Science.gov

Sample records for carbon isotope content

  1. The Stable and Radio- Carbon Isotopic Content of Labile and Refractory Carbon in Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    McNichol, A. P.; Rosenheim, B. E.; Gerlach, D. S.; Hayes, J. M.

    2006-12-01

    Studies of the isotopic content of atmospheric particulate matter are hampered by difficulties in chemically defining the pools of carbon and analytically isolating the different pools. We are conducting studies on reference materials and atmospheric aerosol samples to develop a method to measure stable and radio- carbon isotopes on the labile and refractory carbon. We are using a flow-through combustion system that allows us to combust, collect and measure the isotopic content of the gases produced at all stages of heating/oxidizing. We compare our results to those measured using a chemothermal oxidation method (CTO) (Gustafsson et al., 2001). In this method, refractory carbon is defined as the material remaining after pre- combusting a sample at 375°C in the presence of oxygen for 24 hours. The reference materials are diesel soot, apple leaves and a hybrid of the two (DiesApple), all from NIST. These provide carbon with two well-defined fractions -- the soot provides refractory carbon that is radiocarbon dead and the apple leaves provide organic carbon that is radiocarbon modern. Radiocarbon results from DiesApple indicate that the "refractory" carbon defined by the CTO method is actually a mixture of old and modern carbon that contains over 25% modern carbon. This suggests that charred material formed from the apples leaves during the pre-combustion step is contributing to the fraction we identify as refractory carbon. We are studying this by analyzing the individual materials and the mixture using our flow-through system. First results with this system indicate that the refractory fraction trapped from the DiesApple contains much less modern carbon than the CTO method, less than 7%. We will present detailed concentration and isotopic results of the generation of carbon dioxide during programmed combustion of each of the reference materials. We studied the radiocarbon content of both the total carbon (TC) and refractory carbon in the fine particulate matter (PM

  2. The carbon isotopes ratio and trace metals content determinations in some Transylvanian fruit juices

    NASA Astrophysics Data System (ADS)

    Dehelean, A.; Magdas, D. A.; Cristea, G.

    2012-02-01

    This work presents a preliminary study on the carbon isotope signature and trace metal content investigated on the soil-plant-fruit pulp chain. The samples were collected from two Transylvanian areas namely Alba and Salaj. The average value of the δ13C at the soil surface was around δ13C ≈ -27%° and important differences of the δ13C values between the two studied areas were not observed. Meanwhile, differences between fruit pulp of grape juice and the pulp of pear juice relived a difference of about 1.5%° for δ13C values.

  3. Environmental forcing does not lead to variation in carbon isotope content of forest soil respiration

    NASA Astrophysics Data System (ADS)

    Bowling, David; Egan, Jocelyn; Hall, Steven; Risk, David

    2015-04-01

    Recent studies have highlighted fluctuations in the carbon isotope content (δ13C) of CO2 produced by soil respiration. These have been correlated with diel cycles of environmental forcing (e.g., soil temperature), or with synoptic weather events (e.g., rain events and pressure-induced ventilation). We used an extensive suite of observations to examine these phenomena over two months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux site). Measurements included automated soil respiration chambers and automated measurements of the soil gas profile. We found 1) no diel change in the δ13C of the soil surface flux or the CO2 produced in the soil (despite strong diel change in surface flux rate), 2) no change in δ13C following wetting (despite a significant increase in soil flux rate), and 3) no evidence of pressure-induced ventilation of the soil. Measurements of the δ13C of surface CO2 flux agreed closely with the isotopic composition of soil CO2 production calculated using soil profile measurements. Temporal variation in the δ13C of surface flux was relatively minor and unrelated to measured environmental variables. Deep in the soil profile, results conform to established theory regarding diffusive soil gas transport and isotopic fractionation, and suggest that sampling soil gas at a depth of several tens of centimeters is a simple and effective way to assess the mean δ13C of the surface flux.

  4. Variability in magnesium, carbon and oxygen isotope compositions, and trace element contents of brachiopod shells: implications for paleoceanographic studies

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe

    2016-04-01

    Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best

  5. Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2014-09-15

    Rutin, a plant secondary metabolite that is used in cosmetics and food additive and has known medicinal properties, protects plants from UV-B radiation and diseases. Rutin has been suggested to have potential in weed management, but its mode of action at physiological level is unknown. Here, we report the biochemical, physiological and oxidative response of Arabidopsis thaliana to rutin at micromolar concentrations. It was found that fresh weight; leaf mineral contents (nitrogen, sodium, potassium, copper and aluminum) were decreased following 1 week exposure to rutin. Arabidopsis roots generate significant amounts of reactive oxygen species after rutin treatment, consequently increasing membrane lipid peroxidation, decreasing leaf Ca(2+), Mg(2+), Zn(2+), Fe(2+) contents and losing root viability. Carbon isotope composition in A. thaliana leaves was less negative after rutin application than the control. Carbon isotope discrimination values were decreased following rutin treatment, with the highest reduction compared to the control at 750μM rutin. Rutin also inhibited the ratio of CO2 from leaf to air (ci/ca) at all concentrations. Total protein contents in A. thaliana leaves were decreased following rutin treatment. It was concluded carbon isotope discrimination coincided with protein degradation, increase lipid peroxidation and a decrease in ci/ca values may be the primary action site of rutin. The present results suggest that rutin possesses allelopathic potential and could be used as a candidate to develop environment friendly natural herbicide. PMID:25046753

  6. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  7. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; Risk, D. A.

    2015-08-01

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ13C) of CO2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO2 and δ13C of CO2 in the soil efflux, the soil gas profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ13C of the soil efflux (δR) or the CO2 produced by biological activity in the soil (δJ). Following rain, soil efflux increased significantly, but δR and δJ did not change. Temporal variation in the δ13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ13C of the soil efflux relative to δ13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.

  8. Carbon Isotope Ratiometer

    SciTech Connect

    Dr. Anthony O'Keefe

    2001-05-07

    This Report details the design of a optical analyzer capable of measuring and recording the carbon 13/12 isotope ratio in atmospheric carbon dioxide. The system can operate in remote modes for long duration and will transmit real-time data via wireless contact.

  9. Testing of an automated online EA-IRMS method for fast and simultaneous carbon content and stable isotope measurement of aerosol samples

    NASA Astrophysics Data System (ADS)

    Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály

    2016-04-01

    Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment

  10. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  11. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-02-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems. PMID:11536629

  12. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed Central

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems. PMID:11536629

  13. Variable Carbon Isotopes in ALH84001 Carbonates

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L. A.; Guan, Y.

    2002-12-01

    The Martian meteorite ALH84001 contains a small amount of carbonate that was deposited from aqueous fluids on the Martian surface approximately 3.9 Ga.. McKay et al. (1996) proposed evidence for the existence of life preserved within the carbonate grains. In order to determine the nature of the ancient Martian aqueous system we have combined previously collected oxygen isotopic data with new carbon isotopic measurements performed on the Cameca 6f ion microprobe at Arizona State University. Isotopic measurements were made at high mass resolution with a spot size of 10 microns. The measured carbon isotopic values range from 29.2‰ to 64.5‰ (PDB) with an average uncertainty of +/-1.6‰ (1σ ). These data agree very well with previous acid dissolution and stepped combustion experiments which range from a δ13C of +32‰ to +41‰ . As observed with the oxygen isotopic data, the carbon isotopic composition is correlated with the chemical composition of the carbonates. This allows us to establish that the earliest (Ca-rich) carbonates had the lightest carbon isotopic composition while the latest forming (Mg-rich) carbonates had the heaviest carbon isotopic composition. The large range of carbon isotopic compositions measured in this study cannot be explained by previously proposed models. Temperature change or a Rayleigh distillation process caused by progressive carbonate precipitation are insufficient to create the observed carbon isotopic compositions. Furthermore, processes such as evaporation or photosynthesis will not produce large carbon isotopic variations due to rapid isotopic equilibration with the atmosphere. We propose two possible models for the formation of the ALH84001 carbonates consistent with the isotopic data collected thus far. Carbonates could have formed from an evolving system where the carbon and oxygen isotopic composition of the carbonates reflects a mixing between magmatic hydrothermal fluids and fluids in equilibrium with an isotopically

  14. Deep Ocean Circulation and Nutrient Contents from Atlantic-Pacific Gradients of Neodymium and Carbon Isotopes During the Last 1 Ma

    NASA Astrophysics Data System (ADS)

    Piotrowski, A. M.; Elderfield, H.; Howe, J. N. W.

    2014-12-01

    The last few million years saw changing boundary conditions to the Earth system which set the stage for bi-polar glaciation and Milankovich-forced glacial-interglacial cycles which dominate Quaternary climate variability. Recent studies have highlighted the relative importance of temperature, ice volume and ocean circulation changes during the Mid-Pleistocene Transition at ~900 ka (Elderfield et al., 2012, Pena and Goldstein, 2014). Reconstructing the history of global deep water mass propagation and its carbon content is important for fully understanding the ocean's role in amplifying Milankovich changes to cause glacial-interglacial transitions. A new foraminiferal-coating Nd isotope record from ODP Site 1123 on the deep Chatham Rise is interpreted as showing glacial-interglacial changes in the bottom water propagation of Atlantic-sourced waters into the Pacific via the Southern Ocean during the last 1 million years. This is compared to globally-distributed bottom water Nd isotope records; including a new deep western equatorial Atlantic Ocean record from ODP Site 929, as well as published records from ODP 1088 and Site 1090 in the South Atlantic (Pena and Goldstein, 2014), and ODP 758 in the deep Indian Ocean (Gourlan et al., 2010). Atlantic-to-Pacific gradients in deep ocean neodymium isotopes are constructed for key time intervals to elucidate changes in deep water sourcing and circulation pathways through the global ocean. Benthic carbon isotopes are used to estimate deep water nutrient contents of deep water masses and constrain locations and modes of deep water formation. References: Elderfield et al. Science 337, 704 (2012) Pena and Goldstein, Science 345, 318 (2014) Gourlan et al., Quaternary Science Reviews 29, 2484-2498 (2010)

  15. Paleoenvironmental reconstruction using nitrogen and carbon contents and isotopes in lake sediments of Tiefer See, NE Germany

    NASA Astrophysics Data System (ADS)

    Plessen, Birgit; Kienel, Ulrike; Dräger, Nadine; Brauer, Achim

    2016-04-01

    Lake Tiefer See (Mecklenburg/Germany) is a seasonally stratified lake formed in a north-south directed subglacial channel system with a maximum depth of 63 m. In order to understand the lake productivity and nitrogen cycle depending on natural variability and anthropogenic forcing, we compared the recent input and productivity, monitored in sediment traps in the hypo-, meta- and epilimnion since 2012 with the sedimentary record of the last 400 years. Light stable isotopes of nitrogen and carbon are interpreted to reflect human impact by extensive land use, manure, sewage input, and atmospheric nitrogen compounds. The sediment trap material clearly shows high δ 15N (+7 to +14‰), and low δ 13Corg (-28 to -33‰) values, whereas surface soil and terrestrial plant materials are characterised by lower δ 15N (+3 to +6‰), and higher δ 13Corg (-28 to -25‰) values. Recent high δ 15NNO_3 values of up to +15‰ in the epilimnion water together with low δ 18O

  16. Carbon isotope effects in carbonate systems

    NASA Astrophysics Data System (ADS)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  17. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  18. Organic / inorganic carbon content and isotope analysis of 3.1Ga Cleaverville Formation in Pilbara, Australia: Result of DXCL project

    NASA Astrophysics Data System (ADS)

    Miki, T.; Kiyokawa, S.; Ito, T.; Yamaguchi, K. E.; Ikehara, M.

    2014-12-01

    DXCL project was targeted for 3.2-3.1 Ga hydrothermal chert-black shale (Dixon Island Formation) and black shale-banded iron formation (Cleaverville Formation). CL3 core (200m long) was drilled from 1) upper part of Black Shale Member (35m thick) to 2) lower part of BIF Member (165m thick) of the Cleaverville Formation. Here, the BIF Member can be divided into three submembers; Greenish shale-siderite (50m thick), Magnetite-siderite (55m thick) and Black shale-siderite (60m) submembers. In this study, we used bulk samples and samples treated by hot hydrochloric acid in order to extract organic carbon.  The Black shale Member consists of black carbonaceous matter and fine grain quartz (< 100μm). Organic carbon content (Corg) of black shale is 1.2% in average and organic carbon isotope ratio (δ13Corg) is -31.4 to -28.7‰. On the other hand, inorganic carbon isotope ratio of siderite (δ13Ccarb) was -5.2 to +12.6‰.  In the BIF Member, the Greenish shale-siderite submember is composed of well laminated greenish sideritic shale and white chert (<7mm thick), which is gradually increase from black shale of the Black shale Member through about 10m. Magnetite-siderite submember contains very fine magnetite lamination with inter-bedded greenish sideritic shale and siderite lamination. Hematite is identified near fractured part. The Black shale-siderite submember is composed of black shale, siderite and chert bands.  1) Siderite layers of these three submembers showedδ13Ccarb value of -14.6 to -3.8‰. Corg and δ13Corg content are 0.2% and -18.3 to -0.3‰. 2) Siderite grains within greenish sideritic shales showedδ13Ccarb value of -12.9 to +15.0‰. 3) Black shale of Corg and δ13Corg content in the BIF Member are 0.1% and -36.3 to -17.1‰ respectively.  We found great difference in values of δ13Ccarb of siderite. One is Corg-rich shale (up to +15.0‰) and the other is Corg-poor siderite layers (up to -3.8‰). The lighter value of siderite layers may be

  19. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  20. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  1. Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas; Bouloubassi, Ioanna; Stadnitskaia, Alina; Taphanel, Marie-Hélène; Sinninghe Damsté, Jaap S.

    2014-06-01

    Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of -57 to -136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of -43 to -133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the

  2. Carbonate abundances and isotopic compositions in chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.; Bowden, R.; Fogel, M. L.; Howard, K. T.

    2015-04-01

    We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25-75‰ and δ18O ≈ 15-35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0-130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH4 (δ13C ≈ -33‰ or -20‰ for CO- or CH4-dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ -5.5‰, and δ13C ≈ -31‰ or -17‰ for CO- or CH4-dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10-40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65-80‰) and less altered samples (δ13C ≈ 30-40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic

  3. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  4. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    SciTech Connect

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

  5. Carbon and oxygen isotope variations in diamonds and graphite eclogites from Orapa, Botswana, and the nitrogen content of their diamonds

    SciTech Connect

    Deines, P. ); Harris, J.W. ); Robinson, D.N. ); Gurney, J.J. ); Shee, S.R. )

    1991-02-01

    In eclogite xenoliths from Orapa, Botswana, {delta}{sup 13}C of graphite varies between {minus}4.6 and {minus}7.8 per thousand vs. PDB, while that of diamonds ranges from {minus}4.0 to {minus}22.3 per thousand. In graphite eclogites, {delta}{sup 18}O values of garnets fall between 5.2 and 7 per thousand vs. SMOW and those of clinopyroxenes between 4.6 and 6.5 per thousand. For diamond eclogites the respective ranges are wider, i.e., 3.9 to 9.2 per thousand and 5.2 to 8.3 per thousand. The {sup 18}O enrichment above normal mantle in which diamond is stable. Eclogites with {delta} {sup 13}C values in the range {minus}4 to {minus}8 per thousand and {delta}{sup 18}O values in the normal mantle range tend to have positive garnet-clinopyroxene {sup 18}O fractionations and lower Fe/Ca and Fe/Mg ratios than eclogites which have simultaneously {delta}{sup 13}C values lower than {minus}8 per thousand and {delta}{sup 18}O values higher than 6.5 per thousand. In these eclogites the garnet-clinopyroxene fractionations tend to be negative. Positive garnet-clinopyroxene {sup 18}O fractionations increase slightly in the sequence: diamond eclogites (0.36 {plus minus} 0.15,n = 6), graphic/diamond ecologites (0.46 {plus minus} 0.36, n = 3), and graphite eclogites (0.53 {plus minus} 0.15, n = 3). Neither igneous fractionation processes, subduction, nor metasomatic alteration can satisfactory explain all observed chemical and isotopic trends.

  6. Carbon isotopes as indicators of peatland growth?

    NASA Astrophysics Data System (ADS)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  7. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    SciTech Connect

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organic carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.

  8. Diets of introduced predators using stable isotopes and stomach contents

    USGS Publications Warehouse

    Meckstroth, A.M.; Miles, A.K.; Chandra, S.

    2007-01-01

    In a study of predation on ground-nesting birds at South San Francisco Bay (South Bay), California, USA, we analyzed stomach contents and stable isotopes of carbon and nitrogen to identify commonly consumed prey. We obtained the stomach contents from 206 nonnative red foxes (Vulpes vulpes regalis) collected in the South Bay area and Monterey County during 1995-2001 and from 68 feral cats (Felis silvestris) from the South Bay area during 2001-2002. We determined prey identity, biomass, and frequency, described seasonal diet trends, and derived an Index of Relative Importance. Avian species were the most frequent prey we found in the stomachs of red foxes from South Bay (61%), whereas small rodents were most frequent for red foxes from Monterey County (62%). Small rodents were the most frequent prey we found in feral cats (63%). Carbon and nitrogen isotopic signatures for foxes supported stomach content findings. However, isotope results indicated that cats received a majority of their energy from a source other than rodents and outside the natural system, which differed from the stomach content analysis. We demonstrated the utility of both stable isotope and stomach content analyses to establish a more complete understanding of predators' diets. This information aids natural resource managers in planning and evaluating future predator-removal programs and increases our understanding of the impacts of nonnative foxes and cats on native species.

  9. Further carbon isotope measurements of LEW 88516

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1993-01-01

    Douglas et al. have previously analyzed the carbon content and isotopic composition of a crushed sample (sub-sample 13) of the shergottite, LEW 88516. The powder, which was from a relatively large portion of the meteorite in order to obtain a representative sample, was distributed amongst the scientific community. However, it is probable that the preparation procedure was not optimized for the purposes of carbon measurements. Indeed, it was found that LEW 88516,13 contained over 1200 ppm carbon, a concentration which is greater than that present in any other SNC meteorite. That a close relative, ALH A77005, contains only 141 ppm carbon seems to implicate the preparation procedure as being responsible for the apparently high carbon content of LEW 88516. However, it may also be the nature of the fine powder which has resulted in contamination. The observation of high carbon content in LEW 88516,13 highlights the extreme difficulty of trying to obtain representative samples of whole meteorites for this kind of investigation. Presented herein are some further measurements of LEW 88516 which should serve to clarify some of the issues raised by the previous investigation.

  10. Carbon and oxygen isotope microanalysis of carbonate.

    PubMed

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  11. Carbon isotopic composition of Amazon shelf sediments

    SciTech Connect

    Showers, W.J.; Angle, D.G.; Nittrouer, C.A.; Demaster, D.J.

    1985-02-01

    The distribution of carbon isotopes in Amazon shelf sediment is controlled by the same processes that are forming the modern subaqueous delta. The terrestrial (-27 to -25 per thousand) isotopic carbon signal observed in surficial sediments near the river mouth extends over 400 km northwest along the shelf. Terrestrial carbon is associated with areas of rapid sediment accumulation (topset and foreset regions). A sharp boundary between terrestrial (-27 to -25 per thousand) and marine (-23 to -22 per thousand) isotopic carbon values in surficial sediments is associated with a change in depositional conditions (foreset to bottomset regions) and a decrease in sediment accumulation rate. POC water-column isotopic values (-27 per thousand) near the river mouth are similar to the underlying surficial-sediment TOC isotopic values, but POC water-column samples collected 20 km off the river mouth have marine carbon isotopic values (-22 to -19 per thousand) and differ from the underlying surficial-sediment TOC isotopic values. These water column observations are related to variations in turbidity and productivity. Down-core isotopic variation is only observed in cores taken in areas of lower sediment accumulation rates. These observations indicate that the organic carbon in Amazon shelf sediment is dominantly terrestrial in composition, and the location of deposition of this carbon is controlled by modern processes of sediment accumulation. The modern Amazon shelf is similar to large clinoform shale deposits of the Cretaceous in North America. Thus, the stratigraphic setting may help predict the isotopic variations of carbon in ancient deposits.

  12. Carbon isotope fractionation in synthetic magnesian calcite

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  13. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  14. Sediment source detection by stable isotope analysis, carbon and nitrogen content and CSSI in a small river of the Swiss Plateau

    NASA Astrophysics Data System (ADS)

    SchindlerWildhaber, Yael; Alewell, Christine; Birkholz, Axel

    2014-05-01

    Suspended sediment (SS) and organic matter in rivers can harm the fauna by affecting health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. We determined compound specific stable carbon isotopes (CSSI) in fatty acids of possible sediment source areas to the stream in addition and compared them to SS from selected high flow and low flow events. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase in sediment delivery from pasture and arable land downstream of the river. While the major sources of SS are pasture and arable land during base flow conditions, SS from forest soils increased during heavy rain events and warmer winter periods most likely due to snow melt which triggered erosion. Preliminary results of CSSI analysis of sediment source areas and comparison to SS of selected events indicate that differences in d13C values of individual fatty acids are too small to differentiate unambiguously between sediment sources.

  15. Carbon isotope effects associated with autotrophic acetogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. PMID:11542159

  16. Carbon isotope effects associated with autotrophic acetogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.

  17. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  18. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    NASA Astrophysics Data System (ADS)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  19. Carbon isotopic fractionation in heterotrophic microbial metabolism

    SciTech Connect

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-10-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. 38 references.

  20. Carbon isotopic fractionation in heterotrophic microbial metabolism.

    PubMed Central

    Blair, N; Leu, A; Muñoz, E; Olsen, J; Kwong, E; Des Marais, D

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. PMID:2867741

  1. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  2. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates. PMID:25393769

  3. Carbon and its isotopes in mid-oceanic basaltic glasses

    USGS Publications Warehouse

    Des Marais, D.J.; Moore, J.G.

    1984-01-01

    Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8??? enriched in 13C, relative to dissolved carbon. Despite this fractionation, ??13CPDB values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the ??13CPDB of mantle carbon likely lies between -5 and -7. The carbon abundances and ??13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 ?? 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. ?? 1984.

  4. Carbon isotopes in bulk carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Halbout, J.; Mayeda, T. K.; Clayton, R. N.

    1985-01-01

    The chemical and physical processes involved in the formation of the solar system are examined. Primitive matter has been found on a microscopic scale in a variety of meteorites: fragments of small solar system bodies that were never part of a large planet. This primitive matter has, in most cases, been identified by the presence of anomalous abundances of some isotopes of the chemical elements. Of particular interest for carbon isotope studies are the primitive meteorites known as carbonaceous chondrites. Using a selective oxidation technique to sort out the carbon contained in different chemical forms (graphite, carbonates, and organic matter), four carbonaceous chondrites are analyzed. The presence of the (13) C-rich component was confirmed and additional carbon components with different, but characteristic, isotopic signatures were resolved.

  5. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition

    NASA Astrophysics Data System (ADS)

    Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz

    2016-02-01

    The aim of this study was to estimate the spatial variability of organic carbon (Corg) and total nitrogen (Ntot) concentrations, Corg/Ntot ratios, stable isotopes of carbon and nitrogen (δ13Corg, δ15Ntot) and the proportions of autochthonous and allochtonous organic matter within recently deposited sediments of two Spitsbergen fjords: the Hornsund and the Adventfjord, which are affected to a different degree by the West Spitsbergen Current. Corg concentrations ranged from 1.38% to 1.98% in the Hornsund and from 1.73% to 3.85% in the Adventfjord. In both fjords the highest Corg concentrations were measured at the innermost stations and they decreased towards the mouths of the fjords. This suggests fresh water runoff to be an important source of organic matter (OM) for surface sediments. The results showed that both fjords differ significantly in terms of sedimentary organic matter characteristics. The samples from the Hornsund, except those from the innermost station in the Brepollen, had relatively low Corg/Ntot ratios, all within a narrow range (from 9.7 to 11.3). On the other hand significantly higher Corg/Ntot ratios, varying within a broad range (from 14.6 to 33.0), were measured in the Adventfjord. The samples from the Hornsund were characterized by higher δ13Corg (from -24.90‰ to -23.87‰) and δ15Ntot (from 3.02‰ to 4.93‰) than those from the Adventfjord (-25.94‰ to -24.69‰ and from 0.71‰ to 4.00‰, respectively). This is attributed to a larger proportion of marine organic matter. Using the two end-member approach proportions of terrestrial organic matter were evaluated. Terrestrial OM contribution for the Adventfjord was in the range of 82-83%, while in case of the Hornsund the results were in the range of 69-75%, with the exception of the innermost part of the fjord, where terrestrial organic matter contribution ranged from 80 to 82%. The strong positive correlation between δ13Corg and δ15Ntot was revealed. This was taken as an indicator

  6. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  7. Carbonate clumped isotope thermometry in continental tectonics

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, Δ47) and provides estimates of the carbonate formation temperature independent of the δ18O value of the water from which the carbonate grew; Δ47 is measured simultaneously with conventional measurements of carbonate δ13C and δ18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 °C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of Δ47 values to a sample's thermal history. However, the thermometer is

  8. Site-Specific Carbon Isotopes in Organics

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2012-12-01

    Natural organic molecules exhibit a wide range of internal site-specific isotope variation (i.e., molecules with same isotopic substitution type but different site). Such variations are generally unconstrained by bulk isotopic measurements. If known, site-specific variations might constrain temperatures of equilibrium, mechanisms of formation or consumption reactions, and possibly other details. For example, lipids can exhibit carbon isotope differences of up to 30‰ between adjacent carbon sites as a result of fractionations arising during decarboxylation of pyruvate and other steps in lipid biosynthesis(1). We present a method for site-specific carbon isotope analysis of propane, based on high-resolution, multi-collector gas source mass spectrometry, using a novel prototype instrument - the Thermo MAT 253 Ultra. This machine has an inlet system and electron bombardment ion source resembling those in conventional stable isotope gas source mass spectrometers, and the energy filter, magnet, and detector array resembling those in multi-collector ICPMS and TIMS. The detector array has 7 detector positions, 6 of which are movable, and each of which can collect ions with either a faraday cup (read through amplifiers ranging from 107-1012 ohms) or an SEM. High mass resolving power (up to 27,000, MRP = M/dM definition) is achieved through a narrow entrance slit, adjustable from 250 to 5 μm. Such resolution can cleanly separate isobaric interferences between isotopologues of organic molecules having the same cardinal mass (e.g., 13CH3 and 12CH2D). We use this technology to analyze the isotopologues and fragments of propane, and use such data to solve for the site-specific carbon isotope fractionation. By measuring isotopologues of both the one-carbon (13CH3) and the two-carbon (13C12CH4) fragment ion, we can solve for both bulk δ13C and the difference in δ13C between the terminal and central carbon position. We tested this method by analyzing mixtures between natural

  9. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  10. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  11. Carbon isotope composition of Antarctic plants

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.

