Science.gov

Sample records for carbon ion radiotherapy

  1. Experience with carbon ion radiotherapy at GSI

    NASA Astrophysics Data System (ADS)

    Jäkel, O.; Schulz-Ertner, D.; Karger, C. P.; Heeg, P.; Debus, J.

    2005-12-01

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  2. Clinical advantages of carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  3. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  4. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  5. The Emerging Role of Carbon-Ion Radiotherapy

    PubMed Central

    Ebner, Daniel K.; Kamada, Tadashi

    2016-01-01

    Carbon-ion radiotherapy (CIRT) has progressed rapidly in technological delivery, indications, and efficacy. Owing to a focused dose distribution in addition to high linear energy transfer and subsequently high relative biological effect, CIRT is uniquely able to target otherwise untreatable hypoxic and radioresistant disease while opening the door for substantially hypofractionated treatment of normal and radiosensitive disease. CIRT has increasingly garnered international attention and is nearing the tipping point for international adoption. PMID:27376030

  6. The Emerging Role of Carbon-Ion Radiotherapy.

    PubMed

    Ebner, Daniel K; Kamada, Tadashi

    2016-01-01

    Carbon-ion radiotherapy (CIRT) has progressed rapidly in technological delivery, indications, and efficacy. Owing to a focused dose distribution in addition to high linear energy transfer and subsequently high relative biological effect, CIRT is uniquely able to target otherwise untreatable hypoxic and radioresistant disease while opening the door for substantially hypofractionated treatment of normal and radiosensitive disease. CIRT has increasingly garnered international attention and is nearing the tipping point for international adoption. PMID:27376030

  7. Mesenchymal stem cells are resistant to carbon ion radiotherapy

    PubMed Central

    Nicolay, Nils H.; Liang, Yingying; Perez, Ramon Lopez; Bostel, Tilman; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2015-01-01

    Mesenchymal stem cells (MSCs) participate in regeneration of tissues damaged by ionizing radiation. However, radiation can damage MSCs themselves. Here we show that cellular morphology, adhesion and migration abilities were not measurably altered by photon or carbon ion irradiation. The potential for differentiation was unaffected by either form of radiation, and established MSC surface markers were found to be stably expressed irrespective of radiation treatment. MSCs were able to efficiently repair DNA double strand breaks induced by both high-dose photon and carbon ion radiation. We have shown for the first time that MSCs are relatively resistant to therapeutic carbon ion radiotherapy. Additionally, this form of radiation did not markedly alter the defining stem cell properties or the expression of established surface markers in MSCs. PMID:25504442

  8. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  9. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy

    PubMed Central

    Oike, Takahiro; Niimi, Atsuko; Okonogi, Noriyuki; Murata, Kazutoshi; Matsumura, Akihiko; Noda, Shin-Ei; Kobayashi, Daijiro; Iwanaga, Mototaro; Tsuchida, Keisuke; Kanai, Tatsuaki; Ohno, Tatsuya; Shibata, Atsushi; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy shows great potential as a cure for X-ray-resistant tumors. Basic research suggests that the strong cell-killing effect induced by carbon ions is based on their ability to cause complex DNA double-strand breaks (DSBs). However, evidence supporting the formation of complex DSBs in actual patients is lacking. Here, we used advanced high-resolution microscopy with deconvolution to show that complex DSBs are formed in a human tumor clinically treated with carbon ion radiotherapy, but not in a tumor treated with X-ray radiotherapy. Furthermore, analysis using a physics model suggested that the complexity of radiotherapy-induced DSBs is related to linear energy transfer, which is much higher for carbon ion beams than for X-rays. Visualization of complex DSBs in clinical specimens will help us to understand the anti-tumor effects of carbon ion radiotherapy. PMID:26925533

  10. Osteoradionecrosis Following Carbon Ion Radiotherapy: Case History Report of a Soft Palate Defect.

    PubMed

    Oki, Meiko; Kanazaki, Ayako; Taniguchi, Hisashi

    2016-01-01

    Carbon ion radiotherapy, a form of charged particle radiotherapy that has been used to treat various inoperable and radio-resistant tumors, has been associated with less severe late effects than conventional radiotherapy. A 63-year-old woman with a soft palate defect received carbon ion radiotherapy (total dose: 64 Gray equivalents). Several late effects were observed, and osteoradionecrosis was observed not only on the tumor side but also on the other side and gradually expanded during maxillofacial prosthetic rehabilitation. While the definitive prosthesis improved her speech and eating ability, careful adjustments and close follow-up should continue with respect to postradiation effects. PMID:27611746

  11. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki; Matsui, Yuki; Matsushita, Kaoru; Yamashita, Haruo; Numano, Masumi; Sakae, Takeji; Terunuma, Toshiyuki; Nishio, Teiji; Kohno, Ryosuke; Akagi, Takashi

    2008-11-15

    Secondary neutron ambient dose equivalents per the treatment absorbed dose in passive carbon-ion and proton radiotherapies were measured using a rem meter, WENDI-II at two carbon-ion radiotherapy facilities and four proton radiotherapy facilities in Japan. Our measured results showed that (1) neutron ambient dose equivalent in carbon-ion radiotherapy is lower than that in proton radiotherapy, and (2) the difference to the measured neutron ambient dose equivalents among the facilities is within a factor of 3 depending on the operational beam setting used at the facility and the arrangement of the beam line, regardless of the method for making a laterally uniform irradiation field: the double scattering method or the single-ring wobbling method. The reoptimization of the beam line in passive particle radiotherapy is an effective way to reduce the risk of secondary cancer because installing an adjustable precollimator and designing the beam line devices with consideration of their material, thickness and location, etc., can significantly reduce the neutron exposure. It was also found that the neutron ambient dose equivalent in passive particle radiotherapy is equal to or less than that in the photon radiotherapy. This result means that not only scanning particle radiotherapy but also passive particle radiotherapy can provide reduced exposure to normal tissues around the target volume without an accompanied increase in total body dose.

  12. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  13. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  14. Phase I/II Clinical Trial of Carbon Ion Radiotherapy for Malignant Gliomas: Combined X-Ray Radiotherapy, Chemotherapy, and Carbon Ion Radiotherapy

    SciTech Connect

    Mizoe, Jun-Etsu Tsujii, Hirohiko; Hasegawa, Azusa D.D.S.; Yanagi, Tsuyoshi; Takagi, Ryo D.D.S.; Kamada, Tadashi; Tsuji, Hiroshi; Takakura, Kintomo

    2007-10-01

    Purpose: To report the results of a Phase I/II clinical trial for patients with malignant gliomas, treated with combined X-ray radiotherapy (XRT), chemotherapy, and carbon ion radiotherapy (CRT). Methods and Materials: Between October 1994 and February 2002, 48 patients with histologically confirmed malignant gliomas (16 anaplastic astrocytoma (AA) and 32 glioblastoma multiforme (GBM) were enrolled in a Phase I/II clinical study. The treatment involved the application of 50 Gy/25 fractions/5 weeks of XRT, followed by CRT at 8 fractions/2 weeks. Nimustine hydrochloride (ACNU) were administered at a dose of 100 mg/m{sup 2} concurrently in weeks 1, 4, or 5 of XRT. The carbon ion dose was increased from 16.8 to 24.8 Gray equivalent (GyE) in 10% incremental steps (16.8, 18.4, 20.0, 22.4, and 24.8 GyE, respectively). Results: There was no Grade 3 or higher acute reaction in the brain. The late reactions included four cases of Grade 2 brain morbidity and four cases of Grade 2 brain reaction among 48 cases. The median survival time (MST) of AA patients was 35 months and that of GBM patients 17 months (p = 0.0035). The median progression-free survival and MST of GBM showed 4 and 7 months for the low-dose group, 7 and 19 months for the middle-dose group, and 14 and 26 months for the high-dose group. Conclusion: The results of combined therapy using XRT, ACNU chemotherapy, and CRT showed the potential efficacy of CRT for malignant gliomas in terms of the improved survival rate in those patients who received higher carbon doses.

  15. Carbon Ion Radiotherapy at the Gunma University Heavy Ion Medical Center: New Facility Set-up.

    PubMed

    Ohno, Tatsuya; Kanai, Tatsuaki; Yamada, Satoru; Yusa, Ken; Tashiro, Mutsumi; Shimada, Hirofumi; Torikai, Kota; Yoshida, Yukari; Kitada, Yoko; Katoh, Hiroyuki; Ishii, Takayoshi; Nakano, Takashi

    2011-01-01

    Carbon ion radiotherapy (C-ion RT) offers superior dose conformity in the treatment of deep-seated tumors compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. C-ion RT for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at the National Institute of Radiological Sciences (NIRS), with the size and cost being reduced to one-third of those at NIRS. The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. Between March 2010 and July 2011, a total of 177 patients were treated at GHMC although a total of 100 patients was the design specification during the period in considering the optimal machine performance. In the present article, we introduce the facility set-up of GHMC, including the facility design, treatment planning systems, and clinical preparations. PMID:24213124

  16. Carbon Ion Radiotherapy at the Gunma University Heavy Ion Medical Center: New Facility Set-up

    PubMed Central

    Ohno, Tatsuya; Kanai, Tatsuaki; Yamada, Satoru; Yusa, Ken; Tashiro, Mutsumi; Shimada, Hirofumi; Torikai, Kota; Yoshida, Yukari; Kitada, Yoko; Katoh, Hiroyuki; Ishii, Takayoshi; Nakano, Takashi

    2011-01-01

    Carbon ion radiotherapy (C-ion RT) offers superior dose conformity in the treatment of deep-seated tumors compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. C-ion RT for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at the National Institute of Radiological Sciences (NIRS), with the size and cost being reduced to one-third of those at NIRS. The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. Between March 2010 and July 2011, a total of 177 patients were treated at GHMC although a total of 100 patients was the design specification during the period in considering the optimal machine performance. In the present article, we introduce the facility set-up of GHMC, including the facility design, treatment planning systems, and clinical preparations. PMID:24213124

  17. Monte Carlo simulation of carbon ion radiotherapy for the human eye

    NASA Astrophysics Data System (ADS)

    Pang, Cheng-Guo; Su, You-Wu; Wang, Wen-Jun; Luo, Xiao-Ming; Xu, Jun-Kui; Li, Wu-Yuan; Yuan, Jiao; Yao, Ze-En

    2015-01-01

    Carbon ion is the mostly common used particle in heavy ion radiotherapy. In this paper, the carbon ion dose in tumor treatment for human eye was calculated with FLUKA code. An 80 MeV/u carbon beam was irradiated into the human eye from two directions. The first was from the lateral-forward direction, which was a typical therapeutic condition. In this case, a maximum dose was deposited in the tumor volume. In the second a beam was irradiated into eyes from the forward direction to simulate a patient gazing directly into treatment beam during therapy, which may cause a certain medical accident. This method can be used for a treatment plan in heavy ion radiotherapy.

  18. Biological systems: from water radiolysis to carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Beuve, Michael; Moreau, Jean-Michel; Rodriguez, Claire; Testa, Etienne

    2015-07-01

    Hadron therapy is an innovative cancer treatment method based on the acceleration of light ions at high energy. In addition to their interesting profile of dose deposition, which ensures accurate targeting of localized tumors, carbon ions offer biological properties that lead to an efficient treatment for radio- and chemo-resistant tumors and to provide a boost for tumors in hypoxia. This paper is a short review of the progress in theoretical, experimental, fundamental and applied research, aiming at understanding the origin of the biological benefits of light ions better. As a limit of such a vast and multidisciplinary domain, this review adopts the point of view of the physicists, leaning on results obtained in connection with CIMAP's IRRABAT platform.

  19. Experience With Carbon Ion Radiotherapy for WHO Grade 2 Diffuse Astrocytomas

    SciTech Connect

    Hasegawa, Azusa; Mizoe, Jun-Etsu; Tsujii, Hirohiko; Kamada, Tadashi; Jingu, Keiichi; Iwadate, Yasuo; Nakazato, Youichi; Matsutani, Masao; Takakura, Kintomo

    2012-05-01

    Purpose: To assess outcomes of carbon ion radiotherapy for diffuse astrocytomas in adults. Methods and Materials: Between October 1994 and February 2002, 14 patients with diffuse astrocytoma, identified as eligible for carbon ion radiotherapy, were enrolled in a phase I/II clinical trial. Carbon ion radiotherapy was administered in 24 fractions over 6 weeks. The normal tissue morbidity was monitored carefully, and the carbon ion dose was escalated from 50.4 Gy equivalent (GyE) to 55.2 GyE. Patients were divided into two groups according to their carbon ion doses: a low-dose group in which 2 patients were irradiated with 46.2 GyE and 7 patients were irradiated with 50.4 GyE, and a high-dose group in which 5 patients were irradiated with 55.2 GyE. Results: Toxicities were within acceptable limits, and none of the patients developed Grade 3 or higher acute or late reactions. The median progression-free survival (PFS) time was 18 months for the low-dose group and 91 months for the high-dose group (p = 0.0030). The median overall survival (OS) time was 28 months for the low-dose group and not reached for the high-dose group (p = 0.0208). Conclusion: High-dose group patients showed significant improvement in PFS and OS rates compared to those in the low-dose group, and both dose groups showed acceptable toxicity.

  20. Clinical Outcome of Sacral Chordoma With Carbon Ion Radiotherapy Compared With Surgery

    SciTech Connect

    Nishida, Yoshihiro; Kamada, Tadashi; Imai, Reiko; Tsukushi, Satoshi; Yamada, Yoshihisa; Sugiura, Hideshi; Shido, Yoji; Wasa, Junji; Ishiguro, Naoki

    2011-01-01

    Purpose: To evaluate the efficacy, post-treatment function, toxicity, and complications of carbon ion radiotherapy (RT) for sacral chordoma compared with surgery. Methods and Materials: The records of 17 primary sacral chordoma patients treated since 1990 with surgery (n = 10) or carbon ion RT (n = 7) were retrospectively analyzed for disease-specific survival, local recurrence-free survival, complications, and functional outcome. The applied carbon ion dose ranged from 54.0 Gray equivalent (GyE) to 73.6 GyE (median 70.4). Results: The mean age at treatment was 55 years for the surgery group and 65 years for the carbon ion RT group. The median duration of follow-up was 76 months for the surgery group and 49 months for the carbon ion RT group. The local recurrence-free survival rate at 5 years was 62.5% for the surgery and 100% for the carbon ion RT group, and the disease-specific survival rate at 5 years was 85.7% and 53.3%, respectively. Urinary-anorectal function worsened in 6 patients (60%) in the surgery group, but it was unchanged in all the patients who had undergone carbon ion RT. Postoperative wound complications requiring reoperation occurred in 3 patients (30%) after surgery and in 1 patient (14%) after carbon ion RT. The functional outcome evaluated using the Musculoskeletal Tumor Society scoring system revealed 55% in the surgery group and 75% in the carbon ion RT group. Of the six factors in this scoring system, the carbon ion RT group had significantly greater scores in emotional acceptance than did the surgery group. Conclusion: Carbon ion RT results in a high local control rate and preservation of urinary-anorectal function compared with surgery.

  1. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    NASA Astrophysics Data System (ADS)

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-01

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  2. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    SciTech Connect

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-26

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  3. DOSE TO RADIOLOGICAL TECHNOLOGISTS FROM INDUCED RADIONUCLIDES IN CARBON ION RADIOTHERAPY.

    PubMed

    Yonai, S; Spano, V

    2016-09-01

    Radioactive nuclides are induced in irradiation devices and patients during high-energy photon and ion beam radiotherapies. These nuclides potentially become sources of exposure to radiation workers. Radiological technologists (RTs) are often required to enter an irradiation room and approach activated devices and patients. In this study, annual doses to RTs working in a carbon ion radiotherapy facility were estimated based on measurements with the Si-semiconductor personal dosemeter. In addition, the time decay of dose around a patient couch after irradiation was obtained by phantom experiments. The annual Hp(10) values for passive and scanned beams were estimated to be 61 and 2 μSv, respectively, when assuming the number of treatments in 2013. These are much lower than the ICRP recommended dose limit for radiation workers. The time-series data of dose to RTs during their work and the time decay of the dose should be helpful for reducing their dose further. PMID:27179122

  4. Carbon Ion Radiotherapy At Gunma University: Currently Indicated Cancer And Estimation Of Need

    SciTech Connect

    Ohno, Tatsuya; Nakano, Takashi; Kanai, Tatsuaki; Yamada, Satoru

    2011-06-01

    Carbon ion radiotherapy for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at National Institute of Radiological Sciences (NIRS). The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. In order to evaluate the potential need for treatment in the region including Gunma prefecture and the adjacent 4 prefectures, an estimation model was constructed based on the Japanese cancer registration system, regular structure surveys by the Cancer Societies, and published articles on each cancer type. Carbon ion RT was potentially indicated for 8,085 patients and realistically for 1,527 patients, corresponding to 10% and 2% of the newly diagnosed cancer patients in the region. Prostate cancer (541 patients) followed by lung cancer (436 patients), and liver cancer (313 patients) were the most commonly diagnosed cancers.

  5. Mucosal Malignant Melanoma of the Head and Neck Treated by Carbon Ion Radiotherapy

    SciTech Connect

    Yanagi, Takeshi Mizoe, Jun-etsu; Hasegawa, Azusa; Takagi, Ryo; Bessho, Hiroki; Onda, Takeshi; Kamada, Tadashi; Okamoto, Yoshitaka; Tsujii, Hirohiko

    2009-05-01

    Purpose: To evaluate the efficacy of carbon ion radiotherapy for mucosal malignant melanoma of the head and neck. Methods and Materials: Between 1994 and 2004, 72 patients with mucosal malignant melanoma of the head and neck were treated with carbon ion beams in three prospective studies. Total dose ranged from 52.8 GyE to 64 GyE given in 16 fixed fractions over 4 weeks. Clinical parameters including gender, age, Karnofsky index, tumor site, tumor volume, tumor status, total dose, fraction size, and treatment time were evaluated in relation to local control and overall survival. Results: The median follow-up period was 49.2 months (range, 16.8-108.5 months). Treatment toxicity was within acceptable limits, and no patients showed Grade 3 or higher toxicity in the late phase. The 5-year local control rate was 84.1%. In relation to local control, there were no significant differences in any parameters evaluated. The 5-year overall and cause-specific survival rates were 27.0% and 39.6%, respectively. For overall survival, however, tumor volume ({>=}100 mL) was found to be the most significant prognostic parameter. Of the patients who developed distant metastasis, 85% were free from local recurrence. Conclusion: Carbon ion radiotherapy is a safe and effective treatment for mucosal malignant melanoma of the head and neck in terms of high local control and acceptable toxicities. Overall survival rate was better than in those treated with conventional radiotherapy and was comparable to that with surgery.

  6. Influence of Multiple Genetic Polymorphisms on Genitourinary Morbidity After Carbon Ion Radiotherapy for Prostate Cancer

    SciTech Connect

    Suga, Tomo; Iwakawa, Mayumi; Tsuji, Hiroshi; Ishikawa, Hitoshi; Oda, Eisei; Noda, Shuhei; Otsuka, Yoshimi; Ishikawa, Atsuko; Ishikawa, Ken-Ichi; Shimazaki, Jun; Mizoe, Jun-Etsu; Tsujii, Hirohiko; Imai, Takashi

    2008-11-01

    Purpose: To investigate the genetic risk of late urinary morbidity after carbon ion radiotherapy in prostate cancer patients. Methods and Materials: A total of 197 prostate cancer patients who had undergone carbon ion radiotherapy were evaluated for urinary morbidity. The distribution of patients with dysuria was as follows: Grade 0, 165; Grade 1, 28; and Grade 2, 4 patients. The patients were divided (2:1) consecutively into the training and test sets and then categorized into control (Grade 0) and case (Grade 1 or greater) groups. First, 450 single nucleotide polymorphisms (SNPs) in 118 candidate genes were genotyped in the training set. The associations between the SNP genotypes and urinary morbidity were assessed using Fisher's exact test. Then, various combinations of the markers were tested for their ability to maximize the area under the receiver operating characteristics (AUC-ROC) curve analysis results. Finally, the test set was validated for the selected markers. Results: When the SNP markers in the SART1, ID3, EPDR1, PAH, and XRCC6 genes in the training set were subjected to AUC-ROC curve analysis, the AUC-ROC curve reached a maximum of 0.86. The AUC-ROC curve of these markers in the test set was 0.77. The SNPs in these five genes were defined as 'risk genotypes.' Approximately 90% of patients in the case group (Grade 1 or greater) had three or more risk genotypes. Conclusions: Our results have shown that patients with late urinary morbidity after carbon ion radiotherapy can be stratified according to the total number of risk genotypes they harbor.

