Science.gov

Sample records for carbon isotope ratios

  1. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  2. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  3. The use of carbon stable isotope ratios in drugs characterization

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-11-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from -29.7 to -31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between -31.3 to -34.9% for the same type of analgesic, but from different manufactures.

  4. The use of carbon stable isotope ratios in drugs characterization

    SciTech Connect

    Magdas, D. A. Cristea, G. Bot, A. Mirel, V.

    2013-11-13

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.

  5. Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing.

    PubMed

    Piper, Thomas; Emery, Caroline; Thomas, Andreas; Saugy, Martial; Thevis, Mario

    2013-06-01

    Carbon isotope ratio (CIR) analysis has been routinely and successfully applied to doping control analysis for many years to uncover the misuse of endogenous steroids such as testosterone. Over the years, several challenges and limitations of this approach became apparent, e.g., the influence of inadequate chromatographic separation on CIR values or the emergence of steroid preparations comprising identical CIRs as endogenous steroids. While the latter has been addressed recently by the implementation of hydrogen isotope ratios (HIR), an improved sample preparation for CIR avoiding co-eluting compounds is presented herein together with newly established reference values of those endogenous steroids being relevant for doping controls. From the fraction of glucuronidated steroids 5β-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-Hydroxy-5β-androstane-11,17-dione, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5β-androstan-17-one (ETIO), 3β-hydroxy-androst-5-en-17-one (DHEA), 5α- and 5β-androstane-3α,17β-diol (5aDIOL and 5bDIOL), 17β-hydroxy-androst-4-en-3-one and 17α-hydroxy-androst-4-en-3-one were included. In addition, sulfate conjugates of ANDRO, ETIO, DHEA, 3β-hydroxy-5α-androstan-17-one plus 17α- and androst-5-ene-3β,17β-diol were considered and analyzed after acidic solvolysis. The results obtained for the reference population encompassing n = 67 males and females confirmed earlier findings regarding factors influencing endogenous CIR. Variations in sample preparation influenced CIR measurements especially for 5aDIOL and 5bDIOL, the most valuable steroidal analytes for the detection of testosterone misuse. Earlier investigations on the HIR of the same reference population enabled the evaluation of combined measurements of CIR and HIR and its usefulness regarding both steroid metabolism studies and doping control analysis. The combination of both stable isotopes would allow for lower reference limits providing the same statistical

  6. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars’ primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with

  7. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  8. Carbon isotope ratios and impurities in diamonds from Southern Africa

    NASA Astrophysics Data System (ADS)

    Kidane, Abiel; Koch-Müller, Monika; Morales, Luiz; Wiedenbeck, Michael; De Wit, Maarten

    2015-04-01

    We are investigating the sources of diamonds from southern Africa by studying both their carbon isotopic composition and chemical impurities. Our samples include macro-sized diamonds from River Ranch kimberlite in Zimbabwe and the Helam and Klipspringer kimberlitic deposits from South Africa, as well as micro-sized diamonds from Klipspringer and Premier kimberlites in South Africa. We have characterized the samples for their structurally bounded nitrogen, hydrogen and platelets defect using a Fourier Transmission Infrared Spectroscopy (FTIR). Using the DiaMap routine, open source software (Howell et al., 2012), IR spectra were deconvulated and quantified for their nitrogen (A, B and D components) and hydrogen contents. High to moderate nitrogen concentrations (1810 to 400 µg/g; 400 to 50 µg/g respectively) were found in diamonds from Klipspringer and Helam. Moderate to low (<50 µg/g) nitrogen concentrations were observed in diamonds from Premier and River Ranch. Type II diamonds, i.e. diamonds with no N impurities, which are presumed to have been derived from ultramafic sources, are found in the River Ranch deposit. The macro- and micro-size diamonds from the Klipspringer deposit display similar nitrogen defects, with higher nitrogen concentration and more frequent D components found in the macro-size diamonds. One of the first steps towards reliable carbon isotope studies is the development of calibration materials for SIMS carbon isotopic analyses. We have investigated candidate materials both from a polycrystalline synthetic diamond sheet and two natural gem quality diamonds from Juina (Brazil). Electron-based images of the synthetic diamond sheet, obtained using GFZ Potsdam's dual beam FIB instrument, show many diamond grains with diameters greater than 35 µm. SIMS testing of the isotopic homogeneity of the back and front sides of the synthetic sheets reveal similar 13C/12C ratio within a RSD of <1 ‰ . SIMS isotopic analyses of the two natural diamond RMs

  9. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  10. Carbon and Oxygen Isotopic Ratios for Nearby Miras

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Lebzelter, Thomas; Straniero, Oscar

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M ⊙ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of 16O/17O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M ⊙ stars after the first dredge-up. In contrast, the 16O/18O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the 16O/18O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected

  11. Carbon isotope ratio analysis of steroids by high-temperature liquid chromatography-isotope ratio mass spectrometry.

    PubMed

    Zhang, Lijun; Thevis, Mario; Piper, Thomas; Jochmann, Maik A; Wolbert, J Benjamin; Kujawinski, Dorothea M; Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2014-03-01

    Generally, compound-specific isotope analysis of steroids is carried out by gas chromatography combined with isotope ratio mass spectrometry. Thus, a derivatization of the steroids prior to the measurement is compulsory, and a correction of the isotopic data is often necessary. To overcome this limitation, we present a new approach of high-temperature liquid chromatography coupled with photodiode array detection and isotope ratio mass spectrometry (HT-LC/PDA/IRMS) for the carbon isotope ratio analysis of unconjugated steroids. A steroid mixture containing 19-norandrosterone, testosterone, epitestosterone, androsterone, and 5β-pregnane-3α,17α,20α-triol was fully separated on a C4 column under high-temperature elution with water as the sole eluent. The accuracy for isotope analysis (±0.5 ‰) was around 20 μg g(-1) for testosterone, epitestosterone (79 ng steroid absolute on column), and 30 μg g(-1) for 19-norandrosterone, androsterone, and 5β-pregnane-3α,17α,20α-triol (119 ng steroid absolute on column). The applicability of the method was tested by measuring a pharmaceutical gel containing testosterone. With this work, the scope of LC/IRMS applications has been extended to nonpolar compounds. PMID:24491121

  12. BOREAS TE-5 Tree Ring and Carbon Isotope Ratio Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected several data sets to investigate the vegetation-atmosphere CO2 and H2O exchange processes. These data include tree ring widths and cellulose carbon isotope data from coniferous trees collected at the BOREAS NSA and SSA in 1993 and 1994 by the BOREAS TE-5 team. Ring width data are provided for both Picea mariana and Pinus banksiana. The carbon isotope data are provided only for Pinus banksiana. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  14. Effects of carbonate leaching on foraminifer stable isotopes ratios

    NASA Astrophysics Data System (ADS)

    Obrochta, S.; Yokoyama, Y.; Sakai, S.; Ishimura, T.

    2011-12-01

    Stable carbon and oxygen isotope ratios were measured on 125 individual epifaunal and infaunal benthic foraminifers from two discrete Holocene intervals in a shallow-water sediment core (~ 450 m) from the Timor Sea. Methane seeps are common in the area, resulting in significant precipitation of secondary calcite that is confirmed by SEM photomicrographs and has likely resulted in inconsistent downcore results. To assess the degree of removal of contaminants, individual Uvigerina peregrina were subjected to varying degrees of pretreatment prior to analysis. All foraminifers received standard cleaning with ethanol and brief sonication. A subset were further cleaned and sonicated in a dilute HCl solution (~ 0.003 M). Foraminifer tests were photographed using both reflected light and scanning electron microscopes during the course of treatment to monitor the changing degree of contaminant removal as increasingly aggressive cleaning methods were employed. Visible contamination remained on individuals not subjected to HCl treatment. The leached individuals exhibit a lower overall relative standard deviation and consistent results within morphotype groups. Based on these results, a 2% value is expected to be typical of the Holocene, though further downcore analyses are pending restoration of equipment adversely effected by the Eastern Japan 3/11 earthquake.

  15. Carbon Isotope Ratios Demonstrate Carbon Flux from C4 Host to C3 Parasite 1

    PubMed Central

    Press, Malcolm C.; Shah, Nishith; Tuohy, Janet M.; Stewart, George R.

    1987-01-01

    Carbon isotope ratios of mature leaves from the C3 angiosperm root hemiparasites Striga hermonthica (Del.) Benth (−26.7‰) and S. asiatica (L.) Kuntze (−25.6‰) were more negative than their C4 host, sorghum (Sorghum bicolor [L.] Moench cv CSH1), (−13.5‰). However, in young photosynthetically incompetent plants of S. hermonthica this difference was reduced to less than 1‰. Differences between the carbon isotope ratios of two C3-C3 associations, S. gesnerioides (Willd.) Vatke—Vigna unguiculata (L.) Walp. and Oryza sativa L.—Rhamphicarpa fistulosa (Hochst.) Benth differed by less than 1‰. Theoretical carbon isotope ratios for mature leaves of S. hermonthica and S. asiatica, calculated from foliar gas exchange measurements, were −31.8 and −32.0‰, respectively. This difference between the measured and theoretical δ13C-values of 5 to 6‰ suggests that even in mature, photosynthetically active plants, there is substantial input of carbon from the C4 host. We estimate this to be approximately 28% of the total carbon in S. hermonthica and 35% in S. asiatica. This level of carbon transfer contributes to the host's growth reductions observed in Striga-infected sorghum. PMID:16665818

  16. Equations for Lipid Normalization of Carbon Stable Isotope Ratios in Aquatic Bird Eggs

    PubMed Central

    Elliott, Kyle H.; Davis, Mikaela; Elliott, John E.

    2014-01-01

    Stable isotope ratios are biogeochemical tracers that can be used to determine the source of nutrients and contaminants in avian eggs. However, the interpretation of stable carbon ratios in lipid-rich eggs is complicated because 13C is depleted in lipids. Variation in 13C abundance can therefore be obscured by variation in percent lipids. Past attempts to establish an algebraic equation to correct carbon isotope ratios for lipid content in eggs have been unsuccessful, possibly because they relied partly on data from coastal or migratory species that may obtain egg lipids from different habitats than egg protein. We measured carbon, nitrogen and sulphur stable isotope ratios in 175 eggs from eight species of aquatic birds. Carbon, nitrogen and sulphur isotopes were enriched in lipid-extracted egg samples compared with non extracted egg samples. A logarithmic equation using the C∶N ratio and carbon isotope ratio from the non extracted egg tissue calculated 90% of the lipid-extracted carbon isotope ratios within ±0.5‰. Calculating separate equations for eggs laid by species in different habitats (pelagic, offshore and terrestrial-influenced) improved the fit. A logarithmic equation, rather than a linear equation as often used for muscle, was necessary to accurately correct for lipid content because the relatively high lipid content of eggs compared with muscle meant that a linear relationship did not accurately approximate the relationship between percent lipids and the C∶N ratio. Because lipid extraction alters sulphur and nitrogen isotope ratios (and cannot be corrected algebraically), we suggest that isotopic measurement on bulk tissue followed by algebraic lipid normalization of carbon stable isotope ratio is often a good solution for homogenated eggs, at least when it is not possible to complete separate chemical analyses for each isotope. PMID:24465384

  17. Spatial and Temporal Trends in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder

    EPA Science Inventory

    Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to different...

  18. Oxygen-18 Carbon Dioxide Isotope Ratio in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Smith, R.; Fast, K. E.; Annen, J.; Sonnabend, G.; Sornig, M.

    2012-09-01

    The determination of isotopic ratios on Mars is important to the study of atmospheric evolution [1]. The relative abundance of isotopes of CO2 provides insight into the loss of Mars' primordial atmosphere. Isotopic ratios also provide markers in the study of geochemistry of Mars meteorites and future returned samples formed in equilibrium with ambient atmosphere, and are probes of biogenic and abiotic chemistry, which differ in isotope fractionation. Due to its lesser gravity and relatively thin residual atmosphere, Mars' atmosphere should be enriched in heavy isotopes [1]. However Viking [2] results indicated an Earth-like singly substituted oxygen-18 CO2 isotopic ratio, 18OCO/OCO, with δ18O = 0±50‰ relative to Vienna Standard Mean Ocean Water (VSMOW). By comparison, isotopic ratios in Earth atmospheric CO2 are not uniquely defined due to seasonal and biotic variability, but have a range 0-41‰ relative to VSMOW [3, 4]. Phoenix lander TEGA [3] measurements found a modest enrichment of δ18O = 31.0±5.7‰. Only the Viking and Phoenix landers have carried a mass spectrometer to Mars, so far, until the arrival of Mars Science Laboratory in August 2012. Using ground-based spectroscopic techniques Krasnopolsky et al. [5] also found modest enrichment δ18O = 18±18‰. We present results from fully resolved spectroscopic measurements near 10.6 μm of both the normal and singly substituted oxygen- 18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power λ/Δλ=107 were obtained in October 2007 with an instantaneous field-of-view on the planet of ~1 arcsec, at the locations shown in Fig. 1 as open squares. The solid and broken line tracks show Mars SPICAM measurements of ozone corresponding to ozone measurements also obtained with HIPWAC and shown as hatched and solid regions [6]. Figure 1

  19. Stable carbon isotope ratios of rock varnish organic matter: a new paleoenvironmental indicator.

    PubMed

    Dorn, R I; Deniro, M J

    1985-03-22

    Stable carbon isotope ratios of organic matter in rock varnishes of Holocene age from western North America and the Middle East show a strong association with the environment. This isotopic variability reflects the abundance of plants with different photosynthetic pathways in adjacent vegetation. Analyses of different layers of varnish on late Pleistocene desert landforms indicate that the carbon isotopic composition of varnish organic matter is a paleoenvironmental indicator. PMID:17777781

  20. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  1. Oxygen-18 Carbon Dioxide Isotope Ratio in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Smith, R.; Fast, K. E.; Annen, J.; Sonnabend, G.; Sornig, M.

    2012-09-01

    The determination of isotopic ratios on Mars is important to the study of atmospheric evolution [1]. The relative abundance of isotopes of CO2 provides insight into the loss of Mars' primordial atmosphere. Isotopic ratios also provide markers in the study of geochemistry of Mars meteorites and future returned samples formed in equilibrium with ambient atmosphere, and are probes of biogenic and abiotic chemistry, which differ in isotope fractionation. Due to its lesser gravity and relatively thin residual atmosphere, Mars' atmosphere should be enriched in heavy isotopes [1]. However Viking [2] results indicated an Earth-like singly substituted oxygen-18 CO2 isotopic ratio, 18OCO/OCO, with δ18O = 0±50‰ relative to Vienna Standard Mean Ocean Water (VSMOW). By comparison, isotopic ratios in Earth atmospheric CO2 are not uniquely defined due to seasonal and biotic variability, but have a range 0-41‰ relative to VSMOW [3, 4]. Phoenix lander TEGA [3] measurements found a modest enrichment of δ18O = 31.0±5.7‰. Only the Viking and Phoenix landers have carried a mass spectrometer to Mars, so far, until the arrival of Mars Science Laboratory in August 2012. Using ground-based spectroscopic techniques Krasnopolsky et al. [5] also found modest enrichment δ18O = 18±18‰. We present results from fully resolved spectroscopic measurements near 10.6 μm of both the normal and singly substituted oxygen- 18 CO2 lines, taken with the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds And Composition (HIPWAC) at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. Measurements with spectral resolving power λ/Δλ=107 were obtained in October 2007 with an instantaneous field-of-view on the planet of ~1 arcsec, at the locations shown in Fig. 1 as open squares. The solid and broken line tracks show Mars SPICAM measurements of ozone corresponding to ozone measurements also obtained with HIPWAC and shown as hatched and solid regions [6]. Figure 1

  2. On-site isotopic analysis of dissolved inorganic carbon using an isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Stoltmann, Tim; Mandic, Magda; Stöbener, Nils; Wapelhorst, Eric; Aepfler, Rebecca; Hinrichs, Kai-Uwe; Taubner, Heidi; Jost, Hj; Elvert, Marcus

    2016-04-01

    An Isotope Ratio Infrared Spectrometer (IRIS) has been adapted to perform measurements of δ13C of dissolved inorganic carbon (DIC) in marine pore waters. The resulting prototype allowed highly automated analysis of δ13C isotopic ratios and CO2 concentration. We achieved a throughput of up to 70 samples per day with DIC contents as low as 1.7 μmol C. We achieved an internal precision of 0.066 ‰ and an external precision of 0.16 ‰, which is comparable to values given for Isotope Ratio Mass Spectrometers (IRMS). The prototype instrument is field deployable, suitable for shipboard analysis of deep sea core pore waters. However, the validation of the prototype was centered around a field campaign in Eckernförde Bay, NW- Baltic Sea. As a proof of concept, a shallow site within an area of submarine groundwater discharge (SGD) and a site outside this area was investigated. We present profiles of δ13C of DIC over 50 cm exhibiting well understood methane turnover processes (anaerobic oxidation of methane). At the lowest point below the seafloor, microbial reduction of CO2 to CH4 dominates. 12CO2 is reduced preferentially over 13CO2, leading to more positive δ13C values in the remaining DIC pool; in layers closer to the surface, the oxidation of CH4 to CO2 becomes more prominent. Since the CH4 pool is enriched in 12C a shift to more negative δ13C can be observed in the DIC pool. In the upper 15 cm, the pore water DIC mixes with the sea water DIC, increasing δ13C again. Finally, we will present recent developments to further improve performance and future plans for deployments on research cruises.

  3. Titan's Carbon Isotopic Ratio: A Clue To Atmospheric Evolution?

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Jolly, A.; Teanby, N. A.; Irwin, P. G.; Bézard, B.; Vinatier, S.; Coustenis, A.; Flasar, F. M.

    2009-12-01

    In this presentation we describe the latest results to come from Cassini CIRS and ground-based telescopic measurements of Titan's 12C/13C ratio in atmospheric molecules, focusing on hydrocarbons. Previously, the Huygens GCMS instrument measured 12CH4/13CH4 to be 82±1 (Niemann et al., Nature, 438, 779-784, 2005), substantially and significantly lower than the VPDB inorganic Earth standard of 89.4. It is also at odds with measurements for the giant planets. Cassini CIRS infrared spectra have confirmed this enhancement in 13CH4, but also revealed that the ratio in ethane, the major photochemical product of methane photolysis, does not appear enhanced (90±7) (Nixon et al.. Icarus, 195, 778-791, 2008) and is compatible with the terrestrial and combined giant planet value (88±7, Sada et al., Ap. J., 472, p. 903-907, 1996). Recently-published results from spectroscopy using the McMath-Pierce telescope at Kitt Pitt (Jennings et al., JCP, 2009, in press) have confirmed this deviation between methane and ethane, and an explanation has been proposed. This invokes a kinetic isotope effect (KIE) in the abstraction of methane by ethynyl, a major ethane formation pathway, to preferentially partition 12C into ethane and leave an enhancement in atmospheric 13CH4 relative to the incoming flux from the reservoir. Modeling shows that a steady-state solution exists where the 12C/13C methane is decreased from the reservoir value by exactly the KIE factor (the ratio of 12CH4 to 13CH4 abstraction reaction rates): which is plausibly around 1.08, very close to the observed amount. However, a second solution exists in which we are observing Titan about ~1 methane lifetime after a major injection of methane into the atmosphere which is rapidly being eliminated. Updated measurements by Cassini CIRS of both the methane and ethane 12C/13C ratios will be presented, along with progress in interpreting this ratio. In addition, we summarize the 12C/13C measurements by CIRS in multiple other Titan

  4. Source characteristics of marine oils as indicated by carbon isotopic ratios of volatile hydrocarbons

    SciTech Connect

    Chung, H.M.; Claypool, G.E.; Rooney, M.A. ); Squires, R.M. )

    1994-03-01

    Carbon isotopic ratios of volatile hydrocarbon fractions of marine oils are diagnostic of organic facies and depositional environments of source rocks. For carbonate oils, low-molecular-weight volatile hydrocarbons (< C[sub 9]) are isotopically lighter than high-molecular-weight volatile hydrocarbons (C[sub 9]-C[sub 17]). In contrast, for deltaic oils, low-molecular-weight volatile hydrocarbons are isotopically heavier than high-molecular-weight volatile hydrocarbons. Marine shale oils show patterns intermediate between carbonate and deltaic oils. This relative variation of carbon isotopic ratios among volatile hydrocarbons of oils is explained by earlier expulsion of marine oils derived from isotopically homogeneous (algal-bacterial) kerogens in rich source rocks, and secondary cracking of petroleum prior to expulsion for marine oils derived from isotopically heterogeneous (terrestrial) kerogens in lean source rocks. In basins with multiple source rocks, carbon isotopic ratios of volatile hydrocarbons are useful for determining oil-oil correlation and for inferring oil-source rock relationship. 67 refs., 5 figs., 2 tabs.

  5. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-06-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols (SOA) has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all primarily formed from the photo-oxidation of aromatic volatile organic compounds (VOC), in the gas phase and particulate matter (PM) together and PM alone was conducted. Since all of the target compounds are secondary products, their concentrations in the atmosphere are in the low ng m-3 range and consequently a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33‰, which is well within the range predicted by mass balance calculations. However, the observed carbon isotope ratios cover a range of nearly 9‰, and approximately 20% of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban centre with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in

  6. Stable carbon isotope ratios of ambient secondary organic aerosols in Toronto

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Kornilova, A.; Huang, L.; Moukhtar, S.; Rudolph, J.

    2015-09-01

    A method to quantify concentrations and stable carbon isotope ratios of secondary organic aerosols has been applied to study atmospheric nitrophenols in Toronto, Canada. The sampling of five nitrophenols, all with substantial secondary formation from the photooxidation of aromatic volatile organic compounds (VOCs), was conducted in the gas phase and particulate matter (PM) together and in PM alone. Their concentrations in the atmosphere are in the low ng m-3 range and, consequently, a large volume of air (> 1000 m3) is needed to analyze samples for stable carbon isotope ratios, resulting in sampling periods of typically 24 h. While this extended sampling period increases the representativeness of average values, it at the same time reduces possibilities to identify meteorological conditions or atmospheric pollution levels determining nitrophenol concentrations and isotope ratios. Average measured carbon isotope ratios of the different nitrophenols are between -34 and -33 ‰, which is well within the range predicted by mass balance. However, the observed carbon isotope ratios cover a range of nearly 9 ‰ and approximately 20 % of the isotope ratios of the products have isotope ratios lower than predicted from the kinetic isotope effect of the first step of the reaction mechanism and the isotope ratio of the precursor. This can be explained by isotope fractionation during reaction steps following the initial reaction of the precursor VOCs with the OH radical. Limited evidence for local production of nitrophenols is observed since sampling was done in the Toronto area, an urban center with significant anthropogenic emission sources. Strong evidence for significant local formation of nitrophenols is only found for samples collected in summer. On average, the difference in carbon isotope ratios between nitrophenols in the particle phase and in the gas phase is insignificant, but for a limited number of observations in summer, a substantial difference is observed. This

  7. Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Koppmann, R.; Krebsbach, M.

    2013-04-01

    Measurements of stable carbon isotope ratios in VOC are a powerful tool to identify sources or to track both dynamical and chemical processes. During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer and the lower free troposphere over south-west Germany. These samples were analysed with respect to VOC mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer. In this study we present the results for toluene, one of the major anthropogenic pollutants. In the boundary layer we observed rather fresh emissions mixing into the background and derived a toluene source isotope ratio of δ13C = -28.2 ± 0.5 ‰. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We estimated the photochemical age of toluene in the atmosphere in two different ways (using isotope ratios and mixing ratios, respectively). The results differ strongly in the planetary boundary layer, probably due to mixing processes, but are compatible with each other in the free troposphere.

  8. Carbon isotopic ratio of dissolved inorganic carbon in the spring water around Asama volcano

    NASA Astrophysics Data System (ADS)

    Suzuki, Hidekazu; Tase, Norio

    In order to determine the source and formation process of dissolved inorganic carbon (DIC) in spring water and to evaluate quantitatively the contribution of volcanic gas to water chemistry of springs distributed on and around Asama volcano, the carbon isotopic ratio of DIC (δ13CDIC) with major dissolved solids has been measured. The measurements of carbon isotopic ratios of volcanic and soil CO2, which are the source materials of DIC, were also carried out in Jigokudani fumarole and in the forest soil of several points of volcano flank, respectively. The spring waters in Asama volcano have been classified into nine groups (A∼I) based on the physicochemical characteristics, such as water temperature, electrical conductivity and chemical compositions. As δ13CDIC increase with increasing DIC content, the origin of DIC in spring water from Asama volcano was can be assessed by mixing process between isotopically light soil CO2 (organic origin) and 13C-enriched volcanic CO2 (deep origin with mantle component), except for the springs of group B. On the basis of two components mixing, the contribution rate of volcanic CO2 to DIC in spring water was computed by using the carbon isotopic ratio of CO2 equilibrated with DIC (δ13CCO2) as an indicator. Consequently, the contribution rates of volcanic CO2 were ranged from 40 to 60% in the groups C, F and H located on the flank of the mountain. In particular, the strong contribution of more than 90% was confirmed in the group I located on the higher part of the mountain, that is near the crater. These groups were correspondent with those in which influence of volcanic gases was assumed from the geochemical characteristics of spring water. By contrast, influence of volcanic CO2 was almost not found in other groups A, D, E and G. The spring waters of group B which are not plotted on the two components mixing line and located at the terminal of Onioshidashi lava flow have highest δ13CDIC in spite of low DIC content. These 13C

  9. Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.; Pizzarello, S.; Cronin, J. R.; Yuen, G. U.

    1991-01-01

    A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper.

  10. Measurement of stable carbon isotope ratios of non-methane hydrocarbons and halocarbons

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A. T.

    2012-09-01

    Within the realm of volatile organic compounds, hydrocarbons and halocarbons form a sizable proportion of carbon input to the atmosphere. Within these compound categories, the light non-methane hydrocarbons (NMHC, two to seven carbon atoms) and monocarbon halocarbons have a special place as these have strong, if not exclusive, anthropogenic (human-caused) sources. With common atmospheric molar mixing ratios in the parts-per-trillion (10-12 mole/mole) to parts-per-billion (10-9 mole/mole) range, these trace gases, though decidedly minor constituants of the atmosphere, have diverse consequences due to their atmospheric presence and their removal processes. Effects range from causing ground level air pollution and resulting hazards to health, to contributing to anthropogenic climate change and the destruction of the ozone layer in the stratosphere, among many others. The existance of stable isotopes (otherwise identical atoms with varying amounts of neutrons that do not spontaneously disintegrate) in several elements relevant to atmospheric chemistry and physics is a boon to research. Their presence in molecules is detectable by mass and cause small intra- and intermolecular property changes. These changes range from the physical (e.g. boiling point variation) to the chemical (reaction rate variation) and can influence external interactions as well. The measurement of the ratio of a minor stable isotope of an element to the major one (the stable isotope ratio) can be used to establish source fingerprints, trace the interaction dynamics, and refine the understanding of the relative contribution of sources and sinks to the atmosphere as a whole. The stable minor stable isotope of carbon, 13C, has a natural abundance of approximately 1.1 %. It has a sufficient fractional mass difference from its major isotope as to cause significant effects, making it ideal for measuring the ratios and properties of hydro- and halocarbons. In order to enable a better understanding of the

  11. Stable carbon isotope ratios of toluene in the boundary layer and the lower free troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Koppmann, R.; Krebsbach, M.; Hofzumahaus, A.; Rohrer, F.

    2013-11-01

    During the field campaign ZEPTER-2 in autumn 2008 whole air samples were collected on board a Zeppelin NT airship in the planetary boundary layer (PBL) and the lower free troposphere (LFT) over south-west Germany using the ZEppelin Based Isotope Sampler (ZEBIS). These samples were analysed with respect to volatile organic compound (VOC) mixing ratios and stable carbon isotope ratios using a gas chromatograph combustion isotope ratio mass spectrometer (GC-C-IRMS). In this study we present results for toluene, one of the major anthropogenic pollutants, which emphasise the viability of isotope ratio measurements in VOC for atmospheric research, especially to study VOC sources or to track both dynamical and chemical processes. In situ measurements of CO mixing ratios on board the Zeppelin NT were used to allocate the air samples either to the PBL or the LFT. In the PBL we observed rather fresh emissions mixing into the background air. We estimated a toluene source isotope ratio of δ13C = -28.2 ± 0.5‰. Samples from the PBL and the LFT were clearly distinguishable by means of their mixing ratio and isotope ratio signatures. Using the concept of the effective kinetic isotope effect, we were able to separate the effects of dilution processes and photochemical degradation in the free troposphere. We calculated the photochemical age of toluene in the atmosphere in two different ways using isotope ratios and mixing ratios. The results differ strongly in the PBL, probably due to mixing processes, but are compatible with each other in the LFT. Here, they correlate with a slope of 0.90±0.31.

  12. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kreuzer, Helen W.; Horita, Juske; Moran, James J.; Tomkins, Bruce; Janszen, Derek B.; Carman, April J.

    2012-01-03

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  13. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kruzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  14. Method for the determination of concentration and stable carbon isotope ratios of atmospheric phenols

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Busca, R.; Facca, C.; Huang, L.; Irei, S.; Kornilova, A.; Lane, D.; Rudolph, J.

    2013-05-01

    A method for the determination of the stable carbon isotopic composition of atmospheric nitrophenols in the gas and particulate phases is presented. It has been proposed to use the combination of concentration and isotope ratio measurements of precursor and product to test the applicability of results of laboratory studies to the atmosphere. Nitrophenols are suspected to be secondary products formed specifically from the photooxidation of volatile organic compounds. XAD-4™ resin was used as an adsorbent on quartz filters to sample ambient phenols using conventional high-volume air samplers at York University in Toronto, Canada. Filters were extracted in acetonitrile, with a HPLC clean-up step and a solid phase extraction step prior to derivatization with BSTFA. Concentration measurements were done with gas chromatography-mass spectrometry and gas chromatography-isotope ratio mass spectrometry was used for isotope ratio analysis. The technique presented allows for atmospheric compound-specific isotopic composition measurements for five semi-volatile phenols with an estimated accuracy of 0.3‰ to 0.5‰ at atmospheric concentrations exceeding 0.1 ng m-3 while the detection limits for concentration measurements are in the pg m-3 range. Isotopic fractionation throughout the entire extraction procedure and analysis was proven to be below the precision of the isotope ratio measurements. The method was tested by conducting ambient measurements from September to December 2011.

  15. Method for the determination of concentration and stable carbon isotope ratios of atmospheric phenols

    NASA Astrophysics Data System (ADS)

    Saccon, M.; Busca, R.; Facca, C.; Huang, L.; Irei, S.; Kornilova, A.; Lane, D.; Rudolph, J.

    2013-11-01

    A method for the determination of the stable carbon isotopic composition of atmospheric nitrophenols in the gas and particulate phases is presented. It has been proposed to use the combination of concentration and isotope ratio measurements of precursor and product to test the applicability of results of laboratory studies to the atmosphere. Nitrophenols are suspected to be secondary products formed specifically from the photooxidation of volatile organic compounds. XAD-4TM resin was used as an adsorbent on quartz filters to sample ambient phenols using conventional high volume air samplers at York University in Toronto, Canada. Filters were extracted in acetonitrile, with a HPLC (high-performance liquid chromatography) clean-up step and a solid phase extraction step prior to derivatization with BSTFA (bis(trimethylsilyl) trifluoroacetamide). Concentration measurements were done with gas chromatography-mass spectrometry and gas chromatography-isotope ratio mass spectrometry was used for isotope ratio analysis. The technique presented allows for atmospheric compound-specific isotopic composition measurements for five semi-volatile phenols with an estimated accuracy of 0.3-0.5‰ at atmospheric concentrations exceeding 0.1 ng m-3 while the detection limits for concentration measurements are in the pg m-3 range. Isotopic fractionation throughout the entire extraction procedure and analysis was proven to be below the precision of the isotope ratio measurements. The method was tested by conducting ambient measurements from September to December 2011.

  16. Forensic utility of the carbon isotope ratio of PVC tape backings

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  17. Correlation of carbon isotope ratios in the cellulose and wood extractives of Douglas-fir

    EPA Science Inventory

    Cellulose is usually isolated from the other components of plant material for analysis of carbon stable isotope ratios (δ13C). However, many studies have shown a strong correlation between whole-wood and cellulose δ13C values, prompting debate about the necessity of cellulose ext...

  18. Stable Carbon and Oxygen Isotope Ratios of Otoliths Differentiate Winter Flounder (Pseudopleuonectes americanus) Habitats

    EPA Science Inventory

    Stable carbon (13C) and oxygen (18O) isotope ratios were measured in otoliths of juvenile winter flounder (Pseudopleuronectes americanus) collected from 18 nursery areas along the coast of Rhode Island, USA. Samples were obtained during June and July of 2002 from locations tha...

  19. Carbon and nitrogen isotope ratios of juvenile winter flounder as indicators of inputs to estuarine systems

    EPA Science Inventory

    Stable carbon and nitrogen isotope ratios were measured in the muscle tissues of young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA. These systems included three coastal lagoons (Ni...

  20. Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid detection of shifts in substrate utilization and energy balance would provide a compelling biofeedback tool to enable individuals to lose weight. In a pilot study, we tested whether the natural abundance of exhaled carbon stable isotope ratios (breath d13C values) reflects shifts between negat...

  1. Stabel Carbon and Oxygen Isotope Ratios of Otoliths from Juvenile and Adult Winter Flounder

    EPA Science Inventory

    This study was designed to determine if stable carbon (13C) and oxygen (18O) isotope ratios in otoliths could be used to differentiate the locations that serve as important nursery areas for winter flounder along the Rhode Island, USA coastline. In recent years the populations ...

  2. Carbon isotope ratios and isotopic correlations between components in fruit juices

    NASA Astrophysics Data System (ADS)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  3. Observations and sources of carbon and nitrogen isotope ratio variation of pentaerythritol tetranitrate (PETN).

