only legumes have the potential to maximize the benefit of elevated [CO2] by matching stimulated photosynthesis with increased N2 fixation; (2) this potenti...

  16. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    1992-01-01

    The process of ammonia fixation has been studied in three well characterized and structurally diverse fulvic and humic acid samples. The Suwannee River fulvic acid, and the IHSS peat and leonardite humic acids, were reacted with 15N-labelled ammonium hydroxide, and analyzed by liquid phase 15N NMR spectrometry. Elemental analyses and liquid phase 13C NMR spectra also were recorded on the samples before and after reaction with ammonium hydroxide. The largest increase in percent nitrogen occurred with the Suwannee River fulvic acid, which had a nitrogen content of 0.88% before fixation and 3.17% after fixation. The 15N NMR spectra revealed that ammonia reacted similarly with all three samples, indicating that the functional groups which react with ammonia exist in structural configurations common to all three samples. The majority of nitrogcn incorporated into the samples appears to be in the form of indole and pyrrole nitrogen, followed by pyridine, pyrazine, amide and aminohydroquinone nitrogen. Chemical changes in the individual samples upon fixation could not be discerned from the 13C NMR spectra.

  17. Carbon dioxide effects on fruits : III. The fixation of C(14)O 2 in lemon in an atmosphere enriched with carbon dioxide.

    PubMed

    Young, R E; Biale, J B

    1968-09-01

    1. The first products of C(14)O2 fixation by lemon fruit in the dark were found to be malic, citric and aspartic acids. It is presumed that exalacetic is actually the first product to be labeled but that it is converted rapidly to the three other acids. 2. Malonic acid was identified as one of the products of exposure to C(14)O2. 3. Aconitic, fumaric and α-ketoglutaric acids could not be detected in the extracts of lemon peel, thus raising the possibility of the existence of at least two pools for the products of CO2 fixation. 4. The suggestion was advanced that accumulation of citric acid in the vacuole leads to a deficiency of oxalacetic acid and thus limits overall oxidation. Carbon dioxide stimulates respiration by increasing the supply of oxalacetic acid. PMID:24519678

  18. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently. PMID:26270956

  19. Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals.

    PubMed

    Wangpraseurt, Daniel; Pernice, Mathieu; Guagliardo, Paul; Kilburn, Matt R; Clode, Peta L; Polerecky, Lubos; Kühl, Michael

    2016-03-01

    Recent coral optics studies have revealed the presence of steep light gradients and optical microniches in tissues of symbiont-bearing corals. Yet, it is unknown whether such resource stratification allows for physiological differences of Symbiodinium within coral tissues. Using a combination of stable isotope labelling and nanoscale secondary ion mass spectrometry, we investigated in hospite carbon fixation of individual Symbiodinium as a function of the local O2 and light microenvironment within the coral host determined with microsensors. We found that net carbon fixation rates of individual Symbiodinium cells differed on average about sixfold between upper and lower tissue layers of single coral polyps, whereas the light and O2 microenvironments differed ~15- and 2.5-fold, respectively, indicating differences in light utilisation efficiency along the light microgradient within the coral tissue. Our study suggests that the structure of coral tissues might be conceptually similar to photosynthetic biofilms, where steep physico-chemical gradients define form and function of the local microbial community. PMID:26241503

  20. Carbon pathways in the Seine river system

    NASA Astrophysics Data System (ADS)

    Marescaux, Audrey; Garnier, Josette; Thieu, Vincent

    2016-04-01

    Many papers have recently suggested that the anthropogenic perturbations of the carbon cycle have led to a significant increase in carbon export from terrestrial ecosystems to inland waters. The quantification of the carbon cascade (including fate of CO2 emissions) in highly anthropized river systems is thus essential to understand the response of aquatic systems. The Seine Basin where Paris and its environs represent 2/3 of its population, and agriculture is particularly intensive, is a eutrophic system. The main aim of this research is to understand and quantify how an excess of anthropogenic nutrients entering the Seine River system may locally enhance primary production, C sequestration, C respiration and CO2 emissions. The development of a new CO2 module in the pre-existing biogeochemical Riverstrahler model (Billen et al., 2007) should enable a refined calculation of the carbon budget. Besides calculation of the Respiration and Production activities along the entire river continuum, it will directly associate CO2 emissions. The CO2 modelling results will be confronted to (i) direct (in-situ) measurements with a non-dispersive infrared gas analyzer and (ii) indirect measurements based on total alkalinity, carbonate and pH along the Seine river system during the last decades, and (iii) calculations of a C metabolism budget. Billen, G., Garnier, J., Némery, J., Sebilo, M., Sferratore, A., Barles, S., Benoit P., Benoît, M. (2007). A long-term view of nutrient transfers through the Seine river continuum. Science of the Total Environment, 375(1-3), 80-97. http://doi.org/10.1016/j.scitotenv.2006.12.005

  1. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities

    PubMed Central

    Li, Mengqiu; Canniffe, Daniel P; Jackson, Philip J; Davison, Paul A; FitzGerald, Simon; Dickman, Mark J; Burgess, J Grant; Hunter, C Neil; Huang, Wei E

    2012-01-01

    Photosynthetic microorganisms play crucial roles in aquatic ecosystems and are the major primary producers in global marine ecosystems. The discovery of new bacteria and microalgae that play key roles in CO2 fixation is hampered by the lack of methods to identify hitherto-unculturable microorganisms. To overcome this problem we studied single microbial cells using stable-isotope probing (SIP) together with resonance Raman (RR) microspectroscopy of carotenoids, the light-absorbing pigments present in most photosynthetic microorganisms. We show that fixation of 13CO2 into carotenoids produces a red shift in single-cell RR (SCRR) spectra and that this SCRR–SIP technique is sufficiently sensitive to detect as little as 10% of 13C incorporation. Mass spectrometry (MS) analysis of labelled cellular proteins verifies that the red shift in carotenoid SCRR spectra acts as a reporter of the 13C content of single cells. Millisecond Raman imaging of cells in mixed cultures and natural seawater samples was used to identify cells actively fixing CO2, demonstrating that the SCRR–SIP is a noninvasive method for the rapid and quantitative detection of CO2 fixation at the single cell level in a microbial community. The SCRR–SIP technique may provide a direct method for screening environmental samples, and could help to reveal the ecophysiology of hitherto-unculturable microorganisms, linking microbial species to their ecological function in the natural environment. PMID:22113377

  2. Phosphoketolase pathway engineering for carbon-efficient biocatalysis.

    PubMed

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Herein, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis. PMID:26360872

  3. Phosphoketolase Pathway Engineering for Carbon-Efficient Biocatalysis

    SciTech Connect

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-09-08

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects for employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.

  4. Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H 2O-(±FeS)-(±NiS)

    NASA Astrophysics Data System (ADS)

    Cody, G. D.; Boctor, N. Z.; Hazen, R. M.; Brandes, J. A.; Morowitz, Harold J.; Yoder, H. S.

    2001-10-01

    Recent theories have proposed that life arose from primitive hydrothermal environments employing chemical reactions analogous to the reductive citrate cycle (RCC) as the primary pathway for carbon fixation. This chemistry is presumed to have developed as a natural consequence of the intrinsic geochemistry of the young, prebiotic, Earth. There has been no experimental evidence, however, demonstrating that there exists a natural pathway into such a cycle. Toward this end, the results of hydrothermal experiments involving citric acid are used as a method of deducing such a pathway. Homocatalytic reactions observed in the citric acid-H 2O experiments encompass many of the reactions found in modern metabolic systems, i.e., hydration-dehydration, retro-Aldol, decarboxylation, hydrogenation, and isomerization reactions. Three principal decomposition pathways operate to degrade citric acid under thermal and aquathermal conditions. It is concluded that the acid catalyzed βγ decarboxylation pathway, leading ultimately to propene and CO 2, may provide the most promise for reaction network reversal under natural hydrothermal conditions. Increased pressure is shown to accelerate the principal decarboxylation reactions under strictly hydrothermal conditions. The effect of forcing the pH via the addition of NaOH reveals that the βγ decarboxylation pathway operates even up to intermediate pH levels. The potential for network reversal (the conversion of propene and CO 2 up to a tricarboxylic acid) is demonstrated via the Koch (hydrocarboxylation) reaction promoted heterocatalytically with NiS in the presence of a source of CO. Specifically, an olefin (1-nonene) is converted to a monocarboxylic acid; methacrylic acid is converted to the dicarboxylic acid, methylsuccinic acid; and the dicarboxylic acid, itaconic acid, is converted into the tricarboxylic acid, hydroaconitic acid. A number of interesting sulfur-containing products are also formed that may provide for additional

  5. Transitions in pathways of human development and carbon emissions

    NASA Astrophysics Data System (ADS)

    Lamb, W. F.; Steinberger, J. K.; Bows-Larkin, A.; Peters, G. P.; Roberts, J. T.; Wood, F. R.

    2014-01-01

    Countries are known to follow diverse pathways of life expectancy and carbon emissions, but little is known about factors driving these dynamics. In this letter we estimate the cross-sectional economic, demographic and geographic drivers of consumption-based carbon emissions. Using clustering techniques, countries are grouped according to their drivers, and analysed with respect to a criteria of one tonne of carbon emissions per capita and a life expectancy over 70 years (Goldemberg’s Corner). Five clusters of countries are identified with distinct drivers and highly differentiated outcomes of life expectancy and carbon emissions. Representatives from four clusters intersect within Goldemberg’s Corner, suggesting diverse combinations of drivers may still lead to sustainable outcomes, presenting many countries with an opportunity to follow a pathway towards low-carbon human development. By contrast, within Goldemberg’s Corner, there are no countries from the core, wealthy consuming nations. These results reaffirm the need to address economic inequalities within international agreements for climate mitigation, but acknowledge plausible and accessible examples of low-carbon human development for countries that share similar underlying drivers of carbon emissions. In addition, we note differences in drivers between models of territorial and consumption-based carbon emissions, and discuss interesting exceptions to the drivers-based cluster analysis.

  6. Carbon fixation and chlorophyll in bottom sediments of brackish Lake Grevelingen, The Netherlands

    NASA Astrophysics Data System (ADS)

    Nienhuis, P. H.; De Bree, B. H. H.

    Chlorophyll a concentrations in the upper 10 cm (sliced per cm) of Lake Grevelingen sediments are given for the years 1977-1980. Chlorophyll a in the upper cm of the bottom varied between 20-400 mg·m -2. Average values in 1-3 m deep sandy and silty-sandy stations amounted to 67.5-82.2 mg·m -2 in the upper cm. A 7 m deep siltystation contained on an average 42.7 mg·m -2 chlorophyll a in the upper cm of the sediment. Both within year and year-to-year variations were large. A restricted number of phaeopigment data for 1977 revealed an average phaeopigment-chlorophyll a ratio of 0.03 (sand) to 0.39 (silt). POC measured in 1977 and 1978 in the top cm of the sediment showed annual average values ranging between 0.2 and 0.7% of sediment dry weight. 14C fixation data in the light, as measured in a laboratory incubator, are given for 1979 and 1980, with highest values during summer (200-500 mg C·m -2·d -1) and lower values in winter. Integrated annual values give average 14C fixation estimates per station, ranging between 47 g C·m -2·a -1 and 71 g C·m -1, with a variation coefficient of 35 to 49% of the mean. Average 14C dark fixation values varied between 13 and 27% of average light fixation values. An arbitrarily and tentatively derived net microphytobenthos primary production estimate for entire Lake Grevelingen amounts to 35 g C·m -2 for 1979 and 32 g C·m -2 for 1980. The relationship between POC and chlorophyll a concentration was sometimes significant, between annual chlorophyll a concentration and light fixation values it was not. A literature comparison between the 14C and the O 2 exchange method leads to the conclusion that both methods have serious drawbacks when applied to benthic systems.

  7. 13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation

    PubMed Central

    Beste, Dany J. V.; Bonde, Bhushan; Hawkins, Nathaniel; Ward, Jane L.; Beale, Michael H.; Noack, Stephan; Nöh, Katharina; Kruger, Nicholas J.; Ratcliffe, R. George; McFadden, Johnjoe

    2011-01-01

    Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA. PMID:21814509

  8. Crop yield and CO2 fixation monitoring over Asia by a photosynthetic-sterility model comparing with MODIS and carbon amounts in grain yields

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro; Yang, Peng; Kumakura, Toshiro

    2009-08-01

    The authors have developed a photosynthesis crop model for grain production under the background of climate change and Asian economic growth in developing countries. This paper presents an application of the model to grain fields of paddy rice, winter wheat, and maize in China and Southeast Asia. The carbon hydrate in grains has the same chemical formula as that of cellulose in grain vegetation. The partitioning of carbon in grain plants can validate fixation amounts of computed carbon using a satellite-based photosynthesis model. The model estimates the photosynthesis fixation of rice reasonably in Japan and China. Results were validated through examination of carbon in grains, but the model tends to underestimate results for winter wheat and maize. This study also provides daily distributions of the PSN, which is the CO2 fixation in Asian areas combined with a land-cover distribution classified from MODIS data, NDVI from SPOT VEGETATION, and meteorological re-analysis data by European Centre for Medium-Range Forecasts (ECMWF). The mean CO2 and carbon fixation rates in paddy areas were 25.92 (t CO2/ha) and 5.28 (t/ha) in Japan, respectively. The method is based on routine observation data, enabling automated monitoring of crop yields.

  9. Activity of carbon dioxide fixation by anthers and leaves of cereal grains

    SciTech Connect

    Kirichenko, E.B.; Chernyad'ev, I.I.; Doman, N.G.; Talibullina, K.K.; Voronkova, T.V.

    1986-05-01

    This paper gives a comparative evaluation of the photosynthetic activity of anthers and flag leaves in winter wheat, rye, and triticale. The content of chlorophylls in anthers and leaves was determined. The activity of /sup 14/CO/sub 2/ fixation by anthers and leaf disks was determined by the radiometric method in a chamber floating on mercury under standard exposure conditions (0.1% concentration of /sup 14/CO/sub 2/, illumination of 15,000 1x, temperature of 23 C). Analyses were conducted in three replications and the results of typical biological experiments are cited. Data show that chlorophyll is actively synthesized in the anthers of cereal grains.

  10. Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide

    EPA Science Inventory

    A titanium-based zeolitic imidazolate framework (Ti-ZIF) with high surface area and porous morphology was synthesized and itsefficacy was demonstrated in the synthesis of cyclic carbonates from epoxides and carbon dioxide.

  11. Impact of ultraviolet-B radiation on photosystem II activity and its relationship to the inhibition of carbon fixation rates for antarctic ice algae communities

    SciTech Connect

    Schofield, O.; Prezelin, B.B.; Kroon, B.M.A.

    1995-10-01

    One goal of the Icecolors 1993 study was to determine whether or not photosystem II (PSII) was a major target site for photoinhibition by ultraviolet-B radiation (Q{sub UVB}, 280-320 nm) in natural communities. Second, the degree to which Q{sub UVB} inhibition of PSII could account for Q{sub UVB} effects on whole cell rates of carbon fixation in phytoplankton was assessed. On 1 October, 1993, at Palmer Station (Antarctica), dense samples of a frazil ice algal community were collected and maintained outdoors in the presence or absence of Q{sub UVB} and/or ultraviolet-A (Q{sub UVA}, 320-400 nm) radiation. The time of day course of UV inhibition of primary production was tracted. Over the day, {phi}{sub IIe}{degrees} declined due to increasing time-integrated dose exposure of Q{sub UVB}. The Q{sub UVB}-driven inhibition of {phi}{sub IIe}{degrees} increased from 4% in the early morning hours to a maximum of 23% at the end of the day. The Q{sub UVB} photoinhibition of PSII quantum yield did not recover by 6 h after sunset. In contrast, photoinhibition by Q{sub UVA} and photosynthetically available radiation (Q{sub PAR}, 400-700 nm) recovered during the late afternoon. Fluorescence-based estimates of carbon fixation rates were linearly correlated with measured carbon fixation. Fluorescence overestimated the observed Q{sub UVB} inhibition in measured carbon fixation rates. Researchers should be cautious in using fluorescence measurements to infer ultraviolet inhibition for rates of carbon fixation until there is a greater understanding of the coupling of carbon metabolism to PSII activity for natural populations. Despite these current limitations, fluorescence-based technologies represent powerful tools for studying the impact of the ozone hole on natural populations on spatial/temporal scales not possible using conventional productivity techniques. 55 refs., 11 figs., 2 tabs.

  12. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    SciTech Connect

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-04-01

    Activities of key enzymes of the Calvin cycle and C/sub 4/ metabolism, rates of CO/sub 2/ fixation, and the initial products of photosynthetic /sup 14/CO/sub 2/ fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C/sub 4/ metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of /sup 14/CO/sub 2/ assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO/sub 2/ during light. However, respiratory losses were very high during the dark period.

  13. Multicomponent self-assembly of a pentanuclear Ir-Zn heterometal-organic polyhedron for carbon dioxide fixation and sulfite sequestration.