    2000-05-01

    Carbon isotope compositions of Antarctic land plants are first reported. The most interesting feature is the isotope specificity of the species. For example Usnea antarctica from different locations shows relatively narrow range of the δ 13C-values from -22.44 to -21.29‰ (7 samples), Drepanocladus sp. from -24.86 to -23.49‰ (8 samples), and Andreaea depressincrvis from -23.87 to -23.23‰ (3 samples) etc. Usually, in inhabited lands and parts of the world with rich flora and developed soil, isotopic specificity of species is masked by variations of carbon isotope composition of CO 2. In Antarctic conditions influence of local sources of CO 2 on the isotope composition of CO 2 is appeared to be minimal. Therefore the δ 13C-variations inherent to individual plant physiology and biochemistry can be distinguished on the background of the stable level of the atmospheric CO 2 δ 13C-value. The latter is best to reflect the global state of the carbon cycle.

  12. Clumped isotope thermometry of cryogenic cave carbonates

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Spötl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 °C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate δ18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing

  13. The chromium isotopic composition of seawater and marine carbonates

    NASA Astrophysics Data System (ADS)

    Bonnand, P.; James, R. H.; Parkinson, I. J.; Connelly, D. P.; Fairchild, I. J.

    2013-11-01

    Chromium isotopes are fractionated during redox reactions and have the potential to provide a record of changes in the oxygenation levels of the oceans in the geological past. However, Cr is a trace metal in seawater and its low concentrations make isotopic measurements challenging. Here we report the first determinations of δCr53 for seawater from open ocean (Argentine Basin) and coastal (Southampton Water) settings, using a double-spike technique. The total chromium concentration in seawater from Southampton Water is 1.85 nM, whereas the Cr content of Argentine Basin samples is 5.8-6.6 nM. The δCr53 value of seawater from the Argentine Basin is 0.491-0.556‰ in intermediate and deep waters, and varies between 0.412 and 0.664‰ in surface waters (<150 m). The δCr53 value of Southampton Water seawater is 1.505‰, which may reflect in situ reduction of Cr(VI) to Cr(III). All of our seawater samples have higher δCr53 than crustal and mantle silicates, and mass balance modelling demonstrates that river water must also be enriched in heavy Cr isotopes, indicating that Cr isotopes are fractionated during weathering and/or during transport to the oceans. We also show that the Cr isotopic composition of modern non-skeletal marine carbonates (0.640- 0.745‰) encompasses the range that we measure for Argentine Basin seawater. Thus, fractionation of Cr isotopes during precipitation of these marine carbonates is likely to be small (<0.2‰), and they have the potential to provide a record of the Cr isotopic composition of ancient seawater. Phanerozoic carbonates are also characterised by heavy δCr53 and a correlation between δCr53 and Ce/Ce* suggests that the Cr and Ce cycles in the ocean are linked.

  14. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    USGS Publications Warehouse

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  15. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  16. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  17. Modeling stable isotope and organic carbon in hillslope stormflow

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Marx, Anne; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana; Barth, Johannes A. C.; Cislerova, Milena

    2016-04-01

    Reliable prediction of water movement and fluxes of dissolved substances (such as stable isotopes and organic carbon) at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are known to affect balance of DOC in soils, hence the transformations need to be included in a conceptual model of a DOC transport. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of oxygen-18 isotope and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface transport processes in a forest soil during several observed rainfall-runoff episodes. The transport of heat in the soil profile was described by conduction-advection equation. Water flow and transport of solutes and heat were assumed to take place in two mutually communicating porous domains, the soil matrix and the network of preferential pathways. The rate of microbial transformations of DOC was assumed to depend on soil water content and soil temperature. Oxygen-18 and dissolved organic carbon concentrations were observed in soil pore water, hillslope stormflow (collected in the experimental hillslope trench), and stream discharge (at the catchment outlet). The modeling was used to analyze the transformation of input solute signals into output hillslope signals observed in the trench stormflow. Signatures of oxygen-18 isotope in hillslope stormflow as well as isotope concentration in soil pore water were predicted reasonably well. Due to complex nature of microbial transformations, prediction of DOC rate and transport was associated with a high uncertainty.

  18. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  19. Lipid Correction for Carbon Stable Isotope Analysis of Deep-sea Fishes

    EPA Science Inventory

    Lipid extraction is used prior to stable isotope analysis of fish tissues to remove variability in the carbon stable isotope ratio (d13C) caused by varying lipid content among samples. Our objective was to evaluate an application of a mass balance correction for the effect of lip...

  20. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  1. Carbon isotopic composition of individual Precambrian microfossils

    NASA Astrophysics Data System (ADS)

    House, Christopher H.; Schopf, J. William; McKeegan, Kevin D.; Coath, Christopher D.; Harrison, T. Mark; Stetter, Karl O.

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the ˜850 Ma Bitter Springs Formation, Australia, and the ˜2100 Ma Gunflint Formation, Canada. The δ13CPDB values from individual microfossils of the Bitter Springs Formation ranged from -21.3 ± 1.7‰ to -31.9 ± 1.2‰, and the δ13CPDB values from microfossils of the Gunflint Formation ranged from -32.4 ± 0.7‰ to -45.4 ± 1.2‰. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  2. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    SciTech Connect

    Vengosh, A. Hebrew Univ., Jerusalem ); Chivas, A.R.; McCulloch, M.T. ); Kolodny, Y.; Starinsky, A. )

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.

  3. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons

    USGS Publications Warehouse

    Des Marais, D.J.; Donchin, J.H.; Nehring, N.L.; Truesdell, A.H.

    1981-01-01

    Previous interest in light hydrocarbons from geothermal systems has focused principally on the origin of the methane1 and the estimation of subsurface temperatures from the carbon isotopic content of coexisting methane and carbon dioxide1-3. Higher molecular weight hydrocarbons were first reported in gases from Yellowstone National Park4, and have since been found to occur commonly in geothermal emanations in the western United States5. Isotopic measurements of individual geothermal hydrocarbons are now reported which help to explain the origin of these hydrocarbons. The thermal decomposition of sedimentary or groundwater organic matter is a principal source of hydrocarbons in four geothermal areas in western North America. ?? 1981 Nature Publishing Group.

  4. Low stable carbon isotope fractionation by coccolithophore RubisCO

    NASA Astrophysics Data System (ADS)

    Boller, Amanda J.; Thomas, Phaedra J.; Cavanaugh, Colleen M.; Scott, Kathleen M.

    2011-11-01

    The 13C/ 12C ratio of carbon compounds is used to identify sources and sinks in the global carbon cycle. However, the relatively enriched 13C content observed for marine organic carbon remains enigmatic. The majority of oceanic carbon is fixed by algae and cyanobacteria via the Calvin-Benson-Bassham cycle, yet isotopic discrimination by the CO 2 fixation enzyme, RubisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase), has only been measured for a single marine cyanobacterium. Different forms of RubisCO occur in different phytoplankton species (overall amino acid identity varying by as much as ˜75%) and thus may vary in the degree to which they fractionate carbon. Here we measured isotope discrimination by RubisCO from the coccolithophore Emiliania huxleyi, a cosmopolitan species used as a marine algal model .E. huxleyi RubisCO discriminated substantially less ( ɛ = 11.1‰) against 13CO 2 than other RubisCO enzymes (18-29‰), despite having Michaelis-Menten kinetic parameters ( K = 72 μM; Vmax = 0.66 μmol min -1 mg -1 protein) similar to those measured for RubisCO enzymes from different organisms. If widespread, decreased isotope discrimination of 13C by phytoplankton RubisCO may be a major factor influencing the enriched 13C content of marine organic carbon. This finding emphasizes the necessity of (a) determining ɛ values for RubisCOs of other marine phytoplankton and (b) re-evaluation of δ13C values from physiological, environmental, and geological studies.

  5. Tunable Diode Laser Measurements of Leaf-scale Carbon Isotope Discrimination and Ecosystem Respired Carbon and Oxygen Isotope Ratios in a Semi-arid Woodland

    NASA Astrophysics Data System (ADS)

    McDowell, N.; Chris, B.; Hanson, D.; Kern, S.; Meyer, C.; Pockman, W.; Powers, H.

    2005-12-01

    We present results and speculative interpretation of leaf-level carbon isotope discrimination and ecosystem respired carbon and oxygen isotope ratios from a semi-arid, C3/C4 woodland located in northern New Mexico, USA. Overstory leaf area index (LAI) is dominated by live juniper (Juniperus monosperma) trees with an LAI value of approximately 1.0 m2 per m2 ground area, and has a seasonally dynamic understory of mixed C3 forbs and C4 grasses and cacti, with a maximum LAI of 0.30 m2 per m2 ground area. Ecosystem respired carbon isotope ratios showed values characteristic of C3 dominated photosynthesis (Keeling plot intercepts of -35 to -22 per mil). Seasonal variation was typical of that found in wetter, C3 dominated forests, as was the dependence on climate (e.g. relationships with vapor pressure deficit, soil water content, and canopy conductance). Leaf-level carbon isotope discrimination of the junipers, measured by coupling a Li-Cor 6400 photosynthesis system to the TDL, provided discrimination-Ci and discrimination-vpd relationships consistent with measured ecosystem respired carbon isotope ratios. The oxygen isotope ratio of ecosystem respiration was dependent on rain water isotope composition, but was correlated with soil water content during rain-free periods. The cumulative effect of vapor pressure deficit after a rain event was tightly correlated with the oxygen isotope ratio of ecosystem respiration, suggesting the primary drivers are evaporative enrichment of soil water and perhaps nocturnal leaf enrichment. Instrument precision for carbon and oxygen isotope ratios of carbon dioxide is 0.06 to 0.18 per mil; however, overall precision is somewhat lower due to pressure and sampling effects.

  6. BOREAS TE-5 Leaf Carbon Isotope Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This documentation describes leaf carbon isotope data that were collected in 1993 and 1994 at the NSA and SSA OJP sites, the SSA OBS site, and the NSA UBS site. In addition, leaf carbon isotope data were collected in 1994 only at the NSA and SSA OA sites. These data was collected to provide seasonal integrated physiological information for 10 to 15 common species at these 6 BOREAS sites. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  8. Equations for Lipid Normalization of Carbon Stable Isotope Ratios in Aquatic Bird Eggs

    PubMed Central

    Elliott, Kyle H.; Davis, Mikaela; Elliott, John E.

    2014-01-01

    Stable isotope ratios are biogeochemical tracers that can be used to determine the source of nutrients and contaminants in avian eggs. However, the interpretation of stable carbon ratios in lipid-rich eggs is complicated because 13C is depleted in lipids. Variation in 13C abundance can therefore be obscured by variation in percent lipids. Past attempts to establish an algebraic equation to correct carbon isotope ratios for lipid content in eggs have been unsuccessful, possibly because they relied partly on data from coastal or migratory species that may obtain egg lipids from different habitats than egg protein. We measured carbon, nitrogen and sulphur stable isotope ratios in 175 eggs from eight species of aquatic birds. Carbon, nitrogen and sulphur isotopes were enriched in lipid-extracted egg samples compared with non extracted egg samples. A logarithmic equation using the C∶N ratio and carbon isotope ratio from the non extracted egg tissue calculated 90% of the lipid-extracted carbon isotope ratios within ±0.5‰. Calculating separate equations for eggs laid by species in different habitats (pelagic, offshore and terrestrial-influenced) improved the fit. A logarithmic equation, rather than a linear equation as often used for muscle, was necessary to accurately correct for lipid content because the relatively high lipid content of eggs compared with muscle meant that a linear relationship did not accurately approximate the relationship between percent lipids and the C∶N ratio. Because lipid extraction alters sulphur and nitrogen isotope ratios (and cannot be corrected algebraically), we suggest that isotopic measurement on bulk tissue followed by algebraic lipid normalization of carbon stable isotope ratio is often a good solution for homogenated eggs, at least when it is not possible to complete separate chemical analyses for each isotope. PMID:24465384

  9. Carbonate clumped isotope bond reordering and geospeedometry

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    Carbonate clumped isotope thermometry is based on the preference of 13C and 18O to form bonds with each other. At elevated temperatures such bond ordering is susceptible to resetting by diffusion of C and O through the solid mineral lattice. This type of bond reordering has the potential to obscure primary paleoclimate information, but could also provide a basis for reconstructing shallow crustal temperatures and cooling rates. We determined Arrhenius parameters for solid-state reordering of C-O bonds in two different calcites through a series of laboratory heating experiments. We find that the calcites have different susceptibilities to solid-state reordering. Reaction progress follows a first order rate law in both calcites, but only after an initial period of non-first order reaction that we suggest relates to annealing of nonequilibrium defects when the calcites are first heated to experimental temperature. We show that the apparent equilibrium temperature equations (or "closure temperature" equations) for carbonate clumped isotope reordering are analogous Dodson's equations for first order loss of daughter isotopes. For each calcite, the sensitivity of apparent equilibrium temperature to cooling rate is sufficiently high for inference of cooling rates within a factor of ˜5 or better for cooling rates ranging from tens of degrees per day to a few degrees per million years. However, because the calcites have different susceptibilities to reordering, each calcite defines its own cooling rate-apparent equilibrium temperature relationship. The cooling rates of Carrara marble inferred from carbonate clumped isotope geospeedometry are 10-6-10-3 degrees per annum and are in broad agreement with rates inferred from thermochronometric methods. Cooling rates for 13C-depleted calcites from the late Neoproterozoic Doushantou cap carbonates in south China are on the order of 102-104 degrees per annum, consistent with rapid cooling following formation of these calcites by a

  10. Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis.

    PubMed

    Huang, Ded-Shih; Wu, Suh-Huey; Wang, Yane-Shih; Yu, Steve S-F; Chan, Sunney I

    2002-08-01

    Authentic propane with known position-specific carbon isotope composition at each carbon atom was subjected to hydroxylation by the particulate and soluble methane monooxygenase (pMMO and sMMO) from Methylococcus capsulatus (Bath), and the corresponding position-specific carbon isotope content was redetermined for the product 2-propanol. Neither the reaction mediated by pMMO nor that with sMMO showed an intermolecular (12)C/(13)C kinetic isotope effect effect on the propane hydroxylation at the secondary carbon; this indicates that there is little structural change at the carbon center attacked during formation of the transition state in the rate-determining step. This finding is in line with the concerted mechanism proposed for pMMO (Bath), and suggested for sMMO (Bath), namely, direct side-on insertion of an active "O" species across the C-H bond, as has been previously reported for singlet carbene insertion. PMID:12203974

  11. Investigating the Formation of Pedogenic Carbonate Using Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Breecker, D. O.; Sharp, Z. D.; McFadden, L.

    2006-12-01

    The stable isotope composition of pedogenic carbonate has been used as a paleoenvironmental proxy because it is thought to form in isotopic equilibrium with soil CO2 and soil water, which are influenced by vegetation type and atmospheric circulation patterns, respectively. However, the isotopic composition of soil CO2 and soil water change seasonally and it is not known what portion of this variability is recorded by the isotopic composition of pedogenic carbonate. It is generally believed that carbonate precipitation in soils is driven by evaporative concentration of Ca ions and/or decreasing soil pCO2. We seek to improve the proxy by determining the seasonality of pedogenic carbonate formation, in particular whether pedogenic carbonate forms during the wet season after individual rainstorms or during seasonal drying following the wet season. This was done by comparing the variations in carbon and oxygen isotope composition of soil CO2 with the isotopic composition of proximally located, newly-formed carbonates. Soil CO2 and incipient pedogenic carbonate coatings were collected in a very young (< 500yrs) soil developing in an inset terrace on the piedmont of the Sandia Mountains, central New Mexico. We also measure soil temperatures at the same site. In May 2006, at the end of the driest 6-month period on record in central New Mexico, soil CO2 profiles displayed a 2‰ decrease in δ13C values with depth from 9 to 100 cm. In August 2006, the shapes of the profiles were similar, but the δ13C values were 3-4‰ lower at each depth than in May. These results can be explained by an increase in respiration rate during the latter half of the summer (the wettest on record) when monsoon rainfall maintained high moisture contents in soils across New Mexico. Calculated δ13C values of calcite in equilibrium with May (but not August) soil CO2 agree with measured carbonate δ13C values below 20 cm depth. Very shallow carbonate has anomalously high δ13C values. Measurements

  12. Mg Isotopic Compositions of Modern Marine Carbonates

    NASA Astrophysics Data System (ADS)

    Krogstad, E.; Bizzarro, M.; Hemming, N.

    2003-12-01

    We have used a MC-ICP-MS to measure the isotopic composition of magnesium in a number of samples of modern marine carbonate. Due to the large mass difference between 26Mg and 24Mg (similar to that between 13C and 12C), there is potential for mass fractionation during geologic and biologic processes that may make this isotope system useful for geochemical studies. These samples are from the study of Hemming and Hanson (1992, GCA 56: 537-543). The carbonate minerals analyzed include aragonite, low-Mg calcite, and high-Mg calcite. The samples include corals, echinoderms, ooids, etc., from subtropical to Antarctic settings. Mg purification was accomplished by ion-exchange chromatography, using Bio-Rad AG50W-X12 resin on which greater than 99 percent recovery of Mg is achieved. Samples were introduced into the MC-ICP-MS (VG Axiom) using a Cetac MCN-6000 nebuliser. We use a standard-sample-standard bracketing technique, and samples are analysed at least three times. For lab standards we find that the reproducibility on the 26Mg/24Mg to be about ñ 0.12 permil (2 s.d.). We monitored our separated samples for Na and Ca, as we have found that high Ca/Mg and Na/Mg produce variable magnesium isotopic fractionation during mass spectrometry due to as yet unclear matrix effects. We have normalized our results to our measured values for seawater. We observed a d26Mg(s.w.) range of -1.4 to -2.4 permil in our modern carbonate samples relative to present day seawater. Due to the long residence time of Mg in the oceans (ca. 50 my), this must be due to kinetic or biologic effects. Our d25Mg(s.w.) variations as a function of d26Mg(s.w.) plot along the terrestrial fractionation trend. With an average d26Mg(s.w.) of ca. +0.5 permil in all samples of mantle lithologies and mantle-derived igneous rocks (Bizzarro et al., Goldschmidt abs., 2003), we can assume that the Mg isotopic composition of Earth's river water lies between ca. -2.4 and +0.5 permil (relative to seawater). The actual

  13. Carbon Isotope Chemostratigraphy, the Baby and the Bathwater

    NASA Astrophysics Data System (ADS)

    Arthur, M. A.

    2008-12-01

    Secular variations in the carbon isotopic values of carbonate sediments and rocks and their individual components have been applied successfully to problems of stratigraphic correlation and for interpretation of past changes in the global carbon cycle. However, this methodology is not without problems. A major tenet of stable isotope chemostratigraphy involves sampling and analyzing multiple, widely separated sequences, and, if possible, multiple carbon-bearing components (e.g., carbonate and organic carbon) in order to demonstrate a global signal. In some cases, this methodology has been short-circuited in the zeal to reveal a new event or excursion, particularly for time intervals for which adequate sequences are somewhat rare. Likewise, although most carbonate researchers are quite aware of the possible importance of diagenesis, particularly in organic-carbon rich sequences or in shoal-water carbonate sequences with longer-term subaerial exposure events, such overprints commonly go unrecognized or are considered of minor impact. Studies of stable isotope variations in carbonate sequences should always employ textural and geochemical methodologies for detecting and even quantifying diagenesis, if possible. Although some diagenetically overprinted or misinterpreted geochemical data have undoubtedly appeared in the literature, there are many excellent examples of global carbon isotope variations in records expressed in pelagic biogenic carbonate, marine organic carbon, platform carbonates, and terrestrial organic matter. Arguably, one of the best-documented examples is the Cenomanian-Turonian (ca. 93 Ma) positive carbon isotope excursion. The amplitude of the Cenomanian-Turonian carbon isotope excursion is similar among all types of records, but there are subtle pattern differences that arise from differences in sedimentation rate among and within sequences. Organic carbon and carbonate carbon isotope signals also may differ in phasing and amplitude for certain

  14. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  15. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  16. [Effects of lipid extraction on stable carbon and nitrogen isotope analyses of Ommastrephes bartramii muscle].

    PubMed

    Gong, Yi; Chen, Xin-Jun; Gao, Chun-Xia; Li, Yun-Kai

    2014-11-01

    Stable isotope analysis (SIA) has become an important tool to investigate diet shift, habitat use and trophic structure of animal population. Muscle is considered to be the most common tissue for SIA, however, lipid content in muscle causes a considerable bias to the interpretation of isotopic ratios of animals. Neon flying squid (Ommastrephes bartramii) is an important economic cephalopod of Chinese distant water fishery, and plays a major role in marine ecosystems. In this study, the effects of lipid extraction on stable isotope ratios of the muscles of 53 neon flying squids were investigated and the interference mechanism of lipid in SIA was clarified with the aim of contrasting the suitability of different lipid correction models of stable carbon isotope. Results showed that the stable carbon and nitrogen isotopic values of non-lipid extracted samples significantly increased after lipid extractions by 0.71 per thousand and 0.47 per thousand, respectively, which suggested that lipid extraction in cephalopod isotope study is needed prior to stable carbon isotope analysis but not recommended for stable nitrogen isotope analysis. The results could help remove the effects of lipid contents and standardize SIA muscle samples, thereby getting better understanding of the isotopic change of neon flying squids in the future. PMID:25898636

  17. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-06-01

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to 12C to enrich in the released CO2 while 13C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance.

  18. Variable carbon contents of lunar soil 74220

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Moore, C. B.

    1973-01-01

    Total carbon, sulfur, and inorganic gas release studies have been carried out on an additional split of orange soil 74220. The total carbon content was found to be 4 plus or minus 3 ppm C for this sample as compared to an earlier reported value of 100 plus or minus 10 ppm C. Gas release studies on the two splits of 74220 indicate that the carbon may be present as a surface condensate on the sample showing the higher carbon content. The 'surface condensate' evolves CO2 upon heating to temperatures below 400 C.

  19. Isotopic content of mixed-phase orographic precipitation

    NASA Astrophysics Data System (ADS)

    Blossey, P. N.; Moore, M.; Kuang, Z.; Muhlbauer, A. D.

    2014-12-01

    The isotopic content of mixed-phase orographic precipitation is explored in idealized simulations using the Weather Research and Forecasting Model (WRF). The isotopic exchanges among water vapor, hydrometeors and precipitation have been fully integrated into the Thompson microphysics scheme, including both fractionating (e.g., vapor deposition) and non-fractionation (e.g., melting/freezing) processes. The stable isotopes of water, HDO and H2O18, are included in the present study. The deviation of the isotopic content from linear theory predictions is studied, following Galewsky (2009, doi:10.1130/G30008A.1). The main focus, however, is on the response of orographic precipitation to aerosols and the impact of this response on the isotopic content of the precipitation. Changes in the prescribed cloud droplet number concentration are used as a proxy for changes in background aerosol concentrations. Elevated droplet concentrations lead to a decrease in precipitation over the mountain barrier and a shift of precipitation towards the lee side. In addition, the precipitation over the mountain itself becomes more depleted at some locations.

  20. Radiogenic Carbon Isotopes in Authigenic Carbonate from Lake Neusiedl, Austria

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Steier, Peter; Gier, Susanne; Draganits, Erich; Kogelbauer, Ilse

    2015-04-01

    Formation of authigenic carbonate in Lake Neusiedl, Austia, has been reported since the 1960ies. The reaction pathways resulting in carbonate precipitation (protodolomite and high magnesium calcite) have yet to be identified. Lake Neusiedl is a shallow lake without significant sediment accumulation but constant reworking of sediment due to its shallow depth (1.8m) and influence by wind. The sediments are water-saturated silts and clays that overly Neogene sediments. The age of Lake Neusiedl is unknown due to its low sedimentation rate and constant remixing of sediment. Dating of authigenic minerals is an alternative method to determine the minimum age of water present - even episodically - at the location. We characterize the sediments mineralogy in different size fractions by X-Ray Diffractometry (XRD), Simultaneous Themo Analysis (STA) and Fourier Transform Infra Red Spectroscopy, stable carbon and oxygen isotopes as well as radiogenic carbon. To describe the authigenic carbonates and find the fractions with highest authigenic carbonate minerals we investigate the size fractions <4 µm, <3 µm, <2 µm, <1 µm, 0.5 µm and <0.2 µm. The "coarser" fractions (4 µm to 2 µm) contain detrital minerals such as chlorite, muscovite, quartz, feldspar, stoichiometric calcite and stoichiometric dolomite as well as authigenic high Mg calcite. Radiogenic carbon ages increase with increasing grain size from 850 years before present to 2300 years before present and indicate a very slow growth rate or episodic growth of authigenic carbonate phases.