    PubMed

    Howa, John D; Lott, Michael J; Ehleringer, James R

    2014-11-01

    Isotope ratio analysis allows forensic investigators to discriminate materials that are chemically identical but differ in their isotope ratios. Here we focused on the discrimination of pentaerythritol tetranitrate (PETN), an explosive with military and civilian applications, using carbon (δ(13)C) and nitrogen (δ(15)N) isotope ratios. Our goal was to understand some of the factors influencing the isotope ratios of commercially manufactured PETN. PETN was isolated from bulk explosives using preparative HPLC, which reduced chemical and isotopic within-sample variability. We observed isotope ratio variation in a survey of 175 PETN samples from 22 manufacturing facilities, with δ(13)C values ranging from -49.7‰ to -28.0‰ and δ(15)N values ranging from -48.6‰ to +6.2‰. Both within-sample variability and variation of PETN within an explosive block were much smaller than between-sample variations. Isotopic ratios of PETN were shown to discriminate explosive blocks from the same manufacturer, whereas explosive component composition measurements by HPLC were not able to do so. Using samples collected from three industrial PETN manufacturers, we investigated the isotopic relationship between PETN and its reactants, pentaerythritol (PE) and nitric acid. Our observations showed that δ(13)C values of PETN were indistinguishable from that of the reactant pentaerythritol. Isotopic separation between nitric acid and PETN was consistent within each sampled manufacturer but differed among manufacturers, and was likely dependent upon reaction conditions. These data indicate that δ(13)C variation in PETN is dependent on δ(13)C variation of PE supplies, while δ(15)N variation in PETN is due to both nitric acid δ(15)N and reaction conditions. PMID:25244291

  4. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  5. USE OF THE COMPOSITION AND STABLE CARBON ISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (Gamma 13C) of individual microbial phospholipid fatty acids (PLFAS) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SO...

  6. Stable carbon isotope ratios as proxies for CO2 migration: An experimental approach with analogue fluids

    NASA Astrophysics Data System (ADS)

    Myrttinen, A.; Becker, V.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios have proven to be highly sensitive tracers of CO2 migration in the subsurface, provided that the δ13C value of injected CO2 is distinct from that of baseline carbon in the reservoir and in shallow aquifers. This is of great importance for tracing the movement and the fate of injected CO2 in storage reservoirs where fluid and gas samples for chemical and isotope analyses can be obtained. One fundamental aspect that needs to be considered is carbon isotope fractionation between the various dissolved inorganic carbon (DIC) species and sub- or super-critical CO2. Such isotope fractionation may occur at various stages of CO2 migration including, the initial stages of injection during CO2 dissolution; during possible CO2 desiccation in pores; during CO2 migration within the reservoir or even during potential leakage into the near-surface environment. The magnitude and direction of carbon isotope fractionation (1000lnαDIC-CO2) between the DIC species and the injected CO2 depends highly on temperature and pH. At shallow depths, where temperatures are moderate and pH values are typically close to neutral, HCO3- is the dominant form of DIC. Carbon isotope fractionation between CO2 and DIC is therefore expected to reach ~ +10 ‰, resulting in a more positive δ13C value of DIC compared to that of the injected CO2. On the other hand, during injection, elevated temperatures and pH values of below 6 are usually observed. Here, H2CO3 is the dominant form of DIC and carbon isotope fractionation of close to -1 ‰ is expected. However, literature data on isotope fractionation values between H2CO3 and CO2 at temperatures above ˜ 60 °C are limited. In order to investigate the effects of pH and temperature on carbon isotope fractionation at various subsurface conditions, including elevated temperatures and pressures typical for CO2 reservoirs, laboratory experiments with analogue fluids were conducted within the framework of the CO2ISO-LABEL project

  7. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  8. Tunable Diode Laser Measurements of Leaf-scale Carbon Isotope Discrimination and Ecosystem Respired Carbon and Oxygen Isotope Ratios in a Semi-arid Woodland

    NASA Astrophysics Data System (ADS)

    McDowell, N.; Chris, B.; Hanson, D.; Kern, S.; Meyer, C.; Pockman, W.; Powers, H.

    2005-12-01

    We present results and speculative interpretation of leaf-level carbon isotope discrimination and ecosystem respired carbon and oxygen isotope ratios from a semi-arid, C3/C4 woodland located in northern New Mexico, USA. Overstory leaf area index (LAI) is dominated by live juniper (Juniperus monosperma) trees with an LAI value of approximately 1.0 m2 per m2 ground area, and has a seasonally dynamic understory of mixed C3 forbs and C4 grasses and cacti, with a maximum LAI of 0.30 m2 per m2 ground area. Ecosystem respired carbon isotope ratios showed values characteristic of C3 dominated photosynthesis (Keeling plot intercepts of -35 to -22 per mil). Seasonal variation was typical of that found in wetter, C3 dominated forests, as was the dependence on climate (e.g. relationships with vapor pressure deficit, soil water content, and canopy conductance). Leaf-level carbon isotope discrimination of the junipers, measured by coupling a Li-Cor 6400 photosynthesis system to the TDL, provided discrimination-Ci and discrimination-vpd relationships consistent with measured ecosystem respired carbon isotope ratios. The oxygen isotope ratio of ecosystem respiration was dependent on rain water isotope composition, but was correlated with soil water content during rain-free periods. The cumulative effect of vapor pressure deficit after a rain event was tightly correlated with the oxygen isotope ratio of ecosystem respiration, suggesting the primary drivers are evaporative enrichment of soil water and perhaps nocturnal leaf enrichment. Instrument precision for carbon and oxygen isotope ratios of carbon dioxide is 0.06 to 0.18 per mil; however, overall precision is somewhat lower due to pressure and sampling effects.

  9. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates

    NASA Astrophysics Data System (ADS)

    Hippler, Dorothee; Buhl, Dieter; Witbaard, Rob; Richter, Detlev K.; Immenhauser, Adrian

    2009-10-01

    This study presents magnesium stable-isotope compositions of various biogenic carbonates of several marine calcifying organisms and an algae species, seawater samples collected from the western Dutch Wadden Sea, and reference materials. The aim of this study is to explore the influence of mineralogy, taxonomy and environmental factors (e.g., seawater isotopic composition, temperature, salinity) on magnesium-isotopic (δ 26Mg) ratios of skeletal carbonates. Using high-precision multi-collector inductively coupled plasma mass spectrometry, we observed that the magnesium-isotopic composition of seawater from the semi-enclosed Dutch Wadden Sea is identical to that of open marine seawater. We further found that a considerable component of the observed variability in δ 26Mg values of marine skeletal carbonates can be attributed to differences in mineralogy. Furthermore, magnesium-isotope fractionation is species-dependent, with all skeletal carbonates being isotopically lighter than seawater. While δ 26Mg values of skeletal aragonite and high-magnesium calcite of coralline red algae indicate the absence or negligibility of metabolic influences, the δ 26Mg values of echinoids, brachiopods and bivalves likely result from a taxon-specific level of control on Mg-isotope incorporation during biocalcification. Moreover, no resolvable salinity and temperature effect were observed for coralline red algae and echinoids. In contrast, Mg-isotope data of bivalves yield ambiguous results, which require further validation. The data presented here, point to a limited use of Mg isotopes as temperature proxy, but highlight the method's potential as tracer of seawater chemistry through Earth's history.

  10. Evaluating the deep-ocean circulation of a global ocean model using carbon isotopic ratios

    NASA Astrophysics Data System (ADS)

    Paul, André; Dutkiewicz, Stephanie; Gebbie, Jake; Losch, Martin; Marchal, Olivier

    2016-04-01

    We study the sensitivity of a global three-dimensional biotic ocean carbon-cycle model to the parameterizations of gas exchange and biological productivity as well as to deep-ocean circulation strength, and we employ the carbon isotopic ratios δ13C and Δ14C of dissolved inorganic carbon for a systematic evaluation against observations. Radiocarbon (Δ14C) in particular offers the means to assess the model skill on a time scale of 100 to 1000 years relevant to the deep-ocean circulation. The carbon isotope ratios are included as tracers in the MIT general circulation model (MITgcm). The implementation involves the fractionation processes during photosynthesis and air-sea gas exchange. We present the results of sixteen simulations combining two different parameterizations of the piston velocity, two different parameterizations of biological productivity (including the effect of iron fertilization) and four different overturning rates. These simulations were first spun up to equilibrium (more than 10,000 years of model simulation) and then continued from AD 1765 to AD 2002. For the model evaluation, we followed the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparision Project phase two) protocol, comparing the results to GEOSECS (Geochemical Ocean Sections Survey) and WOCE (World Ocean Circulation Experiment) δ13C and natural Δ14C data in the world ocean. The range of deep natural Δ14C (below 1000 m) for our single model (MITgcm) was smaller than for the group of different OCMIP-2 models. Furthermore, differences between different model parameterizations were smaller than for different overturning rates. We conclude that carbon isotope ratios are a useful tool to evaluate the deep-ocean circulation. Since they are also available from deep-sea sediment records, we postulate that the simulation of carbon isotope ratios in a global ocean model will aid in estimating the deep-ocean circulation and climate during present and past.

  11. Forensic utility of carbon isotope ratio variations in PVC tape backings.

    PubMed

    Dietz, Marianne E; Stern, Libby A; Mehltretter, Andria Hobbs; Parish, Ashley; McLasky, Velvet; Aranda, Roman

    2012-03-01

    Forensic interest in adhesive tapes with polyvinyl chloride (PVC) backings (electrical tape) derives from their use in a variety of illicit activities. Due to the range of physical characteristics, chemical compositions, and homogeneity within a single roll of tape, traditional microscopic and chemical analyses can offer a high degree of discrimination between tapes, permitting the assessment of potential associations between evidentiary tape samples. The carbon isotope ratios of tapes could provide additional discrimination among tape samples. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different rolls of tape of the same product, we assessed the δ(13)C values of backings from 87 rolls of PVC-based black electrical tape (~20 brands, >60 products) Prior to analysis, adhesives were removed to prevent contamination by adhering debris, and plasticizers were extracted because of concern over their potential mobility. This result is consistent with each of these tapes having approximately the same plasticizer δ(13)C value and proportion of carbon in these plasticizers. The δ(13)C values of the 87 PVC tape backings ranged between -23.5 and -41.3 (‰, V-PDB), with negligible carbon isotopic variation within single rolls of tape, yet large variations among tape brands and tape products. Within this tape population, carbon isotope ratios permitted an average exclusion power of 93.7%, using a window of +/-0.3‰; the combination of carbon isotope ratio measurement with additional chemical and physical analyses raises the discrimination power to over 98.9%, with only 41 out of a possible 3741 pairs of tape samples being indistinguishable. There was a linear relationship between the δ(13)C value of tape backings and the change in δ(13)C value with the extraction of plasticizers. Analyses of pre- and post-blast tape sample pairs show that carbon isotope signatures are within 0.3‰ of

  12. The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica

    NASA Astrophysics Data System (ADS)

    Dauby, Patrick

    1989-02-01

    The Gulf of Calvi, Corsica, presents a wide diversity of biocoenoses, amongst which the seagrass Posidonia meadow is prevalent. More than 100 plant, animal and sediment samples from various biotopes were analysed for their stable carbon isotope ratios, to assess carbon flows within the food chains. Marine plants display a wide range of δ 13C values, from -6 to -32‰ but with three relatively well distinct peaks for Posidonia, brown algae and phytoplankton (-9, -19 and -23‰, respectively), which are the main carbon sources. The range of isotopic values of animals is narrower, from -14 to -24‰, suggesting that they feed mainly on algae and plankton. Computations based on simple equations show the proportion of each carbon source in the diet of the animals. Posidonia, notwithstanding their important biomass, appear to be a minor food source; this is possibly because of the transfer of their dead leaves, towards the shorelines, in winter.

  13. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric PM

    NASA Astrophysics Data System (ADS)

    Moukhtar, S.; Saccon, M.; Kornilova, A.; Irei, S.; Huang, L.; Rudolph, J.

    2011-05-01

    A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter (PM) is presented. It has been found in numerous laboratory studies that these compounds are photooxidation products of toluene in PM. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. PM was collected on quartz fibre filters using dichotomous high volume air samplers for PM 2.5. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography (HPLC) and solid phase extraction (SPE). The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyl)trifluoroacetamide (BSTFA), was added to the solution for Gas Chromatography/Mass Spectroscopy (GC/MS) analysis. The second half of the sample was stored at low temperature. When GC/MS analysis showed high enough concentrations the remaining sample was derivatized with BSTFA and analysed for stable isotope ratio using a Gas Chromatography/Isotope Ratio Mass Spectrometry (GC-IRMS). In all atmospheric PM samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol. Nevertheless, due to low pollution levels occurring in the rural area, no samples had concentrations high enough to perform stable carbon isotope composition measurements of the methylnitrophenols. Samples collected in the suburban area could be analysed for carbon stable isotope ratio using GC-IRMS. The procedure described in this paper provides a very sensitive and selective method for the analysis of methylnitrophenols in atmospheric PM at concentrations as low as 1 pg m-3. For accurate (within ±0.5‰) stable isotope ratio analysis significantly higher concentrations in the range of 100 pg m-3 or more are required.

  14. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts

    USGS Publications Warehouse

    Sakai, H.; Marais, D.J.D.; Ueda, A.; Moore, J.G.

    1984-01-01

    Fresh submarine basalt glasses from Galapagos Ridge, FAMOUS area, Cayman Trough and Kilauea east rift contain 22 to 160 ppm carbon and 0.3 to 2.8 ppm nitrogen, respectively, as the sums of dissolved species and vesicle-filling gases (CO2 and N2). The large range of variation in carbon content is due to combined effect of depth-dependency of the solubility of carbon in basalt melt and varying extents of vapour loss during magma emplacement as well as in sample crushing. The isotopic ratios of indigenous carbon and nitrogen are in very narrow ranges,-6.2 ?? 0.2% relative to PDB and +0.2 ?? 0.6 %. relative to atmospheric nitrogen, respectively. In basalt samples from Juan de Fuca Ridge, however, isotopically light carbon (??13C = around -24%.) predominates over the indigenous carbon; no indigenous heavy carbon was found. Except for Galapagos Ridge samples, these ocean-floor basalts contain 670 to 1100 ppm sulfur, averaging 810 ppm, in the form of both sulfide and sulfate, whereas basalts from Galapagos Ridge are higher in both sulfur (1490 and 1570 ppm) and iron (11.08% total iron as FeO). The ??34S values average +0.3 ?? 0.5%. with average fractionation factor between sulfate and sulfide of +7.4 ?? 1.6%.. The sulfate/sulfide ratios tend to increase with increasing water content of basalt, probably because the oxygen fugacity increases with increasing water content in basalt melt. ?? 1984.

  15. Stable Carbon Isotope Ratios of Toluene in the Boundary Layer and the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Wintel, J.; Hösen, E.; Bühler, F.; Heuser, H.-P.; Knieling, P.; Koppmann, R.; Krebsbach, M.; Linke, C.; Spahn, H.

    2012-04-01

    Large amounts of Volatile Organic Compounds (VOC) are emitted into the atmosphere by various sources at the surface. Since these emissions permanently mix with each other and also are chemically processed in a large number of reactions, measurements of VOC concentrations in the troposphere are not easy to interpret. Additional measurements of stable carbon isotope ratios in VOC provide further useful information. They allow the determination of the photochemical age of the corresponding compound and, making use of the concept of the effective Kinetic Isotope Effect (KIE), to separate the effects of mixing and chemical processing. Whole air samples were taken in the boundary layer and the lower troposphere onboard a zeppelin over the Lake Constance region in late autumn 2008 and analysed in the laboratory using a GC-C-IRMS (Gas Chromatograph - Combustion - Isotope Ratio Mass Spectrometer). The GC-C-IRMS was characterised carefully to estimate the precision as well as the effect of sample humidity on the measurement results. The major ion signal was used to derive VOC mixing ratios. We present stable isotope ratios (δ13C) and mixing ratios of toluene as an example compound and apply the aforementioned concepts of interpretation. The results show that the evolution of air masses in the boundary layer was characterised mainly by mixing, whereas the air masses in the free troposphere show significant influence of chemical processing.

  16. RAPID AND PRECISE METHOD FOR MEASURING STABLE CARBON ISOTOPE RATIOS OF DISSOLVED INORGANIC CARBON

    EPA Science Inventory

    We describe a method for rapid preparation, concentration and stable isotopic analysis of dissolved inorganic carbon (d13C-DIC). Liberation of CO2 was accomplished by placing 100 ?l phosphoric acid and 0.9 ml water in an evacuated 1.7-ml gas chromatography (GC) injection vial. Fo...

  17. Intercolony variability of skeletal oxygen and carbon isotope ratios of corals: temperature-controlled tank experiment and field observation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Omata, T.; Kawahata, H.

    2005-12-01

    We conducted tank experiments in which we grew Porites spp. colonies in thermostated seawater at five temperature settings under moderate light intensity. A skeletal isotope microprofiling technique applied along the major growth axis of each colony revealed that the oxygen isotope ratios of newly deposited skeleton in most colonies remained almost constant during tank incubation. However, the oxygen isotope ratios displayed a surprisingly large intercolony variability (~1‰ at each temperature setting) although the mean slope obtained for the temperature - skeletal oxygen isotope ratio relationship was close to previous results. The variations in the oxygen isotope ratios were apparently caused by kinetic isotope effects related to variations in the skeletal growth rate rather than by species-specific variability or genetic differences within species. Carbon isotope ratios showed significantly inverse correlation with linear growth rates, suggesting a kinetic isotope control at low growth rates. We also examined oxygen and carbon isotope ratios of Porites corals collected from coral reefs of southern Ryukyu Islands, Japan. In shallow faster-growing corals, oxygen and carbon isotope ratios showed out-of-phase annual fluctuations. In contrast, in deep slower growing corals (mean annual linear extension < 4.8 mm yr1), oxygen and carbon isotope fluctuations were in phase, which has been identified as a pattern influenced by kinetic isotope effects. The slower growing corals were strongly influenced, and the faster growing corals weakly influenced, by kinetic isotope effects over metabolic isotope effects. Growth-rate-related kinetic isotope effects found in both the cultured corals and the deep slower-growing corals may be, at least partly, attributed to low light condition.

  18. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Moukhtar, S.; Saccon, M.; Kornilova, A.; Irei, S.; Huang, L.; Rudolph, J.

    2011-11-01

    A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyl)trifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl-1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry. The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m-3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m-3. In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m-3 range in rural areas to more than 200 pg m-3 in some samples from a suburban location.

  19. Carbon isotopic analysis of atmospheric methane by isotope-ratio-monitoring gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, Dawn A.; Hayes, J. M.; Des Marais, David J.

    1995-01-01

    Less than 15 min are required for the determination of delta C(sub PDB)-13 with a precision of 0.2 ppt(1 sigma, single measurement) in 5-mL samples of air containing CH4 at natural levels (1.7 ppm). An analytical system including a sample-introduction unit incorporating a preparative gas chromatograph (GC) column for separation of CH4 from N2, O2, and Ar is described. The 15-min procedure includes time for operation of that system, high-resolution chromatographic separation of the CH4, on-line combustion and purification of the products, and isotopic calibration. Analyses of standards demonstrate that systematic errors are absent and that there is no dependence of observed values of delta on sample size. For samples containing 100 ppm or more CH4, preconcentration is not required and the analysis time is less than 5 min. The system utilizes a commercially available, high-sensitivity isotope-ratio mass spectrometer. For optimal conditions of smaple handling and combustion, performance of the system is within a factor of 2 of the shot-noise limit. The potential exists therefore for analysis of samples as small as 15 pmol CH4 with a standard deviation of less than 1 ppt.

  20. USE OF GC-MS/COMBUSTION/IRMS TO IDENTIFY AND DETERMINE THE STABLE CARBON ISOTOPIC RATIO OF INDIVIDUAL LIPIDS

    EPA Science Inventory

    A system that couples a gas chromatograph (GC) via a split to a quadrapole mass spectrometer (MS) and, through a combustion interface, to an isotope ratio mass spectrometer (IRMS) allows the simultaneous detection of electron impact mass spectra and stable carbon isotope ratio an...

  1. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  2. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  3. Stable Carbon Isotope Ratios for Giant Stars in the Globular Cluster M13

    NASA Astrophysics Data System (ADS)

    Rhee, Jaehyon; Pilachowski, C. A.

    2013-01-01

    Recently, our paradigm for the formation and evolution of globular clusters has shifted. We now understand that the majority of present-day stars in globular clusters formed as second-generation stars, primarily from the ejecta of first-generation AGB stars, while the majority of first generation, less centrally concentrated stars, have been dynamically lost to the cluster (D'Ercole et al. 2011). This paradigm explains the observed star-to-star variations in the abundances of light element observed in globular clusters, and suggests that the carbon isotope ratio should be similarly differentiated between first and second generation stars. In an effort to verify this scenario, we have recently utilized the Gemini/NIFS to determine carbon isotope abundances (12C and 13C) for 18 giant stars in the globular clusters M13 through medium-resolution (R ˜ 5300) infrared spectroscopy of the first-overtone CO bands near 2.3 μm. Our program stars are distributed from the tip of the RGB to the BLF (the bump in the luminosity function) of M13, and their Na, Mg, and Al abundances are already known from homogeneous data set analysis. Therefore, adding reliable abundances of the stable carbon isotopes to this homogeneous spectroscopic sample permits systematic tests of cluster chemical evolution models. We report preliminary results of the carbon abundance analysis for our NIFS K-band spectra and present an overview of our ongoing effort with other globular clusters.

  4. Authenticity of carbon dioxide bubbles in French ciders through multiflow-isotope ratio mass spectrometry measurements.

    PubMed

    Gaillard, Laetitia; Guyon, Francois; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-01

    A procedure to detect whether carbon dioxide was added to French ciders has been developed. For this purpose, an optimised and simplified method is proposed to determine (13)C/(12)C isotope ratio of carbon dioxide (δ(13)C) in ciders. Three critical steps were checked: (1) influence of atmospheric CO2 remaining in the loaded vial, (2) impact of helium flush, (3) sampling speed. This study showed that atmospheric CO2 does not impact the measurement, that helium flush can lead to isotopic fractionation and finally, that a fractionation occurs only 5h after bottle opening. The method, without any other preparation, consists in sampling 0.2 mL of cold (4 °C) cider in a vial that is passed in an ultrasonic bath for 10 min at room temperature to enhance cider de-carbonation. The headspace CO2 is then analysed using the link Multiflow®-isotope ratio mass spectrometer. Each year, a data bank is developed by fermenting authentic apples juices in order to control cider authenticity. Over a four year span (2008-2011), the CO2 produced during the fermentation step was studied. This set of 61 authentic ciders, from various French production areas, was used to determine a δ(13)C value range of -22.59±0.92‰ for authentic ciders CO2 bubbles. 75 commercial ciders were analysed with this method. Most of the samples analysed present a gas δ(13)C value in the expected range. Nevertheless, some ciders have δ(13)C values outside the 3σ limit, revealing carbonation by technical CO2. This practice is not allowed for organic, "Controlled Appellation of Origin" ciders and ciders specifying natural carbonation on the label. PMID:23870934

  5. Laboratory investigations of stable carbon and oxygen isotope ratio data enhance monitoring of CO2 underground

    NASA Astrophysics Data System (ADS)

    Barth, Johannes A. C.; Myrttinen, Anssi; Becker, Veith; Nowak, Martin; Mayer, Bernhard

    2014-05-01

    Stable carbon and oxygen isotope data play an important role in monitoring CO2 in the subsurface, for instance during carbon capture and storage (CCS). This includes monitoring of supercritical and gaseous CO2 movement and reactions under reservoir conditions and detection of potential CO2 leakage scenarios. However, in many cases isotope data from field campaigns are either limited due to complex sample retrieval or require verification under controlled boundary conditions. Moreover, experimentally verified isotope fractionation factors are also accurately known only for temperatures and pressures lower than commonly found in CO2 reservoirs (Myrttinen et al., 2012). For this reason, several experimental series were conducted in order to investigate effects of elevated pressures, temperatures and salinities on stable carbon and oxygen isotope changes of CO2 and water. These tests were conducted with a heateable pressure device and with glass or metal gas containers in which CO2 reacted with fluids for time periods of hours to several weeks. The obtained results revealed systematic differences in 13C/12C-distributions between CO2 and the most important dissolved inorganic carbon (DIC) species under reservoir conditions (CO2(aq), H2CO3 and HCO3-). Since direct measurements of the pH, even immediately after sampling, were unreliable due to rapid CO2 de-gassing, one of the key results of this work is that carbon isotope fractionation data between DIC and CO2 may serve to reconstruct in situ pH values. pH values reconstructed with this approach ranged between 5.5 and 7.4 for experiments with 60 bars and up to 120 °C and were on average 1.4 pH units lower than those measured with standard pH electrodes directly after sampling. In addition, pressure and temperature experiments with H2O and CO2 revealed that differences between the oxygen isotope ratios of both phases depended on temperature, water-gas ratios as well as salt contents of the solutions involved. Such

  6. Relationship between carbon and nitrogen isotope ratios for lower trophic ecosystem in marine environments

    NASA Astrophysics Data System (ADS)

    Aita, M. N.; Ishii, R.; Tadokoro, K.; Smith, S. L.; Wada, E.

    2012-12-01

    To examine the relationship between carbon and nitrogen stable isotope ratios (δ13C and δ15N) along food chains, we analyzed using the data from the Oyashio waters at the western North Pacific (samples collected from March to October 2009), the warm-core ring 86-B derived from the Kuroshio extension region (preserved samples), and previously published data from the Gulf of Alaska and Antarctic Ocean. The statistical analysis suggested a common slope of δ15N versus δ13C (Δδ15N/Δδ13C) among regions. We attribute this similarity to common physiological aspects of feeding processes (e.g., kinetic isotope effects inherent in the processes of amino acid synthesis). We also compared seasonal differences seasonal in Δδ15N/Δδ13C for the euphotic layers of the Oyashio waters. The Δδ15N/Δδ13C slope of the food chain during the spring bloom differs from its common value in other seasons. If we could better understand both carbon and nitrogen trophic fractionation within ecosystems, the stable isotope ratios may help to elucidate migratory behavior of higher trophic levels such as fishes in marine ecosystems as well as frame work of biogeochemical cycles in question.

  7. Stable carbon isotope ratios in atmospheric methane and some of its sources

    NASA Technical Reports Server (NTRS)

    Tyler, Stanley C.

    1986-01-01

    Ratios of C-13/C-12 have been measured in atmospheric methane and in methane collected from sites and biota that represent potentially large sources of atmospheric methane. These include temperate marshes (about -48 percent to about -54 percent), landfills (about -51 percent to about -55 percent), and the first reported values for any species of termite (-72.8 + or - 3.1 percent for Reticulitermes tibialis and -57.3 + or - 1.6 percent for Zootermopsis angusticollis). Numbers in parentheses are delta C-13 values with respect to PDB (Peedee belemnite) carbonate. Most methane sources reported thus far are depleted in C-13 with respect to atmospheric methane (-47.0 + or - 0.3 percent). Individual sources of methane should have C-13/C-12 ratios characteristic of mechanisms of CH4 formation and consumption prior to release to the atmosphere. The mass-weighted average isotopic composition of all sources should equal the mean C-13 of atmospheric methane, corrected for a kinetic isotope effect in the OH attack of CH4. Assuming the kinetic isotope effect to be small (about -3.0 percent correction to -47.0), as in the literature, the new values given here for termite methane do not help to explain the apparent discrepancy between C-13/C-12 ratios of the known CH4 sources and that of atmospheric CH4.

  8. Stable carbon isotope ratio variations of organic matter in Orca Basin sediments

    NASA Astrophysics Data System (ADS)

    Northam, Mark A.; Curry, David J.; Scalan, Richard S.; Parker, Patrick L.

    1981-02-01

    Orca Basin is a highly reducing basin on the slope of the Gulf of Mexico. Stable carbon isotope ratios and total organic carbon percentages were determined for two cores within the basin and one control core outside the basin. The results show that the organic carbon content of the basin cores is consistently 2-3 times greater than that of the control core. The Pleistocene-Holocene boundary, indicated by a break in the δ13C depth profile, occurs at a greater sediment depth in the basin cores than in the control core. A small sampling interval has made it possible to detect an unexplained fine structure in the δ13C profile not previously observed.

  9. The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs

    NASA Astrophysics Data System (ADS)

    Kawashima, H.

    2014-12-01

    Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene

  10. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China.

    PubMed

    Pang, Jiaping; Wen, Xuefa; Sun, Xiaomin

    2016-01-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ(13)C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ(13)C and the isotopic composition of source CO2 (δ(13)CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ(13)C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ(13)C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83±14.11% and 86.84±12.27% and that natural gas had average contributions of 16.17±14.11% and 13.16±12.27%, respectively. The δ(13)C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ(13)C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing. PMID:26363727

  11. Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry.

    PubMed

    Masbou, Jeremy; Point, David; Guillou, Gaël; Sonke, Jeroen E; Lebreton, Benoit; Richard, Pierre

    2015-12-01

    A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰). PMID:26511394

  12. Stable carbon isotope ratios in Astrangia danae : evidence for algal modification of carbon pools used in calcification

    NASA Astrophysics Data System (ADS)

    Cummings, C. E.; McCarty, H. B.

    1982-06-01

    Stable carbon isotope ratios have been measured in skeletons of the temperature shallow water scleractinian coral, Astrangia danae. δ13C values ranging from -5.42 to -7.30%. revealed the expected depletion of 13C in skeletal carbonate relative to sea water bicarbonate. Differences among the ratios could not be attributed to collection site and were not correlated to skeletal morphology. Values of δ13C were directly related to zooxanthellae density for all colonies, so that as zooxanthellae concentration increased, δ13C valued increased. Colonies maintained under high temperature conditions were offset from the normal, exhibiting ratios less enriched in 13C than similar colonies from natural conditions. These trends supported the models of Weber and Goreau in which the carbon pools used in calcification are modified by algal photosynthesis. Direct evidence of physiological differences between symbiotic and asymbiotic colonies of A. danae has also been provided.

  13. A Widely Tunable Infrared Laser Spectrometer for Measurements of Isotopic Ratios of Carbon Cycle Gases

    SciTech Connect

    Joanne H. Shorter; J. Barry McManus; David D. Nelson; Charles E. Kolb; Mark S. Zahniser; Ray Bambha; Uwe Lehmann; Tomas Kulp; Stanley C. Tyler

    2005-01-31

    The atmospheric abundances of carbon dioxide and methane have increased dramatically during the industrial era. Measurements of the isotopic composition of these gases can provide a powerful tool for quantifying their sources and sinks. This report describes the development of a portable instrument for isotopic analysis CO{sub 2} and CH{sub 4} using tunable infrared laser absorption spectroscopy. This instrument combines novel optical design and signal processing methods with a widely tunable mid-infrared laser source based on difference frequency generation (DFG) which will can access spectral regions for all the isotopes of CO{sub 2} and CH{sub 4} with a single instrument. The instrument design compensates for the large difference in concentration between major and minor isotopes by measuring them with path lengths which differ by a factor of 100 within the same multipass cell. During Phase I we demonstrated the basic optical design and signal processing by determining {sup 13}CO{sub 2} isotopic ratios with precisions as small as 0.2{per_thousand} using a conventional lead salt diode laser. During Phase II, the DFG laser source was coupled with the optical instrument and was demonstrated to detect {sup 13}CH{sub 4}/{sup 12}CH{sub 4} ratios with a precision of 0.5{per_thousand} and an averaging time of 20 s using concentrated methane in air with a mixing ratio of 2700 ppm. Methods for concentrating ambient air for isotopic analysis using this technique have been evaluated. Extensions of this instrument to other species such as {sup 13}CO{sub 2}, C{sup 18}OO, and CH{sub 3}D are possible by substituting lasers at other wavelengths in the DFG source module. The immediate commercial application of this instrument will be to compete with existing mass spectrometric isotope instruments which are expensive, large and relatively slow. The novel infrared source developed in this project can be applied to the measurement of many other gas species and will have wide

  14. Carbon and nitrogen isotope ratios of juvenile winter flounder as indicators of inputs to estuarine systems.

    PubMed

    Pruell, Richard J; Taplin, Bryan K

    2015-12-30

    Stable carbon and nitrogen isotope ratios were measured in young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several Rhode Island, USA estuarine systems. These included three coastal lagoons, an estuarine river and Narragansett Bay. The δ(13)C trends observed along transects in several systems showed isotopically depleted terrestrial signals in the upper reaches of the estuaries. Significant differences (P<0.05) in δ(15)N were observed among all estuarine systems and these differences correlated (P<0.01) with human population densities in the watersheds. Although Narragansett Bay has a strong north-south gradient in nutrient concentrations this trend was not reflected in flounder δ(15)N. The northernmost station with the highest nutrient concentrations unexpectedly had significantly lower δ(15)N values. Depleted δ(15)N values at this nutrient-rich station may indicate that concentration-dependent fractionation needs to be considered when using nitrogen isotope ratios in biota to monitor anthropogenic nitrogen inputs in systems with high nitrogen loadings. PMID:26541984

  15. Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration.

    PubMed

    Çinar, Serap B; Ekşi, Aziz; Coşkun, İlknur

    2014-08-15

    Carbon isotope ratio ((13)C/(12)C=δ(13)C) of 100 pine honey samples collected from 9 different localities by Mugla region (Turkey) in years 2006, 2007 and 2008 were investigated. The δ(13)Cprotein value of honey samples ranged between -23.7 and -26.6‰, while the δ(13)Choney value varied between -22.7 and -27‰. For 90% of the samples, the difference in the C isotope ratio of protein and honey fraction (δ(13)Cpro-δ(13)Chon) was -1.0‰ and/or higher. Therefore, it can be said that the generally anticipated minimum value of C isotope difference (-1.0‰) for honey is also valid for pine honey. On the other hand, C4 sugar value (%), which was calculated from the δ(13)Cpro-δ(13)Chon difference, was found to be linearly correlated with the amount of adulterant (HFCS) in pine honey. These results indicate that C4 sugar value is a powerful criteria for detecting HFCS adulteration in pine honey. The δ(13)Choney and δ(13)Cprotein-δ(13)Choney values of the samples did not show any significant differences in terms of both year and locality (P>0.05), while the δ(13)Cprotein values showed significant differences due to year (P<0.05) but not due to locality (P>0.05). PMID:24679745

  16. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages.

    PubMed

    Jochmann, Maik A; Steinmann, Dirk; Stephan, Manuel; Schmidt, Torsten C

    2009-11-25

    A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration. PMID:19856915

  17. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  18. An Ocean Sediment Core-Top Calibration of Foraminiferal (Cibicides) Stable Carbon Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Mix, A. C.; Lisiecki, L. E.; Peterson, C.; Mackensen, A.; Cartapanis, O. A.