  7. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki Koba, Yusuke; Ogata, Risa; Himukai, Takeshi

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  8. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.

    2015-01-01

    In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20  ×  20  ×  40 mm3 was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model

  9. Effectiveness of Carbon Ion Radiotherapy in the Treatment of Skull-Base Chordomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Karger, Christian P.; Feuerhake, Alexandra; Nikoghosyan, Anna; Combs, Stephanie E.; Jaekel, Oliver; Edler, Lutz; Scholz, Michael; Debus, Juergen

    2007-06-01

    Purpose: The aim of this study was to evaluate the effectiveness and toxicity of carbon ion radiotherapy in chordomas of the skull base. Methods and Materials: Between November 1998 and July 2005, a total of 96 patients with chordomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany. All patients had gross residual tumors. Median total dose was 60 CGE (range, 60-70 CGE) delivered in 20 fractions within 3 weeks. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and the Radiation Therapy Oncology Group (RTOG) / European Organization for Research and Treatment of Cancer (EORTC) score. Results: Mean follow-up was 31 months (range, 3-91 months). Fifteen patients developed local recurrences after carbon ion RT. The actuarial local control rates were 80.6% and 70.0% at 3 and 5 years, respectively. Target doses in excess of 60 CGE and primary tumor status were associated with higher local control rates. Overall survival was 91.8% and 88.5% at 3 and 5 years, respectively. Late toxicity consisted of optic nerve neuropathy RTOG/EORTC Grade 3 in 4.1% of the patients and necrosis of a fat plomb in 1 patient. Minor temporal lobe injury (RTOG/EORTC Grade 1-2) occurred in 7 patients (7.2%). Conclusions: Carbon ion RT offers an effective treatment option for skull-base chordomas with acceptable toxicity. Doses in excess of 75 CGE with 2 CGE per fraction are likely to increase local control probability.

  10. Current State Of Proton And Carbon-Ion Radiotherapy At The Hyogo Ion Beam Medical Center (HIBMC)

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Demizu, Yusuke; Niwa, Yasue; Fujii, Osamu; Terashima, Kazuki; Mima, Masayuki; Miyawaki, Daisuke; Sasaki, Ryohei; Hishikawa, Yoshio; Abe, Mitsuyuki

    2011-06-01

    HIBMC is the world's first facility to be able to use both proton (PRT) and carbon-ion radiotherapy (CiRT). The medically dedicated synchrotron can accelerate protons up to 230 MeV and carbon ions up to 320 MeV. From April 2001 to March 2010, the facility treated 3275 patients, with 2487 patients treated using PRT and 788 using CiRT. Particle radiotherapy was delivered to patients suffering from malignant tumors originating in the head and neck (502 patients), lungs (330), liver (539), prostate (1283), and the bone & soft tissue (130). The clinical results are as follows: (1) H & N tumors: The 2-year overall survival (OS) rates of patients with olfactory neuroblastoma, mucoepidermoid cancer, adenoid cystic cancer, adenocarcinoma, squamous cell carcinoma, and malignant melanoma was 100%, 86%, 78%, 78%, 66%, and 62%, respectively. (2) Lung cancer: For all 80 patients, the 3-year OS rate was 75% (Stage IA: 74%; Stage IB: 76%) and local control (LC) rate was 82% (IA: 87%; IB: 77%). Grade 3 pulmonary toxicity was observed in only 1 patient. These results are comparable to those obtained by surgery, and indicate proton therapy and carbon-ion therapy are safe and effective for stage I lung cancer. (3) Liver cancer: The 5-year LC rate for 429 tumor patient was 90%, and the 5-year OS rate for 364 patients was 38%. These results seem equivalent to those obtained by surgery or radio-frequency ablation. (4) Prostate cancer: In 290 patients treated by proton radiotherapy, five patients died from other disease in the median follow-up period of 62 months. Biochemical disease-free survival and OS rate at 5 years was 88.2% and 96.5%, respectively. Our proton radiotherapy showed excellent OS and biochemical disease-free survival rates with minimum late morbidities. PRT VS CiRT: From our retrospective analysis, it seems that there is no significant difference in the LC and OS rate in H&N, lung and liver cancer between PRT and CiRT.

  11. Current State Of Proton And Carbon-Ion Radiotherapy At The Hyogo Ion Beam Medical Center (HIBMC)

    SciTech Connect

    Murakami, Masao; Hishikawa, Yoshio; Demizu, Yusuke; Niwa, Yasue; Fujii, Osamu; Terashima, Kazuki; Mima, Masayuki; Miyawaki, Daisuke; Sasaki, Ryohei; Abe, Mitsuyuki

    2011-06-01

    HIBMC is the world's first facility to be able to use both proton (PRT) and carbon-ion radiotherapy (CiRT). The medically dedicated synchrotron can accelerate protons up to 230 MeV and carbon ions up to 320 MeV. From April 2001 to March 2010, the facility treated 3275 patients, with 2487 patients treated using PRT and 788 using CiRT. Particle radiotherapy was delivered to patients suffering from malignant tumors originating in the head and neck (502 patients), lungs (330), liver (539), prostate (1283), and the bone and soft tissue (130). The clinical results are as follows: (1) H and N tumors: The 2-year overall survival (OS) rates of patients with olfactory neuroblastoma, mucoepidermoid cancer, adenoid cystic cancer, adenocarcinoma, squamous cell carcinoma, and malignant melanoma was 100%, 86%, 78%, 78%, 66%, and 62%, respectively. (2) Lung cancer: For all 80 patients, the 3-year OS rate was 75%(Stage IA: 74%; Stage IB: 76%) and local control (LC) rate was 82%(IA: 87%; IB: 77%). Grade 3 pulmonary toxicity was observed in only 1 patient. These results are comparable to those obtained by surgery, and indicate proton therapy and carbon-ion therapy are safe and effective for stage I lung cancer. (3) Liver cancer: The 5-year LC rate for 429 tumor patient was 90%, and the 5-year OS rate for 364 patients was 38%. These results seem equivalent to those obtained by surgery or radio-frequency ablation. (4) Prostate cancer: In 290 patients treated by proton radiotherapy, five patients died from other disease in the median follow-up period of 62 months. Biochemical disease-free survival and OS rate at 5 years was 88.2% and 96.5%, respectively. Our proton radiotherapy showed excellent OS and biochemical disease-free survival rates with minimum late morbidities. PRT VS CiRT: From our retrospective analysis, it seems that there is no significant difference in the LC and OS rate in H and N, lung and liver cancer between PRT and CiRT.

  12. Impact of Intrafractional Bowel Gas Movement on Carbon Ion Beam Dose Distribution in Pancreatic Radiotherapy

    SciTech Connect

    Kumagai, Motoki; Hara, Ryusuke; Mori, Shinichiro Yanagi, Takeshi; Asakura, Hiroshi; Kishimoto, Riwa; Kato, Hirotoshi; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi

    2009-03-15

    Purpose: To assess carbon ion beam dose variation due to bowel gas movement in pancreatic radiotherapy. Methods and Materials: Ten pancreatic cancer inpatients were subject to diagnostic contrast-enhanced dynamic helical CT examination under breath-holding conditions, which included multiple-phase dynamic CT with arterial, venous, and delayed phases. The arterial-venous phase and arterial-delayed phase intervals were 35 and 145 s, respectively. A compensating bolus was designed to cover the target obtained at the arterial phase. Carbon ion dose distribution was calculated by applying the bolus to the CT data sets at the other two phases. Results: Dose conformation to the clinical target volume was degraded by beam overshoot/undershoot due to bowel gas movement. The D95 for clinical target volume was degraded from 98.2% (range, 98.0-99.1%) of the prescribed dose to 94.7% (range, 88.0-99.0%) at 145 s. Excessive dosing to normal tissues varied among tissues and was, for example, 12.2 GyE/13.1 GyE (0 s/145 s) for the cord and 38.8 GyE/39.8 GyE (0 s/145 s) for the duodenum. The magnitude of beam overshoot/undershoot was particularly exacerbated from the anterior and left directions. Conclusions: Bowel gas movement causes dosimetric variation to the target during treatment for radiotherapy. The effect of bowel gas movement varies with beam angle, with greatest influence on the anterior-posterior and left-right beams.

  13. Measurement of neutron ambient dose equivalent in carbon-ion radiotherapy with an active scanned delivery system.

    PubMed

    Yonai, S; Furukawa, T; Inaniwa, T

    2014-10-01

    In ion beam radiotherapy, secondary neutrons contribute to an undesired dose outside the target volume, and consequently the increase of secondary cancer risk is a growing concern. In this study, neutron ambient dose equivalents in carbon-ion radiotherapy (CIRT) with an active beam delivery system were measured with a rem meter, WENDI-II, at National Institute of Radiological Sciences. When the same irradiation target was assumed, the measured neutron dose with an active beam was at most ∼15 % of that with a passive beam. This percentage became smaller as larger distances from the iso-centre. Also, when using an active beam delivery system, the neutron dose per treatment dose in CIRT was comparable with that in proton radiotherapy. Finally, it was experimentally demonstrated that the use of an active scanned beam in CIRT can greatly reduce the secondary neutron dose. PMID:24126486

  14. Clinical outcome and prognosis of carbon ion radiotherapy on thoracic malignant tumors

    NASA Astrophysics Data System (ADS)

    Li, Sha

    Objective To evaluate the therapeutic efficacy and side-response of high-LET carbon ion radiotherapy on thoracic malignant tumors. Methods Ten patients with pathological confirmed thoracic malignant tumors received treatment using heavy ion accelerator, which included 6 cases with non-small lung cancer, one case with small lung cancer, 2 cases with metastatic sarcomas and one case with invasive thymoma. The applied regimen included fractioned dose (5.5-6.8GyE/Fraction), one faction/day, and 7 fractions/week. The total dose ranged from 55 to 70 GyE. Results The short-term results showed that the response rate (the complete response (CR) rate +the partial response (PR) rate) was 10% at the first month, 40% at the third month and 90% at the sixth month. The overall response rate was 90% and the rate of stable disease was 10%. There was no relation between the response rate and tumor pathology (P>0.05) while significance between the response rate and the tumor volume.At median follow-up of 27 months (range, 6 to 36 months), the local control rate and free-disease rate were respectively 100% an 90% at the first year, 90% and 80% at the secondary year, 80% and 70% at the third year. The death rate due to disease progression was 20% and the non-specific death rate was 10%. Side and toxicity effects: Grade I skin effect occurred in three cases and Grade I lung effect occurred in two cases. The blood counts didn’t reach significance among pre-radiation course, peri-radiation course and post-radiation course (P>0.05). The subgoups of T cells detected in humoral immunity and cytoimmunity didn’t change between pre-radiation and post radiation(P>0.05). Conclusions Carbon ion radiotherapy is effective and safe in the management of patients with thoracic malignant tumors. There were no obvious side effects. The long term of clinical outcome and the late effect need to be further observed.

  15. Nuclear-interaction correction of integrated depth dose in carbon-ion radiotherapy treatment planning.

    PubMed

    Inaniwa, T; Kanematsu, N; Hara, Y; Furukawa, T

    2015-01-01

    1% for all materials and combinations of them. In scanned beams, the dose estimation error in target dose amounted to 4% for a 150 mm-thick layer of 40% K2HPO4. The error is significantly reduced with the correction method. The planned dose distributions with the method agreed with the measurements within ±1.5% of target dose for all materials not only in the target region but also in the plateau and fragment-tail regions. We tested the correction method of IDD in some non-water materials to verify that this method would offer the accuracy and simplicity required in carbon-ion radiotherapy treatment planning. PMID:25658006

  16. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    SciTech Connect

    Inaniwa, T. Kanematsu, N.; Tsuji, H.; Kamada, T.

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  17. Outcomes of visual acuity in carbon ion radiotherapy: Analysis of dose-volume histograms and prognostic factors

    SciTech Connect

    Hasegawa, Azusa . E-mail: azusa@nirs.go.jp; Mizoe, Jun-etsu; Mizota, Atsushi; Tsujii, Hirohiko

    2006-02-01

    Purpose: To analyze the tolerance dose for retention of visual acuity in patients with head-and-neck tumors treated with carbon ion radiotherapy. Methods and Materials: From June 1994 to March 2000, 163 patients with tumors in the head and neck or skull base region were treated with carbon ion radiotherapy. Analysis was performed on 54 optic nerves (ONs) corresponding to 30 patients whose ONs had been included in the irradiated volume. These patients showed no evidence of visual impairment due to other factors and had a follow-up period of >4 years. All patients had been informed of the possibility of visual impairment before treatment. We evaluated the dose-complication probability and the prognostic factors for the retention of visual acuity in carbon ion radiotherapy, using dose-volume histograms and multivariate analysis. Results: The median age of 30 patients (14 men, 16 women) was 57.2 years. Median prescribed total dose was 56.0 gray equivalents (GyE) at 3.0-4.0 GyE per fraction per day (range, 48-64 GyE; 16-18 fractions; 4-6 weeks). Of 54 ONs that were analyzed, 35 had been irradiated with <57 GyE (maximum dose [D{sub max}]) resulting in no visual loss. Conversely, 11 of the 19 ONs (58%) irradiated with >57 GyE (D{sub max}) suffered a decrease of visual acuity. In all of these cases, the ONs had been involved in the tumor before carbon ion radiotherapy. In the multivariate analysis, a dose of 20% of the volume of the ON (D{sub 2}) was significantly associated with visual loss. Conclusions: The occurrence of visual loss seems to be correlated with a delivery of >60 GyE to 20% of the volume of the ON.

  18. Effect of Carbon Ion Radiotherapy for Sacral Chordoma: Results of Phase I-II and Phase II Clinical Trials

    SciTech Connect

    Imai, Reiko; Kamada, Tadashi; Tsuji, Hiroshi; Sugawara, Shinji; Serizawa, Itsuko; Tsujii, Hirohiko; Tatezaki, Shin-ichiro

    2010-08-01

    Purpose: To summarize the results of treatment for sacral chordoma in Phase I-II and Phase II carbon ion radiotherapy trials for bone and soft-tissue sarcomas. Patients and Methods: We performed a retrospective analysis of 38 patients with medically unresectable sacral chordomas treated with the Heavy Ion Medical Accelerator in Chiba, Japan between 1996 and 2003. Of the 38 patients, 30 had not received previous treatment and 8 had locally recurrent tumor after previous resection. The applied carbon ion dose was 52.8-73.6 Gray equivalents (median, 70.4) in a total of 16 fixed fractions within 4 weeks. Results: The median patient age was 66 years. The cranial tumor extension was S2 or greater in 31 patients. The median clinical target volume was 523 cm{sup 3}. The median follow-up period was 80 months. The 5-year overall survival rate was 86%, and the 5-year local control rate was 89%. After treatment, 27 of 30 patients with primary tumor remained ambulatory with or without supportive devices. Two patients experienced severe skin or soft-tissue complications requiring skin grafts. Conclusion: Carbon ion radiotherapy appears effective and safe in the treatment of patients with sacral chordoma and offers a promising alternative to surgery.

  19. Clinical Indications for Carbon Ion Radiotherapy and Radiation Therapy with Other Heavier Ions

    NASA Astrophysics Data System (ADS)

    Combs, Stephanie E.

    A number of studies have shown excellent and convincing clinical results for various indications after treatment with ions heavier than protons. These include skull base chordomas and chondrosarcomas, hepatocellular carcinomas, recurrent rectal cancer, high-risk meningiomas, or soft-tissue and bone sarcomas. This chapter outlines these trials and provides a medical rationale for their choice before they are discussed in depth in subsequent chapters.

  20. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  1. Phase I/II Trial Evaluating Carbon Ion Radiotherapy for Salvaging Treatment of Locally Recurrent Nasopharyngeal Carcinoma

    PubMed Central

    Kong, Lin; Hu, Jiyi; Guan, Xiyin; Gao, Jing; Lu, Rong; Lu, Jiade J.

    2016-01-01

    Background: Radiation therapy is the mainstay strategy for the treatment of nasopharyngeal cancer (NPC). Intensity-modulated X-ray therapy (IMXT) alone is the current standard for stage I and II NPC. For stage III and IV A/B diseases, concurrent chemotherapy should be provided in addition to IMXT. However, optimal treatment for locally recurrent NPC after previous definitive dose of radiotherapy is lacking. Various techniques including brachytherapy, IMXT, stereotactic radiosurgery or radiotherapy (SRS or SBRT) have been used in the management of locally recurrent NPC. Due to the inherent limitation of these techniques, i.e., limited range of irradiation or over-irradiation to surrounding normal tissues, moderate efficacy has been observed at the cost of severe toxicities. Carbon ion radiotherapy (CIRT) offers potential physical and biological advantages over photon and proton radiotherapy. Due to the inverted dose profile of particle beams and their greater energy deposition within the Bragg peak, precise dose delivery to the target volume(s) without exposing the surrounding organs at risk to extra doses is possible. In addition, CIRT provides an increased relative biological effectiveness (RBE) as compared to photon and proton radiotherapy. Such advantages may translate to improved outcomes after irradiation in terms of disease control in radio-resistant and previously treated, recurrent malignancies. It is therefore reasonable to postulate that recurrent NPC after high-dose radiotherapy could be more resistant to re-irradiation using photons. Reports on the treatment of radio-resistant malignancies in the head and neck region such as melanoma, sarcoma, and adenoid cystic carcinoma (ACC) have demonstrated superior local control rates from CIRT as compared to photon irradiation. Thus patients with recurrent NPC are likely to benefit from the enhanced biological effectiveness of carbon ions. As effective retreatment strategy is lacking for locally recurrent NPC

  2. Carbon Ion Radiotherapy for Peripheral Stage I Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Kamada, Tadashi; Yamamoto, Naoyoshi; Baba, Masayuki

    The National Institute of Radiological Sciences in Chiba, Japan (NIRS) has the highest number of patients with lung cancer treated with carbon ion beams in the world. This report describes the techniques and clinical trials that have been undertaken at NIRS and preliminary results of a current study on single-fraction irradiation. The data are compared to recent results for the treatment of peripheral stage I lung cancer from the literature.

  3. A numerical method to optimise the spatial dose distribution in carbon ion radiotherapy planning.

    PubMed

    Grzanka, L; Korcyl, M; Olko, P; Waligorski, M P R

    2015-09-01

    The authors describe a numerical algorithm to optimise the entrance spectra of a composition of pristine carbon ion beams which delivers a pre-assumed dose-depth profile over a given depth range within the spread-out Bragg peak. The physical beam transport model is based on tabularised data generated using the SHIELD-HIT10A Monte-Carlo code. Depth-dose profile optimisation is achieved by minimising the deviation from the pre-assumed profile evaluated on a regular grid of points over a given depth range. This multi-dimensional minimisation problem is solved using the L-BFGS-B algorithm, with parallel processing support. Another multi-dimensional interpolation algorithm is used to calculate at given beam depths the cumulative energy-fluence spectra for primary and secondary ions in the optimised beam composition. Knowledge of such energy-fluence spectra for each ion is required by the mixed-field calculation of Katz's cellular Track Structure Theory (TST) that predicts the resulting depth-survival profile. The optimisation algorithm and the TST mixed-field calculation are essential tools in the development of a one-dimensional kernel of a carbon ion therapy planning system. All codes used in the work are generally accessible within the libamtrack open source platform. PMID:25948835

  4. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy

    PubMed Central

    Blyth, Benjamin J.; Kakinuma, Shizuko; Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Ogawa, Kanae; Shirakami, Ayana; Shang, Yi; Tsuruoka, Chizuru; Nishimura, Mayumi; Shimada, Yoshiya

    2015-01-01

    Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV.μm-1) during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could prove key to assessing

  5. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy.