  1. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kreuzer, Helen W.; Horita, Juske; Moran, James J.; Tomkins, Bruce; Janszen, Derek B.; Carman, April J.

    2012-01-03

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  2. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kruzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  3. Transforming Content Knowledge: Learning to Teach about Isotopes.

    ERIC Educational Resources Information Center

    Geddis, Arthur N.; And Others

    1993-01-01

    Presents a vignette about Karen, a student teacher in her first attempt at teaching chemical isotopes. Karen focuses on transmitting what she knows. An overview of Schulman's conceptions of pedagogical content knowledge is then provided. Shulman's ideas are employed to frame the experiences of Alan, a student teacher, as he and his cooperating…

  4. Carbon Isotope Abundances in Lichen Deposits Might Reflect Past Moisture Trends

    NASA Astrophysics Data System (ADS)

    Russ, J.; Beazley, M. J.; Rickman, R. D.; Ingram, D. K.; Boutton, T. W.

    2002-12-01

    The stable carbon isotope composition of lichens is governed primarily by moisture conditions. Lichens lack water transport systems that are characteristic of higher plants; therefore, maximum productivity occurs during periods when an equilibrium has been established between the water content of the organism and the environment. The amount of water required to initiate and maintain photosynthesis influences the carbon isotope content due to fractionation caused by diffusion of carbon dioxide through the water filled membranes, as well as morphological changes in the lichen thallus. Thus, lichens growing in relatively wet conditions have a lower carbon 13 content than those growing in drier conditions. We suggest that the carbon isotope composition of stable lichen byproducts, such as calcium oxalate that is common on rock surfaces, can be used to predict past fluctuations in moisture conditions. We are exploring this hypothesis via studies of living, oxalate producing lichens, and calcium oxalate deposits from on rock surfaces in the Lower Pecos River region. The results of these studies demonstrate that (1) lichens growing on limestone do not incorporate carbon from carbonate substrates; thus ambient carbon dioxide is the dominant, if not sole source of metabolized carbon; and (2) calcium oxalate produced by lichens is consistently enriched in carbon 13 by 6.5 permil compared to the lichen tissues. We also present here a plot of oxalate carbon 14 ages versus the stable carbon isotope ratios from analyses of 19 calcium oxalate rock coating samples from the Lower Pecos region. This graph shows a general increase in the oxalate carbon 13 content through the middle Holocene that peaks about 3000 years ago, followed by a rapid decrease in the abundance of the heavier isotope. We suggest that the increased carbon 13 content corresponds to a decrease in the amount of moisture transported to the region during this period, a trend that rapidly reversed about 3000 years

  5. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  6. A Clumped Isotope Calibration for Lacustrine Carbonates

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B. A.; Mering, J. A.; Petryshyn, V. A.; Dunbar, R. B.; Cohen, A. S.; Liu, X.; Kaufman, D. S.; Eagle, R.; Tripati, A.

    2014-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of past climate reconstructions. Unfortunately, many terrestrial proxies—tree rings, speleothems, leaf margin analyses, etc.—are influenced by the effects of both temperature and precipitation. Methods that can isolate the effects of temperature alone are needed, and clumped isotope thermometry has the potential to be a useful tool for determining terrestrial climates. Multiple studies have shown that the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed and may be a useful proxy for reconstructing temperatures on land. An in-depth survey of lacustrine carbonates, however, has not yet been published. Therefore we have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of modern lake samples' carbonate minerals in phosphoric acid and comparing results to independently known estimates of lake water temperature and air temperature. Some of the sample types we have investigated include endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  7. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  8. A molecular organic carbon isotope record of miocene climate changes.

    PubMed

    Schoell, M; Schouten, S; Damsté, J S; de Leeuw, J W; Summons, R E

    1994-02-25

    The difference in carbon-13 ((13)C) contents of hopane and sterane biomarkers in the Monterey formation (Naples Beach, California) parallels the Miocene inorganic record of the change in (18)O (delta(18)O), reflecting the Miocene evolution from a well-mixed to a highly stratified photic zone (upper 100 meters) in the Pacific. Steranes (delta(13)C = 25.4 +/- 0.7 per mil versus the Pee Dee belemnite standard) from shallow photic-zone organisms do not change isotopically throughout the Miocene. In contrast, sulfur-bound C(35) hopanes (likely derived from bacterial plankton living at the base of the photic zone) have systematically decreasing (13)C concentrations in Middle and Late Miocene samples (delta(13)C = -29.5 to -31.5 per mil), consistent with the Middle Miocene formation of a carbon dioxide-rich cold water mass at the base of the photic zone. PMID:17831625

  9. Systematic AMD+GCM Study of Structure of Carbon Isotopes

    SciTech Connect

    Thiamova, G.; Itagaki, N.; Otsuka, T.; Ikeda, K.

    2004-02-27

    The structure of low-lying states of the carbon isotopes is investigated using the extended version of the Antisymmetrized Molecular Dynamics (AMD) Multi-Slater Determinant model. We can reproduce reasonably well many experimental data for carbon isotopes 12C-22C. A special approach is adopted for 15C to better describe the tail of the wave function.

  10. Preservation of carbonate clumped isotopes in sedimentary paleoclimate archives

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Shenton, B.; Perez-Huerta, A.

    2014-12-01

    Carbonate clumped isotope thermometry is increasingly used to reconstruct paleotemperatures of ancient terrestrial environments. One promising application is elucidating paleoelevation from carbonate archives such as paleosols, lacustrine marls, and fossil freshwater shells. Unlike conventional stable isotope approaches (e.g., mineral δ18O or δD), clumped isotope thermometry is independent of the isotopic composition of the precipitating waters and can therefore be used to reconstruct elevation by both the temperature-altitude relationship and the rainfall δ18O-altitude relationship. However, interpretation of clumped isotope data is not without its own complications. Like conventional stable isotopes, clumped isotope paleotemperatures can be effectively reset to warmer values by dissolution/reprecipitation-type diagenesis during sedimentary burial. It is also known that carbonate clumped isotope bonds (i.e., 13C-18O) are susceptible to 'reordering' in the solid mineral lattice at warmer burial temperatures, with laboratory studies of natural carbonates indicating activation of this phenomenon at temperatures as low as 100 °C over geologic timescales. A challenge in applying carbonate clumped isotope thermometry to natural samples is now evaluating terrestrial archives with respect to both types of alteration: 'open-system' alteration and 'closed-system' bond reordering. In this talk we will review our experimental efforts to constrain the kinetics of clumped isotope reordering, with relevance to low-temperature carbonates like fossil shells and early diagenetic minerals, and present new laboratory data that further inform our theoretical framework for the mechanism(s) of 13C-18O bond reordering. Together with traditional analytical and petrographic screening for recrystallization, empirical and laboratory studies of carbonate clumped isotope reordering represent the next steps in evaluating isotopic records of paleoclimate, paleobiology, and paleoelevation

  11. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was

  12. Carbon fiber content measurement in composite

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  13. Isotope Dependence of Chemical Erosion of Carbon

    SciTech Connect

    Reinhold, Carlos O; Krstic, Predrag S; Stuart, S. J.; Zhang, Hengda; Harris, Peter R; Meyer, Fred W

    2010-01-01

    We study the chemical erosion of hydrogen-supersaturated carbon due to bombardment by hydrogen isotopes H, D, and T at energies of 1 30 eV using classical molecular dynamics simulations. The chemical structure at the hydrogen-saturated interface (the distribution of terminal hydrocarbon moieties, in particular) shows a weak dependence on the mass of the impinging atoms. However the sputtering yields increase considerably with increasing projectile mass. We analyze the threshold energies of chemical sputtering reaction channels and show that they are nearly mass independent, as expected from elementary bond-breaking chemical reactions involving hydrocarbons. Chemical sputtering yields for D impact are compared with new experimental data. Good agreement is found for small hydrocarbons but the simulations overestimate the production of large hydrocarbons for energies larger than 15 eV. We present a thorough analysis of the dependence of our simulations on the parameters of the bombardment schemes and discuss open questions and possible avenues for development.

  14. Carbon isotope ratios and impurities in diamonds from Southern Africa

    NASA Astrophysics Data System (ADS)

    Kidane, Abiel; Koch-Müller, Monika; Morales, Luiz; Wiedenbeck, Michael; De Wit, Maarten

    2015-04-01

    We are investigating the sources of diamonds from southern Africa by studying both their carbon isotopic composition and chemical impurities. Our samples include macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Helam and Klipspringer kimberlitic deposits from South Africa, as well as micro-sized diamonds from Klipspringer and Premier kimberlites in South Africa. We have characterized the samples for their structurally bounded nitrogen, hydrogen and platelets defect using a Fourier Transmission Infrared Spectroscopy (FTIR). Using the DiaMap routine, open source software (Howell et al., 2012), IR spectra were deconvulated and quantified for their nitrogen (A, B and D components) and hydrogen contents. High to moderate nitrogen concentrations (1810 to 400 µg/g; 400 to 50 µg/g respectively) were found in diamonds from Klipspringer and Helam. Moderate to low (<50 µg/g) nitrogen concentrations were observed in diamonds from Premier and River Ranch. Type II diamonds, i.e. diamonds with no N impurities, which are presumed to have been derived from ultramafic sources, are found in the River Ranch deposit. The macro- and micro-size diamonds from the Klipspringer deposit display similar nitrogen defects, with higher nitrogen concentration and more frequent D components found in the macro-size diamonds. One of the first steps towards reliable carbon isotope studies is the development of calibration materials for SIMS carbon isotopic analyses. We have investigated candidate materials both from a polycrystalline synthetic diamond sheet and two natural gem quality diamonds from Juina (Brazil). Electron-based images of the synthetic diamond sheet, obtained using GFZ Potsdam's dual beam FIB instrument, show many diamond grains with diameters greater than 35 µm. SIMS testing of the isotopic homogeneity of the back and front sides of the synthetic sheets reveal similar 13C/12C ratio within a RSD of <1 ‰ . SIMS isotopic analyses of the two natural diamond RMs

  15. Isotope composition of carbon in amino acids of solid bitumens

    NASA Astrophysics Data System (ADS)

    Shanina, S. N.; Bushnev, D. A.

    2014-06-01

    Primary data are presented on the isotope composition of carbon in individual amino acids from solid bitumens and several biological objects. The amino acids of biological objects are characterized by wide variations of the isotope composition of carbon. This fact occurs owing to the difference in biochemical paths of metabolism resulting in the synthesis of individual amino acids. The δ13C values are somewhat decreased for individual amino acids in asphaltenes, varying from -7.7 to -31.7‰. The carbon of amino acids is weighted in kerits from Bad'el' compared to asphaltenes. All the natural bitumens retain the characteristic trend for natural substances: the isotopically heavy and light amino acids by carbon are glycine and leucine, respectively. The isotope composition of amino-acid carbon is lightened compared to natural bitumens in the samples formed under a pronounced thermal impact (asphalt-like crust and kirishite).

  16. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.

    1992-01-01

    Reports of the 13C content of marine particulate organic carbon are compiled and on the basis of GEOSECS data and temperatures, concentrations, and isotopic compositions of dissolved CO2 in the waters in which the related phytoplankton grew are estimated. In this way, the fractionation of carbon isotopes during photosynthetic fixation of CO2 is found to be significantly correlated with concentrations of dissolved CO2. Because ancient carbon isotopic fractionations have been determined from analyses of sedimentary porphyrins [Popp et al., 1989], the relationship between isotopic fractionation and concentrations of dissolved CO2 developed here can be employed to estimate concentrations of CO2 dissolved in ancient oceans and, in turn, partial pressures of CO2 in ancient atmospheres. The calculations take into account the temperature dependence of chemical and isotopic equilibria in the dissolved-inorganic-carbon system and of air-sea equilibria. Paleoenvironmental temperatures for each sample are estimated from reconstructions of paleogeography, latitudinal temperature gradients, and secular changes in low-latitude sea surface temperature. It is estimated that atmospheric partial pressures of CO2 were over 1000 micro atm 160 - 100 Ma ago, then declined to values near 300 micro atm during the next 100 Ma. Analysis of a high-resolution record of carbon isotopic fractionation at the Cenomanian-Turonian boundary suggests that the partial pressure of CO2 in the atmosphere was drawn down from values near 840 micro atm to values near 700 micro atm during the anoxic event.

  17. Evaluation of Oxygen, Carbon, and Nitrogen Isotopic Paleoenvironmental Proxies in Lake Erie Sediments

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.; Knowlton, C.; Eadie, B. J.; Robbins, J. A.; Lansing, M.

    2004-05-01

    The oxygen isotopic composition of calcium carbonate that precipitates in hardwater lakes is affected by meteorologic factors whereas the inorganic and organic carbon and nitrogen isotopic compositions of lake sediments are influenced by biological productivity within the lake. All of these isotopic proxies are potentially subject to post-depositional diagenesis. We have measured the isotopic compositions at 1-cm intervals in four sediment cores that were collected in 1988, 1991, and 2003 from eastern Lake Erie to evaluate the effects of diagenesis on records of paleoenvironmental change. We have compared the isotopic contents and the mass accumulation rates of the aquatic productivity proxies organic carbon and calcium carbonate of the different cores to each other and to meteorological records beginning in 1895. Eutrophication accelerated calcite dissolution, but isotopic proxies are preserved. Calcite del 18O values that become smaller from 1980 to 1998 in the absence of evidence of a summer temperature change suggest a change in air mass trajectories. In contrast, a shift to larger del 18O values from 1905 to 1910 that is accompanied by diminished calcite precipitation and higher lake levels suggests a period of cooler summer temperatures. Increases in inorganic and organic del 13C values, del 15N values, and organic carbon accumulation starting in 1960 reflect the heightened productivity caused by anthropogenic nutrient increases to Lake Erie.

  18. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Popp, Brian N.; Takigiku, Ray; Johnson, Marcus W.

    1989-01-01

    Carbon-isotopic compositions of total carbonate, inoceramid carbonate, micritic carbonate, secondary cements, total organic carbon, and geoporphyrins have been measured in 76 different beds within a 17-m interval of a core through the Greenhorn Formation, an interbedded limestone and calcareous shale unit of Cretaceous age from the Western Interior Seaway of North America. Results are considered in terms of variations in the processes of primary production and in secondary processes. It is shown that the porphyrin isotopic record reflects primary isotopic variations more closely than the TOC isotopic record and that, in these sediments, TOC is enriched in C-13 relative to its primary precursor by 0.6 to 2.8 percent. This enrichment is attributed to isotope effects within the consumer foodweb and is associated with respiratory heterotrophy. Variation in this secondary enrichment are correlated with variations in the isotopic composition of marine carbonate.

  19. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Wang, Ze-Zhou; Li, Shu-Guang; Huang, Jian; Yang, Wei

    2016-06-01

    A large set of zinc (Zn) stable isotope data for continental basalts from eastern China were reported to investigate the application of Zn isotopes as a new tracer of deep carbonate cycling. All of the basalts with ages of <110 Ma have systematically heavy δ66Zn (relative to JMC 3-0749L) ranging from 0.30‰ to 0.63‰ (n = 44) compared to the mantle (0.28 ± 0.05‰; 2sd) and >120 Ma basalts from eastern China (0.27 ± 0.06‰; 2sd). Given that Zn isotope fractionation during magmatic differentiation is limited (≤0.1‰), the elevated δ66Zn values reflect the involvement of isotopically heavy crustal materials (e.g., carbonates with an average δ66Zn of ∼0.91‰) in the mantle sources. SiO2 contents of the <110 Ma basalts negatively correlate with parameters that are sensitive to the degree of partial melting (e.g., Sm/Yb, Nb/Y, [Nb]) and with the concentration of Zn, which also behaves incompatibly during mantle melting. This is inconsistent with a volatile-poor peridotite source and instead suggests partial melting of carbonated peridotites which, at lower degree of melting, generates more Si-depleted (and more Ca-rich) melts. Zinc isotopic compositions are positively correlated with Sm/Yb, Nb/Y, [Nb] and [Zn], indicating that melts produced by lower degrees of melting have heavier Zn isotopic compositions. Carbonated peridotites have a lower solidus than volatile-poor peridotites and therefore at lower melting extents, contribute more to the melts, which will have heavier Zn isotopic compositions. Together with the positive relationships of δ66Zn with CaO and CaO/Al2O3, we propose that the heavy Zn isotopic compositions of the <110 Ma basalts were generated by incongruent partial melting of carbonated peridotites. Combined with previously reported Mg and Sr isotope data, we suggest that the large-scale Zn isotope anomaly indicates the widespread presence of recycled Mg (Zn)-rich carbonates in the mantle beneath eastern China since the Late Mesozoic

  20. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (δ13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (δ13Ccarb < -5 per mil). Mechanisms that account for the magnitude, the facies distribution and the global abundance of these isotopically extreme carbonates in Neoproterozoic successions remain poorly understood. Little is also known about organisms and metabolisms that cycled carbon in these carbonate strata, because they rarely contain well-preserved organic-rich fossils. To better understand the cycling of carbon during the deposition of the 715-635 Ma Tayshir member of the Tsagaan Oloom Formation, Mongolia, we analyzed δ13Cfossil of two types of organic fossils that occur in 13C- enriched carbonates (+ 5 to 9.9 per mil) and within 13C-depleted carbonates of the Tayshir anomaly (-3 to -6 per mil). Because these organic microfossils are remarkably similar to the tests of modern planktonic, herbivorous tintinnid ciliates and benthic macroscopic red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with ±1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (δ13Ccarb < -3 per mil) and 3 different strata predating the Tayshir anomaly (δ13Ccarb > +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (δ13Cfossil), with values of -23 ±1 per mil both within 13C-enriched and 13C-depleted carbonates. The

  1. Carbon Monoxide Isotopes: On the Trail of Galactic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1995-01-01

    From the early days of the discovery of radio emission from carbon monoxide it was realized that it offered unusual potential for under- standing the chemical evolution of the Galaxy and external galaxies through measurements of molecular isotopes. These results bear on stellar nucleosynthesis, star formation, and gases in the interstellar medium. Progress in isotopic radio measurements will be reviewed.

  2. BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES

    EPA Science Inventory

    The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...

  3. Carbonate minerals, oxygen and carbon isotopes in modern temperate bryozoa, eastern Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Prasada Rao, C.

    1993-12-01

    X-ray analysis of cool temperate bryozoa from eastern shelf carbonates indicates the occurrence of a spectrum of low-Mg calcite to high-Mg calcite with variable amounts of aragonite. Bryozoa contain variable amounts of CaCO 3 cements. In bryozoa δ18O values increase and δ13C values decrease with increasing aragonite content probably due to the occurrence of vaterite. Aragonite contents decrease with decreasing water temperatures as established by oxygen isotope thermometry. Tasmanian bryozoa may be enriched in δ18O up to 0.7‰ due to aragonite and high Mg-calcite contents. δ13C values of bryozoa composed of pure calcite are similar to those of associated brachiopods. δ18O and δ13C values of bryozoa are unaffected by kinetic and metabolic effects. The isotopic field of temperate bryozoa differs from tropical carbonates by having heavier δ18O ( 1.3‰ ± 0.5) and lighter δ13C ( 1.8‰ ± 0.8) values than bulk tropical carbonates. The bryozoa are in equilibrium with upwelling deep seawater and surface subantarctic water and therefore intersect seafloor diagenesis and upwelling water trend lines. Mol% MgCO 3 content ranges from 2 to 11 in calcite and corresponds to 5-14°C water temperatures. The δ18O values of bryozoa give a range of temperatures from 7° to 13°C, slightly less than the 4-15°C obtained from δ18O of Tasmanian brachiopods. This discrepancy is probably due to either minor biochemical fractionation or to bryozoa being in equilibrium with warmer waters.

  4. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  5. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  6. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1979-01-01

    The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.

  7. Biomarker and Carbon Isotope Signals from Leaf to Terrestrial Archive

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.

    2012-12-01

    Biomarker and isotopic signatures of terrestrial organic matter are increasingly used to discern organic matter provenance in transport systems as well as to reconstruct environmental conditions of ancient landscapes. Such tools help scholars evaluate river transport and the influence of climate on terrestrial biomass and soil carbon, the largest reduced carbon inventories within the global surface environment. These signals reflect isotopic fractionation during photosynthesis and the abundance and composition of plant lipids, which are ultimately influenced by plant community, ecosystem structure and climate. Case studies and literature data for plants, biomarkers, litter carbon and soil organic matter refine the framework for evaluating and interpreting ancient terrestrial environments. Such studies reveal isotopic and biomarker patterns primarily track woody cover and moisture gradients in ancient landscapes. This emerging approach is currently limited by a lack of supporting and critical information about carbon isotopic differences between lipids and leaves, which appear to vary with environment as well as plant type. Environmental reconstructions and carbon-cycle studies are also limited by incomplete understanding of carbon isotopic relationships between modern litter, mineral soil, leaf waxes, and ancient archives of these properties. The net imprint of diagenesis on bulk carbon archives can potentially be constrained with companion biomarker studies, provided biomass production, litter delivery and lipid isotopic characteristics are constrained. Soil organic matter isotopic diagenesis is not fully understood, especially on geologic timescales, but appears to vary with both climate and ecosystem properties. This presentation will highlight recent findings and current knowledge gaps in understanding biomarker and ancient soil organic carbon as landscape tracers of past vegetation and climate.

  8. Locations of marine animals revealed by carbon isotopes.

    PubMed

    MacKenzie, Kirsteen M; Palmer, Martin R; Moore, Andy; Ibbotson, Anton T; Beaumont, William R C; Poulter, David J S; Trueman, Clive N

    2011-01-01

    Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available. PMID:22355540

  9. Controls on ostracod valve geochemistry: Part 2. Carbon and oxygen isotope compositions

    NASA Astrophysics Data System (ADS)

    Decrouy, Laurent; Vennemann, Torsten Walter; Ariztegui, Daniel

    2011-11-01

    The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 3‰ relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.3‰. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens' δ 13C values are mainly controlled by seasonal variations in δ 13C DIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of CO32- at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate

  10. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material

    USGS Publications Warehouse

    Friedman, I.; O'Neil, J.R.; Adami, L.H.; Gleason, J.D.; Hardcastle, K.

    1970-01-01

    The water content of the breccia is 150 to 455 ppm, with a ??D from -580 to -870 per mil. Hydrogen gas content is 40 to 53 ppm with a ??D of -830 to -970 per mil. The CO2 is 290 to 418 ppm with S 13C = + 2.3 to + 5.1 per mil and ??18O = 14.2 to 19.1 per mil. Non-CO2 carbon is 22 to 100 ppm, ??18C = -6.4 to -23.2 per mil. Lunar dust is 810 ppm H2O (D = 80 ppm) and 188 ppm total carbon (??13C = -17.6 per mil). The 18O analyses of whole rocks range from 5.8 to 6.2 per mil. The temperature of crystallization of type B rocks is 1100?? to 1300??C, based on the oxygen isotope fractionation between coexisting plagioclase and ilmenite.

  11. Carbon and oxygen isotope fractionation in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Graedel, T. E.; Frerking, M. A.; Armentrout, P. B.

    1984-01-01

    It is pointed out that isotope fractionation as a result of chemical reactions is due to the small zero-point energy differences between reactants and products of isotopically distinct species. Only at temperatures near absolute zero does this energy difference become significant. Favorable conditions for isotope fractionation on the considered basis exist in space within dense interstellar clouds. Temperatures of approximately 10 K may occur in these clouds. Under such conditions, ion-molecule reactions have the potential to distribute isotopes of hydrogen, carbon, oxygen unequally among the interstellar molecules. The present investigation makes use of a detailed model of the time-dependent chemistry of dense interstellar clouds to study cosmological isotope fractionation. Attention is given to fractionation chemistry and the calculation of rate parameters, the isotope fractionation results, and a comparison of theoretical results with observational data.

  12. Carbon content on perturbed wetlands of Yucatan

    NASA Astrophysics Data System (ADS)

    Morales Ojeda, S. M.; Orellana, R.; Herrera Silveira, J.

    2013-05-01

    The north coast of Yucatan Peninsula is a karstic scenario where the water flows mainly underground through the so called "cenotes"-ring system ("sink holes") toward the coast. This underground water system enhances the connection between watershed condition and coastal ecosystem health. Inland activities such as livestock, agriculture and urban development produce changes in the landscape, hydrological connectivity and in the water quality that can decrease wetland coverage specially mangroves and seagrasses. We conducted studies on the description of structure, biomass and carbon content of the soil, above and below ground of four different types of wetland in a perturbed region. The wetland ecological types were freshwater (Typha domingensis), dwarf mangroves (Avicenia germinans), grassland (Cyperacea) and Seagrasses. Due to the area is mainly covered by mangroves, they represent the most important carbon storage nevertheless the condition of the structure determine the carbon content in soil. Through GIS tools we explore the relationships between land use and costal condition in order to determine priority areas for conservation within the watershed that could be efficient to preserve the carbon storage of this area.