    2015-12-01

    Stable carbon isotope ratios (δ13C) measured on calcium carbonate shells of benthic foraminifera (cibicides) from late Holocene sediments (δ13CCib) are compiled and compared with newly updated datasets of contemporary water-column δ13C observations of dissolved inorganic carbon (δ13CDIC) as the initial core-top calibration of the international Ocean Circulation and CarbonCycling (OC3) project. Using selection criteria based on the spatial distance between samples we find high correlation between δ13CCib and natural (pre-industrial) δ13CDIC, confirming earlier work. However, our analysis reveals systematic differences such as higher (lower) δ13CCib values in the Atlantic (Indian and Pacific) oceans. Regression analyses are impacted by anthropogenic carbon and suggest significant carbonate ion, temperature, and pressure effects, consistent with lab experiments with planktonic foraminifera and theory. The estimated standard error of core-top sediment data is generally σ ~= 0.25 ‰, whereas modern foram data from the South Atlantic indicate larger errors (σ ~= 0.4 ‰).

  19. Determination of site-specific carbon isotope ratios at natural abundance by carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Caer, V; Trierweiler, M; Martin, G J; Martin, M L

    1991-10-15

    Site-specific natural isotope fractionation of hydrogen studied by deuterium NMR (SNIF-NMR) spectroscopy is a powerful source of information on hydrogen pathways occurring in biosyntheses in natural conditions. The potential of the carbon counterpart of this method has been investigated and compared. Three typical molecular species, ethanol, acetic acid, and vanillin, have been considered. Taking into account the requirements of quantitative 13C NMR, appropriate experimental procedures have been defined and the repeatability and reproducibility of the isotope ratio determinations have been checked in different conditions. It is shown that the carbon version of the SNIF-NMR method is capable of detecting small differences in the carbon-13 content of the ethyl fragment of ethanols from different botanical or synthetic origins. These results are in agreement with mass spectrometry determinations of the overall carbon isotope ratios. Deviations with respect to a statistical distribution of 13C have been detected in the case of acetic acid and vanillin. However, since the method is very sensitive to several kinds of systematic error, only a relative significance can be attached at present to the internal parameters directly accessible. Isotope dilution experiments have also been carried out in order to check the consistency of the results. In the present state of experimental accuracy, the 13C NMR method is of more limited potential than 2H SNIF-NMR spectroscopy. However it may provide complementary information. Moreover it is particularly efficient for detecting and quantifying adulterations that aim to mimic the overall carbon-13 content of a natural compound by adding a selectivity enriched species to a less expensive substrate from a different origin. PMID:1759714

  20. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  1. Carbon isotope ratios in crassulacean Acid metabolism plants: seasonal patterns from plants in natural stands.

    PubMed

    Szarek, S R

    1976-09-01

    A year round study of photosynthesis and carbon isotope fractionation was conducted with plants of Opuntia phaeacantha Engelm. and Yucca baccata Torr. occurring in natural stands at elevations of 525, 970, 1450 and 1900 m. Plant water potentials and the daytime pattern of (14)CO(2) photosynthesis were similar for all cacti along the elevational gradient, despite significant differences in temperature regime and soil water status. Carbon isotope ratios of total tissue and soluble extract fractions were relatively constant throughtout the entire year. Additionally, the sigma(13)C values were similar in all plants of the same species along the elevational gradient, i.e. -12.5 +/- 0.86 per thousand for O. phaeacantha and -15.7 +/- 0.95 per thousand for Y. baccata. The results of this study indicate Crassulacean acid metabolism predominates as the major carbon pathway of these plants, which do not facultatively utilize the reductive pentose phosphate cycle of photosynthesis as the primary carboxylation reaction. PMID:16659680

  2. Isotopic Ratios of Carbon and Oxygen in Titan’s CO using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixon, C. A.; Cordiner, M. A.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    2016-04-01

    We report interferometric observations of carbon monoxide (CO) and its isotopologues in Titan’s atmosphere using the Atacama Large Millimeter/submillimeter Array (ALMA). The following transitions were detected: CO (J = 1–0, 2–1, 3–2, 6–5), 13CO (J = 2–1, 3–2, 6–5), C18O (J = 2–1, 3–2), and C17O (J = 3–2). Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code. We present the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundance of CO was determined to be 49.6 +/- 1.8 ppm, assumed to be constant with altitude, with isotopic ratios 12C/13C = 89.9 +/- 3.4, 16O/18O = 486 +/- 22, and 16O/17O = 2917 +/- 359. The measurements of 12C/13C and 16O/18O ratios are the most precise values obtained in Titan’s atmospheric CO to date. Our results are in good agreement with previous studies and suggest no significant deviations from standard terrestrial isotopic ratios.

  3. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition

  4. Measurement of the stable carbon isotope ratio of atmospheric volatile organic compounds using chromatography, combustion, and isotope ratio mass spectrometry coupled with thermal desorption

    NASA Astrophysics Data System (ADS)

    Kawashima, Hiroto; Murakami, Mai

    2014-06-01

    The isotopic analysis of atmospheric volatile organic compounds (VOCs), and in particular of their stable carbon isotope ratio (δ13C), could potentially be used as an effective tool for identifying the sources of VOCs. However, to date, there have been very few such analyses. In this work, we analyze the δ13C values of VOCs using thermal desorption coupled with chromatography, combustion, and isotope ratio mass spectrometry (TD-GC/C/IRMS). The measured peak shapes were of high quality and 36 compounds in a standard gas containing 58 VOCs (C5-C11) were detected. The measured δ13C varied widely, from -49.7‰ to -22.9‰, while the standard deviation of the δ13C values varied from 0.07‰ to 0.85‰ (n = 5). We then measured samples from two passenger cars in hot and cold modes, three gas stations, roadside air, and ambient air. In comparison with existing studies, the analytical precision for the 36 compounds in this study was reasonable. By comparing the δ13C values obtained from the cars and gas stations, we could identify some degree of the sources of VOCs in the roadside and ambient air samples.

  5. Stable carbon isotope ratio in atmospheric CO2 collected by new diffusive devices.

    PubMed

    Proto, Antonio; Cucciniello, Raffaele; Rossi, Federico; Motta, Oriana

    2014-02-01

    In this paper, stable carbon isotope ratios (δ (13)C) were determined in the atmosphere by using a Ca-based sorbent, CaO/Ca12Al14O33 75:25 w/w, for passively collecting atmospheric CO2, in both field and laboratory experiments. Field measurements were conducted in three environments characterized by different carbon dioxide sources. In particular, the environments under consideration were a rather heavily trafficked road, where the source of CO2 is mostly vehicle exhaust, a rural unpolluted area, and a private kitchen where the major source of CO2 was gas combustion. Samplers were exposed to the free atmosphere for 3 days in order to allow collection of sufficient CO2 for δ(13)C analysis, then the collected CO2 was desorbed from the adsorbent with acid treatment, and directly analyzed by nondispersive infrared (NDIR) instrument. δ (13)C results confirmed that the samplers collected representative CO2 samples and no fractionation occurred during passive trapping, as also confirmed by an appositely designed experiment conducted in the laboratory. Passive sampling using CaO/Ca12Al14O33 75:25 w/w proved to be an easy and reliable method to collect atmospheric carbon dioxide for δ (13)C analysis in both indoor and outdoor places. PMID:24281683

  6. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-12-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol-1, or 1-3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol-1 for 100 mL of ambient air (185.4 nmol mol-1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.

  7. Aircraft measurements of the stable carbon isotopic ratio of atmospheric methane over Siberia

    NASA Astrophysics Data System (ADS)

    Sugawara, Satoshi; Nakazawa, Takakiyo; Inoue, Gen; Machida, Toshinobu; Mukai, Hitoshi; Vinnichenko, Nikolay K.; Khattatov, Vyachaslav U.

    1996-06-01

    Air samples collected using aircraft during the Siberian Terrestrial Ecosystem-Atmosphere-Cryosphere Experiments (STEACE) in the summer of 1993 and 1994 were analyzed for the carbon isotopic ratio, δ13C, of atmospheric CH4 as well as for the CH4 concentration. The CH4 concentrations and δ13C values observed in the lower troposphere over wetlands in the West Siberian Lowland varied considerably, showing a clear negative correlation between the two components. From the relationships between measured values of the CH4 concentration and δ13C, values of δ13C of CH4 released from wetlands into the atmosphere were estimated to be -75 to -67‰. The results observed over oil wells and pipelines showed isotopic evidence for leakage of natural gas. Mean values of δ13C measured in the middle and upper troposphere over Siberia in the summer season were -47.9±0.3 and -47.8±0.2‰ for 1993 and 1994, respectively, which are quite similar to each other.

  8. The Measurement of Stable Carbon Isotope Ratios of Eight Methamidophos Samples.

    PubMed

    Kawashima, Hiroto

    2015-09-01

    Between December 2007 and January 2008, people suffered from food poisoning in the Japanese prefectures of Chiba and Hyogo after eating frozen dumplings (gyoza) produced in China, which had very high concentrations (1490-19,290 ppm) of methamidophos (O,S-dimethyl phosphoramidothioate). Thus, we measured the stable carbon isotope ratio of methamidophos using GC/C/IRMS to identify the source. We analyzed seven methamidophos reagents and one Chinese agricultural methamidophos chemical (MTD600) that contained many impurities. The δ13C values of the seven methamidophos reagents and MTD600 ranged from -49.23‰ to -31.90‰, with an average SD of 0.20‰, very high precision. This difference (17.33‰) was very large compared with that in previous reports and may be attributable to the material itself and the chemical processing of methamidophos. Criminals can easily obtain pesticides such as methamidophos; therefore, it is very important to identify the pesticide source and distribution route using stable isotopic science in the future. PMID:26120050

  9. Pedogenic Formation of Perylene in a Terrestrial Soil Profile: Evidence From Carbon Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Gocht, T.; Jochmann, M. A.; Blessing, M.; Barth, J.; Schmidt, T. C.; Grathwohl, P.

    2005-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants (POP), which are introduced into the environment mainly due to combustion of fossil fuel. Perylene is one compound of the PAHs that consists of 5 condensed rings like the well known carcinogenic benzo(a)pyrene. Apart from the pyrogenic formation, there are strong indications that it is produced biologically and/or diagenetically under anaerobic conditions. This conclusion was derived from the presence of perylene in deeper parts of marine and lacustrine sediment profiles, where the combustion-derived PAHs are almost absent ( Lima et al., 2003). 13C/12C compound-specific stable isotopic ratios were successfully applied for the differentiation of probably biologically generated perylene in tropical termite nests and pyrolytic perylene from surface soils of temperate regions ( Wilcke et al., 2002). Our study is the first aiming on the determination of the different processes of perylene formation at one location using carbon isotopic ratios such as 13C/12C. We determined PAHs in natural soils of southern Germany. At one location in the Black Forest we found for the first time evidence for natural perylene production in the subsoil of terrestrial environments. Apart from the combustion derived PAHs that accumulate at the top of all soil profiles, the depth distribution of perylene shows the highest peak in the subsoil about 1 m below the surface. Due to its very low solubility (0.4 μg l-1 at 25 °C) vertical transport of perylene with seepage water is very unlikely. Thus, we suggest atmospheric deposition of pyrogenic perylene at the top of the profile and in-situ generation in the subsoil, probably due to microbial activities. In order to distinguish between the pyrogenic and natural generation we employed 13C/12C compound-specific stable isotope analysis of perylene in soil samples from the top of the profile as well as from the subsoil. Preliminary measurements with soil extracts show strong

  10. Carbon and nitrogen isotope ratios of factory-produced RDX and HMX.

    PubMed

    Howa, John D; Lott, Michael J; Chesson, Lesley A; Ehleringer, James R

    2014-07-01

    RDX and HMX are explosive compounds commonly used by the military and also occasionally associated with acts of terrorism. The isotopic characterization of an explosive can be a powerful approach to link evidence to an event or an explosives cache. We sampled explosive products and their reactants from commercial RDX manufacturers that used the direct nitration and/or the Bachmann synthesis process, and then analyzed these materials for carbon and nitrogen isotope ratios. For manufacturers using the Bachmann process, RDX (13)C enrichment relative to the hexamine substrate was small (+0.9‰) compared to RDX produced using the direct nitration process (+8.2‰ to +12.0‰). RDX (15)N depletion relative to the nitrogen-containing substrates (-3.6‰) was smaller in the Bachmann process than in the direct nitration process (-12.6‰ to -10.6‰). The sign and scale of these differences agree with theorized mechanisms of mass-dependent fractionation. We also examined the isotopic relationship between RDX and HMX isolated from explosive samples. The δ(13)C and δ(15)N values of RDX generally matched those of the HMX with few exceptions, most notably from a manufacturer known to make RDX using two different synthesis processes. The range in δ(13)C values of RDX in a survey of 100 samples from 12 manufacturers spanned 33‰ while the range spanned by δ(15)N values was 26‰; these ranges were much greater than any previously published observations. Understanding the relationship between products and reactants further explains the observed variation in industrially manufactured RDX and can be used as a diagnostic tool to analyze explosives found at a crime scene. PMID:24814332

  11. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies

    NASA Astrophysics Data System (ADS)

    Tipple, Brett J.; Meyers, Stephen R.; Pagani, Mark

    2010-07-01

    The carbon isotope ratio (δ13C) of plant material is commonly used to reconstruct the relative distribution of C3 and C4 plants in ancient ecosystems. However, such estimates depend on the δ13C of atmospheric CO2 (δ13CCO2) at the time, which likely varied throughout Earth history. For this study, we use benthic and planktonic δ13C and δ18O records to reconstruct a long-term record of Cenozoic δ13CCO2. Confidence intervals for δ13CCO2 values are assigned after careful consideration of equilibrium and non-equilibrium isotope effects and processes, as well as resolution of the data. We find that benthic foraminifera better constrain δ13CCO2 compared to planktonic foraminiferal records, which are influenced by photosymbiotes, depth of production, seasonal variability, and preservation. Furthermore, sensitivity analyses designed to quantify the effects of temperature uncertainty and diagenesis on benthic foraminifera δ13C and δ18O values indicate that these factors act to offset one another. Our reconstruction suggests that Cenozoic δ13CCO2 averaged -6.1 ± 0.6‰ (1σ), while only 11.2 million of the last 65.5 million years correspond to the pre-Industrial value of -6.5‰ (with 90% confidence). Here δ13CCO2 also displays significant variations throughout the record, at times departing from the pre-Industrial value by more than 2‰. Thus, the observed variability in δ13CCO2 should be considered in isotopic reconstructions of ancient terrestrial-plant ecosystems, especially during the Late and Middle Miocene, times of presumed C4 grassland expansion.

  12. Sample preparation bias in carbon stable isotope ratio analysis of fruit juices and sweeteners.

    PubMed

    Krueger, D A

    1993-01-01

    Two sample preparation methods are commonly used for carbon stable isotope ratio analysis (SIRA). One involves combustion of the sample with oxygen at 850 degrees C; the other involves combustion of the sample with CuO in an evacuated glass tube at 550 degrees C. I observed in our laboratory that these 2 methods yield different results for sugar-based products such as fruit juices, sweeteners, and vanillin. The CuO method yields results approximately 1%. more positive than the oxygen combustion method. This bias is also observed in other laboratories, as shown in an analysis of the results of the AOAC collaborative studies of carbon SIRA of maple syrup, orange juice, honey, and honey protein. The oxygen combustion method is the AOAC method for honey, apple juice, and orange juice; both methods are incorporated into the AOAC method for maple syrup. I recommend that data generated by the CuO combustion method be appropriately corrected to yield results concordant with the official oxygen combustion method. PMID:8471867

  13. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed. PMID:20025274

  14. Climate and habitat reconstruction using stable carbon and nitrogen isotope ratios of collagen in prehistoric herbivore teeth from Kenya

    NASA Astrophysics Data System (ADS)

    Ambrose, Stanley H.; DeNiro, Michael J.

    1989-05-01

    Stable carbon and nitrogen isotope ratios have been determined for tooth collagen of 27 prehistoric herbivores from a rock shelter in the central Rift Valley of Kenya. Collagen samples whose isotope ratios were not altered by diagenesis were identified using several analytical methods. During the later Holocene, when the climate was as dry or drier than at present, the isotopic compositions of individual animals are similar to those of modern individuals of the same species. During the earlier Holocene, when the climate was wetter than at present, the δ 15N and δ 13C values are lower than those for their modern counterparts. When diagenetic factors can be discounted and adequate modern comparative data are available, stable isotope analysis of herbivore teeth and bones can be used to evaluate prehistoric climate and habitat conditions.

  15. Stable carbon isotope ratio and composition of microbial fatty acids in tropical soils.

    PubMed

    Burke, Roger A; Molina, Marirosa; Cox, Julia E; Osher, Laurie J; Piccolo, Marisa C

    2003-01-01

    The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on (i) soil microbial community structure and (ii) the contribution of SOM derived from the original forest vegetation to the functioning of pasture and sugarcane (Saccharum spp.) ecosystems. We used principal components analysis (PCA) of soil phospholipid fatty acid (PLFA) profiles to evaluate microbial community structure and PLFA stable carbon isotope ratios (delta13C) as indicators of the delta13C of microbial substrates. Soil type mainly determined the relative proportions of gram positive versus gram negative bacteria whereas land use primarily determined the relative proportion of fungi, protozoa, and actinomycetes versus other types of microorganisms. Comparison of a simple model to our PLFA delta13C data from land use chronosequences indicates that forest-derived SOM is actively cycled for appreciably longer times in sugarcane ecosystems developed on Andisols (mean turnover time = 50 yr) than in sugarcane ecosystems developed on an Oxisol (mean turnover time = 13 yr). Our analyses indicate that soil chronosequence PLFA delta13C measurements can be useful indicators of the contribution that SOM derived from the original vegetation makes to continued ecosystem function under the new land use. PMID:12549559

  16. Monitoring crude oil mineralization in salt marshes: Use of stable carbon isotope ratios

    SciTech Connect

    Jackson, A.W.; Pardue, J.H.; Araujo, R.

    1996-04-01

    In laboratory microcosms using salt marsh soils and in field trials, it was possible to monitor and quantify crude oil mineralization by measuring changes in CO{sub 2} {delta}{sup 13}C signatures and the rate of CO{sub 2} production. These values are easy to obtain and can be combined with simple isotope mass balance equations to determine the rate of mineralization from both the crude oil and indigenous carbon pool. Hydrocarbon degradation was confirmed by simultaneous decreases in alkane-, isoprenoid-, and PAH-hopane ratios. Additionally, the pseudo-first-order rate constants of alkane degradation (0.087 day{sup -1}) and CO{sub 2} production (0.082 day{sup -1}) from oil predicted by the {delta}{sup 13}C signatures were statistically indistinguishable. The addition of inorganic nitrogen and phosphate increased the rate of mineralization of crude oil in aerated microcosms but had no clear effect on in situ studies. This procedure appears to offer a means of definitively quantifying crude oil mineralization in a sensitive, inexpensive, and simple manner in environments with appropriate background {delta}{sup 13}C signatures. 23 refs., 5 figs., 1 tab.

  17. Stable hydrogen and carbon isotope ratios of methoxyl groups during plant litter degradation.

    PubMed

    Anhäuser, Tobias; Greule, Markus; Zech, Michael; Kalbitz, Karsten; McRoberts, Colin; Keppler, Frank

    2015-01-01

    Stable hydrogen and carbon isotope ratios of methoxyl groups (δ(2)Hmethoxyl and δ(13)Cmethoxyl values, respectively) in plant material have been shown to possess characteristic signatures. These isotopic signatures can be used for a variety of applications such as constraining the geographical origin and authenticity of biomaterials. Recently, it has also been suggested that δ(2)Hmethoxyl values of sedimentary organic matter of geological archives might serve as a palaeoclimate/-hydrology proxy. However, deposited organic matter is subject to both biotic and abiotic degradation processes, and therefore an evaluation of their potential impact on the δ(2)Hmethoxyl and δ(13)Cmethoxyl values would allow more reliable interpretations of both isotopic signatures. Here, we investigated this potential influence by exposing foliar litter of five different tree species (Sycamore maple, Mountain ash, European beech, Norway spruce and Scots pine) to natural degradation. The foliar litter was sampled at nine intervals over a 27-month period, and the bulk methoxyl content as well as the δ(2)Hmethoxyl and δ(13)Cmethoxyl values were measured. At the end of the experiment, a loss of the bulk methoxyl in the range of ∼40-70% was measured. Linear regression analysis showed no dependence of δ(2)Hmethoxyl values with methoxyl content for four out of five foliar litter samples studied (R(2) in the range of 0.03 and 0.36, p > .05). On the contrary, the δ(13)Cmethoxyl values showed significant linear correlations for the great majority of the foliar litter samples (R(2) in the range of 0.51 and 0.73, p < .05). The litter species with the greatest methoxyl loss (Mountain ash, Scots pine and Norway spruce) showed the strongest (13)C enrichment, by up to ∼5‰. Since δ(2)Hmethoxyl shows no systematic overall change during the course of degradation, we propose that there is considerable potential for its use as a palaeoclimate proxy for a wide range of geological

  18. Diet selection by steers using microhistological and stable carbon isotope ratio analyses.

    PubMed

    Bennett, L L; Hammond, A C; Williams, M J; Chase, C C; Kunkle, W E

    1999-08-01

    Two methods of determining diet botanical composition, microhistological (MH), and stable carbon isotope ratio (CR) analyses were used to determine botanical composition of ingesta and fecal grab samples in steers grazing rhizoma peanut-mixed tropical grass pastures. Three pastures were used over two grazing seasons, 1992 and 1993, in Brooksville, FL. A weighted-disc double-sampling technique was used to determine forage mass and botanical composition, percentage of rhizoma peanut (Arachis glabrata), grass (Paspalum notatum and Cynodon dactlyon), and forb (primarily Chenopodium ambrosioides) on offer every 28 d throughout the grazing seasons. There was an effect of sampling date (P<.001), sampling date x pasture (P<.001), and sampling date x year (P<.001) on forage mass on offer. There was a pasture x year x sampling date interaction (P<.001) for all botanical components. In 1992 and 1993, using cannulated steers sampled every 56 d, there were interactions with year for rhizoma peanut and forb (P<.05), but not for grass with MH analysis (components: rhizoma peanut, grass, and forb). Ingesta and fecal rhizoma peanut (r = .73 and .92 for 1992 and 1993, respectively) and ingesta and fecal forb (r = .86 and .98 for 1992 and 1993, respectively) were positively correlated (P<.001). Ingesta and fecal grass were positively correlated (r = .52, P<.001), but the correlation was not as high. With the CR analysis (components: Calvin cycle [C3] plants and C4-dicarboxylic acid pathway [C4] plants), ingesta and corrected fecal (corrected for in vitro organic matter digestibility [IVOMD]) C3 plants were positively correlated (r = .62; P<.001). Diet composition of fecal grab samples from noncannulated steers, collected on the same sampling schedule as for hand-clipped pasture samples, differed at times due to the complexity of the sward (both rhizoma peanut and forb constituted a single component, C3, in the CR analysis). Based on these results, if there is a substantial

  19. Carbon Isotope Measurements of Experimentally-Derived Hydrothermal Mineral-Catalyzed Organic Products by Pyrolysis-Isotope Ratio Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    We report results of experiments to measure the C isotope composition of mineral catalyzed organic compounds derived from high temperature and high pressure synthesis. These experiments make use of an innovative pyrolysis technique designed to extract and measure C isotopes. To date, our experiments have focused on the pyrolysis and C isotope ratio measurements of low-molecular weight intermediary hydrocarbons (organic acids and alcohols) and serve as a proof of concept for making C and H isotope measurements on more complicated mixtures of solid-phase hydrocarbons and intermediary products produced during high temperature and high pressure synthesis on mineral-catalyzed surfaces. The impetus for this work stems from recently reported observations of methane detected within the Martian atmosphere [1-4], coupled with evidence showing extensive water-rock interaction during Martian history [5-7]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization reactions [8,9]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [10-12]. Further, recent experiments by Fu et al. [13] focus on examining detailed C isotope measurements of hydrocarbons produced by surface-catalyzed mineral reactions. Work described in this paper details the experimental techniques used to measure intermediary organic reaction products (alcohols and organic acids).

  20. Isotopic ratios in planetary atmospheres.

    PubMed

    de Bergh, C

    1995-03-01

    Recent progress on measurements of isotopic ratios in planetary or satellite atmospheres include measurements of the D/H ratio in the methane of Uranus, Neptune and Titan and in the water of Mars and Venus. Implications of these measurements on our understanding of the formation and evolution of the planets and satellite are discussed. Our current knowledge of the carbon, nitrogen and oxygen isotopic ratios in the atmospheres of these planets, as well as on Jupiter and Saturn, is also reviewed. We finally show what progress can be expected in the very near future due to some new ground-based instrumentation particularly well suited to such studies, and to forthcoming space missions. PMID:11539257

  1. A 40-year record of Northern Hemisphere atmospheric carbon monoxide concentration and isotope ratios from the firn at Greenland Summit.

    NASA Astrophysics Data System (ADS)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.; Buizert, C.; Lang, P. M.; Edwards, J.; Harth, C. M.; Hmiel, B.; Mak, J. E.; Novelli, P. C.; Brook, E.; Weiss, R. F.; Vaughn, B. H.; White, J. W. C.

    2014-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to climate forcing by being a major sink of tropospheric OH. A good understanding of the past atmospheric CO budget is therefore important for climate models attempting to characterize recent changes in the atmosphere. Previous work at NEEM, Greenland provided the first reconstructions of Arctic atmospheric history of CO concentration and stable isotope ratios (δC18O and δ13CO) from firn air, dating to the 1950s. In this new study, firn air was sampled from eighteen depth levels through the firn column at Summit, Greenland (in May 2013), yielding a second, independent record of Arctic CO concentration and isotopic ratios. Carbon monoxide stable isotope ratios were analyzed on replicate samples and using a newly developed system with improved precision allowing for a more robust reconstruction. The new CO concentration and stable isotope results overall confirm the earlier findings from NEEM, with a CO concentration peak around the 1970s and higher δC18O and δ13CO values associated with peak CO. Modeling and interpretation of the data are in progress.

  2. The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia.

    PubMed

    Rinne, K T; Saurer, M; Kirdyanov, A V; Loader, N J; Bryukhanova, M V; Werner, R A; Siegwolf, R T W

    2015-11-01

    Significant gaps still exist in our knowledge about post-photosynthetic leaf level and downstream metabolic processes and isotopic fractionations. This includes their impact on the isotopic climate signal stored in the carbon isotope composition (δ(13)C) of leaf assimilates and tree rings. For the first time, we compared the seasonal δ(13)C variability of leaf sucrose with intra-annual, high-resolution δ(13)C signature of tree rings from larch (Larix gmelinii Rupr.). The trees were growing at two sites in the continuous permafrost zone of Siberia with different growth conditions. Our results indicate very similar low-frequency intra-seasonal trends of the sucrose and tree ring δ(13)C records with little or no indication for the use of 'old' photosynthates formed during the previous year(s). The comparison of leaf sucrose δ(13)C values with that in other leaf sugars and in tree rings elucidates the cause for the reported (13)C-enrichment of sink organs compared with leaves. We observed that while the average δ(13)C of all needle sugars was 1.2‰ more negative than δ(13)C value of wood, the δ(13)C value of the transport sugar sucrose was on an average 1.0‰ more positive than that of wood. Our study shows a high potential of the combined use of compound-specific isotope analysis of sugars (leaf and phloem) with intra-annual tree ring δ(13)C measurements for deepening our understanding about the mechanisms controlling the isotope variability in tree rings under different environmental conditions. PMID:26433019

  3. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  4. The carbon isotopes ratio and trace metals content determinations in some Transylvanian fruit juices

    NASA Astrophysics Data System (ADS)

    Dehelean, A.; Magdas, D. A.; Cristea, G.

    2012-02-01

    This work presents a preliminary study on the carbon isotope signature and trace metal content investigated on the soil-plant-fruit pulp chain. The samples were collected from two Transylvanian areas namely Alba and Salaj. The average value of the δ13C at the soil surface was around δ13C ≈ -27%° and important differences of the δ13C values between the two studied areas were not observed. Meanwhile, differences between fruit pulp of grape juice and the pulp of pear juice relived a difference of about 1.5%° for δ13C values.

  5. Regional Modeling of Stable Carbon Isotope ratio of non Methane Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dehghan, F.-

    2004-05-01

    The study of stable isotope ratio (δ 13C) can be useful to understand the history of an air parcel that include sources, mixing and photochemical processing. The 3D regional model (MC2AQ) was modified (with two different resolution, 21.2km and 5.3km) to include isotope information for Propene, Toluene, Propane, Benzene, Xylenes, and Isoprene. These compounds (both 12C and 13C) were included as tracers in the model reacting only with OH, with no feedback on the main chemistry. This model structure can help to constrain the OH concentration. The kinetic isotope effect (KIE) was included for the reactions with OH. The results show that the δ 13C varies with emissions: when emissions are high the δ 13C is close to that of the sources, and as the air parcel moves away from the sources the δ 13C gets heavier due to the chemical processing. We see a clear diurnal pattern in the δ 13C after removing the effect of the sources. This is an indication of the effect of the processing by OH. The results show that the vertical gradient of δ 13C depends on the lifetime and the KIE of the hydrocarbons. The back trajectories of the stable isotope ratio (δ 13C) were determined to study the history of each hydrocarbon independently using the average photochemical age. The results can help in the determination of the possible sources of individual hydrocarbons and the effects of mixing and dilution during the parcel advection. The back trajectory analysis of δ 13C provides information of the possible locations of the sources of the compounds being investigated. The model was also set up to study the effect of the different emission type (area sources or point sources) of NMHCs on δ 13C, using this method can help us to identify the fractionation and location of these two sources.

  6. Carbon Isotope Ratiometer

    SciTech Connect

    Dr. Anthony O'Keefe

    2001-05-07

    This Report details the design of a optical analyzer capable of measuring and recording the carbon 13/12 isotope ratio in atmospheric carbon dioxide. The system can operate in remote modes for long duration and will transmit real-time data via wireless contact.

  7. C, N, O abundances and carbon isotope ratios in evolved stars of the open clusters Collinder 261 and NGC 6253

    NASA Astrophysics Data System (ADS)

    Mikolaitis, Š.; Tautvaišienė, G.; Gratton, R.; Bragaglia, A.; Carretta, E.

    2012-05-01

    Context. Investigations of abundances of carbon and nitrogen in the atmospheres of evolved stars of open clusters may provide comprehensive information on chemical composition changes caused by stellar evolution. Aims: Our main aim is to increase the number of open clusters with determined carbon-to nitrogen and carbon isotope ratios. Methods: High-resolution spectra were analysed using a differential model atmosphere method. Abundances of carbon were derived using the C2 Swan (0, 1) band head at 5635.5 Å (FEROS spectra) and the C2 Swan (1, 0) band head at 4737 Å (UVES spectra). The wavelength interval 7980-8130 Å, with strong CN features was analysed to determine nitrogen abundances and 12C/13C isotope ratios. The oxygen abundances were determined from the [O i] line at 6300 Å. Results: The average value of 12C/13C isotope ratios of Cr 261 is equal to 18 ± 2 in four giants and to 12 ± 1 in two clump stars; it is equal to 16 ± 1 in four clump stars of the open cluster NGC 6253. The mean C/N ratios in Cr 261 and NGC 6253 are equal to 1.67 ± 0.06 and 1.37 ± 0.09, respectively. Conclusions: The 12C/13C and C/N values in Cr 261 and NGC 6253 within limits of uncertainties agree with the theoretical model of thermohaline-induced mixing as well as with the cool-bottom processing model. Based on observations collected at ESO telescopes under programmes 65.N-0286, 169.D-0473.

  8. Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic 'absolute' carbon and oxygen isotope ratios

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan

    2008-03-01

    Mass-spectrometric stable isotope measurements of CO 2 use molecular ion currents at mass-to-charge ratios m/ z 44, 45 and 46 to derive the elemental isotope ratios n( 13C)/ n( 12C) and n( 18O)/ n( 16O), abbreviated 13C/ 12C and 18O/ 16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ' 17O correction'. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/ 12C ( 13R), 17O/ 16O ( 17R) and 18O/ 16O ( 18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO 2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H 3PO 4 at 25 °C (VPDB-CO 2). I find 17R/10-6=382.7-2.1+1.7, 18RVSMOW/10 -6 = 2005.20 ± 0.45, 13R/10-6= 11124 ± 45, 17R/10-6=391.1-2.1+1.7 and 18R/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences ( δ values). This reveals that only ratios of isotope ratios (namely, 17R/ 13R and 13R17R/ 18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/ 12C difference, but not for 18O/ 16O. Even though inter-laboratory differences can be corrected for by a common 'ratio assumption set' and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/ 16O and 18O/ 16O isotope ratios. For highest accuracy in the 13C/ 12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that

  9. A novel framework for quantifying past methane recycling by Sphagnum-methanotroph symbiosis using carbon and hydrogen isotope ratios of leaf wax biomarkers

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-05-01

    concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, "PRM." We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, δ13C of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  10. A Novel Framework for Quantifying past Methane Recycling by Sphagnum-Methanotroph Symbiosis Using Carbon and Hydrogen Isotope Ratios of Leaf Wax Biomarkers

    NASA Technical Reports Server (NTRS)

    Nichols, Jonathan E.; Isles, Peter D. F.; Peteet, Dorothy M.

    2014-01-01

    The concentration of atmospheric methane is strongly linked to variations in Earth's climate. Currently, we can directly reconstruct the total atmospheric concentration of methane, but not individual terms of the methane cycle. Northern wetlands, dominated by Sphagnum, are an important contributor of atmospheric methane, and we seek to understand the methane cycle in these systems. We present a novel method for quantifying the proportion of carbon Sphagnum assimilates from its methanotrophic symbionts using stable isotope ratios of leaf-wax biomarkers. Carbon isotope ratios of Sphagnum compounds are determined by two competing influences, water content and the isotope ratio of source carbon. We disentangled these effects using a combined hydrogen and carbon isotope approach. We constrained Sphagnum water content using the contrast between the hydrogen isotope ratios of Sphagnum and vascular plant biomarkers. We then used Sphagnum water content to calculate the carbon isotope ratio of Sphagnum's carbon pool. Using a mass balance equation, we calculated the proportion of recycled methane contributed to the Sphagnum carbon pool, 'PRM.' We quantified PRM in peat monoliths from three microhabitats in the Mer Bleue peatland complex. Modern studies have shown that water table depth and vegetation have strong influences on the peatland methane cycle on instrumental time scales. With this new approach, delta C-13 of Sphagnum compounds are now a useful tool for investigating the relationships among hydrology, vegetation, and methanotrophy in Sphagnum peatlands over the time scales of entire peatland sediment records, vital to our understanding of the global carbon cycle through the Late Glacial and Holocene.