    PubMed

    Li, Xuezhao; Wu, Jinguo; He, Cheng; Zhang, Rong; Duan, Chunying

    2016-04-14

    By incorporating a fac-tris(4-(2-pyridinyl)phenylamine)iridium as the backbone of the tripodal ligand to constrain the coordination geometry of Zn(II) ions, a pentanuclear Ir-Zn heterometal-organic luminescent polyhedron was obtained via a subcomponent self-assembly for carbon dioxide fixation and sulfite sequestration. PMID:26932204

  14. RuBP limitation of photosynthetic carbon fixation during NH sub 3 assimilation: Interactions between photosynthesis, respiration, and ammonium assimilation in N-limited green algae

    SciTech Connect

    Elrifi, I.R.; Holmes, J.J.; Weger, H.G.; Mayo, W.P.; Turpin, D.H. )

    1988-06-01

    The effects of ammonium assimilation on photosynthetic carbon fixation and O{sub 2} exchange were examined in two species of N-limited green algae, Chlorella pyrenoidosa and Selenastrum minutum. Under light-saturating conditions, ammonium assimilation resulted in a suppression of photosynthetic carbon fixation by S. minutum but not by C. pyrenoidosa. These different responses are due to different relationships between cellular ribulose bisphosphate (RuBP) concentration and the RuBP binding site density of ribulose bisphosphate carboxylase/oxygenase (Rubisco). In both species, ammonium assimilation resulted in a decrease in RuBP concentration. In S. minutum the concentration fell below the RuBP binding site density of Rubisco, indicating RuBP limitation of carboxylation. In contrast, RuBP concentration remained above the binding site density in C. pyrenoidosa. Compromising RuBP regeneration in C. pyrenoidosa with low light resulted in an ammonium-induced decrease in RuBP concentration below the RuBP binding site density of Rubisco. This resulted in a decrease in photosynthetic carbon fixation. In both species, ammonium assimilation resulted in a larger decrease in net O{sub 2} evolution than in carbon fixation. Mass spectrometric analysis shows this to be a result of an increase in the rate of mitochondrial respiration in the light.

  15. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    PubMed

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-01-01

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity. PMID:27250745

  16. Pathways of human development and carbon emissions embodied in trade

    NASA Astrophysics Data System (ADS)

    Steinberger, Julia K.; Timmons Roberts, J.; Peters, Glen P.; Baiocchi, Giovanni

    2012-02-01

    It has long been assumed that human development depends on economic growth, that national economic expansion in turn requires greater energy use and, therefore, increased greenhouse-gas emissions. These interdependences are the topic of current research. Scarcely explored, however, is the impact of international trade: although some nations develop socio-economically and import high-embodied-carbon products, it is likely that carbon-exporting countries gain significantly fewer benefits. Here, we use new consumption-based measures of national carbon emissions to explore how the relationship between human development and carbon changes when we adjust national emission rates for trade. Without such adjustment of emissions, some nations seem to be getting far better development `bang' for the carbon `buck' than others, who are showing scant gains for disproportionate shares of global emissions. Adjusting for the transfer of emissions through trade explains many of these outliers, but shows that further socio-economic benefits are accruing to carbon-importing rather than carbon-exporting countries. We also find that high life expectancies are compatible with low carbon emissions but high incomes are not. Finally, we see that, despite strong international trends, there is no deterministic industrial development trajectory: there is great diversity in pathways, and national histories do not necessarily follow the global trends.

  17. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler

    SciTech Connect

    Matsumoto, Hiroyo; Shioji, Norio; Hamasaki, Akihiro

    1995-12-31

    To mitigate CO{sub 2} discharged from thermal power plants, studies on CO{sub 2} fixation by the photosynthesis of microalgae using actual exhaust gas have been carried out. The results are as follows: (1) A method is proposed for evaluating the maximum photosynthesis rate in the raceway cultivator using only the algal physical properties; (2) Outdoor cultivation tests taking actual flue gas were performed with no trouble or break throughout 1 yr using the strain collected in the test; (3) The produced microalgae is effective as solid fuel; and (4) The feasibility studies of this system were performed. The system required large land area, but the area is smaller than that required for other biomass systems, such as tree farms.

  18. Carbon mineralization pathways and bioturbation in coastal Brazilian sediments.

    PubMed

    Quintana, Cintia O; Shimabukuro, Maurício; Pereira, Camila O; Alves, Betina G R; Moraes, Paula C; Valdemarsen, Thomas; Kristensen, Erik; Sumida, Paulo Y G

    2015-01-01

    Carbon mineralization processes and their dependence on environmental conditions (e.g. through macrobenthic bioturbation) have been widely studied in temperate coastal sediments, but almost nothing is known about these processes in subtropical coastal sediments. This study investigated pathways of organic carbon mineralization and associated effects of macrobenthic bioturbation in winter and summer (September 2012 and February 2014) at the SE Brazilian coast. Iron reduction (FeR) was responsible for 73-81% of total microbial carbon mineralization in September 2012 and 32-61% in February 2014. Similar high rates of FeR have only been documented a few times in coastal sediments and can be sustained by the presence of large bioturbators. Denitrification accounted for 5-27% of total microbial carbon mineralization while no SO4(2-) reduction was detected in any season. Redox profiles suggested that conditions were less reduced in February 2014 than in September 2012, probably associated with low reactivity of the organic matter, higher rates of aerobic respiration and bioirrigation by the higher density of small-macrofauna. Bioturbation by small macrofauna may maintain the sediment oxidized in summer, while large-sized species stimulate the reoxidation of reduced compounds throughout the year. Therefore, bioturbation seems to have an important role modulating the pathways of carbon mineralization in the area. PMID:26525137

  19. Carbon mineralization pathways and bioturbation in coastal Brazilian sediments

    PubMed Central

    Quintana, Cintia O.; Shimabukuro, Maurício; Pereira, Camila O.; Alves, Betina G. R.; Moraes, Paula C.; Valdemarsen, Thomas; Kristensen, Erik; Sumida, Paulo Y. G.

    2015-01-01

    Carbon mineralization processes and their dependence on environmental conditions (e.g. through macrobenthic bioturbation) have been widely studied in temperate coastal sediments, but almost nothing is known about these processes in subtropical coastal sediments. This study investigated pathways of organic carbon mineralization and associated effects of macrobenthic bioturbation in winter and summer (September 2012 and February 2014) at the SE Brazilian coast. Iron reduction (FeR) was responsible for 73–81% of total microbial carbon mineralization in September 2012 and 32–61% in February 2014. Similar high rates of FeR have only been documented a few times in coastal sediments and can be sustained by the presence of large bioturbators. Denitrification accounted for 5–27% of total microbial carbon mineralization while no SO42− reduction was detected in any season. Redox profiles suggested that conditions were less reduced in February 2014 than in September 2012, probably associated with low reactivity of the organic matter, higher rates of aerobic respiration and bioirrigation by the higher density of small-macrofauna. Bioturbation by small macrofauna may maintain the sediment oxidized in summer, while large-sized species stimulate the reoxidation of reduced compounds throughout the year. Therefore, bioturbation seems to have an important role modulating the pathways of carbon mineralization in the area. PMID:26525137

  20. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use

    SciTech Connect

    Kleiner, Manuel; Wentrop, C.; Lott, C.; Teeling, Hanno; Wetzel, Silke; Young, Jacque C; Chang, Y.; Shah, Manesh B; Verberkmoes, Nathan C; Zarzycki, Jan; Fuchs, Georg; Markert, Stephanie; Hempel, Kristina

    2012-01-01

    Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep-sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO2. Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose novel pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate, (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses, (iii) the potential use of hydrogen as an energy source, (iv) the strong expression of high affinity uptake transporters, and (v) novel energy efficient steps in CO2 fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.

  1. Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation.

    PubMed

    Menning, Kristy J; Menon, Balaraj B; Fox, Gordon; Scott, Kathleen M

    2016-03-01

    The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found. PMID:26581415

  2. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Arístegui, Javier; Sintes, Eva; Gasol, Josep M.; Reinthaler, Thomas; Herndl, Gerhard J.

    2010-05-01

    It is generally assumed that sinking particulate organic carbon (POC) constitutes the main source of organic carbon supply to the deep ocean's food webs. However, a major discrepancy between the rates of sinking POC supply (collected with sediment traps) and the prokaryotic organic carbon demand (the total amount of carbon required to sustain the heterotrophic metabolism of the prokaryotes; i.e., production plus respiration, PCD) of deep-water communities has been consistently reported for the dark realm of the global ocean. While the amount of sinking POC flux declines exponentially with depth, the concentration of suspended, buoyant non-sinking POC (nsPOC; obtained with oceanographic bottles) exhibits only small variations with depth in the (sub)tropical Northeast Atlantic. Based on available data for the North Atlantic we show here that the sinking POC flux would contribute only 4-12% of the PCD in the mesopelagic realm (depending on the primary production rate in surface waters). The amount of nsPOC potentially available to heterotrophic prokaryotes in the mesopelagic realm can be partly replenished by dark dissolved inorganic carbon fixation contributing between 12% to 72% to the PCD daily. Taken together, there is evidence that the mesopelagic microheterotrophic biota is more dependent on the nsPOC pool than on the sinking POC supply. Hence, the enigmatic major mismatch between the organic carbon demand of the deep-water heterotrophic microbiota and the POC supply rates might be substantially smaller by including the potentially available nsPOC and its autochthonous production in oceanic carbon cycling models.

  3. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation

    PubMed Central

    Karl, David M.; Church, Matthew J.; Dore, John E.; Letelier, Ricardo M.; Mahaffey, Claire

    2012-01-01

    The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the “biological carbon pump.” Herein, we present results from a 13-y (1992–2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15–August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m−2·d−1 for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea. PMID:22308450

  4. Nitrogen Fixation on Early Mars and Other Terrestrial Planets: Experimental Demonstration of Abiotic Fixation Reactions to Nitrite and Nitrate

    NASA Astrophysics Data System (ADS)

    Summers, David P.; Khare, Bishun

    2007-05-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO2. Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO2 does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO2 reaction with ice, adsorbed water, etc.).

  5. Nitrogen-Dependent Carbon Fixation by Picoplankton In Culture and in the Mississippi River

    SciTech Connect

    Aubrey Smith; Marguerite W. Coomes; Thomas E. Smith

    2005-04-30

    The pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC), of the marine cyanobacterium Synechococcus PCC 7002, was isolated and sequenced. PEPC is an anaplerotic enzyme, but it may also contribute to overall CO2 fixation through β-carboxylation reactions. A consensus sequence generated by aligning the pepc genes of Anabaena variabilis, Anacystis nidulans and Synechocystis PCC 6803 was used to design two sets of primers that were used to amplify segments of Synechococcus PCC 7002 pepc. In order to isolate the gene, the sequence of the PCR product was used to search for the pepc nucleotide sequence from the publicly available genome of Synechococcus PCC 7002. At the time, the genome for this organism had not been completed although sequences of a significant number of its fragments are available in public databases. Thus, the major challenge was to find the pepc gene among those fragments and to complete gaps as necessary. Even though the search did not yield the complete gene, PCR primers were designed to amplify a DNA fragment using a high fidelity thermostable DNA polymerase. An open reading frame (ORF) consisting of 2988 base pairs coding for 995 amino acids was found in the 3066 bp PCR product. The pepc gene had a GC content of 52% and the deduced protein had a calculated molecular mass of 114,049 Da. The amino acid sequence was closely related to that of PEPC from other cyanobacteria, exhibiting 59-61% identity. The sequence differed significantly from plant and E. coli PEPC with only 30% homology. However, comparing the Synechococcus PCC 7002 sequence to the recently resolved E. coli PEPC revealed that most of the essential domains and amino acids involved in PEPC activity were shared by both proteins. The recombinant Synechococcus PCC 7002 PEPC was expressed in E. coli.

  6. Regulation of photosynthetic carbon fixation on the ocean margins. Final report

    SciTech Connect

    Paul, J.H.

    1997-06-01

    The US Department of Energy is concerned with the fate of energy-related materials, including carbon dioxide, in the marine environment. Using laboratory studies, as well as field studies, an attempt was made to understand the molecular regulation of photosynthetic carbon reduction. The objectives were: to determine the mechanism of regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in phytoplankton in response to changes in light fields; and to determine regulation of (RuBPCase) in response to light under nutrient deprivation.

  7. Carbonate hydroxyapatite functionalization: a comparative study towards (bio)molecules fixation

    PubMed Central

    Russo, Laura; Taraballi, Francesca; Lupo, Cristina; Poveda, Ana; Jiménez-Barbero, Jesús; Sandri, Monica; Tampieri, Anna; Nicotra, Francesco; Cipolla, Laura

    2014-01-01

    Different methods for the functionalization of carbonate hydroxyapatite granules with free amine groups by reaction with (3-aminopropyl)triethoxysilane (APTES) have been compared in order to improve the potential for tethering of bioactive molecules to bioceramics. The combined use of tetraethoxyorthosilicate and APTES with acid catalysis resulted in an evident increase in amine surface grafting. PMID:24501671

  8. Soybean Photosynthetic Rate and Carbon Fixation at Early and Late Planting Dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early planting (late April to early May) is recommended for increasing soybean yield but a full understanding of the physiological response is lacking. This study was conducted to determine whether carbon dioxide exchange rate (CER) could explain this yield difference. A study with five (2007) and s...

  9. Pathways of organic carbon oxidation in three continental margin sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; Jorgensen, B. B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N. B.; Thamdrup, B.; Hansen, J. W.; Nielsen, L. P.; Hall, P. O.

    1993-01-01

    We have combined several different methodologies to quantify rates of organic carbon mineralization by the various electron acceptors in sediments from the coast of Denmark and Norway. Rates of NH4+ and Sigma CO2 liberation sediment incubations were used with O2 penetration depths to conclude that O2 respiration accounted for only between 3.6-17.4% of the total organic carbon oxidation. Dentrification was limited to a narrow zone just below the depth of O2 penetration, and was not a major carbon oxidation pathway. The processes of Fe reduction, Mn reduction and sulfate reduction dominated organic carbon mineralization, but their relative significance varied depending on the sediment. Where high concentrations of Mn-oxide were found (3-4 wt% Mn), only Mn reduction occurred. With lower Mn oxide concentrations more typical of coastal sediments, Fe reduction and sulfate reduction were most important and of a similar magnitude. Overall, most of the measured O2 flux into the sediment was used to oxidized reduced inorganic species and not organic carbon. We suspect that the importance of O2 respiration in many coastal sediments has been overestimated, whereas metal oxide reduction (both Fe and Mn reduction) has probably been well underestimated.

  10. Carbon isotope fractionation and the acetyl-CoA pathway

    NASA Astrophysics Data System (ADS)

    Blaser, Martin; Conrad, Ralf

    2010-05-01

    Homoacetogenic bacteria can catalyze the reductive synthesis of acetate from CO2 via the acetyl-CoA pathway. Besides this unifying property homoacetogenic bacteria constitute a metabolically and phylogenetically diverse bacteriological group. Therefore their environmental role is difficult to address. It has been recognized that in methanogenic environments homoacetogenic bacteria contribute to the degradation of organic matter. The natural abundance of 13C may be used to understand the functional impact of homoacetogenic bacteria in the soil environment. To distinguish the acetyl-CoA pathway from other dominant processes, the isotopic composition of acetate and CO2 can be determined and the fractionation factors of the individual processes may be used to discriminate between the dominant pathways. To characterize the fractionation factor associated with the acetyl-CoA pathway the phylogenetic and metabolic diversity needs to be considered. Therefore the fractionation factor of substrate utilization and product formation of different homoacetogens (Acetobacterium woodii, Sporomusa ovata, Thermoanaerobacter kivui, Morella thermoautotrophica) has been studied under pure culture conditions in two defined minimal medium with H2/CO2 as sole source of carbon and energy. It became obvious that the cultivation conditions have a major impact on the obtained fractionation factors.

  11. Chemolithotrophic nitrite oxidation by Nitrobacter: coupling with carbon dioxide fixation for growth and influence of metal ions and inorganic compounds of sulfur

    SciTech Connect

    Tsai, Y.L.

    1986-01-01

    The growth of Nitrobacter winogradskyi was completely inhibited by 0.1 mM persulfate, 0.5 mM tetrathionate, or by 5 mM each of dithionite, metabisulfite, or trithionate. The oxygen uptake activity of washed N. agilis cell suspensions was not influenced by persulfate or tetrathionate. Carbon dioxide fixation was insensitive to tetrathionate and in fact an enhancement by tetrathionate was observed. Persulfate inhibited the fixation of carbon dioxide only at a high concentration. The oxygen uptake activity of washed ell suspensions of N. agilis was tested in the presence of copper, nickel, aluminum, uranyl, and molybdate ions. Copper ion was slightly stimulatory at 0.17 M and strongly inhibitory at 17 mM. Molybdate ion showed either slight enhancement or no inhibition at all test concentrations. With the other test ions inhibition of oxygen uptake was observed.