    PubMed

    Blyth, Benjamin J; Kakinuma, Shizuko; Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Ogawa, Kanae; Shirakami, Ayana; Shang, Yi; Tsuruoka, Chizuru; Nishimura, Mayumi; Shimada, Yoshiya

    2015-01-01

    Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV x μm(-1)) during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could prove key to

  6. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-04-15

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  7. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose

    SciTech Connect

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2009-10-15

    Purpose: Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. Methods: A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. Results: It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed

  8. Combining Carbon Ion Radiotherapy and Local Injection of {alpha}-Galactosylceramide-Pulsed Dendritic Cells Inhibits Lung Metastases in an In Vivo Murine Model

    SciTech Connect

    Ohkubo, Yu; Iwakawa, Mayumi; Seino, Ken-Ichiro; Nakawatari, Miyako; Wada, Haruka; Kamijuku, Hajime; Nakamura, Etsuko; Nakano, Takashi; Imai, Takashi

    2010-12-01

    Purpose: Our previous report indicated that carbon ion beam irradiation upregulated membrane-associated immunogenic molecules, underlining the potential clinical application of radioimmunotherapy. The antimetastatic efficacy of local combination therapy of carbon ion radiotherapy and immunotherapy was examined by use of an in vivo murine model. Methods and Materials: Tumors of mouse squamous cell carcinoma (NR-S1) cells inoculated in the legs of C3H/HeSlc mice were locally irradiated with a single 6-Gy dose of carbon ions (290 MeV/nucleon, 6-cm spread-out Bragg peak). Thirty-six hours after irradiation, {alpha}-galactosylceramide-pulsed dendritic cells (DCs) were injected into the leg tumor. We investigated the effects on distant lung metastases by counting the numbers of lung tumor colonies, making pathologic observations, and assessing immunohistochemistry. Results: The mice with no treatment (control) presented with 168 {+-} 53.8 metastatic nodules in the lungs, whereas the mice that received the combination therapy of carbon ion irradiation and DCs presented with 2.6 {+-} 1.9 (P = 0.009) at 2 weeks after irradiation. Immunohistochemistry showed that intracellular adhesion molecule 1, which activates DCs, increased from 6 h to 36 h after irradiation in the local tumors of the carbon ion-irradiated group. The expression of S100A8 in lung tissue, a marker of the lung pre-metastatic phase, was decreased only in the group with a combination of carbon ions and DCs. Conclusions: The combination of carbon ion radiotherapy with the injection of {alpha}-galactosylceramide-pulsed DCs into the primary tumor effectively inhibited distant lung metastases.

  9. Risk factors for neovascular glaucoma after carbon ion radiotherapy of choroidal melanoma using dose-volume histogram analysis

    SciTech Connect

    Hirasawa, Naoki . E-mail: naoki_h@nirs.go.jp; Tsuji, Hiroshi; Ishikawa, Hitoshi; Koyama-Ito, Hiroko; Kamada, Tadashi; Mizoe, Jun-Etsu; Ito, Yoshiyuki; Naganawa, Shinji; Ohnishi, Yoshitaka; Tsujii, Hirohiko

    2007-02-01

    Purpose: To determine the risk factors for neovascular glaucoma (NVG) after carbon ion radiotherapy (C-ion RT) of choroidal melanoma. Methods and Materials: A total of 55 patients with choroidal melanoma were treated between 2001 and 2005 with C-ion RT based on computed tomography treatment planning. All patients had a tumor of large size or one located close to the optic disk. Univariate and multivariate analyses were performed to identify the risk factors of NVG for the following parameters; gender, age, dose-volumes of the iris-ciliary body and the wall of eyeball, and irradiation of the optic disk (ODI). Results: Neovascular glaucoma occurred in 23 patients and the 3-year cumulative NVG rate was 42.6 {+-} 6.8% (standard error), but enucleation from NVG was performed in only three eyes. Multivariate analysis revealed that the significant risk factors for NVG were V50{sub IC} (volume irradiated {>=}50 GyE to iris-ciliary body) (p = 0.002) and ODI (p = 0.036). The 3-year NVG rate for patients with V50{sub IC} {>=}0.127 mL and those with V50{sub IC} <0.127 mL were 71.4 {+-} 8.5% and 11.5 {+-} 6.3%, respectively. The corresponding rate for the patients with and without ODI were 62.9 {+-} 10.4% and 28.4 {+-} 8.0%, respectively. Conclusion: Dose-volume histogram analysis with computed tomography indicated that V50{sub IC} and ODI were independent risk factors for NVG. An irradiation system that can reduce the dose to both the anterior segment and the optic disk might be worth adopting to investigate whether or not incidence of NVG can be decreased with it.

  10. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  11. Dosimetric evaluation of nuclear interaction models in the Geant4 Monte Carlo simulation toolkit for carbon-ion radiotherapy.

    PubMed

    Kameoka, S; Amako, K; Iwai, G; Murakami, K; Sasaki, T; Toshito, T; Yamashita, T; Aso, T; Kimura, A; Kanai, T; Kanematsu, N; Komori, M; Takei, Y; Yonai, S; Tashiro, M; Koikegami, H; Tomita, H; Koi, T

    2008-07-01

    We tested the ability of two separate nuclear reaction models, the binary cascade and JQMD (Jaeri version of Quantum Molecular Dynamics), to predict the dose distribution in carbon-ion radiotherapy. This was done by use of a realistic simulation of the experimental irradiation of a water target. Comparison with measurement shows that the binary cascade model does a good job reproducing the spread-out Bragg peak in depth-dose distributions in water irradiated with a 290 MeV/u (per nucleon) beam. However, it significantly overestimates the peak dose for a 400 MeV/u beam. JQMD underestimates the overall dose because of a tendency to break a nucleus into lower-Z fragments than does the binary cascade model. As far as shape of the dose distribution is concerned, JQMD shows fairly good agreement with measurement for both beam energies of 290 and 400 MeV/u, which favors JQMD over the binary cascade model for the calculation of the relative dose distribution in treatment planning. PMID:20821145

  12. Clinical Trial of Prophylactic Extended-Field Carbon-Ion Radiotherapy for Locally Advanced Uterine Cervical Cancer (Protocol 0508)

    PubMed Central

    Wakatsuki, Masaru; Kato, Shingo; Kiyohara, Hiroki; Ohno, Tatsuya; Karasawa, Kumiko; Tamaki, Tomoaki; Ando, Ken; Tsujii, Hirohiko; Nakano, Takashi; Kamada, Tadashi; Shozu, Makio

    2015-01-01

    To evaluate the efficacy and the toxicity of prophylactic extended-field carbon-ion radiotherapy (C-ion RT, Protocol 0508) for locally advanced squamous cell carcinoma of the uterine cervix in phase I / II clinical trial. Between May 2006 and January 2012, 26 patients of Protocol 0508 were treated with C-ion RT. The numbers of patients with stage IIB, IIIB, and IVA disease were 13, 11, and 2, respectively. Twenty patients had pelvic lymph node metastases. Median tumor size was 6.1 cm (range, 4.0–10.0 cm). The treatment consisted of extended-field irradiation of 39.0 gray equivalents (GyE) in 13 fractions, and additional 15.0 GyE in 5 fractions was given to the gross tumor volume (GTV) and surrounding tissues. With regard to local boost, 18.0 GyE in 2 fractions was given to GTV only. Total dose to the cervical tumor was 72.0 GyE over 20 fractions. The median follow-up period was 37 months. Twenty-one patients had grade 1 or 2 acute gastrointestinal toxicity, but all patients completed the treatment on schedule. There were no grade 3 or higher late complications, with 8 patients having grade 1 or 2 toxicities, 1 had grade 2 gastrointestinal toxicity and 2 had grade 2 genitourinary toxicity. Four patients (15.4%) developed local recurrence, and 8 patients (30.8%) had distant metastases. The 2-year local control rate, progression-free survival rate and overall survival rate were 83.6%, 61.5% and 73.1%, respectively. There were no severe acute or late complications in this trial. Prophylactic extended-field C-ion RT for locally advanced squamous cell carcinoma of the uterine cervix was a safe treatment. Although the number of patients in this study was small, the results support further investigations to confirm the therapeutic efficacy and to avoid or reduce toxicity. Trial Registration UMIN-CTR UMIN000016169 PMID:25993047

  13. Carbon-ion radiotherapy for locally advanced or unfavorably located choroidal melanoma: A Phase I/II dose-escalation study

    SciTech Connect

    Tsuji, Hiroshi . E-mail: h_tsuji@nirs.go.jp; Ishikawa, Hitoshi; Yanagi, Takeshi; Hirasawa, Naoki; Kamada, Tadashi; Mizoe, Jun-Etsu; Kanai, Tatsuaki; Tsujii, Hirohiko; Ohnishi, Yoshitaka

    2007-03-01

    Purpose: To evaluate the applicability of carbon ion beams for the treatment of choroidal melanoma with regard to normal tissue morbidity and local tumor control. Methods and Materials: Between January 2001 and February 2006, 59 patients with locally advanced or unfavorably located choroidal melanoma were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy at the National Institute of Radiologic Sciences. The primary endpoint of this study was normal tissue morbidity, and secondary endpoints were local tumor control and patient survival. Of the 59 subjects enrolled, 57 were followed >6 months and analyzed. Results: Twenty-three patients (40%) developed neovascular glaucoma, and three underwent enucleation for eye pain due to elevated intraocular pressure. Incidence of neovascular glaucoma was dependent on tumor size and site. Five patients had died at analysis, three of distant metastasis and two of concurrent disease. All but one patient, who developed marginal recurrence, were controlled locally. Six patients developed distant metastasis, five in the liver and one in the lung. Three-year overall survival, disease-free survival, and local control rates were 88.2%, 84.8%, and 97.4%, respectively. No apparent dose-response relationship was observed in either tumor control or normal tissue morbidity at the dose range applied. Conclusion: Carbon-ion radiotherapy can be applied to choroidal melanoma with an acceptable morbidity and sufficient antitumor effect, even with tumors of unfavorable size or site.

  14. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  15. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  16. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  17. Results of heavy ion radiotherapy

    SciTech Connect

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  18. L-[METHYL-{sup 11}C] Methionine Positron Emission Tomography for Target Delineation in Malignant Gliomas: Impact on Results of Carbon Ion Radiotherapy

    SciTech Connect

    Mahasittiwat, Pawinee; Mizoe, Jun-etsu Hasegawa, Azusa; Ishikawa, Hiroyuki; Yoshikawa, Kyosan; Mizuno, Hideyuki; Yanagi, Takeshi; Takagi, Ryou D.D.S.; Pattaranutaporn, Pittayapoom; Tsujii, Hirohiko

    2008-02-01

    Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined by means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.

  19. Prediction of Acute Radiation Mucositis using an Oral Mucosal Dose Surface Model in Carbon Ion Radiotherapy for Head and Neck Tumors

    PubMed Central

    Musha, Atsushi; Shimada, Hirofumi; Shirai, Katsuyuki; Saitoh, Jun-ichi; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Takashi

    2015-01-01

    Purpose To evaluate the dose-response relationship for development of acute radiation mucositis (ARM) using an oral mucosal dose surface model (OMDS-model) in carbon ion radiotherapy (C-ion RT) for head and neck tumors. Methods Thirty-nine patients receiving C-ion RT for head and neck cancer were evaluated for ARM (once per week for 6 weeks) according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4.0, and the Radiation Therapy Oncology Group (RTOG) scoring systems. The irradiation schedule typically used was 64 Gy [relative biological effectiveness (RBE)] in 16 fractions for 4 weeks. Maximum point doses in the palate and tongue were compared with ARM in each patient. Results The location of the ARM coincided with the high-dose area in the OMDS-model. There was a clear dose-response relationship between maximum point dose and ARM grade assessed using the RTOG criteria but not the CTCAE. The threshold doses for grade 2–3 ARM in the palate and tongue were 43.0 Gy(RBE) and 54.3 Gy(RBE), respectively. Conclusions The OMDS-model was useful for predicting the location and severity of ARM. Maximum point doses in the model correlated well with grade 2–3 ARM. PMID:26512725

  20. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.

    2015-05-01

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the

  1. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer.

    PubMed

    Inaniwa, T; Kanematsu, N; Suzuki, M; Hawkins, R B

    2015-05-21

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if

  2. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  3. Carbon Beam Radio-Therapy and Research Activities at HIMAC

    NASA Astrophysics Data System (ADS)

    Kanazawa, Mitsutaka

    2007-05-01

    Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.

  4. Calculation method using Clarkson integration for the physical dose at the center of the spread-out Bragg peak in carbon-ion radiotherapy

    SciTech Connect

    Tajiri, Minoru; Maeda, Takamasa; Isobe, Yoshiharu; Kuroiwa, Toshitaka; Tanimoto, Katsuyuki; Shibayama, Koichi; Koba, Yusuke; Fukuda, Shigekazu

    2013-07-15

    Purpose: In broad-beam carbon-ion radiotherapy performed using the heavy-ion medical accelerator in Chiba, the number of monitor units is determined by measuring the physical dose at the center of the spread-out Bragg peak (SOBP) for the treatment beam. The total measurement time increases as the number of treatment beams increases, which hinders the treatment of an increased number of patients. Hence, Kusano et al.[Jpn. J. Med. Phys. 23(Suppl. 2), 65-68 (2003)] proposed a method to calculate the physical dose at the center of the SOBP for a treatment beam. Based on a recent study, the authors here propose a more accurate calculation method.Methods: The authors measured the physical dose at the center of the SOBP while varying the circular field size and range-shifter thickness. The authors obtained the physical dose at the center of the SOBP for an irregularly shaped beam using Clarkson integration based on these measurements.Results: The difference between the calculated and measured physical doses at the center of the SOBP varied with a change in the central angle of the sector segment. The differences between the calculated and measured physical doses at the center of the SOBP were within {+-}1% for all irregularly shaped beams that were used to validate the calculation method.Conclusions: The accuracy of the proposed method depends on both the number of angular intervals used for Clarkson integration and the fineness of the basic data used for calculations: sampling numbers for the field size and thickness of the range shifter. If those parameters are properly chosen, the authors can obtain a calculated monitor unit number with high accuracy sufficient for clinical applications.

  5. Changes in Rectal Dose Due to Alterations in Beam Angles for Setup Uncertainty and Range Uncertainty in Carbon-Ion Radiotherapy for Prostate Cancer

    PubMed Central

    Kubota, Yoshiki; Kawamura, Hidemasa; Sakai, Makoto; Tsumuraya, Ryou; Tashiro, Mutsumi; Yusa, Ken; Kubo, Nobuteru; Sato, Hiro; Kawahara, Masahiro; Katoh, Hiroyuki; Kanai, Tatsuaki; Ohno, Tatsuya; Nakano, Takashi

    2016-01-01

    Background and Purpose Carbon-ion radiotherapy of prostate cancer is challenging in patients with metal implants in one or both hips. Problems can be circumvented by using fields at oblique angles. To evaluate the influence of setup and range uncertainties accompanying oblique field angles, we calculated rectal dose changes with oblique orthogonal field angles, using a device with fixed fields at 0° and 90° and a rotating patient couch. Material and Methods Dose distributions were calculated at the standard angles of 0° and 90°, and then at 30° and 60°. Setup uncertainty was simulated with changes from −2 mm to +2 mm for fields in the anterior-posterior, left-right, and cranial-caudal directions, and dose changes from range uncertainty were calculated with a 1 mm water-equivalent path length added to the target isocenter in each angle. The dose distributions regarding the passive irradiation method were calculated using the K2 dose algorithm. Results The rectal volumes with 0°, 30°, 60°, and 90° field angles at 95% of the prescription dose were 3.4±0.9 cm3, 2.8±1.1 cm3, 2.2±0.8 cm3, and 3.8±1.1 cm3, respectively. As compared with 90° fields, 30° and 60° fields had significant advantages regarding setup uncertainty and significant disadvantages regarding range uncertainty, but were not significantly different from the 90° field setup and range uncertainties. Conclusions The setup and range uncertainties calculated at 30° and 60° field angles were not associated with a significant change in rectal dose relative to those at 90°. PMID:27097041

  6. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice

    PubMed Central

    2015-01-01

    External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs. PMID:26734646

  7. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice.

    PubMed

    Nickoloff, Jac A

    2015-12-01

    External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs. PMID:26734646

  8. Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.; Hara, Y.; Furukawa, T.; Fukahori, M.; Nakao, M.; Shirai, T.

    2014-09-01

    Challenging issues in treatment planning for scanned carbon-ion (C-ion) therapy are (i) accurate calculation of dose distribution, including the contribution of large angle-scattered fragments, (ii) reduction in the memory space required to store the dose kernel of individual pencil beams and (iii) shortening of computation time for dose optimization and calculation. To calculate the dose contribution from fragments, we modeled the transverse dose profile of the scanned C-ion beam with the superposition of three Gaussian distributions. The development of pencil beams belonging to the first Gaussian component was calculated analytically based on the Fermi-Eyges theory, while those belonging to the second and third components were transported empirically using the measured beam widths in a water phantom. To reduce the memory space for the kernels, we stored doses only in the regions of interest considered in the dose optimization. For the final dose calculation within the patient’s whole body, we applied a pencil beam redefinition algorithm. With these techniques, the triple Gaussian beam model can be applied not only to final dose calculation but also to dose optimization in treatment planning for scanned C-ion therapy. To verify the model, we made treatment plans for a homogeneous water phantom and a heterogeneous head phantom. The planned doses agreed with the measurements within ±2% of the target dose in both phantoms, except for the doses at the periphery of the target with a high dose gradient. To estimate the memory space and computation time reduction with these techniques, we made a treatment plan for a bone sarcoma case with a target volume of 1.94 l. The memory space for the kernel and the computation time for final dose calculation were reduced to 1/22 and 1/100 of those without the techniques, respectively. Computation with the triple Gaussian beam model using the proposed techniques is rapid, accurate and applicable to dose optimization and

  9. Temporal Lobe Reactions After Radiotherapy With Carbon Ions: Incidence and Estimation of the Relative Biological Effectiveness by the Local Effect Model

    SciTech Connect

    Schlampp, Ingmar; Karger, Christian P.; Jaekel, Oliver; Scholz, Michael; Didinger, Bernd; Nikoghosyan, Anna; Hoess, Angelika; Kraemer, Michael; Edler, Lutz; Debus, Juergen; Schulz-Ertner, Daniela

    2011-07-01

    Purpose: To identify predictors for the development of temporal lobe reactions (TLR) after carbon ion radiation therapy (RT) for radiation-resistant tumors in the central nervous system and to evaluate the predictions of the local effect model (LEM) used for calculation of the biologically effective dose. Methods and Materials: This retrospective study reports the TLR rates in patients with skull base chordomas and chondrosarcomas irradiated with carbon ions at GSI, Darmstadt, Germany, in the years 2002 and 2003. Calculation of the relative biological effectiveness and dose optimization of treatment plans were performed on the basis of the LEM. Clinical examinations and magnetic resonance imaging (MRI) were performed at 3, 6, and 12 months after RT and annually thereafter. Local contrast medium enhancement in temporal lobes, as detected on MRI, was regarded as radiation-induced TLR. Dose-volume histograms of 118 temporal lobes in 59 patients were analyzed, and 16 therapy-associated and 2 patient-associated factors were statistically evaluated for their predictive value for the occurrence of TLR. Results: Median follow-up was 2.5 years (range, 0.3--6.6 years). Age and maximum dose applied to at least 1 cm{sup 3} of the temporal lobe (D{sub max,V-1cm}3, maximum dose in the remaining temporal lobe volume, excluding the volume 1 cm{sup 3} with the highest dose) were found to be the most important predictors for TLR. Dose response curves of D{sub max,V-1cm}3 were calculated. The biologically equivalent tolerance doses for the 5% and 50% probabilities to develop TLR were 68.8 {+-} 3.3 Gy equivalents (GyE) and 87.3 {+-} 2.8 GyE, respectively. Conclusions: D{sub max,V-1cm}3 is predictive for radiation-induced TLR. The tolerance doses obtained seem to be consistent with published data for highly conformal photon and proton irradiations. We could not detect any clinically relevant deviations between clinical findings and expectations based on predictions of the LEM.

  10. Charged particle radiotherapy at the Hyogo Ion Beam Medical Center: Characteristics, technology and clinical results

    PubMed Central

    Abe, Mitsuyuki

    2007-01-01

    The Hyogo Ion Beam Medical Center was constructed in 2001 as the world’s first charged particle radiotherapy center where both proton and carbon-ion radiotherapy can be performed. From April 2001 to February 2007, more than 1,400 patients with a variety of cancers were treated. Most of the tumors except for prostate cancer were considered hard to cure with standard treatments such as surgery or conventional x-ray radiotherapy. The clinical results obtained so far are very encouraging, mainly due to the excellent dose localization to the tumor and strong cell killing effects of protons and carbon-ions. The good indications are localized tumors including skull base tumors, head and neck tumors, cancers of the lung, the liver, and the prostate, and bone and soft tissue sarcomas. Charged particle radiotherapy will significantly improve the quality of life of cancer patients and promote their speedy return to normal lives or work if it is used for early stage cancer. PMID:24367141

  11. Biophysical models in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Scholz, Michael; Elsässer, Thilo

    One major rationale for the application of heavy ion beams in tumor therapy is their increased relative biological effectiveness (RBE) in the Bragg peak region. For dose prescription, the increased effectiveness has to be taken into account in treatment planning. Hence, the complex dependencies of RBE on the dose level, biological endpoint, position in the field etc. require biophysical models, which have to fulfill two important criteria: simplicity and quantitative precision. Simplicity means that the number of free parameters should be kept at a minimum. Due to the lack of precise quantitative data, at least at present, this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production, processing and repair of biological damages. Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues; thus, even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome. The paper will give a general introduction into the field, followed by a description of a specific model, the so called 'Local Effect Model' (LEM). This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now. The model is based on the knowledge of charged particle track structure in combination with the response of the cells or tissues under consideration to conventional photon radiation. The model is compared to other approaches developed for the calculation of the biological effects of high-LET radiation. Furthermore, recent improvements of the model are described. Due to the quantitative precision, besides applications in tumor therapy the LEM seems to be adequate for the calculation of stochastic radiation effects, i.e. in the framework of radiation protection. Examples for the calculation of cell transformation are

  12. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1993-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  13. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1995-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  14. Recent progress of HIMAC for sophisticated heavy-ion cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Noda, K.; Furukawa, T.; Fujimoto, T.; Hara, Y.; Inaniwa, T.; Iwata, Y.; Katagiri, K.; Kanematsu, N.; Mizushima, K.; Miyoshi, T.; Mori, S.; Murakami, T.; Sano, Y.; Sato, S.; Shirai, T.; Takada, E.; Takei, Y.; Yonai, S.