  11. Use of stable carbon and nitrogen isotope ratios in size segregated aerosol particles for the O/I penetration evaluation

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Garbariene, Inga; Masalaite, Agne; Ceburnis, Darius; Krugly, Edvinas; Kvietkus, Kestutis; Remeikis, Vidmantas; Martuzevicius, Dainius

    2015-04-01

    Stable carbon and nitrogen isotope ratio are successfully used in the atmospheric aerosol particle source identification [1, 2], transformation, pollution [3] research. The main purpose of this study was to evaluate the penetration of atmospheric aerosol particles from outdoor to indoor using stable carbon and nitrogen isotope ratios. Six houses in Kaunas (Lithuania) were investigated during February and March 2013. Electrical low pressure impactor was used to measure in real time concentration and size distribution of outdoor aerosol particles. ELPI+ includes 15 channels covering the size range from 0.017 to 10.0 µm. The 25 mm diameter aluminium foils were used to collect aerosol particles. Gravimetric analysis of samples was made using microbalance. In parallel, indoor aerosol samples were collected with a micro-orifice uniform deposition impactor (MOUDI model 110), where the aerosol particles were separated with the nominal D50 cut-off sizes of 0.056, 0.1, 0.18,0.32,0.56, 1.0, 1.8, 3.2, 5.6, 10, 18 μm for impactor stages 1-11, respectively. The impactor was run at a flow rate of 30 L/min. Air quality meters were used to record meteorological conditions (temperature, relative humidity) during the investigated period. All aerosol samples were analyzed for total carbon (TC) and total nitrogen (TN) contents and their isotopic compositions using elemental analyzer (EA) connected to the stable isotope ratio mass spectrometer (IRMS). TC concentration in indoors ranged from 1.5 to 247.5 µg/m3. During the sampling period outdoors TN levels ranged from 0.1 to 10.9 µg/m3. The obtained outdoor δ13C(PM2.5) values varied from -24.21 to -26.3‰, while the δ15N values varied from 2.4 to 11.1 ‰ (average 7.2±2.5 ‰). Indoors carbonaceous aerosol particles were depleted in 13C compared to outdoors in all sampling sites. This depletion in δ13C varied from 0.1 to 3.2 ‰. We think that this depletion occurs due ongoing chemical reactions (oxidation) when aerosol

  12. Correlation between the Carbon Isotope Discrimination in Leaf Starch and Sugars of C3 Plants and the Ratio of Intercellular and Atmospheric Partial Pressures of Carbon Dioxide

    PubMed Central

    Brugnoli, Enrico; Hubick, Kerry T.; von Caemmerer, Susanne; Wong, Suan Chin; Farquhar, Graham D.

    1988-01-01

    Carbon isotope discrimination (Δ) was analyzed in leaf starch and soluble sugars, which represent most of the recently fixed carbon. Plants of three C3 species (Populus nigra L. × P. deltoides Marsh., Gossypium hirsutum L. and Phaseolus vulgaris L.) were kept in the dark for 24 hours to decrease contents of starch and sugar in leaves. Then gas exchange measurements were made with constant conditions for 8 hours, and subsequently starch and soluble sugars were extracted for analysis of carbon isotope composition. The ratio of intercellular, pi, and atmospheric, pa, partial pressures of CO2, was calculated from gas exchange measurements, integrated over time and weighted by assimilation rate, for comparison with the carbon isotope ratios in soluble sugars and starch. Carbon isotope discrimination in soluble sugars correlated strongly (r = 0.93) with pi/pa in all species, as did Δ in leaf starch (r = 0.84). Starch was found to contain significantly more 13C than soluble sugar, and possible explanations are discussed. The strong correlation found between Δ and pi/pa suggests that carbon isotope analysis in leaf starch and soluble sugars may be used for monitoring, indirectly, the average of pi/pa weighted by CO2 assimilation rate, over a day. Because pi/pa has a negative correlation with transpiration efficiency (mol CO2/mol H2O) of isolated plants, Δ in starch and sugars may be used to predict differences in this efficiency. This new method may be useful in ecophysiological studies and in selection for improved transpiration efficiency in breeding programs for C3 species. PMID:16666476

  13. Fractionation of the stable carbon isotope ratio of essential fatty acids in zebrafish Danio rerio and mud snails Bellamya chinensis.

    PubMed

    Fujibayashi, Megumu; Ogino, Masahiro; Nishimura, Osamu

    2016-02-01

    Fractionation of stable carbon (C) isotopes in the essential fatty acids 18:2n-6, 18:3n-3, 20:4n-6, 20:5n-3, and 22:6n-3 was investigated in the zebrafish Danio rerio and the mud snail Bellamya chinensis fed the same two diets. These diets differed in essential fatty acid compositions: (1) TetraMin contained all five fatty acids, and (2) Chlorella contained only two, 18:2n-6 and 18:3n-3. On average, the isotopic fractionation was -0.5 ± 0.9 ‰ for 18:2n-6 and 18:3n-3 for all experiments, indicating that the fractionation of these essential fatty acids was negligible. However, the isotopic fractionation of 20:4n-6, 20:5n-3, and 22:6n-3 varied greatly between species and between diets. The isotopic fractionation of the Chlorella diet was -0.2 and -6.9 ‰ for zebrafish and mud snail, but 4.2 and -1.3 ‰, respectively, when these consumers were fed TetraMin. This variation could be explained by the different amount of assimilation and the biosynthesis of these fatty acids from their precursors (i.e., 18:2n-6 and 18:3n-3). These results indicate that the isotopic composition of C20 and C22 essential fatty acids was strongly influenced by the fatty acid composition in the diets. Thus the stable C isotope ratios of C18 essential fatty acids in consumers are more useful as dietary tracers in food web studies. PMID:26537876

  14. The influences of cultivation setting on inflorescence lipid distributions, concentrations, and carbon isotope ratios of Cannabis sp.

    PubMed

    Tipple, Brett J; Hambach, Bastian; Barnette, Janet E; Chesson, Lesley A; Ehleringer, James R

    2016-05-01

    While much is known about how the growth environment influences many aspects of floral morphology and physiology, little is known about how the growth setting influences floral lipid composition. We explored variations in paraffin wax composition in Cannabis sp., a cash crop grown both indoors and outdoors across the United States today. Given an increased focus on regulation of this crop, there are additional incentives to certify the setting of Cannabis cultivation. To understand the impacts of the growth environment, we studied distributions, concentrations, and carbon isotope ratios of n-alkanes isolated from Cannabis sp. inflorescences to assess if variations within these lipid parameters were related to known growth settings of specimens seized by federal agents. We found that Cannabis plants cultivated under open-field settings had increased inflorescence paraffin wax abundances and greater production of lower molecular weight n-alkanes relative to plants grown in enclosed environments. Further, the carbon isotope ratios of n-C29 from Cannabis plants grown in enclosed environments had relatively lower carbon isotope (δ(13)C) values compared to plants from open-field environments. While this set of observations on seized plant specimens cannot address the particular driver behind these observations, we posit that (a) variations in irradiance and/or photoperiod may influence the distribution and concentration of inflorescence lipids, and (b) the δ(13)C value of source CO2 and lipid concentration regulates the δ(13)C values of inflorescence n-C29 and bulk Cannabis plant materials. Nonetheless, by using a cultivation model based on δ(13)C values of n-C29, the model correctly identified the growth environment 90% of time. We suggest that these lipid markers may be used to trace cultivation methods of Cannabis sp. now and become a more powerful marker in the future, once the mechanism(s) behind these patterns is uncovered. PMID:27045381

  15. Carbon Isotope Ratios Of Carbon Dioxide In The Urban Salt Lake Valley, Utah USA: Source And Long-Term Monitoring Observations

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.; Lai, C.; Strong, C.; Pataki, D. E.; Bowling, D. R.; Schauer, A. J.; Bush, S.

    2011-12-01

    A high-precision, decadal record of carbon isotope ratios in atmospheric carbon dioxide has been produced for the urbanized Salt Lake Valley, Utah USA. These data complement a similar time series of atmospheric carbon dioxide concentrations for different locations in the same urban region. This isotopic record includes diurnal and nocturnal observations based on flask (IRMS-based) and continuous (TDL-based) measurement systems. These data reveal repeatable diurnal and seasonal variations in the anthropogenic and biogenic carbon sources that can be used to reconstruct different source inputs. As the Salt Lake Valley is an isolated urban region, the impacts of local anthropogenic inputs can be distinguished from regional patterns as measured by NOAA at the rural Wendover monitoring station 200 km to the west of the Salt Lake Valley. Complementary data, such as vehicle exhaust, emission from power plants and household furnaces, plant and soil organic matter, are also provided to quantify the carbon isotope ratios of the predominant anthropogenic and biogenic sources within the Salt Lake Valley. The combined source and long-term observational values will be made freely available and their utility is discussed for modeling efforts including urban metabolism modeling and atmospheric trace gas modeling.

  16. Isotope Ratios of Cellulose from Plants Having Different Photosynthetic Pathways

    PubMed Central

    Sternberg, Leonel O.; Deniro, Michael J.; Johnson, Hyrum B.

    1984-01-01

    Hydrogen and carbon isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from C3, C4, and Crassulacean acid metabolism (CAM) plants were determined for plants growing within a small area in Val Verde County, Texas. Plants having CAM had distinctly higher deuterium/hydrogen (D/H) ratios than plants having C3 and C4 metabolism. When hydrogen isotope ratios are plotted against carbon isotope ratios, each photosynthetic mode separates into a distinct cluster of points. C4 plants had many D/H ratios similar to those of C3 plants, so that hydrogen isotope ratios cannot be used to distinguish between these two photosynthetic modes. Portulaca mundula, which may have a modified photosynthetic mode between C4 and CAM, had a hydrogen isotope ratio between those of the C4 and CAM plants. When oxygen isotope ratios are plotted against carbon isotope ratios, no distinct clustering of the C4 and CAM plants occurs. Thus, oxygen isotope ratios are not useful in distinguishing between these metabolic modes. A plot of hydrogen isotope ratios versus oxygen isotope ratios for this sample set shows considerable overlap between oxygen isotope ratios of the different photosynthetic modes without a concomitant overlap in the hydrogen isotope ratios of CAM and the other two photosynthetic modes. This observation is consistent with the hypothesis that higher D/H ratios in CAM plants relative to C3 and C4 plants are due to isotopic fractionations occurring during biochemical reactions. PMID:16663460

  17. Carbon and nitrogen isotopic ratios of suspended particulate organic matter (SPOM) in the Black Sea water column

    NASA Astrophysics Data System (ADS)

    Çoban-Yıldız, Yeşim; Altabet, Mark A.; Yılmaz, Ayşen; Tuğrul, Süleyman

    2006-08-01

    Carbon and nitrogen isotopic ratios ( δ15N and δ13C) of suspended particulate organic matter (SPOM) in the water column of the Black Sea were measured at a total of nine stations in September-October (autumn) 1999 and May 2001. For comparison, a station in the Mediterranean Sea and one in the Sea of Marmara were sampled in October 1999. Large-sized particle samples, as well as samples of surface sediment were also collected for N and C isotopic analysis. The results revealed important vertical and regional variations in N and C isotopic composition. Seasonal variations in SPOM δ15N and δ13C were not apparent. SPOM in the euphotic zone (EZ), oxycline, and suboxic/anoxic interface layers of the water column was characterized by distinct isotopic composition. In the EZ, the N and C isotopic ratios of SPOM were in the range typically observed for plankton-derived SPOM in the surface ocean (EZ means ranged from 2.7‰ to 5.9‰ for δ15N and from -24.0‰ to -21.5‰ for δ13C). Shelf region SPOM had higher δ15N and lower δ13C (EZ means of 5.9‰ and -24.0‰, respectively). Large-sized particles (LPOM) collected by zooplankton net tows had ˜3‰ higher δ15N values compared to SPOM, indicating fractionation during trophic transfer of nitrogen. SPOM in the oxycline increased by 3-6‰ for δ15N, while δ13C decreased by -2‰ to -4‰, which may be attributed to greater lipid content. In the suboxic/anoxic interface zone, SPOM isotopic ratios ( δ15N as low as 0.0‰ to -8.0‰) suggest chemoautotrophic production leading to dominance of new, in situ produced organic matter. The location of the most negative δ15N values indicates that chemoautotrophic production is most intense at the shelf-break regions, possibly enhanced by mixing of oxygenated and nitrate-rich Mediterranean inflow waters with suboxic/anoxic Black Sea water.

  18. Stable nitrogen and carbon isotope ratios indicate traditional and market food intake in an indigenous circumpolar population.

    PubMed

    Nash, Sarah H; Bersamin, Andrea; Kristal, Alan R; Hopkins, Scarlett E; Church, Rebecca S; Pasker, Renee L; Luick, Bret R; Mohatt, Gerald V; Boyer, Bert B; O'Brien, Diane M

    2012-01-01

    The transition of a society from traditional to market-based diets (termed the nutrition transition) has been associated with profound changes in culture and health. We are developing biomarkers to track the nutrition transition in the Yup'ik Eskimo population of Southwest Alaska based on naturally occurring variations in the relative abundances of carbon and nitrogen stable isotopes (δ(15)N and δ(13)C values). Here, we provide three pieces of evidence toward the validation of these biomarkers. First, we analyzed the δ(15)N and δ(13)C values of a comprehensive sample of Yup'ik foods. We found that δ(15)N values were elevated in fish and marine mammals and that δ(13)C values were elevated in market foods containing corn or sugar cane carbon. Second, we evaluated the associations between RBC δ(15)N and δ(13)C values and self-reported measures of traditional and market food intake (n = 230). RBC δ(15)N values were correlated with intake of fish and marine mammals (r = 0.52; P < 0.0001). RBC δ(13)C values were correlated with intake of market foods made from corn and sugar cane (r = 0.46; P < 0.0001) and total market food intake (r = 0.46; P < 0.0001). Finally, we assessed whether stable isotope ratios captured population-level patterns of traditional and market intake (n = 1003). Isotopic biomarkers of traditional and market intake were associated with age, community location, sex, and cultural identity. Self-report methods showed variations by age and cultural identity only. Thus, stable isotopes show potential as biomarkers for monitoring dietary change in indigenous circumpolar populations. PMID:22157543

  19. Stable carbon isotope ratios of ethane over the North Pacific: Atmospheric measurements and global chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Saito, Takuya; Stein, Olaf; Tsunogai, Urumu; Kawamura, Kimitaka; Nakatsuka, Takeshi; Gamo, Toshitaka; Yoshida, Naohiro

    2011-01-01

    The atmospheric mixing ratios of ethane and its stable carbon isotope ratios (δ13C) were measured over the North Pacific (2°N to 38°N, 140°E to 90°W) during oceanographic cruises in summer and autumn. The measured mixing ratios were relatively low (mostly <1 ppbv) over the North Pacific, whereas elevated ethane levels (>1 ppbv) were observed over the western North Pacific near Japan, with lower δ13C values (approximately -25‰), suggesting recent emissions from neighboring source regions. The most 13C-enriched values of ethane (approximately -16‰) were observed over the western equatorial Pacific rather than the central and eastern equatorial Pacific. This is likely caused by the kinetic isotope effect (KIE) for the removal of ethane during the atmospheric transport from potential upwind source regions to the most remote region under the prevailing trade easterly winds. The measurements were compared with the results of a global chemical transport model including two ethane isotopologues (12C2H6 and 13C2H6). The model-estimated δ13C values were too high compared with the observations. It is likely that this discrepancy is partly due to an approximately 40% overestimation of the reported KIE for the reaction between ethane and OH radicals.

  20. Cretaceous shales from the western interior of North America: sulfur/carbon ratios and sulfur-isotope composition.

    USGS Publications Warehouse

    Gautier, D.L.

    1986-01-01

    Sulphur/carbon ratios in cores of selected Cretaceous marine shales average 0.67, a value greater than that observed in recent marine sediments and much higher than global values calculated for the Cretaceous. This may be ascribed to generally low levels of bioturbation and enhanced efficiency of sulphate reduction due to low oxygen levels in Cretaceous seaways. Isotopic compositions of pyrite sulphur vary systematically with level of oxygenation of the depositional environment and therefore with organic carbon abundance and type of organic matter. Samples with >4% organic carbon are extremely depleted in 34S (mean delta 34S -31per mille) and contain hydrogen-rich organic matter. Samples containing <1.5% organic carbon display relatively 'heavy' but wide-ranging delta 34S values (-34.6 to +16.8per mille) and contain hydrogen-poor organic matter. Samples with intermediate amounts of organic carbon have average delta 34S of -25.9per mille and contain both types of organic matter. Relations between the nature of these shales, and their sedimentation rate and depositional environment are discussed.-L.C.H.

  1. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater

    NASA Technical Reports Server (NTRS)

    Francois, L. M.; Walker, J. C.

    1992-01-01

    A numerical model describing the coupled evolution of the biogeochemical cycles of carbon, sulfur, calcium, magnesium, phosphorus, and strontium has been developed to describe the long-term changes of atmospheric carbon dioxide and climate during the Phanerozoic. The emphasis is on the effects of coupling the cycles of carbon and strontium. Various interpretations of the observed Phanerozoic history of the seawater 87Sr/86Sr ratio are investigated with the model. More specifically, the abilities of continental weathering, volcanism, and surface lithology in generating that signal are tested and compared. It is suggested that the observed fluctuations are mostly due to a changing weatherability over time. It is shown that such a conclusion is very important for the modelling of the carbon cycle. Indeed, it implies that the conventional belief that the evolution of atmospheric carbon dioxide and climate on a long time scale is governed by the balance between the volcanic input of CO2 and the rate of silicate weathering is not true. Rather carbon exchanges between the mantle and the exogenic system are likely to have played a key role too. Further, the increase of the global weathering rates with increasing surface temperature and/or atmospheric CO2 pressure usually postulated in long-term carbon cycle and climate modelling is also inconsistent with the new model. Other factors appear to have modulated the weatherability of the continents through time, such as mountain building and the existence of glaciers and ice sheets. Based on these observations, a history of atmospheric carbon dioxide and climate during Phanerozoic time, consistent with the strontium isotopic data, is reconstructed with the model and is shown to be compatible with paleoclimatic indicators, such as the timing of glaciation and the estimates of Cretaceous paleotemperatures.

  2. An analytical system for studying the stable isotopes of carbon monoxide using continuous flow-isotope ratio mass spectrometry (CF-IRMS)

    NASA Astrophysics Data System (ADS)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-02-01

    In the atmosphere, carbon monoxide (CO) is the major sink for the hydroxyl radical (OH •), has multiple anthropogenic and natural sources and considerable spatial and seasonal variability. Measurements of CO isotopic composition are useful in constraining the strengths of its individual source and sink processes and thus its global cycle. A fully automated system for δ13C and δ18O analysis has been developed to extract CO from an air sample, convert CO into carbon dioxide (CO2) using the Schütze reagent, and then determine the isotopic composition in an isotope ratio mass spectrometer (IRMS). The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is only 1-3% of the typical sample size. The repeatability is 0.1‰ for δ13C and 0.2‰ for δ18O. The peak area allows simultaneous determination of the mole fraction with an analytical repeatability of ~0.7 nmol mol-1 for 100 mL of typical ambient air (185.4 nmol mol-1 of CO). A single, automated, measurement is performed in 18 min, so multiple measurements can be combined conveniently to improve precision.

  3. The ratios of carbon and non-radiogenic helium and argon isotopes in the mantle and crustal rocks

    NASA Technical Reports Server (NTRS)

    Lokhov, K.; Levsky, L.

    1994-01-01

    The studies of the relations of carbon and primary isotopes of noble gases were carried out on the natural gases and on the mantle rocks from the mantle M-type sources, which represent the degassed mantle reservoir (MORB's). These works has the aim of estimation of the values of the C/3He ratios in the deep mantle fluids to determine the flux of the mantle CO2 on the basis of known flux of primary mantle 3He. It was found, that in the natural gases the values of the C/3He ratios fall into the range from 1 times E plus 6 to 1 times E plus 15, and in the fluids of MORB's are constant near 2 times E plus 9. We have studied the mantle rocks from the relatively undergassed mantle P minus type sources: continental; Baikal Rift (Siberia), Mongolia, Catalonia (Spain), Pannonia Depression (central Europe) and ocean; Spietzbergen isl., Hawaii isl., Canarian isl. It ws found, that in mantle xenolites and the host alkaline basalts from the continental rifts and ocean islands, the values of the C/3He ratios fall into the range from E plus 11 to E plus 15 (and this result needed to be explained; the higher carbon to helium ratios is relatively undergassed mantle reservoir compared with the degassed one, requires whether hilly compatibility of helium compared with carbon, whether additional flux of 3He to the degassed mantle reservoir). From the other hand it was found that in the mantle rocks from the sources of P minus and M minus types, continental carbonatites, the values of the C/36Ar ratios are constant in the range from E plus 9 to E plus 10, the close values have the MORB's also.

  4. Characterisation of crude oils by carbon and sulphur isotope ratio measurements as a tool for pollution control.

    PubMed

    Becker, S; Hirner, A V

    1998-01-01

    The potential of carbon and sulphur isotope ratios to group crude oils with respect to their origin was investigated. Sample selection was based on the actual crude oil imports to Germany. Analysed crude oils from Algeria, the Community of Independent States (CIS), Middle East, Nigeria, the North Sea and Venezuela make up over 86% of the German crude oil imports. The oil as received was deasphalted and the maltene fraction was separated by MPLC into saturated, aromatic and polar fractions. Due to overlapping areas, it is not possible to group the crude oils by their delta 13C values alone. A complete grouping of the crude oils with respect to their origin can only be achieved by the combined use of delta 13C and delta 34S of crude oils, and isotope type-curves. In some cases isotope type-curves enable differentiation between different oil fields of the same geographical origin. In order to determine the post-spill changes of delta 13C values, an experimental spill of crude oil was studied over a period of seven weeks in an outdoor aquarium containing pond water. The delta 13C measurements of crude oil fractions showed changes up to 1.1/1000 during the oil spill simulation. The delta 13C values of the polar fraction exhibited the smallest change, with a variation of 0.3/1000, and are therefore especially useful for the characterisation of crude oil spills. PMID:9919680

  5. Influence of Reproduction on Stable-Isotope Ratios: Nitrogen and Carbon Isotope Discrimination between Mothers, Fetuses, and Milk in the Fin Whale, a Capital Breeder.

    PubMed

    Borrell, A; Gómez-Campos, E; Aguilar, A

    2016-01-01

    In mammals, the influence of gestation and lactation on the tissue stable-isotope ratios of females, fetuses, and milk remains poorly understood. Here we investigate the incidence of these events on δ(13)C and δ(15)N values in fin whales sampled off northwestern Spain between 1983 and 1985. The effect of gestation on tissue stable-isotope ratios was examined in the muscle of pregnant females (n = 13) and their fetuses (n = 10) and that of lactation in the muscle of nursing females (n = 21) and their milk (n = 25). Results suggest that fetuses are enriched compared to their mothers in both (15)N (Δ(15)N = 1.5‰) and (13)C (Δ(13)C =1.1‰), while, compared to muscle, milk is enriched in (15)N (Δ(15)N = 0.3‰) but depleted in (13)C (Δ(13)C = -0.62‰). This pattern is consistent with that previously observed for other species that, like the fin whale, rely on endogenous energy during reproduction, and it substantiates a general difference in the physiological processing of nitrogen and carbon balances between income and capital breeders. These findings are relevant to the understanding of the energetic balance of mammals during gestation and lactation and are central when inferences on trophic ecology are drawn from isotopic values of reproductive females. PMID:27082523

  6. Performance Evaluation of a New, Tunable-Diode Laser Trace-Gas Analyzer for Isotope Ratios of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Sargent, S.

    2015-12-01

    Newly available interband cascade lasers (ICLs) have enabled the development of a family of tunable-diode laser trace-gas analyzers that do not require liquid nitrogen to cool the laser. The lasers are available in the 3000 to 6000 nm range, providing access to the strong mid-infrared absorption lines for important gases such as methane, nitrous oxide, and carbon dioxide. These ICLs are fabricated with distributed feedback to improve their stability and spectroscopic quality. A recently released trace-gas analyzer for carbon dioxide isotopes (TGA200A, Campbell Scientific, Inc.) was evaluated for short- and long-term precision using Allan variance. Accuracy and linearity of CO2 mole fraction was assessed with a set of seven NOAA standard reference gases ranging from 298.35 to 971.48 ppm. Dilution of high-concentration CO2 with CO2-free air demonstrated the linearity of isotope ratio measurements beyond 1000 ppm CO2. Two analyzer variants were tested: one for CO2, δ13C and δ18O; and the other for CO2 and δ13C at enhanced precision.

  7. Carbon isotope ratio analysis of endogenous glucocorticoid urinary metabolites after cortisone acetate and adrenosterone administration for doping control.

    PubMed

    Brooker, Lance; Cawley, Adam; Kazlauskas, Ray; Goebel, Catrin; George, Adrian

    2012-12-01

    Glucocorticoids are listed on the World Anti-Doping Agency (WADA) Prohibited List of substances. The detection of the administration of hydrocortisone and cortisone is complicated by the fact that the human body also produces these steroids naturally. Gas chromatography-combustion-isotope ratio mass spectrometry can be utilized to determine the use of endogenous glucocorticoids by measuring the carbon isotope ratio (CIR) of their resulting metabolites in human urine samples. A comprehensive sample preparation protocol for the analysis of endogenous glucocorticoid urinary metabolites was developed and validated, incorporating the use of high performance liquid chromatography (HPLC) for purification and chemical oxidation for derivatisation. Target compounds were tetrahydrocortisol and tetrahydrocortisone, and 11β-hydroxyetiocholanolone, 11-oxoetiocholanolone and 11β-hydroxyandrosterone, while pregnanediol functioned as the endogenous reference compound. Urine samples from a population of 50 volunteers were analyzed to determine CIR reference limits. Excretion studies of the endogenous glucocorticoid preparation cortisone acetate (25 mg oral) and the dietary supplement adrenosterone (75 mg oral) were conducted with six male individuals. Variable changes in steroid metabolite isotopic composition were found across subjects after administration. The study also revealed that CIR analysis of the major glucocorticoid metabolites tetrahydrocortisol and tetrahydrocortisone is necessary to unambiguously distinguish administration of cortisone and adrenosterone, the former officially restricted to out-of-competition use by athletes, the latter not being restricted at the current time. Moreover, this study reaffirms that CIR methods for the doping control of endogenous steroids should not rely upon a single ERC, as the administration of an appropriate precursor to that ERC could cause complications during analysis. PMID:22987608

  8. Modelling the Phanerozoic carbon cycle and climate - Constraints from the Sr-87/Sr-86 isotopic ratio of seawater

    NASA Technical Reports Server (NTRS)

    Francois, Louis M.; Walker, James C. G.

    1992-01-01

    A numerical model is developed for simulating the long-term changes of atmospheric CO2 and climate during the Phanerozoic. The model describes the coupled evolution of the biogeochemical cycles of C, S, Ca, Mg, P, and Sr, with the emphasis on the effect of coupling the cycles of carbon and strontium and on interpreting the observed seawater Sr-87/Sr-86 ratios. The abilities of continental weathering, volcanism, and surface lithology in generating that signal are tested and compared. The results obtained are used to reconstruct a history of atmospheric CO2 and climate during Phanerozoic time, consistent with the strontium isotopic data. It is shown that the predicted history is compatible with paleoclimatic indicators, such as the timing of glaciation and the estimates of Cretaceous paleotemperatures.

  9. Diel changes in stable carbon isotope ratios and trace element concentrations in the Clark Fork River, MT.

    NASA Astrophysics Data System (ADS)

    Parker, S.; Gammons, C.; Degrandpre, M.

    2004-12-01

    down river from a site above the sampling area. One component of this project was to demonstrate the presence of a diel stable carbon isotope (δ 13C) cycle mediated by the use and production of dissolved carbon dioxide. Aquatic plants use carbon dioxide during photosynthesis and there is a carbon isotope fractionation associated with the removal of CO2 from the water column. This work demonstrates the presence of a diel cycle in the stable carbon isotope ratio δ 13C at both sites. The magnitude of the carbon isotope cycle is significantly different at the two sites and this is correlated with the rates of photosynthesis and respiration. The difference in productivity at the two sites is associated with the difference in nutrient levels and the nitrate to phosphate ratio.

  10. Carbon isotope ratios in logged and unlogged boreal forests: Examination of the potential for determining wildlife habitat use

    NASA Astrophysics Data System (ADS)

    France, Robert

    1996-03-01

    Due to assimilation of recycled CO2 from litter decomposition and photosynthetic changes in carbon fractionation at low light levels, the foliage at the base of a forest is often more depleted in13C compared to that exposed to the atmosphere in either the canopy or in open clearings. This is referred to as the canopy effect. African research has indicated that these habitat differences in foliar δ13C can be substantial enough to affect the carbon isotope ratios of resident fauna. Previous work documenting a 30-year chronology on moose teeth from Isle Royale National Park indicated a progressive depletion in13C and suggested that this could be due to forest regrowth following extensive burning. The present study examined the assumption implicit in this hypothesis that foliar δ13C varies between open and closed boreal forest sites. I found a marginal canopy effect of 2‰ δ13C difference between upper canopy and ground flora for a forest in northwestern Ontario and an average difference of 1.2‰ in under- and mid-story vegetation between closed forests and open clear-cuts. Because of these small differences, the utility of carbon isotope analysis in quantifying temporally integrated exploitation of deforested habitats will be low for northern boreal locations. In denser forests, such as those in the tropics or western North American where the canopy effect can be expected to be much greater, δ13C analysis may still offer some promise for determining selection by wildlife of disturbed habitats.

  11. Consistency of NMR and mass spectrometry determinations of natural-abundance site-specific carbon isotope ratios. The case of glycerol.

    PubMed

    Zhang, B L; Trierweiler, M; Jouitteau, C; Martin, G J

    1999-07-01

    Quantitative determinations of natural-abundance carbon isotope ratios by nuclear magnetic resonance (SNIF-NMR) have been optimized by appropriate selection of the experimental conditions and by signal analysis based on a dedicated algorithm. To check the consistency of the isotopic values obtained by NMR and mass spectrometry (IRMS) the same glycerol samples have been investigated by both techniques. To have access to site-specific isotope ratios by IRMS, the products have been degraded and transformed into two derivatives, one of which contains carbons 1 and 3 and the other carbon 2 of glycerol. The sensitivity of the isotopic parameters determined by IRMS to fractionation effects possibly occurring in the course of the chemical transformations has been investigated, and the repeatability and reproducibility of both analytical chains have been estimated. The good agreement observed between the two series of isotopic results supports the reliability of the two different approaches. SNIF-NMR is therefore a very attractive tool for routine determination, in a single nondestructive experiment, of the carbon isotope distribution in glycerol, and the method can be applied to other compounds. Using this method, the isotopic distributions have been compared for glycerol samples, obtained from plant or animal oils, extracted from fermented media, or prepared by chemical synthesis. Typical behaviors are characterized. PMID:21662780

  12. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  13. Application of Stable Carbon Isotope Ratios to Recognize Natural Biodegradation of MTBE

    EPA Science Inventory

    The organisms that degrade MTBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  14. Carbon and nitrogen stable isotope ratios can estimate anionic polyacrylamide degradation in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water soluble anionic polyacrylamide (PAM) is a highly effective erosion-preventing and infiltration-enhancing polymer, when applied at rates of 1 to 10 g/m-3 in furrow irrigation water. PAM degradation has not directly been measured in soil or water. Natural abundance of the carbon (13C/12C) isoto...

  15. Apportionment of carbon dioxide over central Europe: insights from combined measurements of atmospheric CO2 mixing ratios and carbon isotope composition

    NASA Astrophysics Data System (ADS)

    Zimnoch, M.; Jelen, D.; Galkowski, M.; Kuc, T.; Necki, J.; Chmura, L.; Gorczyca, Z.; Jasek, A.; Rozanski, K.

    2012-04-01

    The European continent, due to high population density and numerous sources of anthropogenic CO2 emissions, plays an important role in the global carbon budget. Nowadays, precise measurements of CO2 mixing ratios performed by both global and regional monitoring networks, combined with appropriate models of carbon cycle, allow quantification of the European input to the global atmospheric CO2 load. However, measurements of CO2 mixing ratios alone cannot provide the information necessary for the apportionment of fossil-fuel related and biogenic contributions to the total CO2 burden of the regional atmosphere. Additional information is required, for instance obtained through measurements of radiocarbon content in atmospheric carbon dioxide. Radiocarbon is a particularly useful tracer for detecting fossil carbon in the atmosphere on different spatial and temporal scales. Regular observations of atmospheric CO2mixing ratios and their isotope compositions have been performed during the period of 2005-2009 at two sites located in central Europe (southern Poland). The sites, only ca. 100 km apart, represent two extreme environments with respect to the extent of anthropogenic pressure: (i) the city of Krakow, representing typical urban environment with numerous sources of anthropogenic CO2, and (ii) remote mountain site Kasprowy Wierch, relatively free of local influences. Regular, quasi-continuous measurements of CO2 mixing ratios have been performed at both sites. In addition, cumulative samples of atmospheric CO2 have been collected (weekly sampling regime for Krakow and monthly for Kasprowy Wierch) to obtain mean carbon isotope signature (14C/12C and 13C/12C ratios) of atmospheric CO2 at both sampling locations. Partitioning of the local atmospheric CO2 load at both locations has been performed using isotope- and mass balance approach. In Krakow, the average fossil-fuel related contribution to the local atmospheric CO2 load was equal to approximately 3.4%. The biogenic

  16. Investigating temperature effects on methane production and oxidation in the rice ecosystem using stable carbon and hydrogen isotope ratios

    NASA Astrophysics Data System (ADS)

    Rice, A. L.; Sithole, A.; Shearer, M. J.; Hanson, E.; Fisher, A.; Khalil, A. K.