  12. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions.

    PubMed

    Huber, C; Wächtershäuser, G

    1997-04-11

    In experiments modeling the reactions of the reductive acetyl-coenzyme A pathway at hydrothermal temperatures, it was found that an aqueous slurry of coprecipitated NiS and FeS converted CO and CH3SH into the activated thioester CH3-CO-SCH3, which hydrolyzed to acetic acid. In the presence of aniline, acetanilide was formed. When NiS-FeS was modified with catalytic amounts of selenium, acetic acid and CH3SH were formed from CO and H2S alone. The reaction can be considered as the primordial initiation reaction for a chemoautotrophic origin of life. PMID:9092471

  13. Urea Uptake and Carbon Fixation by Marine Pelagic Bacteria and Archaea during the Arctic Summer and Winter Seasons

    PubMed Central

    Connelly, Tara L.; Baer, Steven E.; Cooper, Joshua T.; Bronk, Deborah A.

    2014-01-01

    How Arctic climate change might translate into alterations of biogeochemical cycles of carbon (C) and nitrogen (N) with respect to inorganic and organic N utilization is not well understood. This study combined 15N uptake rate measurements for ammonium, nitrate, and urea with 15N- and 13C-based DNA stable-isotope probing (SIP). The objective was to identify active bacterial and archeal plankton and their role in N and C uptake during the Arctic summer and winter seasons. We hypothesized that bacteria and archaea would successfully compete for nitrate and urea during the Arctic winter but not during the summer, when phytoplankton dominate the uptake of these nitrogen sources. Samples were collected at a coastal station near Barrow, AK, during August and January. During both seasons, ammonium uptake rates were greater than those for nitrate or urea, and nitrate uptake rates remained lower than those for ammonium or urea. SIP experiments indicated a strong seasonal shift of bacterial and archaeal N utilization from ammonium during the summer to urea during the winter but did not support a similar seasonal pattern of nitrate utilization. Analysis of 16S rRNA gene sequences obtained from each SIP fraction implicated marine group I Crenarchaeota (MGIC) as well as Betaproteobacteria, Firmicutes, SAR11, and SAR324 in N uptake from urea during the winter. Similarly, 13C SIP data suggested dark carbon fixation for MGIC, as well as for several proteobacterial lineages and the Firmicutes. These data are consistent with urea-fueled nitrification by polar archaea and bacteria, which may be advantageous under dark conditions. PMID:25063662

  14. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco.

    PubMed

    Simkin, Andrew J; McAusland, Lorna; Headland, Lauren R; Lawson, Tracy; Raines, Christine A

    2015-07-01

    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12-19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields. PMID:25956882

  15. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco

    PubMed Central

    Simkin, Andrew J.; McAusland, Lorna; Headland, Lauren R.; Lawson, Tracy; Raines, Christine A.

    2015-01-01

    Over the next 40 years it has been estimated that a 50% increase in the yield of grain crops such as wheat and rice will be required to meet the food and fuel demands of the increasing world population. Transgenic tobacco plants have been generated with altered combinations of sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and the cyanobacterial putative-inorganic carbon transporter B, ictB, of which have all been identified as targets to improve photosynthesis based on empirical studies. It is shown here that increasing the levels of the three proteins individually significantly increases the rate of photosynthetic carbon assimilation, leaf area, and biomass yield. Furthermore, the daily integrated measurements of photosynthesis showed that mature plants fixed between 12–19% more CO2 than the equivalent wild-type plants. Further enhancement of photosynthesis and yield was observed when sedoheptulose-1,7-bisphosphatase, fructose-1,6-bisphosphate aldolase, and ictB were over-expressed together in the same plant. These results demonstrate the potential for the manipulation of photosynthesis, using multigene-stacking approaches, to increase crop yields. PMID:25956882

  16. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use.

    PubMed

    Kleiner, Manuel; Wentrup, Cecilia; Lott, Christian; Teeling, Hanno; Wetzel, Silke; Young, Jacque; Chang, Yun-Juan; Shah, Manesh; VerBerkmoes, Nathan C; Zarzycki, Jan; Fuchs, Georg; Markert, Stephanie; Hempel, Kristina; Voigt, Birgit; Becher, Dörte; Liebeke, Manuel; Lalk, Michael; Albrecht, Dirk; Hecker, Michael; Schweder, Thomas; Dubilier, Nicole

    2012-05-01

    Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO(2). Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO(2) fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations. PMID:22517752

  17. Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria.

    PubMed

    Zarzycki, Jan; Schlichting, Ansgar; Strychalsky, Nina; Müller, Michael; Alber, Birgit E; Fuchs, Georg

    2008-02-01

    The coenzyme A (CoA)-activated C5-dicarboxylic acids mesaconyl-CoA and beta-methylmalyl-CoA play roles in two as yet not completely resolved central carbon metabolic pathways in bacteria. First, these compounds are intermediates in the 3-hydroxypropionate cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus, a phototrophic green nonsulfur bacterium. Second, mesaconyl-CoA and beta-methylmalyl-CoA are intermediates in the ethylmalonyl-CoA pathway for acetate assimilation in various bacteria, e.g., in Rhodobacter sphaeroides, Methylobacterium extorquens, and Streptomyces species. In both cases, mesaconyl-CoA hydratase was postulated to catalyze the interconversion of mesaconyl-CoA and beta-methylmalyl-CoA. The putative genes coding for this enzyme in C. aurantiacus and R. sphaeroides were cloned and heterologously expressed in Escherichia coli, and the proteins were purified and studied. The recombinant homodimeric 80-kDa proteins catalyzed the reversible dehydration of erythro-beta-methylmalyl-CoA to mesaconyl-CoA with rates of 1,300 micromol min(-1) mg protein(-1). Genes coding for similar enzymes with two (R)-enoyl-CoA hydratase domains are present in the genomes of Roseiflexus, Methylobacterium, Hyphomonas, Rhodospirillum, Xanthobacter, Caulobacter, Magnetospirillum, Jannaschia, Sagittula, Parvibaculum, Stappia, Oceanicola, Loktanella, Silicibacter, Roseobacter, Roseovarius, Dinoroseobacter, Sulfitobacter, Paracoccus, and Ralstonia species. A similar yet distinct class of enzymes containing only one hydratase domain was found in various other bacteria, such as Streptomyces species. The role of this widely distributed new enzyme is discussed. PMID:18065535

  18. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes?

    SciTech Connect

    Rogers, A.; Ainsworth, E. A.; Leakey, A. D. B.

    2009-11-01

    Growth at elevated [CO{sub 2}] stimulates photosynthesis and increases carbon (C) supply in all C3 species. A sustained and maximal stimulation in productivity at elevated [CO{sub 2}] requires an enhanced nutrient supply to match the increase in C acquisition. The ability of legumes to exchange C for nitrogen (N) with their N{sub 2}-fixing symbionts has led to the hypothesis that legumes will have a competitive advantage over nonleguminous species when grown at elevated [CO{sub 2}]. On balance, evidence suggests that in managed systems, legumes are more responsive to elevated [CO{sub 2}] than other plants (e.g. Ainsworth and Long, 2005); however, in natural ecosystems, nutrient availability can limit the response of legumes to elevated [CO{sub 2}] (Hungate et al., 2004; van Groenigen et al., 2006). Here, we consider these observations, outline the mechanisms that underlie them, and examine recent work that advances our understanding of how legumes respond to growth at elevated [CO{sub 2}]. First we highlight the global importance of legumes and provide a brief overview of the symbiotic relationship.

  19. Kinetics and Apparent K(m) of Oxygen Cycle under Conditions of Limiting Carbon Dioxide Fixation.

    PubMed

    Radmer, R; Kok, B; Ollinger, O

    1978-06-01

    A mass spectrometer with a membrane inlet was used to monitor light-driven O(2) evolution, O(2) uptake, and CO(2) uptake in suspensions of algae (Scenedesmus obliquus). We observed the following. (a) The rate of O(2) uptake, which, in the presence of iodoacetamide, replaces the uptake of CO(2), showed a distinct plateau (V(max)) beyond approximately 30% O(2) and was half-maximal at approximately 8% O(2). We concluded that this light-driven O(2) uptake process, which does not involve carbon compounds, is saturated at lower O(2) concentrations than are photorespiration and glycolate formation. (b) In the absence of inhibitor, O(2) evolution was relatively unaffected by the presence or absence of CO(2). During the course of CO(2) depletion, electron flow to CO(2) was replaced by an equivalent flow to O(2). (c) There was a distinct delay between the cessation of CO(2) uptake and the increase in O(2) uptake. We ascribe this delay to the transient utilization of another electron acceptor-possibly bicarbonate or another bound form of CO(2). PMID:16660425

  20. How sensitive are estimates of carbon fixation in agricultural models to input data?

    PubMed Central

    2012-01-01

    Background Process based vegetation models are central to understand the hydrological and carbon cycle. To achieve useful results at regional to global scales, such models require various input data from a wide range of earth observations. Since the geographical extent of these datasets varies from local to global scale, data quality and validity is of major interest when they are chosen for use. It is important to assess the effect of different input datasets in terms of quality to model outputs. In this article, we reflect on both: the uncertainty in input data and the reliability of model results. For our case study analysis we selected the Marchfeld region in Austria. We used independent meteorological datasets from the Central Institute for Meteorology and Geodynamics and the European Centre for Medium-Range Weather Forecasts (ECMWF). Land cover / land use information was taken from the GLC2000 and the CORINE 2000 products. Results For our case study analysis we selected two different process based models: the Environmental Policy Integrated Climate (EPIC) and the Biosphere Energy Transfer Hydrology (BETHY/DLR) model. Both process models show a congruent pattern to changes in input data. The annual variability of NPP reaches 36% for BETHY/DLR and 39% for EPIC when changing major input datasets. However, EPIC is less sensitive to meteorological input data than BETHY/DLR. The ECMWF maximum temperatures show a systematic pattern. Temperatures above 20°C are overestimated, whereas temperatures below 20°C are underestimated, resulting in an overall underestimation of NPP in both models. Besides, BETHY/DLR is sensitive to the choice and accuracy of the land cover product. Discussion This study shows that the impact of input data uncertainty on modelling results need to be assessed: whenever the models are applied under new conditions, local data should be used for both input and result comparison. PMID:22296931

  1. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids

    PubMed Central

    Song, Qingxin; Juenger, Thomas E.

    2016-01-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. PMID:27467757

  2. Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids.

    PubMed

    Ko, Dae Kwan; Rohozinski, Dominica; Song, Qingxin; Taylor, Samuel H; Juenger, Thomas E; Harmon, Frank G; Chen, Z Jeffrey

    2016-07-01

    Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. PMID:27467757

  3. Characterization of a Mesorhizobium loti alpha-type carbonic anhydrase and its role in symbiotic nitrogen fixation.

    PubMed

    Kalloniati, Chrysanthi; Tsikou, Daniela; Lampiri, Vasiliki; Fotelli, Mariangela N; Rennenberg, Heinz; Chatzipavlidis, Iordanis; Fasseas, Costas; Katinakis, Panagiotis; Flemetakis, Emmanouil

    2009-04-01

    Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO(2) to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an alpha-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically characterized, and it was proven to be an active alpha-CA. The biochemical and physiological roles of the CAA1 gene in free-living and symbiotic rhizobia were examined by using an M. loti R7A disruption mutant strain. Our analysis revealed that CAA1 is expressed in both nitrogen-fixing bacteroids and free-living bacteria during growth in batch cultures, where gene expression was induced by increased medium pH. L. japonicus plants inoculated with the CAA1 mutant strain showed no differences in top-plant traits and nutritional status but consistently formed a higher number of nodules exhibiting higher fresh weight, N content, nitrogenase activity, and delta(13)C abundance. Based on these results, we propose that although CAA1 is not essential for nodule development and symbiotic nitrogen fixation, it may participate in an auxiliary mechanism that buffers the bacteroid periplasm, creating an environment favorable for NH(3) protonation, thus facilitating its diffusion and transport to the plant. In addition, changes in the nodule delta(13)C abundance suggest the recycling of at least part of the HCO(3)(-) produced by CAA1. PMID:19218391

  4. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane

    PubMed Central

    Strøm, Terje; Ferenci, Thomas; Quayle, J. Rodney

    1974-01-01

    d-arabino-3-Hexulose 6-phosphate was prepared by condensation of formaldehyde with ribulose 5-phosphate in the presence of 3-hexulose phosphate synthase from methane-grown Methylococcus capsulatus. The 3-hexulose phosphate was unstable in solutions of pH greater than 3, giving a mixture of products in which, after dephosphorylation, allulose and fructose were detected. A complete conversion of d-ribulose 5-phosphate and formaldehyde into d-fructose 6-phosphate was demonstrated in the presence of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase (prepared from methane-grown M. capsulatus). d-Allulose 6-phosphate was prepared from d-allose by way of d-allose 6-phosphate. No evidence was found for its metabolism by extracts of M. capsulatus, thus eliminating it as an intermediate in the carbon assimilation process of this organism. A survey was made of the enzymes involved in the regeneration of pentose phosphate during C1 assimilation via a modified pentose phosphate cycle. On the basis of the presence of the necessary enzymes, two alternative routes for cleavage of fructose 6-phosphate are suggested, one route involves fructose diphosphate aldolase and the other 6-phospho-2-keto-3-deoxygluconate aldolase. A detailed formulation of the complete ribulose monophosphate cycle of formaldehyde fixation is presented. The energy requirements for carbon assimilation by this cycle are compared with those for the serine pathway and the ribulose diphosphate cycle of carbon dioxide fixation. A cyclic scheme for oxidation of formaldehyde via 6-phosphogluconate is suggested. PMID:4377654

  5. Relationship of photosynthetic carbon fixation with environmental changes in the Jiulong River estuary of the South China Sea, with special reference to the effects of solar UV radiation.

    PubMed

    Li, Gang; Gao, Kunshan; Yuan, Dongxing; Zheng, Ying; Yang, Guiyuan

    2011-08-01

    Phytoplankton cells in estuary waters usually experience drastic changes in chemical and physical environments due to mixing of fresh and seawaters. In order to see their photosynthetic performance in such dynamic waters, we measured the photosynthetic carbon fixation by natural phytoplankton assemblages in the Jiulong River estuary of the South China Sea during April 24-26 and July 24-26 of 2008, and investigated its relationship with environmental changes in the presence or the absence of UV radiation. Phytoplankton biomass (Chl a) decreased sharply from the river-mouth to seawards (17.3-2.1 μg L(-1)), with the dominant species changed from chlorophytes to diatoms. The photosynthetic rate based on Chl a at noon time under PAR-alone increased from 1.9 μg C (μg Chl a)(-1) L(-1) in low salinity zone (SSS<10) to 12.4 μg C (μg Chl a)(-1) L(-1) in turbidity front (SSS within 10-20), and then decreased to 2.1 μg C (μg Chl a)(-1) L(-1) in mixohaline zone (SSS>20); accordingly, the carbon fixation per volume of seawater increased from 12.8 to 149 μg C L(-1) h(-1), and decreased to 14.3 μg C L(-1) h(-1). Solar UVR caused the inhibition of carbon fixation in surface water of all the investigated zones, by 39% in turbidity area and 7-10% in freshwater or mixohaline zones. In the turbidity zone, higher availability of CO2 could have enhanced the photosynthetic performance; while osmotic stress might be responsible for the higher sensitivity of phytoplankton assemblages to solar UV radiation. PMID:21714975

  6. Effects of femoral component material properties on cementless fixation in total hip arthroplasty. A comparison study between carbon composite, titanium alloy, and stainless steel.