  13. Variability of carbonate diagenesis in equatorial Pacific sediments deduced from radiogenic and stable Sr isotopes

    NASA Astrophysics Data System (ADS)

    Voigt, Janett; Hathorne, Ed C.; Frank, Martin; Vollstaedt, Hauke; Eisenhauer, Anton

    2015-01-01

    The recrystallisation (dissolution-precipitation) of carbonate sediments has been successfully modelled to explain profiles of pore water Sr concentration and radiogenic Sr isotope composition at different locations of the global ocean. However, there have been few systematic studies trying to better understand the relative importance of factors influencing the variability of carbonate recrystallisation. Here we present results from a multi-component study of recrystallisation in sediments from the Integrated Ocean Drilling Program (IODP) Expedition 320/321 Pacific Equatorial Age Transect (PEAT), where sediments of similar initial composition have been subjected to different diagenetic histories. The PEAT sites investigated exhibit variable pore water Sr concentrations gradients with the largest gradients in the youngest sites. Radiogenic Sr isotopes suggest recrystallisation was relative rapid, consistent with modelling of other sediment columns, as the 87Sr/86Sr ratios are indistinguishable (within 2σ uncertainties) from contemporaneous seawater 87Sr/86Sr ratios. Bulk carbonate leachates and associated pore waters of Site U1336 have lower 87Sr/86Sr ratios than contemporaneous seawater in sediments older than 20.2 Ma most likely resulting from the upward diffusion of Sr from older recrystallised carbonates. It seems that recrystallisation at Site U1336 may still be on-going at depths below 102.5 rmcd (revised metres composite depth) suggesting a late phase of recrystallisation. Furthermore, the lower Sr/Ca ratios of bulk carbonates of Site U1336 compared to the other PEAT sites suggest more extensive diagenetic alteration as less Sr is incorporated into secondary calcite. Compared to the other PEAT sites, U1336 has an inferred greater thermal gradient and a higher carbonate content. The enhanced thermal gradient seems to have made these sediments more reactive and enhanced recrystallisation. In this study we investigate stable Sr isotopes from carbonate-rich deep

  14. [Carbon isotope fractionation inplants]. Final report

    SciTech Connect

    O`Leary, M.H.

    1990-12-31

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  15. Isotopic Composition of Organic and Inorganic Carbon in Desert Biological Soil Crust Systems

    NASA Astrophysics Data System (ADS)

    Alexander, K.; Hartnett, H.; Anbar, A.; Beraldi, H.; Garcia-Pichel, F.

    2006-12-01

    Biological soil crusts (BSCs) are microbial communities that colonize soil surfaces in many arid regions. BSCs are important sources for fixed carbon and nitrogen in these ecosystems, and they greatly influence the structure, function, and appearance of desert soils. Biological activity of BSCs occurs during pulses of hydration requiring desert crusts to tolerate extremes in UV radiation, temperature, and desiccation. These characteristics make desert crusts unique systems that have received little consideration in the study of biogeochemical processes in extreme environments. This project investigates the impact of BSCs on carbon dynamics within desert soils. Soil cores ranging in depth from 8 to 12 cm were taken in March, 2006 from deserts near Moab, Utah. Two major BSC classes were identified: lichen-dominated (dark and pinnacled) soil crusts and cyanobacteria-dominated (light and flat) soil crusts. These two surface morphologies are related to the different biological communities. Carbon content and stable carbon isotopic composition were determined for the bulk carbon pool, as well as for the organic and inorganic carbon fractions of the soils. Expectedly, there was a net decrease in organic carbon content with depth (0.39-0.27 percent). Stable carbon isotope values for the organic fraction ranged from -5.8 per mil to -24.0 per mil (Avg: -14.4 per mil, S.D: 6.42 per mil). Stable carbon isotope values for the inorganic fraction ranged from 0.3 per mil to -3.6 per mil (Avg: -2.4 per mil, S.D.: 1.05 per mil). The variation in the isotopic composition of the organic carbon was due to a strong depletion below the surface soil value occurring between 3 and 5 cm depth, with an enrichment above the original surface value at depths below 6 to 10 cm. These data suggest that within desert soil crust systems the carbon isotopic signal is complex with both a clear biological imprint (lighter organic carbon) as well as evidence for some mechanism that results in

  16. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus

    2016-04-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  17. Carbon isotopic ratio of dissolved inorganic carbon in the spring water around Asama volcano

    NASA Astrophysics Data System (ADS)

    Suzuki, Hidekazu; Tase, Norio

    In order to determine the source and formation process of dissolved inorganic carbon (DIC) in spring water and to evaluate quantitatively the contribution of volcanic gas to water chemistry of springs distributed on and around Asama volcano, the carbon isotopic ratio of DIC (δ13CDIC) with major dissolved solids has been measured. The measurements of carbon isotopic ratios of volcanic and soil CO2, which are the source materials of DIC, were also carried out in Jigokudani fumarole and in the forest soil of several points of volcano flank, respectively. The spring waters in Asama volcano have been classified into nine groups (A∼I) based on the physicochemical characteristics, such as water temperature, electrical conductivity and chemical compositions. As δ13CDIC increase with increasing DIC content, the origin of DIC in spring water from Asama volcano was can be assessed by mixing process between isotopically light soil CO2 (organic origin) and 13C-enriched volcanic CO2 (deep origin with mantle component), except for the springs of group B. On the basis of two components mixing, the contribution rate of volcanic CO2 to DIC in spring water was computed by using the carbon isotopic ratio of CO2 equilibrated with DIC (δ13CCO2) as an indicator. Consequently, the contribution rates of volcanic CO2 were ranged from 40 to 60% in the groups C, F and H located on the flank of the mountain. In particular, the strong contribution of more than 90% was confirmed in the group I located on the higher part of the mountain, that is near the crater. These groups were correspondent with those in which influence of volcanic gases was assumed from the geochemical characteristics of spring water. By contrast, influence of volcanic CO2 was almost not found in other groups A, D, E and G. The spring waters of group B which are not plotted on the two components mixing line and located at the terminal of Onioshidashi lava flow have highest δ13CDIC in spite of low DIC content. These 13C

  18. Isotopic Approach to Soil Carbonate Dynamics and Implications for Paleoclimatic Interpretations

    USGS Publications Warehouse

    Pendall, E.G.; Harden, J.W.; Trumbore, S.E.; Chadwick, O.A.

    1994-01-01

    The radiocarbon content and stable isotope composition of soil carbonate are best described by a dynamic system in which isotopic reequilibration occurs as a result of recurrent dissolution and reprecipitation. Depth of water penetration into the soil profile, as well as soil age, determines the degree of carbonate isotope reequilibration. We measured ??13C, ??18O and radiocarbon content of gravel rinds and fine (<2 mm) carbonate in soils of 3 .different ages (1000, 3800, and 6300 14 C yr B.P.) to assess the degree to which they record and preserve a climatic signal. In soils developing in deposits independently dated at 3800 and 6300 radiocarbon yr B.P., carbonate radiocarbon content above 40 cm depth suggests continual dissolution and reprecipitation, presumably due to frequent wetting events. Between 40 and 90 cm depth, fine carbonate is dissolved and precipitated as rinds that are not redissolved subsequently. Below 90 cm depth in these soils, radiocarbon content indicates that inherited, fine carbonate undergoes little dissolution and reprecipitation. In the 3800- and 6300-yr-old soils, ??13C in rind and fine carbonate follows a decreasing trend with depth, apparently in equilibrium with modern soil gas, as predicted by a diffusive model for soil CO2. ??18O also decreases with depth due to greater evaporative enrichment above 50 cm depth. In contrast, carbonate isotopes in a 1000-yr-old deposit do not reflect modern conditions even in surficial horizons; this soil has not undergone significant pedogenesis. There appears to be a lag of at least 1000 but less than 3800 yr before carbonate inherited with parent material is modified by ambient climatic conditions. Although small amounts of carbonate are inherited with the parent material, the rate of pedogenic carbonate accumulation indicates that Ca is derived primarily from eolian and rainfall sources. A model describing carbonate input and radiocarbon decay suggests that fine carbonate below 90 cm is mostly

  19. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  20. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts

    USGS Publications Warehouse

    Sakai, H.; Marais, D.J.D.; Ueda, A.; Moore, J.G.

    1984-01-01

    Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges,-6.2 ?? 0.2% relative to PDB and +0.2 ?? 0.6 %. relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (??13C = around -24%.) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm, in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). The ??34S values average +0.3 ?? 0.5%. with average fractionation factor between sulfate and sulfide of +7.4 ?? 1.6%.. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt. ?? 1984.

  1. A molecular organic carbon isotope record of miocene climate changes

    SciTech Connect

    Schoell, M. ); Schouten, S.; Sinninghe Damste', J.S.; Leeuw, J.W. de ); Summons, R.E. )

    1994-02-25

    The difference in carbon-13 ([sup 13]C) contents of hopane and sterane biomarkers in the Monterey formation (Naples Beach, California) parallels the Miocene inorganic record of the change in [sup 18]O ([delta][sup 18]O), reflecting the Miocene evolution from a well-mixed to a highly stratified photic zone (upper 100 meters) in the Pacific. Steranes ([delta][sup 13]C = 25.4 [+-] 0.7 per mil versus the Pee Dee belemnite standard) from shallow photic-zone organisms do not change isotopically throughout the Miocene. In contrast, sulfur-bound C[sub 35] hopanes (likely derived from bacterial plankton living at the base of the photic zone) have systematically decreasing [sup 13]C concentrations in Middle and Late Miocene samples ([delta][sup 13]C = 29.5 to [minus]31.5 per mil), consistent with the Middle Miocene formation of a carbon dioxide-rich cold water mass at the base of the photic zone.

  2. Short-term carbon isotopic fractionation in plants

    SciTech Connect

    Rooney, M.A.

    1988-01-01

    A system was developed for measuring carbon isotopic fractionation in plants over a time interval of 1-3 hours, in contrast to leaf combustion studies which give long-term, integrated discrimination measurements. The system was used to study environmental effects on soybean (Glycine max) and corn (Zea mays) discrimination. Changes in leaf temperature, photon flux density (PFD), O{sub 2} concentration, and CO{sub 2} concentration produced little or no change in measured discrimination ({Delta}). For soybean, {Delta} increased with decreasing PFD. For corn, {Delta} decreased with decreasing O{sub 2} concentration. For both soybean and corn, {Delta} increased with increasing CO{sub 2} concentration. These changes in {Delta} were interpreted as environmental effects on stomatal conductance and photosynthetic capacity, which indirectly affect {Delta} by altering C{sub i}/C{sub a}. Respiratory discrimination in the dark and light was also investigated. Respired CO{sub 2} was 5{per thousand} and 0-1{per thousand} more positive than leaf carbon for soybean and corn, respectively. Photorespiratory discrimination was 6-7{per thousand} for soybean, supporting the contention that glycine decarboxylase may be the source of discrimination in the photorespiratory pathway.

  3. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  4. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment

    NASA Technical Reports Server (NTRS)

    Martens, C. S.; Green, C. D.; Blair, N. E.; Des Marais, D. J.

    1986-01-01

    Systematic seasonal variations in the stable carbon isotopic signature of methane gas occur in the anoxic sediments of Cape Lookout Bight, a lagoonal basin on North Carolina's Outer Banks. Values for the carbon isotope ratio of methane range from -57.3 per mil during summer to -68.5 per mil during winter in gas bubbles with an average methane content of 95 percent. The variations are hypothesized to result from changes in the pathways of microbial methane production and cycling of key substrates including acetate and hydrogen. The use of stable isotopic signatures to investigate the global methane cycle through mass balance calculations, involving various sediment and soil biogenic sources, appears to require seasonally averaged data from individual sites.

  5. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NASA Astrophysics Data System (ADS)

    de Kluijver, A.; Schoon, P. L.; Downing, J. A.; Schouten, S.; Middelburg, J. J.

    2014-11-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFAs were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed overall higher isotopic variability in eutrophic lakes (n = 11) compared to oligo-mesotrophic lakes (n = 11) because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8-25‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.

  6. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NASA Astrophysics Data System (ADS)

    de Kluijver, A.; Schoon, P. L.; Downing, J. A.; Schouten, S.; Middelburg, J. J.

    2014-05-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFA) were studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFA were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed larger isotopic variability in eutrophic lakes compared to oligo-mesotrophic lakes because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8-25 ‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.

  7. Distinct carbon isotope fractionation during anaerobic degradation of dichlorobenzene isomers.

    PubMed

    Liang, Xiaoming; Mundle, Scott O C; Nelson, Jennifer L; Passeport, Elodie; Chan, Calvin C H; Lacrampe-Couloume, Georges; Zinder, Stephen H; Sherwood Lollar, Barbara

    2014-05-01

    Chlorinated benzenes are ubiquitous organic contaminants found in groundwater and soils. Compound specific isotope analysis (CSIA) has been increasingly used to assess natural attenuation of chlorinated contaminants, in which anaerobic reductive dechlorination plays an essential role. In this work, carbon isotope fractionation of the three dichlorobenzene (DCB) isomers was investigated during anaerobic reductive dehalogenation in methanogenic laboratory microcosms. Large isotope fractionation of 1,3-DCB and 1,4-DCB was observed while only a small isotope effect occurred for 1,2-DCB. Bulk enrichment factors (εbulk) were determined from a Rayleigh model: -0.8 ± 0.1 ‰ for 1,2-DCB, -5.4 ± 0.4 ‰ for 1,3-DCB, and -6.3 ± 0.2 ‰ for 1,4-DCB. εbulk values were converted to apparent kinetic isotope effects for carbon (AKIE) in order to characterize the carbon isotope effect at the reactive positions for the DCB isomers. AKIE values are 1.005 ± 0.001, 1.034 ± 0.003, and 1.039 ± 0.001 for 1,2-DCB, 1,3-DCB, and 1,4-DCB, respectively. The large difference in AKIE values between 1,2-DCB and 1,3-DCB (or 1,4-DCB) suggests distinct reaction pathways may be involved for different DCB isomers during microbial reductive dechlorination by the methanogenic cultures. PMID:24758692

  8. Temperature Dependence of Carbon Isotope Fractionation in CAM Plants.

    PubMed

    Deleens, E; Treichel, I; O'leary, M H

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17 degrees C nights, 23 degrees C days), the isotope fractionation for both plants is -4 per thousand (that is, malate is enriched in (13)C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0 per thousand at 27 degrees C/33 degrees C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. PMID:16664371

  9. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  10. Measurement of stable carbon isotope ratios of non-methane hydrocarbons and halocarbons

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A. T.

    2012-09-01

    behavior of these compounds in terms of their sources, sinks, inter- and intramolecular processes, it was decided in 2006 to develop an instrument capable of selectively measuring NMHC mixing ratios and stable carbon isotope ratios for use in the laboratory of the Atmospheric Physics and Chemistry Group at Universiteit Utrecht. This thesis documents the successful development, construction, testing and first applications of this stable carbon isotope ratio instrument. It is divided into five chapters, representing the content of three publications and additional material: an introduction; a method section; and applications: analysis of NMHC stable carbon isotopes in urban ambient air, laboratory measurments of the isotope effects in UV degradation of monocarbon chlorofluorocarbons, isotope analysis of diverse gases from firn air samples from Greenland, plus a section on future perspectives

  11. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein.

    PubMed

    McMahon, Kelton W; Fogel, Marilyn L; Elsdon, Travis S; Thorrold, Simon R

    2010-09-01

    1. Analysis of stable carbon isotopes is a valuable tool for studies of diet, habitat use and migration. However, significant variability in the degree of trophic fractionation (Delta(13)C(C-D)) between consumer (C) and diet (D) has highlighted our lack of understanding of the biochemical and physiological underpinnings of stable isotope ratios in tissues. 2. An opportunity now exists to increase the specificity of dietary studies by analyzing the delta(13)C values of amino acids (AAs). Common mummichogs (Fundulus heteroclitus, Linnaeus 1766) were reared on four isotopically distinct diets to examine individual AA Delta(13)C(C-D) variability in fish muscle. 3. Modest bulk tissue Delta(13)C(C-D) values reflected relatively large trophic fractionation for many non-essential AAs and little to no fractionation for all essential AAs. 4. Essential AA delta(13)C values were not significantly different between diet and consumer (Delta(13)C(C-D) = 0.0 +/- 0.4 per thousand), making them ideal tracers of carbon sources at the base of the food web. Stable isotope analysis of muscle essential AAs provides a promising tool for dietary reconstruction and identifying baseline delta(13)C values to track animal movement through isotopically distinct food webs. 5. Non-essential AA Delta(13)C(C-D) values showed evidence of both de novo biosynthesis and direct isotopic routing from dietary protein. We attributed patterns in Delta(13)C(C-D) to variability in protein content and AA composition of the diet as well as differential utilization of dietary constituents contributing to the bulk carbon pool. This variability illustrates the complicated nature of metabolism and suggests caution must be taken with the assumptions used to interpret bulk stable isotope data in dietary studies. 6. Our study is the first to investigate the expression of AA Delta(13)C(C-D) values for a marine vertebrate and should provide for significant refinements in studies of diet, habitat use and migration using

  12. Carbon and Hydrogen Isotopic Fractionation during Anaerobic Biodegradation of Benzene

    PubMed Central

    Mancini, Silvia A.; Ulrich, Ania C.; Lacrampe-Couloume, Georges; Sleep, Brent; Edwards, Elizabeth A.; Sherwood Lollar, Barbara

    2003-01-01

    Compound-specific isotope analysis has the potential to distinguish physical from biological attenuation processes in the subsurface. In this study, carbon and hydrogen isotopic fractionation effects during biodegradation of benzene under anaerobic conditions with different terminal-electron-accepting processes are reported for the first time. Different enrichment factors (ɛ) for carbon (range of −1.9 to −3.6‰) and hydrogen (range of −29 to −79‰) fractionation were observed during biodegradation of benzene under nitrate-reducing, sulfate-reducing, and methanogenic conditions. These differences are not related to differences in initial biomass or in rates of biodegradation. Carbon isotopic enrichment factors for anaerobic benzene biodegradation in this study are comparable to those previously published for aerobic benzene biodegradation. In contrast, hydrogen enrichment factors determined for anaerobic benzene biodegradation are significantly larger than those previously published for benzene biodegradation under aerobic conditions. A fundamental difference in the previously proposed initial step of aerobic versus proposed anaerobic biodegradation pathways may account for these differences in hydrogen isotopic fractionation. Potentially, C-H bond breakage in the initial step of the anaerobic benzene biodegradation pathway may account for the large fractionation observed compared to that in aerobic benzene biodegradation. Despite some differences in reported enrichment factors between cultures with different terminal-electron-accepting processes, carbon and hydrogen isotope analysis has the potential to provide direct evidence of anaerobic biodegradation of benzene in the field. PMID:12513995

  13. BOREAS TE-5 Tree Ring and Carbon Isotope Ratio Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected several data sets to investigate the vegetation-atmosphere CO2 and H2O exchange processes. These data include tree ring widths and cellulose carbon isotope data from coniferous trees collected at the BOREAS NSA and SSA in 1993 and 1994 by the BOREAS TE-5 team. Ring width data are provided for both Picea mariana and Pinus banksiana. The carbon isotope data are provided only for Pinus banksiana. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Soil organic carbon assessments in cropping systems using isotopic techniques

    NASA Astrophysics Data System (ADS)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  15. Constraining paleotemperature and water isotope signals at Lake Bonneville using carbonate clumped isotopes

    NASA Astrophysics Data System (ADS)

    Mering, J. A.; Oviatt, C. G.; Petryshyn, V. A.; Canet, J.; Tripati, A.

    2013-12-01

    Lake Bonneville was the largest pluvial system in the Great Basin during the Last Glacial Maximum (23-19 ka BP), reaching nearly 50,000 square kilometers at its high stand. Carbonate clumped isotope paleothermometry provides a new avenue to evaluate lake and atmospheric conditions by constraining the temperature and oxygen isotope ratios of lake water. Here, we present estimates of lake temperature, the oxygen isotope composition of paleowater, and Mean Annual Air Temperature (MAAT) from LGM paleoshoreline sites in Utah and Eastern Nevada. Multiple phases of ancient carbonate were evaluated, including endogenic carbonate from the ubiquitous Bonneville marl stratigraphic unit, and aragonitic shells of two species of aquatic gastropods (genera Pyrgulopsis and Stagnicola) collected from littoral deposits adjacent to the marl. These phases should record surface water conditions. Preliminary results indicate that paleotemperature estimates from gastropods and marl are similar at any given site. However, the latitudinal water isotope gradient reconstructed using marls is steeper than that reconstructed from gastropods, indicating that perhaps carbonate precipitation in marl is more evaporation-driven than shell growth of aquatic snails. Comparison with recent climate data, and clumped isotope measurements of modern samples from the Great Salt Lake, supports moderate temperature change in the Great Basin from the Last Glacial Maximum to present.

  16. Aptian Carbon Isotope Stratigraphy in Sierra del Rosario, Northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Barragan-Manzo, R.; Moreno-Bedmar, J.; Nuñez, F.; Company, M.

    2013-05-01

    In most recent years Aptian carbon isotope stratigraphy has been widely studied in Europe where isotopic stages have been developed to correlate global events. Two negative excursions have been recorded in the Lower Aptian, the older is OAE 1a in the middle part, and a younger negative excursion labeled "Aparein level", which occurs in the uppermost part of the Lower Aptian. In Mexico previous works reported a carbon isotope negative excursion in the lowermost part of the La Peña Formation that was assigned to the onset of Oceanic Anoxic Event 1a (=OAE 1a). In this work we study the isotopic record of the δ13Ccarb of 32 bulk rock samples of limestone from the uppermost part of the Cupido Formation and the lower part of the La Peña Formation at the Francisco Zarco Dam Section (=FZD), Durango State, northeastern Mexico. The isotopic data are calibrated using the latest ammonite biostratigraphic biozonation of the Aptian. This age calibration allows us to make a precise correlation between the carbon isotopic record of Mexico and several European sections (e.g. Spain and France). In the studied Francisco Zarco Dam section we recognize a negative carbon isotopic excursion in the Dufrenoyia justinae ammonite Zone that corresponds to the "Aparein level", which we correlate using the ammonite zonation of others European sections (Figure 1). This correlation allows us to see how the negative excursion that characterizes the "Aparein level" is consistent with the C7 segment. Thus, our recent stratigraphic study allows us to conclude that the ammonite record in the lowermost part of the La Peña Formation is regionally isochronous, and correlates with the Dufrenoyia justinae Zone and Lower Aptian isotope interval C7. In agreement to these biostratigraphic data, the supposed record of the OAE 1a in the lowermost part of the La Peña Formation is not correct, and the carbon isotope negative excursion must be assigned to the younger event "Aparein level". Taking this into

  17. Combining stable isotope isotope geochemistry and carbonic anhydrase activity to trace vital effect in carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Thaler, C.; Ader, M.; Menez, B.; Guyot, F. J.

    2013-12-01

    Carbonates precipitated by skeleton-forming eukaryotic organisms are often characterized by non-equilibrium isotopic signatures. This specificity is referred to as the "vital effect" and can be used as an isotopic evidence to trace life. Combining stable isotope geochemistry and enzymology (using the enzyme carbonic anhydrase) we aim to demonstrate that prokaryotes are also able to precipitate carbonate with a non-equilibrium d18OCaCO3. Indeed, if in an biomineralization experiment carbonates are precipitated with a vital effect, the addition of carbonic anhydrase should drive the system to isotope equilibrium, And provide a comparison point to estimate the vital effect range. This protocol allowed us to identify a -20‰ vital effect for the d18O of carbonates precipitated by Sporosarcina pasteurii, a bacterial model of carbonatogen metabolisms. This approach is thus a powerfull tool for the understanding of microbe carbonatogen activity and will probably bring new insights into the understanding of bacterial activity in subsurface and during diagenesis.

  18. Development of a Field-Deployable Methane Carbon Isotope Analyzer

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Methane is a potent greenhouse gas, whose atmospheric surface mixing ratio has almost doubled compared with preindustrial values. Methane can be produced by biogenic processes, thermogenic processes or biomass, with different isotopic signatures. As a key molecule involved in the radiative forcing in the atmosphere, methane is thus one of the most important molecules linking the biosphere and atmosphere. Therefore precise measurements of mixing ratios and isotopic compositions will help scientists to better understand methane sources and sinks. To date, high precision isotope measurements have been exclusively performed with conventional isotope ratio mass spectrometry, which involves intensive labor and is not readily field deployable. Optical studies using infrared laser spectroscopy have also been reported to measure the isotopic ratios. However, the precision of optical-based analyses, to date, is typically unsatisfactory without pre-concentration procedures. We present characterization of the performance of a portable Methane Carbon Isotope Analyzer (MCIA), based on cavity enhanced laser absorption spectroscopy technique, that provides in-situ measurements of the carbon isotope ratio (13C/12C or del_13C) and methane mixing ratio (CH4). The sample is introduced to the analyzer directly without any requirement for pretreatment or preconcentration. A typical precision of less than 1 per mill (< 0.1%) with a 10-ppm methane sample can be achieved in a measurement time of less than 100 seconds. The MCIA can report carbon isotope ratio and concentration measurements over a very wide range of methane concentrations. Results of laboratory tests and field measurements will be presented.