    2010-12-01

    Irrigated rice is a major agricultural source of methane emissions that contributes about 15% of global atmospheric methane (CH4). Our work investigates the relationships between temperature and CH4 production, oxidation, and flux in the rice ecosystem. This is central to understanding the response of the global CH4 emissions from rice under a changing climate. Temperatures were regulated in sixteen rice plots grown in a research greenhouse using four waterbath-temperature control systems held at 20°C, 24°C, 28°C, and 32°C over the course of a growing season. Belowground porewater samples were collected from each treatment weekly and CH4 was extracted into headspace N2 after vigorous shaking. Weekly flux samples were collected using acrylic static flux chambers placed over the rice plots. CH4 concentrations below and aboveground were measured using gas chromatography-flame ionization detection. The carbon (δ13C) and hydrogen (δD) isotopic composition of CH4 was measured using continuous-flow gas chromatography isotope ratio mass spectrometry. Results show that CH4 flux ranged from near zero to 30-60 mg/m2/hr in mid-season corresponding to a rise in porewater CH4 to 8-12 mg/L. Early season CH4 fluxes were larger in elevated temperature treatments but this difference was smaller, or even reversed in some cases, in the late season. Similar trends were observed in CH4 porewater concentration profiles. Results from isotopic measurements show mean belowground δ13C values between -44‰ and -52‰ relative to VPDB and δD values between -290‰ and -320‰ relative to VSMOW. Emitted CH4 had mean δ13C values which ranged from -50‰ to -60‰ VPDB. We integrate these results and interpret them using an empirically-driven concentration and isotope model to understand CH4 dynamics and to examine the effect of temperature on mechanisms that control CH4 emissions.

  17. Isotopic Ratio, Isotonic Ratio, Isobaric Ratio and Shannon Information Uncertainty

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wei, Hui-Ling

    2014-11-01

    The isoscaling and the isobaric yield ratio difference (IBD) probes, both of which are constructed by yield ratio of fragment, provide cancelation of parameters. The information entropy theory is introduced to explain the physical meaning of the isoscaling and IBD probes. The similarity between the isoscaling and IBD results is found, i.e., the information uncertainty determined by the IBD method equals to β - α determined by the isoscaling (α (β) is the parameter fitted from the isotopic (isotonic) yield ratio).

  18. Measurements of concentrations of chlorofluoromethanes (CFMs) carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems

    NASA Technical Reports Server (NTRS)

    Itoh, T.; Kubo, H.; Honda, H.; Tominaga, T.; Makide, Y.; Yakohata, A.; Sakai, H.

    1985-01-01

    Measurements of concentrations of chlorofluoromethanes (CFMs), carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems are reported. The balloon-borne grab-sampling system has been launched from Sanriku Balloon Center three times since 1981. It consists of: (1) six sampling cylinders, (2) eight motor driven values, (3) control and monitor circuits, and (4) pressurized housing. Particular consideration is paid to the problem of contamination. Strict requirements are placed on the choice of materials and components, construction methods, cleaning techniques, vacuum integrity, and sampling procedures. An aluminum pressurized housing and a 4-m long inlet line are employed to prevent the sampling air from contamination by outgassing of sampling and control devices. The sampling is performed during the descent of the system. Vertical profiles of mixing ratios of CF2Cl2, CFCl3 and CH4 are given. Mixing ratios of CF2Cl2 and CFCl3 in the stratosphere do not show the discernible effect of the increase of those in the ground level background, and decrease with altitude. Decreasing rate of CFCl3 is larger than that of CF2Cl2. CH4 mixing ratio, on the other hand, shows diffusive equilibrium, as the photodissociation cross section of CH4 is small and concentrations of OH radical and 0(sup I D) are low.

  19. The carbon kinetic isotope effects of ozone-alkene reactions in the gas-phase and the impact of ozone reactions on the stable carbon isotope ratios of alkenes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Anderson, R. S.; Rudolph, J.; Huang, L.; Ernst, D.

    2003-07-01

    The kinetic isotope effects (KIEs) for several ozone-alkene reactions in the gas phase were studied in a 30 L PTFE reaction chamber. The time dependence of the stable carbon isotope ratios and the concentrations were determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The following average KIE values were obtained: 18.9 +/- 2.8 (ethene), 9.5 +/- 2.5 (propene), 8.7 +/- 1 (1-butene), 8.1 +/- 0.4 (E-2-butene), 7.9 +/- 0.4 (1,3-butadiene), 6.7 +/- 0.9 (1-pentene), 7.3 +/- 0.2 (Z-2-pentene), 6.7 +/- 0.7 (cyclopentene), 6.1 +/- 1 (isoprene), 5.0 +/- 0.7 (1-hexene), 5.6 +/- 0.5 (cyclohexene), and 4.3 +/- 0.7 (1-heptene). These data are the first of their kind to be reported in the literature. The ozone-alkene KIE values show a systematic inverse dependence from alkene carbon number. Based on the observed KIEs, the contribution of ozone-alkene reactions to the isotopic fractionation of alkenes in the atmosphere can be estimated. On average this contribution is generally small compared to the impact of reaction with OH radicals. However, when OH-concentrations are very low, e.g. during nighttime and at high latitudes in winter, the contribution of the ozone reaction dominates and under these conditions the ozone-alkene reaction will have a clearly visible impact on the stable carbon isotope ratio of atmospheric alkenes.

  20. Hydrogen and carbon isotopic ratios of polycyclic aromatic compounds in two CM2 carbonaceous chondrites and implications for prebiotic organic synthesis

    NASA Astrophysics Data System (ADS)

    Huang, Yongsong; Aponte, José C.; Zhao, Jiaju; Tarozo, Rafael; Hallmann, Christian

    2015-09-01

    Study of meteoritic organic compounds offers a unique opportunity to understand the origins of the organic matter in the early Solar System. Meteoritic polycyclic aromatic hydrocarbons (PAHs) and heteropolycyclic aromatic compounds (HACs) have been studied for over fifty years, however; their hydrogen stable isotopic ratios (δD) have never been reported. Compound-specific δD measurements of PAHs and HACs are important, in part because the carbon isotopic ratios (δ13C) of various meteoritic PAHs cannot be readily distinguished from their terrestrial counterparts and it is difficult to rule out terrestrial contamination based on carbon isotopic ratios alone. In this study, we have extracted and identified more than sixty PAHs and HACs present in two CM2 carbonaceous chondrites Murchison and LON 94101. Their carbon and hydrogen stable isotopic ratios (δ13C and δD) were measured and used to discuss about their synthetic environments and formation mechanisms. The concentration of aromatic compounds is ∼30% higher in Murchison than in the Antarctic meteorite LON 94101, but both samples contained similar suites of PAHs and HACs. All PAHs and HACs found exhibited positive δD values (up to 1100‰) consistent with an extraterrestrial origin, indicating the relatively low δ13C values are indeed an inherent feature of the meteoritic aromatic compounds. The hydrogen isotopic data suggest aromatic compounds in carbonaceous chondrites were mainly formed in the cold interstellar environments. Molecular level variations in hydrogen and carbon isotopic values offer new insights to the formation pathways for the aromatic compounds in carbonaceous chondrites.

  1. Carbon and nitrogen stable isotope ratios and mercury concentration in the scalp hair of residents from Taiji, a whaling town.

    PubMed

    Endo, Tetsuya; Hayasaka, Moriaki; Hisamichi, Yohsuke; Kimura, Osamu; Haraguchi, Koichi

    2013-04-15

    We analyzed stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) as well as mercury (Hg) concentration in the scalp hair of Japanese who consumed whale meat and those who did not, and investigated the relationships among the δ(13)C and δ(15)N values and Hg concentration. The average δ(15)N and δ(13)C values of whale meat-eaters (10.11‰ and -18.5‰) were significantly higher than those of non-eaters (9.28‰ and -18.9‰), respectively. The average Hg concentration of whale meat-eaters (20.6 μg/g) was significantly higher than that of non-eaters (2.20 μg/g). Significant positive correlations were found between the δ(13)C and δ(15)N values and between the δ(15)N value and Hg concentration in the hair of whale meat-eaters, while the correlation between the δ(15)N value and Hg concentration was not statistically significant in the non-eaters. The consumption of whale meat may increase Hg concentration as well as δ(15)N and δ(13)C values in scalp hair. PMID:23453817

  2. Stable carbon isotope ratios and intrinsic water-use efficiency of Miocene fossil leaves compared to modern congeners

    SciTech Connect

    Marshall, J.D.; Zhang, J.; Rember, W.C.; Jennings, D.; Larson, P. )

    1994-06-01

    Miocene fossil leaves of forest trees were extracted from the Clarkia, Idaho fossil beds and their stable carbon isotope ratios were analyzed. Fossils had higher lignin concentrations and lower cellulose concentrations that modern leaves due to diagenesis and the HF used to extract the fossils. Therefore, [delta][sup 13]C of extracted fossil lignin was compared to that of modern lignin. Fossil lignin [delta][sup 13]C was significantly different from that of congeneric modern leaves (paired t-test, P<0.0001), but was 1.9% less negative. Gymnosperms (Metasequoia, Taxodium) were less negative than angiosperms (e.g., Magnolia, Quercus, Acer, Persea), but no difference between evergreen and deciduous species was detected. Using published estimates of the concentration and [delta][sup 13]C of atmospheric CO[sub 2] during the Miocene was estimated the CO[sub 2] partial pressure gradient across the stomata (intrinsic water-use efficiency). Intrinsic water-use efficiency was at least 70% higher during this past [open quotes]greenhouse[close quotes] period than at present.

  3. Quantifying precision and accuracy of measurements of dissolved inorganic carbon stable isotopic composition using continuous-flow isotope-ratio mass spectrometry

    PubMed Central

    Waldron, Susan; Marian Scott, E; Vihermaa, Leena E; Newton, Jason

    2014-01-01

    RATIONALE We describe an analytical procedure that allows sample collection and measurement of carbon isotopic composition (δ13CV-PDB value) and dissolved inorganic carbon concentration, [DIC], in aqueous samples without further manipulation post field collection. By comparing outputs from two different mass spectrometers, we quantify with the statistical rigour uncertainty associated with the estimation of an unknown measurement. This is rarely undertaken, but it is needed to understand the significance of field data and to interpret quality assurance exercises. METHODS Immediate acidification of field samples during collection in evacuated, pre-acidified vials removed the need for toxic chemicals to inhibit continued bacterial activity that might compromise isotopic and concentration measurements. Aqueous standards mimicked the sample matrix and avoided headspace fractionation corrections. Samples were analysed using continuous-flow isotope-ratio mass spectrometry, but for low DIC concentration the mass spectrometer response could be non-linear. This had to be corrected for. RESULTS Mass spectrometer non-linearity exists. Rather than estimating precision as the repeat analysis of an internal standard, we have adopted inverse linear calibrations to quantify the precision and 95% confidence intervals (CI) of the δ13CDIC values. The response for [DIC] estimation was always linear. For 0.05–0.5 mM DIC internal standards, however, changes in mass spectrometer linearity resulted in estimations of the precision in the δ13CVPDB value of an unknown ranging from ± 0.44‰ to ± 1.33‰ (mean values) and a mean 95% CI half-width of ±1.1–3.1‰. CONCLUSIONS Mass spectrometer non-linearity should be considered in estimating uncertainty in measurement. Similarly, statistically robust estimates of precision and accuracy should also be adopted. Such estimations do not inhibit research advances: our consideration of small-scale spatial variability at two points on a

  4. Stable carbon and oxygen isotopic analysis of carbon monoxide in soil gas using CF-IRMS by isotope-ratio monitoring of CO

    NASA Astrophysics Data System (ADS)

    Tsunogai, U.; Nakagawa, F.; Komatsu, D. D.; Gamo, T.

    2002-12-01

    We have developed a rapid and simple measurement system for both content and stable isotopic compositions (13C and 18O) of CO, using continuous flow isotope ratio mass spectrometry (CF-IRMS) by simultaneously monitoring the CO+ ion currents at masses 28, 29, and 30. The analytical system consisted sequentially of a sample trapping port (liquid nitrogen temperature silica gel and Molecular sieve 5A), a gas dryer, CO purification column (Molecular sieve 5A), a cryofocusing unit, and a final purification column using a GC capillary. Analytical precision of 0.2 \\permil for 13C and 0.4 \\permil for 18O can be realized for samples that contain as little as 300 pmol CO within 40 minutes for one sample analysis. Analytical blanks associated with the method are less than 1 pmol. The extent of analytical error in δ13C due to mass-independent fractionation of oxygen in natural CO is estimated to be less than 0.3 \\permil. Based on this system, we report herein a kinetic isotopic effect during CO consumption in soil. The observed KIEs are estimated to be \\pm8 \\permil for δ13C and \\pm12 \\permil for δ18O. Two steps must be involved in these KIEs: one is the fractionation during diffusion of CO into the soil pores, while the other is due to actual absorption by the active soil organism. The estimated value resembles with the theoretical maximum KIE for the fractionation during diffusion of CO into the soil pores. In addition, the estimated values are completely different from those for the CO + OH reaction, especially for δ18O, suggesting that the KIE is an useful indicator for distinguishing between these two major sink processes of CO. By estimating the average KIE during soil oxidation of CO through similar KIE measurements at different locations and/or seasons, we can estimate both global and local CO budgets, by balancing CO sources and sinks through the use of δ13C and δ18O of CO.

  5. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Virgo, Aurelio; Garcia, Milton

    2009-09-01

    Variation in transpiration efficiency (TE) and its relationship with the stable carbon isotope ratio of wood was investigated in the saplings of three tropical tree species. Five individuals each of Platymiscium pinnatum (Jacq.) Dugand, Swietenia macrophylla King and Tectona grandis Linn. f. were grown individually in large (760 l) pots over 16 months in the Republic of Panama. Cumulative transpiration was determined by repeatedly weighing the pots with a pallet truck scale. Dry matter production was determined by destructive harvest. The TE, expressed as experiment-long dry matter production divided by cumulative water use, averaged 4.1, 4.3 and 2.9 g dry matter kg(-1) water for P. pinnatum, S. macrophylla and T. grandis, respectively. The TE of T. grandis was significantly lower than that of the other two species. Instantaneous measurements of the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)), taken near the end of the experiment, explained 66% of variation in TE. Stomatal conductance was lower in S. macrophylla than in T. grandis, whereas P. pinnatum had similar stomatal conductance to T. grandis, but with a higher photosynthetic rate. Thus, c(i)/c(a) and TE appeared to vary in response to both stomatal conductance and photosynthetic capacity. Stem-wood delta(13)C varied over a relatively narrow range of just 2.2 per thousand, but still explained 28% of variation in TE. The results suggest that leaf-level processes largely determined variation among the three tropical tree species in whole-plant water-use efficiency integrated over a full annual cycle. PMID:19661136

  6. Stable Carbon Isotope Ratios of Lipid Biomarkers and Biomass for Sulfate-reducing Bacteria Grown with Different Substrates

    NASA Technical Reports Server (NTRS)

    Londry, K. L.; Jahnke, L. L.; Des Marais, D. J.

    2001-01-01

    We have determined isotope ratios of biomass and Fatty Acids Methyl Esters (FAME) for four Sulfate-Reducing Bacteria (SRB) grown lithotrophically and heterotrophically, and are investigating whether these biomarker signatures can reveal the ecological role and distribution of SRB within microbial mats. Additional information is contained in the original extended abstract.

  7. PATTERNS OF NITROGEN AND CARBON STABLE ISOTOPE RATIOS IN MACROFUNGI, PLANTS AND SOILS IN TWO OLD-GROWTH CONIFER FORESTS

    EPA Science Inventory

    Natural abundance stable isotope ratios represent a potentially valuable tool for studying fungal ecology. We measured 15N and 13C in ectomycorrhizal and saprotrophic macrofungi from two old-growth conifer forests, and in plants, woody debris, and soils. Fungi, plants, and so...

  8. Source identification of particulate organic matter in view of land uses in Shingil Creek using carbon, nitrogen and oxygen isotope ratios.

    NASA Astrophysics Data System (ADS)

    Kim, Dahae; Lee, Yeonjung; Ock, Giyoung; Kang, Sujin; Kim, Minseob; Choi, Jongwoo; Shin, Kyung-Hoon

    2016-04-01

    Anthropogenic inputs influence the quality and quantity of organic matter, which is important for recycling of nutrients and chemical elements. Stable isotope techniques are useful for distinguishing the origin of organic matter by using the characteristics that are distinctive between sources. Artificial Lake Shihwa, especially the Shingil creek is typically under the strong anthropogenic pressure with continuous continental inputs from various sources. Hence in this study, the characteristics and sources of organic matter in water and surface sediment of the Shingil creeks in the rural, urban, and industrial areas were evaluated by using carbon, nitrogen and oxygen isotope ratios, by analyzing samples collected during the rainy season and dry season. Among the input sources, the organic matter derived from industrial regions showed distinct nitrogen isotope values compared to other sites. Further studies including other techniques such as hydrogen isotope will provide an insight into the development of a strategy for effective water quality management in Lake Shihwa

  9. Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters

    NASA Technical Reports Server (NTRS)

    Bauer, J. E.; Haddad, R. I.; Des Marais, D. J.

    1991-01-01

    A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1-5 micromoles of carbon and has an associated blank of 0.1-0.2 micromole of carbon. Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3%. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The delta 13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC. The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average delta 13C = -12.4%). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and delta 13C of pore-water DOC was nearly 8% lighter at 1.5-2.0-cm depth than in the mat surface layer (0-0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and delta 13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters

  10. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils.

    PubMed

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex L; Werner, Roland A

    2016-04-19

    An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies. PMID:26974360

  11. The CN isotopic ratios in comets

    NASA Astrophysics Data System (ADS)

    Manfroid, J.; Jehin, E.; Hutsemékers, D.; Cochran, A.; Zucconi, J.-M.; Arpigny, C.; Schulz, R.; Stüwe, J. A.; Ilyin, I.

    2009-08-01

    Our aim is to determine the isotopic ratios 12C/13C and 14N/15N in a variety of comets and link these measurements to the formation and evolution of the solar system. The 12C/13C and 14N/15N isotopic ratios are measured for the CN radical by means of high-resolution optical spectra of the R branch of the B-X (0, 0) violet band. 23 comets from different dynamical classes have been observed, sometimes at various heliocentric and nucleocentric distances, in order to estimate possible variations of the isotopic ratios in parent molecules. The 12C/13C and 14N/15N isotopic ratios in CN are remarkably constant (average values of, respectively, 91.0 ± 3.6 and 147.8 ± 5.7) within our measurement errors, for all comets whatever their origin or heliocentric distance. While the carbon isotopic ratio does agree with the terrestrial value (89), the nitrogen ratio is a factor of two lower than the terrestrial value (272), indicating a fractionation in the early solar system, or in the protosolar nebula, common to all the comets of our sample. This points towards a common origin of the comets independently of their birthplaces, and a relationship between HCN and CN. Appendices and Table [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 268.C-5570, 270.C-5043, 073.C-0525, 274.C-5015 and 075.C-0355(A).

  12. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-09-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α-H, α-NH2 amino acids that correspond to predictions made for formation via Strecker-cyanohydrin synthesis. We also observe light δ13C signatures for β-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ω-amino acids). Higher deuterium enrichments are observed in α-methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent-body chemistry.

  13. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  14. Reconstructing the diets of Greek Byzantine populations (6th-15th centuries AD) using carbon and nitrogen stable isotope ratios.

    PubMed

    Bourbou, Chryssi; Fuller, Benjamin T; Garvie-Lok, Sandra J; Richards, Michael P

    2011-12-01

    Documentary evidence and artistic representations have traditionally served as the primary sources of information about Byzantine diet. According to these sources, Byzantine diet was based on grain (primarily wheat and barley), oil, and wine, supplemented with legumes, dairy products, meat, and marine resources. Here, we synthesize and compare the results of stable isotope ratio analyses of eight Greek Byzantine populations (6th-15th centuries AD) from throughout Greece. The δ(13) C and δ(15) N values are tightly clustered, suggesting that all of these populations likely consumed a broadly similar diet. Both inland and coastal Byzantine populations consumed an essentially land-based C(3) diet, significant amounts of animal protein, and possibly some C(4) plants, while no evidence of a general dependence on low-δ(15) N legumes was observed. One interesting result observed in the isotopic data is the evidence for the consumption of marine protein at both coastal sites (a reasonable expectation given their location) and for some individuals from inland sites. This pattern contrasts with previous isotopic studies mainly on prehistoric Greek populations, which have suggested that marine species contributed little, or not at all, to the diet. The possibility that fasting practices contributed to marine protein consumption in the period is discussed, as are possible parallels with published isotope data from western European medieval sites. PMID:21952735

  15. A capillary absorption spectrometer for stable carbon isotope ratio (13C/12C) analysis in very small samples

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Sams, R. L.; Blake, T. A.; Newburn, M.; Moran, J.; Alexander, M. L.; Kreuzer, H.

    2012-02-01

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO2 samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 (4.34 μm). This initial CAS system can achieve relative isotopic precision of about 10 ppm 13C, or ˜1‰ (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO2 concentrations ˜400-750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to ˜2 Torr. Overall 13C/12C ratios can be calibrated to ˜2‰ accuracy with diluted CO2 standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1000 scans are co-added in ˜10 s. The CAS is meant to work directly with converted CO2 samples from a laser ablation-catalytic combustion micro-sampler to provide 13C/12C ratios of small biological isolates currently operating with spatial resolutions ˜50 μm.

  16. Spatial changes in carbon and nitrogen stable isotope ratios of sludge and associated organisms in a biological sewage treatment system.

    PubMed

    Onodera, Takashi; Kanaya, Gen; Syutsubo, Kazuaki; Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    Carbon and nitrogen stable isotope ratios (δ¹³C and δ¹⁵N) have been utilized as powerful tools for tracing energy or material flows within food webs in a range of environmental studies. However, the techniques have rarely been applied to the study of biological wastewater treatment technologies. We report on the spatial changes in δ¹³C and δ¹⁵N in sludge and its associated biotic community in a wastewater treatment system. This system consisted of an upflow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) which is a novel type of trickling filter. The results showed clear spatial changes in the δ¹³C and δ¹⁵N of suspended solids (SS), retained sludge, and macrofauna (oligochaetes and fly larvae) in the system. The δ¹³C and δ¹⁵N was used as a natural tracer to determine the SS dynamic throughout the system. The results imply that SS in the DHS effluent was mainly eluted from the retained sludge in the lower section of the DHS reactor. The δ¹⁵N of the retained sludge in the DHS reactor increased drastically from the inlet towards to the outlet, from -0.7‰ to 10.3‰. This phenomenon may be attributed to nitrogen conversion processes (i.e. nitrification and denitrification). The δ¹⁵N of oligochaetes also increased from the inlet to the outlet, which corresponded well to that of the retained sludge. Thus, the δ¹⁵N of the oligochaetes might simply mirror the δ¹⁵N of the retained sludge. On the other hand, the δ¹³C and δ¹⁵N of sympatric fly larvae differed from those of the oligochaetes sampled, indicating dietary differences between the taxa. Therefore δ¹³C and δ¹⁵N reflected both treatment and dietary characteristics. We concluded that δ¹³C and δ¹⁵N values are potentially useful as alternative indicators for investigating microbial ecosystems and treatment characteristics of biological wastewater treatment systems. PMID:25462745

  17. Measuring Isotope Ratios Across the Solar System

    NASA Technical Reports Server (NTRS)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  18. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  19. Fluxes, source and transport of organic matter in the western Sea of Okhotsk: Stable carbon isotopic ratios of n-alkanes and total organic carbon

    NASA Astrophysics Data System (ADS)

    Seki, Osamu; Yoshikawa, Chisato; Nakatsuka, Takeshi; Kawamura, Kimitaka; Wakatsuchi, Masaaki

    2006-02-01

    Settling particles and surface sediments collected from the western region of the Sea of Okhotsk were analyzed for total organic carbon (TOC), long-chain n-alkanes and their stable carbon isotope ratio ( δ13C) to investigate sources and transport of total and terrestrial organic matter in the western region of the sea. The δ13C measurements of TOC in time-series sediment traps indicate lateral transport of resuspended organic matter from the northwestern continental shelf to the area off Sakhalin via the dense shelf water (DSW) flow at intermediate depth. The n-alkanes in the surface sediments showed strong odd carbon number predominance with relatively lighter δ13C values (from -33‰ to -30‰). They fall within the typical values of C3-angiosperms, which is the main vegetation in east Russia, including the Amur River basin. On the other hand, the molecular distributions and δ13C values of n-alkanes in the settling particles clearly showed two different sources: terrestrial plant and petroleum in the Sea of Okhotsk. We reconstructed seasonal change in the fluxes of terrestrial n-alkanes in settling particles using the mixing model proposed by Lichtfouse and Eglinton [1995. 13C and 14C evidence of a soil by fossil fuel and reconstruction of the composition of the pollutant. Organic Geochemistry 23, 969-973]. Results of the terrestrial n-alkane fluxes indicate that there are two transport pathways of terrestrial plant n-alkanes to sediments off Sakhalin, the Sea of Okhotsk. One is lateral transport of resuspended particles with lithogenic material from the northwestern continental shelf by the DSW flow. Another is the vertical transport of terrestrial plant n-alkanes, which is independent of transport of lithogenic material. The latter may include dry/wet deposition of aerosol particles derived from terrestrial higher plants possibly associated with forest fires in Siberia.

  20. A Capillary Absorption Spectrometer for Stable Carbon Isotope Ratio (13C/12C) Analysis in Very Small Samples

    SciTech Connect

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Newburn, Matthew K.; Moran, James J.; Alexander, M. L.; Kreuzer, Helen W.

    2012-02-06

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO{sub 2} samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO{sub 2} near 2307 cm{sup -1} (4.34 {mu}m). This initial CAS system can achieve relative isotopic precision of about 10 ppm {sup 13}C, or {approx}1{per_thousand} (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO{sub 2} concentrations {approx}400 to 750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to {approx}2 Torr. Overall {sup 13}C/{sup 12}C ratios can be calibrated to {approx}2{per_thousand} accuracy with diluted CO{sub 2} standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1,000 scans are co-added in {approx}10 sec. The CAS is meant to work directly with converted CO{sub 2} samples from a Laser Ablation-Catalytic-Combustion (LA CC) micro-sampler to provide {sup 13}C/{sup 12}C ratios of small biological isolates with spatial resolutions {approx}50 {mu}m.

  1. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  2. Inferences on Late Holocene climate from stable carbon and oxygen isotope ratio variability in soil and land snail shells from archaeological site 41KM69 in Texas, USA

    NASA Astrophysics Data System (ADS)

    Paul, D.; Mauldin, R.; Munoz, C. M.

    2011-12-01

    Well-preserved land snail shell excavate from archaeological site 41KM69 in Texas, USA, span the past 2200 years and provide an opportunity to explore the paleoclimate implications of isotopic variability in archaeological shell carbonates, bulk soil carbonates and soil organic matter. Terrestrial snail shells belonging to three genera (Polygyra, Rabdotus, and Helicina) were hand-picked from the 120 cm thick soil profile, for stable isotopic analyses. A wood charcoal radiocarbon date constrains samples below 100 cm depth in our soil profile to be ~2200 14C yr BP. Isotopic composition of modern adult snail specimens (n=24) and plants (n=18), collected from the study area, were determined for comparison with the archaeological data sets. All isotopic analyses were performed at the University of Texas at San Antonio using a Thermo Finnigan Gasbench II and a Costech Elemental Analyzer (EA) attached online to a DeltaPlus XP Stable Isotope Ratio Mass Spectrometer in continuous flow mode. Carbon isotopic compositions of both modern (-12.72 to -5.49%) and archaeological (-5.34 to -8.99%) adult snail shell carbonates suggest significant (> 60%) input of C3 plants into the diet of the snails over the past 2200 yrs. Oxygen isotopic compositions of archaeological and modern shells vary from -2.21% to -0.71% and -2.88 to +0.99%), respectively. This suggests that isotopic composition of environmental water (mainly rainwater) available at the time of shell growth was similar to that of the present day. A linearly decreasing trend in δ13C of soil organic matter from -22.83% at 2200 14C yr BP to -25.61% for modern samples imply progressively increasing abundance of C3 plants up to the present day. This implies a progressively wetter climate, or decreasing summer rainfall and less severe water stress conditions, in agreement with other studies on Holocene climate change in the southern Great Plains of USA. The studies, in general, document warm/arid conditions at ~ 2000 BP and

  3. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    PubMed

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying. PMID:17386484

  4. Assessing the Origins of Aliphatic Amines in the Murchison Meteorite from their Compound-Specific Carbon Isotopic Ratios and Enantiomeric Composition

    NASA Technical Reports Server (NTRS)

    Aponte, Jose; Dworkin, Jason; Elsila, Jamie E.

    2014-01-01

    The study of meteoritic organic compounds provides a unique window into the chemical inventory of the early Solar System and prebiotic chemistry that may have been important for the origin of life on Earth. Multiple families of organic compounds have been extracted from the Murchison meteorite, which is one of the most thoroughly studied carbonaceous chondrites. The amino acids extracted from Murchison have been extensively analyzed, including measurements of non-terrestrial stable isotopic ratios and discoveries of L-enantiomeric excesses for alpha-dialkyl amino acids, notably isovaline. However, although the isotopic signatures of bulk amine-containing fractions have been measured, the isotopic ratios and enantiomeric composition of individual aliphatic amines, compounds that are chemically related to amino acids, remain unknown. Here, we report a novel method for the extraction, separation, identification and quantitation of aliphatic monoamines extracted from the Murchison meteorite. Our results show a complete suite of structural isomers, with a larger concentration of methylamine and ethylamine and decreasing amine concentrations with increasing carbon number. The carbon isotopic compositions of fourteen meteoritic aliphatic monoamines were measured, with delta C-13 values ranging from +21% to +129%, showing a decrease in C-13 with increasing carbon number, a relationship that may be consistent with the chain elongation mechanism under kinetic control previously proposed for meteoritic amino acids. We also found the enantiomeric composition of sec-butylamine, a structural analog to isovaline, was racemic within error, while the isovaline extracted from the same Murchison piece showed an L-enantiomeric excess of 9.7; this result suggested that processes leading to enantiomeric excess in the amino acid did not affect the amine. We used these collective data to assess the primordial synthetic origins of these meteoritic aliphatic amines and their potential

  5. Keeling plots for hummingbirds: a method to estimate carbon isotope ratios of respired CO(2) in small vertebrates.

    PubMed

    Carleton, Scott A; Wolf, Blair O; del Rio, Carlos Martinez

    2004-09-01

    The carbon isotope composition of an animal's breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the delta(13)C of respired CO(2) of small vertebrates. We measured the delta(13)C of Rufous Hummingbirds ( Selasphorus rufus) in the laboratory and of Mourning ( Zenaida macroura) and White-winged ( Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the delta(13)C of respired CO(2) was not significantly different from that of their diet (delta(13)C(C3 diet)). The delta(13)C of respired CO(2) for C3 fasted birds was slightly, albeit significantly, depleted in delta(13)C relative to delta(13)C(C3 diet). Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the delta(13)C of respired CO(2) from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus ( Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure delta(13)C of respired CO(2) in the lab and the field. PMID:15309607

  6. Source inference of exogenous gamma-hydroxybutyric acid (GHB) administered to humans by means of carbon isotopic ratio analysis: novel perspectives regarding forensic investigation and intelligence issues.

    PubMed

    Marclay, François; Saudan, Christophe; Vienne, Julie; Tafti, Mehdi; Saugy, Martial

    2011-05-01

    γ-Hydroxybutyric acid (GHB) is an endogenous short-chain fatty acid popular as a recreational drug due to sedative and euphoric effects, but also often implicated in drug-facilitated sexual assaults owing to disinhibition and amnesic properties. Whilst discrimination between endogenous and exogenous GHB as required in intoxication cases may be achieved by the determination of the carbon isotope content, such information has not yet been exploited to answer source inference questions of forensic investigation and intelligence interests. However, potential isotopic fractionation effects occurring through the whole metabolism of GHB may be a major concern in this regard. Thus, urine specimens from six healthy male volunteers who ingested prescription GHB sodium salt, marketed as Xyrem(®), were analysed by means of gas chromatography/combustion/isotope ratio mass spectrometry to assess this particular topic. A very narrow range of δ(13)C values, spreading from -24.81‰ to -25.06‰, was observed, whilst mean δ(13)C value of Xyrem(®) corresponded to -24.99‰. Since urine samples and prescription drug could not be distinguished by means of statistical analysis, carbon isotopic effects and subsequent influence on δ(13)C values through GHB metabolism as a whole could be ruled out. Thus, a link between GHB as a raw matrix and found in a biological fluid may be established, bringing relevant information regarding source inference evaluation. Therefore, this study supports a diversified scope of exploitation for stable isotopes characterized in biological matrices from investigations on intoxication cases to drug intelligence programmes. PMID:21455654

  7. Stable Carbon Isotope Ratios and Mixing Ratios of Several VOC Including n-Hexane, Benzene, Toluene, p-Xylene, n-Octane, and n-Decane Measured During the Border Air Quality Study Campaign (June-July, 2007)

    NASA Astrophysics Data System (ADS)

    Kornilova, A.; Moukhtar, S.; Huang, L.; Rudolph, J.

    2008-12-01

    Many important secondary pollutants are formed during the oxidation of Volatile Organic Compounds (VOC) in the atmosphere. These organic compounds can contribute significant mass to atmospheric particulate matter (PM) and therefore impact physical properties and composition of aerosols. Despite numerous studies, the formation processes for atmospheric PM are still not well understood. While there have been very extensive laboratory investigations of PM formation, nearly all of these studies have been conducted at VOC concentrations which exceed ambient atmospheric levels by several orders of magnitude. Consequently there is substantial uncertainty in the extrapolation of laboratory results to the atmosphere. Recently it has been demonstrated that stable carbon isotopic composition measurements can be very valuable in providing increased insight into the chemical and transport processes of VOC in the troposphere. Studies showed that isotope ratio measurements could aid in the determination of photochemical processing of individual VOC. It is expected that applying isotope measurements to studies of VOC oxidation products in the atmosphere will allow to establish quantitative relationship between the amount of precursor oxidized and the concentration of secondary pollutants formed during this process. Thus, the yield of secondary organic aerosols (SOA) from this reaction can be calculated. A cartridge technique was developed for field sampling of VOC and subsequent laboratory analysis by gas chromatography coupled with isotope ratio mass spectrometry. It was first implemented during the BAQS field study (June-July, 2007) parallel to PM sampling. Stable carbon isotopic composition and concentrations of several VOC were determined and compared to those of PM. The results of these measurements will be presented and discussed.