    2014-07-01

    The NIRS has carried out carbon-ion radiotherapy (RT) with HIMAC since 1994. On the basis of their ten-year HIMAC experience, NIRS has developed a standard-type CIRT facility in order to boost availability of carbon-ion RT in Japan. Work has been carried out at its pilot facility at Gunma University since 2010. The current projects of the pilot facility include Saga-HIMAT and i-ROCK, promoted by the Kanagawa prefectural cancer center. Toward the further sophisticated conformal carbon-ion RT with HIMAC, the NIRS has since 2006 been developing new treatment technologies, such as a fast 3D rescanning with a pencil beam and a compact rotating gantry.

  15. Neoplastic Transformation Induced by Carbon Ions

    SciTech Connect

    Bettega, Daniela Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G.; Weyrather, Wilma K.

    2009-03-01

    Purpose: The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. Methods and Materials: The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Results: Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE{sub {alpha}}) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 {+-} 0.2 and 6.7 {+-} 0.7; and transformation per surviving cell, 2.5 {+-} 0.6 and 12 {+-} 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Conclusions: Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  16. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Experimental verification of therapeutic doses for the superficially-placed tumor radiotherapy with heavy ions at HIRFL

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Guo; Li, Qiang; Wu, Qing-Feng; Tao, Jia-Jun; Jin, Xiao-Dong

    2009-02-01

    Up to now, clinical trials of heavy-ion radiotherapy for superficially placed tumors have been carried out for six times and over 60 selected patients have been treated with 80-100 MeV/u carbon ions supplied by the Heavy Ion Research Facility in Lanzhou (HIRFL) at the Institute of Modern Physics, Chinese Academy of Sciences since November, 2006. A passive irradiation system and a dose optimization method for radiotherapy with carbon-ion beams have been developed. Experimental verification of longitudinally therapeutic dose distributions was conducted under the condition of simulating patient treatment in the therapy terminal at HIRFL. The measured depth-dose distributions basically coincide with the expected ones. These results indicate that the irradiation system and the dose optimization method are effective in the ongoing carbon-ion radiotherapy for shallow-seated tumors at HIRFL.

  17. Radiological protection in ion beam radiotherapy: practical guidance for clinical use of new technology.

    PubMed

    Yonekura, Y; Tsujii, H; Hopewell, J W; Ortiz López, P; Cosset, J-M; Paganetti, H; Montelius, A; Schardt, D; Jones, B; Nakamura, T

    2016-06-01

    Recently introduced technologies in radiotherapy have significantly improved the clinical outcome for patients. Ion beam radiotherapy, involving proton and carbon ion beams, provides excellent dose distributions in targeted tumours, with reduced doses to the surrounding normal tissues. However, careful treatment planning is required in order to maximise the treatment efficiency and minimise the dose to normal tissues. Radiation exposure from secondary neutrons and photons, particle fragments, and photons from activated materials should also be considered for radiological protection of the patient and medical staff. Appropriate maintenance is needed for the equipment and air in the treatment room, which may be activated by the particle beam and its secondary radiation. This new treatment requires complex procedures and careful adjustment of parameters for each patient. Therefore, education and training for the personnel involved in the procedure are essential for both effective treatment and patient protection. The International Commission on Radiological Protection (ICRP) has provided recommendations for radiological protection in ion beam radiotherapy in Publication 127 Medical staff should be aware of the possible risks resulting from inappropriate use and control of the equipment. They should also consider the necessary procedures for patient protection when new technologies are introduced into clinical practice. PMID:26980799

  18. Microdosimetry of proton and carbon ions

    SciTech Connect

    Liamsuwan, Thiansin; Hultqvist, Martha; Lindborg, Lennart; Nikjoo, Hooshang; Uehara, Shuzo

    2014-08-15

    carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

  19. Mobile ions on carbonate surfaces

    NASA Astrophysics Data System (ADS)

    Kendall, Treavor A.; Martin, Scot T.

    2005-07-01

    Surface ions move during the dissolution and growth of minerals. The present study investigates the density and the mobility of surface ions and the structure of the adsorbed water layer with changes in relative humidity (RH). The time evolution of the polarization force, which is induced by an electrically biased tip of an atomic force microscope, shows that the density and the mobility of surface ions increase with rising humidity, a finding which is consistent with increasing surface hydration. A marked change in the observations above 55% RH indicates a transition from a water layer formed by heteroepitaxial two-dimensional growth at low RH to one formed by multilayer three-dimensional growth at high RH. A comparison of the results of several rhombohedral carbonates ( viz. CaCO 3, FeCO 3, ZnCO 3, MgCO 3, and MnCO 3) shows that a long relaxation time of the polarization force at high RH is predictive of a rapid dissolution rate. This finding is rationalized by long lifetimes in terrace positions and hence greater opportunities for detachment of the ion to aqueous solution (i.e., dissolution). Our findings on the density and the mobility of surface ions therefore help to better constrain mechanistic models of hydration, ion exchange, and dissolution/growth.

  20. Ultra-short, Single-walled Carbon Nanotube Capsules for Diagnostic Imaging and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Matson, Michael Lee

    This thesis is centered on the Gadonanotubes (GNTs), an ultra-high-performance magnetic resonance imaging (MRI) contrast agent material discovered in our laboratories in 2005. The GNTs are a new paradigm in MRI contrast agent design with small clusters of Gd3+ ions within ultra-short carbon nanocapsules (ca. 50 nm) cut from full-length single-walled carbon nanotubes. Here, the factors underlying the performance efficacy of the GNTs have been investigated for the first time by variable-field (-50,000 Oe to 50,000 Oe at 2K) and variable-temperature (2K to RT at 100 Oe) magnetic susceptibility measurements using a Magnetic Property Measurement System (MPMS, based on a SQUID magnetometer). Additionally, experiments focused on the effects of hydroxylation of the GNTs' exterior surface regarding water-solubility are examined. Finally, the use of the GNTs as potential replacements for traditional metal-chelating/sequestering agents is explored. More specifically, the internal Gd3+-ion clusters of the GNTs have been radiolabeled: (1) with 153Gd3+ ions to test Gd3+-ion stability to simulated biological challenge, (2) with 225Ac3+ ions to generate a new concept for a GNT-based agent for alpha-radiotherapy, and finally (3) with 64Cu2+ ions to produce the first bimodal MRI/PET (PET = positron emission tomography) imaging agent derived from the GNTs.

  1. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    SciTech Connect

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  2. Response of the FBX system to a carbon beam: its potential as a dosimeter in heavy particle radiotherapy.

    PubMed

    Semwal, M K; Banerjee, Milan; Sarma, Asiti; Vidyasagar, P B

    2002-06-21

    The FBX aqueous chemical dosimeter contains 0.2 mol m(-3) ferrous ammonium sulphate, 5.0 mol m(-3) benzoic acid and 0.20 mol m(-3) xylenol orange in 40.0 mol m(-3) sulphuric acid. The dosimeter can measure photon and electron doses in the range 0.1 to 3000 cGy in radiotherapy. The response of this dosimeter was measured for a 53.2 MeV carbon beam in the present work. Our initial result indicates that the sensitivity of the FBX system to the carbon beam as compared to cobalt-60 gamma rays is 25.5%, and thus we believe that the FBX system could be a useful dosimeter for carbon beams and similar heavy ions considered useful in radiotherapy. PMID:12118611

  3. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  4. Carbon Multicharged Ion Generation from Laser Plasma

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+9 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  5. Erythrocyte Stiffness during Morphological Remodeling Induced by Carbon Ion Radiation

    PubMed Central

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  6. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation.

    PubMed

    Zhang, Baoping; Liu, Bin; Zhang, Hong; Wang, Jizeng

    2014-01-01

    The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new

  7. A motorized solid-state phantom for patient-specific dose verification in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Henkner, K.; Winter, M.; Echner, G.; Ackermann, B.; Brons, S.; Horn, J.; Jäkel, O.; Karger, C. P.

    2015-09-01

    For regular quality assurance and patient-specific dosimetric verification under non-horizontal gantry angles in ion beam radiotherapy, we developed and commissioned a motorized solid state phantom. The phantom is set up under the selected gantry angle and moves an array of 24 ionization chambers to the measurement position by means of three eccentrically-mounted cylinders. Hence, the phantom allows 3D dosimetry at oblique gantry angles. To achieve the high standards in dosimetry, the mechanical and dosimetric accuracy of the phantom was investigated and corrections for residual uncertainties were derived. Furthermore, the exact geometry as well as a coordinate transformation from cylindrical into Cartesian coordinates was determined. The developed phantom proved to be suitable for quality assurance and 3D-dose verifications for proton- and carbon ion treatment plans at oblique gantry angles. Comparing dose measurements with the new phantom under oblique gantry angles with those in a water phantom and horizontal beams, the dose deviations averaged over the 24 ionization chambers were within 1.5%. Integrating the phantom into the HIT treatment plan verification environment, allows the use of established workflow for verification measurements. Application of the phantom increases the safety of patient plan application at gantry beam lines.

  8. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    SciTech Connect

    Giordanengo, S.; Marchetto, F.; Garella, M. A.; Donetti, M.; Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R.; Ciocca, M.; Mirandola, A.

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing

  9. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review).

    PubMed

    Baek, Sung-Jae; Ishii, Hideshi; Tamari, Keisuke; Hayashi, Kazuhiko; Nishida, Naohiro; Konno, Masamitsu; Kawamoto, Koichi; Koseki, Jun; Fukusumi, Takahito; Hasegawa, Shinichiro; Ogawa, Hisataka; Hamabe, Atsushi; Miyo, Masaaki; Noguchi, Kozo; Seo, Yuji; Doki, Yuichiro; Mori, Masaki; Ogawa, Kazuhiko

    2015-11-01

    Cancer stem cells (CSCs) are a small population of cells in cancer with stem-like properties such as cell proliferation, multiple differentiation and tumor initiation capacities. CSCs are therapy-resistant and cause cancer metastasis and recurrence. One key issue in cancer therapy is how to target and eliminate CSCs, in order to cure cancer completely without relapse and metastasis. To target CSCs, many cell surface markers, DNAs and microRNAs are considered as CSC markers. To date, the majority of the reported markers are not very specific to CSCs and are also present in non-CSCs. However, the combination of several markers is quite valuable for identifying and targeting CSCs, although more specific identification methods are needed. While CSCs are considered as critical therapeutic targets, useful treatment methods remain to be established. Epigenetic gene regulators, microRNAs, are associated with tumor initiation and progression. MicroRNAs have been recently considered as promising therapeutic targets, which can alter the therapeutic resistance of CSCs through epigenetic modification. Moreover, carbon ion beam radiotherapy is a promising treatment for CSCs. Evidence indicates that the carbon ion beam is more effective against CSCs than the conventional X-ray beam. Combination therapies of radiosensitizing microRNAs and carbon ion beam radiotherapy may be a promising cancer strategy. This review focuses on the identification and treatment resistance of CSCs and the potential of microRNAs as new radiosensitizers and carbon ion beam radiotherapy as a promising therapeutic strategy against CSCs. PMID:26330103

  10. Novel carbon-ion fuel cells

    SciTech Connect

    Cocks, F.H.; LaViers, H.

    1995-10-03

    This report details acitvities by the Duke University Department of Mechanical Engineering and Material Science on the Novel Carbon-Ion Fuel Cells for the Department of Energy Advanced Coal Research Program grant for the third quarter of 1995.

  11. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  12. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  13. Mechanical Design of Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  14. Effects of iron ions and iron chelation on the efficiency of experimental radiotherapy of animals with gliomas.

    PubMed

    Ivanov, S D; Semenov, A L; Kovan'ko, E G; Yamshanov, V A

    2015-04-01

    We evaluated the effect of iron ion chelation on the growth of gliomas and radiotherapy efficiency in tumor-bearing animals. The rats with transplanted glioma-35 received iron-containing water; desferroxamine was injected for metal chelation. Long-term treatment with iron-containing water promoted glioma growth in rats and improved the efficiency of radiotherapy due to combination of apoptosis and ferroptosis. Desferroxamine reduced the efficiency of this treatment and was inessential for the efficiency of radiotherapy alone. PMID:25896595

  15. [Radiotherapy of carcinoma of the salivary glands].

    PubMed

    Servagi-Vernat, S; Tochet, F

    2016-09-01

    Indication, doses, and technique of radiotherapy for salivary glands carcinoma are presented, and the contribution of neutrons and carbon ions. The recommendations for delineation of the target volumes and organs at risk are detailed. PMID:27521038

  16. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  17. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-03

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C{sup 4+} based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C{sup 4+} was obtained to be 618 e{mu}A under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  18. Radiotherapy.

    PubMed

    Adamietz, Irenaus A

    2010-01-01

    The intrathoracic growth of the tumor causes several severe symptoms as cough, dyspnea, chest pain, hemoptysis, hoarseness, anorexia/nausea, and dysphagia. In patients with manifest or threatening symptoms radiotherapy (RT) as an effective measure should be implemented into the management concept. Palliative RT radiotherapy prefers short hypofractionated schemas (e.g. 10 x 3 Gy, 4 x 5 Gy, 2 x 8 Gy, 1 x 10 Gy). Careful radiation planning supports the precision of palliative RT and reduces significantly the complication rate. A good response and prolonged palliation effects (6-12 months) can be achieved in many cases. However, the minimum biologically equivalent dose should not be less than 35 Gy. RT produces a good outcome in all types of metastases of lung carcinoma. In emergencies like VCSS or spinal cord compression RT should be initiated immediately. The selection of the optimal therapy for locally advanced lung carcinoma with malignant airway obstruction is difficult. Both brachytherapy and percutaneous irradiation are effective, however published results including local a sum of response, functionality and life quality demonstrates more benefit by percutaneous RT. Due to different physical properties of these two methods the combination of brachytherapy and external beam irradiation may be advantageous. PMID:19955803

  19. Indications of Carbon Ion Therapy at CNAO

    NASA Astrophysics Data System (ADS)

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-01

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  20. Indications of Carbon Ion Therapy at CNAO

    SciTech Connect

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-10

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  1. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  2. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    SciTech Connect

    Horn, K.M.; Doyle, B.; Segal, M.N.; Hamm, R.W.; Adler, R.J.; Glatstein, E.

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  3. Unexpected radiation laryngeal necrosis after carbon ion therapy using conventional dose fractionation for laryngeal cancer.

    PubMed

    Demizu, Yusuke; Fujii, Osamu; Nagano, Fumiko; Terashima, Kazuki; Jin, Dongcun; Mima, Masayuki; Oda, Naoharu; Takeuchi, Kaoru; Takeda, Makiko; Ito, Kazuyuki; Fuwa, Nobukazu; Okimoto, Tomoaki

    2015-11-01

    Carbon ion therapy is a type of radiotherapy that can deliver high-dose radiation to a tumor while minimizing the dose delivered to organs at risk. Moreover, carbon ions are classified as high linear energy transfer radiation and are expected to be effective for even photon-resistant tumors. A 73-year-old man with glottic squamous cell carcinoma, T3N0M0, refused laryngectomy and received carbon ion therapy of 70 Gy (relative biological effectiveness) in 35 fractions. Three months after the therapy, the patient had an upper airway inflammation, and then laryngeal edema and pain occurred. Five months after the therapy, the airway stenosis was severe and computed tomography showed lack of the left arytenoid cartilage and exacerbation of laryngeal necrosis. Despite the treatment, 5 and a half months after the therapy, the laryngeal edema and necrosis had become even worse and the surrounding mucosa was edematous and pale. Six months after the therapy, pharyngolaryngoesophagectomy and reconstruction with free jejunal autograft were performed. The surgical specimen pathologically showed massive necrosis and no residual tumor. Three years after the carbon ion therapy, he is alive without recurrence. The first reported laryngeal squamous cell carcinoma case treated with carbon ion therapy resulted in an unexpected radiation laryngeal necrosis. Tissue damage caused by carbon ion therapy may be difficult to repair even for radioresistant cartilage; therefore, hollow organs reinforced by cartilage, such as the larynx, may be vulnerable to carbon ion therapy. Caution should be exercised when treating tumors in or adjacent to such organs with carbon ion therapy. PMID:26355161

  4. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions

    PubMed Central

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M.; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2–15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low

  5. Carbon Nanotube Doped Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Difelice, Ron; van Derveer, William R.; Gennett, Tom; Maranchi, Jeff; Kumta, Prashant; Hepp, Aloysius F.

    2002-03-01

    We have characterized thin film lithium ion batteries that contain high purity single wall carbon nanotube-doped polymer anodes. Highly purified single-walled carbon nanotubes (SWCNT) were obtained through chemical refinement of soot generated by pulsed laser ablation. The purity of the nanotubes was determined via thermogravimetric analysis, two wavelength Raman spectroscopy, spectrophotometry, scanning electron microscopy and transmission electron microscopy. The specific surface area and lithium capacity of the SWCNT was compared to that of other conventional anode materials (i.e., carbon black, graphite, and multi-walled carbon nanotubes). The SWCNT exhibited a specific surface area that greatly exceeded the other carbonaceous materials. Anodes were prepared by casting thin films directly onto copper foil of several ionically conductive polymers (i.e., PAN, PVDF, PEO) doped with the SWCNT. The lithium-ion capacity of the materials was measured using a standard 3-electrode cell. The electrochemical discharge capacity of the purified single walled carbon nanotubes in PVDF was in excess of 1300 mAh/g after 30 charge/discharge cycles when tested using a current density of 20µA/cm^2. The SWCNT anodes were incorporated into all-polymer thin film batteries containing LiNiCoO_2-doped polymer cathodes. Cycling results on the various SWCNT polymer combinations will be presented.

  6. F values for isoelectronic ions of carbon

    NASA Astrophysics Data System (ADS)

    Ganas, P. S.

    1981-10-01

    An analytic atomic independent particle model is used to generate wave functions for the valence and excited states of isoelectronic ions of carbon up to Z = 20. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, f values are calculated for various transitions from the 2p2(3P0) ground state. The results are compared with those from other works.

  7. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice.

    PubMed

    Gan, Lu; Wang, Zhen Hua; Zhang, Hong; Zhou, Rong; Sun, Chao; Liu, Yang; Si, Jing; Liu, Yuan Yuan; Wang, Zhen Guo

    2015-02-01

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P<0.01), while obviously reduced the MDA and PCO contents and the ROS levels derived from of the brain mitochondria. The shikonin also noticeably improved the spatial memory deficits caused by carbon ion beam irradiation. All results demonstrated that shikonin could improve the irradiated brain injury which might resulted from its modulation effects on the oxidative stress induced by the 12C6+ ion beam. PMID:25716567

  8. The Role of High-Energy Ion-Atom/Molecule Collisions in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    2014-12-01

    The need for ions in radiotherapy stems from the most favorable localization of the largest energy deposition, precisely at the tumor site with small energy losses away from the target. Such a dose conformity to the target is due to heavy masses of ions that scatter predominantly in the forward direction and lose maximal energy mainly near the end of their path in the vicinity of the Bragg peak. The heavy masses of nuclei preclude noticeable multiple scattering of the primary ion beam. This occurrence is responsible for only about 30% of ion efficiency in killing tumor cells. However, ionization of targets by fast ions yields electrons that might be of sufficient energy to produce further radiation damage. These δ-electrons, alongside radicals produced by ion-water collisions, can accomplish the remaining 70% of tumor cell eradication. Electrons achieve this chiefly through multiple scattering due to their small mass. Therefore, energy depositions by both heavy (nuclei) and light (electrons) particles as well as highly reactive radicals need to be simultaneously transported in Monte Carlo simulations. This threefold transport of particles is yet to be developed for the existing Monte Carlo codes. Critical to accomplishing this key goal is the availability of accurate cross section databases. To this end, the leading continuum distorted wave methodologies are poised to play a pivotal role in predicting energy losses of ions in tissue as discussed in this work.