    PubMed

    Otani, T; Whiteside, L A; White, S E; McCarthy, D S

    1993-02-01

    Carbon-fiber-reinforced-carbon composite material is an attractive implant material because its modulus of elasticity can be made similar to that of cortical bone. This study investigated the effect of femoral prosthesis elastic modulus on cementless implant fixation. Distal, as well as proximal, relative micromovements between implant and bone were measured in two testing protocols (axial-load and torsional-load), comparing identically shaped carbon composite (modulus of elasticity = 18.6 GPa), Ti6Al4V (100 GPa), and 630 stainless steel (200 GPa) prostheses. In the axial-load test, proximal mediolateral micromotions were significantly larger in the flexible composite stem than in the two metals. In the torsional-load test, rotational micromotions and "slop" displacements in the flexible stem were significantly larger proximally and significantly smaller distally than in the two metals. While these results suggest that proximal stress transfer may be improved by a flexible stem, they raise the possibility of increased proximal micromotion, and suggest that improved proximal fixation may be necessary to achieve clinical success with flexible composite femoral components. PMID:8436992

  7. Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata

    PubMed Central

    Ponsard, Julie; Cambon-Bonavita, Marie-Anne; Zbinden, Magali; Lepoint, Gilles; Joassin, André; Corbari, Laure; Shillito, Bruce; Durand, Lucile; Cueff-Gauchard, Valérie; Compère, Philippe

    2013-01-01

    The shrimp Rimicaris exoculata dominates several hydrothermal vent ecosystems of the Mid-Atlantic Ridge and is thought to be a primary consumer harbouring a chemoautotrophic bacterial community in its gill chamber. The aim of the present study was to test current hypotheses concerning the epibiont's chemoautotrophy, and the mutualistic character of this association. In-vivo experiments were carried out in a pressurised aquarium with isotope-labelled inorganic carbon (NaH13CO3 and NaH14CO3) in the presence of two different electron donors (Na2S2O3 and Fe2+) and with radiolabelled organic compounds (14C-acetate and 3H-lysine) chosen as potential bacterial substrates and/or metabolic by-products in experiments mimicking transfer of small biomolecules from epibionts to host. The bacterial epibionts were found to assimilate inorganic carbon by chemoautotrophy, but many of them (thick filaments of epsilonproteobacteria) appeared versatile and able to switch between electron donors, including organic compounds (heterotrophic acetate and lysine uptake). At least some of them (thin filamentous gammaproteobacteria) also seem capable of internal energy storage that could supply chemosynthetic metabolism for hours under conditions of electron donor deprivation. As direct nutritional transfer from bacteria to host was detected, the association appears as true mutualism. Import of soluble bacterial products occurs by permeation across the gill chamber integument, rather than via the digestive tract. This first demonstration of such capabilities in a decapod crustacean supports the previously discarded hypothesis of transtegumental absorption of dissolved organic matter or carbon as a common nutritional pathway. PMID:22914596

  8. Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata.

    PubMed

    Ponsard, Julie; Cambon-Bonavita, Marie-Anne; Zbinden, Magali; Lepoint, Gilles; Joassin, André; Corbari, Laure; Shillito, Bruce; Durand, Lucile; Cueff-Gauchard, Valérie; Compère, Philippe

    2013-01-01

    The shrimp Rimicaris exoculata dominates several hydrothermal vent ecosystems of the Mid-Atlantic Ridge and is thought to be a primary consumer harbouring a chemoautotrophic bacterial community in its gill chamber. The aim of the present study was to test current hypotheses concerning the epibiont's chemoautotrophy, and the mutualistic character of this association. In-vivo experiments were carried out in a pressurised aquarium with isotope-labelled inorganic carbon (NaH(13)CO(3) and NaH(14)CO(3)) in the presence of two different electron donors (Na(2)S(2)O(3) and Fe(2+)) and with radiolabelled organic compounds ((14)C-acetate and (3)H-lysine) chosen as potential bacterial substrates and/or metabolic by-products in experiments mimicking transfer of small biomolecules from epibionts to host. The bacterial epibionts were found to assimilate inorganic carbon by chemoautotrophy, but many of them (thick filaments of epsilonproteobacteria) appeared versatile and able to switch between electron donors, including organic compounds (heterotrophic acetate and lysine uptake). At least some of them (thin filamentous gammaproteobacteria) also seem capable of internal energy storage that could supply chemosynthetic metabolism for hours under conditions of electron donor deprivation. As direct nutritional transfer from bacteria to host was detected, the association appears as true mutualism. Import of soluble bacterial products occurs by permeation across the gill chamber integument, rather than via the digestive tract. This first demonstration of such capabilities in a decapod crustacean supports the previously discarded hypothesis of transtegumental absorption of dissolved organic matter or carbon as a common nutritional pathway. PMID:22914596

  9. Advances in mechanisms and signaling pathways of carbon nanotube toxicity

    PubMed Central

    Dong, Jie; Ma, Qiang

    2015-01-01

    Carbon nanotubes (CNT) have been developed into new materials with a variety of industrial and commercial applications. In contrast, the physicochemical properties of CNT at the nanoscale render them the potency to generate toxic effects. Indeed, the potential health impacts of CNT have drawn a great deal of attention in recent years, owing to their identified toxicological and pathological consequences including cytotoxicity, inflammation, fibrosis, genotoxicity, tumorigenesis, and immunotoxicity. Understanding the mechanisms by which CNT induce toxicity and pathology is thus urgently needed for accurate risk assessment of CNT exposure in humans, and for safe and responsible development and commercialization of nanotechnology. Here, we summarize and discuss recent advances in this area with a focus on the molecular interactions between CNT and mammalian systems, and the signaling pathways important for the development of CNT toxicity such as the NF-κB, NLRP3 inflammasome, TGF-β1, MAPK, and p53 signaling cascades. With the current mechanistic evidence summarized in this review, we expect to provide new insights into CNT toxicology at the molecular level and offer new clues to the prevention of health effects resulting from CNT exposure. Moreover, we disclose questions and issues that remain in this rapidly advancing field of nanotoxicology, which would facilitate ascertaining future research directions. PMID:25676622

  10. Carbon disulfide induces rat testicular injury via mitochondrial apoptotic pathway.

    PubMed

    Guo, Yinsheng; Wang, Wei; Dong, Yu; Zhang, Zhen; Zhou, Yijun; Chen, Guoyuan

    2014-08-01

    Carbon disulfide (CS2), one of the most important volatile organic chemicals, was shown to have serious impairment to male reproductive system. But the underline mechanism is still unclear. In the present study, we aim to investigate the male germ cell apoptosis induced by CS2 exposure alone and by co-administration with cyclosporin A (CsA), which is the inhibitor of membrane permeability transition pore (MPTP). It was shown that CS2 exposure impaired ultrastructure of germ cells, increased the numbers of apoptotic germ cells, accumulated intracellular level of calcium, elevated ROS level, and increased activities of complexes of respiratory chain. Meanwhile, exposure to CS2 dramatically decreased the mitochondrial transmembrane potential (ΔΨm) and levels of ATP and MPTP opening. Exposure to CS2 can also cause a significantly dose-dependent increase in the expression levels of Bax, Cytc, Caspase-9, and Caspase-3, but decreased the expression level of Bcl-2. Moreover, co-administration of CsA with CS2 can reverse or alleviate the above apoptotic damage effects of CS2 on testicular germ cells. Taken together, our findings suggested that CS2 can cause damage to testicular germ cells via mitochondrial apoptotic pathway, and MPTP play a crucial role in this process. PMID:24582363

  11. Carbon dioxide fixation and photoevolution of hydrogen and oxygen in a mutant of Chlamydomonas lacking Photosystem I

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-09-01

    Sustained photoassimilation of atmospheric CO{sub 2} and simultaneous photoevolution of molecular hydrogen and oxygen has been observed in a Photosystem I deficient mutant B4 of Chlamydomonas reinhardtii that contains only Photosystem II. The data indicate that Photosystem II alone is capable of spanning the potential difference between water oxidation/oxygen evolution and ferredoxin reduction. The rates of both CO{sub 2} fixation and hydrogen and oxygen evolution are similar in the mutant to that of the wild-type C. reinhardtii 137c containing both photosystems. The wild-type had stable photosynthetic activity, measured as CO{sub 2} fixation, under both air and anaerobic conditions, while the mutant was stable only under anaerobic conditions. The results are discussed in terms of the fundamental mechanisms and energetics of photosynthesis and possible implications for the evolution of oxygenic photosynthesis.

  12. Simulation of permeability evolution of leakage pathway in carbonate-rich caprocks in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Fitts, J. P.; Dobossy, M. E.; Peters, C. A.

    2013-12-01

    Geologic carbon sequestration in deep saline aquifers is a promising strategy for mitigating climate change. A major concern is the possibility of brine and CO2 migration through the caprock such as through fractures and faults. In this work, we examine the extent to which mineral dissolution will substantially alter the porosity and permeability of caprock leakage pathways as CO2-acidified brine flows through them. Three models were developed. Firstly, a reactive transport model, Permeability Evolution of Leakage pathway (PEL), was developed to simulate permeability evolution of a leakage pathway during the injection period, and assumes calcite is the only reactive mineral. The system domain is a 100 m long by 0.2 m diameter cylindrical flow path with fixed boundaries containing a rock matrix with an initial porosity of 30% and initial permeability of 1×10-13 m2. One example result is for an initial calcite volume fraction (CVF) of 0.20, in which all the calcite is dissolved after 50 years and the permeability reaches 3.2×10-13 m2. For smaller values of CVF, the permeability reaches its final value earlier but the increase in permeability is minimal. For a large value of CVF such as 0.50, the permeability could eventually reach 1×10-12 m2, but the large amount of dissolved calcium buffers the solution and slows the reaction. After 50 years the permeability change is negligible. Thus, there is a non-monotonic relationship between the amount of calcite in the rock and the resulting permeability change because of the competing dynamics of calcite dissolution and alkalinity build-up. In the second model, PEL was coupled to an existing basin-scale multiphase flow model, Princeton's Estimating Leakage Semi-Analytical (ELSA) model. The new model, ELSA-PEL, estimates the brine and CO2 leakage rates during the injection period under conditions of permeability evolution. The scenario considered in this work is for 50 years of CO2 injection into the Mt. Simon formation in

  13. Cytochrome c terminal oxidase pathways of Azotobacter vinelandii: analysis of cytochrome c4 and c5 mutants and up-regulation of cytochrome c-dependent pathways with N2 fixation.

    PubMed Central

    Rey, L; Maier, R J

    1997-01-01

    The Azotobacter vinelandii cytochrome c5 gene (termed cycB) was cloned and sequenced. Mutants in this c-type cytochrome as well as cytochrome c4 mutants (mutations in cycA) and double mutants in both of the c-type respiratory pathways were characterized. Spectral and heme staining experiments on membranes from the mutants were consistent with the anticipated characteristics of all the gene-directed mutants. Membranes of the individual cytochrome c4 or c5 mutants had normal respiratory rates with physiological substrates but respiration significantly lower than the wild-type rate with ascorbate-N,N,N',N',-tetramethyl-p-phenylenediamine (TMPD) as a reductant. The growth rates of the individual cytochrome c4 or c5 mutants were not markedly different from that of the wild-type strain, but the cycA cycB double-mutant strain was noticeably growth retarded at and below 7.5% O2 on both N-containing and N-free media. The double-mutant strain was unable to grow on agar plates at O2 tensions of 2.5% or less on N-free medium. As the wild-type growth was unaffected by varying the O2 tension, the results indicate that the role of the cytochrome c-dependent pathways is to provide respiration at intermediate (5 to 10%) and low (below 5%) O2 tensions. The two c-type cytochrome genes are transcriptionally up-regulated with N2 fixation; N starvation caused 2.8-fold and 7- to 10-fold increases in the promoter activities of cycA and cycB, respectively, but these activities were affected little by the O2 level supplied to the cultures. PMID:9371471

  14. Response of cbb gene transcription levels of four typical sulfur-oxidizing bacteria to the CO2 concentration and its effect on their carbon fixation efficiency during sulfur oxidation.

    PubMed

    Wang, Ya-Nan; Wang, Lei; Tsang, Yiu Fai; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2016-10-01

    The variability in carbon fixation capability of four sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505, Halothiobacillus neapolitanus DSM 15147, Starkeya novella DSM 506, and Thiomonas intermedia DSM 18155) during sulfur oxidation was studied at low and high concentrations of CO2. The mechanism underlying the variability in carbon fixation was clarified by analyzing the transcription of the cbb gene, which encodes the key enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. DSM 15147 and DSM 505 fixed carbon more efficiently during sulfur oxidation than DSM 506 and DSM 18155 at 0.5% and 10% CO2, which was mainly because their cbb gene transcription levels were much higher than those of DSM 506 and DSM 18155. A high CO2 concentration significantly stimulated the carbon fixation efficiency of DSM 505 by greatly increasing the cbb gene transcription efficiency. Moreover, the influence of the CO2 concentration on the carbon fixation efficiency of the four strains differed greatly during sulfur oxidation. PMID:27542742

  15. Reduced Carbon Availability to Bacteroids and Elevated Ureides in Nodules, But Not in Shoots, Are Involved in the Nitrogen Fixation Response to Early Drought in Soybean1[OA

    PubMed Central

    Ladrera, Rubén; Marino, Daniel; Larrainzar, Estíbaliz; González, Esther M.; Arrese-Igor, Cesar

    2007-01-01

    Nitrogen fixation (NF) in soybean (Glycine max L. Merr.) is highly sensitive to soil drying. This sensitivity has been related to an accumulation of nitrogen compounds, either in shoots or in nodules, and a nodular carbon flux shortage under drought. To assess the relative importance of carbon and nitrogen status on NF regulation, the responses to the early stages of drought were monitored with two soybean cultivars with known contrasting tolerance to drought. In the sensitive cultivar (‘Biloxi’), NF inhibition occurred earlier and was more dramatic than in the tolerant cultivar (‘Jackson’). The carbon flux to bacteroids was also more affected in ‘Biloxi’ than in ‘Jackson’, due to an earlier inhibition of sucrose synthase activity and a larger decrease of malate concentration in the former. Drought provoked ureide accumulation in nodules of both cultivars, but this accumulation was higher and occurred earlier in ‘Biloxi’. However, at this early stage of drought, there was no accumulation of ureides in the leaves of either cultivar. These results indicate that a combination of both reduced carbon flux and nitrogen accumulation in nodules, but not in shoots, is involved in the inhibition of NF in soybean under early drought. PMID:17720761

  16. Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean.

    PubMed

    Ladrera, Rubén; Marino, Daniel; Larrainzar, Estíbaliz; González, Esther M; Arrese-Igor, Cesar

    2007-10-01

    Nitrogen fixation (NF) in soybean (Glycine max L. Merr.) is highly sensitive to soil drying. This sensitivity has been related to an accumulation of nitrogen compounds, either in shoots or in nodules, and a nodular carbon flux shortage under drought. To assess the relative importance of carbon and nitrogen status on NF regulation, the responses to the early stages of drought were monitored with two soybean cultivars with known contrasting tolerance to drought. In the sensitive cultivar ('Biloxi'), NF inhibition occurred earlier and was more dramatic than in the tolerant cultivar ('Jackson'). The carbon flux to bacteroids was also more affected in 'Biloxi' than in 'Jackson', due to an earlier inhibition of sucrose synthase activity and a larger decrease of malate concentration in the former. Drought provoked ureide accumulation in nodules of both cultivars, but this accumulation was higher and occurred earlier in 'Biloxi'. However, at this early stage of drought, there was no accumulation of ureides in the leaves of either cultivar. These results indicate that a combination of both reduced carbon flux and nitrogen accumulation in nodules, but not in shoots, is involved in the inhibition of NF in soybean under early drought. PMID:17720761

  17. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure.

    PubMed

    Molla, Rostam Ali; Ghosh, Kajari; Banerjee, Biplab; Iqubal, Md Asif; Kundu, Sudipta K; Islam, Sk Manirul; Bhaumik, Asim

    2016-09-01

    Ag nanoparticles (NPs) has been supported over a porous Co(II)-salicylate metal-organic framework to yield a new nanocatalyst AgNPs/Co-MOF and it has been thoroughly characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy dispersive X-ray spectrometry (EDX), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (DRS) and N2 adsorption/desorption analysis. The AgNPs/Co-MOF material showed high catalytic activity in the carboxylation of terminal alkynes via CO2 fixation reaction to yield alkynyl carboxylic acids under very mild conditions. Due to the presence of highly reactive AgNPs bound at the porous MOF framework the reaction proceeded smoothly at 1atm CO2 pressure. Moreover, the catalyst is very convenient to handle and it can be reused for several reaction cycles without appreciable loss of catalytic activity in this CO2 fixation reaction, which suggested a promising future of AgNPs/Co-MOF nanocatalyst. PMID:27309859

  18. Carbon Assimilation Pathways, Water Relationships and Plant Ecology.

    ERIC Educational Resources Information Center

    Etherington, John R.

    1988-01-01

    Discusses between-species variation in adaptation of the photosynthetic mechanism to cope with wide fluctuations of environmental water regime. Describes models for water conservation in plants and the role of photorespiration in the evolution of the different pathways. (CW)

  19. Carbon Balance of a Mannitol Fermentation and the Biosynthetic Pathway

    PubMed Central

    Lee, Wei Hwa

    1967-01-01

    The carbon balance was determined for a fermentation in which mannitol is produced from glucose by an Aspergillus species. The products found were: cells (17% of carbon input), CO2 (26%), mannitol (35%), glycerol (10%), erythritol (2.5%), glycogen (1%), and unidentified compounds (8%). Thus, 92% of the carbon input was accounted for. Cell-free enzyme studies showed that mannitol was synthesized via the reduction of fructose-6-phosphate and not by the direct reduction of fructose. If the cell yield from glucose was assumed to be 50% and the theoretical conversion efficiency from glucose to polyols was 90%, as calculated from the energy balance, then 34% of the glucose carbon was used for growth and 53% was used for polyol formation. PMID:4294822

  20. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-07-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is

  1. Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem

    NASA Astrophysics Data System (ADS)

    Cailleau, G.; Braissant, O.; Verrecchia, E. P.