  8. Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea

    NASA Astrophysics Data System (ADS)

    Kürten, Benjamin; Al-Aidaroos, Ali M.; Kürten, Saskia; El-Sherbiny, Mohsen M.; Devassy, Reny P.; Struck, Ulrich; Zarokanellos, Nikolaos; Jones, Burton H.; Hansen, Thomas; Bruss, Gerd; Sommer, Ulrich

    2016-01-01

    Although zooplankton occupy key roles in aquatic biogeochemical cycles, little is known about the pelagic food web and trophodynamics of zooplankton in the Red Sea. Natural abundance stable isotope analysis (SIA) of carbon (δ13C) and N (δ15N) is one approach to elucidating pelagic food web structures and diet assimilation. Integrating the combined effects of ecological processes and hydrography, ecohydrographic features often translate into geographic patterns in δ13C and δ15N values at the base of food webs. This is due, for example, to divergent 15N abundances in source end-members (deep water sources: high δ15N, diazotrophs: low δ15N). Such patterns in the spatial distributions of stable isotope values were coined isoscapes. Empirical data of atmospheric, oceanographic, and biological processes, which drive the ecohydrographic gradients of the oligotrophic Red Sea, are under-explored and some rather anticipated than proven. Specifically, five processes underpin Red Sea gradients: (a) monsoon-related intrusions of nutrient-rich Indian Ocean water; (b) basin scale thermohaline circulation; (c) mesoscale eddy activity that causes up-welling of deep water nutrients into the upper layer; (d) the biological fixation of atmospheric nitrogen (N2) by diazotrophs; and (e) the deposition of dust and aerosol-derived N. This study assessed relationships between environmental samples (nutrients, chlorophyll a), oceanographic data (temperature, salinity, current velocity [ADCP]), particulate organic matter (POM), and net-phytoplankton, with the δ13C and δ15N values of zooplankton collected in spring 2012 from 16°28‧ to 26°57‧N along the central axis of the Red Sea. The δ15N of bulk POM and most zooplankton taxa increased from North (Duba) to South (Farasan). The potential contribution of deep water nutrient-fueled phytoplankton, POM, and diazotrophs varied among sites. Estimates suggested higher diazotroph contributions in the North, a greater contribution of

  9. Photosynthetic Mechanisms and Paleoecology from Carbon Isotope Ratios in Ancient Specimens of C4 and CAM Plants.

    PubMed

    Troughton, J H; Wells, P V; Mooney, H A

    1974-08-16

    Carbon istotope ratios of modern, 10,000-year-old, and more than 40,000-year-old Atriplex confertifolia (C(4)) material from Nevada caves indicate that the C(4) photosynthetic pathway was operating in these plants over that period. Samples of a plant with crassulacean acid metabolism, Opuntia polyacantha, were also measured, and a shift in the 8(13)C value from -21.9 per mil (more than 40,000 years ago) to -13.9 per mil (10,000 years ago) was observed. This provides unique physiological evidence to support the hypothesis that the late Pleistocene pluvial climate in the region already had become drier about 10,000 years ago. PMID:17791235

  10. Temperature Dependence of Isotope Ratios in Tree Rings

    PubMed Central

    Libby, L. M.; Pandolfi, L. J.

    1974-01-01

    The stable isotope ratios of carbon, oxygen, and hydrogen have been measured for a German oak in wood samples of roughly three years each, for the years 1712-1954 A.D., and correlated with the existing weather records from England, Basel, and Geneva to evaluate the empirical temperature coefficients. Isotope ratios in a second official oak, measured for the years 1530-1800 A.D., show the cold temperatures of the Little Ice Age interspersed with warm intervals. PMID:16592163

  11. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  12. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis.

    PubMed

    Hertz, Eric; Trudel, Marc; Cox, Marlin K; Mazumder, Asit

    2015-11-01

    Many organisms experience fasting in their life time, and this physiological process has the potential to alter stable isotope values of organisms, and confound interpretation of food web studies. However, previous studies on the effects of fasting and starvation on stable isotopes show disparate results, and have never been quantitatively synthesized. We performed a laboratory experiment and meta-analysis to determine how stable isotopes of δ (15)N and δ (13)C change with fasting, and we tested whether moderators such as taxa and tissue explain residual variation. We collected literature data from a wide variety of taxa and tissues. We surveyed over 2000 papers, and of these, 26 met our selection criteria, resulting in 51 data points for δ (15)N, and 43 data points for δ (13)C. We determine that fasting causes an average increase in the isotopic value of organisms of 0.5‰ for δ (15)N and that the only significant moderator is tissue type. We find that the overall effect size for δ (13)C is not significant, but when the significant moderator of tissue is considered, significant increases in blood and whole organisms are seen with fasting. Our results show that across tissues and taxa, the nutritional status of an organism must be considered when interpreting stable isotope data, as fasting can cause large differences in stable isotope values that would be otherwise attributed to other factors. PMID:26640663

  13. Changes in carbon isotope ratios of soil organic matter following conversion of tropical deciduous forest to pasture

    SciTech Connect

    Garcia-Oliva, F.; Maass, J.M. ); Casar, I. )

    1993-06-01

    Near the Chamela Biological Station in Jalisco Mexico, tropical deciduous forest was cut, burned and planted with C, grasses for conversion to cattle pastures by local farmers. We estimated soil organic matter (SOM) turnover under intact forest and in a pasture chronosequence (1, 3, 7, and 11 years old). Total SOM in the surface soil under intact forest was 30,098 kg ha[sup [minus]1] (0-12 cm depth) with more than 50% in the uppermost 4 cm. Total SOM increased by 18% following cutting and burning, but exhibited a net decrease of 19% in the 11 year old pasture. Carbon ratios were determined by mass spectrometry; the dominant forest trees are C[sub 3], and the [delta][sup 13]C of forest huer was [minus]27.4, while the [delta][sup 13]C of pasture litter was [minus]15.9. The [delta][sup 13]C signatures of the 7 and 11 year old pastures were significantly different than the forest (p < 0.0001, R[sup 2]=0.77) and in the 11 year old pasture, only 54% of the original forest SOM remained. The estimated turnover rate for forest SOM following clearing was 1.024 kg ha[sup [minus]1] yr[sup [minus]1] and interestingly, the SOM associated with the sand fraction displays a turnover rate considerably higher than that associated with the silt or clay fractions.

  14. Size distributions of organic nitrogen and carbon in remote marine aerosols: Evidence of marine biological origin based on their isotopic ratios

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Kawamura, Kimitaka; Sawano, Maki

    2010-03-01

    Size-segregated aerosol samples were collected over the western North Pacific in summer 2008 for the measurements of organic nitrogen (ON) and organic carbon (OC). ON and OC showed bimodal size distributions. Their concentrations showed positive correlation with those of biogenic tracers, methanesulfonic acid (MSA) and azelaic acid (C9). We found that average ON and OC concentrations were twice greater in aerosols collected in the oceanic region with higher biological productivity than in the regions with lower productivity. The average ON/OC ratios are higher (0.49 ± 0.11) in more biologically influenced aerosols than those (0.35 ± 0.10) in less influenced aerosols. Stable carbon isotopic analysis indicates that marine-derived carbon accounted for ˜46-72% of total carbon in more biologically influenced aerosols. These results provide evidence that organic aerosols in this region are enriched in ON that is linked to oceanic biological activity and the subsequent emissions to the atmosphere.

  15. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  16. Diurnal variations of carbonaceous components, major ions, and stable carbon and nitrogen isotope ratios in suburban aerosols from northern vicinity of Beijing

    NASA Astrophysics Data System (ADS)

    He, Nannan; Kawamura, Kimitaka; Kanaya, Yugo; Wang, Zifa

    2015-12-01

    We report diurnal variations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC) and major ions as well as stable carbon and nitrogen isotope ratios (δ13C and δ15N) in ambient aerosols at a suburban site (Mangshan), 40 km north of Beijing, China. We found that aerosol chemical compositions were largely controlled by the air mass transport from Beijing in daytime with southerly winds and by relatively fresh air mass in nighttime from the northern forest areas with northerly winds. Higher concentrations of aerosol mass and total carbon were obtained in daytime. Further, higher OC/EC ratios were recorded in daytime (4.0 ± 1.7) than nighttime (3.2 ± 0.7), suggesting that OC is formed by photochemical oxidation of gaseous precursors in daytime. Contributions of WSOC to OC were slightly higher in daytime (38%) than nighttime (34%), possibly due to secondary formation of WSOC in daytime. We also found higher concentrations of Ca2+ in daytime, which was originated from the construction dust in Beijing area and transported to the sampling site. δ13C ranged from -25.3 to -21.2‰ (ave. -23.5 ± 0.9‰) in daytime and -29.0 to -21.4‰ (-24.0 ± 1.5‰) in nighttime, suggesting that Mangshan aerosols were more influenced by fossil fuel combustion products in daytime and by terrestrial C3 plants in nighttime. This study suggests that daytime air mass delivery from megacity Beijing largely influence the air quality at the receptor site in the north together with photochemical processing of organic aerosols during the atmospheric transport, whereas the Mangshan site is covered with relatively clean air masses at night.

  17. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  18. The Effect of the Interannual Variability of the OH Sink on the Interannual Variability of the Atmospheric Methane Mixing Ratio and Carbon Stable Isotope Composition

    NASA Astrophysics Data System (ADS)

    Guillermo Nuñez Ramirez, Tonatiuh; Houweling, Sander; Marshall, Julia; Williams, Jason; Brailsford, Gordon; Schneising, Oliver; Heimann, Martin

    2013-04-01

    The atmospheric hydroxyl radical concentration (OH) varies due to changes in the incoming UV radiation, in the abundance of atmospheric species involved in the production, recycling and destruction of OH molecules and due to climate variability. Variability in carbon monoxide emissions from biomass burning induced by El Niño Southern Oscillation are particularly important. Although the OH sink accounts for the oxidation of approximately 90% of atmospheric CH4, the effect of the variability in the distribution and strength of the OH sink on the interannual variability of atmospheric methane (CH4) mixing ratio and stable carbon isotope composition (δ13C-CH4) has often been ignored. To show this effect we simulated the atmospheric signals of CH4 in a three-dimensional atmospheric transport model (TM3). ERA Interim reanalysis data provided the atmospheric transport and temperature variability from 1990 to 2010. We performed simulations using time dependent OH concentration estimations from an atmospheric chemistry transport model and an atmospheric chemistry climate model. The models assumed a different set of reactions and algorithms which caused a very different strength and distribution of the OH concentration. Methane emissions were based on published bottom-up estimates including inventories, upscaled estimations and modeled fluxes. The simulations also included modeled concentrations of atomic chlorine (Cl) and excited oxygen atoms (O(1D)). The isotopic signal of the sources and the fractionation factors of the sinks were based on literature values, however the isotopic signal from wetlands and enteric fermentation processes followed a linear relationship with a map of C4 plant fraction. The same set of CH4emissions and stratospheric reactants was used in all simulations. Two simulations were done per OH field: one in which the CH4 sources were allowed to vary interannually, and a second where the sources were climatological. The simulated mixing ratios and

  19. Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusive complexes, with a focus on carbonatites

    NASA Astrophysics Data System (ADS)

    Nadeau, Serge L.; Epstein, Samuel; Stolper, Edward

    1999-06-01

    We report H and C contents and δD and δ 13C values of apatites from 15 alkaline intrusive complexes ranging in age from 110 Ma to 2.6 Ga. Sampling focused on carbonatites, but included silicate rocks as well. Heating at temperatures up to 1500°C is needed to extract fully H 2O and CO 2 from these apatites. Apatites from carbonatite-rich intrusive complexes contain 0.2-1.1 wt% H 2O and 0.05-0.70 wt% CO 2; apatites from two silicate-rich alkaline complexes with little or no carbonatite are generally poorer in both volatile components (0.1-0.2% H 2O and 0.01-0.11% CO 2). D/H ratios in apatites from these rocks are bimodally distributed: group I (δD = -51 to -74‰) and group II (δD = -88 to -104‰). We suggest that the δD values of group I apatites represent primitive, mantle-derived values and that the group II apatites crystallized from degassed magmas, resulting in lower H 2O contents and δD values. Although many factors influence the extent of degassing, the depth of emplacement could represent a major control. In contrast to H 2O contents and δD values, CO 2 contents and δ 13C values of gas released at high temperatures from multiple aliquots of these apatite samples are variable. This suggests the presence of more than one C-bearing component in these apatites, one of which is proposed to be dissolved carbonate; the other, with δ 13C ˜<-25‰, could be associated with hydrocarbons. Group I apatites have δD values similar to those of primitive, mantle-derived basaltic magmas and overlap with (but cover a narrower range than) mantle-derived mica, amphibole, and whole rocks. δ 13C values also overlap typical upper mantle. These results suggest that igneous apatites can retain their primary δD and δ 13C values.

  20. A Dual-Carbon-and-Nitrogen Stable Isotope Ratio Model Is Not Superior to a Single-Carbon Stable Isotope Ratio Model for Predicting Added Sugar Intake in Southwest Virginian Adults12

    PubMed Central

    Hedrick, Valisa E; Zoellner, Jamie M; Jahren, A Hope; Woodford, Natalie A; Bostic, Joshua N; Davy, Brenda M

    2015-01-01

    Background: An objective measure of added sugar (AS) and sugar-sweetened beverage (SSB) intake is needed. The δ13C value of finger-stick blood is a novel validated biomarker of AS/SSB intake; however, nonsweetener corn products and animal protein also carry a δ13C value similar to AS sources, which may affect blood δ13C values. The δ15N value of blood has been proposed as a “correction factor” for animal protein intake. Objectives: The objectives were to 1) identify foods associated with δ13C and δ15N blood values, 2) determine the contribution of nonsweetener corn to the diet relative to AS intake, and 3) determine if the dual-isotope model (δ13C and δ15N) is a better predictor of AS/SSB intake than δ13C alone. Methods: A cross-sectional sample of southwest Virginian adults (n = 257; aged 42 ± 15 y; 74% overweight/obese) underwent dietary intake assessments and provided finger-stick blood samples, which were analyzed for δ13C and δ15N values by using natural abundance stable isotope mass spectrometry. Statistical analyses included ANOVAs, paired-samples t tests, and multiple linear regressions. Results: The mean ± SD daily AS intake was 88 ± 59 g and nonsweetener corn intake was 13 ± 13 g. The mean δ13C value was −19.1 ± 0.9‰, which was significantly correlated with AS and SSB intakes (r = 0.32 and 0.39, respectively; P ≤ 0.01). The δ13C value and nonsweetener corn intake and the δ15N value and animal protein intake were not correlated. AS intake was significantly greater than nonsweetener corn intake (mean difference = 76.2 ± 57.2 g; P ≤ 0.001). The δ13C value was predictive of AS/SSB intake (β range: 0.28–0.35; P ≤ 0.01); however, δ15N was not predictive and minimal increases in R2 values were observed when the δ15N value was added to the model. Conclusions: The data do not provide evidence that the dual-isotope method is superior for predicting AS/SSB intakes within a southwest Virginian population. Our results support

  1. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    PubMed

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. PMID:26874765

  2. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    PubMed

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale. PMID:21279387

  3. Variable Carbon Isotopes in ALH84001 Carbonates

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L. A.; Guan, Y.

    2002-12-01

    The Martian meteorite ALH84001 contains a small amount of carbonate that was deposited from aqueous fluids on the Martian surface approximately 3.9 Ga.. McKay et al. (1996) proposed evidence for the existence of life preserved within the carbonate grains. In order to determine the nature of the ancient Martian aqueous system we have combined previously collected oxygen isotopic data with new carbon isotopic measurements performed on the Cameca 6f ion microprobe at Arizona State University. Isotopic measurements were made at high mass resolution with a spot size of 10 microns. The measured carbon isotopic values range from 29.2‰ to 64.5‰ (PDB) with an average uncertainty of +/-1.6‰ (1σ ). These data agree very well with previous acid dissolution and stepped combustion experiments which range from a δ13C of +32‰ to +41‰ . As observed with the oxygen isotopic data, the carbon isotopic composition is correlated with the chemical composition of the carbonates. This allows us to establish that the earliest (Ca-rich) carbonates had the lightest carbon isotopic composition while the latest forming (Mg-rich) carbonates had the heaviest carbon isotopic composition. The large range of carbon isotopic compositions measured in this study cannot be explained by previously proposed models. Temperature change or a Rayleigh distillation process caused by progressive carbonate precipitation are insufficient to create the observed carbon isotopic compositions. Furthermore, processes such as evaporation or photosynthesis will not produce large carbon isotopic variations due to rapid isotopic equilibration with the atmosphere. We propose two possible models for the formation of the ALH84001 carbonates consistent with the isotopic data collected thus far. Carbonates could have formed from an evolving system where the carbon and oxygen isotopic composition of the carbonates reflects a mixing between magmatic hydrothermal fluids and fluids in equilibrium with an isotopically

  4. Lipid Biomarkers and Carbon Isotope Ratios of Lipids Isolated from Acid Mine Drainage Biofilms: Dual Biosignatures for Eukaryotic Evolution and Oxygenation of Primitive Earth

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Fang, J.; Zhang, L.; Li, J.

    2012-12-01

    Lipid analysis and carbon isotope ratios (δ13C) of lipids in biofilms in an acid mine drainage site (AMD) site in western Indiana revealed unique biogeochemical signatures of microeukaryotes, never recorded before. Dominance of photosynthetic microeukaryote Euglena was indicated by the detection of abundant phytadiene, phytol, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids, short-chain (C25-32) wax esters (WE), ergosterol, and tocopherols. The WE were probably synthesized in mitochondria under anoxic conditions by the reverse β-oxidation pathway, whereas the sterols (ergosterol and ergosta-7,22-dien-3β-ol) were likely synthesized in the cytosol in the presence of molecular oxygen. The dual aerobic and anaerobic biosynthetic pathways of Euglena may be a response to survive the recurring anoxic and oxic conditions in primitive Earth, whereby microeukaryotes retained this mechanism of conserved compartmentalization within their physiology to evolve and diversify in extreme conditions. Hydrocarbons, including n-alkenes, phytadienes, and wax esters showed heavy δ13C values than usual. The primary cause for the 13C-enrichment can be attributed to a CO2-limiting system that exists in the AMD, which is further regulated by the pH of the AMD. Floating biofilms BF2, 4, and 6 showed more depleted δ13C values for phytadienes and n-alkenes (average of -23.6‰) as compared to benthic biofilm BF5 (average of -20.8‰), indicating that physiology plays an important role in isotopic discrimination. 13C-enriched values of the esters could result from kinetic isotope effects at two branch points (pyruvate and/or acetyl CoA) in the biosynthetic pathway. Our understanding of biogeochemical conditions in this AMD environment would allow us to identify unique sets of biosignatures that can act as a proxy in deciphering the links between eukaryotic evolutions, oxygenation of the early atmosphere, formation of BIF, and possibly iron-rich extraterrestrial

  5. Carbon and oxygen isotope microanalysis of carbonate.

    PubMed

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  6. Quantifying sediment source contributions in coastal catchments impacted by the Fukushima nuclear accident with carbon and nitrogen elemental concentrations and stable isotope ratios

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Huon Huon, Sylvain; Onda, Yuichi; Evrard, Olivier

    2016-04-01

    The Fukushima Dai-ichi Nuclear Power Plant accidental release of radioactive contaminants resulted in the significant fallout of radiocesium over several coastal catchments in the Fukushima Prefecture. Radiocesium, considered to be the greatest risk to the short and long term health of the local community, is rapidly bound to fine soil particles and thus is mobilized and transported during soil erosion and runoff processes. As there has been a broad-scale decontamination of rice paddy fields and rural residential areas in the contaminated region, one important long term question is whether there is, or may be, a downstream transfer of radiocesium from forests that covered over 65% of the most contaminated region. Accordingly, carbon and nitrogen elemental concentrations and stable isotope ratios are used to determine the relative contributions of forests and rice paddies to transported sediment in three contaminated coastal catchments. Samples were taken from the three main identified sources: cultivated soils (rice paddies and fields, n=30), forest soils (n=45), and subsoils (channel bank and decontaminated soils, n = 25). Lag deposit sediment samples were obtained from five sampling campaigns that targeted the main hydrological events from October 2011 to October 2014. In total, 86 samples of deposited sediment were analyzed for particulate organic matter elemental concentrations and isotope ratios, 24 from the Mano catchment, 44 from the Niida catchment, and 18 from the Ota catchment. Mann-Whitney U-tests were used to examine the source discrimination potential of this tracing suite and select the appropriate tracers for modelling. The discriminant tracers were modelled with a concentration-dependent distribution mixing model. Preliminary results indicate that cultivated sources (predominantly rice paddies) contribute disproportionately more sediment per unit area than forested regions in these contaminated catchments. Future research will examine if there are

  7. Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; Mahaffy, P. R.; Leshin, L. A.; Atreya, S. K.; Flesch, G. J.; Stern, J.; Christensen, L. E.; Vasavada, A. R.; Owen, T.; Niles, P. B.; Jones, J. H.; Franz, H.

    2013-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover.

  8. The carbon abundance and 12C/13C isotopic ratio in the atmosphere of Arcturus from 2.3 µm CO bands

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.

    2008-09-01

    We have modeled absorption lines of the 12CO and 13CO (Δ υ = 2) molecular bands at λλ 2.29 2.45 µm in the spectrum of Arcturus (K2III). A grid of model atmospheres and synthetic spectra were computed for the red giant using T eff = 4300, log g = 1.5, and the elemental abundances of Peterson et al. (1993), with the exception of the abundances of carbon, log N(C), and oxygen, log N(O) and the carbon isotopic ratio, 12C/13C, which were varied in our computations. The computed spectra were compared to the observed spectrum of Arcturus from the atlas of Hinkle et al. (1976). The best fit between the synthetic and observed spectra is achieved for log N(C) = -3.78, 12C/13C = 8 ± 0.5. We discuss the dependence of 12C/13C on log N(C) and log N(O) in the atmosphere of the red giant.

  9. Variability and Coherence of Oxygen and Carbon Stable Isotope Ratios of Tree Ring Cellulose in Coast Redwood Between Distant Sites.

    NASA Astrophysics Data System (ADS)

    Roden, J. S.; Johnstone, J.; Dawson, T. E.

    2007-12-01

    Fog water uptake is an important hydrologic input for redwood ( Sequoia sempevirens) trees and is isotopically distinct from rainfall. The utilization of this resource may depend on climatic factors such as precipitation abundance and changes in sea surface temperature. Increment cores from 3-5 redwood trees at 4 sites were cross-dated and δ18O and δ13C of α-cellulose extracted from subdivided annual rings was measured. Trees from southern sites had latewood cellulose over 4‰ more enriched in 18O than trees from northern sites. Inter-annual variation in latewood cellulose δ18O ranged between 2.3 and 3.5‰ for all sites for the 45+ years measured. Correlations of latewood δ18O variation between sites were greatest for those in close proximity to each other (as high as 0.84 for sites 40 km apart). However, some distant sites also showed substantial coherence (r = 0.43 for sites 380 km apart). In general, cellulose obtained from the center of the ring (middlewood) was more depleted in 18O than latewood and is likely to reflect the use of precipitation water in middlewood cellulose. We observed significant correlations between sites for both middlewood δ18O (r as high as 0.64) and the difference between latewood and middlewood δ18O (as high as 0.65). Significant between-site correlations were also observed for the inter-annual variation in δ13C of cellulose for both latewood and middlewood ring segments. These results indicate that inter-annual variation in tree ring δ18O and δ13C is coherent across much of the redwood forest range and that stable isotopes in these tree rings are capturing a common environmental signal and possible physiological response that may provide valuable information regarding hydrologic inputs, climate cycles and tree response for this ecosystem.n

  10. Ca Isotopic Ratios in Igneous Rocks: Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huang, S.; Farkas, J.; Jacobsen, S. B.

    2009-12-01

    Calcium (Ca) is the 5th most abundant element on the Earth, and it is an important geochemical and cosmochemical tracer. It has six isotopes and only H and He have a larger percentage mass difference (Δm/m) between the heaviest and the lightest isotopes. Systematic Ca isotopic studies have mostly focused on low-temperature geochemical processes, and most Ca isotopic analyses have been applied on modern and ancient marine carbonates and sulphates, documenting large and systematic isotopic variations, which were used to infer the chemical evolution of seawater. Detailed work on igneous rocks is very limited. Here we show two examples of how stable Ca isotopic ratios can be a useful geochemical tool in understanding igneous processes. Ca isotopic fractionation between coexisting clinopyroxene and orthopyroxene from mantle peridotites: We report Ca isotopic ratios on co-existing clino- and ortho-pyroxenes from Kilbourne Hole and San Carlos mantle peridotites. The 44Ca/40Ca in orthopyroxenes is ~0.5 per mil heavier than that in co-existing clinopyroxenes. Combined with published Ca isotopic data on low-temperature Ca-bearing minerals (calcite, aragonite and barite), we show that the fractionation of Ca isotopes between Ca-bearing minerals (at both low-temperature and high-temperature) is primarily controlled by the strength of Ca-O bond in the minerals. The mineral with shorter (i.e., stronger) Ca-O bond yields heavier Ca isotopic ratio. Using our measured 44Ca/40Ca in mantle pyroxenes and the relative proportions of major Ca-bearing minerals in the upper mantle, the estimated 44Ca/40Ca of the upper mantle is 1.1 per mil heavier relative to the NIST 915a, ~0.1 to 0.2 per mil higher than basalts. Ca isotopic variation in Hawaiian shield lavas: Large geochemical and isotopic variations have been observed in lavas forming the large tholeiitic shields of Hawaiian volcanoes, with lavas from the surface of the Koolau volcano (Makapuu-stage) defining one compositional and

  11. Stable Isotope Ratios and the Forensic Analysis of Microorganisms

    SciTech Connect

    Kreuzer-Martin, Helen W.; Jarman, Kristin H.

    2007-06-01

    In the aftermath of the anthrax letters of 2001, researchers have been exploring various analytical signatures for the purpose of characterizing the production environment of microorganisms. One such signature is stable isotope ratios, which in heterotrophs are a function of nutrient and water sources. Here we discuss the use of stable isotope ratios in microbe forensics, using as a database the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of 247 separate cultures of B. subtilis 6051 spores produced on a total of 32 different culture media. In the context of using stable isotope ratios as a signature for sample matching, we present an analysis of variation between individual samples, between cultures produced in tandem, and between cultures produced in the same medium but at different times. Additionally, we correlate the stable isotope ratios of carbon, nitrogen, oxygen, and hydrogen for growth medium nutrients or water with those of spores and show examples of how these relationships can be used to exclude nutrient or water samples as possible growth substrates for specific cultures.

  12. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  13. Spatial, ontogenetic and interspecific variability in stable isotope ratios of nitrogen and carbon of Merluccius capensis and Merluccius paradoxus off South Africa.

    PubMed

    Van Der Lingen, C D; Miller, T W

    2014-08-01

    General linear models (GLMs) were used to determine the relative importance of interspecific, ontogenetic and spatial effects in explaining variability in stable isotope ratios of nitrogen (δ(15) N) and carbon (δ(13) C) of the co-occurring Cape hakes Merluccius capensis and Merluccius paradoxus off South Africa. Significant GLMs were derived for both isotopes, explaining 74 and 56% of observed variance in Merluccius spp. δ(15) N and δ(13) C, respectively. Spatial effects (west or south coast) contributed most towards explaining variability in the δ(15) N model, with Merluccius spp. off the west coast having higher (by c. 1.4‰) δ(15) N levels than Merluccius spp. off the south coast. Fish size and species were also significant in explaining variability in δ(15) N, with both species showing significant linear increases in δ(15) N with size and M. capensis having higher (by c. 0.7‰) δ(15) N values than M. paradoxus. Species and coast explained most and similar amounts of variability in the δ(13) C model, with M. capensis having higher (by c. 0.8‰) δ(13) C values than M. paradoxus, and values being lower (by c. 0.7‰) for fishes off the west coast compared with the south coast. These results not only corroborate the knowledge of Merluccius spp. feeding ecology gained from dietary studies, in particular the ontogenetic change in trophic level corresponding to a changing diet, but also that M. capensis feeds at a slightly higher trophic level than M. paradoxus. The spatial difference in Merluccius spp. δ(15) N appears due to a difference in isotopic baseline, and not as a result of Merluccius spp. feeding higher in the food web off the west than the south coast, and provides new evidence that corroborates previous observations of biogeographic differences in isotopic baselines around the South African coast. This study also provides quantitative data on the relative trophic level and trophic width of Cape hakes over a large size range that can be used

  14. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes.

    PubMed

    Mateo, Miguel A; Serrano, Oscar; Serrano, Laura; Michener, Robert H

    2008-08-01

    Trophic ecology has benefitted from the use of stable isotopes for the last three decades. However, during the last 10 years, there has been a growing awareness of the isotopic biases associated with some pre-analytical procedures that can seriously hamper the interpretation of food webs. We have assessed the extent of such biases by: (1) reviewing the literature on the topic, and (2) compiling C and N isotopic values of marine invertebrates reported in the literature with the associated sample preparation protocols. The factors considered were: acid-washing, distilled water rinsing (DWR), sample type (whole individuals or pieces of soft tissues), lipid content, and gut contents. Two-level ANOVA revealed overall large and highly significant effects of acidification for both delta(13)C values (up to 0.9 per thousand decrease) and delta(15) N values (up to 2.1 per thousand decrease in whole individual samples, and up to 1.1 per thousand increase in tissue samples). DWR showed a weak overall effect with delta(13)C increments of 0.6 per thousand (for the entire data set) or decrements of 0.7 per thousand in delta(15) N values (for tissue samples). Gut contents showed no overall significant effect, whereas lipid extraction resulted in the greatest biases in both isotopic signatures (delta(13)C, up to -2.0 per thousand in whole individuals; delta(15)N, up to +4.3 per thousand in tissue samples). The study analyzed separately the effects of the various factors in different taxonomic groups and revealed a very high diversity in the extent and direction of the effects. Maxillopoda, Gastropoda, and Polychaeta were the classes that showed the largest isotopic shifts associated with sample preparation. Guidelines for the standardization of sample preparation protocols for isotopic analysis are proposed both for large and small marine invertebrates. Broadly, these guidelines recommend: (1) avoiding both acid washing and DWR, and (2) performing lipid extraction and gut

  15. Pacific sleeper shark Somniosus pacificus trophic ecology in the eastern North Pacific Ocean inferred from nitrogen and carbon stable-isotope ratios and diet.

    PubMed

    Courtney, D L; Foy, R

    2012-04-01

    Stable-isotope ratios of nitrogen (δ¹⁵N) and lipid-normalized carbon (δ¹³C') were used to examine geographic and ontogenetic variability in the trophic ecology of a high latitude benthopelagic elasmobranch, the Pacific sleeper shark Somniosus pacificus. Mean muscle tissue δ¹³C' values of S. pacificus differed significantly among geographic regions of the eastern North Pacific Ocean. Linear models identified significant ontogenetic and geographic variability in muscle tissue δ¹⁵N values of S. pacificus. The trophic position of S. pacificus in the eastern North Pacific Ocean estimated here from previously published stomach-content data (4·3) was within the range of S. pacificus trophic position predicted from a linear model of S. pacificus muscle tissue δ¹⁵N (3·3-5·7) for fish of the same mean total length (L(T) ; 201·5 cm), but uncertainty in predicted trophic position was very high (95% prediction intervals ranged from 2·9 to 6·4). The relative trophic position of S. pacificus determined here from a literature review of δ¹⁵N by taxa in the eastern North Pacific Ocean was also lower than would be expected based on stomach-content data alone when compared to fishes, squid and filter feeding whales. Stable-isotope analysis revealed wider variability in the feeding ecology of S. pacificus in the eastern North Pacific Ocean than shown by diet data alone, and expanded previous conclusions drawn from analyses of stomach-content data to regional and temporal scales meaningful for fisheries management. PMID:22497395

  16. Carbon isotope ratios document that the elytra of western corn rootworm (Coleoptera: Chrysomelidae) reflects adult versus larval feeding and later instar larvae prefer Bt corn to alternate hosts.

    PubMed

    Hiltpold, Ivan; Adamczyk, John J; Higdon, Matthew L; Clark, Thomas L; Ellersieck, Mark R; Hibbard, Bruce E

    2014-06-01

    In much of the Corn Belt and parts of Europe, the western corn rootworm, Diabrotica virgifera virgifera LeConte, is the most important insect pest of maize. The need for additional basic knowledge of this pest has been highlighted while developing resistance management plans for insecticidal genetically modified crops. This study evaluated the possibility of tracking feeding habits of western corn rootworm larvae using stable carbon isotope signatures. Plants accumulate different ratios of (13)C:(12)C isotopes, usually expressed as δ(13)C, according to whether they use the C3 or C4 photosynthetic pathway. Herbivore biomass is expected to reflect the δ(13)C of the food they eat. For the current experiment, western corn rootworm larvae were grown on different species of plants exhibiting different δ(13)C values. The δ(13)C values were then measured in elytra of emerged beetles. When beetles were unfed, biomass reflected larval feeding. When beetles were fed for 31 d postemergence, δ(13)C values of elytra almost exclusively reflected adult feeding. These results suggest the use of caution in the interpretation of δ(13)C data aiming to document larval diet history when adult feeding history is unknown. The technique was also used to evaluate western corn rootworm larval choice between alternate hosts and maize with and without genetically modified (Bt) traits aimed at their control. Propensity for feeding on alternate hosts versus maize was biased toward feeding on maize regardless whether the maize had Bt or not, suggesting western corn rootworm larvae were not repelled by Bt. These data will be helpful for regulators in interpreting western corn rootworm feeding data on Bt maize. PMID:24874160

  17. Diurnal behavior of the carbon dioxide flux and change in the isotopic ratio δ13C in surface and near-bottom water in littoral of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Panchenko, Mikhail V.; Domysheva, Valentina M.; Padalko, Natalia L.; Chernikov, Eugenii V.; Prazdnichnykh, Maxim I.; Tumakov, Alexander G.; Pestunov, Dmitrii A.

    2014-11-01

    Lake Baikal is one of the unique natural environments in Siberia which, to a large extent, affects the state of the nature in this region. The processes of gas exchange in the "water-atmosphere" system have been studied in Lake Baikal since 2002. The main purpose of the integrated investigations of exchange of carbon-containing gases in the water-atmosphere system in Lake Baikal is to study the contribution of physical, chemical, and biological components of the process and their interrelation with the intensity and rhythms of the fluxes. In 2013, the integrated measurements in the littoral area of Baikal were complemented with studies of the diurnal dynamics of isotopic ratio δ 13C in the surface and near-bottom water, which were not yet performed in Baikal before. In this work, we analyze first results of the joint analysis of RO2 fluxes in the "atmosphere - water surface" system and δ 13C, obtained in August 2013 in the littoral area of South Baikal. It is shown that d13C markedly increases in the surface waters at daylight time. In nighttime period, there takes place a reverse process, when δ 13C of the surface water approaches δ 13C, which is recorded for near-bottom water.