  9. On the probability of cure for heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Hanin, Leonid; Zaider, Marco

    2014-07-01

    The probability of a cure in radiation therapy (RT)—viewed as the probability of eventual extinction of all cancer cells—is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule.

  10. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  11. 15 years experience with helium ion radiotherapy for uvealmelanoma

    SciTech Connect

    Castro, Joseph R.; D.H. Char, P.L. Petti; Daftarii, K.; Quivey,J.M.; Singh, R.P.; Blakeley, E.A.; Phillips, T.L.

    1997-06-01

    Purpose: To review the long-term experience of helium iontherapy as a therapeutic alternative to enucleation for uveal melanoma,particularly with respect to survival, local control, and morbidity.Methods and Materials: 347 patients with uveal melanoma were treated withheluim ion RT from 1978-1992. A nonrandomized dose-searching study wasundertaken, with doses progressively reduced from 80 GyE in fivefractionsto 48 GyE in four fractions, given in 3-15 days, mean of 7days. Results: Local control was achieved in 96 percent of patients, withno difference in the rate of local control being seen at 80, 70, 60, or50 GyE in five fractions. At the lowest dose level of 48 GyE in fourfractions, the local control rate fell to 87 percent. Fifteen of 347patients (4 percent) had local regrowth in the eye requiring enucleation(12 patients), laser (1 patient) or reirradiation (2 patients). The timeof appearance of local regrowth ranged from 4 months to 5 yearsposttreatment, with 85 percent occurring within 3 years. Of the 347patients, 208 are alive as of May 1, 1997. The median follow up of allpatients is 8.5 years, range 1-17 years. Kaplan-Maier (K-M) survival is80 percent at 5 years, 76 percent at 10 years, and 72 percent at 15 yearsposttreatment. Patients with tumors not involving the ciliary body have a15-year K-M survival of 80 percent. The results for patients whose tumorsinvolved the ciliary body are poor, with a 15-year K-M survival of 43percent. Seventy-five percent of patients with tumors at least 3.0 mmfrom the fovea and optic nerve, and initial ultrasound height less than6.0 mm, retained vision of 20/200 or better posttreatment. Patients withtumors larger than 6 mm in thickness, or with tumors lying close to theoptic nerve or fovea, have a reduced chance of retaining useful vision.The enucleation rate is 19 percent, 3 percent for local failure and 16percent because of complications of the helium RT, particularlyneovascular glaucoma, which occurred in 35 percent of

  12. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    conclusively distinguished whether C is taken up only as CO2 by passive diffusion or also by active transport of CO2 or HCO^{3-} . In reality, the patterns of stable isotopic variations in coccoliths may provide more constraints for unraveling the cellular C transport and the calcification mechanisms. We will present latest findings on these issues, both from culture experiments and sediment traps located in the Bay of Bengal. Coccolith species separated from these sediment traps also show evidence of carbonate ion effects.

  13. Lithium ion diffusion through glassy carbon plate

    SciTech Connect

    Inaba, M.; Nohmi, S.; Funabiki, A.; Abe, T.; Ogumi, Z.

    1998-07-01

    The electrochemical permeation method was applied to the determination of the diffusion coefficient of Li{sup +} ion (D{sub Li{sup +}}) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li{sup +} ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li{sup +} ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gave D{sub Li{sup +}} values on the order of 10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1}. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li{sup +} ions, the former of which is the origin of the irreversible capacity of GC.

  14. Overview of recent advances in treatment planning for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Krämer, Michael; Scifoni, Emanuele; Schmitz, Frederike; Sokol, Olga; Durante, Marco

    2014-10-01

    To achieve practical calculations of dose delivery in ion beam radiotherapy, the physical models of beam propagation need to be properly implemented and supplemented by models describing the complex mechanisms of radiation damage in the biological tissues. TRiP98 is the first and most advanced treatment planning system for particles, in which physical and biological models have been incorporated to develop a clinically applicable tool for dose optimization and delivery. We report our recent advances in TRiP98 code development, in particular towards hypoxia-driven and multi-modal dose optimization. We also discuss the present needs and possible extensions of our models for which input from nanoscale physics is required. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  15. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Vali, H.; Gibson, E. K., Jr.; Romanek, C. S.

    2005-03-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy.

  18. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  19. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  20. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  1. MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach

    PubMed Central

    2013-01-01

    Background In order to benefit from the highly conformal irradiation of tumors in ion radiotherapy, sophisticated treatment planning and simulation are required. The purpose of this study was to investigate the potential of MRI for ion radiotherapy treatment plan simulation and adaptation using a classification-based approach. Methods Firstly, a voxelwise tissue classification was applied to derive pseudo CT numbers from MR images using up to 8 contrasts. Appropriate MR sequences and parameters were evaluated in cross-validation studies of three phantoms. Secondly, ion radiotherapy treatment plans were optimized using both MRI-based pseudo CT and reference CT and recalculated on reference CT. Finally, a target shift was simulated and a treatment plan adapted to the shift was optimized on a pseudo CT and compared to reference CT optimizations without plan adaptation. Results The derivation of pseudo CT values led to mean absolute errors in the range of 81 - 95 HU. Most significant deviations appeared at borders between air and different tissue classes and originated from partial volume effects. Simulations of ion radiotherapy treatment plans using pseudo CT for optimization revealed only small underdosages in distal regions of a target volume with deviations of the mean dose of PTV between 1.4 - 3.1% compared to reference CT optimizations. A plan adapted to the target volume shift and optimized on the pseudo CT exhibited a comparable target dose coverage as a non-adapted plan optimized on a reference CT. Conclusions We were able to show that a MRI-based derivation of pseudo CT values using a purely statistical classification approach is feasible although no physical relationship exists. Large errors appeared at compact bone classes and came from an imperfect distinction of bones and other tissue types in MRI. In simulations of treatment plans, it was demonstrated that these deviations are comparable to uncertainties of a target volume shift of 2 mm in two directions

  2. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.

    PubMed

    Gwosch, K; Hartmann, B; Jakubek, J; Granja, C; Soukup, P; Jäkel, O; Martišíková, M

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient's geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations in

  3. The Radiation Enhancement of 15 nm Citrate-Capped Gold Nanoparticles Exposed to 70 keV/μm Carbon Ions.

    PubMed

    Liu, Yan; Liu, Xi; Jin, Xiaodong; He, Pengbo; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-03-01

    Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/μm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy. PMID:27455642

  4. Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth.

    PubMed

    Francis, Z; Seif, E; Incerti, S; Champion, C; Karamitros, M; Bernal, M A; Ivanchenko, V N; Mantero, A; Tran, H N; El Bitar, Z

    2014-12-21

    In this study, fragmentation yields of carbon therapy beams are estimated using the Geant4 simulation toolkit version 9.5. Simulations are carried out in a step-by-step mode using the Geant4-DNA processes for each of the major contributing fragments. The energy of the initial beam is taken 400 MeV amu(-1) as this is the highest energy, which is used for medical accelerators and this would show the integral role of secondary contributions in radiotherapy irradiations. The obtained results showed that 64% of the global dose deposition is initiated by carbon ions, while up to 36% is initiated by the produced fragments including all their isotopes. The energy deposition clustering yields of each of the simulated fragments are then estimated using the DBSCAN clustering algorithm and they are compared to the yields of the incident primary beam. PMID:25415376

  5. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  6. Modified carbon black materials for lithium-ion batteries

    DOEpatents

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  7. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons. PMID:26329182

  8. Electron string ion sources for carbon ion cancer therapy accelerators

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  9. Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification.

    PubMed

    Saminathan, Sathiyan; Manickam, Ravikumar; Chandraraj, Varatharaj; Supe, Sanjay S

    2010-01-01

    Intensity-modulated radiotherapy treatment demands stringent quality assurance and accurate dose determination for delivery of highly conformal dose to the patients. Generally 3D dose distributions obtained from a treatment planning system have to be verified by dosimetric methods. Mainly, a comparison of two-dimensional calculated and measured data in several coplanar planes is performed. In principle, there are many possibilities to measure two-dimensional dose distributions such as films, flat-panel electronic portal imaging devices (EPID), ion chambers and ionization chamber arrays, and radiographic and radiochromic films. The flat-panel EPIDs show a good resolution and offer a possibility for real-time measurements: however to convert the signal into dose, a separate commercial algorithm is required. The 2D ion chamber array system offers the real-time measurements. In this study, dosimetric characteristics of 2D ion chamber array matrix were analyzed for verification of radiotherapy treatments. The dose linearity and dose rate effect of the I'matriXX device was studied using 6 MV, 18 MV photons and 12 MeV electrons. The output factor was estimated using I'matriXX device and compared with ion chamber measurements. The ion chamber array system was found to be linear in the dose range of 2-500 cGy and the response of the detector was found to be independent of dose rate between 100 MU/min to 600 MU/min. The estimated relative output factor with I'matriXX was found to match very well with the ion chamber measurements. To check the final dose delivered during IMRT planning, dose distribution patterns such as field-in-field, pyramidal, and chair tests were generated with the treatment planning system (TPS) and the same was executed in the accelerator and measured with the I'matriXX device. The dose distribution pattern measured by the matrix device for field-in-field, pyramidal, and chair test were found to be in good agreement with the calculated dose distribution

  10. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  11. On carbon nitride synthesis at high-dose ion implantation

    NASA Astrophysics Data System (ADS)

    Romanovsky, E. A.; Bespalova, O. V.; Borisov, A. M.; Goryaga, N. G.; Kulikauskas, V. S.; Sukharev, V. G.; Zatekin, V. V.

    1998-04-01

    Rutherford backscattering spectrometry was used for the study of high dose 35 keV nitrogen ions implantation into graphites and glassy carbon. Quantitative data on depth profiles and its dependencies on irradiation fluence and ion beam density were obtained. The stationary dome-shaped depth profile with maximum nitrogen concentration 22-27 at.% and half-width more than twice exceeding projected range of ions is reached at fluence Φ ˜10 18 cm -2. The dependence of the maximum concentration in the profile on ion current density was studied. The largest concentration was obtained at reduced ion current density.

  12. SU-E-T-601: Patient Specific QA Check for Radiotherapy with Carbon Beam at SAGA HIMAT

    SciTech Connect

    Himukai, T; Tsunashima, Y; Kanazawa, M; Mizota, M; Shioyama, Y; Endo, M

    2015-06-15

    Purpose: To verify a patient specific QA for a prescribed dose per monitor unit (MU) and range check of carbon ion radiotherapy with a beam wobbling method at SAGA HIMAT. Methods: The dose distribution in a water phantom was recalculated with a treatment plan made by XiO-N (Mitsubishi Electric Corporation, Tokyo). The depth dose distributions at central axis were compared with measurements using pinpoint ionization chamber (PTW31014). Measured data were analyzed for dose and distance difference with criteria of 3% and 2mm. To check for the MU and range, analysis data were used at center and distal end of a spread out bragg peak (SOBP) depth, respectively. Results: Treatment plan of 1400 beams in 500 patients were used for analysis. The pass rate of the MU and range was about 98% and 74%, respectively. The rate of both was 73%. The plan data passed only the MU check were verified depth dose profile. The data passed only the range and failed of both were compared depth dose distributions at off axis. If it was failed, we discussed with physicians. Conclusion: Most of patient specific QA check for a prescribed MU and range check at SAGA HIMAT were passed.

  13. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  14. Ion adsorption mechanism of bundled single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Tsutsui, M.; Al-zubaidi, A.; Ishii, Y.; Kawasaki, S.

    2016-07-01

    In order to elucidate ion adsorption mechanism of bundled single-walled carbon nanotubes (SWCNTs), in situ synchrotron XRD measurements of SWCNT electrode in alkali halide aqueous electrolyte at several applied potentials were performed. It was found that the surface inside SWCNT is the important ion adsorption site.

  15. Carbon ion therapy for advanced sinonasal malignancies: feasibility and acute toxicity

    PubMed Central

    2011-01-01

    Purpose To evaluate feasibility and toxicity of carbon ion therapy for treatment of sinonasal malignancies. First site of treatment failure in malignant tumours of the paranasal sinuses and nasal cavity is mostly in-field, local control hence calls for dose escalation which has so far been hampered by accompanying acute and late toxicity. Raster-scanned carbon ion therapy offers the advantage of sharp dose gradients promising increased dose application without increase of side-effects. Methods Twenty-nine patients with various sinonasal malignancies were treated from 11/2009 to 08/2010. Accompanying toxicity was evaluated according to CTCAE v.4.0. Tumor response was assessed according to RECIST. Results Seventeen patients received treatment as definitive RT, 9 for local relapse, 2 for re-irradiation. All patients had T4 tumours (median CTV1 129.5 cc, CTV2 395.8 cc), mostly originating from the maxillary sinus. Median dose was 73 GyE mostly in mixed beam technique as IMRT plus carbon ion boost. Median follow- up was 5.1 months [range: 2.4 - 10.1 months]. There were 7 cases with grade 3 toxicity (mucositis, dysphagia) but no other higher grade acute reactions; 6 patients developed grade 2 conjunctivits, no case of early visual impairment. Apart from alterations of taste, all symptoms had resolved at 8 weeks post RT. Overall radiological response rate was 50% (CR and PR). Conclusion Carbon ion therapy is feasible; despite high doses, acute reactions were not increased and generally resolved within 8 weeks post radiotherapy. Treatment response is encouraging though follow-up is too short to estimate control rates or evaluate potential late effects. Controlled trials are warranted. PMID:21466696

  16. Regional MLEM reconstruction strategy for PET-based treatment verification in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Bauer, Julia; Riboldi, Marco; De Bernardi, Elisabetta; Fattori, Giovanni; Baselli, Giuseppe; Debus, Jürgen; Parodi, Katia; Baroni, Guido

    2014-11-01

    In ion beam radiotherapy, PET-based treatment verification provides a consistency check of the delivered treatment with respect to a simulation based on the treatment planning. In this work the region-based MLEM reconstruction algorithm is proposed as a new evaluation strategy in PET-based treatment verification. The comparative evaluation is based on reconstructed PET images in selected regions, which are automatically identified on the expected PET images according to homogeneity in activity values. The strategy was tested on numerical and physical phantoms, simulating mismatches between the planned and measured β+ activity distributions. The region-based MLEM reconstruction was demonstrated to be robust against noise and the sensitivity of the strategy results were comparable to three voxel units, corresponding to 6 mm in numerical phantoms. The robustness of the region-based MLEM evaluation outperformed the voxel-based strategies. The potential of the proposed strategy was also retrospectively assessed on patient data and further clinical validation is envisioned.

  17. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  18. Ion exclusion by sub-2-nm carbon nanotube pores

    PubMed Central

    Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

    2008-01-01

    Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important. PMID:18539773

  19. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.

    2005-01-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].

  20. Single-ion adsorption and switching in carbon nanotubes

    PubMed Central

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-01

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important. PMID:26805462

  1. Single-ion adsorption and switching in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-01

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.

  2. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  3. Microstructure evolution in carbon-ion implanted sapphire

    SciTech Connect

    Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Prawer, S.; Peng, J. L.; Rubanov, S.

    2010-01-15

    Carbon ions of MeV energy were implanted into sapphire to fluences of 1x10{sup 17} or 2x10{sup 17} cm{sup -2} and thermally annealed in forming gas (4% H in Ar) for 1 h. Secondary ion mass spectroscopy results obtained from the lower dose implant showed retention of implanted carbon and accumulation of H near the end of range in the C implanted and annealed sample. Three distinct regions were identified by transmission electron microscopy of the implanted region in the higher dose implant. First, in the near surface region, was a low damage region (L{sub 1}) composed of crystalline sapphire and a high density of plateletlike defects. Underneath this was a thin, highly damaged and amorphized region (L{sub 2}) near the end of range in which a mixture of i-carbon and nanodiamond phases are present. Finally, there was a pristine, undamaged sapphire region (L{sub 3}) beyond the end of range. In the annealed sample some evidence of the presence of diamond nanoclusters was found deep within the implanted layer near the projected range of the C ions. These results are compared with our previous work on carbon implanted quartz in which nanodiamond phases were formed only a few tens of nanometers from the surface, a considerable distance from the projected range of the ions, suggesting that significant out diffusion of the implanted carbon had occurred.

  4. Carbon Ion Radiation Therapy for Primary Renal Cell Carcinoma: Initial Clinical Experience

    SciTech Connect

    Nomiya, Takuma Tsuji, Hiroshi; Hirasawa, Naoki; Kato, Hiroyuki; Kamada, Tadashi; Mizoe, Junetsu; Kishi, Hirohisa; Kamura, Koichi; Wada, Hitoshi; Nemoto, Kenji; Tsujii, Hirohiko

    2008-11-01

    Purpose: Renal cell carcinoma (RCC) is known as a radioresistant tumor, and there are few reports on radiotherapy for primary RCC. We evaluated the efficacy of carbon ion radiotherapy (CIRT) for patients with RCC. Methods and Materials: Data for patients with RCC who received CIRT were analyzed. A median total dose of 72 GyE (gray equivalents) in 16 fractions was administered without any additional treatment. Clinical stage was determined based on TNM classification by the International Union Against Cancer (UICC). Local recurrence was defined as definite tumor regrowth after treatment. Results: Data for 10 patients were included in the analyses, including 7 patients with Stage I and 3 patients with Stage IV (T4NxM0 or TxN2M0) disease. The median maximum diameter of the tumor was 43 mm (24-120 mm). The median follow-up for surviving patients was 57.5 months (9-111 months). The 5-year local control rate, progression-free survival rate, cause-specific survival rate, and overall survival rates were 100%, 100%, 100%, and 74%, respectively. Interestingly, treated tumors showed very slow shrinkage, and the tumor in 1 case has been shrinking for 9 years. One patient with muscular invasion (T4 tumor) developed Grade 4 skin toxicity, but no other toxicity greater than Grade 2 was observed. Conclusions: This is one of the few reports on curative radiotherapy for primary RCC. The response of the tumor to treatment was uncommon. However despite inclusion of T4 and massive tumors, favorable local controllability has been shown. The results indicate the possibility of radical CIRT, as well as surgery, for RCC.

  5. Development of a facility for high-precision irradiation of cells with carbon ions

    SciTech Connect

    Goethem, Marc-Jan van; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A.; Coppes, Robert P.; Luijk, Peter van

    2011-01-15

    Purpose: Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed {+-}1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. Methods: A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. Results: The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing

  6. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    PubMed Central

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-01-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  7. Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest.

    PubMed

    Kavanagh, J N; Currell, F J; Timson, D J; Savage, K I; Richard, D J; McMahon, S J; Hartley, O; Cirrone, G A P; Romano, F; Prise, K M; Bassler, N; Holzscheiter, M H; Schettino, G

    2013-01-01

    Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28-42 mm away from the primary beam suggesting minimal risk from long-range secondary particles. PMID:23640660

  8. Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest

    PubMed Central

    Kavanagh, J. N.; Currell, F. J.; Timson, D. J.; Savage, K. I.; Richard, D. J.; McMahon, S. J.; Hartley, O.; Cirrone, G. A. P.; Romano, F.; Prise, K. M.; Bassler, N.; Holzscheiter, M. H.; Schettino, G.

    2013-01-01

    Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles. PMID:23640660

  9. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  10. Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. N.; Currell, F. J.; Timson, D. J.; Savage, K. I.; Richard, D. J.; McMahon, S. J.; Hartley, O.; Cirrone, G. A. P.; Romano, F.; Prise, K. M.; Bassler, N.; Holzscheiter, M. H.; Schettino, G.

    2013-05-01

    Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28-42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.

  11. Carbon nitride films formed using sputtering and negative carbon ion sources

    SciTech Connect

    Murzin, I.H.; Tompa, G.S.; Wei, J.; Muratov, V.; Fischer, T.E.; Yakovlev, V.

    1997-12-01

    The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able to synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.

  12. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  13. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  14. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  15. Residual chromatin breaks as biodosimetry for cell killing by carbon ions.

    PubMed

    Suzuki, M; Kase, Y; Nakano, T; Kanai, T; Ando, K

    1998-01-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/micrometer, 76 keV/micrometer) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/micrometer beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy. PMID:11542410

  16. Residual chromatin breaks as biodosimetry for cell killing by carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Kase, Y.; Nakano, T.; Kanai, T.; Ando, K.