    2011-02-01

    An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the theoretical acidic conditions of these soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. Regarding the carbonate flux, another direct consequence of wood feeding is a concomitant flux of carbonate formed in wood tissues, which is not consumed by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter. Therefore, an oxalate pool is formed on the forest ground. Then, wood rotting gents (mainly termites, fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition some of these gents are themselves producers of oxalate (fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the

  2. Torsional moment to failure for carbon fibre polysulphone expandable rivets as compared with stainless steel screws for carbon fibre-reinforced epoxy fracture plate fixation.

    PubMed

    Sell, P J; Prakash, R; Hastings, G W

    1989-04-01

    A method of securing carbon fibre-reinforced epoxy bone plates with carbon fibre polysulphone expanding rivets was investigated. Six carbon fibre-reinforced epoxy bone plates were secured to rods with carbon fibre polysulphone rivets and six were secured with standard cortical stainless steel screws. These constructions were then subjected to pure torsional load to failure. The carbon fibre expandable rivets failed at a greater torsional moment. PMID:2720038

  3. Biochemistry and control of the reductive tricarboxylic acid pathway of CO2 fixation and physiological role of the Rubis CO-like protein

    SciTech Connect

    Tabita, F. Robert

    2008-12-04

    During the past years of this project we have made progress relative to the two major goals of the proposal: (1) to study the biochemistry and regulation of the reductive TCA cycle of CO2 fixation and (2) to probe the physiological role of a RubisCO-like protein (RLP). Both studies primarily employ the green sulfur bacterium Chlorobium tepidum as well as other photosynthetic bacteria including Rhodospirillum rubrum and Rhodopseudomonas palustris.

  4. Funding pathways to a low-carbon transition

    NASA Astrophysics Data System (ADS)

    Foulds, Chris; Christensen, Toke Haunstrup

    2016-07-01

    The framing of funding programmes can sustain existing ways of conceptualizing particular problems, as well as create new ones. Yet, without more prominent roles for social sciences and humanities, the techno-economic conceptualization of energy consumers could hinder long-term low-carbon aspirations.

  5. Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis.

    PubMed

    De, Rajat K; Tomar, Namrata

    2012-12-01

    Metabolism is a complex process for energy production for cellular activity. It consists of a cascade of reactions that form a highly branched network in which the product of one reaction is the reactant of the next reaction. Metabolic pathways efficiently produce maximal amount of biomass while maintaining a steady-state behavior. The steady-state activity of such biochemical pathways necessarily incorporates feedback inhibition of the enzymes. This observation motivates us to incorporate feedback inhibition for modeling the optimal activity of metabolic pathways using flux balance analysis (FBA). We demonstrate the effectiveness of the methodology on a synthetic pathway with and without feedback inhibition. Similarly, for the first time, the Central Carbon Metabolic (CCM) pathways of Saccharomyces cerevisiae and Homo sapiens have been modeled and compared based on the above understanding. The optimal pathway, which maximizes the amount of the target product(s), is selected from all those obtained by the proposed method. For this, we have observed the concentration of the product inhibited enzymes of CCM pathway and its influence on its corresponding metabolite/substrate. We have also studied the concentration of the enzymes which are responsible for the synthesis of target products. We further hypothesize that an optimal pathway would opt for higher flux rate reactions. In light of these observations, we can say that an optimal pathway should have lower enzyme concentration and higher flux rates. Finally, we demonstrate the superiority of the proposed method by comparing it with the extreme pathway analysis. PMID:22913632

  6. The oxalate-carbonate pathway: at the interface between biology and geology

    NASA Astrophysics Data System (ADS)

    Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.

    2012-04-01

    The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.

  7. Latarjet Fixation

    PubMed Central

    Alvi, Hasham M.; Monroe, Emily J.; Muriuki, Muturi; Verma, Rajat N.; Marra, Guido; Saltzman, Matthew D.

    2016-01-01

    Background: Attritional bone loss in patients with recurrent anterior instability has successfully been treated with a bone block procedure such as the Latarjet. It has not been previously demonstrated whether cortical or cancellous screws are superior when used for this procedure. Purpose: To assess the strength of stainless steel cortical screws versus stainless steel cannulated cancellous screws in the Latarjet procedure. Study Design: Controlled laboratory study. Methods: Ten fresh-frozen matched-pair shoulder specimens were randomized into 2 separate fixation groups: (1) 3.5-mm stainless steel cortical screws and (2) 4.0-mm stainless steel partially threaded cannulated cancellous screws. Shoulder specimens were dissected free of all soft tissue and a 25% glenoid defect was created. The coracoid process was osteomized, placed at the site of the glenoid defect, and fixed in place with 2 parallel screws. Results: All 10 specimens failed by screw cutout. Nine of 10 specimens failed by progressive displacement with an increased number of cycles. One specimen in the 4.0-mm screw group failed by catastrophic failure on initiation of the testing protocol. The 3.5-mm screws had a mean of 274 cycles (SD, ±171 cycles; range, 10-443 cycles) to failure. The 4.0-mm screws had a mean of 135 cycles (SD, ±141 cycles; range, 0-284 cycles) to failure. There was no statistically significant difference between the 2 types of screws for cycles required to cause failure (P = .144). Conclusion: There was no statistically significant difference in energy or cycles to failure when comparing the stainless steel cortical screws versus partially threaded cannulated cancellous screws. Clinical Relevance: Latarjet may be performed using cortical or cancellous screws without a clear advantage of either option. PMID:27158630

  8. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates

    NASA Astrophysics Data System (ADS)

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-07-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br- afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity.

  9. High-Gravity Carbonation Process for Enhancing CO2 Fixation and Utilization Exemplified by the Steelmaking Industry.

    PubMed

    Pan, Shu-Yuan; Chen, Yi-Hung; Chen, Chun-Da; Shen, Ai-Lin; Lin, Michael; Chiang, Pen-Chi

    2015-10-20

    The high-gravity carbonation process for CO2 mineralization and product utilization as a green cement was evaluated using field operation data from the steelmaking industry. The effect of key operating factors, including rotation speed, liquid-to-solid ratio, gas flow rate, and slurry flow rate, on CO2 removal efficiency was studied. The results indicated that a maximal CO2 removal of 97.3% was achieved using basic oxygen furnace slag at a gas-to-slurry ratio of 40, with a capture capacity of 165 kg of CO2 per day. In addition, the product with different carbonation conversions (i.e., 0%, 17%, and 48%) was used as supplementary cementitious materials in blended cement at various substitution ratios (i.e., 0%, 10%, and 20%). The performance of the blended cement mortar, including physicochemical properties, morphology, mineralogy, compressive strength, and autoclave soundness, was evaluated. The results indicated that the mortar with a high carbonation conversion of slag exhibited a higher mechanical strength in the early stage than pure portland cement mortar, suggesting its suitability for use as a high early strength cement. It also possessed superior soundness compared to the mortar using fresh slag. Furthermore, the optimal operating conditions of the high-gravity carbonation were determined by response surface models for maximizing CO2 removal efficiency and minimizing energy consumption. PMID:26397167

  10. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation

    PubMed Central

    Diender, Martijn; Stams, Alfons J. M.; Sousa, Diana Z.

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved. PMID:26635746

  11. Orthopedic prosthesis fixation.

    PubMed

    Park, J B

    1992-01-01

    The fixation of orthopedic implants has been one of the most difficult and challenging problems. The fixation can be achieved via: (a) direct mechanical fixation using screws, pins, wires, etc.; (b) passive or interference mechanical fixation where the implants are allowed to move or merely positioned onto the tissue surfaces; (c) bone cement fixation which is actually a grouting material; (d) biological fixation by allowing tissues to grow into the interstices of pores or textured surfaces of implants; (e) direct chemical bonding between implant and tissues; or (f) any combination of the above techniques. This article is concerned with various fixation techniques including the potential use of electrical, pulsed electromagnetic field, chemical stimulation using calcium phosphates for the enhancement of tissue ingrowth, direct bonding with bone by glass-ceramics and resorbable particle impregnated bone cement to take advantages of both the immediate fixation offered by the bone cement and long term fixation due to tissue ingrowth. PMID:1449228

  12. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates.

    PubMed

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-12-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br(-) afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity. PMID:27365001

  13. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    NASA Astrophysics Data System (ADS)

    >Liyana Yahya, Muhammad Nazry Chik, Mohd Asyraf Mohd Azmir Pang,

    2013-06-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive - observed by increases in optical densities, number of cells and weights - in the presence of actual coal-fired flue gas containing on average 4.08 % O2, 200.21 mg/m3 SO2, 212.29 mg/m3 NOx, 4.73 % CO2 and 50.72 mg/m3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  14. Involvement of Photosynthetic Carbon Reduction Cycle Intermediates in CO2 Fixation and O2 Evolution by Isolated Chloroplasts 1

    PubMed Central

    Schacter, Bernice; Eley, J. H.; Gibbs, Martin

    1971-01-01

    The photosynthetic carbon reduction cycle intermediates can be divided into three classes according to their effects on the rate of photosynthetic CO2 evolution by whole spinach (Spinacia oleracea) chloroplasts and on their ability to affect reversal of certain inhibitors (nigericin, arsenate, arsenite, iodoacetate, antimycin A) of photosynthesis: class I (maximal): fructose 1, 6-diphosphate, dihydroxyacetone phosphate, glyceraldehyde-3-phosphate, ribose-5-phosphate; class 2 (slight): glucose 6-phosphate, fructose 6-phosphate, ribulose-1, 5-diphosphate; class 3 (variable): glycerate 3-phosphate. While class 1 compounds influence the photosynthetic rate, they do not lower the Michaelis constant of the chloroplast for bicarbonate or affect strongly other photosynthetic properties such as the isotopic distribution pattern. It was concluded that the class 1 compounds influence the chloroplast by not only supplying components to the carbon cycle but also by activating or stabilizing a structural component of the chloroplast. PMID:16657865

  15. Diversity of freshwater Epsilonproteobacteria and dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake.

    PubMed

    Noguerola, Imma; Picazo, Antonio; Llirós, Marc; Camacho, Antonio; Borrego, Carles M

    2015-07-01

    Sulfidic redoxclines are a suitable niche for the growth and activity of different chemo- and photolithotrophic sulphide-oxidizing microbial groups such as the Epsilonproteobacteria and the green sulfur bacteria (GSB). We have investigated the diversity, abundance and contribution to inorganic carbon uptake of Epsilonproteobacteria in a meromictic basin of Lake Banyoles. CARD-FISH counts revealed that Epsilonproteobacteria were prevalent at the redoxcline in winter (maximum abundance of 2 × 10(6) cells mL(-1), ≈60% of total cells) but they were nearly absent in summer, when GSB bloomed. This seasonal trend was supported by 16S rRNA gene pyrotag datasets, which revealed that the epsilonproteobacterial community was mainly composed of a member of the genus Arcobacter. In situ incubations using NaH(14)CO3 and MAR-CARD-FISH observations showed that this population assimilated CO2 in the dark, likely being mainly responsible for the autotrophic activity at the redoxcline in winter. Clone libraries targeting the aclB gene provided additional evidence of the potential capacity of these epsilonproteobacteria to fix carbon via rTCA cycle. Our data reinforce the key role of Epsilonproteobacteria in linking carbon and sulphur cycles, extend their influence to freshwater karstic lakes and raise questions about the actual contribution of chemolithotrophy at their redoxcline and euxinic water compartments. PMID:26195601

  16. NifA- and CooA-Coordinated cowN Expression Sustains Nitrogen Fixation by Rhodobacter capsulatus in the Presence of Carbon Monoxide

    PubMed Central

    Hoffmann, Marie-Christine; Pfänder, Yvonne; Fehringer, Maria; Narberhaus, Franz

    2014-01-01

    Rhodobacter capsulatus fixes atmospheric dinitrogen via two nitrogenases, Mo- and Fe-nitrogenase, which operate under different conditions. Here, we describe the functions in nitrogen fixation and regulation of the rcc00574 (cooA) and rcc00575 (cowN) genes, which are located upstream of the structural genes of Mo-nitrogenase, nifHDK. Disruption of cooA or cowN specifically impaired Mo-nitrogenase-dependent growth at carbon monoxide (CO) concentrations still tolerated by the wild type. The cooA gene was shown to belong to the Mo-nitrogenase regulon, which is exclusively expressed when ammonium is limiting. Its expression was activated by NifA1 and NifA2, the transcriptional activators of nifHDK. AnfA, the transcriptional activator of Fe-nitrogenase genes, repressed cooA, thereby counteracting NifA activation. CooA activated cowN expression in response to increasing CO concentrations. Base substitutions in the presumed CooA binding site located upstream of the cowN transcription start site abolished cowN expression, indicating that cowN regulation by CooA is direct. In conclusion, a transcription factor-based network controls cowN expression to protect Mo-nitrogenase (but not Fe-nitrogenase) under appropriate conditions. PMID:25070737

  17. Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources.

    PubMed

    Zhao, Chen; Gu, Deqing; Nambou, Komi; Wei, Liujing; Chen, Jun; Imanaka, Tadayuki; Hua, Qiang

    2015-07-20

    Yarrowia lipolytica, a model microorganism of oleaginous yeasts with developed sophisticated genetic tools, is able to metabolize a wide range of substrates and accumulate large amounts of lipids. However, there is a lack of literature reporting the metabolic characteristics of Y. lipolytica metabolizing these substrates in a systematic view. In this study, Y. lipolytica was cultivated on a variety of carbon sources, among which cell growth and production characteristics on two representative substrates (glucose and oleic acid) were investigated in detail at metabolomic level. Metabolic pathway abundance was computed to interpret the metabolome data in a straightforward way. The results showed that most pathway abundances decreased in the shift from growth to production phase. Specifically, when cultivated on glucose, abundances of twelve pathways decreased markedly between the growth and lipid production phases, while thirteen pathways reduced and only three pathways increased significantly in abundances on oleic acid. In comparison, for the same cultivation phase only a few pathways exhibited significant changes between glucose-grown and oleic acid-grown cells. This study revealed that the pathway abundance could be used to effectively show the activity changes of pathways, providing a new perspective to employ metabolomics data for understanding cell metabolism and enhancing the production of target metabolites. PMID:25912211

  18. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles.

    PubMed

    Chauton, Matilde Skogen; Winge, Per; Brembu, Tore; Vadstein, Olav; Bones, Atle M

    2013-02-01

    The regulation of carbon metabolism in the diatom Phaeodactylum tricornutum at the cell, metabolite, and gene expression levels in exponential fed-batch cultures is reported. Transcriptional profiles and cell chemistry sampled simultaneously at all time points provide a comprehensive data set on carbon incorporation, fate, and regulation. An increase in Nile Red fluorescence (a proxy for cellular neutral lipids) was observed throughout the light period, and water-soluble glucans increased rapidly in the light period. A near-linear decline in both glucans and lipids was observed during the dark period, and transcription profile data indicated that this decline was associated with the onset of mitosis. More than 4,500 transcripts that were differentially regulated during the light/dark cycle are identified, many of which were associated with carbohydrate and lipid metabolism. Genes not previously described in algae and their regulation in response to light were integrated in this analysis together with proposed roles in metabolic processes. Some very fast light-responding genes in, for example, fatty acid biosynthesis were identified and allocated to biosynthetic processes. Transcripts and cell chemistry data reflect the link between light energy availability and light energy-consuming metabolic processes. Our data confirm the spatial localization of processes in carbon metabolism to either plastids or mitochondria or to glycolysis/gluconeogenesis, which are localized to the cytosol, chloroplast, and mitochondria. Localization and diel expression pattern may be of help to determine the roles of different isoenzymes and the mining of genes involved in light responses and circadian rhythms. PMID:23209127

  19. Soil temperature and water content drive microbial carbon fixation in grassland of permafrost area on the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Kong, W.; Guo, G.; Liu, J.

    2014-12-01

    Soil microbial communities underpin terrestrial biogeochemical cycles and are greatly influenced by global warming and global-warming-induced dryness. However, the response of soil microbial community function to global change remains largely uncertain, particularly in the ecologically vulnerable Tibetan plateau permafrost area with large carbon storage. With the concept of space for time substitution, we investigated the responses of soil CO2-fixing microbial community and its enzyme activity to climate change along an elevation gradient (4400-5100 m) of alpine grassland on the central Tibetan plateau. The elevation gradient in a south-facing hill slope leads to variation in climate and soil physicochemical parameters. The autotrophic microbial communities were characterized by quantitative PCR (qPCR), terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning/sequencing targeting the CO2-fixing gene (RubisCO). The results demonstrated that the autotrophic microbial community abundance, structure and its enzyme activity were mainly driven by soil temperature and water content. Soil temperature increase and water decrease dramatically reduced the abundance of the outnumbered form IC RubisCO-containing microbes, and significantly changed the structure of form IC, IAB and ID RubisCO-containing microbial community. Structural equation model revealed that the RubisCO enzyme was directly derived from RubisCO-containing microbes and its activity was significantly reduced by soil temperature increase and water content decrease. Thus our results provide a novel positive feedback loop of climate warming and warming-induced dryness by that soil microbial carbon fixing potential will reduce by 3.77%-8.86% with the soil temperature increase of 1.94oC and water content decrease of 60%-70%. This positive feedback could be capable of amplifying the climate change given the significant contribution of soil microbial CO2-fixing up to 4.9% of total soil organic

  20. Leaf-level gas exchange and scaling-up of forest understory carbon fixation rates with a ``patch-scale'' canopy model

    NASA Astrophysics Data System (ADS)

    Wedler, M.; Geyer, R.; Heindl, B.; Hahn, S.; Tenhunen, J. D.