  18. Seawater calcium isotope ratios across the Eocene-Oligocene transition

    USGS Publications Warehouse

    Griffith, E.M.; Paytan, A.; Eisenhauer, A.; Bullen, T.D.; Thomas, E.

    2011-01-01

    During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios (??44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater ??44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater ??44/40Ca shifts. This suggests that the response of seawater ??44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms. ?? 2011 Geological Society of America.

  19. Feasibility of Isotopic Measurements: Graphite Isotopic Ratio Method

    SciTech Connect

    Wood, Thomas W.; Gerlach, David C.; Reid, Bruce D.; Morgan, W. C.

    2001-04-30

    This report addresses the feasibility of the laboratory measurements of isotopic ratios for selected trace constituents in irradiated nuclear-grade graphite, based on the results of a proof-of-principal experiment completed at Pacific Northwest National Laboratory (PNNL) in 1994. The estimation of graphite fluence through measurement of isotopic ratio changes in the impurity elements in the nuclear-grade graphite is referred to as the Graphite Isotope Ratio Method (GIRM). Combined with reactor core and fuel information, GIRM measurements can be employed to estimate cumulative materials production in graphite moderated reactors. This report documents the laboratory procedures and results from the initial measurements of irradiated graphite samples. The irradiated graphite samples were obtained from the C Reactor (one of several production reactors at Hanford) and from the French G-2 Reactor located at Marcoule. Analysis of the irradiated graphite samples indicated that replicable measurements of isotope ratios could be obtained from the fluence sensitive elements of Ti, Ca, Sr, and Ba. While these impurity elements are present in the nuclear-grade graphite in very low concentrations, measurement precision was typically on the order of a few tenths of a percent to just over 1 percent. Replicability of the measurements was also very good with measured values differing by less than 0.5 percent. The overall results of this initial proof-of-principal experiment are sufficiently encouraging that a demonstration of GIRM on a reactor scale basis is planned for FY-95.

  20. Isotopic ratio measurements with ICP-MS

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.

    1986-06-03

    An inductively-coupled-plasma source mass spectrometer (ICP-MS) has been used to measure the isotopic composition of U, Pb, Os, and B standards. Particular emphasis has been placed on uranium because of its nuclear and environmental interest and because of the availability of a well-characterized set of standards with a wide range of isotopic compositions. The precision and accuracy obtainable in isotope ratio measurements by ICP-MS depend on many factors including background, interferences, dead time, mass fractionation (bias), abundance sensitivity, and counting statistics. Which, if any, of these factors controls accuracy and precision depends on the type of sample being analyzed and the characteristics of the mass spectrometer. These issues are discussed in detail.

  1. Stable Carbon Isotope Ratios of Individual Pollen Grains as a Proxy for C3- Versus C4-Grass Abundance in Paleorecords: A Validation Study

    NASA Astrophysics Data System (ADS)

    Nelson, D. M.; Hu, F.; Pearson, A.

    2007-12-01

    C3 and C4 grasses have distinct influences on major biogeochemical processes and unique responses to important environmental controls. Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. We recently developed a technique to analyze the stable carbon isotope composition of individual grass-pollen grains using a spooling- wire microcombustion device interfaced with an isotope-ratio mass spectrometer (Nelson et al. 2007). This technique holds promise for improving C3 and C4 grass reconstructions. It requires ~90% fewer grains than typical methods and avoids assumptions associated with mixing models. However, our previous work was based on known C3 and C4 grasses from herbarium specimens and field collections and the technique had not been test using geological samples. To test the ability of this technique to reproduce the abundance of C3 and C4 grasses on the landscape, we measured δ13C values of >1500 individual grains of grass pollen isolated from the surface sediments of 10 North American lakes that span a large gradient of C3 and C4 grass abundance. Results indicate a strong positive correlation (r=0.94) between % C4-grass pollen (derived from classifying δ13C values from single grains as C3 and C4) and the literature-reported abundance of C4 grasses on the landscape. However, the measured % C4-grass pollen shows some deviation from the actual abundance at sites with high proportions of C4 grasses. This is likely caused by uncertainty in the magnitude, composition, and variability of the analytical blank associated with these measurements. Correcting for this deviation using regression analysis improves the estimation of the abundance of C4 grasses on the landscape. Comparison of the % C4-grass pollen with C/N and δ13C measurements of total organic matter in the same lake-sediment samples illustrates the distinct advantage of grass-pollen δ13C as a proxy for

  2. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  3. Uranium isotope ratio measurements in field settings

    SciTech Connect

    Shaw, R.W.; Barshick, C.M.; Young, J.P.; Ramsey, J.M.

    1997-06-01

    The authors have developed a technique for uranium isotope ratio measurements of powder samples in field settings. Such a method will be invaluable for environmental studies, radioactive waste operations, and decommissioning and decontamination operations. Immediate field data can help guide an ongoing sampling campaign. The measurement encompasses glow discharge sputtering from pressed sample hollow cathodes, high resolution laser spectroscopy using conveniently tunable diode lasers, and optogalvanic detection. At 10% {sup 235}U enrichment and above, the measurement precision for {sup 235}U/({sup 235}U+{sup 238}U) isotope ratios was {+-}3%; it declined to {+-}15% for 0.3% (i.e., depleted) samples. A prototype instrument was constructed and is described.

  4. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  5. Oxygen Isotope Ratios in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Brittain, Sean; Najita, Joan; Carr, John; Doppmann, Greg

    2009-08-01

    Meteorites provide important clues about the environment from which our solar system formed. Their mineralogical and isotopic composition provides important insight into the thermal, chemical and dynamical history of the protoplanetary disk. One of the most intriguing discoveries to come from the study of meteorites is the depletion of the ^18O/^16O and ^17O/^16O ratios in the oldest components of meteorites relative to Earth. These measurements suggest that the gas from which the sun condensed was more ^16O-rich than the material from which planets formed. The leading explanation for this isotopic anomaly is the selective dissociation of CO in the outer protoplanetary disk or envelope. The basic premise is that the freed ^17,18O atoms in the outer disk formed water that then enriched the ^17,18O abundance in rocky material. Thus, bodies that formed later (such as planets) were increasingly enriched in ^17,18O. To test this scenario, we will probe the efficiency of selective dissociation of CO in nearby protoplanetary disk systems. We will measure the isotopic ratio of C^17O/C^18O/C^16O by acquiring high-resolution absorption spectra of ro-vibrational CO lines from edge-on disks and envelopes.

  6. Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide.

    PubMed

    Wahl, Ed H; Fidric, Bernard; Rella, Chris W; Koulikov, Sergei; Kharlamov, Boris; Tan, Sze; Kachanov, Alexander A; Richman, Bruce A; Crosson, Eric R; Paldus, Barbara A; Kalaskar, Shashi; Bowling, David R

    2006-03-01

    Recent measurements of carbon isotopes in carbon dioxide using near-infrared, diode-laser-based cavity ring-down spectroscopy (CRDS) are presented. The CRDS system achieved good precision, often better than 0.2 per thousand, for 4% CO2 concentrations, and also achieved 0.15-0.25 per thousand precision in a 78 min measurement time with cryotrap-based pre-concentration of ambient CO2 concentrations (360 ppmv). These results were obtained with a CRDS system possessing a data rate of 40 ring-downs per second and a loss measurement of 4.0 x 10(-11) cm(-1) Hz(-1/2). Subsequently, the measurement time has been reduced to under 10 min. This standard of performance would enable a variety of high concentration (3-10%) isotopic measurements, such as medical human breath analysis or animal breath experiments. The extension of this ring-down to the 2 microm region would enable isotopic analysis at ambient concentrations, which, combined with the small size, robust design, and potential for frequent measurements at a remote site, make CRDS technology attractive for remote atmospheric measurement applications. PMID:16500752

  7. Global Carbon Reservoir Oxidative Ratios

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Gallagher, M. E.; Hockaday, W. C.

    2010-12-01

    Photosynthesis and respiration move carbon and oxygen between the atmosphere and the biosphere at a ratio that is characteristic of the biogeochemical processes involved. This ratio is called the oxidative ratio (OR) of photosynthesis and respiration, and is defined as the ratio of moles of O2 per moles of CO2. This O2/CO2 ratio is a characteristic of biosphere-atmosphere gas fluxes, much like the 13C signature of CO2 transferred between the biosphere and the atmosphere has a characteristic signature. OR values vary on a scale of 0 (CO2) to 2 (CH4), with most ecosystem values clustered between 0.9 and 1.2. Just as 13C can be measured for both carbon fluxes and carbon pools, OR can also be measured for fluxes and pools and can provide information about the processes involved in carbon and oxygen cycling. OR values also provide information about reservoir organic geochemistry because pool OR values are proportional to the oxidation state of carbon (Cox) in the reservoir. OR may prove to be a particularly valuable biogeochemical tracer because of its ability to couple information about ecosystem gas fluxes with ecosystem organic geochemistry. We have developed 3 methods to measure the OR of ecosystem carbon reservoirs and intercalibrated them to assure that they yield accurate, intercomparable data. Using these tools we have built a large enough database of biomass and soil OR values that it is now possible to consider the implications of global patterns in ecosystem OR values. Here we present a map of the natural range in ecosystem OR values and begin to consider its implications. One striking pattern is an apparent offset between soil and biospheric OR values: soil OR values are frequently higher than that of their source biomass. We discuss this trend in the context of soil organic geochemistry and gas fluxes.

  8. Implications of the large carbon kinetic isotope effect in the reaction CH4 + Cl for the 13C/12C ratio of stratospheric CH4

    NASA Astrophysics Data System (ADS)

    Bergamaschi, P.; Brühl, C.; Brenninkmeijer, C. A. M.; Saueressig, G.; Crowley, J. N.; Grooß, J. U.; Fischer, H.; Crutzen, P. J.

    Recent investigations of the carbon kinetic isotope effect (KIE) of the reaction CH4 + Cl yielded KIECl = 1.066±0.002 at 297 K (increasing to 1.075±0.005 at 223 K) [Saueressig et al., 1995]. In order to assess the effect of the exceptionally large KIEcl on δ13C of stratospheric CH4 we applied a two-dimensional, time dependent chemical transport model. The model results demonstrate the strong influence of the CH4 + Cl reaction on δ13CH4 in particular in the middle and upper stratosphere, where this reaction contributes several tens of percent to the total CH4 sink. The Cl sink helps to explain the relatively large overall isotope fractionation of 1.010-1.012 observed in the lower stratosphere [Brenninkmeijer et al., 1995; Brenninkmeijer et al., 1996], even though the model results predict a smaller effect than observed.

  9. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  10. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa

    NASA Astrophysics Data System (ADS)

    Garcin, Yannick; Schefuß, Enno; Schwab, Valérie F.; Garreta, Vincent; Gleixner, Gerd; Vincens, Annie; Todou, Gilbert; Séné, Olivier; Onana, Jean-Michel; Achoundong, Gaston; Sachse, Dirk

    2014-10-01

    Trees and shrubs in tropical Africa use the C3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C27 to n-C33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane δ13C values are often used to reconstruct past C3/C4 composition of vegetation, assuming that the relative proportions of C3 and C4 leaf waxes reflect the relative proportions of C3 and C4 plants. We have compared the δ13C values of n-alkanes from modern C3 and C4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C3 vegetation cover (fC3) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C3-dominated rain forest by C4-dominated savanna. The C3 plants analysed were characterised by substantially higher abundances of n-C29 alkanes and by substantially lower abundances of n-C33 alkanes than the C4 plants. Furthermore, the sedimentary δ13C values of n-C29 and n-C31 alkanes from recent lake sediments in Cameroon (-37.4‰ to -26.5‰) were generally within the range of δ13C values for C3 plants, even when from sites where C4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C3 and C4 vegetation cover when using the δ13C values of sedimentary n-alkanes, overestimating the proportion of C3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C3 and C4 plants. We therefore tested a set of non-linear binary mixing models using δ13C values from both C3 and C4

  11. Final Report on Isotope Ratio Techniques for Light Water Reactors

    SciTech Connect

    Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

    2009-07-01

    The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

  12. Raman scattering method and apparatus for measuring isotope ratios and isotopic abundances

    DOEpatents

    Harney, Robert C.; Bloom, Stewart D.

    1978-01-01

    Raman scattering is used to measure isotope ratios and/or isotopic abundances. A beam of quasi-monochromatic photons is directed onto the sample to be analyzed, and the resulting Raman-scattered photons are detected and counted for each isotopic species of interest. These photon counts are treated mathematically to yield the desired isotope ratios or isotopic abundances.

  13. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    USGS Publications Warehouse

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  14. Anthropogenic impacts on mercury concentrations and nitrogen and carbon isotope ratios in fish muscle tissue of the Truckee River watershed, Nevada, USA.

    PubMed

    Sexauer Gustin, Mae; Saito, Laurel; Peacock, Mary

    2005-07-15

    The lower Truckee River originates at Lake Tahoe, California/Nevada (NV), USA and ends in the terminal water body, Pyramid Lake, NV. The river has minimal anthropogenic inputs of contaminants until it encounters the cities of Reno and Sparks, NV, and receives inflows from Steamboat Creek (SBC). SBC originates at Washoe Lake, NV, where there were approximately six mills that used mercury for gold and silver amalgamation in the late 1800s. Since then, mercury has been distributed down the creek to the Truckee River. In addition, SBC receives agricultural and urban nonpoint source pollution, and treated effluent from the Reno-Sparks water reclamation facility. Fish muscle tissue was collected from different species in SBC and the Truckee River and analyzed for mercury and stable isotopes. Nitrogen (delta(15)N) and carbon (delta(13)C) isotopic values in these tissues provide insight as to fish food resources and help to explain their relative Hg concentrations. Mercury concentrations, and delta(15)N and delta(13)C values in fish muscle from the Truckee River, collected below the SBC confluence, were significantly different than that found in fish collected upstream. Mercury concentrations in fish tissue collected below the confluence for all but three fish sampled were significantly greater (0.1 to 0.65 microg/g wet wt.) than that measured in the tissue collected above the confluence (0.02 to 0.1 microg/g). Delta(15)N and delta(13)C isotopic values of fish muscle collected from the river below the confluence were higher and lower, respectively, than that measured in fish collected up river, most likely reflecting wastewater inputs. The impact of SBC inputs on muscle tissue isotope values declined down river whereas the impact due to Hg inputs showed the opposite trend. PMID:16084983

  15. A new laser spectrometer for measurements of the carbon isotope ratio (δ13C) of methane in air and applications to ice core studies

    NASA Astrophysics Data System (ADS)

    Lee, J. E.; Brook, E.; Dong, F.; Gupta, M.

    2012-12-01

    Methane is the second most important anthropogenic greenhouse gas contributing to global climate change, and yet its sources and sinks are still poorly understood. Isotopic ratios of methane released to the atmosphere depend on the isotopic composition of the source and fractionation by sink processes. Analysis of isotopic compositions can provide further understanding of methane source strength and location. Traditional measurements by mass spectrometry are laborious and not easily adaptable to new continuous gas extraction methodologies. Recent technological advances have reduced the amount of methane necessary for precise measurements of δ13C in methane by laser spectrometry to a practical sample size for ice core studies. We present a new laser-based analyzer for measurement of δ13C in methane that requires less than 6 μmol of CH4. Current precision is better than ±0.5‰ (1σ, 100 seconds) on dry air with [CH4]= 2ppm. The sensor is operable in either discrete or continuous sampling modes allowing for continuous measurement of gas sample exhausted from other analyzers. Detailed performance characteristics and tests will be discussed at the meeting.

  16. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  17. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  18. CARBON ISOTOPE DISCRIMINATION AND GROWTH RESPONSE TO STAND DENSITY REDUCTIONS IN OLD PINUS PONDEROSA TREES

    EPA Science Inventory

    Carbon isotope ratios ( 13C) of tree rings are commonly used for paleoclimatic reconstruction and for inferring canopy water-use efficiency (WUE). However, the responsiveness of carbon isotope discrimination ( ) to site disturbance and resource availability has only rarely been ...

  19. Carbonate abundances and isotopic compositions in chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.; Bowden, R.; Fogel, M. L.; Howard, K. T.

    2015-04-01

    composition (δ18O ≈ -9.25‰, and δ13C ≈ -21‰ or -8‰ for CO- or CH4-dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2-rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO-dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2-H2O ices that experienced temperatures of >50-100 K suggests that the chondrites formed at radial distances of <4-15 AU.

  20. Temperature measurements from oxygen isotope ratios of fish otoliths.

    PubMed

    Devereux, I

    1967-03-31

    Measurements have shown that the temperature of a fish's habitat can be deduced from the Oxygen isotope ratio of its otoliths (ear bones). Isotope ratios Obtained from fossil otoliths indicate a water temperature which agrees wiht that found by isotope measurements on associated benthonic foraminifera. PMID:6020293

  1. Laser spectroscopic measurement of helium isotope ratios.

    SciTech Connect

    Wang, L.-B.; Mueller, P.; Holt, R. J.; Lu, Z.-T.; O'Connor, T. P.; Sano, Y.; Sturchio, N.; Univ. of Illinois; Univ. of Tokyo; Univ. of Illinois at Chicago

    2003-06-13

    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of {sup 3}He/{sup 4}He = 10{sup -7}--10{sup -5}. The resonant absorption of 1083 nm laser light by the metastable {sup 3}He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of {sup 4}He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3{sigma} detection limit of {sup 3}He in helium is 4 x 10{sup -9}. This demonstration required a 200 {mu}L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy.

  2. BIODEGRADATION OF FLUORANTHENE AS MONITORED USING STABLE CARBON ISOTOPES

    EPA Science Inventory

    The measurement of stable isotope ratios of carbon (d13C values) was investigated as a viable technique to monitor the intrinsic bioremediation of polycyclic aromatic hydrocarbons (PAHs). Biometer-flask experiments were conducted in which the bacterium, Sphingomonas paucimobilis,...

  3. Seasonal cycles of atmospheric methane and its carbon and hydrogen isotopic ratios in the lower and upper troposphere of the western Pacific region

    NASA Astrophysics Data System (ADS)

    Umezawa, T.; Aoki, S.; Nakazawa, T.; Machida, T.; Matsueda, H.; Sawa, Y.; Ishijima, K.; Patra, P. K.

    2009-12-01

    Although carbon and hydrogen isotopic ratios (δ13C and δD) of CH4 provide useful information about its sources and sinks, systematic measurements were quite limited. Tohoku University group and NIES group have conducted air-sampling programs by using commercial container ships sailing between Japan and New Zealand and by using commercial airliners flying between Australia and Japan, respectively. Using air samples collected by the programs, systematic measurements of δ13C and δD of atmospheric CH4 as well as CH4 concentration ([CH4]) have been made since 2006. Here, we report their spatial and temporal variations in the lower and upper troposphere (LT and UT). In the LT of the northern hemisphere (NH), the seasonal cycle of [CH4] showed the maximum in winter and the minimum in summer. δ13C varied seasonally almost negatively correlating with the [CH4], and the seasonality of δD showed much more significant negative correlation with the [CH4]. It was also found that CH4 sources with seasonally varying strength, such as wetlands with high emissions in late summer, play an important role in the atmospheric CH4 variations. In the tropics, a seasonally-dependent air exchange between the NH and the southern hemisphere (SH) was found to characterize the seasonal CH4 cycle. When the NH and SH air arrived, high and low [CH4] were observed, accompanied by low and high δ13C and δD values, respectively. In the LT of the SH, the seasonal maximum and minimum of the [CH4] appeared in austral winter and summer, respectively. The seasonal CH4 cycle was mainly ascribed to the seasonality in the CH4+OH reaction, but δ13C and δD showed rather complicated seasonality with larger amplitudes than expected from the CH4+OH reaction alone, suggesting additional contribution of a CH4+Cl reaction in the marine boundary layer. In the UT of the NH, the seasonal maximum and minimum of the [CH4] appeared in summer and winter-spring, respectively, with low and high values of δ13C and

  4. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  5. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  6. Protein stable isotope fingerprinting: multidimensional protein chromatography coupled to stable isotope-ratio mass spectrometry.

    PubMed

    Mohr, Wiebke; Tang, Tiantian; Sattin, Sarah R; Bovee, Roderick J; Pearson, Ann

    2014-09-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between taxonomic identity and metabolic function in microbial ecosystems. To accomplish this, two dimensions of chromatography are used in sequence to resolve a sample containing ca. 5-10 mg of mixed proteins into 960 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second has its ratio of (13)C/(12)C (value of δ(13)C) measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from cultured species show that bacteria have a narrow distribution of protein δ(13)C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of (13)C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ(13)C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Such resolution should be useful to determine the overall trophic breadth of mixed microbial ecosystems. Although we utilize P-SIF to measure natural isotope ratios, it also could be combined with experiments that incorporate stable isotope labeling. PMID:25121924

  7. ICP-MS for isotope ratio measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  8. Clumped isotope thermometry of cryogenic cave carbonates

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Spötl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 °C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate δ18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing

  9. Stable isotope ratios of carbon and nitrogen in pollen grains in order to characterize plant functional groups and photosynthetic pathway types.

    PubMed

    Descolas-Gros, Chantal; Schölzel, Christian

    2007-01-01

    Measurements of delta(13)C, delta(15)N and C : N ratios on modern pollen grains from temperate plants, including whole grains as well as extracted sporopollenin, were analysed in order to characterize physiological plant types at the pollen level and to determine the variation of these parameters in modern pollen grains of the same climatic area. Measurements are presented for 95 batches of whole modern pollen from 58 temperate species and on the stable fraction of modern pollen grains, chemically extracted sporopollenin, for two modern species. Fourier transform infrared (FTIR) and cross-polarization and magic-angle spinning (CP/MAS) sporopollenin spectra were conducted in parallel. C(3) and C(4) plants can be separated by delta(13)C measurements based on pollen. Probabilistic assignments to plant functional groups (herbaceous, deciduous woody, evergreen woody) of C(3) plants by the means of a discriminant analysis can be made for C : N ratios and for delta(13)C. The results are related to other studies on sporopollenin in order to use this method in future work on fossil samples. Stable isotope measurements on pollen allow improved pollen diagrams, including forms that cannot be differentiated at species level, increasing the accuracy and resolution of plant physiological type distribution in quaternary and older fossil sediments. PMID:17888118

  10. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  11. Infant and child diet in Neolithic hunter-fisher-gatherers from Cis-Baikal, Siberia: intra-long bone stable nitrogen and carbon isotope ratios.

    PubMed

    Waters-Rist, Andrea L; Bazaliiskii, Vladimir I; Weber, Andrzej W; Katzenberg, M Anne

    2011-10-01

    Analysis of stable nitrogen and carbon isotopes (δ(15) N and δ(13) C) from subadults and adults allows for assessment of age-related dietary changes, including breastfeeding and weaning, and adoption of an adult diet. In one of the first studies of hunter-fisher-gatherer subadults from Eurasia, three Neolithic (8,800-5,200 calBP) mortuary sites from southwestern Siberia are analyzed to evaluate hypothesized differences in weaning age between Early versus Late Neolithic groups. An intra-individual sampling methodology is used to compare bone formed at different ages. Collagen samples (n = 143) from three different growth areas of long bones-the proximal metaphysis, diaphysis, and distal metaphysis-were obtained from 49 subadults aged birth to 10 years. In infants (birth to 3 years, n = 23) contrasting the δ(15) N values of the metaphysis, which contains newer bone, to the δ(15) N values of the diaphysis, which contains older bone, permits a more precise determination of breastfeeding-weaning status. In Early and Late Neolithic groups breast milk was the major protein source until the age of 2-3 years. However, there are differences in the age of weaning completion and duration: Early Neolithic groups weaned their infants at a later age and over a shorter amount of time. Differences may have affected infant morbidity and mortality, and female fecundity and inter-birth intervals. Stable isotope values in older subadults (4-10 years, n = 26) do not differ from adults suggesting the absence of age-based food allocation. PMID:21837688

  12. Latitudinal distribution of terrestrial lipid biomarkers and n-alkane compound-specific stable carbon isotope ratios in the atmosphere over the western Pacific and Southern Ocean

    NASA Astrophysics Data System (ADS)

    Bendle, James; Kawamura, Kimitaka; Yamazaki, Koji; Niwai, Takeji

    2007-12-01

    We investigated the latitudinal changes in atmospheric transport of organic matter to the western Pacific and Southern Ocean (27.58°N-64.70°S). Molecular distributions of lipid compound classes (homologous series of C 15 to C 35n-alkanes, C 8 to C 34n-alkanoic acids, C 12 to C 30n-alkanols) and compound-specific stable isotopes (δ 13C of C 29 and C 31n-alkanes) were measured in marine aerosol filter samples collected during a cruise by the R/V Hakuho Maru. The geographical source areas for each sample were estimated from air-mass back-trajectory computations. Concentrations of TC and lipid compound classes were several orders of magnitude lower than observations from urban sites in Asia. A stronger signature of terrestrial higher plant inputs was apparent in three samples collected under conditions of strong terrestrial winds. Unresolved complex mixtures (UCM) showed increasing values in the North Pacific, highlighting the influence of the plume of polluted air exported from East Asia. n-Alkane average chain length (ACL) distribution had two clusters, with samples showing a relation to latitude between 28°N and 47°S (highest ACL values in the tropics), whilst a subset of southern samples had anomalously high ACL values. Compound-specific carbon isotopic analysis of the C 29 (-25.6‰ to -34.5‰) and C 31n-alkanes (-28.3‰ to -37‰) revealed heavier δ 13C values in the northern latitudes with a transition to lighter values in the Southern Ocean. By comparing the isotopic measurements with back-trajectory analysis it was generally possible to discriminate between different source areas. The terrestrial vegetation source for a subset of the southernmost Southern Ocean is enigmatic; the back-trajectories indicate eastern Antarctica as the only intercepted terrestrial source area. These samples may represent a southern hemisphere background of well mixed and very long range transported higher plant organic material.

  13. Environmental controls on stable isotope ratios in New Zealand Podocarpaceae: Implications for palaeoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Brett, Marianne J.; Baldini, James U. L.; Gröcke, Darren R.

    2014-09-01

    Stable isotope ratios of various proxies are widely used for palaeoclimate reconstruction, and it is often assumed that isotope ratios reflect vegetation abundance or type. However, very little research exists on the isotopic equilibration of extant biomes under variable environmental conditions. In this study, carbon and oxygen isotope ratios from leaves of various Podocarpaceae genera, endemic to New Zealand, are linked to environmental parameters from the Land Environments New Zealand model. The dominant influence on stable isotope ratios within the majority of Podocarpaceae studied here is vapour pressure deficit (VPD). A simple latitudinal trend does not exist, and neither temperature nor rainfall (decoupled from VPD) controls the stable isotope ratios. The results suggest that modern spatial heterogeneity in VPD affects the stable isotope values of vegetation, and that historic VPD variability would change the stable isotope ratios of Podocarpaceae without necessitating a change in vegetation type, density, or productivity. This represents an alternative model for temporal isotope change within geochemical proxies and reinforces the need for increased stable isotopic research in modern plant ecosystems to better understand modern, and eventually palaeoclimatic processes affecting the terrestrial biosphere.

  14. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    SciTech Connect

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organic carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.

  15. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-05-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and air-sea gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC

  16. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    NASA Astrophysics Data System (ADS)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  17. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  18. Carbon isotopic composition of individual Precambrian microfossils

    NASA Astrophysics Data System (ADS)

    House, Christopher H.; Schopf, J. William; McKeegan, Kevin D.; Coath, Christopher D.; Harrison, T. Mark; Stetter, Karl O.

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the ˜850 Ma Bitter Springs Formation, Australia, and the ˜2100 Ma Gunflint Formation, Canada. The δ13CPDB values from individual microfossils of the Bitter Springs Formation ranged from -21.3 ± 1.7‰ to -31.9 ± 1.2‰, and the δ13CPDB values from microfossils of the Gunflint Formation ranged from -32.4 ± 0.7‰ to -45.4 ± 1.2‰. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  19. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  20. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was

  1. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  2. Isotopic Ratio Outlier Analysis Global Metabolomics of Caenorhabditis elegans

    PubMed Central

    Szewc, Mark A.; Garrett, Timothy; Menger, Robert F.; Yost, Richard A.; Beecher, Chris; Edison, Arthur S.

    2014-01-01

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass spectrometry-based technique called Isotopic Ratio Outlier Analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95% and 5% 13C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: 1) compounds arising from biosynthesis are easily distinguished from artifacts, 2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, 3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulae, and 4) relative concentrations of all metabolites are easily determined. A heat shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway, which we use to demonstrate the approach. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans. Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline. PMID:24274725

  3. Influence of isotopic re-equilibration on speleothem and fluid inclusion isotope ratios after primary calcite precipitation

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Haderlein, Astrid; Weißbach, Therese

    2016-04-01

    Oxygen isotope ratios in speleothems (notably stalagmites) have been used since decades to successfully infer paleotemperatures and deduce paleo-environmental information. In addition, recent technical developments allow to increasingly use fluid inclusions as an archive for drip-water and together with the surrounding calcite as paleothermometer. A basic requirement for isotope data interpretation is the complete knowledge of the fractionation between calcite and fluid. Most laboratory and in-situ cave experiments focus on calcite growth and the isotope fractionation between calcite and feed solution. Potential isotope exchange and re-equilibration processes after the initial deposition have mostly been neglected. However, experiments of Oelkers et al. (2015) showed that the isotope exchange between minerals and fluid can proceed rapidly (within days), even at chemical equilibrium. In hydrous Mg carbonates a similar process of continuous isotope exchange between carbonate and fluid was observed after the carbonate precipitation was completed (Mavromatis et al., 2015). These observations suggest that the isotope ratios of speleothem calcite may be affected by this continuous exchange, likely driving the isotope composition continuously towards equilibrium at the respective cave conditions. In addition, fluid inclusions are suspected to be sensitive to an isotope exchange with the surrounding carbonate highlighting the need to precisely understand and quantify this effect. We assessed the oxygen isotope exchange between calcite and solution at chemical equilibrium conditions with theoretical estimates and laboratory experiments over an intermediate time scale (hours-weeks). A large isotope gradient (~20 ‰)) between solution and calcite was prepared in the experiment to investigate the dynamics of this re-equilibration process. We used a theoretical model based on a Rayleigh fractionation approach and the direct comparison with the experiment to determine

  4. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  5. GUM Analysis for TIMS and SIMS Isotopic Ratios in Graphite

    SciTech Connect

    Heasler, Patrick G.; Gerlach, David C.; Cliff, John B.; Petersen, Steven L.

    2007-04-01

    This report describes GUM calculations for TIMS and SIMS isotopic ratio measurements of reactor graphite samples. These isotopic ratios are used to estimate reactor burn-up, and currently consist of various ratios of U, Pu, and Boron impurities in the graphite samples. The GUM calculation is a propagation of error methodology that assigns uncertainties (in the form of standard error and confidence bound) to the final estimates.

  6. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  7. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    SciTech Connect

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  8. Metal Concentrations in the Liver and Stable Isotope Ratios of Carbon and Nitrogen in the Muscle of Silvertip Shark (Carcharhinus albimarginatus) Culled off Ishigaki Island, Japan: Changes with Growth

    PubMed Central

    Endo, Tetsuya; Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Kato, Yoshihisa; Fujii, Yukiko; Haraguchi, Koichi

    2016-01-01

    We analyzed Hg, Cd, Zn, Cu and Fe concentrations in liver samples as well as the Hg concentration and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) in muscle samples from silvertip sharks (Carcharhinus albimarginatus) in Japan. Muscular and hepatic Hg concentrations increased with increased body length. However, these increases were more prominent in the liver than in the muscle samples, and appeared to occur after maturation. Hepatic Zn and Cu concentrations decreased during the growth stage, and then increased concomitantly thereafter with increases in Cd burden. Hepatic Fe concentration from males increased proportionally with increases in body length, whereas no increase was observed in samples from females, probably due to the mother-to-embryo transfer of Fe. The δ13C values tended to decrease with increases in body length, whereas no decrease in the δ15N values was observed. PMID:26859569

  9. Metal Concentrations in the Liver and Stable Isotope Ratios of Carbon and Nitrogen in the Muscle of Silvertip Shark (Carcharhinus albimarginatus) Culled off Ishigaki Island, Japan: Changes with Growth.

    PubMed

    Endo, Tetsuya; Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Kato, Yoshihisa; Fujii, Yukiko; Haraguchi, Koichi

    2016-01-01

    We analyzed Hg, Cd, Zn, Cu and Fe concentrations in liver samples as well as the Hg concentration and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) in muscle samples from silvertip sharks (Carcharhinus albimarginatus) in Japan. Muscular and hepatic Hg concentrations increased with increased body length. However, these increases were more prominent in the liver than in the muscle samples, and appeared to occur after maturation. Hepatic Zn and Cu concentrations decreased during the growth stage, and then increased concomitantly thereafter with increases in Cd burden. Hepatic Fe concentration from males increased proportionally with increases in body length, whereas no increase was observed in samples from females, probably due to the mother-to-embryo transfer of Fe. The δ13C values tended to decrease with increases in body length, whereas no decrease in the δ15N values was observed. PMID:26859569

  10. Carbon isotopic composition of Amazon shelf sediments

    SciTech Connect

    Showers, W.J.; Angle, D.G.; Nittrouer, C.A.; Demaster, D.J.

    1985-02-01

    The distribution of carbon isotopes in Amazon shelf sediment is controlled by the same processes that are forming the modern subaqueous delta. The terrestrial (-27 to -25 per thousand) isotopic carbon signal observed in surficial sediments near the river mouth extends over 400 km northwest along the shelf. Terrestrial carbon is associated with areas of rapid sediment accumulation (topset and foreset regions). A sharp boundary between terrestrial (-27 to -25 per thousand) and marine (-23 to -22 per thousand) isotopic carbon values in surficial sediments is associated with a change in depositional conditions (foreset to bottomset regions) and a decrease in sediment accumulation rate. POC water-column isotopic values (-27 per thousand) near the river mouth are similar to the underlying surficial-sediment TOC isotopic values, but POC water-column samples collected 20 km off the river mouth have marine carbon isotopic values (-22 to -19 per thousand) and differ from the underlying surficial-sediment TOC isotopic values. These water column observations are related to variations in turbidity and productivity. Down-core isotopic variation is only observed in cores taken in areas of lower sediment accumulation rates. These observations indicate that the organic carbon in Amazon shelf sediment is dominantly terrestrial in composition, and the location of deposition of this carbon is controlled by modern processes of sediment accumulation. The modern Amazon shelf is similar to large clinoform shale deposits of the Cretaceous in North America. Thus, the stratigraphic setting may help predict the isotopic variations of carbon in ancient deposits.