    1998-11-01

    We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET = 13 keV/μm, 76 keV/μm) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour post-irradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/μm beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy.

  17. Geant4 simulation for a study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas with the active scanning system at CNAO

    NASA Astrophysics Data System (ADS)

    Farina, E.; Piersimoni, P.; Riccardi, C.; Rimoldi, A.; Tamborini, A.; Ciocca, M.

    2015-12-01

    The aim of this work was to study a possible use of carbon ion pencil beams (delivered with active scanning modality) for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO). The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radio-biological effectiveness (RBE). The Monte Carlo (MC) Geant4 10.00 toolkit was used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, was used as target. Cross check with previous studies at CNAO using protons allowed comparisons on possible benefits on using such a technique with respect to proton beams. Experimental data on proton and carbon ion beams transverse distributions were used to validate the simulation.

  18. Brain Injury After Proton Therapy or Carbon Ion Therapy for Head-and-Neck Cancer and Skull Base Tumors

    SciTech Connect

    Miyawaki, Daisuke Murakami, Masao; Demizu, Yusuke; Sasaki, Ryohei; Niwa, Yasue; Terashima, Kazuki; Nishimura, Hideki; Hishikawa, Yoshio; Sugimura, Kazuro

    2009-10-01

    Purpose: To assess the incidence of early delayed or late morbidity of Brain after particle therapy for skull base tumors and head-and-neck cancers. Methods and Materials: Between May 2001 and December 2005, 59 patients with cancerous invasion of the skull base were treated with proton or carbon ion therapy at the Hyogo Ion Beam Medical Center. Adverse events were assessed according to the magnetic resonance imaging findings (late effects of normal tissue-subjective, objective, management, analytic [LENT-SOMA]) and symptoms (Common Terminology Criteria for Adverse Events [CTCAE], version 3.0). Dose-volume histograms were used to analyze the relationship between the dose and volume of the irradiated brain and the occurrence of brain injury. The median follow-up time was 33 months. Results: Of the 48 patients treated with proton therapy and 11 patients treated with carbon ion radiotherapy, 8 (17%) and 7 (64%), respectively, developed radiation-induced brain changes (RIBCs) on magnetic resonance imaging (LENT-SOMA Grade 1-3). Four patients (7%) had some clinical symptoms, such as vertigo and headache (CTCAE Grade 2) or epilepsy (CTCAE Grade 3). The actuarial occurrence rate of RIBCs at 2 and 3 years was 20% and 39%, respectively, with a significant difference in the incidence between the proton and carbon ion radiotherapy groups. The dose-volume histogram analyses revealed significant differences between Brain lobes with and without RIBCs in the actuarial volume of brain lobes receiving high doses. Conclusion: Particle therapies produced minimal symptomatic brain toxicities, but sequential evaluation with magnetic resonance imaging detected a greater incidence of RIBCs. Significant differences were observed in the irradiated brain volume between Brain lobes with and without RIBCs.

  19. Construction of SAGA HIMAT for carbon ion cancer therapy

    SciTech Connect

    Kudo, Sho; Shioyama, Yoshiyuki; Endo, Masahiro; Kanazawa, Mitsutaka; Tsujii, Hirohiko; Totoki, Tadahide

    2013-04-19

    SAGA HIMAT is now under construction in Tosu city, Saga prefecture, Kyushu island, Japan. It will open in 2013 and become the fourth carbon ion beam cancer therapy center in Japan. It is a collaborative project among the local governments, industries and universities in northern Kyushu area.

  20. Construction of SAGA HIMAT for carbon ion cancer therapy

    NASA Astrophysics Data System (ADS)

    Kudo, Sho; Shioyama, Yoshiyuki; Endo, Masahiro; Kanazawa, Mitsutaka; Tsujii, Hirohiko; Totoki, Tadahide

    2013-04-01

    SAGA HIMAT is now under construction in Tosu city, Saga prefecture, Kyushu island, Japan. It will open in 2013 and become the fourth carbon ion beam cancer therapy center in Japan. It is a collaborative project among the local governments, industries and universities in northern Kyushu area.

  1. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  2. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  3. Comparison of the Effects of Carbon Ion and Photon Irradiation on the Angiogenic Response in Human Lung Adenocarcinoma Cells

    SciTech Connect

    Kamlah, Florentine; Haenze, Joerg; Arenz, Andrea; Seay, Ulrike; Hasan, Diya; Gottschald, Oana R.; Seeger, Werner; Rose, Frank

    2011-08-01

    Purpose: Radiotherapy resistance is a commonly encountered problem in cancer treatment. In this regard, stabilization of endothelial cells and release of angiogenic factors by cancer cells contribute to this problem. In this study, we used human lung adenocarcinoma (A549) cells to compare the effects of carbon ion and X-ray irradiation on the cells' angiogenic response. Methods and Materials: A549 cells were irradiated with biologically equivalent doses for cell survival of either carbon ions (linear energy transfer, 170 keV/{mu}m; energy of 9.8 MeV/u on target) or X-rays and injected with basement membrane matrix into BALB/c nu/nu mice to generate a plug, allowing quantification of angiogenesis by blood vessel enumeration. The expression of angiogenic factors (VEGF, PlGF, SDF-1, and SCF) was assessed at the mRNA and secreted protein levels by using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay. Signal transduction mediated by stem cell factor (SCF) was assessed by phosphorylation of its receptor c-Kit. For inhibition of SCF/c-Kit signaling, a specific SCF/c-Kit inhibitor (ISCK03) was used. Results: Irradiation of A549 cells with X-rays (6 Gy) but not carbon ions (2 Gy) resulted in a significant increase in blood vessel density (control, 20.71 {+-} 1.55; X-ray, 36.44 {+-} 3.44; carbon ion, 16.33 {+-} 1.03; number per microscopic field). Concordantly, irradiation with X-rays but not with carbon ions increased the expression of SCF and subsequently caused phosphorylation of c-Kit in endothelial cells. ISCK03 treatment of A549 cells irradiated with X-rays (6 Gy) resulted in a significant decrease in blood vessel density (X-ray, 36.44 {+-} 3.44; X-ray and ISCK03, 4.33 {+-} 0.71; number of microscopic field). These data indicate that irradiation of A549 cells with X-rays but not with carbon ions promotes angiogenesis. Conclusions: The present study provides evidence that SCF is an X-ray-induced mediator of angiogenesis in A549 cells, a

  4. Carbon-Based Ion Optics Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George

    2002-01-01

    With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.

  5. Ion chromatography detection of fluoride in calcium carbonate.

    PubMed

    Lefler, Jamie E; Ivey, Michelle M

    2011-09-01

    Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate. PMID:21859530

  6. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  7. Interaction of highly charged ions with carbon nano membranes

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Wilhelm, Richard A.; Smejkal, Valerie; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Charge state and energy loss measurements of slow highly charged ions (HCIs) after transmission through nanometer and sub-nanometer thin membranes are presented. Direct transmission measurements through carbon nano membranes (CNMs) show an unexpected bimodal exit charge state distribution, accompanied by charge exchange dependent energy loss. The energy loss of ions in CNMs with large charge loss shows a quadratic dependency on the incident charge state, indicating charge state dependent stopping force values. Another access to the exit charge state distribution is given by irradiating stacks of CNMs and investigating each layer of the stack with high resolution imaging techniques like transmission electron microscopy (TEM) and helium ion microscopy (HIM) independently. The observation of pores created in all of the layers confirms the assumption derived from the transmission measurements that the two separated charge state distributions reflect two different impact parameter regimes, i.e. close collision with large charge exchange and distant collisions with weak ion-target interaction.

  8. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  9. WIMP detection and slow ion dynamics in carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Cirillo, E. N. M.; Cocina, F.; Ferretti, J.; Polosa, A. D.

    2016-06-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (≈ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  10. Carbon Nanotube Based Deuterium Ion Source for Improved Neutron Generators

    SciTech Connect

    Fink, R. L.; Jiang, N.; Thuesen, L.; Leung, K. N.; Antolak, A. J.

    2009-03-10

    Field ionization uses high electric fields to cause the ionization and emission of ions from the surface of a sharp electrode. We are developing a novel field ionization neutron generator using carbon nanotubes (CNT) to produce the deuterium ion current. The generator consists of three major components: a deuterium ion source made of carbon nanotubes, a smooth negatively-biased target electrode, and a secondary electron suppression system. When a negative high voltage is applied on the target electrode, a high gradient electric field is formed at the tips of the carbon nanotubes. This field is sufficiently strong to create deuterium (D) ions at or near the nanotubes which are accelerated to the target causing D-D reactions to occur and the production of neutrons. A cross magnetic field is used to suppress secondary emission electrons generated on the target surface. We have demonstrated field ionization currents of 70 nA (1 {mu}A/cm{sup 2}) at hydrogen gas pressure of 10 mTorr. We have found that the current scales proportionally with CNT area and also with the gas pressure in the range of 1 mTorr to 10 mTorr. We have demonstrated pulse cut-off times as short as 2 {mu}sec. Finally, we have shown the feasibility of generating neutrons using deuterium gas.

  11. Gated ion transport through dense carbon nanotube membranes.

    PubMed

    Yu, Miao; Funke, Hans H; Falconer, John L; Noble, Richard D

    2010-06-23

    Gated ion diffusion is found widely in hydrophobic biological nanopores, upon changes in ligand binding, temperature, transmembrane voltage, and mechanical stress. Because water is the main media for ion diffusion in these hydrophobic biological pores, ion diffusion behavior through these nanochannels is expected to be influenced significantly when water wettability in hydrophobic biological nanopores is sensitive and changes upon small external changes. Here, we report for the first time that ion diffusion through highly hydrophobic nanopores (approximately 3 nm) showed a gated behavior due to change of water wettability on hydrophobic surface upon small temperature change or ultrasound. Dense carbon nanotube (CNT) membranes with both 3-nm CNTs and 3-nm interstitial pores were prepared by a solvent evaporation process and used as a model system to investigate ion diffusion behavior. Ion diffusion through these membranes exhibited a gated behavior. The ion flux was turned on and off, apparently because the water wettability of CNTs changed. At 298 K, ion diffusion through dense CNT membranes stopped after a few hours, but it dramatically increased when the temperature was increased 20 K or the membrane was subjected to ultrasound. Likewise, water adsorption on dense CNT membranes increased dramatically at a water activity of 0.53 when the temperature increased from 293 to 306 K, indicating capillary condensation. Water adsorption isotherms of dense CNT membranes suggest that the adsorbed water forms a discontinuous phase at 293 K, but it probably forms a continuous layer, probably in the interstitial CNT regions, at higher temperatures. When the ion diffusion channel was opened by a temperature increase or ultrasound, ions diffused through the CNT membranes at a rate similar to bulk diffusion in water. This finding may have implications for using CNT membrane for desalination and water treatment. PMID:20504021

  12. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation

    PubMed Central

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Soors, Els; Buset, Jasmine; Chiriotti, Sabina; Tabury, Kevin; Gregoire, Vincent; Baatout, Sarah

    2015-01-01

    Hadrontherapy is an advanced form of radiotherapy that uses beams of charged particles (such as protons and carbon ions). Compared with conventional radiotherapy, the main advantages of carbon ion therapy are the precise absorbed dose localization, along with an increased relative biological effectiveness (RBE). This high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. Currently, hadrontherapy is being used for the treatment of specific types of cancer. Previous in vitro studies have shown that, under certain circumstances, exposure to charged particles may inhibit cell motility and migration. In the present study, we investigated the expression of four motility-related genes in prostate (PC3) and colon (Caco-2) cancer cell lines after exposure to different radiation types. Cells were irradiated with various absorbed doses (0, 0.5 and 2 Gy) of accelerated 13C-ions at the GANIL facility (Caen, France) or with X-rays. Clonogenic assays were performed to determine the RBE. RT-qPCR analysis showed dose- and time-dependent changes in the expression of CCDC88A, FN1, MYH9 and ROCK1 in both cell lines. However, whereas in PC3 cells the response to carbon ion irradiation was enhanced compared with X-irradiation, the effect was the opposite in Caco-2 cells, indicating cell-type–specific responses to the different radiation types. PMID:25190155

  13. Pore-size ion-size correlations for carbon supercapacitors

    NASA Astrophysics Data System (ADS)

    Chmiola, John

    2009-08-01

    Carbon supercapacitors, which are energy storage devices that use ion adsorption on the surface of highly porous materials to store charge, have numerous advantages over other power-source technologies, but could realize further gains if their electrodes were properly optimized. This could lead to fleet-wide improvements in economy, performance, lifetime and environmental impact of Hybrid Electric Vehicles (HEVs), as well as enable or advance many other applications. To determine correlations between ion-size and pore-size in carbon supercapacitors, we generated a well-characterized set of porous carbide-derived carbons (CDC) with average pore sizes from 0.6 to 2.25 nm and used them to probe the limits of understanding. Performing the first systematic study of the effect of pore size on capacitance showed that, in general, decreasing the pore size below the size of the solvated ion, or to precisely the size of the ionic liquid ion, allowed higher accumulation of charge. Using CDC with properly tuned porosity showed excellent performance in H2SO 4, ˜200 F/g, and performance superior to all prior reported results in organic (CH3CH2)4NBF4 (TEABF 4) electrolytes as well as l-ethyl-3-methyl immidazolium bis-(trifluoromethanesulfonyl)imide (EMI-TFSI) ionic liquid, ˜150 F/g. This work conclusively showed that precisely matching the pore size with the ion size is the key factor for maximizing capacitance. Understanding that pores significantly larger than the effective ion size do not have large contributions to energy storage, work on dense porous CDC films on conductive substrates showed ˜100% larger volumetric capacitance than any previously reported. Depositing patterned films of carbide and electrical contacts could lead to microfabricated energy storage devices directly on a chip, or built up in layers for performances yet unrealized.

  14. Dual ion beam deposition of carbon films with diamondlike properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  15. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    SciTech Connect

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Kokubo, Toshiaki; Doi, Kazutaka; Iizuka, Daisuke; Nishimura, Yukiko; Okutani, Tomomi; Takabatake, Masaru; Kakinuma, Shizuko; Shimada, Yoshiya

    2013-03-15

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with {sup 137}Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation.

  16. Curative treatment of Stage I non-small-cell lung cancer with carbon ion beams using a hypofractionated regimen

    SciTech Connect

    Miyamoto, Tadaaki . E-mail: t_miyamt@nirs.go.jp; Baba, Masayuki; Yamamoto, Naoyoshi; Koto, Masashi; Sugawara, Toshiyuki; Yashiro, Tomoyasu; Kadono, Kennoshuke; Ezawa, Hidefumi; Tsujii, Hirohiko; Mizoe, Jun-Etsu; Yoshikawa, Kyosan; Kandatsu, Susumu; Fujisawa, Takehiko

    2007-03-01

    Purpose: A phase I/II study on carbon ion radiotherapy for Stage I non-small-cell lung cancer (NSCLC) was first conducted between 1994 and 1999 and determined the optimal dose. Second, a Phase II study using the optimal dose was performed. The purpose of the present study was to clarify the local control and 5-year survival rates. Methods and Materials: Between April 1999 and December 2000, 50 patients with 51 primary lesions were treated. Using a fixed dose of 72 GyE in nine fractions over 3 weeks, the primary tumors were irradiated with carbon ion beams alone. The average age of the patients was 74.5 years. Thirty-three (66%) of these were medically inoperable. Local control and survival were determined by using the Kaplan-Meier method and the data were statistically processed by using the log-rank test. Results: All patients were observed for a minimum of 5 years or until death with a median follow-up time of 59.2 months (range, 6.0-83.0 months). The local control rate for all patients was 94.7%. The patients' 5-year cause-specific survival rate was 75.7% (IA: 89.4; IB: 55.1), and overall survival 50.0% (IA: 55.2; IB: 42.9). No toxic reactions in the lung greater than Grade 3 were detected. Conclusions: Carbon ion radiotherapy, a new treatment modality with superior benefits in terms of quality of life and activity of daily living, has been proven as a valid alternative to surgery for Stage I NSCLC and to offer particular benefits, especially for elderly and inoperable patients.

  17. Ion irradiation of ammonia/carbon dioxide mixtures

    NASA Astrophysics Data System (ADS)

    Lv, X. Y.; Boduch, P.; Ding, J. J.; Domaracka, A.; Langlinay, T.; Palumbo, M. E.; Rothard, H.; Strazzulla, G.

    2013-09-01

    We present new experimental results on the thermal and ion irradiation processing of ammonia/carbon dioxide frozen mixtures. Mixtures deposited at low T (16 K) have then been warmed up to 160 K. During warm up complex chemical reactions occur leading to the formation of new molecules and, in particular, of ammonium carbamate. Other samples have been irradiated with 144 keV S9+ ions. Also in this case new chemical species are formed among which CO and OCN-. The results are discussed in the light of their relevance to understand the effects of different processes going on in the variegated superficial and sub-superficial layers of Enceladus.

  18. Improved carbon anode materials for lithium-ion cells

    SciTech Connect

    Flynn, J.; Marsh, C.

    1998-07-01

    Several carbon materials have been studied for suitability as anode materials in lithium-ion cells. Carbons that have been included in this evaluation are three grades of commercially available mesophase carbon microbeads (MCMB) 6-28, 10-28 and 25-28, two specially prepared mesophase fibers (Amoco), a foreign mesophase fiber and KS-15 graphite (Lonza). Differences in cycling behavior between the three types of MCMB material are shown. Data of full lithium-ion cells demonstrate the effect that the choice of carbon material has on the cell discharge voltage and capacity. Lithium reference electrode experiments in full cells (3.0--4.0Ah capacity), elucidate the dynamics under several charge/discharge regimes and provide a comparison between the performance of carbon fiber and graphite anode materials. These test results indicate that the fibers can be charged at significantly higher rates than graphite without showing polarization at the anode. Full and half cell data also demonstrates the high coulombic efficiencies of the mesophase materials and first cycle efficiencies as compared to graphite. A comparison of two mesophase materials with different textures in full cells under strenuous cycling conditions shows significant differences in capacity retention. SEM photos of fibers showing the different textures are also presented.

  19. Study of the magnets used for a mobile isocenter carbon ion gantry

    PubMed Central

    Moreno, Jhonnatan Osorio; Pullia, Marco G.; Priano, Cristiana; Lante, Valeria; Necchi, Monica M.; Savazzi, Simone

    2013-01-01

    A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10–4; it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator. PMID:23824120

  20. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    NASA Astrophysics Data System (ADS)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal δ13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high δ13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same

  1. Single-ion adsorption and switching in carbon nanotubes

    DOE PAGESBeta

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-25

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less

  2. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    PubMed Central

    Schreiber, Eric C.; Chang, Sha X.

    2012-01-01

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 μm at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 μm. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 μm. Conclusions: Monte Carlo simulations demonstrate

  3. Monte Carlo simulation of a compact microbeam radiotherapy system based on carbon nanotube field emission technology

    SciTech Connect

    Schreiber, Eric C.; Chang, Sha X.