    1996-03-01

    During the Hartheim experiment (HartX) 1992, conducted in the Upper Rhine Valley, Germany, we estimated water vapor flux from the understory by several methods as reported in Wedler et al. (this issue). We also examined the photosynthetic gas exchange of the dominant understory species Brachypodium pinnatum, Carex alba, and Carex flacca at the leaf level with an CO2/H2O porometer. A mechanisticallybased leaf gas exchange model was parameterized for these understory species and validated via the measured diurnal courses of carbon dioxide exchange. Leaf CO2 gas exchange was scaled-up to patch- and then to stand-level utilizing the leaf gas exchange model as a component of the canopy light interception/energy balance model GAS-FLUX, and by further considering variation in vegetation “patch-type” distribution, patch-specific spatial structure, patch-type leaf area index, and microclimate beneath the tree canopy. At patch-level, C. alba exhibited the lowest net CO2 uptake of ca. 75 mmol m-2 d-1 due to a low leaf-level photosynthetic capacity, whereas net CO2 fixation of B. pinnatum- and C. flacca-patches was approx. 178 and 184 mmol m-2 d-1, respectively. Highest CO2 uptake was estimated for mixed patches where B. pinnatum grew together with the sedge species C. alba or C. flacca. Scaling-up of leaf gas exchange to stand level resulted in an estimated average rate of total CO2 fixation by the graminoid understory patches of approximately 93 mmol m-2 d-1 during the HartX period. The conservative gas exchange behavior of C. alba at Hartheim and its apparent success in space capture seems to affect overall functioning of this pine forest ecosystem by limiting understory CO2 uptake. The CO2 uptake by the understory is approximately 20% of stand total CO2 uptake. CO2 uptake fluxes mirror the relative differences in water loss from the understory and crown layer during the HartX period. Comparative measurements indicate that understory vegetation in spruce and pine

  1. Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor

    SciTech Connect

    Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A; Beste, Ariana; Naskar, Amit K

    2013-01-01

    Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. We observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to

  2. Selection Maintains Apparently Degenerate Metabolic Pathways due to Tradeoffs in Using Methylamine for Carbon versus Nitrogen.

    PubMed

    Nayak, Dipti D; Agashe, Deepa; Lee, Ming-Chun; Marx, Christopher J

    2016-06-01

    Microorganisms often encode multiple non-orthologous metabolic modules that catalyze the same reaction. However, little experimental evidence actually demonstrates a selective basis for metabolic degeneracy. Many methylotrophs-microorganisms that grow on reduced single-carbon compounds-like Methylobacterium extorquens AM1 encode two routes for methylamine oxidation: the periplasmic methylamine dehydrogenase (MaDH) and the cytoplasmic N-methylglutamate (NMG) pathway. In Methylobacterium extorquens AM1, MaDH is essential for methylamine growth, but the NMG pathway has no known physiological role. Here, we use experimental evolution of two isolates lacking (or incapable of using) MaDH to uncover the physiological challenges that need to be overcome in order to use the NMG pathway for growth on methylamine as a carbon and energy source. Physiological characterization of the evolved isolates revealed regulatory rewiring to increase expression of the NMG pathway and novel mechanisms to mitigate cytoplasmic ammonia buildup. These adaptations led us to infer and validate environmental conditions under which the NMG pathway is advantageous compared to MaDH. The highly expressed MaDH enables rapid growth on high concentrations of methylamine as the primary carbon and energy substrate, whereas the energetically expensive NMG pathway plays a pivotal role during growth with methylamine as the sole nitrogen source, which we demonstrate is especially true under limiting concentrations (<1 mM). Tradeoffs between cellular localization and ammonium toxicity lead to selection for this apparent degeneracy as it is beneficial to facultative methylotrophs that have to switch between using methylamine as a carbon and energy source or just a nitrogen source. PMID:27212407

  3. Synthesis of [11C]Bexarotene by Cu-Mediated [11C]Carbon Dioxide Fixation and Preliminary PET Imaging

    PubMed Central

    2014-01-01

    Bexarotene (Targretin) is a retinoid X receptor (RXR) agonist that has applications for treatment of T cell lymphoma and proposed mechanisms of action in Alzheimer’s disease that have been the subject of recent controversy. Carbon-11 labeled bexarotene ([11C-carbonyl]4-[1-(3,5,5,8,8-pentamethyltetralin-2-yl)ethenyl]benzoic acid) was synthesized using a Cu-mediated cross-coupling reaction employing an arylboronate precursor 1 and [11C]carbon dioxide under atmospheric pressure in 15 ± 2% uncorrected radiochemical yield (n = 3), based on [11C]CO2. Judicious choice of solvents, catalysts, and additives, as well as precursor concentration and purity of [11C]CO2, enabled the preparation of this 11C-labeled carboxylic acid. Formulated [11C]bexarotene was isolated (>37 mCi) with >99% radiochemical purity in 32 min. Preliminary positron emission tomography–magnetic resonance imaging revealed rapid brain uptake in nonhuman primate in the first 75 s following intravenous administration of the radiotracer (specific activity >0.3 Ci/μmol at time of injection), followed by slow clearance (Δ = −43%) over 60 min. Modest uptake (SUVmax = 0.8) was observed in whole brain and regions with high RXR expression. PMID:24944741

  4. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.

    PubMed

    Hallam, Steven J; Mincer, Tracy J; Schleper, Christa; Preston, Christina M; Roberts, Katie; Richardson, Paul M; DeLong, Edward F

    2006-04-01

    Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems. PMID:16533068

  5. Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi

    PubMed Central

    Zhuang, Wei-Qin; Yi, Shan; Bill, Markus; Brisson, Vanessa L.; Feng, Xueyang; Men, Yujie; Conrad, Mark E.; Tang, Yinjie J.; Alvarez-Cohen, Lisa

    2014-01-01

    The acetyl-CoA “Wood–Ljungdahl” pathway couples the folate-mediated one-carbon (C1) metabolism to either CO2 reduction or acetate oxidation via acetyl-CoA. This pathway is distributed in diverse anaerobes and is used for both energy conservation and assimilation of C1 compounds. Genome annotations for all sequenced strains of Dehalococcoides mccartyi, an important bacterium involved in the bioremediation of chlorinated solvents, reveal homologous genes encoding an incomplete Wood–Ljungdahl pathway. Because this pathway lacks key enzymes for both C1 metabolism and CO2 reduction, its cellular functions remain elusive. Here we used D. mccartyi strain 195 as a model organism to investigate the metabolic function of this pathway and its impacts on the growth of strain 195. Surprisingly, this pathway cleaves acetyl-CoA to donate a methyl group for production of methyl-tetrahydrofolate (CH3-THF) for methionine biosynthesis, representing an unconventional strategy for generating CH3-THF in organisms without methylene-tetrahydrofolate reductase. Carbon monoxide (CO) was found to accumulate as an obligate by-product from the acetyl-CoA cleavage because of the lack of a CO dehydrogenase in strain 195. CO accumulation inhibits the sustainable growth and dechlorination of strain 195 maintained in pure cultures, but can be prevented by CO-metabolizing anaerobes that coexist with D. mccartyi, resulting in an unusual syntrophic association. We also found that this pathway incorporates exogenous formate to support serine biosynthesis. This study of the incomplete Wood–Ljungdahl pathway in D. mccartyi indicates a unique bacterial C1 metabolism that is critical for D. mccartyi growth and interactions in dechlorinating communities and may play a role in other anaerobic communities. PMID:24733917

  6. A critical knowledge pathway to low-carbon, sustainable futures: Integrated understanding of urbanization, urban areas, and carbon

    NASA Astrophysics Data System (ADS)

    Romero-Lankao, Patricia; Gurney, Kevin R.; Seto, Karen C.; Chester, Mikhail; Duren, Riley M.; Hughes, Sara; Hutyra, Lucy R.; Marcotullio, Peter; Baker, Lawrence; Grimm, Nancy B.; Kennedy, Christopher; Larson, Elisabeth; Pincetl, Stephanie; Runfola, Dan; Sanchez, Landy; Shrestha, Gyami; Feddema, Johannes; Sarzynski, Andrea; Sperling, Joshua; Stokes, Eleanor

    2014-10-01

    Independent lines of research on urbanization, urban areas, and carbon have advanced our understanding of some of the processes through which energy and land uses affect carbon. This synthesis integrates some of these diverse viewpoints as a first step toward a coproduced, integrated framework for understanding urbanization, urban areas, and their relationships to carbon. It suggests the need for approaches that complement and combine the plethora of existing insights into interdisciplinary explorations of how different urbanization processes, and socio-ecological and technological components of urban areas, affect the spatial and temporal patterns of carbon emissions, differentially over time and within and across cities. It also calls for a more holistic approach to examining the carbon implications of urbanization and urban areas, based not only on demographics or income but also on other interconnected features of urban development pathways such as urban form, economic function, economic-growth policies, and other governance arrangements. It points to a wide array of uncertainties around the urbanization processes, their interactions with urban socio-institutional and built environment systems, and how these impact the exchange of carbon flows within and outside urban areas. We must also understand in turn how carbon feedbacks, including carbon impacts and potential impacts of climate change, can affect urbanization processes. Finally, the paper explores options, barriers, and limits to transitioning cities to low-carbon trajectories, and suggests the development of an end-to-end, coproduced and integrated scientific understanding that can more effectively inform the navigation of transitional journeys and the avoidance of obstacles along the way.

  7. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway.

    PubMed

    Ducker, Gregory S; Chen, Li; Morscher, Raphael J; Ghergurovich, Jonathan M; Esposito, Mark; Teng, Xin; Kang, Yibin; Rabinowitz, Joshua D

    2016-06-14

    One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions. PMID:27211901

  8. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. PMID:25647028

  9. Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway

    PubMed Central

    2015-01-01

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084

  10. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO2 flux in the Mississippi River plume

    SciTech Connect

    John, David E.; Wang, Zhaohui A.; Liu, Xuewu; Byrne, Robert H.; Corredor, Jorge E.; López, José M.; Cabrera, Alvaro; Bronk, Deborah A.; Tabita, F. Robert; Paul, John H.

    2007-08-30

    River plumes deliver large quantities of nutrients to oligotrophic oceans, often resulting in significant CO2 drawdown. To determine the relationship between expression of the major gene in carbon fixation (large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO) and CO2 dynamics, we evaluated rbcL mRNA abundance using novel quantitative PCR assays, phytoplankton cell analyses, photophysiological parameters, and pCO2 in and around the Mississippi River plume (MRP) in the Gulf of Mexico. Lower salinity (30–32) stations were dominated by rbcL mRNA concentrations from heterokonts, such as diatoms and pelagophytes, which were at least an order of magnitude greater than haptophytes, alpha-Synechococcus or high-light Prochlorococcus. However, rbcL transcript abundances were similar among these groups at oligotrophic stations (salinity 34–36). Diatom cell counts and heterokont rbcL RNA showed a strong negative correlation to seawater pCO2. While Prochlorococcus cells did not exhibit a large difference between low and high pCO2 water, Prochlorococcus rbcL RNA concentrations had a strong positive correlation to pCO2, suggesting a very low level of RuBisCO RNA transcription among Prochlorococcus in the plume waters, possibly due to their relatively poor carbon concentrating mechanisms (CCMs). These results provide molecular evidence that diatom/pelagophyte productivity is largely responsible for the large CO2 drawdown occurring in the MRP, based on the co-occurrence of elevated RuBisCO gene transcript concentrations from this group and reduced seawater pCO2 levels. This may partly be due to efficient CCMs that enable heterokont eukaryotes such as diatoms to continue fixing CO2 in the face of strong CO2 drawdown. Finally, our work represents the first attempt to relate in situ microbial gene expression to contemporaneous CO2 flux

  11. Carbon Metabolic Pathways in Phototrophic Bacteria and Their Broader Evolutionary Implications

    PubMed Central

    Tang, Kuo-Hsiang; Tang, Yinjie J.; Blankenship, Robert Eugene

    2011-01-01

    Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed. PMID:21866228

  12. Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects.

    PubMed

    Kampf, C J; Filippi, A; Zuth, C; Hoffmann, T; Opatz, T

    2016-07-21

    Dicarbonyls are known to be important precursors of so-called atmospheric brown carbon, significantly affecting aerosol optical properties and radiative forcing. In this systematic study we report the formation of light-absorbing nitrogen containing compounds from simple 1,2-, 1,3-, 1,4-, and 1,5-dicarbonyl + amine reactions. A combination of spectrophotometric and mass spectrometric techniques was used to characterize reaction products in solutions mimicking atmospheric particulates. Experiments with individual dicarbonyls and dicarbonyl mixtures in ammonium sulfate and glycine solutions demonstrate that nitrogen heterocycles are common structural motifs of brown carbon chromophores formed in such reaction systems. 1,4- and 1,5-dicarbonyl reaction systems, which were used as surrogates for terpene ozonolysis products, showed rapid formation of light-absorbing material and products with absorbance maxima at ∼450 nm. Synergistic effects on absorbance properties were observed in mixed (di-)carbonyl experiments, as indicated by the formation of a strong absorber in ammonium sulfate solutions containing acetaldehyde and acetylacetone. This cross-reaction oligomer shows an absorbance maximum at 385 nm, relevant for the actinic flux region of the atmosphere. This study demonstrates the complexity of secondary brown carbon formation via the imine pathway and highlights that cross-reactions with synergistic effects have to be considered an important pathway for atmospheric BrC formation. PMID:27334793

  13. Methanotrophy Induces Nitrogen Fixation in Boreal Mosses

    NASA Astrophysics Data System (ADS)

    Tiirola, M. A.

    2014-12-01

    Many methanotrophic bacterial groups fix nitrogen in laboratory conditions. Furthermore, nitrogen (N) is a limiting nutrient in many environments where methane concentrations are highest. Despite these facts, methane-induced N fixation has previously been overlooked, possibly due to methodological problems. To study the possible link between methanotrophy and diazotrophy in terrestrial and aquatic habitats, we measured the co-occurrence of these two processes in boreal forest, peatland and stream mosses using a stable isotope labeling approach (15 N2 and 13 CH4 double labeling) and sequencing of the nifH gene marker. N fixation associated with forest mosses was dependent on the annual N deposition, whereas methane stimulate N fixation neither in high (>3 kg N ha -1 yr -1) nor low deposition areas, which was in accordance with the nifH gene sequencing showing that forest mosses (Pleurozium schreberi and Hylocomium splendens ) carried mainly cyanobacterial N fixers. On the other extreme, in stream mosses (Fontinalis sp.) methane was actively oxidized throughout the year, whereas N fixation showed seasonal fluctuation. The co-occurrence of the two processes in single cell level was proven by co-localizing both N and methane-carbon fixation with the secondary ion mass spectrometry (SIMS) approach. Methanotrophy and diazotrophy was also studied in peatlands of different primary successional stages in the land-uplift coast of Bothnian Bay, in the Siikajoki chronosequence, where N accumulation rates in peat profiles indicate significant N fixation. Based on experimental evidence it was counted that methane-induced N fixation explained over one-third of the new N input in the younger peatland successional stages, where the highest N fixation rates and highest methane oxidation activities co-occurred in the water-submerged Sphagnum moss vegetation. The linkage between methanotrophic carbon cycling and N fixation may therefore constitute an important mechanism in the rapid

  14. Fixation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Fixation and regression were considered complementary by Freud. You tend to regress to a point of fixation. They are both opposed to progression. In the general area, Anna Freud has written (The Ego and the Mechanisms of Defence. London: Hogarth and the Psycho-Analytic Institute, 1937), Sears has evaluated (Survey of Objective Studies of…

  15. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  16. Two pathways of carbon dioxide catalyzed oxidative coupling of phenol by peroxynitrite.