  19. Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary

    SciTech Connect

    Magaritz, M. ); Krishnamurthy, R.V. ); Holser, W.T. Cornell Univ., Ithaca, NY )

    1992-12-01

    Stable carbon isotope ratios in both inorganic and organic reservoirs have been widely applied to model environmental and sedimentological changes on a global scale. Most studies dealing with major extinction events have used the record of inorganic carbon. In this paper the authors report the relation between shifts in carbon-13 content of organic matter and coexisting carbonate fractions at a major extinction event, the Permian/Triassic boundary. They found that both [delta][sup 13]C[sub carb] and [delta][sup 13]C[sub org] of the surface ocean varied dramatically across the boundary, but the fractionation [Delta][sup 13]C between organic matter and carbonate remained constant. This result appreciably restricts the interpretation of changes in the carbon cycle during this critical interval. The new data are best explained by a combination of two mechanisms for variation in [delta][sup 13]C[sub carb]: (1) burial and erosion of organic carbon, with a long time constant; and (2) sequestration of organic carbon into shallow and deep oceanic reservoirs, with a shorter time constant. For application to their case, the first mechanism is limited by possible buildup of marine pCO[sub 2], which would increase the isotopic fractionation factor. The second mechanism is limited in application to short-term transient variations in [delta][sup 13]C. Modeling of the carbon cycle and its variations of [delta][sup 13]C must take both mechanisms into account.

  20. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates

    NASA Astrophysics Data System (ADS)

    Huang, Kang-Jun; Shen, Bing; Lang, Xian-Guo; Tang, Wen-Bo; Peng, Yang; Ke, Shan; Kaufman, Alan J.; Ma, Hao-Ran; Li, Fang-Bing

    2015-09-01

    Available Mg isotope data indicate that dolostones of different ages have overlapping range of Mg isotopic composition (δ26Mg) and there is no systematic difference among different types of dolomites. To further explore the Mg isotopic systematics of dolomite formation, we measured Mg isotopic compositions of Mesoproterozoic dolostones from the Wumishan Formation in North China Block, because dolomite formation in Mesoproterozoic might have been fundamentally different from the younger counterparts. Based on petrographic observations, three texturally-different dolomite phases (dolomicrite, subhedral dolomite and anhedral dolomite) are recognized in the Wumishan dolostones. Nevertheless, these three types of dolomites have similar δ26Mg values, ranging from -1.35‰ to -1.72‰, which are indistinguishable from Neoproterozoic and Phanerozoic dolostones. To explain δ26Mg values of dolostones, we simulate the Mg isotopic system during dolomite formation by applying the one-dimensional Diffusion-Advection-Reaction (1D-DAR) model, assuming that the contemporaneous seawater is the Mg source of dolostone. The 1D-DAR modeling results indicate that the degree of dolomitization is controlled by sedimentation rate, seawater Mg concentration, temperature, and reaction rate of dolomite formation, whereas Mg isotopic composition of dolostone is not only dependent on these factors, but also affected by δ26Mg of seawater and isotope fractionation during dolomite formation. Moreover, the 1D-DAR model predicts that dolomite formation within sediments has limited range of variation in δ26Mg with respect to limestones. Furthermore, the modeling results demonstrate that dolostone is always isotopically heavier than Ca-carbonate precipitated from seawater, explaining the systematic isotopic difference between dolostones and limestones. Finally, we can infer from the 1D-DAR model that early-formed dolostone at shallower depth of sediments is always isotopically lighter than that

  1. Determination of site-specific carbon isotope ratios at natural abundance by carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Caer, V; Trierweiler, M; Martin, G J; Martin, M L

    1991-10-15

    Site-specific natural isotope fractionation of hydrogen studied by deuterium NMR (SNIF-NMR) spectroscopy is a powerful source of information on hydrogen pathways occurring in biosyntheses in natural conditions. The potential of the carbon counterpart of this method has been investigated and compared. Three typical molecular species, ethanol, acetic acid, and vanillin, have been considered. Taking into account the requirements of quantitative 13C NMR, appropriate experimental procedures have been defined and the repeatability and reproducibility of the isotope ratio determinations have been checked in different conditions. It is shown that the carbon version of the SNIF-NMR method is capable of detecting small differences in the carbon-13 content of the ethyl fragment of ethanols from different botanical or synthetic origins. These results are in agreement with mass spectrometry determinations of the overall carbon isotope ratios. Deviations with respect to a statistical distribution of 13C have been detected in the case of acetic acid and vanillin. However, since the method is very sensitive to several kinds of systematic error, only a relative significance can be attached at present to the internal parameters directly accessible. Isotope dilution experiments have also been carried out in order to check the consistency of the results. In the present state of experimental accuracy, the 13C NMR method is of more limited potential than 2H SNIF-NMR spectroscopy. However it may provide complementary information. Moreover it is particularly efficient for detecting and quantifying adulterations that aim to mimic the overall carbon-13 content of a natural compound by adding a selectivity enriched species to a less expensive substrate from a different origin. PMID:1759714

  2. Evolution of carbon isotopes, agglutinates, and the lunar regolith

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Basu, A.; Hayes, J. M.; Meinschein, W. G.

    1975-01-01

    Apollo 17 light-mantle soils and Apollo 15 Apennine Front soils are compared with respect to isotopic enrichment of C-13 and the maturity of the site. Analyses of soil-size fractions indicate that while the carbon concentration on particle surfaces remains relatively constant with increasing soil maturity, total surface-correlated carbon increases due to increasing total soil surface area. The role of agglutinates in the incorporation of surface-correlated carbon into aggregate grains is examined; agglutinates contain a major percentage of the carbon found in mature soil, and the volume-correlated carbon component in agglutinates apparently continues to increase after the surface-correlated carbon concentrations have reached a constant value. Constraints that may limit the carbon concentration in lunar soils to a value not greater than 300 micrograms/g are considered.

  3. CARBON ISOTOPE DISCRIMINATION AND GROWTH RESPONSE TO STAND DENSITY REDUCTIONS IN OLD PINUS PONDEROSA TREES

    EPA Science Inventory

    Carbon isotope ratios ( 13C) of tree rings are commonly used for paleoclimatic reconstruction and for inferring canopy water-use efficiency (WUE). However, the responsiveness of carbon isotope discrimination ( ) to site disturbance and resource availability has only rarely been ...

  4. Isotope analyses of molecular and total organic carbon from Miocene sediments

    NASA Astrophysics Data System (ADS)

    Pagani, Mark; Freeman, Katherine H.; Arthur, Michael A.

    2000-01-01

    Carbon-isotope compositions of n-alkanes, pristane and phytane, and total organic carbon were measured and compared against isotopic trends of coeval alkadienones from Miocene sediments containing very low organic-carbon contents. Compound-specific isotope analysis of n-alkanes and isoprenoid lipids, in conjunction with abundance distributions of n-alkanes reveal the influence of terrestrially derived organic carbon at all sites analyzed. In general, n-alkanes are derived from allochthonous sources with the exception of n-C 37 from site 516, which appears genetically related to coeval alkadienones. Further, pristane and phytane from pelagic sites 608 and 516 apparently derive from terrestrial sources as well, although a marine origin cannot be excluded. δ TOC values lack a coherent relationship to %TOC and δ 13C 37:2. Differential alteration and mixing of diverse isotopic signals most likely contribute to temporal variation and spatial differences in δ TOC. Therefore, when working with sediments from oligotrophic settings, we do not recommend δ TOC as an indicator of phytoplankton δ 13C values.

  5. Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L. A.; Guan, Y.

    2005-06-01

    The carbonates in martian meteorite ALH84001 preserve a record of aqueous processes on Mars at 3.9 Ga, and have been suggested to contain signatures of ancient martian life. The conditions of the carbonate formation environment are critical for understanding possible evidence for life on Mars, the history of water on Mars, and the evolution of the martian atmosphere. Despite numerous studies of petrographic relationships, microscale oxygen isotope compositions, microscale chemical compositions, and other minerals associated with the carbonates, formation models remain relatively unconstrained. Microscale carbon isotope analyses of ALH84001 carbonates reveal variable δ 13C values ranging from +27 to +64 ‰. The isotopic compositions are correlated with chemical composition and extent of crystallization such that the Mg-poor, early-formed carbonates are relatively 13C depleted and the Mg-rich, later forming carbonates, are 13C enriched. These data are inconsistent with many of the previously proposed environments for carbonate formation, and a new set of hypotheses are proposed. Specifically, two new models that account for the data involve low temperature (<100°C) aqueous processes: (1) the carbonates formed during mixing of two fluids derived from separate chemical and isotopic reservoirs; or (2) the carbonates formed from high pH fluids that are exposed to a CO 2-rich atmosphere and precipitate carbonate, similar to high pH springs on Earth.

  6. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Kass, David M.; Ehlmann, Bethany L.; Yung, Yuk

    2014-11-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars’s atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its iso-topic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospher-ic pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars’s atmosphere, recent orbiter, lander, and rover measurements of Mars’s surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a frac-tionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars’s atmos-phere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Mars’s history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  7. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, R.; Kass, D. M.; Ehlmann, B. L.; Yung, Y. L.

    2014-12-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars's atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its isotopic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospheric pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars's atmosphere, recent orbiter, lander, and rover measurements of Mars's surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a fractionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars's atmosphere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Mars's history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  8. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  9. Carbon isotope geochemistry of the Cretaceous-Tertiary section of the Wasserfallgraben, Lattengebirge, southeast Germany

    NASA Astrophysics Data System (ADS)

    Arneth, J.-D.; Matzigkeit, U.; Boos, A.

    1985-09-01

    Carbonates and organic matter in sediments of the Cretaceous-Tertiary (C/T) section of the Wasserfallgraben, Lattengebirge (Bavaria) have been investigated. All parameters—the carbonate content (C carb), its isotopic composition ( δ 13C carb, δ 18O carb) as well as the organic carbon content (C org), its isotopic composition ( δ 13C org) and the H/C ratio of the sedimentary organic matter—display systematic variations across the C/T boundary which cannot be attributed to a single cause. The boundary zone as a whole is tectonically disturbed and shows significant features of detrital contaminations. Unidirectional shift in δ 13C carb and δ 13C org are observed when directly comparing Maastrichtian (latest Cretaceous) and Danian (earliest Tertiary) sediments. These synchronous isotope displacements towards more negative readings are interpreted to reflect the reduced photosynthetic activity as consequence of the mass extinction at the C/T boundary. The results may have some bearings on other C/T profiles investigated where measurements on the reduced carbon species are still lacking.

  10. Modeling the carbon isotope composition of bivalve shells (Invited)

    NASA Astrophysics Data System (ADS)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., <10%) in shells from aquatic organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions

  11. Martian carbon dioxide: Clues from isotopes in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Karlsson, H. R.; Clayton, R. N.; Mayeda, T. K.; Jull, A. J. T.; Gibson, E. K., Jr.

    1993-01-01

    Attempts to unravel the origin and evolution of the atmosphere and hydrosphere on Mars from isotopic data have been hampered by the impreciseness of the measurements made by the Viking Lander and by Earth-based telescopes. The SNC meteorites which are possibly pieces of the Martian surface offer a unique opportunity to obtain more precise estimates of the planet's volatile inventory and isotopic composition. Recently, we reported results on oxygen isotopes of water extracted by pyrolysis from samples of Shergotty, Zagami, Nakhla, Chassigny, Lafayette, and EETA-79001. Now we describe complementary results on the stable isotopic composition of carbon dioxide extracted simultaneously from those same samples. We will also report on C-14 abundances obtained by accelerator mass spectrometry (AMS) for some of these CO2 samples.

  12. On the isotopic composition of magmatic carbon in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Grady, M. M.; Pillinger, C. T.

    1992-01-01

    SNC meteorites are thought, from many lines of evidence, to come from Mars. A line of investigation which has been pursued in our laboratory over the years involves measurement of the stable isotopic composition of carbon, in its various forms, in SNC meteorites. In order to establish a firm basis for studying the isotopic systematics of carbon in the martian surface environment, it is first necessary to try and constrain the delta C-13 of bulk Mars. Taking all of the available information, it would seem that the delta C-13 of the Earth's mantle lies somewhere in the range of -5 to -7 percent. Preliminary assessment of magnetic carbon in SNC meteorites, would tend to suggest a delta C-13 of 20 to 30 percent, which is conspicuously different from that of the terrestrial mantle. It is not obvious why there should be such a difference between the two planets, although many explanations are possible. One of these possibilities, that previous delta C-13 measurements for magnetic carbon in SNC meteorites are in error to some degree, is being actively investigated. The most recent results seem to constrain the theta C-13 of the magnetic carbon in SNC meteorites to about -20 percent, which is not at odds with previous estimates. As such, it is considered that a detailed investigation of the carbon isotopic systematics of martian surface materials does have the necessary information with which to proceed.

  13. Carbon Isotope Discrimination in Leaves of C3 Plants

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Gleixner, G.

    2009-04-01

    Carbon isotope composition is regarded as a powerful tool in understanding carbon cycling, both as a tracer and as a process recorder. However, accurate predictions of, for example, partitioning the net carbon flux into its components or obtaining climate information from tree rings, requires a good understanding of plant metabolism and related isotopic fractionations. Mechanistic models have concentrated largely on photosynthetic pathways and their isotopic composition. This cannot be said for respiratory processes. The mechanistic models of leaf isotope discrimination hence do not describe dawn, dusk and night very realistically or not at all. A new steady-state approach of the carbon isotope distribution in glucose potentially addresses the time of twilight and night (Tcherkez et al. 2004). Here, a new model of 13C discrimination in leaves of C3 plants is presented. The model is based on the steady-state approach of Tcherkez et al. (2004) but with much reduced complexity while retaining its general characteristics. In addition, the model introduces some new concepts such as a day-length dependent starch synthesis, night-length dependent starch degradation, energy-driven biosynthesis rates, and continuous leaf discrimination calculation for the whole diel cycle. It is therefore well adapted for biosphere-atmosphere exchange studies. The model predicts enriched sucrose and starch pools in the leaf compared to assimilated CO2. Biosynthesis on the other hand acts as the sink of the remaining, depleted carbon. The model calculates slightly different absolute starch compositions from the Tcherkez et al. (2004) model but this depends on chosen fractionation factors. The greatest difference between the two models is during dawn, dusk and night. For example, while Tcherkez et al. has changing phloem sucrose isotope composition during night, the model here predicts constant sucrose export composition. Observations seem to support rather constant phloem isotope composition

  14. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  15. Carbon dioxide gasification of carbon black: isotope study of carbonate catalysis

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1984-11-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 and 950 K, and in the presence of gaseous CO/sub 2/, the complexes participated in C and O exchange with the gas phase while oxygen atoms within the complexes also exchanged with those on the carbon surface. As the temperature rose, the complexes decomposed, with CO/sub 2/ the initial product. Decomposition started around 500 K in pure He, and around 950 K in CO/sub 2//He. Catalytic gasification began only after decomposition of significant portions of the complexes. Elemental potassium formed, and the active catalyst appears to alternate between being potassium metal and a potassium-oxygen-carbon complex. Potassium carbonate is not part of the catalytic cycle. 20 references, 10 figures.

  16. Isotope tracers of organic carbon during artificial recharge

    SciTech Connect

    Davisson, M.L.

    1998-02-09

    This project developed an analytical technique for measuring the isotope abundance for 14C and 13C in total organic carbon (TOC) in order to test whether these measurements can trace TOC interaction with sedimentary material at the bottom of rivers and lakes, soils, and subsurface aquifer rocks.

  17. Stable carbon isotope fractionation by sulfate-reducing bacteria

    NASA Technical Reports Server (NTRS)

    Londry, Kathleen L.; Des Marais, David J.

    2003-01-01

    Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

  18. Chemical changes and carbon isotope variations in a cross-section of a large Miocene gymnospermous log

    USGS Publications Warehouse

    Bates, A.L.; Spiker, E. C.

    1992-01-01

    The cross-sectional radius of a 3-m (diam.) brown coal gymnospermous log of Miocene age, previously analyzed for carbohydrate and lignin methoxyl content by solid-state 13C nuclear magnetic resonance spectroscopy, was examined using stable carbon isotopic ratios in order to determine if the isotopic composition could be related to chemical changes or to radial position. This study found a possible relationship between ??13C-values and radial position; however, these changes cannot be linked to carbohydrate content and are probably attributable to changing growth conditions during the lifetime of the tree. An apparent linear relationship between the changes in carbohydrate content after sodium para-periodate treatment and corresponding changes in the ??13C-values indicates constant isotopic fractionation between lignin and carbohydrates along the cross-sectional radius. This result indicates that diagenesis has not produced any significant change in the lignin-carbohydrate carbon isotopic fractionation or, alternatively, that diagenesis has erased any fractionation pattern that once existed. A sample of fresh wood from another gymnospermous species was analyzed by the same methods and found to have lignin-carbohydrate carbon isotopic fractionation significantly different from that of the Miocene log section samples, suggesting that differences may be species-related or that the complex mixture of carbohydrates in the fresh wood was isotopically different from that of the degraded wood, and the whole Miocene log was uniformly altered. ?? 1992.

  19. Carbon isotopes in three SNC meteorites

    NASA Astrophysics Data System (ADS)

    Carr, R. H.; Wright, I. P.; Pillinger, C. T.

    1985-02-01

    The presence of several carbonaceous components in SNC meteorites has been inferred from the analyses of samples of three SNC meteorites, Shergotty, Chassigny, and Elephant Moraine. The identification of the actual species involved, however, has not been possible except for that of the terrestrial materials known to contaminate extraterrestrial samples. Above 700 C, there is evidence of the presence of isotropically heavy and light components in all three meteorites, although there are notable differences in their isotopic compositions. The similarities observed may indicate a common origin for the meteorites, but the possibility that magmatic processes on different parent bodies have produced these features must be more fully explored.

  20. Isotopic composition of carbon and nitrogen in ureilitic fragments of the Almahata Sitta meteorite

    NASA Astrophysics Data System (ADS)

    Downes, H.; Abernethy, F. A. J.; Smith, C. L.; Ross, A. J.; Verchovsky, A. B.; Grady, M. M.; Jenniskens, P.; Shaddad, M. H.

    2015-02-01

    This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon-rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2-2.3 wt% carbon; most showed the major carbon release at temperatures of 600-700 °C with peak values of δ13C from -7.3 to +0.4‰, similar to literature values for unbrecciated ("monomict") ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca -25‰). Bulk nitrogen contents (9.4-27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600-750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of -53 to -94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen-rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.

  1. Analysis of isotope and organic carbon signatures in hillslope hydrographs

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana

    2015-04-01

    Headwater catchments are among the most important areas for investigation of isotope and carbon fluxes because their small sizes best enable separation of above- and below ground compartments for improved understanding of the respective transport mechanisms. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing or transport models. Stable isotopes of water and dissolved organic carbon provide basis for studying transport processes ranging from soil profile scale to hillslope and catchment scale. In this study, stormflow dynamics of oxygen-18 and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface processes during significant rainfall-runoff episodes of a summer season. Water flow and transport of solutes were assumed to take place in two mutually communicating continua, the soil matrix and the network of preferential pathways. Oxygen-18 and dissolved organic carbon were observed in soil water, stormflow discharge in the experimental hillslope trench, and stream discharge at the catchment outlet. In the present study, we analyzed the transformation of input solute signals into signatures observed in the stormflow discharge. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  2. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    NASA Astrophysics Data System (ADS)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  3. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    NASA Astrophysics Data System (ADS)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal δ13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high δ13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same

  4. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  5. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  6. Systematic analysis of reaction cross sections of carbon isotopes

    SciTech Connect

    Horiuchi, W.; Suzuki, Y.; Abu-Ibrahim, B.; Kohama, A.

    2007-04-15

    We systematically analyze total reaction cross sections of carbon isotopes with N= 6-16 on a {sup 12}C target for wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant generated from a phenomenological mean-field potential, which reasonably well reproduces the ground-state properties for most of the even N isotopes. We need separate studies not only for odd nuclei but also for {sup 16}C and {sup 22}C to improve their wave functions. The density of the carbon isotope is constructed by eliminating the effect of the center-of-mass motion. For the calculations of the cross sections, we take two schemes, the Glauber approximation and the eikonal model using a global optical potential. Both the reaction models successfully reproduce low and high incident energy data on the cross sections of {sup 12}C, {sup 13}C, and {sup 16}C on {sup 12}C. The calculated reaction cross sections of {sup 15}C are found to be considerably smaller than the empirical values observed at low energy. We find a consistent parametrization of the nucleon-nucleon scattering amplitude, differently from previous ones. Finally, we predict the total reaction cross section of {sup 22}C on {sup 12}C.

  7. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: Implications for their use as paleoclimatic proxy

    NASA Astrophysics Data System (ADS)

    Rodler, A.; Sánchez-Pastor, N.; Fernández-Díaz, L.; Frei, R.

    2015-09-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation of chromate into the calcite lattice to investigate isotopic changes facilitated by the coprecipitation process. Our experiments indicate enrichment in Cr concentration in the precipitates compared to the solutions, consistent with previous reports of Cr enrichment in chemical sediments compared to ambient seawater. The fractionation of Cr isotopes during calcium carbonate coprecipitation was assumed to be small, based on previously published data of modern seawater and modern non-skeletal marine carbonates. However, results from this study for rapidly precipitated calcium carbonate in the presence of chromate show a tendency for preferential incorporation of heavy Cr isotopes in the precipitates resulting in increasing relative isotope difference between precipitate and initial solution (Δ53Cr[p-is]) from +0.06‰ to +0.18‰, with increasing initial Cr concentration of the solution. Sample precipitation in the presence of chromate also showed the presence of vaterite. Calcium carbonate crystals were also precipitated in a double diffusion silica hydrogel over a longer period of time resulting in samples consisting of micrometric-millimetric calcite crystals, which were again significantly enriched in heavy Cr isotopes compared to the initial solutions. They average, irrespective of the initial Cr concentration, a relative isotope difference (Δ53Cr[p-is]) of +0.29 ± 0.08‰ (2σ), whereas

  8. Isotopic Hg in an Allende carbon-rich residue

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  9. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  10. Estimating diet in individual pumpkinseed sunfish Lepomis gibbosus using stomach contents, stable isotopes and parasites.

    PubMed

    Locke, S A; Bulté, G; Forbes, M R; Marcogliese, D J

    2013-02-01

    The diets of 99 pumpkinseed sunfish Lepomis gibbosus from a pair of small, adjacent lakes in Ontario, Canada, were estimated from their stomach contents, trophically transmitted parasites and stable isotopes of carbon and nitrogen in fish tissue. The three methods provided virtually unrelated information. There was no significant correlation in the importance of any prey item across all three methods. Fish with similar diets according to one method of estimating diet showed no tendency to be similar according to other methods. Although there was limited variation in fish size and the spatial scale of the study was small, both fish size and spatial origin showed comparatively strong associations with diet data obtained with all three methods. These results suggest that a multidisciplinary approach that accounts for fish size and spatial origins is necessary to accurately characterize diets of individual fish. PMID:23398066

  11. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  12. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  13. A novel framework for quantifying past methane recycling by Sphagnum-methanotroph symbiosis using carbon and hydrogen isotope ratios of leaf wax biomarkers

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-05-01

    concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, "PRM." We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, δ13C of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  14. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    NASA Technical Reports Server (NTRS)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  15. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  16. Sulfur and carbon isotope biogeochemistry of a rewetted brackish fen

    NASA Astrophysics Data System (ADS)

    Koebsch, Franziska; Gehre, Matthias; Winkel, Matthias; Koehler, Stefan; Koch, Marian; Jurasinski, Gerald; Spitzy, Alejandro; Liebner, Susanne; Sachs, Torsten; Schmiedinger, Iris; Kretzschmann, Lisett; Saborowski, Anke; Böttcher, Michael E.

    2015-04-01

    Coastal wetlands are at the interface between terrestrial freshwater and marine and exhibit very specific biogeochemical conditions. Intermittent sea water intrusion affects metabolic pathways, i. e. anaerobic carbon metabolism is progressively dominated by sulfate reduction with lower contribution of methanogenesis whilst methane production is increasingly shifted from acetoclastic to hydrogenotrophic. Due to expanding anthropogenic impact a large proportion of coastal ecosystems is degraded with severe implications for the biogeochemical processes. We use concentration patterns and stable isotope signatures of water, sulfate, dissolved carbonate, and methane (δ2H, δ13C, δ18O, δ34S) to investigate the S and C metabolic cycle in a rewetted fen close to the southern Baltic Sea border. Such studies are crucial to better predict dynamic ecosystem feedback to global change like organic matter (OM) decomposition or greenhouse gas emissions. Yet, little is known about the metabolic pathways in such environments. The study site is part of the TERENO Observatory "Northeastern German Lowlands' and measurements of methane emissions have run since 2009. High methane fluxes up to 800 mg m-2 hr-1 indicate that methanogenesis is the dominant C metabolism pathway despite of high sulfate concentrations (up to 37 mM). The presented data are part of a comprehensive biogeochemical investigation that we conducted in autumn 2014 and that comprises 4 pore water profiles and sediment samples within a transect of 300-1500 m distance to the Baltic Sea. Depth of organic layers ranged from 25 to 140 cm with high OM contents (up to 90 dwt.%). Sulfate/chloride ratios in the pore waters were lower than in the Baltic Sea for most sites and sediment depths indicated a substantial net sulfate loss. Sulfide concentrations were negligible at the top and increased parallel to the sulfate concentrations with depth to values of up to 0.3 mM. One pore water profiles situated 1150 m from the Baltic

  17. Triple oxygen isotopes in biogenic and sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  18. Simultaneous tracing of carbon and nitrogen isotopes in human cells.

    PubMed

    Nilsson, Roland; Jain, Mohit

    2016-05-24

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used (13)C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with (13)C- and (15)N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured (13)C MIDs were informative for central carbon metabolism, (15)N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease. PMID:27098229

  19. The Late Miocene Carbon Isotope Shift and Marine Biological Productivity.

    NASA Astrophysics Data System (ADS)

    Diester-Haass, L.; Billups, K.; Emeis, K. C.