    2012-08-15

    Purpose: Microbeam radiation therapy (MRT) is an experimental radiotherapy technique that has shown potent antitumor effects with minimal damage to normal tissue in animal studies. This unique form of radiation is currently only produced in a few large synchrotron accelerator research facilities in the world. To promote widespread translational research on this promising treatment technology we have proposed and are in the initial development stages of a compact MRT system that is based on carbon nanotube field emission x-ray technology. We report on a Monte Carlo based feasibility study of the compact MRT system design. Methods: Monte Carlo calculations were performed using EGSnrc-based codes. The proposed small animal research MRT device design includes carbon nanotube cathodes shaped to match the corresponding MRT collimator apertures, a common reflection anode with filter, and a MRT collimator. Each collimator aperture is sized to deliver a beam width ranging from 30 to 200 {mu}m at 18.6 cm source-to-axis distance. Design parameters studied with Monte Carlo include electron energy, cathode design, anode angle, filtration, and collimator design. Calculations were performed for single and multibeam configurations. Results: Increasing the energy from 100 kVp to 160 kVp increased the photon fluence through the collimator by a factor of 1.7. Both energies produced a largely uniform fluence along the long dimension of the microbeam, with 5% decreases in intensity near the edges. The isocentric dose rate for 160 kVp was calculated to be 700 Gy/min/A in the center of a 3 cm diameter target. Scatter contributions resulting from collimator size were found to produce only small (<7%) changes in the dose rate for field widths greater than 50 {mu}m. Dose vs depth was weakly dependent on filtration material. The peak-to-valley ratio varied from 10 to 100 as the separation between adjacent microbeams varies from 150 to 1000 {mu}m. Conclusions: Monte Carlo simulations

  4. Neutron imaging of ion transport in mesoporous carbon materials.

    PubMed

    Sharma, Ketki; Bilheux, Hassina Z; Walker, Lakeisha M H; Voisin, Sophie; Mayes, Richard T; Kiggans, Jim O; Yiacoumi, Sotira; DePaoli, David W; Dai, Sheng; Tsouris, Costas

    2013-07-28

    Neutron imaging is presented as a tool for quantifying the diffusion of ions inside porous materials, such as carbon electrodes used in the desalination process via capacitive deionization and in electrochemical energy-storage devices. Monolithic mesoporous carbon electrodes of ∼10 nm pore size were synthesized based on a soft-template method. The electrodes were used with an aqueous solution of gadolinium nitrate in an electrochemical flow-through cell designed for neutron imaging studies. Sequences of neutron images were obtained under various conditions of applied potential between the electrodes. The images revealed information on the direction and magnitude of ion transport within the electrodes. From the time-dependent concentration profiles inside the electrodes, the average value of the effective diffusion coefficient for gadolinium ions was estimated to be 2.09 ± 0.17 × 10(-11) m(2) s(-1) at 0 V and 1.42 ± 0.06 × 10(-10) m(2) s(-1) at 1.2 V. The values of the effective diffusion coefficient obtained from neutron imaging experiments can be used to evaluate model predictions of the ion transport rate in capacitive deionization and electrochemical energy-storage devices. PMID:23756558

  5. Dose verification in carcinoma of uterine cervix patients undergoing 3D conformal radiotherapy with Farmer type ion chamber

    PubMed Central

    Srinivas, Challapalli; Kumar, P Suman; Ravichandran, Ramamoorthy; Banerjee, S; Saxena, P.U; Kumar, E.S Arun; Pai, Dinesh K.

    2014-01-01

    External beam radiotherapy (EBRT) for carcinoma of uterine cervix is a basic line of treatment with three dimensional conformal radiotherapy (3DCRT) in large number of patients. There is need for an established method for verification dosimetry. We tried to document absorbed doses in a group of carcinoma cervix patients by inserting a 0.6 cc Farmer type ion chamber in the vaginal cavity. A special long perspex sleeve cap is designed to cover the chamber for using in the patient's body. Response of ionization chamber is checked earlier in water phantom with and without cap. Treatment planning was carried out with X-ray computed tomography (CT) scan and with the chamber along with cap in inserted position, and with the images Xio treatment planning system. Three measurements on 3 days at 5-6 fraction intervals were recorded in 12 patients. Electrometer measured charges are converted to absorbed dose at the chamber center, in vivo. Our results show good agreement with planned dose within 3% against prescribed dose. This study, is a refinement over our previous studies with transmission dosimetry and chemicals in ampules. This preliminary work shows promise that this can be followed as a routine dose check with special relevance to new protocols in the treatment of carcinoma cervix with EBRT. PMID:25525313

  6. Models of Ion Solvation Thermodynamics in Ethylene Carbonate and Propylene Carbonate.

    PubMed

    Arslanargin, Ayse; Powers, August; Beck, Thomas L; Rick, Steven W

    2016-03-01

    Ethylene carbonate (EC) and propylene carbonate (PC) are organic solvents used extensively in energy storage applications such as lithium-ion batteries and supercapacitors. Using statistical mechanical theory and computer simulations, this paper compares and contrasts the thermodynamics of ion solvation in EC and PC with the behavior observed in water. The EC and PC solvents are modeled with the AMBER (GAFF) force field. Ion-solvent interactions are treated with two point-charge models: one using an existing Lennard-Jones ion parameter set optimized for solvation in water, and the other based on high-level quantum calculations on ion-solvent dimers and fitting to a Buckingham-type potential form. The second model produces a coordination number for the Li(+) ion in closer agreement with experiment. Neither model yields consistently accurate solvation thermodynamic quantities (free energies, enthalpies, and entropies), however. The simulations and thermodynamic analysis illustrate key physical aspects of the solvation; the studies also point to necessary modifications of these simple models. In particular, the calculations show that polarization and associated dispersion forces are important and that well-optimized polarizable or quantum models are likely required to accurately reproduce condensed-phase properties of ions in these technologically important solvents. PMID:26292974

  7. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  8. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  9. Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells

    SciTech Connect

    Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

    2005-11-01

    Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The

  10. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  11. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  12. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes

    PubMed Central

    2016-01-01

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp3 content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g–1 (lithium) and 130 mAh g–1 (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation. PMID:27163042

  13. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.

    PubMed

    Licht, Stuart; Douglas, Anna; Ren, Jiawen; Carter, Rachel; Lefler, Matthew; Pint, Cary L

    2016-03-23

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp(3) content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g(-1) (lithium) and 130 mAh g(-1) (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation. PMID:27163042

  14. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    NASA Astrophysics Data System (ADS)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  15. Carbon nanotube/carbon nanotube composite AFM probes prepared using ion flux molding

    NASA Astrophysics Data System (ADS)

    Chesmore, Grace; Roque, Carrollyn; Barber, Richard

    The performance of carbon nanotube-carbon nanotube composite (CNT/CNT composite) atomic force microscopy (AFM) probes is compared to that of conventional Si probes in AFM tapping mode. The ion flux molding (IFM) process, aiming an ion beam at the CNT probe, aligns the tip to a desired angle. The result is a relatively rigid tip that is oriented to offset the cantilever angle. Scans using these probes reveal an improvement in image accuracy over conventional tips, while allowing higher aspect ratio imaging of 3D surface features. Furthermore, the lifetimes of CNT-CNT composite tips are observed to be longer than both conventional tips and those claimed for other CNT technologies. Novel applications include the imaging of embiid silk. Supported by the Clare Boothe Luce Research Scholars Award and Carbon Design Innovations.

  16. Sodium ion insertion in hollow carbon nanowires for battery applications.

    PubMed

    Cao, Yuliang; Xiao, Lifen; Sushko, Maria L; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V; Yang, Zhengguo; Liu, Jun

    2012-07-11

    Hollow carbon nanowires (HCNWs) were prepared through pyrolyzation of a hollow polyaniline nanowire precursor. The HCNWs used as anode material for Na-ion batteries deliver a high reversible capacity of 251 mAh g(-1) and 82.2% capacity retention over 400 charge-discharge cycles between 1.2 and 0.01 V (vs Na(+)/Na) at a constant current of 50 mA g(-1) (0.2 C). Excellent cycling stability is also observed at an even higher charge-discharge rate. A high reversible capacity of 149 mAh g(-1) also can be obtained at a current rate of 500 mA g(-1) (2C). The good Na-ion insertion property is attributed to the short diffusion distance in the HCNWs and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculations to enable Na-ion insertion in carbon materials. PMID:22686335

  17. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications

    SciTech Connect

    Cao, Yuliang; Xiao, Lifen; Sushko, Maria L.; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V.; Yang, Zhenguo; Liu, Jun

    2012-07-11

    Hollow Carbon Nanowires (HCNWs) were prepared through pyrolyzation of hollow polyaniline nanowires precursor. The HCNWs used as anode material for Na-ion batteries delivers a high reversible capacity of 251 mAh g{sup -1} and 82.2% capacity retention over 400 charge/discharge cycles between 1.2 and 0.01 V (vs. Na{sup +}/Na) at a constant current of 50 mA g{sup -1} (0.2 C). Excellent cycling stability is also observed at even higher charge-discharge rate. A high reversible capacity of 149 mAh g{sup -1} also can be obtained at a current rate of 500 mA g{sup -1} (2C). The good Na ion insertion property is attributed to the short diffusion distance in the HCNWs, and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculation to enable Na ion insertion in carbon materials.

  18. Low Energy Sputter Yields for Diamond, Carbon-Carbon Composite, and Molybdenum Subject to Xenon Ion Nombardment

    NASA Technical Reports Server (NTRS)

    Blandino, J.; Goodwin, D.; Garner, C.

    1999-01-01

    Sputter yields have been measured for polycrystalline diamond, single crystal diamond, a carbon-carbon composite, and molybdenum subject to bombardment with xenon. The tests were performed using a 3 cm Kaufman ion source to produce incident ions with energy in the range of 150 - 750 eV and profilometry based technique to measure the amount of sputtered material.

  19. Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Steven Snyder, John; Brophy, John R.

    2004-01-01

    Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.

  20. Carbon monoxide: an emerging regulator of ion channels

    PubMed Central

    Wilkinson, William J; Kemp, Paul J

    2011-01-01

    Abstract Carbon monoxide is rapidly emerging as an important cellular messenger, regulating a wide range of physiological processes. Crucial to its role in both physiology and disease is its ability differentially to regulate several classes of ion channels, including examples from calcium-activated K+ (BKCa), voltage-activated K+ (Kv) and Ca2+ channel (L-type) families, ligand-gated P2X receptors (P2X2 and P2X4), tandem P domain K+ channels (TREK1) and the epithelial Na+ channel (ENaC). The mechanisms by which CO regulates these ion channels are still unclear and remain somewhat controversial. However, available structure–function studies suggest that a limited range of amino acid residues confer CO sensitivity, either directly or indirectly, to particular ion channels and that cellular redox state appears to be important to the final integrated response. Whatever the molecular mechanism by which CO regulates ion channels, endogenous production of this gasotransmitter has physiologically important roles and is currently being explored as a potential therapeutic. PMID:21521759

  1. The Sensitivity of Marine Calcification to carbonate ion concentration

    NASA Astrophysics Data System (ADS)

    Langdon, C.

    2006-12-01

    It is now well established that the rate of calcification of biogenic calcification is a function of the carbonate ion concentration. This relationship has been best established in the case of corals. Data is now available for twelve species. For the purpose of comparison it is convenient to normalize the calcification rates to the rate achieved at the pre-industrial carbonate ion concentration of the surface tropical ocean taken for the purposes of this analysis to be 255 μmol kg-1. If the rates from all the available studies are processed in this way and then regressed against the carbonate ion concentration one obtains that the normalized calcification = -24.5+0.47[CO32-], r#2=0.74. From this relationship one can calculate that at the present time the rate of coral calcification may have declined by 19% relative to the pre-industrial rate and by the end of the century, if pCO2 reaches 700 μatm, it could decline by 54%. This assumes that any rise in sea surface temperature does not have a significant effect on coral calcification. At the present time this is a major source of uncertainty. Several studies show that corals are adapted to the mean annual temperature that they experience and the rate of calcification during the summer is depressed relative to the maximal rates observed during the spring and fall. In this scenario any increase in the mean annual temperature will result in a reduced annual rate of calcification. These studies show that the rate of calcification falls off at the rate of 24±17 % per °C once the temperature exceeds the species thermal optimum. Other studies based on long-lived massive corals widely used in paleo-climate reconstructions exhibit a linear relationship with temperature that shows no sign of tapering off at the highest temperatures for which data are available. At this time we do not know which pattern is more representative of the aggregate response of corals on a typical coral reef. It should not be forgotten that

  2. Assessment of Early Toxicity and Response in Patients Treated With Proton and Carbon Ion Therapy at the Heidelberg Ion Therapy Center Using the Raster Scanning Technique

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Nikoghosyan, Anna; Jensen, Alexandra; Haberer, Thomas; Jaekel, Oliver; Muenter, Marc W.; Welzel, Thomas; Debus, Juergen; Combs, Stephanie E.

    2011-12-01

    Puropose: To asses early toxicity and response in 118 patients treated with scanned ion beams to validate the safety of intensity-controlled raster scanning at the Heidelberg Ion Therapy Center. Patients and Methods: Between November 2009 and June 2010, we treated 118 patients with proton and carbon ion radiotherapy (RT) using active beam delivery. The main indications included skull base chordomas and chondrosarcomas, salivary gland tumors, and gliomas. We evaluated early toxicity within 6 weeks after RT and the initial clinical and radiologic response for quality assurance in our new facility. Results: In all 118 patients, few side effects were observed, in particular, no high numbers of severe acute toxicity were found. In general, the patients treated with particle therapy alone showed only a few single side effects, mainly Radiation Therapy Oncology Group/Common Terminology Criteria grade 1. The most frequent side effects and cumulative incidence of single side effects were observed in the head-and-neck patients treated with particle therapy as a boost and photon intensity-modulated RT. The toxicities included common radiation-attributed reactions known from photon RT, including mucositis, dysphagia, and skin erythema. The most predominant imaging responses were observed in patients with high-grade gliomas and those with salivary gland tumors. For skull base tumors, imaging showed a stable tumor outline in most patients. Thirteen patients showed improvement of pre-existing clinical symptoms. Conclusions: Side effects related to particle treatment were rare, and the overall tolerability of the treatment was shown. The initial response was promising. The data have confirmed the safe delivery of carbon ions and protons at the newly opened Heidelberg facility.

  3. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  4. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  5. How unequivocally do ion chromatography experiments determine carbon cluster geometries?

    SciTech Connect

    Strout, D.L.; Book, L.D.; Millam, J.M.; Xu, C.; Scuseria, G.E.

    1994-09-01

    Ion chromatography experiments on carbon clusters have provided a powerful tool for characterizing the products of the laser ablation of graphite. Using this technique, several families of carbon clusters have been observed, and their role in a plausible fullerene formation process has been hypothesized. In this work, we have examined the experimental mobility results from a theoretical perspective. Our most interesting finding is the existence of a family of three-dimensional 2 + 4 cycloaddition products whose members match the experimental mobilities of the so-called `ring III` family over a range of cluster sizes, whereas previous studies have asserted that the `ring III` clusters are planar. In agreement with previous research, we find that the `ring I` and `ring II` families consist of monocyclic and bicycle rings, respectively. However, these families should be broadly defined so as to include ring structures with carbon branches, because short carbon branches have only a negligible effect on cluster mobility. 28 refs., 6 figs., 6 tabs.

  6. EUD-based biological optimization for carbon ion therapy

    SciTech Connect

    Brüningk, Sarah C. Kamp, Florian; Wilkens, Jan J.

    2015-11-15

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  7. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Qingfeng; Li, Qiang; Jin, Xiaodong; Liu, Xinguo; Dai, Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  8. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  9. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    PubMed

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  10. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci.

    PubMed

    Lopez Perez, Ramon; Best, Gerrit; Nicolay, Nils H; Greubel, Christoph; Rossberger, Sabrina; Reindl, Judith; Dollinger, Günther; Weber, Klaus-Josef; Cremer, Christoph; Huber, Peter E

    2016-08-01

    Carbon ion radiation is a promising new form of radiotherapy for cancer, but the central question about the biologic effects of charged particle radiation is yet incompletely understood. Key to this question is the understanding of the interaction of ions with DNA in the cell's nucleus. Induction and repair of DNA lesions including double-strand breaks (DSBs) are decisive for the cell. Several DSB repair markers have been used to investigate these processes microscopically, but the limited resolution of conventional microscopy is insufficient to provide structural insights. We have applied superresolution microscopy to overcome these limitations and analyze the fine structure of DSB repair foci. We found that the conventionally detected foci of the widely used DSB marker γH2AX (Ø 700-1000 nm) were composed of elongated subfoci with a size of ∼100 nm consisting of even smaller subfocus elements (Ø 40-60 nm). The structural organization of the subfoci suggests that they could represent the local chromatin structure of elementary DSB repair units at the DSB damage sites. Subfocus clusters may indicate induction of densely spaced DSBs, which are thought to be associated with the high biologic effectiveness of carbon ions. Superresolution microscopy might emerge as a powerful tool to improve our knowledge of interactions of ionizing radiation with cells.-Lopez Perez, R., Best, G., Nicolay, N. H., Greubel, C., Rossberger, S., Reindl, J., Dollinger, G., Weber, K.-J., Cremer, C., Huber, P. E. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. PMID:27166088

  11. Robustness of Target Dose Coverage to Motion Uncertainties for Scanned Carbon Ion Beam Tracking Therapy of Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-01-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from 6 lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high (V̄95 was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15 degree delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems. PMID:25650520

  12. Carbon stripper foils for heavy-ion accelerators

    SciTech Connect

    Thomas, G.E.

    1980-01-01

    Carbon stripper foils have for many years been successfully used with accelerators because they yield higher average charge states than gas strippers. However, with the development of heavy ion accelerators and the resulting use of heavier ions, the carbon stripper foil lifetimes are greatly reduced. Even when using the new foils changer systems, which typically contain two hundred foils or more, it becomes necessary to have frequent accelerator shutdowns for foil reloading. The rate of experiment interruption makes it clear a new approach is necessary to increase foil lifetimes. Several techniques have been tried with varying degrees of success to strengthen these foils so that they will last longer; the most successful one reported a lifetime increase of the order of a factor of 30 over foils produced in the conventional manner. Methods of producing various types of foils will be presented, a discussion will be given on theories for foil breakage, and some new ideas will be introduced for further increasing foil lifetimes.

  13. The change of microstructure and thermal properties in ion irradiated carbon nanotube mats as a function of ion penetration depth

    SciTech Connect

    Aitkaliyeva, A.; Shao, L.

    2013-02-11

    A stack of three carbon nanotube (CNT) mats was irradiated with 3 MeV He ions. The change in structural and thermal properties of individual mats as a function of ion penetration depth was characterized using electron microscopy and laser flash techniques. Ion irradiation can enhance thermal conductivity of the mats by introducing inter-tube displacements, which improve phonon transport across adjacent nanotubes. The enhancement, however, is reduced at higher damage levels due to the increasing phonon-defect scattering within the tubes. This study demonstrates the feasibility of using ion irradiation to manipulate thermal transport in carbon nanotubes.

  14. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2013-10-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x<6) were found to dominate the Cxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was <0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  15. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells

    PubMed Central

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S.; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-01-01

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC. PMID:26065573

  16. Exposure to Carbon Ions Triggers Proinflammatory Signals and Changes in Homeostasis and Epidermal Tissue Organization to a Similar Extent as Photons

    PubMed Central

    Simoniello, Palma; Wiedemann, Julia; Zink, Joana; Thoennes, Eva; Stange, Maike; Layer, Paul G.; Kovacs, Maximilian; Podda, Maurizio; Durante, Marco; Fournier, Claudia

    2016-01-01

    The increasing application of charged particles in radiotherapy requires a deeper understanding of early and late side effects occurring in skin, which is exposed in all radiation treatments. We measured cellular and molecular changes related to the early inflammatory response of human skin irradiated with carbon ions, in particular cell death induction and changes in differentiation and proliferation of epidermal cells during the first days after exposure. Model systems for human skin from healthy donors of different complexity, i.e., keratinocytes, coculture of skin cells, 3D skin equivalents, and skin explants, were used to investigate the alterations induced by carbon ions (spread-out Bragg peak, dose-averaged LET 100 keV/μm) in comparison to X-ray and UV-B exposure. After exposure to ionizing radiation, in none of the model systems, apoptosis/necrosis was observed. Carbon ions triggered inflammatory signaling and accelerated differentiation of keratinocytes to a similar extent as X-rays at the same doses. High doses of carbon ions were more effective than X-rays in reducing proliferation and inducing abnormal differentiation. In contrast, changes identified following low-dose exposure (≤0.5 Gy) were induced more effectively after X-ray exposure, i.e., enhanced proliferation and change in the polarity of basal cells. PMID:26779439

  17. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    PubMed

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-01-01

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC. PMID:26065573

  18. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  19. Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams.

    PubMed

    Kano, M; Matsushita, K; Rahmutulla, B; Yamada, S; Shimada, H; Kubo, S; Hiwasa, T; Matsubara, H; Nomura, F

    2016-01-01

    Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late

  20. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation.

    PubMed

    Averbeck, Nicole B; Topsch, Jana; Scholz, Michael; Kraft-Weyrather, Wilma; Durante, Marco; Taucher-Scholz, Gisela

    2016-01-01

    Radiotherapy of solid tumors with charged particles holds several advantages in comparison to photon therapy; among them conformal dose distribution in the tumor, improved sparing of tumor-surrounding healthy tissue, and an increased relative biological effectiveness (RBE) in the tumor target volume in the case of ions heavier than protons. A crucial factor of the biological effects is DNA damage, of which DNA double-strand breaks (DSBs) are the most deleterious. The reparability of these lesions determines the cell survival after irradiation and thus the RBE. Interestingly, using phosphorylated H2AX as a DSB marker, our data in human fibroblasts revealed that after therapy-relevant spread-out Bragg peak irradiation with carbon ions DSBs are very efficiently rejoined, despite an increased RBE for cell survival. This suggests that misrepair plays an important role in the increased RBE of heavy-ion radiation. Possible sources of erroneous repair will be discussed. PMID:26904506

  1. Electrochemical Intercalation of Lithium Ions into Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Allen, J. L.; Sumanasekera, G. U.; Rao, A. M.; Fang, S.; Eklund, P. C.