    PubMed

    Papina, Alina A; Koppenol, Willem H

    2006-03-01

    Carbon dioxide catalyzed oxidative coupling of phenol by peroxynitrite occurs by two pathways distinguished by the isomer ratio of 2,2'- to 4,4'-biphenols. As already established, at neutral pH and moderate phenol concentrations, both biphenols are formed in comparable yields by the coupling of two phenoxyl radicals. However, at high pH and phenol concentration, 2,2'-biphenol is the only identified coupled product, and its formation does not involve phenoxyl radicals. Instead, under these conditions, a previously unreported long-lived (t(1/2) approximately 10 s at pH 10 and 1 mM phenol) diamagnetic intermediate with an absorption maximum at 400 nm is observed. This intermediate is formed from phenolate concomitantly with the decay of peroxynitrite and disappears via reaction with phenol [k = (2.4 +/- 0.1) x 10 M(-)(1) s(-)(1) at pH 10.5] to form 2,2'-biphenol. We also find that para-benzoquinone, previously unreported, is formed in up to 5% yield relative to the initial peroxynitrite concentration. The appearance of an absorption band above 500 nm, which might be due to quinhydrone, indicates that hydroquinone is a likely para-benzoquinone precursor. The dependence of para-benzoquinone yields on pH and phenol concentration suggests that its formation is related to the nonradical pathway of 2,2'-biphenol formation. This novel nonradical pathway of 2,2'-biphenol formation might be relevant to the mechanisms of reaction of phenolic antioxidants with peroxynitrite. The existence of two distinct pathways of biphenol formation implies that, apart from a CO(3)(*)(-)/NO(2)(*) radical pair, another reactive intermediate is formed during the carbon dioxide catalyzed decay of peroxynitrite. PMID:16544942

  17. Reaction pathways in the coadsorption of carbon monoxide and nitric oxide at caesium surfaces

    NASA Astrophysics Data System (ADS)

    Carley, A. F.; Roberts, M. W.; Santra, A. K.

    2002-09-01

    The reactivity of caesium surfaces to nitric oxide, carbon monoxide and mixtures of NO and CO at low temperatures (90-220 K) has been studied by X-ray photoelectron spectroscopy. Reaction pathways for CO-NO mixtures are controlled by oxygen transients generated by the dissociative chemisorption of NO emphasising the limitations of evidence that might be deduced from the reactivity of the individual molecules, CO on its own not being adsorbed at a caesium surface. Spectroscopic evidence for the formation of CO 2δ- , CO 3, and NO 2 species is discussed.

  18. Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat: evidence for the occurrence of two regulation pathways under oxidative stresses.

    PubMed

    Marino, Daniel; González, Esther M; Arrese-Igor, Cesar

    2006-01-01

    Biological nitrogen fixation (BNF) is dramatically affected by environmental constraints such as water stress or heavy metals. It has been reported that these stresses induce the over-production of reactive oxygen species (ROS) and, in turn, oxidative stress that may be responsible for the above-mentioned BNF decline at the molecular level. Oxidative stress, occurring under different environmental stresses, has been widely related to physiological damage. However, a direct relationship between oxidative stress and the decline of BNF, independently from any other cellular damage resulting from adverse environmental situations, has yet to be demonstrated. In order to study the likely in vivo relationship between ROS and BNF inhibition in the legume-Rhizobium symbiosis, two paraquat (PQ) doses, 1 (LPQ) and 10 (HPQ) mmol m(-3), were applied to pea roots for 96 h in order to exacerbate ROS production. Whole-plant physiology and nodule metabolism parameters were determined every 24 h to monitor the evolution of plant responses to ROS. LPQ provoked BNF decline, which was preceded by a prior decrease in sucrose synthase (SS) activity. However, HPQ gave rise to a faster and more pronounced BNF inhibition, which coincided with a decline in SS and also with a reduction in leghaemoglobin (Lb) content. These results indicate a likely involvement of ROS in the effects of environmental stresses on BNF. Furthermore, these results support the occurrence of two regulation pathways for BNF under oxidative stress, one of these involving carbon shortage and the other involving Lb/oxygen flux. PMID:16415332

  19. First Comparative Analysis of the Community Structures and Carbon Metabolic Pathways of the Bacteria Associated with Alvinocaris longirostris in a Hydrothermal Vent of Okinawa Trough

    PubMed Central

    Sun, Qing-lei; Zeng, Zhi-gang; Chen, Shuai; Sun, Li

    2016-01-01

    Alvinocaris longirostris is a species of shrimp existing in the hydrothermal fields of Okinawa Trough. To date the structure and function of the microbial community associated with A. longirostris are essentially unknown. In this study, by employment of the techniques of high through-put sequencing and clone library construction and analysis, we compared for the first time the community structures and metabolic profiles of microbes associated with the gill and gut of A. longirostris in a hydrothermal field of Okinawa Trough. Fourteen phyla were detected in the gill and gut communities, of which 11 phyla were shared by both tissues. Proteobacteria made up a substantial proportion in both tissues, while Firmicutes was abundant only in gut. Although gill and gut communities were similar in bacterial diversities, the bacterial community structures in these two tissues were significantly different. Further, we discovered for the first time the existence in the gill and gut communities of A. longirostris the genes (cbbM and aclB) encoding the key enzymes of Calvin-Benson-Bassham (CBB) cycle and the reductive tricarboxylic acid (rTCA) cycle, and that both cbbM and aclB were significantly more abundant in gill than in gut. Taken together, these results provide the first evidence that at least two carbon fixation pathways are present in both the gill and the gut communities of A. longirostris, and that the communities in different tissues likely differ in autotrophic productivity. PMID:27111851

  20. First Comparative Analysis of the Community Structures and Carbon Metabolic Pathways of the Bacteria Associated with Alvinocaris longirostris in a Hydrothermal Vent of Okinawa Trough.

    PubMed

    Sun, Qing-Lei; Zeng, Zhi-Gang; Chen, Shuai; Sun, Li

    2016-01-01

    Alvinocaris longirostris is a species of shrimp existing in the hydrothermal fields of Okinawa Trough. To date the structure and function of the microbial community associated with A. longirostris are essentially unknown. In this study, by employment of the techniques of high through-put sequencing and clone library construction and analysis, we compared for the first time the community structures and metabolic profiles of microbes associated with the gill and gut of A. longirostris in a hydrothermal field of Okinawa Trough. Fourteen phyla were detected in the gill and gut communities, of which 11 phyla were shared by both tissues. Proteobacteria made up a substantial proportion in both tissues, while Firmicutes was abundant only in gut. Although gill and gut communities were similar in bacterial diversities, the bacterial community structures in these two tissues were significantly different. Further, we discovered for the first time the existence in the gill and gut communities of A. longirostris the genes (cbbM and aclB) encoding the key enzymes of Calvin-Benson-Bassham (CBB) cycle and the reductive tricarboxylic acid (rTCA) cycle, and that both cbbM and aclB were significantly more abundant in gill than in gut. Taken together, these results provide the first evidence that at least two carbon fixation pathways are present in both the gill and the gut communities of A. longirostris, and that the communities in different tissues likely differ in autotrophic productivity. PMID:27111851

  1. 'Rod and ring' formation from IMP dehydrogenase is regulated through the one-carbon metabolic pathway.

    PubMed

    Calise, S John; Purich, Daniel L; Nguyen, Thuy; Saleem, Dania A; Krueger, Claire; Yin, Joyce D; Chan, Edward K L

    2016-08-01

    'Rods and rings' (RRs) are conserved, non-membrane-bound intracellular polymeric structures composed, in part, of inosine monophosphate dehydrogenase (IMPDH), a key enzyme leading to GMP and GTP biosynthesis. RR formation is induced by IMPDH inhibitors as well as glutamine deprivation. They also form upon treatment of cells with glutamine synthetase inhibitors. We now report that depriving cells of serine and glycine promotes RR formation, and we have traced these effects to dihydrofolate reductase (DHFR) and serine hydroxymethyltransferase-2 (SHMT2), pivotal enzymes in one-carbon metabolism and nucleotide biosynthesis. RR assembly is likewise induced upon DHFR inhibition by methotrexate or aminopterin as well as siRNA-mediated knockdown of DHFR or SHMT2. Because RR assembly occurs when guanine nucleotide biosynthesis is inhibited, and because RRs rapidly disassemble after the addition of guanine nucleotide precursors, RR formation might be an adaptive homeostatic mechanism, allowing IMPDH to sense changes in the one-carbon folate pathway. PMID:27343244

  2. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway.

    PubMed

    Hirokawa, Yasutaka; Maki, Yuki; Tatsuke, Tsuneyuki; Hanai, Taizo

    2016-03-01

    Production of chemicals directly from carbon dioxide using light energy is an attractive option for a sustainable future. The 1,3-propanediol (1,3-PDO) production directly from carbon dioxide was achieved by engineered Synechococcus elongatus PCC 7942 with a synthetic metabolic pathway. Glycerol dehydratase catalyzing the conversion of glycerol to 3-hydroxypropionaldehyde in a coenzyme B12-dependent manner worked in S. elongatus PCC 7942 without addition of vitamin B12, suggesting that the intrinsic pseudovitamin B12 served as a substitute of coenzyme B12. The highest titers of 1,3-PDO (3.79±0.23 mM; 288±17.7 mg/L) and glycerol (12.62±1.55 mM; 1.16±0.14 g/L), precursor of 1,3-PDO, were reached after 14 days of culture under optimized conditions in this study. PMID:26769097

  3. The influence of pCO2 and temperature on gene expression of carbon and nitrogen pathways in Trichodesmium IMS101.

    PubMed

    Levitan, Orly; Sudhaus, Stefanie; LaRoche, Julie; Berman-Frank, Ilana

    2010-01-01

    Growth, protein amount, and activity levels of metabolic pathways in Trichodesmium are influenced by environmental changes such as elevated pCO(2) and temperature. This study examines changes in the expression of essential metabolic genes in Trichodesmium grown under a matrix of pCO(2) (400 and 900 µatm) and temperature (25 and 31°C). Using RT-qPCR, we studied 21 genes related to four metabolic functional groups: CO(2) concentrating mechanism (bicA1, bicA2, ccmM, ccmK2, ccmK3, ndhF4, ndhD4, ndhL, chpX), energy metabolism (atpB, sod, prx, glcD), nitrogen metabolism (glnA, hetR, nifH), and inorganic carbon fixation and photosynthesis (rbcL, rca, psaB, psaC, psbA). nifH and most photosynthetic genes exhibited relatively high abundance and their expression was influenced by both environmental parameters. A two to three orders of magnitude increase was observed for glnA and hetR only when both pCO(2) and temperature were elevated. CO(2) concentrating mechanism genes were not affected by pCO(2) and temperature and their expression levels were markedly lower than that of the nitrogen metabolism and photosynthetic genes. Many of the CO(2) concentrating mechanism genes were co-expressed throughout the day. Our results demonstrate that in Trichodesmium, CO(2) concentrating mechanism genes are constitutively expressed. Co-expression of genes from different functional groups were frequently observed during the first half of the photoperiod when oxygenic photosynthesis and N(2) fixation take place, pointing at the tight and complex regulation of gene expression in Trichodesmium. Here we provide new data linking environmental changes of pCO(2) and temperature to gene expression in Trichodesmium. Although gene expression indicates an active metabolic pathway, there is often an uncoupling between transcription and enzyme activity, such that transcript level cannot usually be directly extrapolated to metabolic activity. PMID:21151907

  4. Appearance and accumulation of C/sub 4/ carbon pathway enzymes in developing wheat leaves

    SciTech Connect

    Aoyagi, K.; Bassham, J.A.

    1986-02-01

    Soluble protein has been extracted from sections of wheat leaves, from base to tip, and the content of several key enzymes of photosynthetic carbon assimilation in each section has been determined by the protein blot method. In the first leaf, ribulose 1,5-bisphosphate carboxylase (RuBPC) (EC 4.1.1.39) in the basal 0 to 1 centimeter section is about 12% the level in the tip section, whereas phosphoenolpyruvate carboxylase (EC 4.1.1.31) is present in small amounts in the basal section and does not change much in the tip. Pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) first appears in the 4 to 6 centimeter section and increases gradually with development to 10-fold in the tip. Malic enzyme, NADP-dependent (EC 1.3.1.37) also appears in the 4 to 6 centimeter section but remains low to the tip. Fixation of /sup 14/CO/sub 2/ by wheat leaf base sections resulted in 42% of total incorporation into malate and aspartate, indicating ..beta..-carboxylation, whereas in the tip section these labeled compounds were only 8% of the total. Although the amount of PPDK in wheat leaves is only 1 to 3% of that in maize leaves, this C/sub 3/ PPDK may have a limited role in photosynthesis leading to formation of C/sub 4/ compounds. The possibility of a further role, similar to that in C/sub 4/ plants, but for intracellular carbon transport in wheat leaves is discussed. The presence of malic dehydrogenase, NADP-specific (EC 1.1.1.82) in wheat leaf chloroplasts was shown, a necessary though not sufficient condition for such a proposed role. Assuming each of the four enzymes associated with C/sub 4/ carbon transport were fully active in vivo during photosynthesis, PPDK would still be rate limiting, even in the leaf tip where its activity is maximal. Possible evolutionary and breeding implications are discussed.

  5. Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh Spartina alterniflora and carbon dioxide enhancement of Nitrogenase activity

    SciTech Connect

    Whiting, G.J.; Gandy, E.L.; Yoch, D.C.

    1986-07-01

    The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to-sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increase CO/sub 2/ concentrations (with the light held constant). In field experiments, CO/sub 2/ enrichment increased plant-associated ARA by 27%. Further evidence of the dependence of ARA on plant photosynthate was obtained when activity in excised roots was shown to decrease after young greenhouse plants were placed in the dark. Seasonal variation in the ARA of excised plant roots from field cores appears to be related to the annual cycle of net photosynthesis in S. alterniflora.

  6. Methylamine Utilization via the N-Methylglutamate Pathway in Methylobacterium extorquens PA1 Involves a Novel Flow of Carbon through C1 Assimilation and Dissimilation Pathways

    PubMed Central

    Nayak, Dipti D.

    2014-01-01

    Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine. PMID:25225269

  7. Photographic fixative poisoning

    MedlinePlus

    Photographic developer poisoning; Hydroquinone poisoning; Quinone poisoning; Sulfite poisoning ... Hydroquinones Quinones Sodium thiosulfate Sodium sulfite/bisulfite Boric acid Photographic fixative can also break down (decompose) to form sulfur dioxide gas.

  8. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick; Lee, Mark W.; Jalistegi, Satish S.

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  9. The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus

    DOE R&D Accomplishments Database

    Ouellet, C.; Benson, A. A.

    1951-10-23

    The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.

  10. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chmeliov, Jevgenij; Narkeliunas, Jonas; Graham, Matt W.; Fleming, Graham R.; Valkunas, Leonas

    2016-01-01

    We present a thorough analysis of one- and two-color transient absorption measurements performed on single- and double-walled semiconducting carbon nanotubes. By combining the currently existing models describing exciton-exciton annihilation--the coherent and the diffusion-limited ones--we are able to simultaneously reproduce excitation kinetics following both E11 and E22 pump conditions. Our simulations revealed the fundamental photophysical behavior of one-dimensional coherent excitons and non-trivial excitation relaxation pathways. In particular, we found that after non-linear annihilation a doubly-excited exciton relaxes directly to its E11 state bypassing the intermediate E22 manifold, so that after excitation resonant with the E11 transition, the E22 state remains unpopulated. A quantitative explanation for the observed much faster excitation kinetics probed at E22 manifold, comparing to those probed at the E11 band, is also provided.

  11. Using Phospholipids and Stable Carbon Isotopes to Assess Microbial Community Structures and Carbon Cycle Pathways in Kamchatka Hot Springs

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Romanek, C. S.; Burgess, E. A.; Wiegel, J.; Mills, G.; Zhang, C. L.

    2006-12-01

    Phospholipid fatty acid (PLFA) and stable carbon isotopes were used to assess the microbial community structures in Kamchatka hot springs. Eighteen mats or surface sediments were collected from hot springs having temperatures of 31 to 91°C and pHs of 4.9 to 8.5. These samples were clearly separated into three groups according to the bacterial PLFA: 1) those dominated by terminally branched odd-numbered fatty acids, 2) those dominated by C18:1 and 3) those dominated by C20:1. With support from other minor PLFA components, group 2 may be used as biomarkers for Chloroflexales or other phototrophic bacteria and group 3 for Aquificales, respectively. Among the sampled hot springs, the Arkashin pool represents the simplest microbial structure with members of Aquificales being the dominant primary producers. On the other hand, the Zavarzin pool may represent the most heterogeneous pool that may include members of Chloroflexales and Aquificales as primary producers. Bacterial 16S rDNA clone libraries confirmed the presence of these microbial groups in the two pools. Results of stable carbon isotope fractionation between CO2 source, bulk biomass and total PLFA showed that primary producers in the Arkashin pool primarily used the reductive tricarboxylic acid (rTCA) cycle (e.g., members of Aquificales); whereas the Zavarzin pool may be a mixture of the 3-hydroxypropionate (3-HP) pathway (e.g. members of Chloroflexales) and the rTCA cycle. Bacterial contribution using the Calvin cycle was not significant and may be less important in Kamchatka hot springs.