    2004-12-01

    The late Miocene global carbon isotope shift of approximately 1 per mil is not well understood. Is it linked to ocean-related processes such as the AƒAøAøâ_sA¬A.â_oBiologic BloomAƒAøAøâ_sA¬ \\(Farrell et al., 1995\\), or to changes in type \\(C3/C4 plants\\) or cover of terrestrial vegetation? Here we examine the evolution of marine biological productivity during the isotope shift at ODP Site 846 \\(Pacific equatorial upwelling, where the AƒAøAøâ_sA¬A.â_oBiologic BloomAƒAøAøâ_sA¬ has been first described, Farrell al, 1995\\) and at Indian Ocean Site 721 \\(monsoon-driven upwelling\\), and compare their productivity history with non upwelling locations in the Atlantic Ocean. The onset of the carbon isotope shift is accompanied at all locations by an increase in paleoproductivity derived from benthic foraminiferal accumulation rates \\(expressed as gC/cm2 * ky; Huerguera, 2000\\) and increased abundance of Uvigerina spp.. At the equatorial upwelling sites the increase is comparable to half present-day values to present-day values; in the Atlantic Ocean paleoproductivity increases from present-day up to 3 times present-day values. But the productivity maxima are not concurrent. The carbon isotope shift is accompanied by severe carbonate dissolution and reduced ventilation of bottom waters, as reflected in the occurrence of pyrite and good preservation of cartilageous fish debris. Carbonate preservation is good since about 6 Ma despite high productivity. We discuss changing deep water circulation patterns, increased weathering and continental nutrient delivery, as well as erosion of terrestrial vegetation as possible factors to explain our findings.

  20. Shear heating and clumped isotope reordering in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  1. Boron content and isotopic composition of tektites and impact glasses: Constraints on source regions

    NASA Astrophysics Data System (ADS)

    Chaussidon, Marc; Koeberl, Christian

    1995-02-01

    Abundances of Li, Be, and B, as well as boron isotopic compositions, were determined in twenty-seven tektite and impact glass samples, using an ion microprobe. Samples included tektites from the Australasian, North American, and Ivory Coast strewn fields, and Aouelloul and Darwin impact glasses. Variations of B abundance and isotopic composition in a flanged australite were also studied. δ 11B variations of only a few permil were found within the australite flange. The isotopic composition shows no correlation with the B contents or with the distance from the rim of the flange. The mean δ 11B value for the flanged australite is very similar to that of Muong-Nong type tektites (-1.9 ± 1.9‰). Thus, vapor fractionation has been unimportant during tektite formation. This is supported by the observation that B contents and the δ 11B values of the different samples from the Australasian tektite strewn field are not correlated with each other. Most tektites show a rather limited range of δ 11B values (-9.3 ± 1.5 to +2.7 ± 1.5%o), which is small compared to the range observed for common terrestrial rocks (-30 to +40‰). The B abundance and isotopic data can be used to place constraints on the tektite source rocks. Australasian tektites have high B and Li abundances; only clay-rich sediments, such as pelagic and neritic sediments, as well as river and deltaic sediments have B contents (up to 100 ppm) and δ 11B values that are in agreement with the range shown by Australasian tektites (-4.9 to + 1.4‰). 10Be and RbSr data indicate continental crustal source rocks and exclude pelagic and neritic sediments. However, deltaic sediments, e.g., from the Mekong river, which are of continental crustal origin, agree with 10Be, RbSr, and B data, and support a possible source locality close to the coast of SE Indochina in the South China Sea. On the other hand, one bediasite sample has a very high δ 11B value of +15.1 ± 2.1‰, requiring the presence of marine

  2. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  3. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  4. Boron isotope fractionation in magma via crustal carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  5. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    NASA Astrophysics Data System (ADS)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  6. Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions

    NASA Astrophysics Data System (ADS)

    Reutsky, Vadim; Borzdov, Yuri; Palyanov, Yuri; Sokol, Alexander; Izokh, Olga

    2015-12-01

    We report first results of a systematic study of carbon isotope fractionation in a carbonate fluid system under mantle PT conditions. The system models a diamond-forming alkaline carbonate fluid using pure sodium oxalate (Na2C2O4) as the starting material, which decomposes to carbonate, CO2 and elementary carbon (graphite and diamond) involving a single source of carbon following the reaction 2Na2C2O4 → 2Na2CO3 + CO2 + C. Near-liquidus behaviour of carbonate was observed at 1300 °C and 6.3 GPa. The experimentally determined isotope fractionation between the components of the system in the temperature range from 1300 to 1700 °C at 6.3 and 7.5 GPa fit the theoretical expectations well. Carbon isotope fractionation associated with diamond crystallisation from the carbonate fluid at 7.5 GPa decreases with an increase in temperature from 2.7 to 1.6 ‰. This trend corresponds to the function ΔCarbonate fluid-Diamond = 7.38 × 106 T-2.

  7. STABLE CARBON ISOTOPE ANALYSIS OF SUBFOSSIL WOOD FROM AUSTRIAN ALPS

    PubMed Central

    KŁUSEK, MARZENA; PAWEŁCZYK, SŁAWOMIRA

    2015-01-01

    The presented studies were carried out in order to check the usefulness of subfossil wood for stable isotope analysis. The aim of research was also to define the optimal method of subfossil samples preparation. Subfossil samples used during the presented studies are a part of the multi-century dendrochronological scale. This chronology originates in an area situated around a small mountain lake — Schwarzersee, in Austria. The obtained results of stable carbon isotope measurements confirmed that the method of α-cellulose extraction by the application of acidic sodium chlorite and sodium hydroxide solutions removes resins and other mobile compounds from wood. Therefore, in the case of the analysed samples, the additional chemical process of extractives removing was found to be unnecessary. Studied wood samples contained an adequate proportion of α-cellulose similar to the values characteristic for the contemporary trees. This proved an adequate wood preservation which is essential for the conduction of isotopic research. PMID:26346297

  8. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  9. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes

    SciTech Connect

    Chu, Kung-Hui; Mahendra, Shaily; Song, Donald L.; Conrad, Mark E.; Alvarez-Cohen, Lisa

    2003-06-01

    Stable isotope analysis is recognized as a powerful tool for monitoring, assessing, and validating in-situ bioremediation processes. In this study, kinetic carbon isotope fractionation factors () associated with the aerobic biodegradation of vinyl chloride (VC), cis-1,2-dichloroethylene (cDCE), and trichloroethylene (TCE) were examined. Of the three solvents, the largest fractionation effects were observed for biodegradation of VC. Both metabolic and cometabolic VC degradation were studied using Mycobacterium aurum L1 (grown on VC), Methylosinus trichosporium OB3b (grown on methane), Mycobacterium vaccae JOB 5 (grown on propane), and two VC enrichment cultures seeded from contaminated soils of Alameda Point and Travis Air Force Base, CA. M. aurum L1 caused the greatest fractionation (= -5.7) while for the cometabolic cultures, values ranged from -3.2 to -4.8. VC fractionation patterns for the enrichment cultures were within the range of those observed for the metabolic and cometabolic cultures (= -4.5 to -5.5). The fractionation for cometabolic degradation of TCE by Me. trichosporium OB3b was low (= -1.1), while no quantifiable carbon isotopic fractionation was observed during the cometabolic degradation of cDCE. For all three of the tested chlorinated ethenes, isotopic fractionation measured during aerobic degradation was significantly smaller than that reported for anaerobic reductive dechlorination. This study suggests that analysis of compound-specific isotopic fractionation could assist in determining whether aerobic or anaerobic degradation of VC and cDCE predominates in field applications of in-situ bioremediation. In contrast, isotopic fractionation effects associated with metabolic and cometabolic reactions are not sufficiently dissimilar to distinguish these processes in the field.

  10. Carbon isotope fractionation of methyl bromide during agricultural soil fumigations

    USGS Publications Warehouse

    Bill, M.; Miller, L.G.; Goldstein, Allen H.

    2002-01-01

    The isotopic composition of methyl bromide (CH3Br) has been suggested to be a potentially useful tracer for constraining the global CH3Br budget. In order to determine the carbon isotopic composition of CH3Br emitted from the most significant anthropogenic application (pre-plant fumigation) we directly measured the ??13C of CH3Br released during commercial fumigation. We also measured the isotopic fractionation associated with degradation in agricultural soil under typical field fumigation conditions. The isotopic composition of CH3Br collected in soil several hours after injection of the fumigant was -44.5??? and this value increased to -20.7??? over the following three days. The mean kinetic isotope effect (KIE) associated with degradation of CH3Br in agricultural soil (12???) was smaller than the reported value for methylotrophic bacterial strain IMB-1, isolated from previously fumigated agricultural soil, but was similar to methylotrophic bacterial strain CC495, isolated from a pristine forest litter zone. Using this fractionation associated with the degradation of CH3Br in agricultural soil and the mean ??13C of the industrially manufactured CH3Br (-54.4???), we calculate that the agricultural soil fumigation source has a carbon isotope signature that ranges from -52.8??? to -42.0???. Roughly 65% of industrially manufactured CH3Br is used for field fumigations. The remaining 35% is used for structural and post-harvest fumigations with a minor amount used during industrial chemical manufacturing. Assuming that the structural and post-harvest fumigation sources of CH3Br are emitted without substantial fractionation, we calculate that the ??13C of anthropogenically emitted CH3Br ranges from -53.2??? to -47.5???.

  11. Disequilibrium in Clumped Isotopes Caused by Diagenesis in Tertiary Carbonates

    NASA Astrophysics Data System (ADS)

    Murray, S.; Swart, P. K.

    2015-12-01

    This work examines the clumped isotopes and carbonate associated sulfate (CAS) within a system which is being altered from aragonite to calcite and being subjected to partial dolomitization within the marine realm. Samples were collected from Clino, a ≈670m long core which represents slope carbonates composed of varying percentages of aragonite, low-magnesium calcite (LMC), and dolomite. The concentrations of these endmembers differ dramatically over short distances and are associated with varying degrees of marine diagenesis. In the deeper water portion of the core, previous work has shown no evidence of exposure throughout nor is there any evidence for hydrothermal fluids existing in the Bahamas. Bulk samples were collected from the portions of the core in which dolomite was most prominent. Samples were treated and measured for CAS and for their clumped isotope value. They were then subjected to a series of buffered acetic acid leaches to remove the aragonite and LMC portion of the sample. There were up to three treatments per sample with the resulting sediment measured on XRD to determine its % dolomite composition. These treatments were then also measured for clumped isotopes. The δ34S of the sediments yielded values of up to 10‰ more positive than contemporaneous sweater and implicate bacterial sulfate reduction in the formation of these dolomites. Clumped isotope results of the separates allowed for the calculation of end-member formation temperatures for the LMC and dolomite, whilst using a mixing model to account for non-linearity in ∆47 between end-member combinations and varying ∆47-temperature equations. In contrast to other dolomites in the Bahamas proposed to have formed by massive flow of normal seawater, the Clino temperatures values were significantly elevated compared to the presumed equilibrium values. These data suggest that BSR may result in carbonates with clumped isotopic values significant elevated to equilibrium.

  12. Carbon isotopes in xenoliths from the Hualalai Volcano, Hawaii, and the generation of isotopic variability

    SciTech Connect

    Pineau, F. ); Mathez, E.A. )

    1990-01-01

    The isotopic composition of carbon has been determined in a suite of xenoliths from lava of the 1800-1801 Kaupulehu eruption of Hualalai Volcano, Hawaii. Several lithologies are represented in the suite, including websterite, dunite, wehrlite, pyroxenite, and gabbro. In addition, there are composite xenoliths in which contacts between lithologies are preserved. Most of the xenoliths represent deformed cumulates. The contact relations in the composite samples indicate that the lithologies originated from the same source region, which, based on pressures determined from fluid inclusions, is estimated to be at a depth of {approx}20 km, or near the crust-mantle boundary. The observations and isotopic results demonstrate that isotopic variability can be generated by multistage fractionation processes such as degassing of CO{sub 2} from magma and precipitation of CO{sub 2}-rich fluids to form graphitic compounds. Such processes operated over regions the scales of which were determined by style and intensity of deformation and by lithology.

  13. Precision performance of a Cavity Ring-down isotope spectrometer for carbon and oxygen isotopes of carbonate materials

    NASA Astrophysics Data System (ADS)

    Cunningham, K. L.; Hoffnagle, J.; He, Y.; Fleck, D.; Saad, N.; Dennis, K.

    2013-12-01

    We have developed a novel laser spectrometer intended specifically for the measurement of δ18O and δ13C in solid carbonate material. Carbonate carbon and oxygen isotopes provide key contributions into our understanding of climate, biogeochemical processes and the carbon cycle. For this reason, the isotopic measurements of carbonates are one of the most abundant measures made by Earth scientists today. Conventional measurement techniques using isotope ratio mass spectrometry (IRMS), although optimized and prevalent, require dedicated personnel and can be expensive to operate. Here we present a new laser-based technique that will simplify measurements of δ18Ocarb and δ13Ccarb without compromising precision. To date, there have been no laser-based instruments with a demonstrated ability to meet the requirements of the carbonates community -- typically better than 0.1 ‰ for δ13C and δ18O for CO2 evolved from 1 mg of pure CaCO3. We will present data showing that the new Picarro G2171-i spectrometer meets these requirements. The spectrometer uses the laser-based spectroscopy technique of Cavity Ring-Down Spectroscopy (CRDS), a technology that has been successfully applied to many other isotopic ratio measurements including δ13C of CO2, δ13C of CH4, and δ18O and δD of H2O. The spectrometer has been optimized to analyze the absorption spectra of concentrated CO2, specifically the isotopologues 12C16O16O, 13C16O16O, 12C16O18O, and 12C18O16O. We employ a new sample delivery technique that enables a longer integration time period, and hence more precise data. Long-term results for a run of 540 pulses of tank CO2 (90 hours) records a 1σ standard deviation precision for δ18O and δ13C of < 0.08 ‰ and < 0.055 ‰, respectively. We coupled the CRDS spectrometer to an optimized sample acidification system and analyzed standards to assess the accuracy of the CRDS. We will present an inter-comparison between CRDS and IRMS for carbonates using standards commonly used

  14. Calcium and Oxygen Isotopic Composition of Calcium Carbonates

    NASA Astrophysics Data System (ADS)

    Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin

    2016-04-01

    Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h‑1 m‑2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in

  15. Descriptions of carbon isotopes within the energy density functional theory

    SciTech Connect

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana; Tammam, M.

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  16. Mineralogy, Isotopic Characterization, and Age of Authigenic High-Mg Lake Carbonate

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Steier, Peter; Gier, Susanne; Richoz, Sylvain

    2014-05-01

    Authigenic high-Mg calcite and poorly crystallized dolomite is found in the sediments at Lake Neusiedl, Austria. The lake is a shallow lake with a maximum depth of 1.8 m. Sediment reworking is strongly influence by wind where waves may at times reach the sediment-water interface. The sediments are fine grained (mainly silt and clay) that rest upon Neogene (Pannonian) strata. The source area today consists of metamorphic rocks and Neogene carbonates but has changed over time. To separate detrital from authigenic phases we first determine the mineralogy of size fractions <4 µm, <3 µm, <2 µm, <1 µm, <0.5 µm and <0.2 µm. The "coarser" fractions (4 µm and 3 µm) contain detrital minerals such as chlorite, muscovite, quartz, feldspar, stiochiometric calcite, and stoichiometric dolomite. In contrast, the smaller size fractions (1 and 0.5 µm) lack stoichiometric carbonate - only carbonate phases with varying Mg content and smectite are present. To characterize the composition of those authigenic carbonate phases we use X-Ray Diffractometry, Simultaneous Thermo Analysis, Fourier Transform Infra Red Spectroscopy, stable C and O isotopes and 14C activities in carbonate. The content of Mg in the carbonate lattice determines the solubility of carbonate where phases with lower Mg are more soluble. We investigate the stable carbon and oxygen isotope data with varying reaction time during H3PO4 dissolution. Stable C and O ratios were measured at 3 min, 5 min, 15 min, and 20 min reaction times. Radiogenic carbon was measured in CO2 produced sample dissolution. Different size fractions of one sample show mixing lines for stable carbon isotopes (vs. VBDB) and stable oxygen isotopes. The d13C values range between -3.8 permil in the finest fraction and -2.9 permil in the coarsest fraction. Stable oxygen isotopes also show a mixing line between -3.8 permil in the finest fraction and coarser samples (-0.85 permil). The stable oxygen content in the lake water lies at -3.8 permil

  17. The use of carbon stable isotope ratios in drugs characterization

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-11-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from -29.7 to -31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between -31.3 to -34.9% for the same type of analgesic, but from different manufactures.

  18. The use of carbon stable isotope ratios in drugs characterization

    SciTech Connect

    Magdas, D. A. Cristea, G. Bot, A. Mirel, V.

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  19. Carbon and oxygen isotopic composition of carbonate fluorapatite in the Monterey Formation

    SciTech Connect

    Leather, J.M.; Emanuele, G.; Kastner, M. )

    1990-05-01

    Studies from organic-rich continental margins have indicated that carbonate fluorapatite (CFA) forms at or just below the sediment surface and, therefore, may record paleoceanography. To investigate this possibility, CFA from the Miocene Monterey Formation in the Santa Maria (SM) and Santa Barbara (SB) basins was analyzed for {delta}{sup 13}C{sub c} and {delta}{sup 18}O{sub c} in the lattice-bound carbonate ion and for {delta}{sup 18}O{sub P} in the phosphate ion. In contrast to modern continental margins, these sections are characterized by low sedimentation rates, but contain high (<5 to >20%) organic carbon contents (possibly related to anoxic bottom-water conditions ). The CFA isotopic data display a more restricted range than the data for dolomites from the same sections. The SM CFA {delta}{sup 13}C{sub c} ({minus}6.7 to {minus}3.4% PDB) and {delta}{sup 18}O{sub c} ({minus}7.8 to {minus}3.5% PDB) values are more depleted than the SB CFA {delta}{sup 13}C{sub c} ({minus}2.5 to 1.8% PDB) and {delta}{sup 18}O{sub c} ({minus}2.9 to 0.9% PDB) values. The {delta}{sup 18}O{sub p} values (15.4 to 20.9 % SMOW) are strongly correlated with the {delta}{sup 18}O{sub c} values and suggest that both record the same diagenetic environment. The content of lattice-bound carbonate in SM CFA (2 {plus minus} 1%) is also lower than in SB CFA (3.5 {plus minus} 1%). The CFA data suggest an early paleoenvironmental or diagenetic signal overprinted by later deeper burial diagenesis, especially in the SM basin where deeper burial and/or greater geothermal gradients were experienced. In addition, within each site there are inverse relationships between {delta}{sup 13}C{sub c} and {delta}{sup 18}o{sub c} and between {delta}{sup 13}C{sub c} and the amount of lattice-bound carbonate that allow various diagenetic environments to be distinguished.

  20. Cold seep status archived in authigenic carbonates: Mineralogical and isotopic evidence from Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Sun, Xiaoming; Lin, Zhiyong; Xu, Li; Gong, Junli; Lu, Hongfeng

    2015-12-01

    Cold-seep carbonates are precipitated under high alkalinity conditions created by the anaerobic oxidation of methane in cold-seep sites. Multiple Ca-Mg-carbonate phases are identified, including aragonite, low-Mg calcite (LMC), high-Mg calcite (HMC), protodolomite, and dolomite. These phases result from different conditions that are related with cold-seep activities. Here, we report on the relationship between the Ca-Mg-carbonate phases and the cold-seep status. Authigenic carbonates were sampled from northern slope of South China Sea. Carbon isotopic compositions of samples from Shenhu area are lower than -40‰, indicating methane-derived carbon. The δ13C values of samples from Southwest (SW) Taiwan area range from ~-30‰ to ~-20‰, which is the result of the mixture of methane carbon and seawater carbon. Carbonate phases were identified according to the composition and structure results. Samples from Shenhu area are composed of protodolomite and HMC. Three zones were discovered from the center to the rim of the cross-section of the tube-like sample from SW Taiwan area. From the external to the internal zones, the carbonate phases are HMC; LMC and protodolomite; HMC, respectively. The intensity of superstructure reflections of the protodolomite from Shenhu area is stronger than that from SW Taiwan area, indicating higher MgCO3 content. Based on the formation conditions of Ca-Mg-carbonates from LMC to dolomite, those with higher MgCO3 content are formed in more active cold-seep environment. According to the distribution of carbonate phases in each sample, the cold seep flux was high in Shenhu area and was sustained for a long time. By contrast, the flux in SW Taiwan area was relatively low and not stable. It once became higher, but finally returned to low.

  1. Carbon Isotope and Isotopomer Fractionation in Dense Molecular Cloud Cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Aikawa, Y.; Sakai, N.; Yamamoto, S.

    2011-05-01

    Observations of 13C species would be useful to investigate chemistry of carbon-bearing species. Recent observations in TMC-1 indicate that the abundances are different among carbon isotopomers of the same species. For instance, Takano et al. (1998) found that HCC13CN is more abundant than HC13CCN and H13CCCN, which indicates the three carbon atoms are not equivalent in HC_3N. Sakai et al. (2007; 2010) reported the abundance ratios of C13CS/13CCS and CCH/13CCH to be 4.2 and 1.6, respectively. Again, two carbon atoms are not equivalent in CCS and CCH. Sakai et al. (2007; 2010) discussed an origin of these anomalies and pointed out two possibilities: (i) fractionation during the formation of the species and (ii) rearrangements of the 13C position after the formation of molecules by isotopomer-exchange reactions. We construct a gas-grain chemical network model which includes carbon isotopes (12C and 13C) and isotopomers in order to investigate the evolution of molecular abundances, the carbon isotope ratios (12CX/13CX) and the isotopomer ratios (12C13CX/13C12CX) of CCH and CCS in dense molecular cores. We confirm that the isotope ratios of molecules, both in the gas phase and on grain surfaces, mostly depend on whether the species is formed from the carbon atom (ion) or the CO molecule; the isotope ratio is larger than the elemental abundance ratio of 12C/13C if the species is formed from the carbon atom, while the ratio is smaller if the species is formed from the CO molecule (cf. Langer et al. 1984). We successfully reproduce the observed C13CH/13CCH ratio in TMC-1 by considering the isotopomer-exchange reaction, 13CCH + H rightleftharpoons C13CH + H + 8.1 K. However, the C13CS/13CCS ratio remains lower than observed in TMC-1. We then assume the isotopomer-exchange reaction catalyzed by the H atom, 13CCS + H rightleftharpoons C13CS + H + 17.4 K. In the model with this reaction, the observed C13CS/13CCS, CCS/C13CS and CCS/13CCS ratios can be reproduced simultaneously.

  2. Constraining the global bromomethane budget from carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank

    2016-04-01

    Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition

  3. Stable carbon and nitrogen isotope enrichment in primate tissues

    PubMed Central

    Carter, Melinda L.; Karpanty, Sarah M.; Zihlman, Adrienne L.; Koch, Paul L.; Dominy, Nathaniel J.

    2010-01-01

    Isotopic studies of wild primates have used a wide range of tissues to infer diet and model the foraging ecologies of extinct species. The use of mismatched tissues for such comparisons can be problematic because differences in amino acid compositions can lead to small isotopic differences between tissues. Additionally, physiological and dietary differences among primate species could lead to variable offsets between apatite carbonate and collagen. To improve our understanding of the isotopic chemistry of primates, we explored the apparent enrichment (ε*) between bone collagen and muscle, collagen and fur or hair keratin, muscle and keratin, and collagen and bone carbonate across the primate order. We found that the mean ε* values of proteinaceous tissues were small (≤1‰), and uncorrelated with body size or phylogenetic relatedness. Additionally, ε* values did not vary by habitat, sex, age, or manner of death. The mean ε* value between bone carbonate and collagen (5.6 ± 1.2‰) was consistent with values reported for omnivorous mammals consuming monoisotopic diets. These primate-specific apparent enrichment values will be a valuable tool for cross-species comparisons. Additionally, they will facilitate dietary comparisons between living and fossil primates. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1701-6) contains supplementary material, which is available to authorized users. PMID:20628886

  4. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China

    NASA Astrophysics Data System (ADS)

    Sun, Y. D.; Wignall, P. B.; Joachimski, M. M.; Bond, D. P. G.; Grasby, S. E.; Lai, X. L.; Wang, L. N.; Zhang, Z. T.; Sun, S.

    2016-06-01

    The Carnian Humid Episode (CHE), also known as the Carnian Pluvial Event, and associated biotic changes are major enigmas of the Mesozoic record in western Tethys. We show that the CHE also occurred in eastern Tethys (South China), suggestive of a much more widespread and probably global climate perturbation. Oxygen isotope records from conodont apatite indicate a double-pulse warming event. The CHE coincided with an initial warming of 4 °C. This was followed by a transient cooling period and then a prolonged ∼7 °C warming in the later Carnian (Tuvalian 2). Carbon isotope perturbations associated with the CHE of western Tethys occurred contemporaneously in South China, and mark the start of a prolonged period of carbon cycle instability that persisted until the late Carnian. The dry-wet transition during the CHE coincides with the negative carbon isotope excursion and the temperature rise, pointing to an intensification of hydrologic cycle activities due to climatic warming. While carbonate platform shutdown in western Tethys is associated with an influx of siliciclastic sediment, the eastern Tethyan carbonate platforms are overlain by deep-water anoxic facies. The transition from oxygenated to euxinic facies was via a condensed, manganiferous carbonate (MnO content up to 15.1 wt%), that records an intense Mn shuttle operating in the basin. Significant siliciclastic influx in South China only occurred after the CHE climatic changes and was probably due to foreland basin development at the onset of the Indosinian Orogeny. The mid-Carnian biotic crisis thus coincided with several phenomena associated with major extinction events: a carbonate production crisis, climate warming, δ13 C oscillations, marine anoxia, biotic turnover and flood basalt eruptions (of the Wrangellia Large Igneous Province).