    1998-03-01

    We have investigated the electrochemical intercalation of lithium ions into ropes of single-walled carbon nanotubes (SWNTs) in a standard three electrode cell. The SWNT mat pressed onto a Pt plate was the working electrode. Lithium was used at both the counter and reference electrodes, and 1M LiAsF6 in ethylene carbonate:diethyl carbonate (1:1 by volume) served as the electrolyte. Raman spectra of the SWNTs were recorded in situ as a function of electrochemical charge using 514.5 nm excitation. During galvanostatic intercalation, we observed a relatively steep decrease in voltage until a plateau at around 1.2 V is reached. We attribute this initial decrease to the intercalation of lithium into SWNT and a concurrent electron doping of the SWNT π band. In the Raman spectrum, as the voltage reaches 1.2 V, the tangential mode frequency down shifted from 1593 cm-1 to 1591 cm-1 consistent with electron addition to the π^* band. We speculate that surface reactions of the lithium doped SWNT and the electrolyte are occuring during the plateau. During the evolution of the plateau, the Raman signal of the tangential mode gradually diminishes without further downshift of the its frequency and eventually disappears completely. Cyclic voltammograms show a minimum at around 1.2 V and peaks at around 0.7 V and 1.7 V. The origin of this structure is not presently understood.

  2. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  3. Chromosome aberrations in human lymphocytes from the plateau region of the Bragg curve for a carbon-ion beam

    NASA Astrophysics Data System (ADS)

    Manti, L.; Durante, M.; Grossi, G.; Pugliese, M.; Scampoli, P.; Gialanella, G.

    2007-06-01

    Radiotherapy with high-energy carbon ion beams can be more advantageous compared to photons because of better physical dose distribution and higher biological efficiency in tumour cell sterilization. Despite enhanced normal tissue sparing, damage incurred by normal cells at the beam entrance is unavoidable and may affect the progeny of surviving cells in the form of inheritable cytogenetic alterations. Furthermore, the quality of the beam along the Bragg curve is modified by nuclear fragmentation of projectile and target nuclei in the body. We present an experimental approach based on the use of a polymethylmethacrylate (PMMA) phantom that allows the simultaneous exposure to a particle beam of several biological samples positioned at various depths along the beam path. The device was used to measure the biological effectiveness of a 60 MeV/amu carbon-ion beam at inducing chromosomal aberrations in G0-human peripheral blood lymphocytes. Chromosome spreads were obtained from prematurely condensed cells and all structural aberration types were scored in Fluorescence in situ Hybridization (FISH)-painted chromosomes 1 and 2. Our results show a marked increase with depth in the aberration frequency prior to the Bragg peak, which is consistent with a linear energy transfer (LET)-dependent increase in biological effectiveness.

  4. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy.

    PubMed

    Gallas, Raya R; Hünemohr, Nora; Runz, Armin; Niebuhr, Nina I; Jäkel, Oliver; Greilich, Steffen

    2015-12-01

    With the increasing complexity of external beam therapy "end-to-end" tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification. PMID:26189015

  5. Glutathione Depletion and Carbon Ion Radiation Potentiate Clustered DNA Lesions, Cell Death and Prevent Chromosomal Changes in Cancer Cells Progeny

    PubMed Central

    Hanot, Maïté; Boivin, Anthony; Malésys, Céline; Beuve, Michaël; Colliaux, Anthony; Foray, Nicolas; Douki, Thierry; Ardail, Dominique; Rodriguez-Lafrasse, Claire

    2012-01-01

    Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape. This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and l-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the

  6. Impact of track structure calculations on biological treatment planning in ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Elsässer, Thilo; Cunrath, Richard; Krämer, Michael; Scholz, Michael

    2008-07-01

    Treatment planning for ion therapy requires precise knowledge about the biological effectiveness of particle beams, which is strongly determined by the microscopic radial energy deposition around individual ion tracks. We analyse different amorphous track structure models based on simple analytical formulae as well as on radial dose distributions derived by means of Monte Carlo simulations. Moreover, these track structure representations are used as input for the local effect model (LEM) in order to determine their impact on the relative biological effectiveness (RBE) of cell inactivation. It demonstrates the relevance of the inner part of the ion track with a radius of the order of a few nanometres. We show that simple analytical formulae for the radial dose distributions give good results for the prediction of cell inactivation. However, they strongly depend on the assumptions about the local dose in the track core. Additionally, we discuss the interdependence of track structure calculations with other model constituents such as target size and the choice of the biological input data for conventional photon irradiation.

  7. Glass carbon surface modified by the fluorine ion irradiation

    NASA Astrophysics Data System (ADS)

    Teranishi, Yoshikazu; Ishizuka, Masanori; Kobayashi, Tomohiro; Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo

    2012-02-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word "TIRI". The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ˜ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  8. Measurement of large angle fragments induced by 400 MeV n-1 carbon ion beams

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Andrey; Consiglio, Lucia; De Lellis, Giovanni; Di Crescenzo, Antonia; Lauria, Adele; Montesi, Maria Cristina; Patera, Vincenzo; Sirignano, Chiara; Tioukov, Valeri

    2015-09-01

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy. We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material. Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n-1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°-81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here.

  9. Effects of Carbon Ions on Primary Cultures of Mouse Brain Cells

    NASA Astrophysics Data System (ADS)

    Nojima, K.; Ando, K.; Fujiwara, H.; Ando, S.

    Primary mixed cultures of astrocytes and microglia were obtained from neonatal mice, and were irradiated with high-LET carbon ions. Immunohistochemical staining showed astrocytes survived more prominently than microglia. Tagged with specific antibodies, astrocytes and microglia surviving after irradiation were counted by flow cytometry. Decreases in the number of microglia and astrocytes were detected at a dose as small as 2 Gy when Day 5 cultures were irradiated with 13 keV/μm carbon ions. When the cultures were irradiated on Day 10, the dose-dependent decrease of microglia was more prominent for 13 keV/μun carbon ions than 70 keV/μm carbon ions. Astrocytes showed a marginal decrease at Day 10 and Day 14. We concluded that microglia are more sensitive than astrocytes to carbon ions and X-rays, and that the radiosensitivity of microglia depends on both differentiation/proliferation status and radiation quality

  10. Carbon nanotube film anodes for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yoon, Sora; Lee, Sehyun; Kim, Soyoung; Park, Kyung-Won; Cho, Daehwan; Jeong, Youngjin

    2015-04-01

    In this study, carbon nanotube (CNT) film anodes are prepared for use in flexible lithium ion batteries, and the electrochemical performance of the CNT film anodes is evaluated. The CNT films are synthesized via chemical vapor deposition and direct spinning. The films are heat-treated under a nitrogen atmosphere at a high temperature to study the effects of heat treatment on the battery performance. The electrodes made with the CNT films are characterized via charge-discharge test, cyclic voltammetry, and impedance measurement. The results indicate that batteries with films heat-treated under a nitrogen atmosphere show a higher capacity, which can be a result of their high crystalline perfection. The impedance analysis shows that a lower resistance at the interface can be obtained by using heat-treated films. The charge-discharge tests are carried out by adjusting the rate from C/2 to 10C, and when the rate slows from 10C to 1C, the capacity of the samples largely recovers. The nitrogen/heat-treated CNT film electrodes present a capacity that is twice as high, such as 2C, 5C, and 10C, than untreated CNT film electrodes. These results indicate that the carbon nanotube film anodes have high potential for use in portable and wearable computers due to their flexibility.

  11. Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate

    SciTech Connect

    Mesbah, Adel; Cau-dit-Coumes, Celine; Frizon, Fabien

    2012-08-15

    Decommissioning of old nuclear reactors may produce waste streams containing chlorides and carbonates, including radioactive {sup 36}Cl{sup -} and {sup 14}CO{sub 3}{sup 2-}. Their insolubilization by calcium monosulfoaluminate hydrate was investigated. Carbonates were readily depleted from the solution, giving at thermodynamic equilibrium monocarboaluminate, monocarboaluminate + calcite, or calcite only, depending on the initial ratio between the anion and calcium monosulfoaluminate hydrate. Chloride ions reacted more slowly and were precipitated as Kuzel's salt, Kuzel's and Friedel's salts, or Friedel's salt only. Rietveld refinement of X-Ray powder diffraction patterns was successfully used to quantify the phase distributions, which were compared to thermodynamic calculations. Moreover, analysing the lattice parameters of Kuzel's salt as a function of its chloride content showed the occurrence of a restricted solid solution towards the sulfate side with general formula 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}xCaCl{sub 2}{center_dot}(1 - x)CaSO{sub 4}{center_dot}(12 - 2x){center_dot}H{sub 2}O (0.36 {<=} x {<=} 0.50).

  12. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    NASA Astrophysics Data System (ADS)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  13. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  14. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2014-03-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vaporization with an Aerodyne high-resolution soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vaporizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial fullerene-enriched soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x < 6) were found to dominate the Cxn+ distribution. For fullerene soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x ≫ 6 were present, with significant contributions from multiply charged ions (n > 1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+ / C3+ could be used to predict whether significant Cxn+ signals with x > 5 were present. When such signals were present, C1+ / C3+ was close to 1. When absent, C1+ / C3+ was < 0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake and heterogeneous chemistry. If atmospherically stable, these oxidized species may be useful for distinguishing

  15. Beam Quality Requirements of Dosage Control in Laser Ion Acceleration for Radiotherapy

    NASA Astrophysics Data System (ADS)

    Su, Jao-Jang; Shao, Xi; Liu, Tung-Chang; Liu, Chuan; Chen, C. D.; Wilks, Scott

    2010-11-01

    Ion beam accelerated by laser solid target interaction has vested interested in medical applications. Particle therapy for cancer treatment is one of the most promising prospects. Typical proton beam energy spread for cancer treatment is Delta E / E ˜ 0.2% for synchrotron accelerator and Delta E / E ˜1% for cyclotron after energy selection system. Passive scattering irradiation mechanism is a common practice to induce SOBP (spread out Bragg peak) for cancer treatment. We examine depth and lateral dose distribution of hardons energized by radiation pressure via various energy selection criteria. Monte Carol codes use PIC simulation results as the input of particle beams. Dose uniformity, distal falloff and lateral penumbra are discussed in related to beam energy spread, emittance and entrance spot size will be presented.

  16. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  17. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells.

    PubMed

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated (13)C-ions at the Grand Accélérateur National d'Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  18. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  19. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  20. Experimental investigation of ionisation track structure of carbon ions at HIL Warsaw.

    PubMed

    Bantsar, A; Hilgers, G; Pszona, S; Rabus, H; Szeflinski, Z

    2015-09-01

    In view of the upcoming radiation therapy with carbon ions, the ionisation structure of the carbon ion track at the nanometre scale is of particular interest. Two different nanodosimeters capable of measuring track structure of ionising particles in a gas target equivalent to a nanometric site in condensed matter were involved in the presented experimental investigation, namely the NCBJ Jet Counter and the PTB Ion Counter. At the accelerator facility of the HIL in Warsaw, simulated nanometric volumes were irradiated with carbon ions of 45 and 76 MeV of kinetic energy, corresponding to a range in the tissue of ∼85 µm and ∼190 µm, respectively. The filling gas of both nanodosimeters' ionisation volume was molecular nitrogen N2, and the ionisation cluster size distributions, i.e. the statistical distribution of the number of ionizations produced by one single primary carbon ion in the filling gas, were measured for the two primary particle energies. PMID:25897141

  1. Calculation of stopping power ratios for carbon ion dosimetry

    NASA Astrophysics Data System (ADS)

    Geithner, Oksana; Andreo, P.; Sobolevsky, N.; Hartmann, G.; Jäkel, O.

    2006-05-01

    Water-to-air stopping power ratio calculations for the ionization chamber dosimetry of clinical carbon ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used, which is a newly developed version where substantial modifications were implemented on its predecessor SHIELD-HIT v1 (Gudowska et al 2004 Phys. Med. Biol. 49 1933-58). The code was completely rewritten replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe-Bloch formula, thus widening its range for medical dosimetry applications. In addition, the code includes optionally MSTAR and ICRU-73 stopping power data. The fragmentation model was verified and its parameters were also adjusted. The present code version shows excellent agreement with experimental data. It has been used to compute the physical quantities needed for the calculation of stopping power ratios, swater,air, of carbon beams. Compared with the recommended constant value given in the IAEA Code of Practice, the differences found in the present investigations varied between 0.5% and 1% at the plateau region, respectively for 400 MeV/u and 50 MeV/u beams, and up to 2.3% in the vicinity of the Bragg peak for 50 MeV/u.

  2. Calculation of stopping power ratios for carbon ion dosimetry.

    PubMed

    Geithner, Oksana; Andreo, P; Sobolevsky, N; Hartmann, G; Jäkel, O

    2006-05-01

    Water-to-air stopping power ratio calculations for the ionization chamber dosimetry of clinical carbon ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used, which is a newly developed version where substantial modifications were implemented on its predecessor SHIELD-HIT v1 (Gudowska et al 2004 Phys. Med. Biol. 49 1933-58). The code was completely rewritten replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe-Bloch formula, thus widening its range for medical dosimetry applications. In addition, the code includes optionally MSTAR and ICRU-73 stopping power data. The fragmentation model was verified and its parameters were also adjusted. The present code version shows excellent agreement with experimental data. It has been used to compute the physical quantities needed for the calculation of stopping power ratios, s(water,air), of carbon beams. Compared with the recommended constant value given in the IAEA Code of Practice, the differences found in the present investigations varied between 0.5% and 1% at the plateau region, respectively for 400 MeV/u and 50 MeV/u beams, and up to 2.3% in the vicinity of the Bragg peak for 50 MeV/u. PMID:16625042

  3. Structural Modification of Single Wall and Multiwalled Carbon Nanotubes under Carbon, Nickel and Gold Ion Beam Irradiation

    SciTech Connect

    Jeet, Kiran; Jindal, V. K.; Dharamvir, Keya; Bharadwaj, L. M.

    2011-12-12

    Thin film samples of carbon nanotubes were irradiated with ion beam of carbon, nickel and gold. The irradiation results were characterized using Raman Spectroscopy. Modifications of the disorder mode (D mode) and the tangential mode (G mode) under different irradiation fluences were studied in detail. Raman results of carbon ion beam indicate the interesting phenomenon of ordering of the system under irradiation. Under the effect of nickel and gold ion irradiation, the structural evolution of CNTs occurs in three different stages. At lower fluences the process of healing occurs; at intermediate fluences damages on the surface of CNTs occurs and finally at very high fluences of the order of 1x10{sup 14} ions/cm{sup 2} the system gets amorphised.

  4. Transport of Sputtered Carbon During Ground-Based Life Testing of Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Marker, Colin L.; Clemons, Lucas A.; Banks, Bruce A.; Miller, Sharon; Snyder, Aaron; Hung, Ching-Cheh; Karniotis, Christina A.; Waters, Deborah L.

    2005-01-01

    High voltage, high power electron bombardment ion thrusters needed for deep space missions will be required to be operated for long durations in space as well as during ground laboratory life testing. Carbon based ion optics are being considered for such thrusters. The sputter deposition of carbon and arc vaporized carbon flakes from long duration operation of ion thrusters can result in deposition on insulating surfaces, causing them to become conducting. Because the sticking coefficient is less than one, secondary deposition needs to be considered to assure that shorting of critical components does not occur. The sticking coefficient for sputtered carbon and arc vaporized carbon is measured as well as directional ejection distribution data for carbon that does not stick upon first impact.

  5. Carbons for lithium ion cells prepared using sepiolite as an inorganic template.

    SciTech Connect

    Sandi, G.

    1998-12-09

    Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

  6. Ion beam deposition of amorphous carbon films with diamond like properties

    NASA Technical Reports Server (NTRS)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  7. G(2)-M phase-correlative bystander effects are co-mediated by DNA-PKcs and ATM after carbon ion irradiation.

    PubMed

    Tu, Wenzhi; Dong, Chen; Konishi, Teruaki; Kobayashi, Alisa; Furusawa, Yoshiya; Uchihori, Yukio; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Shao, Chunlin

    2016-01-01

    Accumulated evidence has shown that radiation-induced bystander effect (RIBE) may have significant implications to the efficiency of radiotherapy. Although cellular radiosensitivity relies on cell cycle status, it is largely unknown how about the relationship between RIBE and cell cycle distribution, much less the underlying mechanism. In the present study, the lung cancer A549 cells were synchronized into different cell cycle phases of G1, S and G2/M and irradiated with high linear energy transfer (LET) carbon ions. By treating nonirradiated cells with the conditioned medium from these irradiated cells, it was found that the G2-M phase cells had the largest contribution to RIBE. Meanwhile, the activity of DNA-PKcs but not ATM was increased in the synchronized G2-M phase cells in spite of both of them were activated in the asynchronous cells after carbon ion irradiation. When the G2-M phased cells were transferred with DNA-PKcs siRNA and ATM siRNA individually or treated with an inhibitor of either DNA-PKcs or ATM before carbon ion irradiation, the RIBE was effectively diminished. These results provide new evidence linking cell cycle to bystander responses and demonstrate that DNA-PKcs and ATM are two associated factors in co-regulating G2-M phase-related bystander effects. PMID:26774662

  8. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    SciTech Connect

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  9. Dehydration of Ions in Voltage-Gated Carbon Nanopores Observed by in Situ NMR.

    PubMed

    Luo, Zhi-Xiang; Xing, Yun-Zhao; Liu, Shubin; Ling, Yan-Chun; Kleinhammes, Alfred; Wu, Yue

    2015-12-17

    Ion transport through nanochannels is of fundamental importance in voltage-gated protein ion channels and energy storage devices. Direct microscopic observations are critical for understanding the intricacy of ionic processes in nanoconfinement. Here we report an in situ nuclear magnetic resonance study of ion hydration in voltage-gated carbon nanopores. Nucleus-independent chemical shift was employed to monitor the ionic processes of NaF aqueous electrolyte in nanopores of carbon supercapacitors. The state of ion hydration was revealed by the chemical shift, which is sensitive to the hydration number. A large energy barrier was observed for ions to enter nanopores smaller than the hydrated ion size. Increasing the gating voltage above 0.4 V overcomes this barrier and brings F(-) into the nanopores without dehydration. Partial dehydration of F(-) occurs only at gating voltage above 0.7 V. No dehydration was observed for Na(+) cations, in agreement with their strong ion hydration. PMID:26629712

  10. Effects of carbon ion irradiation and X-ray irradiation on the ubiquitylated protein accumulation.

    PubMed

    Isozaki, Tetsuro; Fujita, Mayumi; Yamada, Shigeru; Imadome, Kaori; Shoji, Yoshimi; Yasuda, Takeshi; Nakayama, Fumiaki; Imai, Takashi; Matsubara, Hisahiro

    2016-07-01

    C-ion radiotherapy is associated with improved local control and survival in several types of tumors. Although C-ion irradiation is widely reported to effectively induce DNA damage in tumor cells, the effects of irradiation on proteins, such as protein stability or degradation in response to radiation stress, remain unknown. We aimed to compare the effects of C-ion and X-ray irradiation focusing on the cellular accumulation of ubiquitylated proteins. Cells from two human colorectal cancer cell lines, SW620 and SW480, were subjected to C-ion or X-ray irradiation and determination of ubiquitylated protein levels. High levels of ubiquitylated protein accumulation were observed in the C-ion-irradiated SW620 with a peak at 3 Gy; the accumulation was significantly lower in the X-ray-irradiated SW620 at all doses. Enhanced levels of ubiquitylated proteins were also detected in C-ion or X-ray-irradiated SW480, however, those levels were significantly lower than the peak detected in the C-ion-irradiated SW620. The levels of irradiation-induced ubiquitylated proteins decreased in a time-dependent manner, suggesting that the proteins were eliminated after irradiation. The treatment of C-ion-irradiated SW620 with a proteasome inhibitor (epoxomicin) enhanced the cell killing activity. The accumulated ubiquitylated proteins were co-localized with γ-H2AX, and with TP53BP1, in C-ion-irradiated SW620, indicating C-ion-induced ubiquitylated proteins may have some functions in the DNA repair system. Overall, we showed C-ion irradiation strongly induces the accumulation of ubiquitylated proteins in SW620. These characteristics may play a role in improving the therapeutic ratio of C-ion beams; blocking the clearance of ubiquitylated proteins may enhance sensitivity to C-ion radiation. PMID:27175736