  12. Detection of potential leakage pathways from geological carbon storage by fluid pressure data assimilation

    NASA Astrophysics Data System (ADS)

    González-Nicolás, Ana; Baù, Domenico; Alzraiee, Ayman

    2015-12-01

    One of the main concerns of geological carbon storage (GCS) systems is the risk of leakage through "weak" permeable areas of the sealing formation or caprock. Since the fluid pressure pulse travels faster than the carbon dioxide (CO2) plume across the storage reservoir, the fluid overpressure transmitted into overlying permeable formations through caprock discontinuities is potentially detectable sooner than actual CO2 leakage occurs. In this work, an inverse modeling method based on fluid pressure measurements collected in strata above the target CO2 storage formation is proposed, which aims at identifying the presence, the location, and the extent of possible leakage pathways through the caprock. We combine a three-dimensional subsurface multiphase flow model with ensemble-based data assimilation algorithms to recognize potential caprock discontinuities that could undermine the long-term safety of GCS. The goal of this work is to examine and compare the capabilities of data assimilation algorithms such as the ensemble smoother (ES) and the restart ensemble Kalman filter (REnKF) to detect the presence of brine and/or CO2 leakage pathways, potentially in real-time during GCS operations. For the purpose of this study, changes in fluid pressure in the brine aquifer overlying to CO2 storage formation aquifer are hypothetically observed in monitoring boreholes, or provided by time-lapse seismic surveys. Caprock discontinuities are typically characterized locally by higher values of permeability, so that the permeability distribution tends to fit to a non-Gaussian bimodal process, which hardly complies with the requirements of the ES and REnKF algorithms. Here, issues related to the non-Gaussianity of the caprock permeability field are investigated by developing and applying a normal score transform procedure. Results suggest that the REnKF is more effective than the ES in characterizing caprock discontinuities.

  13. The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast

    SciTech Connect

    Warnken, Kent W.; Santschi, Peter H.; Roberts, Kimberly A.; Gill, Gary A.

    2007-08-08

    The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates.

  14. Modulation of Apoptotic Pathways of Macrophages by Surface-Functionalized Multi-Walled Carbon Nanotubes

    PubMed Central

    Jiang, Yuanqin; Zhang, Honggang; Wang, Yange; Chen, Min; Ye, Shefang; Hou, Zhenqing; Ren, Lei

    2013-01-01

    Biomedical applications of carbon nanotubes (CNTs) often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs) via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol) linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS) involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47phox and p67phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity. PMID:23755279

  15. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    PubMed Central

    Levicán, Gloria; Ugalde, Juan A; Ehrenfeld, Nicole; Maass, Alejandro; Parada, Pilar

    2008-01-01

    Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms. PMID:19055775

  16. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    PubMed

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs. PMID:26331631

  17. Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways

    SciTech Connect

    Dooley, James J.; Calvin, Katherine V.

    2011-04-18

    The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

  18. Pathways of carbon oxidation in continental margin sediments off central Chile.

    PubMed

    Thamdrup, B; Canfield, D E

    1996-12-01

    Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations. Pathways of C oxidation were inferred from the depth distributions of the potential oxidants (O2, NO3-, and oxides of Mn and Fe) and from directly determined rates of SO4(2-) reduction. The study area is characterized by intense seasonal upwelling, and during sampling in late summer the bottom water over the shelf was rich in NO3- and depleted of O2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (>3 micromol cm-3 d-1) and decreased exponentially with depth. The process was entirely coupled to SO4(2-) reduction. At the two slope stations where bottom-water O2 was > 100 microM, C oxidation rates were 10-fold lower and varied less with depth; C oxidation coupled to the reduction of O2, NO3-, and Mn oxides combined to yield an estimated 15% of the total C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO4(2-) reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides, and as this pool decreased with depth, the importance of SO4(2-) reduction increased. The results point to a general importance of Fe reduction in C oxidation in continental margin sediments. At the shelf stations, Fe reduction was mainly coupled to oxidation of reduced S. These sediments were generally H2S-free despite high SO4(2-) reduction rates, and precipitation of Fe sulfides dominated H2S scavenging during the incubations. A large NO3- pool was associated with the

  19. Update: Biological Nitrogen Fixation.

    ERIC Educational Resources Information Center

    Wiseman, Alan; And Others

    1985-01-01

    Updates knowledge on nitrogen fixation, indicating that investigation of free-living nitrogen-fixing organisms is proving useful in understanding bacterial partners and is expected to lead to development of more effective symbioses. Specific areas considered include biochemistry/genetics, synthesis control, proteins and enzymes, symbiotic systems,…

  20. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  1. Effect of temperature on the reaction pathway of calcium carbonate formation via precursor phases

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Konrad, Florian; Dietzel, Martin

    2016-04-01

    It has been earlier postulated that some biogenic and sedimentary calcium carbonate (CaCO3) minerals (e.g. calcite and aragonite) are secondary in origin and have originally formed via a metastable calcium carbonate precursor phase (e.g. amorphous CaCO3, [1-2]). Such formation pathways are likely affected by various physicochemical parameters including aqueous Mg and temperature. In an effort to improve our understanding on the formation mechanism of CaCO3 minerals, precipitation experiments were carried out by the addition of a 0.6 M (Ca,Mg)Cl2 solution at distinct Mg/Ca ratios (1/4 and 1/8) into a 1 M NaHCO3 solution under constant pH conditions(8.3 ±0.1). The formation of CaCO3 was systematically examined as a function of temperature (6, 12, 18 and 25 ±0.3° C). During the experimental runs mineral precipitation was monitored by in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. The results revealed two pathways of CaCO3 formation depending on the initial Mg/Ca ratio and temperature: (i) In experiments with a Mg/Ca ratio of 1/4 at ≤ 12° C as well as in experiments with a Mg/Ca ratio of 1/8 at ≤ 18° C, ikaite (CaCO3 6H2O) acts as a precursor phase for aragonite formation. (ii) In contrast higher temperatures induced the formation of Mg-rich amorphous CaCO3 (Mg-ACC) which was subsequently transformed to Mg-rich calcite. In situ Raman spectra showed that the transformation of Mg-ACC to Mg-calcite occurs at a higher rate (˜ 8 min) compared to that of ikaite to aragonite (> 2 h). Thus, the formation of aragonite rather than of Mg-calcite occurs due to the slower release of Ca2+and CO32‑ ions into the Mg-rich reactive solution during retarded ikaite dissolution. This behavior is generally consistent with the observation that calcite precipitation is inhibited at elevated aqueous Mg/Ca ratios. [1] Addadi L., Raz S. and Weiner S. (2003) Advanced Materials 15, 959-970. [2] Rodriguez-Blanco J. D

  2. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway

    PubMed Central

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Tabaran, Flaviu; Iancu, Cornel; Mocan, Lucian

    2013-01-01

    Recent data in the literature support the role of nicotinamide (NA) as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs) functionalized with nicotinamide (NA-MWCNTs) leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L). Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L) we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus. PMID:24039418

  3. Oxidation state, bioavailability & biochemical pathway define the fate of carbon in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Apostel, Carolin; Gunina, Anna; Herrmann, Anke M.; Dippold, Michaela

    2015-04-01

    Numerous experiments under laboratory and field conditions analyzed microbial utilization and mean residence time (MRT) of carbon (C) from plant and microbial residues as well as root exudates in soil. Most of these studies tested the effects of various environmental factors, such as temperature, soil moisture, texture etc. on these parameters. However, only a few studies compared the properties of the substances themselves and there is no conceptual framework based on biochemical pathways. We hypothesize that the fate of C from organic substances in soil strongly depends on the first step of their microbial utilization, specifically, on biochemical pathway and initial C oxidation state, as well as its bioavailability in soils, defined by its hydrophobicity and molecular weight. Here we introduce and evaluate a new conceptual framework based on the following parameters: 1) C oxidation state, 2) molecular weight and hydrophobicity, 3) initial biochemical pathway of a substance class in microbial cells. To assess these parameters, two databases were prepared based on the literature and own studies. The first database included only the studies with 14C or 13C position specific labeled sugars, amino acids, carboxylic acids, phenols and lipids in soil. This database allowed us to analyze microbial utilization and mineralization of organics to CO2 depending on their C oxidation state (OS) and on functional groups. Additionally, we calculated data on the bond electronegativity of all compounds investigated in these studies. The second data base included the results of 14C and 13C studies with uniformly labeled substances of various classes. This database considered the free enthalpie (Delta H) per C unit from a variety of substrates differing in their aromaticity, hydrophobicity/electronegativity and location of the substance on the van Krevelen diagram. In addition, we calculated the hydrophobicity from the electronegativity of the individual bonds and recorded their

  4. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    SciTech Connect

    Siddique, A.M.; Bal, A.K. )

    1991-03-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of {beta}-oxidation pathway and glyoxylate cycle is shown by the release of {sup 14}CO{sub 2} from {sup 14}C lineoleoyl coenzyme A by the nodule homogenate.

  5. Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures.

    PubMed

    Formighieri, Cinzia; Melis, Anastasios

    2014-12-01

    Escherichia coli was used as a microbial system for the heterologous synthesis of β-phellandrene, a monoterpene of plant origin with several potential commercial applications. Expression of Lavandula angustifolia β-phellandrene synthase (PHLS), alone or in combination with Picea abies geranyl-diphosphate synthase in E. coli, resulted in no β-phellandrene accumulation, in sharp contrast to observations with PHLS-transformed cyanobacteria. Lack of β-phellandrene biosynthesis in E. coli was attributed to the limited endogenous carbon partitioning through the native 2-C-methylerythritol-4-phosphate (MEP) pathway. Heterologous co-expression of the mevalonic acid pathway, enhancing cellular carbon partitioning and flux toward the universal isoprenoid precursors, isopentenyl-diphosphate and dimethylallyl-diphosphate, was required to confer β-phellandrene production. Differences in endogenous carbon flux toward the synthesis of isoprenoids between photosynthetic (Synechocystis) and non-photosynthetic bacteria (E. coli) are discussed in terms of differences in the regulation of carbon partitioning through the MEP biosynthetic pathway in the two systems. PMID:25116411

  6. Integrated carboxylic carbon nanotube pathways with membranes for voltage-activated humidity detection and microclimate regulation.

    PubMed

    Pingitore, V; Miriello, D; Drioli, E; Gugliuzza, A

    2015-06-14

    This work describes some single walled carboxylic carbon nanotubes with outstanding transport properties when assembled in a 3D microarray working like a humidity membrane-sensor and an adjustable moisture regulator. Combined nano-assembly approaches are used to build up a better quality pathway through which assisted-charge and mass transport synchronically takes place. The structure-electrical response relationship is found, while controllable and tunable donor-acceptor interactions established at material interfaces are regarded as key factors for the accomplishment of charge transportation, enhanced electrical responses and adjustable moisture exchange. Raman and infrared spectroscopy provides indications about the fine structural and chemical features of the hybrid-composite membranes, resulting in perfect agreement with related morphology and electrical properties. Enhanced and modular electrical response to changes in the surrounding atmosphere is concerned with doping events, while assisted moisture regulation is discussed in relation to swelling and hopping actions. The electro-activated hybrid-composite membrane proposed in this work can be regarded as an attractive 'sense-to-act' precursor for smart long-distance monitoring systems with capability to adapt itself and provide local comfortable microenvironments. PMID:25939404

  7. Gate-Free Electrical Breakdown of Metallic Pathways in Single-Walled Carbon Nanotube Crossbar Networks.

    PubMed

    Li, Jinghua; Franklin, Aaron D; Liu, Jie

    2015-09-01

    Aligned single-walled carbon nanotubes (SWNTs) synthesized by the chemical vapor deposition (CVD) method have exceptional potential for next-generation nanoelectronics. However, the coexistence of semiconducting (s-) and metallic (m-) SWNTs remains a considerable challenge since the latter causes significant degradation in device performance. Here we demonstrate a facile and effective approach to selectively break all m-SWNTs by stacking two layers of horizontally aligned SWNTs to form crossbars and applying a voltage to the crossed SWNT arrays. The introduction of SWNT junctions amplifies the disparity in resistance between s- and m-pathways, leading to a complete deactivation of m-SWNTs while minimizing the degradation of the semiconducting counterparts. Unlike previous approaches that required an electrostatic gate to achieve selectivity in electrical breakdown, this junction process is gate-free and opens the way for straightforward integration of thin-film s-SWNT devices. Comparison to electrical breakdown in junction-less SWNT devices without gating shows that this junction-based breakdown method yields more than twice the average on-state current retention in the resultant s-SWNT arrays. Systematic studies show that the on/off ratio can reach as high as 1.4 × 10(6) with a correspondingly high retention of on-state current compared to the initial current value before breakdown. Overall, this method provides important insight into transport at SWNT junctions and a simple route for obtaining pure s-SWNT thin film devices for broad applications. PMID:26263184

  8. Complement fixation by rheumatoid factor.

    PubMed Central

    Tanimoto, K; Cooper, N R; Johnson, J S; Vaughan, J H

    1975-01-01

    The capacity for fixation and activation of hemolytic complement by polyclonal IgM rheumatoid factors (RF) isolated from sera of patients with rheumatoid arthritis and monoclonal IgM-RF isolated from the cryoprecipitates of patients with IgM-IgG mixed cryoglobulinemia was examined. RF mixed with aggregated, reduced, and alkylated human IgG (Agg-R/A-IgG) in the fluid phase failed to significantly reduce the level of total hemolytic complement, CH50, or of individual complement components, C1, C2, C3, and C5. However, sheep erythrocytes (SRC) coated with Agg-R/A-IgG or with reduced and alkylated rabbit IgG anti-SRC antibody were hemolyzed by complement in the presence of polyclonal IgM-RF. Human and guinea pig complement worked equally well. The degree of hemolysis was in direct proportion to the hemagglutination titer of the RF against the same coated cells. Monoclonal IgM-RF, normal human IgM, and purified Waldenström macroglobulins without antiglobulin activity were all inert. Hemolysis of coated SRC by RF and complement was inhibited by prior treatment of the complement source with chelating agents, hydrazine, cobra venom factor, specific antisera to C1q, CR, C5, C6, or C8, or by heating at 56 degrees C for 30 min. Purified radiolabeled C4, C3, and C8 included in the complement source were bound to hemolysed SRC in direct proportion to the degree of hemolysis. These data indicate that polyclonal IgM-RF fix and activate complement via the classic pathway. The system described for assessing complement fixation by isolated RF is readily adaptable to use with whole human serum. PMID:1078825

  9. Soil Carbon Dynamics Along the Pathway From Diverse Microbial Carbon to Humus in a Temperate and Tropical Forest

    NASA Astrophysics Data System (ADS)

    Throckmorton, H. M.; Bird, J. A.; Firestone, M. K.; Horwath, W. R.

    2008-12-01

    This research investigates the importance of microbial biochemistry to humification pathways in two climatically different forest ecosystems; Blodgett forest (BF), a temperate forest in the Sierra Nevada and Luquillo forest (LF), a tropical forest in Puerto Rico. Non-living 13C enriched temperate and tropical microorganisms from four biochemically contrasting microbial groups (fungi, actinomycetes, bacteria gram (+), and bacteria gram (-)) were separately added to soil at both sites in a reciprocal transplant experiment. Decomposition rates were substantially greater at LF than BF for all microbial inputs. Although there were initial differences in microbial C turnover and recovery within the soil microbial biomass and dissolved organic carbon pools for unique microbial C inputs at both sites, over time treatment differences converge within each site and the quality of input microbial C becomes less important to C remaining and maintained within these soil C pools. Physical soil fractionation revealed important trends which illustrate the role of the soil mineral matrix to protect and stabilize C in soil. Results indicate different C turnover rates associated with the light, aggregate- occluded, and mineral-associated soil fractions at both sites. At BF input C recovered within the light and mineral-associated fractions decreased substantially over time (1 to 13 months), while C occluded within aggregates only slightly decreased. Similarly, LF soils exhibit only a slight decrease in aggregate-occluded C over time (0.5 to 3.5 months), while C recovered within the light fraction decreased substantially; however, unlike BF, LF soils exhibited only a slight decrease in C recovered within the mineral fraction. The distribution of total C among these physical soil pools differs substantially for either site, suggesting differences in the relative importance of the mineral matrix to protect and stabilize C. Preliminary compound-specific isotope analyses employing

  10. Novel posterior fixation keratoprosthesis

    NASA Astrophysics Data System (ADS)

    Lacombe, Emmanuel

    1992-08-01

    The keratoprosthesis is the last solution for corneally blind patients that cannot benefit from corneal transplants. Keratoprostheses that have been designed to be affixed anteriorly usually necessitate multi-step surgical procedures and are continuously subjected to the extrusion forces generated by the positive intraocular pressure; therefore, clinical results in patients prove inconsistent. We proposed a novel keratoprosthesis concept that utilizes posterior corneal fixation which `a priori' minimizes the risk of aqueous leakage and expulsion. This prosthesis is implanted in a single procedure thereby reducing the number of surgical complications normally associated with anterior fixation devices. In addition, its novel design makes this keratoprosthesis implantable in phakic eyes. With an average follow-up of 13 months (range 3 to 25 months), our results on 21 cases are encouraging. Half of the keratoprostheses were implanted in severe burn cases, with the remainder in cases of pseudo- pemphigus. Good visual results and cosmetic appearance were obtained in 14 of 21 eyes.