  5. Local and regional oscillations of carbon and oxygen isotopes in terestrial carbonates

    NASA Astrophysics Data System (ADS)

    Skipitytė, Raminta; Stančikaitė, Miglė

    2014-05-01

    Stable isotope ratios of carbon and oxygen in sediment carbonates are used as a tool to identify climatic changes in the past [1], [2]. Carbon is more related to humidity whereas oxygen is thought to respond the temperature [2]. Nevertheless number of questions about local, regional and global scale impacts to these records is left. In this research work carbon and oxygen isotope ratios in lacustrine carbonates are used to identify palaeoenvironmental dynamics of different locations. Samples of lacutrine carbonates were obtained from 8 sequences of different sites in Lithuania (4), Poland (1), Belarus (1) and Kaliningrad (1). Every sequence was divided into 2 cm intervals. The study showed differences in average carbon and oxygen isotope ratios between Lithuania and other countries (Poland, Belarus and Kaliningrad). Carbon and oxygen isotope ratios in 4 sites in Lithuania are: ¯U la δ13C -4.72± 2.11, o and δ18O -9.46± 1.9, o ; Zervynos δ13C -4.79± 1.82, o and δ18O -9.57± 1.69, o ; Rudnia δ13C -4.94± 7.53, o and δ18O -9.3± 3.92, o ; Pauliai δ13C -4.15± 0.67, o and δ18O -9.94± 1.07, o : In other countries: Poland δ13C -1.07± 1.94, o and δ18O -7.69± 0.95, o ; Belarus δ13C 0.97± 1.94, o and δ18O -7.61± 1.42, o ; Kaliningrad δ13C -1.14± 1.43, o and δ18O -6.51± 1.00, o : Average stable carbon and oxygen isotope values from four sites in Lithuania were -4.65 o for carbon and -9.51 o for oxygen. Despite homogeneity of average isotope signals in these four sites there are relatively large oscillations of isotopic values in Rudnia and relatively small in Pauliai. These oscillations could be related to local characteristics of particular place such as environmental conditions, water balance, input of terrigenous materials into basin, etc. Total amount of CaCO3 could also play a significant role in reconstructing palaeoenvironment from stable isotopes and creating isomaps. The comparison of isotope records from different locations could enable to

  6. C isotope fractionation during heterotrophic activity driven carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Balci, Nurgul; Demirel, Cansu

    2016-04-01

    Stable carbon isotopic fractionation during carbonate precipitation induced by environmentally enriched heterotrophic halophilic microorganims was experimentally investigated under various salinity (% 4.5, %8, %15) conditions at 30 °C. Halophilic heterotrophic microorganims were enriched from a hypersaline Lake Acigöl located in SW Turkey (Balci et al.,2015) and later used for the precipitation experiments (solid and liquid medium). The carbonate precipitates had relatively high δ13C values (‑4.3 to ‑16.9 ‰) compared to the δ13C values of the organic compounds that ranged from ‑27.5 to ‑25.4 ‰. At salinity of 4.5 % δ13C values of carbonate ranged from -4.9 ‰ to -10.9 ‰ with a 13C-enrichment factor of +20 to +16 ‰ higher than the δ13C values of the associated DOC (-27.5) . At salinity 8 % δ13C values of carbonate ranged from -16.3 ‰ to -11.7 ‰ with a 13C-enrichment factor of+11.3 to+15.9 ‰ higher than the δ13C values of the associated DOC. The respected values for 15 % salinity ranged from -12.3 ‰ to -9.7 ‰ with a 13C-enrichment factor of +15.2 to+16.8 ‰ higher than the δ13C values of the associated DOC. The carbonate precipitates produced in the solid medium are more enriched in 13C relative to liquid culture experiments. These results suggest that the carbon in the solid was derived from both the bacterial oxidation of organic compounds in the medium and from the atmospheric CO2. A solid medium used in the experiments may have suppressed convective and advective mass transport favouring diffusion-controlled system. This determination suggests that the rate and equilibration of CO2 exchange with the atmosphere is the major control on C isotope composition of carbonate minerals precipitated in the experiments. Key words: Lake Acıgöl, halophilic bacteria, carbonate biomineralization, C isotopes References Nurgul Balci, Meryem Menekşe, Nevin Gül Karagüler, M. Şeref Sönmez,Patrick Meister 2015.Reproducing authigenic

  7. The Li isotope composition of modern biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; West, A. J.; Adkins, J. F.; Paris, G.; Eagle, R.; Freitas, P. S.; Bagard, M. L.; Ries, J. B.; Corsetti, F. A.; Pogge von Strandmann, P.; Ullmann, C. V.

    2015-12-01

    The lithium stable isotope composition (δ7Li) of sedimentary carbonates has great potential to unravel weathering rates and intensity in the past, with implications for understanding the carbon cycle over geologic time. However, so far very little is known about the potential influence of fractionation of the stable Li isotope composition of biogenic carbonates. Here, we investigate the δ7Li of various organisms (particularly mollusks, echinoderms and brachiopods) abundant in the Phanerozoic record, in order to understand which geologic archives might provide the best targets for reconstructing past seawater composition. The range of measured samples includes (i) modern calcite and aragonite shells from variable natural environments, (ii) shells from organisms grown under controlled conditions (temperature, salinity, pCO2), and (iii) fossil shells from a range of species collected from Miocene deposits. When possible, both the inner and outer layers of bivalves were micro-sampled to assess the intra-shell heterogeneity. For calcitic shells, the measured δ7Li of bivalve species range from +32 to +41‰ and is systematically enriched in the heavy isotope relative to seawater (31 ‰) and to inorganic calcite, which is characterized by Δ7Licalcite-seawater = -2 to -5‰ [1]. The Li isotope composition of aragonitic bivalves, ranging from +16 to +22‰, is slightly fractionated to both high and low δ7Li relative to inorganic aragonite. The largest intra-shell Li isotope variability is observed for mixed calcite-aragonite shells (more than 20‰) whereas in single mineralogy shells, intra-shell δ7Li variability is generally less than 3‰. Overall, these results suggest a strong influence of vital effects on Li isotopes during bio-calcification of bivalve shells. On the contrary, measured brachiopods systematically exhibit fractionation that is very similar to inorganic calcite, with a mean δ7Li of 27.0±1.5‰, suggesting that brachiopods may provide good

  8. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

    NASA Astrophysics Data System (ADS)

    Gutjahr, Marcus; Bordier, Louise; Douville, Eric; Farmer, Jesse; Foster, Gavin L.; Hathorne, Ed; Hönisch, Bärbel; Lemarchand, Damien; Louvat, Pascale; McCulloch, Malcolm; Noireaux, Johanna; Pallavicini, Nicola; Rodushkin, Ilia; Roux, Philippe; Stewart, Joseph; Thil, François; You, Chen-Feng

    2014-05-01

    Boron consists of only of two isotopes with a relatively large mass difference (~10 %). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in δ11B) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3]. This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate δ11B; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference δ11B values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined δ11B via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used. Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median δ11B by ~0.1 ‰ for both JCp-1 and JCt-1, while the mean δ11B of all labs for both standards was lowered by 0

  9. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars’ primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with

  10. The clumped isotope geothermometer in soil and paleosol carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47

  11. Bivalve tissue as a carbon and nitrogen isotope baseline indicator in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Fukumori, Kayoko; Oi, Misa; Doi, Hideyuki; Takahashi, Daisuke; Okuda, Noboru; Miller, Todd W.; Kuwae, Michinobu; Miyasaka, Hitoshi; Genkai-Kato, Motomi; Koizumi, Yoshitsugu; Omori, Koji; Takeoka, Hidetaka

    2008-08-01

    Pinctada fucata martensii mantle tissue and gut contents were examined as baseline indicators of carbon and nitrogen isotope composition at six stations in the Uwa Sea, Japan. Substantial variations in δ13C and δ15N values of oysters among stations were observed, with δ13C being consistently lower at Hiburi Island (-18.1‰) than at other stations (-17.2‰). Oysters from fish farm sites were enriched in δ15N (8.1‰) relative to those from unaffected sites (6.8‰), suggesting that fish farming tends to increase baseline δ15N values. The mean Δ δ13C (0.8‰) was consistent over space and time, whereas the average Δ δ15N slightly increased in summer. The relatively low δ15N enrichment compared to the theoretical isotope fractionation factor (3.4‰) may be due to oyster-specific physiological attributes. Carbon and nitrogen isotope turnover rates were roughly similar within a tissue, and mantle tissue turnover rate was estimated to be 120-180 days. These results indicated that oysters are long-term integrators of δ13C and δ15N from their diet and that δ13C of oysters is a more accurate bioindicator of isotopic baselines than δ15N for marine ecological studies.

  12. Biogeochemistry of a mesotrophic lake and it's carbon isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Ehresman, W.; Sadurski, S. E.

    2010-12-01

    Crystal Lake, located in west-central Ohio, is the main lake of a series of 4 interconnected lakes. The location and orientation indicate that they are most likely moulin-induced glacial lakes. Crystal Lake is about 5 hectares (12.5 acres). The maximum depth and mean depth are about 11.9 meters and 3.8 meters, respectively. As a result of this high depth-to-surface area ratio, it creates a strong thermal stratification during warm season. The lake was classified as eutrophic lake. However, the water quality has improved in the past decades. The chlorophyll in the epillimnion and upper metalimlion is about 4 μg/l and the Secchi disk depth is about 3.0 meters (10 feet). It is therefore reclassified as mesotrophic lake. Dissolved oxygen maximum (15.6 ppm) and pH peak (8.6) existed at 4.1 meter on August 16, 2010. At around 7.3 meter, where redox potential reading shows a sudden change from oxidizing to reducing , a ~half meter layer of dense purple sulfur bacteria coincides with turbidity, chlorophyll, and sulfate maxima. The chemical depth profiles are a result of thermal stratification, oxygenic photosynthesis by algae, non-oxygenic photosynthesis by purple sulfur bacteria, and respiration in the hypolimnion. Precipitation of calcium carbonate in the epilimnion and metalimnion is coupled by it’s dissolution in the hypolimnion. The purpose of the current project is to present extensive background study to form the framework for quantifying the carbon isotope evolution with multiple reaction pathways. Carbon isotope composition of dissolved inorganic carbon is being analyzed. Wigley-Plummer-Pearson mass transfer model will be used for the quantification of carbon isotope reaction pathways.

  13. The carbon and oxygen isotope records of reef-dwelling foraminifers subjected to five varied pCO2 seawater

    NASA Astrophysics Data System (ADS)

    Hikami, M.; Ishimura, T.; Suzuki, A.; Nojiri, Y.; Kawahata, H.

    2013-12-01

    in imperforate. For oxygen isotope ratio variation possibility among species would be caused by their Mg-content concentration in calcite shells. The distinct difference in the level of carbon isotope ratio between pure calcite and perforate foraminifera might be influenced by the degree of dependency on metabolic CO2 used for shell construction. The imperforate species would use most carbon derived from bicarbonate ion of seawater directly because the carbon isotope ratio of shell is almost same to that of pure calcite. Therefore, oxygen and carbon isotope ratio of foraminiferal test have the potential to reveal calcification mechanism of two species.

  14. Interpreting bryophyte stable carbon isotope composition: Plants as temporal and spatial climate recorders

    NASA Astrophysics Data System (ADS)

    Royles, Jessica; Horwath, Aline B.; Griffiths, Howard

    2014-04-01

    are unable to control tissue water content although physiological adaptations allow growth in a wide range of habitats. Carbon isotope signals in two mosses (Syntrichia ruralis and Chorisodontium aciphyllum) and two liverworts (Conocephalum conicum and Marchantia polymorpha), whether instantaneous (real time, Δ13C), or organic matter (as δ13COM), provide an assimilation-weighted summary of bryophyte environmental adaptations. In mosses, δ13COM is within the measured range of Δ13C values, which suggests that other proxies, such as compound-specific organic signals, will be representative of historical photosynthetic and growth conditions. The liverworts were photosynthetically active over a wider range of relative water contents (RWC) than the mosses. There was a consistent 5‰ offset between Δ13C values in C. conicum and M. polymorpha, suggestive of greater diffusion limitation in the latter. Analysis of a C. aciphyllum moss-peat core showed the isotopic composition over the past 200 years reflects recent anthropogenic CO2 emissions. Once corrected for source-CO2 inputs, the seasonally integrated Δ13COM between 1350 and 2000 A.D. varied by 1.5‰ compared with potential range of the 12‰ measured experimentally, demonstrating the relatively narrow range of conditions under which the majority of net assimilation takes place. Carbon isotope discrimination also varies spatially, with a 4‰ shift in epiphytic bryophyte organic matter found between lowland Amazonia and upper montane tropical cloud forest in the Peruvian Andes, associated with increased diffusion limitation.

  15. Effects of Water on Carbonate Clumped Isotope Bond Reordering Kinetics

    NASA Astrophysics Data System (ADS)

    Brenner, D. C.; Passey, B. H.

    2015-12-01

    Carbonate clumped isotope geothermometry is a powerful tool for reconstructing past temperatures, both in surface environments and in the shallow crust. The method is based on heavy isotope "clumps" within single carbonate groups (e.g., 13C18O16O2-2), whose overabundance beyond levels predicted by chance is determined by mineralization temperature. The degree of clumped isotope overabundance can change at elevated temperatures (ca. >100ºC) owing to solid-state diffusion of C and O through the mineral lattice. Understanding the kinetics of this clumped isotope reordering process is a prerequisite for application to geological questions involving samples that have been heated in the subsurface. Thus far, the effect of water on reordering kinetics has not been explored. The presence of water dramatically increases rates of oxygen self-diffusion in calcite, but whether this water-enhanced diffusion is limited to the mineral surface or extends into the bulk crystal lattice is not clear. Here we present experimentally determined Arrhenius parameters for reordering rates in optical calcite heated under aqueous high pressure (100 MPa) conditions. We observe only marginal increases in reordering rates under these wet, high pressure conditions relative to rates observed for the same material reacted under dry, low pressure conditions. The near identical clumped isotope reordering rates for wet and dry conditions contrasts with the orders of magnitude increase in oxygen diffusivity at the mineral surface when water is present. This suggests the latter effect arises from surface reactions that have minimal influence on the diffusivity of C or O in the bulk mineral. Our results also imply that previously published reordering kinetics determined under dry, low pressure experimental conditions are applicable to geological samples that have been heated in the presence of water.

  16. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    PubMed

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon. PMID:25673416

  17. Dietary interpretations for extinct megafauna using coprolites, intestinal contents and stable isotopes: Complimentary or contradictory?

    NASA Astrophysics Data System (ADS)

    Rawlence, Nicolas J.; Wood, Jamie R.; Bocherens, Herve; Rogers, Karyne M.

    2016-06-01

    For many extinct species, direct evidence of diet (e.g. coprolites, gizzard/intestinal contents) is not available, and indirect dietary evidence (e.g. stable isotopes) must be relied upon. The Late Holocene fossil record of New Zealand provides a unique opportunity to contrast palaeodietary reconstructions for the extinct moa (Aves: Dinornithiformes) using stable isotopes and coprolite/gizzard contents. Palaeodietary reconstructions from isotopes are found to contradict those based on direct dietary evidence. We discuss reasons for this and advocate, where possible, for the use of multiple lines of evidence in reconstructing the diets of extinct species.

  18. Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel

    SciTech Connect

    Horak, W.C.; Lu, Ming-Shih

    1991-12-01

    This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

  19. Photosynthetic Fractionation of the Stable Isotopes of Oxygen and Carbon.

    PubMed

    Guy, R. D.; Fogel, M. L.; Berry, J. A.

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O2 and CO2 was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([delta], where 1 + [delta]/1000 equals the isotope effect, k16/k18 or k12/k13) was determined by analysis of residual substrate (O2 or CO2). The [delta] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per mille (thousand) sign]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per mille (thousand) sign] and independent of enzyme source, unlike carbon isotope discrimination: 30.3[per mille (thousand) sign] for spinach enzyme and 19.6 to 23[per mille (thousand) sign] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [delta] for O2 consumption catalyzed by glycolate oxidase was 22.7[per mille (thousand) sign]. The expected overall [delta] for photorespiration is about 21.7[per mille (thousand) sign]. Consistent with this, when Asparagus sprengeri Regel mesophyll cells approached the compensation point within a sealed vessel, the [delta]18O of dissolved O2 came to a steady-state value of about 21.5[per mille (thousand) sign] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global O cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. PMID:12231663

  20. Photosynthetic fractionation of the stable isotopes of oxygen and carbon

    SciTech Connect

    Guy, R.D. ); Fogel, M.L.; Berry, J.A. )

    1993-01-01

    Isotope discrimination during photosynthetic exchange of O[sub 2] and CO[sub 2] was measured using enzyme, thylakoid, and whole cell preparations. Evolved oxygen from isolated spinach thylakoids was isotopically identical (within analytical error) to its source water. Similar results were obtained with Anacystis nidulans Richter and Phaeodactylum tricornutum Bohlin cultures purged with helium. For consumptive reactions, discrimination ([triangle], where 1 + [triangle]/1000 equals the isotope effect, k[sup 16]/k[sup 18] or k[sup 12]/k[sup 13]) was determined by analysis of residual substrate (O[sub 2] or CO[sub 2]). The [triangle] for the Mehler reaction, mediated by ferredoxin or methylviologen, was 15.3[per thousand]. Oxygen isotope discrimination during oxygenation of ribulose-1,5-bisphosphate (RuBP) catalyzed by RuBP carboxylase/oxygenase (Rubisco) was 21.3[per thousand] and independent of enzyme source, unlike carbon isotope dicrimination: 30.3[per thousand] for spinach enzyme and 19.6 to 23[per thousand] for Rhodospirillum rubrum and A. nidulans enzymes, depending on reaction conditions. The [triangle] for O[sub 2] consumption catalyzed by glycolate oxidase was 22.7[per thousand]. Consistent with this, when Asparagus sprengeri Regel mesopyll cells approached the compensation point within a sealed vessel, the [delta][sup 18]O of dissolved O[sub 2] came to a steady-state value of about 21.5[per thousand] relative to the source water. The results provide improved estimates of discrimination factors in several reactions prominent in the global oxygen cycle and indicate that photorespiration plays a significant part in determining the isotopic composition of atmospheric oxygen. 47 refs., 8 figs., 2 tabs.

  1. Carbon Isotope Composition of Mysids at a Terrestrial-Marine Ecotone, Clayoquot Sound, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Mulkins, L. M.; Jelinski, D. E.; Karagatzides, J. D.; Carr, A.

    2002-04-01

    The relative contribution of summertime terrestrial versus marine carbon to an estuary on coastal British Columbia, Canada was explored using stable carbon isotopic (δ 13C values) analysis of mysid crustaceans (Malacostraca: Peracarida: Mysidacea). We hypothesized that landscape linkages between the forested upland and adjacent inshore marine waters, via river, groundwater and overland flows, may influence carbon content and metabolism in the coastal zone. We sampled 14 stations spatially distributed in a grid and found δ 13C compositions of mysids ranged from -15·2 to -18·4‰. There was, however, no obvious spatial distribution of δ 13C values relative to the estuarine gradient in Cow Bay. Heavy tidal mixing is suggested to disperse marine and terrestrial carbon throughout the entire bay. From a temporal perspective however, mysid δ 13C signatures became enriched over the sampling period (mid-July to mid-August), which is representative of a stronger marine influence. This may arise because mysids are exposed to greater marine-derived carbon sources later in the summer, a decrease in freshwater input (and hence terrestrial carbon), changes in phytoplankton or macrophyte community structure, or that mysids preferentially feed on marine food sources. Overall, the recorded isotopic values are characteristic of marine organic carbon signatures suggesting that in summer, despite the proximity to shore, little or no terrestrial carbon penetrates the food web at the trophic level of mysids. This notwithstanding we believe there is a strong need for additional study of carbon flows at the marine-terrestrial interface, especially for disturbed watersheds.

  2. STABLE ISOTOPIC EVIDENCE OF CARBON AND NITROGEN USE IN CULTURED ECTOMYCORRHIZAL AND SAPROTROPHIC FUNGI

    EPA Science Inventory

    Stable isotopes in sporocarps have proven useful for inferring ectomycorrhizal or saprotrophic status and understanding carbon (C) and nitrogen (N) utilization. However, greater understanding of processes producing isotopic concentrations is needed. We measured natural abundanc...

  3. Carbon Isotope Fractionation Effects During Degradation of Methyl Halides in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Oremland, R. S.; Bill, M.; Goldstein, A. H.

    2001-12-01

    Fumigation of agricultural soils prior to planting row crops constitutes the largest anthropogenic source of methyl bromide (MeBr) to the atmosphere. Typically, more than 60% of the MeBr added is lost to the atmosphere during the 5-6 day fumigation period. The remainder is oxidized by bacteria or otherwise degraded in the soil. In experiments using washed cells of methylotrophic bacteria isolated from agricultural soil (strain IMB-1), oxidation of MeBr, methyl chloride (MeCl) and methyl iodide to CO2 resulted in large (up to 70‰ ) fractionation of stable carbon isotopes (Miller, et al. 2001). By contrast, fractionation measured in field soils using both in situ techniques and bottle incubations with MeBr was less than 35‰ . This discrepancy was initially attributed to the large transportation losses that occur without isotopic fractionation during field fumigation. However, this rationale cannot explain why bottle incubations with soil resulted in lower fractionation factors than incubations with bacterial cultures. We conducted additional laboratory bottle experiments to examine the biological and chemical controls of carbon isotope fractionation during degradation of MeBr and MeCl by soils and bacteria. Soils were collected from a strawberry field in Santa Cruz County, California within two weeks of the start of each experiment. The rate of removal of methyl halides from the headspace was greatest during incubations at soil moisture contents around 8%. Increasing the amount of soil and hence native bacteria in each bottle minimized the lag in uptake by up to several days. No lag was observed during incubations of soils with added IMB-1. Stable isotope fractionation factors were similar for degradation by live soil and live soil with added IMB-1. Heat-killed controls of cell cultures showed little uptake (<10% over 5 days) and no isotope fractionation. Heat-killed soil controls, by contrast, demonstrated significant loss of MeBr (20-30%) with isotope

  4. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation. PMID:22191586

  5. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  6. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement sampled near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87Sr/86Sr, and eolian material has 87Sr/86Sr ratios at the lower end of the pedogenic range. The average 87Sr/86Sr of Paleozoic basement from Black Marble Hill is similar to the 87Sr/86Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87Sr/86Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain.

  7. The dating of impure carbonates with decay-series isotopes

    NASA Astrophysics Data System (ADS)

    Ku, Teh-Lung; Liang, Zhuo-Cheng

    1984-06-01

    The uranium-series disequilibrium methods have been successfully applied to the dating of clean carbonate precipitates such as coralline and speleothem materials. Similar success has yet to be achieved for the widely occuring inorganically precipitated impure carbonates (e.g., travertine, tufa, and calcrete), of which there is an ever-increasing need for determining their chronology in Quaternary and archaeological studies. The main problem involves the presence of detrital materials which cannot be isolated from the carbonate fraction by simple physical means. Chemical separation using dilute acid leaching has been often attempted. This process may solubilize some of the uranium and thorium isotopes from the detrital component, and this detrital contamination must be corrected for. This paper reviews the principles and assumptions of the detrital correction schemes, discusses the theoretical and experimental aspects of the mixing-line plots as suggested by Rosholt and Szabo, and recommends analytical procedures pertinent to the use of such plots.

  8. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada

    SciTech Connect

    Aravena, R. . Center for Groundwater Research and Wetlands Research Center); Warner, B.G. . Wetlands Research Center and Dept. of Geography); Charman, D.J. . Dept. of Geographical Sciences); Belyea, L.R. . School of Biological Sciences); Mathur, S.P. ); Dinel, H. )

    1993-01-01

    Radiocarbon dating and carbon isotope analyses of deep peat and gases in a small ombrogenous peatland in northwestern Ontario reveals the presence of old gases at depth that are 1000-2000 yr younger than the enclosing peat. The authors suggest that the most likely explanation to account for this age discrepancy is the downward movement by advection of younger dissolved organic carbon for use by fermentation and methanogens bacteria. This study identifies a potentially large supply of old carbon gases in peatlands that should be considered in global carbon models of the terrestrial biosphere.

  9. Carbonate concretions as a significant component of ancient marine carbon cycles: Insights from paired organic and inorganic carbon isotope analyses of a Cretaceous shale

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.

    2014-12-01

    Carbonate concretions often occur within fine-grained, organic-rich sedimentary rocks. This association reflects the common production of diagenetic minerals through biologic cycling of organic matter. Chemical analysis of carbonate concretions provides the rare opportunity to explore ancient shallow diagenetic environments, which are inherently transient due to progressive burial but are an integral component of the marine carbon cycle. The late Cretaceous Holz Shale (~80 Ma) contains abundant calcite concretions that exhibit textural and geochemical characteristics indicative of relatively shallow formation (i.e., near the sediment-water interface). Sampled concretions contain between 5.4 and 9.8 wt.% total inorganic carbon (TIC), or ~45 and 82 wt.% CaCO3, compared to host shale values which average ~1.5 wt.% TIC. Organic carbon isotope compositions (δ13Corg) are relatively constant in host and concretion samples ranging from ­-26.3 to -24.0‰ (VPDB). Carbonate carbon isotope compositions (δ13Ccarb) range from -22.5 to -3.4‰, indicating a significant but not entirely organic source of carbon. Concretions of the lower Holz Shale exhibit considerably elevated δ13Ccarb values averaging -4.8‰, whereas upper Holz Shale concretions express an average δ13Ccarb value of -17.0‰. If the remaining carbonate for lower Holz Shale concretions is sourced from marine fluids and/or dissolved marine carbonate minerals (e.g., shells), a simple mass balance indicates that ~28% of concretion carbon was sourced from organic matter and ~72% from late Cretaceous marine inorganic carbon (with δ13C ~ +2.5‰). Upper Holz Shale calculations indicate a ~73% contribution from organic matter and a ~27% contribution from inorganic carbon. When normalized for carbonate, organic contents within the concretions are ~2-13 wt.% enriched compared to host contents. This potentially reflects the protective nature of cementation that acts to limit permeability and chemical destruction of

  10. Stable carbon isotope ratio variations of organic matter in Orca Basin sediments

    NASA Astrophysics Data System (ADS)

    Northam, Mark A.; Curry, David J.; Scalan, Richard S.; Parker, Patrick L.

    1981-02-01

    Orca Basin is a highly reducing basin on the slope of the Gulf of Mexico. Stable carbon isotope ratios and total organic carbon percentages were determined for two cores within the basin and one control core outside the basin. The results show that the organic carbon content of the basin cores is consistently 2-3 times greater than that of the control core. The Pleistocene-Holocene boundary, indicated by a break in the δ13C depth profile, occurs at a greater sediment depth in the basin cores than in the control core. A small sampling interval has made it possible to detect an unexplained fine structure in the δ13C profile not previously observed.

  11. Carbon and oxygen isotopes in apatite CO/sub 2/ and co-existing calcite

    SciTech Connect

    Kolodny, Y.; Kaplan, I. R.

    1981-04-01

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO/sub 2/ and in co-existing calcite. Both C and O in apatite CO/sub 2/ are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure.

  12. Stable and radioactive carbon in forest soils of Chhattisgarh, Central India: Implications for tropical soil carbon dynamics and stable carbon isotope evolution

    NASA Astrophysics Data System (ADS)

    Laskar, A. H.; Yadava, M. G.; Ramesh, R.

    2016-06-01

    Soils from two sites viz. Kotumsar and Tirathgarh, located ∼5 km apart in a tropical reserve forest (18°52‧N, 81°56‧E) in central India, have been explored for soil organic carbon (SOC) content, its mean residence time (MRT) and the evolution of stable carbon isotopic composition (δ13C). SOC stocks in the upper 30 cm of soil layers are ∼5.3 kg/m2 and ∼3.0 kg/m2; in the upper 110 m are ∼10.7 kg/m2 and ∼7.8 kg/m2 at Kotumsar and Tirathgarh, respectively. SOC decreases with increasing depth. Bomb carbon signature is observed in the upper ∼10 cm. Organic matters in the top soil layers (0-10 cm) have MRTs of the order of a century which increases gradually with depths, reaching 3500-5000 yrs at ∼100 cm. δ13C values of SOC increase with depth, the carbon isotopic fractionation is obtained to be -1.2‰ and -3‰ for soils at Kotumsar and Tirathgarh, respectively, confirmed using Rayleigh isotopic fractionation model. The evolution of δ13C in soils was also studied using a modified Rayleigh fractionation model incorporating a continuous input into the reservoir: the depth profiles of δ13C for SOC show that the input organic matter from surface into the deeper soil layers is either insignificant or highly labile and decomposes quite fast in the top layers, thus making little contribution to the residual biomasses of the deeper layers. This is an attempt to understand the distillation processes that take place in SOC, assess the extent of decomposition by microbes and effect of percolation of fresh organic matter into dipper soil layers which are important for stable isotope based paleoclimate and paleovegetation reconstruction and understanding the dynamics of organic carbon in soils.

  13. Carbon isotopic composition of methane in Florida Everglades soils and fractionation during its transport to the troposphere

    SciTech Connect

    Chanton, J.P.; Pauly, G.G.; Martens, C.S.; Blair, N.E.; Dacey, J.W.H. )

    1988-09-01

    The delta-C{sup 13} stable carbon isotopic composition of methane collected in bubbles from the submerged soils of specific environments within the Everglades wetland in southern Florida varied from {minus}70{per thousand} to {minus}63{per thousand} across the system while organic carbon in the soils and dominant plants varied from {minus}28{per thousand} to {minus}25{per thousand}. A methane isotopic budget based upon the soil bubble isotope data and published methane flux measurements predicted a flux of isotopic composition {minus}65{per thousand}, a value 5-10{per thousand} more depleted in C{sup 13} than the isotopic composition of methane emanating to the atmosphere. Emergent aquatic plants, which are known to be active methane transporters between soil and atmosphere in this ecosystem, were found to transport methane of delta-C{sup 13} content up to 12{per thousand} different from the delta-C{sup 13} content of the soil methane bubble reservoir. Methane C{sup 13} content at one site was determined to be 108.6% modern (delta-C{sup 13} = 83 + or{minus}10{per thousand}). 47 refs., 1 fig., 5 tabs.

  14. Carbon isotopes and lipid biomarkers from organic-rich facies of the Shuram Formation, Sultanate of Oman.

    PubMed

    Lee, C; Fike, D A; Love, G D; Sessions, A L; Grotzinger, J P; Summons, R E; Fischer, W W

    2013-09-01

    The largest recorded carbon isotopic excursion in Earth history is observed globally in carbonate rocks of middle Ediacaran age. Known from the Sultanate of Oman as the 'Shuram excursion', this event records a dramatic, systematic shift in δ(13) Ccarbonate values to ca. -12‰. Attempts to explain the nature, magnitude and origin of this excursion include (i) a primary signal resulting from the protracted oxidation of a large dissolved organic carbon reservoir in seawater, release of methane from sediment-hosted clathrates, or water column stratification; and (ii) a secondary signal from diagenetic processes. The compositions and isotope ratios of organic carbon phases during the excursion are critical to evaluating these ideas; however, previous work has focused on localities that are low in organic carbon, hindering straightforward interpretation of the observed time-series trends. We report carbon isotope data from bulk organic carbon, extracted bitumen and kerogen, in addition to lipid biomarker data, from a subsurface well drilled on the eastern flank of the South Oman Salt Basin, Sultanate of Oman. This section captures Nafun Group strata through the Ediacaran-Cambrian boundary in the Ara Group and includes an organic-rich, deeper-water facies of the Shuram Formation. Despite the high organic matter contents, the carbon isotopic compositions of carbonates - which record a negative δ(13) C isotope excursion similar in shape and magnitude to sections elsewhere in Oman - do not covary with those of organic phases (bulk TOC, bitumen and kerogen). Paired inorganic and organic δ(13) C data only display coupled behaviour during the latter part of the excursion's recovery. Furthermore, lipid biomarker data reveal that organic matter composition and source inputs varied stratigraphically, reflecting biological community shifts in non-migrated, syngenetic organic matter deposited during this interval. PMID:23783077

  15. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  16. Reaction cross sections of carbon isotopes incident on a proton

    SciTech Connect

    Abu-Ibrahim, B.; Horiuchi, W.; Kohama, A.; Suzuki, Y.

    2008-03-15

    We systematically study total reaction cross sections of carbon isotopes with N=6-16 on a proton target for wide range of incident energies. An emphasis is put on the difference from the case of a carbon target. The calculations include the reaction cross sections of {sup 19,20,22}C at 40A MeV, the data of which have recently been measured at RIKEN. The Glauber theory is used to calculate the reaction cross sections. To describe the intrinsic structure of the carbon isotopes, we use a Slater determinant generated from a phenomenological mean-field potential, and construct the density distributions. To go beyond the simple mean-field model, we adopt two types of dynamical models: One is a core+n model for odd-neutron nuclei, and the other is a core+n+n model for {sup 16}C and {sup 22}C. We propose empirical formulas which are useful in predicting unknown cross sections.

  17. Factors and processes governing the C-14 content of carbonate in desert soils

    NASA Technical Reports Server (NTRS)

    Amundson, Ronald; Wang, Yang; Chadwick, Oliver; Trumbore, Susan; Mcfadden, Leslie; Mcdonald, Eric; Wells, Steven; Deniro, Michael

    1994-01-01

    A model is presented describing the factors and processes which determine the measured C-14 ages of soil calcium carbonate. Pedogenic carbonate forms in isotopic equilium with soil CO2. Carbon dioxide in soils is a mixture of CO2 derived from two biological sources: respiration by living plant roots and respiration of microorganisms decomposing soil humus. The relative proportion of these two CO2 sources can greatly affect the initial C-14 content of pedogenic carbonate: the greater the contribution of humus-derived CO2, the greater the initial C-14 age of the carbonate mineral. For any given mixture of CO2 sources, the steady-state (14)CO2 distribution vs. soil depth can be described by a production/diffusion model. As a soil ages, the C-14 age of soil humus increases, as does the steady-state C-14 age of soil CO2 and the initial C-14 age of any pedogenic carbonate which forms. The mean C-14 age of a complete pedogenic carbonate coating or nodule will underestimate the true age of the soil carbonate. This discrepancy increases the older a soil becomes. Partial removal of outer (and younger) carbonate coatings greatly improves the relationship between measured C-14 age and true age. Although the production/diffusion model qualitatively explains the C-14 age of pedogenic carbonate vs. soil depth in many soils, other factors, such as climate change, may contribute to the observed trends, particularily in soils older than the Holocene.

  18. Carbon Isotope Ratios Demonstrate Carbon Flux from C4 Host to C3 Parasite 1

    PubMed Central

    Press, Malcolm C.; Shah, Nishith; Tuohy, Janet M.; Stewart, George R.

    1987-01-01

    Carbon isotope ratios of mature leaves from the C3 angiosperm root hemiparasites Striga hermonthica (Del.) Benth (−26.7‰) and S. asiatica (L.) Kuntze (−25.6‰) were more negative than their C4 host, sorghum (Sorghum bicolor [L.] Moench cv CSH1), (−13.5‰). However, in young photosynthetically incompetent plants of S. hermonthica this difference was reduced to less than 1‰. Differences between the carbon isotope ratios of two C3-C3 associations, S. gesnerioides (Willd.) Vatke—Vigna unguiculata (L.) Walp. and Oryza sativa L.—Rhamphicarpa fistulosa (Hochst.) Benth differed by less than 1‰. Theoretical carbon isotope ratios for mature leaves of S. hermonthica and S. asiatica, calculated from foliar gas exchange measurements, were −31.8 and −32.0‰, respectively. This difference between the measured and theoretical δ13C-values of 5 to 6‰ suggests that even in mature, photosynthetically active plants, there is substantial input of carbon from the C4 host. We estimate this to be approximately 28% of the total carbon in S. hermonthica and 35% in S. asiatica. This level of carbon transfer contributes to the host's growth reductions observed in Striga-infected sorghum. PMID:16665818

  19. RAPID AND PRECISE METHOD FOR MEASURING STABLE CARBON ISOTOPE RATIOS OF DISSOLVED INORGANIC CARBON

    EPA Science Inventory

    We describe a method for rapid preparation, concentration and stable isotopic analysis of dissolved inorganic carbon (d13C-DIC). Liberation of CO2 was accomplished by placing 100 ?l phosphoric acid and 0.9 ml water in an evacuated 1.7-ml gas chromatography (GC) injection vial. Fo...

  20. Physiological and environmental factors related to carbon isotopic variations in mollusc shell carbonate

    SciTech Connect

    Krantz, D.E.; Williams, D.F.; Jones, D.S.

    1985-01-01

    The carbon isotopic composition of mollusc shell carbonate has been used as a general environmental indicator in numerous studies, but relatively little is known of the factors which affect within-shell variation. Primary control of delta/sup 13/C values in shell carbonate comes from the dissolved bicarbonate source, particularly as related to marine versus fresh water. Present models explain cyclic variations in the delta/sup 13/C profiles of mollusc shells due to upwelling, phytoplankton productivity and stratification, disequilibrium with rapid shell growth, and infaunal versus epifaunal habitat. Carbon and oxygen isotopic profiles in this study were obtained from specimens of Spisula solidissima (surf clam) and Placopecten magellanicus (sea scallop) collected alive from 14 to 57 m water depths off the Virginia coast. Three main factors appear to affect the delta/sup 13/C profiles in these specimens. Isotopically light values commonly associated with the spring and occasionally the fall correspond with seasonal phytoplankton productivity. A significant negative delta/sup 13/C offset of the infaunal Spisula relative to the epifaunal Placopecten probably relates to the inclusion of isotopically more negative pore-water bicarbonate by Spisula. Additionally, occasional transient spikes in both the delta/sup 18/O and delta/sup 13/C profiles correspond to intrusion of reduced-salinity water.

  1. Isotope-based Fluvial Organic Carbon (ISOFLOC) Model: Model formulation, sensitivity, and evaluation

    NASA Astrophysics Data System (ADS)

    Ford, William I.; Fox, James F.

    2015-06-01

    Watershed-scale carbon budgets remain poorly understood, in part due to inadequate simulation tools to assess in-stream carbon fate and transport. A new numerical model termed ISOtope-based FLuvial Organic Carbon (ISOFLOC) is formulated to simulate the fluvial organic carbon budget in watersheds where hydrologic, sediment transport, and biogeochemical processes are coupled to control benthic and transported carbon composition and flux. One ISOFLOC innovation is the formulation of new stable carbon isotope model subroutines that include isotope fractionation processes in order to estimate carbon isotope source, fate, and transport. A second innovation is the coupling of transfers between carbon pools, including algal particulate organic carbon, fine particulate and dissolved organic carbon, and particulate and dissolved inorganic carbon, to simulate the carbon cycle in a comprehensive manner beyond that of existing watershed water quality models. ISOFLOC was tested and verified in a low-gradient, agriculturally impacted stream. Results of a global sensitivity analysis suggested the isotope response variable had unique sensitivity to the coupled interaction between fluvial shear resistance of algal biomass and the concentration of dissolved inorganic carbon. Model calibration and validation suggested good agreement at event, seasonal, and annual timescales. Multiobjective uncertainty analysis suggested inclusion of the carbon stable isotope routine reduced uncertainty by 80% for algal particulate organic carbon flux estimates.

  2. A global deglacial negative carbon isotope excursion in speleothem calcite

    NASA Astrophysics Data System (ADS)

    Breecker, D.

    2015-12-01

    δ13C values of speleothem calcite decreased globally during the last deglaciation defining a carbon isotope excursion (CIE) despite relatively constant δ13C values of carbon in the ocean-atmosphere system. The magnitude of the CIE varied with latitude, increasing poleward from ~2‰ in the tropics to as much as 7‰ at high latitudes. This recent CIE provides an interesting comparison with CIEs observed in deep time. A substantial portion of this CIE can be explained by the increase in atmospheric pCO2 that accompanied deglaciation. The dependence of C3 plant δ13C values on atmospheric pCO2 predicts a 2‰ δ13C decrease driven by the deglacial pCO2 increase. I propose that this signal was transferred to caves and thus explains nearly 100% of the CIE magnitude observed in the tropics and no less than 30% at the highest latitudes in the compilation. An atmospheric pCO2 control on speleothem δ13C values, if real, will need to be corrected for using ice core data before δ13C records can be interpreted in a paleoclimate context. The decrease in the magnitude of the equilibrium calcite-CO2 carbon isotope fractionation factor explains a maximum of 1‰ of the CIE at the highest northern latitude in the compilation, which experienced the largest deglacial warming. Much of the residual extratropical CIE was likely driven by increasing belowground respiration rates, which were presumably pronounced at high latitudes as glacial retreat exposed fresh surfaces and/or vegetation density increased. The largest increases in belowground respiration would have therefore occurred at the highest latitudes, explaining the meridional trend. This work supports the notion that increases in atmospheric pCO2 and belowground respiration rates can result in large CIEs recorded in terrestrial carbonates, which, as previously suggested, may explain the magnitude of the PETM CIE as recorded by paleosol carbonates.

  3. Stable carbon isotopes and the study of prehistoric human diet.

    PubMed

    Boutton, T W; Lynott, M J; Bumsted, M P

    1991-01-01

    Mass spectrometric analysis of the stable carbon isotope composition (13C/12C or delta 13C) of bone collagen from human remains recovered at archaeological sites provides a direct chemical method for investigating dietary patterns of prehistoric human populations. This methodology is based on the facts that (1) different food items within the human diet have distinct delta 13C values, and (2) the delta 13C value of human bone collagen is determined by the delta 13C value of the diet. Studies of the development of subsistence patterns based on corn agriculture, one of the most significant developments in North American prehistory, can benefit from the use of stable carbon isotope techniques because corn has a high delta 13C value relative to other components of the human diet. Measurements of delta 13C of bone collagen from prehistoric human skeletal remains from southeastern Missouri and northeastern Arkansas indicate that intensive corn agriculture began in this region around A.D. 1000, that the incorporation of corn into the human diet was a rapid phenomenon, and that 35 to 77% of the human diet from A.D. 1000 to A.D. 1600 consisted of corn. Results from an isochronous population in southeastern South Dakota (A.D. 1400) suggest that 78 to 90% of the diet of this group consisted of corn, with no difference between males and females. Coupled with more traditional archaeological methods, stable carbon isotope analysis of bone collagen can significantly enhance reconstruction of dietary patterns of prehistoric humans. PMID:1910520

  4. Stable carbon and oxygen isotopes as an indicator for soil degradation

    NASA Astrophysics Data System (ADS)

    Alewell, C.; Schaub, M.; Seth, B.

    2009-04-01

    Analyses of soil organic carbon content (SOC) and stable carbon and oxygen isotope signatures (^13C) of soils were assessed for their suitability to detect early stage soil erosion. Results were validated with Cs-137 measurements. We investigated the soils in the alpine Urseren Valley (Southern Central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visual soil erosion and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of ^13C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of ^13C of these upland soils mainly reflect decomposition of SOC. Long term disturbance of an upland soil is indicated by decreasing correlation of ^13C and SOC (r ? 0.80) which goes parallel to increasing (visual) damage at the site. Early stage soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate ^13C value (27.5 ) for affected wetland soil horizons (0 - 12 cm) between upland (aerobic metabolism, relatively heavier ^13C of 26.6 ) and wetland isotopic signatures (anaerobic metabolism, relatively lighter ^13C of 28.6 ). Cs-137 measurements confirmed stable isotope analysis. Stable oxygen isotope signature (^18O) of soil is the result of a mixture of the components within the soil with varying ^18O signatures. Thus, ^18O of soils should provide information about the soil's substrate, especially about the relative contribution of organic matter versus minerals. As there is no standard method available for measuring soil ^18O, the method for measurement of single components using High Temperature Conversion Elemental Analyzer (TC/EA) was adapted. We measured ^18O in standard materials (IAEA 601, IAEA 602, Merck Cellulose

  5. Methodologies for extraction of dissolved inorganic carbon for stable carbon isotope studies : evaluation and alternatives

    USGS Publications Warehouse

    Hassan, Afifa Afifi

    1982-01-01

    The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)

  6. Isotope composition of carbon in the carbonates of the Gumbeykan scheelite deposits in the southern Urals

    SciTech Connect

    Korzhinskii, A.F.; Mamchur, G.P.; Yarynych, O.A.

    1980-10-01

    Through investigations of the isotope composition of carbon of various generations and carbonates from marbles, skarns, and nested and vein scheelite orebodies, the probable source of carbon of these carbonates has been established as a mixture of sedimentary carbonates, carbon dioxide with carbonic acid that was formed by oxidation of the organic matter from sedimentary terrane (..delta..C/sup 13/ - 0.05 to -0.62%). In the calcite and dolomite phenocrysts of marble and the coarse-grained dolostone, containing scheelite, the carbon was lighter (..delta..C/sup 13/ from -0.60 to -0.87%). For the dolomite and ankerite from scheelite pockets of the Balkan deposit and quartz veins of the Buranovo, ..delta..C/sup 13/ varied from -0.44 to -0.87%. The lightest carbon found in strontianite (..delta..C/sup 13/ = -1.32%), located near the coating of the organic matter (..delta..C/sup 13/ = -1.26%) in fractures of the quartz vein of the Buranovo deposit. In the section through the orebodies and near-ore diffusion-metasomatic zones of the Balkan deposit, the lessening of carbon in the carbonates was observed, with increasing distance away from the fracture. ..delta..C/sup 13/ in the altered granitoids ranged from -0.44 to -1.03%; while in the diopside-wollastonite hornfels, from -0.89 to 1.13%. The lessening in weight of the carbon is explained by diffusional fractionation of the isotopes caused apparently by the differential movement of volatile mixtures of carbon during ore-forming processes and the formation of their diffusion-metasomatic zones.

  7. Modeling Chemical and Isotopic Variations in Lab Formed Hydrothermal Carbonates

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Golden, D. C.; Socki, R. A.; Guan, Y.; Ming, D. W.

    2005-01-01

    Chemical and mineralogical data (e.g. [1]) from Mars suggest that the history of liquid water on the planet was more sporadic in nature than long-lived. The non-equilibrium chemical and isotopic compositions of the carbonates preserved in the martian meteorite ALH84001 are direct evidence of ancient secondary minerals that have not undergone significant diagenesis or stabilization processes typical of long-lived aqueous systems on Earth. Thus secondary minerals and sediments on Mars may primarily record the characteristics of the aqueous environment in which they formed without being significantly overprinted by subsequent diagenetic processes during burial.

  8. The carbon isotopic composition of Novo Urei diamonds

    NASA Technical Reports Server (NTRS)

    Fisenko, A. V.; Semjenova, L. F.; Verchovsky, A. B.; Russell, S. S.; Pillinger, C. T.

    1993-01-01

    The carbon isotopic composition of diamond grains isolated from the Novo Urei meteorite are discussed. A diamond separate was obtained from 2g of whole rock using the chemical treatments described aimed at obtaining very pure diamond. X ray diffraction of the residue, which represented 5000 ppm of the parent mass, indicated only the presence of the desired mineral. The diamond crystals were 1-30 microns in diameter, and some grains had a yellow color. The chemical treatments were followed by a size separation to give a 1-10 microns and a 5-30 microns fraction, which were named DNU-1 and DNU-2, respectively.

  9. Jellyfish Body Plans Provide Allometric Advantages beyond Low Carbon Content

    PubMed Central

    Pitt, Kylie A.; Duarte, Carlos M.; Lucas, Cathy H.; Sutherland, Kelly R.; Condon, Robert H.; Mianzan, Hermes; Purcell, Jennifer E.; Robinson, Kelly L.; Uye, Shin-Ichi

    2013-01-01

    Jellyfish form spectacular blooms throughout the world’s oceans. Jellyfish body plans are characterised by high water and low carbon contents which enables them to grow much larger than non-gelatinous animals of equivalent carbon content and to deviate from non-gelatinous pelagic animals when incorporated into allometric relationships. Jellyfish have, however, been argued to conform to allometric relationships when carbon content is used as the metric for comparison. Here we test the hypothesis that differences in allometric relationships for several key functional parameters remain for jellyfish even after their body sizes are scaled to their carbon content. Data on carbon and nitrogen contents, rates of respiration, excretion, growth, longevity and swimming velocity of jellyfish and other pelagic animals were assembled. Allometric relationships between each variable and the equivalent spherical diameters of jellyfish and other pelagic animals were compared before and after sizes of jellyfish were standardised for their carbon content. Before standardisation, the slopes of the allometric relationships for respiration, excretion and growth were the same for jellyfish and other pelagic taxa but the intercepts differed. After standardisation, slopes and intercepts for respiration were similar but excretion rates of jellyfish were 10× slower, and growth rates 2× faster than those of other pelagic animals. Longevity of jellyfish was independent of size. The slope of the allometric relationship of swimming velocity of jellyfish differed from that of other pelagic animals but because they are larger jellyfish operate at Reynolds numbers approximately 10× greater than those of other pelagic animals of comparable carbon content. We conclude that low carbon and high water contents alone do not explain the differences in the intercepts or slopes of the allometric relationships of jellyfish and other pelagic animals and that the evolutionary longevity of jellyfish and

  10. A process-based model for non-equilibrium clumped isotope effects in carbonates

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Hunt, J. D.

    2015-12-01

    The equilibrium clumped isotope composition of carbonate minerals is independent of the composition of the aqueous solution. However, many carbonate minerals grow at rates that place them in a non-equilibrium regime with respect to carbon and oxygen isotopes with unknown consequences for clumped isotopes. We develop a process-based model that allows one to calculate the oxygen, carbon, and clumped isotope composition of calcite as a function of temperature, crystal growth rate, and solution pH. In the model, carbon and oxygen isotope fractionation occurs through the mass-dependent attachment/detachment kinetics of the isotopologues of HCO-3 and CO2-3 to and from the calcite surface, which in turn, influence the clumped isotope composition of calcite. At experimental and biogenic growth rates, the mineral is expected to inherit a clumped isotopic composition that is similar to that of the DIC pool, which helps to explain (1) why different organisms share the same clumped isotope versus temperature calibration curves, (2) why many inorganic calibration curves are slightly different from one another, and (3) why foraminifera, coccoliths, and deep sea corals can have near-equilibrium clumped isotope compositions but far-from-equilibrium carbon and oxygen isotope compositions. Some aspects of the model can be generalized to other mineral systems and should serve as a useful reference in future efforts to quantify kinetic clumped isotope effects.