  11. Isotope yield ratios of fragments from heavy-ion reactions

    SciTech Connect

    Deak, F.; Kiss, A. ); Seres, Z. ); Galonsky, A.; Heilbronn, L. )

    1991-05-01

    Isotope yield ratios produced in collisions of 35 MeV/nucleon {sup 14}N with targets of C, Ni, Ag, and Ho have an exponential dependence on total neutron-to-proton ratio. A statistical multifragmentation model including particle emission from excited fragments predicted such behavior for yield ratios measured earlier at the higher energy of 84 MeV/nucleon.

  12. Carbon isotope effects in carbonate systems

    NASA Astrophysics Data System (ADS)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  13. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  14. Development of a Field-Deployable Methane Carbon Isotope Analyzer

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Methane is a potent greenhouse gas, whose atmospheric surface mixing ratio has almost doubled compared with preindustrial values. Methane can be produced by biogenic processes, thermogenic processes or biomass, with different isotopic signatures. As a key molecule involved in the radiative forcing in the atmosphere, methane is thus one of the most important molecules linking the biosphere and atmosphere. Therefore precise measurements of mixing ratios and isotopic compositions will help scientists to better understand methane sources and sinks. To date, high precision isotope measurements have been exclusively performed with conventional isotope ratio mass spectrometry, which involves intensive labor and is not readily field deployable. Optical studies using infrared laser spectroscopy have also been reported to measure the isotopic ratios. However, the precision of optical-based analyses, to date, is typically unsatisfactory without pre-concentration procedures. We present characterization of the performance of a portable Methane Carbon Isotope Analyzer (MCIA), based on cavity enhanced laser absorption spectroscopy technique, that provides in-situ measurements of the carbon isotope ratio (13C/12C or del_13C) and methane mixing ratio (CH4). The sample is introduced to the analyzer directly without any requirement for pretreatment or preconcentration. A typical precision of less than 1 per mill (< 0.1%) with a 10-ppm methane sample can be achieved in a measurement time of less than 100 seconds. The MCIA can report carbon isotope ratio and concentration measurements over a very wide range of methane concentrations. Results of laboratory tests and field measurements will be presented.

  15. Oxygen isotope ratios in eclogites from kimberlites.

    PubMed

    Garlick, G D; Macgregor, I D; Vogel, D E

    1971-06-01

    The oxygen isotope compositions (delta(18)O) of eclogitic xenoliths from the Roberts Victor kimberlite range from 2 to 8 per mil relative to SMOW (standard mean ocean water). This surprising variation appears to be due to fractional crystallization: the eclogites rich in oxygen-18 represent early crystal accumulates; the eclogites poor in oxygen-18 represent residual liquids. Crystal-melt partitioning probably exceeded 3 per mil and is interpreted to be pressure-dependent. Anomalous enrichment of oxygen-18 in cumulate eclogites relative to ultramafic xenoliths suggests that crystal-melt partitioning increased after melt-formation but prior to crystallization. PMID:17798552

  16. Characterization of the origin of coalbed gases in southeastern Illinois Basin by compound-specific carbon and hydrogen stable isotope ratios

    USGS Publications Warehouse

    Strapoc, D.; Mastalerz, Maria; Eble, C.; Schimmelmann, A.

    2007-01-01

    Coalbed gases and waters from exploratory and production gas wells in the southeastern Illinois Basin were sampled to assess geochemically the origin of coalbed gases, with an emphasis on the Springfield and Seelyville Coal Members that are commercially targeted for coalbed methane production in Indiana. On-line analyses of hydrocarbon gases methane to butanes (C1, C2, C3, n-C4, i-C4) and CO2 yielded gas concentrations, plus ??D and ??13C values. The low thermal maturity of Indiana coals with vitrinite reflectance R0 ??? 0.6% is in agreement with an overwhelmingly biogenic isotopic signature of coalbed gases containing ???96% methane generated via bacterial CO2-reduction. In contrast, thermogenic gas was generated in the stratigraphically equivalent coal beds in western Kentucky's Rough Creek Graben zone where higher maturities of up to R0 ??? 0.8% were reached owing to tectonic and hydrothermal activity. No secondary biogenic methane was observed in more mature western Kentucky coal beds where greater burial depth limits the recharge of meteoric water. Biogenic and thermogenic coalbed gases represent two end-members that are compositionally and isotopically distinct. Microbial biodegradation of thermogenic C2+ hydrocarbon gases in Indiana coal beds preferentially targets C3 and introduces isotope fractionation whereby remaining C3 is enriched in deuterium and 13C.

  17. Direct path integral estimators for isotope fractionation ratios

    SciTech Connect

    Cheng, Bingqing; Ceriotti, Michele

    2014-12-28

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical, and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  18. Plutonium isotope ratio variations in North America

    SciTech Connect

    Steiner, Robert E; La Mont, Stephen P; Eisele, William F; Fresquez, Philip R; Mc Naughton, Michael; Whicker, Jeffrey J

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  19. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  20. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-02-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems. PMID:11536629

  1. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed Central

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems. PMID:11536629

  2. Evaluating chlorine isotope effects from isotope ratios and mass spectra of polychlorinated molecules.

    PubMed

    Elsner, Martin; Hunkeler, Daniel

    2008-06-15

    Compound-specific chlorine isotope analysis receives much interest to assess the fate of chlorinated hydrocarbons in contaminated environments. This paper provides a theoretical basis to calculate isotope ratios and quantify isotope fractionation from ion-current ratios of molecular- and fragment-ion multiplets. Because both (35)Cl and (37)Cl are of high abundance, polychlorinated hydrocarbons consist of molecules containing different numbers of (37)Cl denoted as isotopologues. We show that, during reactions, the changes in isotopologue ratios are proportional to changes in the isotope ratio assuming a nonselective isotope distribution in the initial compound. This proportionality extents even to fragments formed in the ion source of a mass spectrometer such as C 2Cl 2 (double dechlorinated fragment of perchloroethylene, PCE). Fractionation factors and kinetic isotope effects (KIE) may, therefore, be evaluated from isotope, isotopologue or even fragment ratios according to conventional simple equations. The proportionality is exact with symmetric molecules such as dichloroethylene (DCE) and PCE, whereas it is approximately true with molecules containing nonreactive positions such as trichloroethylene (TCE). If in the latter case isotope ratios are derived from dechlorinated fragments, e.g., C 2HCl 2, it is important that fragmentation in the ion source affect all molecular positions alike, as otherwise isotopic changes in reactive positions may be underrepresented. PMID:18484745

  3. D/H Isotope Ratio Measurements of Atmospheric Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Meisehen, Thomas; Bühler, Fred; Koppmann, Ralf; Krebsbach, Marc

    2015-04-01

    Analysis of isotope ratios in atmospheric volatile organic compounds (VOC) is a reliable method to allocate their sources, to estimate atmospheric residence times and investigate physical and chemical processes on various temporal and spatial scales. Most investigations yet focus on carbon isotope ratios. Certainly more detailed information can be gained by the ratio of deuterium (D) to hydrogen (H) in VOC, especially due to the high mass ratio. Combining measurements of carbon and hydrogen isotopes could lead to considerable improvement in our understanding of atmospheric processes. For this purpose we set up and thoroughly characterised a gas chromatograph pyrolysis isotope ratio mass spectrometer to measure the D/H ratio in atmospheric VOC. From a custom-made gas standard mixture VOC were adsorbed on Tenax®TA which has the advantage that CO2 is not preconcentrated when measuring ambient air samples. Our results show that the pyrolysis method has significant impact on the D/H ratios. A pyrolysis temperature of at least 1723 K and conditioning of the ceramic tube on a regular basis is essential to obtain reproducible D/H isotope ratios. For an independent comparison D/H ratios of the pure VOC used in the gas standard were determined using elemental analysis by Agroisolab (Jülich, Germany). Comparisons of 10 VOC show perfect agreement within the standard deviations of our measurements and the errors given by Agroisolab, e.g. for n-pentane, toluene, 4-methyl-2-pentanone and n-octane. A slight mean difference of 5.1 o was obtained for n-heptane while significant mean differences of 15.5 o and 20.3 o arose for 1,2,4-trimethylbenzene and isoprene, respectively. We further demonstrate the stability of our system and show that the sample preparation does not affect the isotope ratios. Moreover the applicability of our system to ambient air samples is demonstrated.

  4. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  5. Carbon isotope effects associated with autotrophic acetogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. PMID:11542159

  6. Carbon isotope effects associated with autotrophic acetogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.

  7. Locations of marine animals revealed by carbon isotopes.

    PubMed

    MacKenzie, Kirsteen M; Palmer, Martin R; Moore, Andy; Ibbotson, Anton T; Beaumont, William R C; Poulter, David J S; Trueman, Clive N

    2011-01-01

    Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available. PMID:22355540

  8. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    SciTech Connect

    HOLDEN, N.E.

    2005-08-13

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS.

  9. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    NASA Astrophysics Data System (ADS)

    Borysiuk, Maciek; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: 16O, 17O and 18O. We procured samples highly enriched with all three isotopes. Isotopes 16O and 18O were easily detected in the enriched samples, but no significant signal from 17O was detected in the same samples. The measured yield was too low to detect 18O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with 16O was clearly visible.

  10. Forensic utility of isotope ratio analysis of the explosive urea nitrate and its precursors.

    PubMed

    Aranda, Roman; Stern, Libby A; Dietz, Marianne E; McCormick, Meghan C; Barrow, Jason A; Mothershead, Robert F

    2011-03-20

    Urea nitrate (UN) is an improvised explosive made from readily available materials. The carbon and nitrogen isotope composition of UN and its component ions, urea and nitrate, could aid in a forensic investigation. A method was developed to separate UN into its component ions for δ(15)N measurements by dissolving the sample with KOH, drying the sample, followed by removal of the urea by dissolution into 100% methanol. UN was synthesized to assess for preservation of the carbon and nitrogen isotope compositions of reactants (urea and nitric acid) and product UN. Based on nitrogen isotope mass balance, all UN samples contained varying amounts of excess nitric acid, making the ionic separation an essential step in the nitrogen isotope analysis. During UN synthesis experiments, isotopic composition of the reactants is preserved in the product UN, but the urea in the product UN is slightly enriched in (15)N (<1‰) relative to the reactant urea. Published isotopic compositions of UN reactants, urea and nitric acid, have large ranges (urea δ(15)N = -10.8 to +3.3‰; urea δ(13)C = -18.2 to -50.6‰; and nitric acid δ(15)N = -1.8 to +4.0‰). The preservation of isotopic composition of reactants in UN, along with a significant variability in isotopic composition of reactants, indicates that isotope ratio analysis may be used to test if urea or nitric acid collected during an investigation is a possible reactant for a specific UN sample. The carbon and nitrogen isotope ratios differ significantly between two field-collected UN samples, as well as the lab-synthesized UN samples. These observed variations suggest that this approach is useful for discriminating between materials which are otherwise chemically identical. PMID:20729019

  11. STABLE ISOTOPE RATIOS AND CONTAMINANT CONCENTRATIONS IN A SEWAGE - DISTORTED FOOD WEB

    EPA Science Inventory

    Concentrations of selected neutral organic contaminants and stable isotope ratios of carbon, nitrogen and deuterium/hydrogen in invertebrates and fish were compared from near a large, 60m deep municipal waste outfall near Los Angeles, California, where waste has a measurable infl...

  12. Isotope ratio mass spectrometry - history and terminology in brief.

    PubMed

    Flenker, Ulrich

    2012-12-01

    The history of isotope ratio mass spectrometry (IRMS) is briefly described. It is shown that the fundamental design of isotope ratio mass spectrometers has not changed since the 1940s. The basic findings concerning the natural variation of isotope abundances even date back to the 1930s. Recent improvements in the methodology mainly concern online coupling and analytical peripherals. The nature of isotopic scales necessitates a specific terminology which is unfamiliar to many analysts. However, corresponding guidelines exist that should be adopted by the anti-doping community. Currently, steroids represent the only group of compounds routinely analyzed by IRMS in doping-control. Suggestions are made in respect to a harmonized terminology concerning the nature and origins of steroids. PMID:22972693

  13. Stable Isotope Ratios as Biomarkers of Diet for Health Research

    PubMed Central

    O’Brien, Diane M.

    2016-01-01

    Diet is a leading modifiable risk factor for chronic disease, but it remains difficult to measure accurately due to the error and bias inherent in self-reported methods of diet assessment. Consequently there is a pressing need for more objective biomarkers of diet for use in health research. The stable isotope ratios of light elements are a promising set of candidate biomarkers because they vary naturally and reproducibly among foods, and those variations are captured in molecules and tissues with high fidelity. Recent studies have identified valid isotopic measures of short and long-term sugar intake, meat intake, and fish intake in specific populations. These studies provide a strong foundation for validating stable isotopic biomarkers in the general United States population. Approaches to improve specificity for specific foods are needed, for example, by modeling intake using multiple stable isotope ratios, or by isolating and measuring specific molecules linked to foods of interest. PMID:26048703

  14. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-01-01

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms. PMID:24853618

  15. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  16. High Resolution Double-Focusing Isotope Ratio Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Radke, J.; Deerberg, M.; Hilkert, A.; Schlüter, H.-J.; Schwieters, J.

    2012-04-01

    In recent years isotope ratio mass spectrometry has extended to the capability of quantifying very small isotope signatures related with low abundances and simultaneously detecting molecular masses such as isotopomers and isotopologues containing clumped isotopes. Some of those applications are limited by molecular interferences like different gas molecules with the same nominal mass, e.g. Ar/O2, adducts of the same molecule or of different molecules, and very small isotope abundances. The Thermo Scientific MAT 253 ULTRA is the next generation of high precision gas isotope ratio mass spectrometry, which combines a 10 KV gas ionization source (Thermo Scientific MAT 253) with a double focusing multi-collector mass analyzer (Thermo Scientific Neptune) and reduces those limitations by measuring isotope ratios on a larger dynamic range with high precision. Small ion beam requirements and high sensitivity are achieved by signal-to-noise improvements through enhanced ion beam amplification in faraday cups and ion counters. Interfering backgrounds, e.g. interfering isotopologues or isobaric ions of contaminants, are dramatically decreased by a dynamic range increase combined with high evacuation leading to undisturbed ion transmission through the double-focusing analyser. Furthermore, automated gain calibration for mathematical baseline corrections, switchable detector arrays, ion source control, analyser focusing and full data export is controlled under Isodat data control. New reference/sample strategies are under investigation besides incorporation of the continuous-flow technique and its versatile inlet devices. We are presenting first results and applications of the MAT 253 Ultra.

  17. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  18. Stable Isotope Ratios of Carbon and Nitrogen in Suspended Organic Matter: Seasonal and Spatial Dynamics Along the Changjiang (Yangtze River) Transport Pathway

    NASA Astrophysics Data System (ADS)

    Gao, L.; Li, D.

    2014-12-01

    Seven cruises were conducted in the Changjiang (Yangtze River) Estuary and the adjacent western East China Sea (ECS) from 2010 to 2012 to study the seasonal variations of δ13C and δ15N in suspended organic matter. In addition, two cruises in the northeastern ECS in July 2011 and in Tsushima Strait in July 2012 were conducted to evaluate the distribution patterns of these isotopes over the entire Changjiang transport pathway. In summer, the surface δ13C was lowest in the Changjiang Channel, increasing from land to sea, reaching highest values in the central ECS, and then decreasing and remaining relatively constant. In winter, the surface δ13C in the western ECS showed lower values with less variation in general. At most stations, δ13C increased from the sea surface to the seabed, reflecting the degradation of sinking organic matter; however, these trends could be changed in the summer by surface phytoplankton accumulation. Combining data from all the Changjiang Estuary and western ECS cruises revealed that when the suspended particulate matter (SPM) was > 135 mg/L, the δ13C values were fairly constant (-24.5‰ to -20.5‰); when the SPM was < 135 mg/L, the δ13C values showed much greater variability (-28.4‰ to -16.6‰). The surface δ15N also showed generally higher values in the central ECS in summer and lower values in winter. The seasonal variations of δ13C and δ15N were largely attributed to the SPM composition change: i.e., more phytoplankton cells in the summer whereas more resuspended sediment particles were present in winter.

  19. Calcium isotope ratios in animal and human bone

    NASA Astrophysics Data System (ADS)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  20. Oxygen isotopic ratios toward molecular clouds in the Galactic disk

    NASA Astrophysics Data System (ADS)

    Li, Hai-Kun; Zhang, Jiang-Shui; Liu, Zhi-Wei; Lu, Deng-Rong; Wang, Min; Wang, Jin

    2016-03-01

    We present our observations of the J = 1 - 0 rotation transitions in molecular isotopes C18O and C17O toward a sample of molecular clouds with different galactocentric distances, using the Delingha 13.7m (DLH 13.7 m) telescope, administered by Purple Mountain Observatory, and its 9-beam SIS receiver. Complementary observations toward several sources with large galactocentric distance are obtained with the IRAM 30m and Mopra 22m telescopes. C18O/C17O abundance ratios reflecting the 18O/17O isotope ratios are obtained from integrated intensity ratios of C18O and C17O. We derived the ratio value for 13 sources covering a galactocentric distance range of 3kpc to 16kpc. In combination with our mapping results that provide a ratio value of 3.01±0.14 in the Galactic center region, it shows that the abundance ratio tends to increase with galactocentric distance, i.e., it supports a radial gradient along the Galactic disk for the abundance ratio. This is consistent with the inside-out formation scenario of our Galaxy. However, our results may suffer from small samples with large galactocentric distance. Combining our data with multi-transition lines of C18O and C17O will be helpful for constraining opacities and abundances and further confirming the Galactic radial gradient shown by the isotope ratio 18O/17O.

  1. Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C₃ and C₄ plants) syrups by the carbon isotope ratio analysis.

    PubMed

    Guler, Ahmet; Kocaokutgen, Hasan; Garipoglu, Ali V; Onder, Hasan; Ekinci, Deniz; Biyik, Selim

    2014-07-15

    In the present study, one hundred pure and adulterated honey samples obtained from feeding honeybee colonies with different levels (5, 20 and 100 L/colony) of various commercial sugar syrups including High Fructose Corn Syrup 85 (HFCS-85), High Fructose Corn Syrup 55 (HFCS-55), Bee Feeding Syrup (BFS), Glucose Monohydrate Sugar (GMS) and Sucrose Sugar (SS) were evaluated in terms of the δ(13)C value of honey and its protein, difference between the δ(13)C value of protein and honey (Δδ(13)C), and C4% sugar ratio. Sugar type, sugar level and the sugar type*sugar level interaction were found to be significant (P<0.001) regarding the evaluated characteristics. Adulterations could not be detected in the 5L/colony syrup level of all sugar types when the δ(13)C value of honey, Δδ(13)C (protein-honey), and C4% sugar ratio were used as criteria according to the AOAC standards. However, it was possible to detect the adulteration by using the same criteria in the honeys taken from the 20 and 100 L/colony of HFCS-85 and the 100L/colony of HFCS-55. Adulteration at low syrup level (20 L/colony) was more easily detected when the fructose content of HFCS syrup increased. As a result, the official methods (AOAC, 978.17, 1995; AOAC, 991.41, 1995; AOAC 998.12, 2005) and Internal Standard Carbon Isotope Ratio Analysis could not efficiently detect the indirect adulteration of honey obtained by feeding the bee colonies with the syrups produced from C3 plants such as sugar beet (Beta vulgaris) and wheat (Triticium vulgare). For this reason, it is strongly needed to develop novel methods and standards that can detect the presence and the level of indirect adulterations. PMID:24594168

  2. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  3. Carbon isotopic fractionation in heterotrophic microbial metabolism.

    PubMed Central

    Blair, N; Leu, A; Muñoz, E; Olsen, J; Kwong, E; Des Marais, D

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. PMID:2867741

  4. Carbon isotopic fractionation in heterotrophic microbial metabolism

    SciTech Connect

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-10-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. 38 references.

  5. Homogeneous diet of contemporary Japanese inferred from stable isotope ratios of hair.

    PubMed

    Kusaka, Soichiro; Ishimaru, Eriko; Hyodo, Fujio; Gakuhari, Takashi; Yoneda, Minoru; Yumoto, Takakazu; Tayasu, Ichiro

    2016-01-01

    The globalization of food production and distribution has homogenized human dietary patterns irrespective of geography, but it is uncertain how far this homogenization has progressed. This study investigated the carbon and nitrogen isotope ratios in the scalp hair of 1305 contemporary Japanese and found values of -19.4 ± 0.6‰ and 9.4 ± 0.6‰ (mean ± SD), respectively. Within Japan, the inter-regional differences for both isotope ratios was less than 1‰, which indicates low dietary heterogeneity among prefectural divisions. The carbon and nitrogen isotope ratios of the hair showed a significant correlation with the results of questionnaires on self-reported dietary habits. The carbon isotope ratios from Japan were lower than those in samples from the USA but higher than those in samples from Europe. These differences stem from the varying dietary proportions of food products originally derived from C3 and C4 plants. The dietary variation of Japan is as small as those of Europe and USA and smaller than those of some Asian countries. These results indicate that dietary homogeneity has progressed in Japan, which may indicate the influence from the spread of the Western-style diet and food globalization, although dietary heterogeneity among countries is still preserved. PMID:27616586

  6. Analytical techniques in biomedical stable isotope applications: (isotope ratio) mass spectrometry or infrared spectrometry?

    PubMed

    Stellaard, Frans; Elzinga, Henk

    2005-12-01

    An overview is presented of biomedical applications of stable isotopes in general, but mainly focused on the activities of the Center for Liver, Digestive and Metabolic Diseases of the University Medical Center Groningen. The aims of metabolic studies in the areas of glucose, fat, cholesterol and protein metabolism are briefly explained, as well as the principle of breath testing and the techniques to study body composition and energy expenditure. Much attention is paid to the analytical considerations based upon metabolite concentrations, sample size restrictions, the availability of stable isotope labelled substrates and dose requirements in relation to compound-specific isotope analysis. The instrumental advantages and limitations of the generally used techniques gas chromatography/reaction/isotope ratio mass spectrometry and gas chromatography/mass spectrometry are described as well as the novelties of the recently commercialised liquid chromatography/combustion/isotope ratio mass spectrometry. The present use and future perspective of infrared (IR) spectrometry for clinical and biomedical stable isotope applications are reviewed. In this respect, the analytical demands on IR spectrometry are discussed to enable replacement of isotope ratio mass spectrometry by IR spectrometry, in particular, for the purpose of compound-specific isotope ratio analysis in biological matrices. PMID:16543190

  7. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies. PMID:23397089

  8. ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING

    SciTech Connect

    Nixon, C. A.; Achterberg, R. K.; Temelso, B.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G. J.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.

    2012-04-20

    The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric

  9. Isotopic Ratios in Titan's Methane: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Temelso, B.; Vinatier, S.; Teanby, N. A.; Bezard, B.; Achterberg, R. K.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G.; Jennings, D. E.; Romani, P. N.; Coustenis, A.; Flasar, F. M.

    2012-01-01

    The existence of methane in Titan's atmosphere (approx. 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of approx 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (13)CH4, (12)CH3D, and (13)CH3D. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(exp -4) , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H yields CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing, We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  10. Nucleosynthesis in AGB Stars Traced by Oxygen Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    De Nutte, R.; Decin, L.; Olofsson, H.; de Koter, A.; Lombaert, R.; Milam, S.; Ramstedt, S.

    2015-08-01

    Isotopic ratios are by far the best diagnostic tracers of the stellar origin of elements, as they are very sensitive to the precise conditions in the nuclear burning regions. They allow us to give direct constraints on stellar evolution models and on the progenitor mass. However, up to now different isotopic ratios have been well constrained for only a handful of Asymptotic Giant Branch (AGB) stars. We present new data on isotopologue lines of a well-selected sample of AGB stars, covering the three spectral classes of C-, S- and M-type stars. We report on the first efforts made in determining accurate isotopologue fractions, focusing on oxygen isotopes which are a crucial tracer of the poorly constrained extra mixing processes in stellar atmospheres.

  11. Stable isotope ratio (13C/12C) mass spectrometry to evaluate carbon sources and sinks: changes and trends during the decomposition of vegetal debris from eucalyptus clone plantations (NW Spain)

    NASA Astrophysics Data System (ADS)

    Fernandez, I.; Cabaneiro, A.

    2014-02-01

    Vegetal debris is known to participate in key soil processes such as the formation of soil organic matter (OM), also being a potential source of greenhouse gases to the atmosphere. However, its contribution to the isotopic composition of both the soil OM and the atmospheric carbon dioxide is not clear yet. Hence, the main objective of the present research is to understand the isotopic 13C changes and trends that take place during the successive biodegradative stages of decomposing soil organic inputs. By incubating bulk plant tissues for several months under laboratory controlled conditions, the kinetics of the CO2 releases and shifts in the 13C natural abundance of the solid residues were investigated using litter samples coming from forest plantations with a different clone (Anselmo: 1st clonal generation attained by morphological selection and Odiel: 2nd clonal generation genetically obtained) of Eucalyptus globulus Labill. developed over granitic or schistic bedrocks and located in northwestern Spain. Significant isotopic variations with time were observed, probably due to the isotopically heterogeneous composition of these complex substrates in conjunction with the initial selective consumption of more easily degradable 13C-differentiated compounds during the first stages of the biodegradation, while less available or recalcitrant litter components were decomposed at later stages of biodegradation, generating products that have their own specific isotopic signatures. These results, which significantly differ depending on the type of clone, suggest that caution must be exercised when interpreting carbon isotope studies (at natural abundance levels) since perturbations associated with the quality or chemical composition of the organic debris from different terrestrial ecosystems can have an important effect on the carbon stable isotope dynamics.

  12. Isotope Ratios Reveal Trickery in the Produce Aisle

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2007

    2007-01-01

    A new technique for the proper checking and banning of organic food items is proposed. The analysis of the nitrogen isotope ratio present in the food is found to be a perfect standard for the organic checking of the food products.

  13. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates. PMID:25393769

  14. A 400 year reconstruction of July relative air humidity for the region Vienna (eastern Austria) based on carbon and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks

    NASA Astrophysics Data System (ADS)

    Haupt, M.; Boettger, T.; Weigl, M.; Grabner, M.

    2009-04-01

    Stable isotope chronologies and correlation to climate. We present the stable isotope chronologies of carbon (^13Clw) and oxygen (^18Olw) for the period from 1600 to 2003 respectively of non-exchangeable hydrogen (^2Hlw) for the last century constructed base upon tree-ring latewood cellulose from oaks (Quercus petraea Matt. Liebl.) grown in the region Vienna (Austria). The stable isotope ratios correspond mainly to the summer climate conditions. For the calibration period (1900-2003) we found high significant correlations (p < 0.001) between ^13Clw and relative air humidity (RH) of July (-0.66), between ^18Olw and RHV I-V II (-0.61) and between ^2Hlw and RHV I-V III(-0.56). In the case of temperatures high significant correlations between the growing season temperature and ^13Clw (0.55), between the annual mean temperatures and ^18Olw ratios (0.45) and between summer mean temperatures (June to August) and ^2Hlw values (0.49) were estimated. Modeling. Various univariate and multivariate linear regressions models were proved for the reconstruction of summer relative air humidity and temperature. We found that establishing of robust models had several uncertainties: - using common linear transfer functions which oversimplify the complexity of relations; - using of pooled material and neglecting of different reactions from individual trees to climate; - high-order autocorrelations in the isotope time series; - climatic trends in the investigated region which are different in the first and in the second half of 20th century; - temporal instability of climate signals in the isotope ratios of tree ring cellulose. In the case of temperature no valid model could be estimated caused by temporal instabilities of signal strength. For relative air humidity two bivariate models RHV II = (-4.3 ± 0.7) * ^13Clw + (-2.8 ± 0.5) * ^18Olw + 44 [1] and RHV II = (-4.7 ± 0.7) * ^13Clw + (-0.35 ± 0.07) * ^2Hlw - 68 [2] were found as verifiable and applicable to reconstruct RHV II

  15. Carbon Isotope and Isotopomer Fractionation in Dense Molecular Cloud Cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; Aikawa, Y.; Sakai, N.; Yamamoto, S.

    2011-05-01

    Observations of 13C species would be useful to investigate chemistry of carbon-bearing species. Recent observations in TMC-1 indicate that the abundances are different among carbon isotopomers of the same species. For instance, Takano et al. (1998) found that HCC13CN is more abundant than HC13CCN and H13CCCN, which indicates the three carbon atoms are not equivalent in HC_3N. Sakai et al. (2007; 2010) reported the abundance ratios of C13CS/13CCS and CCH/13CCH to be 4.2 and 1.6, respectively. Again, two carbon atoms are not equivalent in CCS and CCH. Sakai et al. (2007; 2010) discussed an origin of these anomalies and pointed out two possibilities: (i) fractionation during the formation of the species and (ii) rearrangements of the 13C position after the formation of molecules by isotopomer-exchange reactions. We construct a gas-grain chemical network model which includes carbon isotopes (12C and 13C) and isotopomers in order to investigate the evolution of molecular abundances, the carbon isotope ratios (12CX/13CX) and the isotopomer ratios (12C13CX/13C12CX) of CCH and CCS in dense molecular cores. We confirm that the isotope ratios of molecules, both in the gas phase and on grain surfaces, mostly depend on whether the species is formed from the carbon atom (ion) or the CO molecule; the isotope ratio is larger than the elemental abundance ratio of 12C/13C if the species is formed from the carbon atom, while the ratio is smaller if the species is formed from the CO molecule (cf. Langer et al. 1984). We successfully reproduce the observed C13CH/13CCH ratio in TMC-1 by considering the isotopomer-exchange reaction, 13CCH + H rightleftharpoons C13CH + H + 8.1 K. However, the C13CS/13CCS ratio remains lower than observed in TMC-1. We then assume the isotopomer-exchange reaction catalyzed by the H atom, 13CCS + H rightleftharpoons C13CS + H + 17.4 K. In the model with this reaction, the observed C13CS/13CCS, CCS/C13CS and CCS/13CCS ratios can be reproduced simultaneously.

  16. A Time-Measurement System Based on Isotopic Ratios.

    SciTech Connect

    Vo, Duc T.; Karpius, P. J.; MacArthur, D. W.; Thron, J. L.

    2007-01-01

    A time-measurement system can be built based on the ratio of gamma-ray peak intensities from two radioactive isotopes. The ideal system would use a parent isotope with a short half-life decaying to a long half-life daughter. The activities of the parent-daughter isotopes would be measured using a gamma-ray detector system. The time can then be determined from the ratio of the activities. The best-known candidate for such a system is the {sup 241}Pu-{sup 241}Am parent-daughter pair. However, this {sup 241}Pu-{sup 241}Am system would require a high-purity germanium detector system and sophisticated software to separate and distinguish between the many gamma-ray peaks produced by the decays of the two isotopes. An alternate system would use two different isotopes, again one with a short half-life and one with a half-life that is long relative to the other. The pair of isotopes {sup 210}Pb and {sup 241}Am (with half-lives of 22 and 432 years, respectively) appears suitable for such a system. This time-measurement system operates by measuring the change in the ratio of the 47-keV peak of {sup 210}Pb to the 60-keV peak of {sup 241}Am. For the system to work reasonably well, the resolution of the detector would need to be such that the two gamma-ray peaks are well separated so that their peak areas can be accurately determined using a simple region-of-interest (ROI) method. A variety of detectors were tested to find a suitable system for this application. The results of these tests are presented here.

  17. Carbon isotopes in bulk carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Halbout, J.; Mayeda, T. K.; Clayton, R. N.

    1985-01-01

    The chemical and physical processes involved in the formation of the solar system are examined. Primitive matter has been found on a microscopic scale in a variety of meteorites: fragments of small solar system bodies that were never part of a large planet. This primitive matter has, in most cases, been identified by the presence of anomalous abundances of some isotopes of the chemical elements. Of particular interest for carbon isotope studies are the primitive meteorites known as carbonaceous chondrites. Using a selective oxidation technique to sort out the carbon contained in different chemical forms (graphite, carbonates, and organic matter), four carbonaceous chondrites are analyzed. The presence of the (13) C-rich component was confirmed and additional carbon components with different, but characteristic, isotopic signatures were resolved.

  18. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NASA Astrophysics Data System (ADS)

    de Kluijver, A.; Schoon, P. L.; Downing, J. A.; Schouten, S.; Middelburg, J. J.

    2014-11-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFAs were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed overall higher isotopic variability in eutrophic lakes (n = 11) compared to oligo-mesotrophic lakes (n = 11) because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8-25‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.

  19. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NASA Astrophysics Data System (ADS)

    de Kluijver, A.; Schoon, P. L.; Downing, J. A.; Schouten, S.; Middelburg, J. J.

    2014-05-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFA) were studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFA were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed larger isotopic variability in eutrophic lakes compared to oligo-mesotrophic lakes because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8-25 ‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.

  20. A 400 year reconstruction of July relative air humidity for the region Vienna (eastern Austria) based on carbon and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks

    NASA Astrophysics Data System (ADS)

    Haupt, M.; Boettger, T.; Weigl, M.; Grabner, M.

    2009-04-01

    Stable isotope chronologies and correlation to climate. We present the stable isotope chronologies of carbon (^13Clw) and oxygen (^18Olw) for the period from 1600 to 2003 respectively of non-exchangeable hydrogen (^2Hlw) for the last century constructed base upon tree-ring latewood cellulose from oaks (Quercus petraea Matt. Liebl.) grown in the region Vienna (Austria). The stable isotope ratios correspond mainly to the summer climate conditions. For the calibration period (1900-2003) we found high significant correlations (p < 0.001) between ^13Clw and relative air humidity (RH) of July (-0.66), between ^18Olw and RHV I-V II (-0.61) and between ^2Hlw and RHV I-V III(-0.56). In the case of temperatures high significant correlations between the growing season temperature and ^13Clw (0.55), between the annual mean temperatures and ^18Olw ratios (0.45) and between summer mean temperatures (June to August) and ^2Hlw values (0.49) were estimated. Modeling. Various univariate and multivariate linear regressions models were proved for the reconstruction of summer relative air humidity and temperature. We found that establishing of robust models had several uncertainties: - using common linear transfer functions which oversimplify the complexity of relations; - using of pooled material and neglecting of different reactions from individual trees to climate; - high-order autocorrelations in the isotope time series; - climatic trends in the investigated region which are different in the first and in the second half of 20th century; - temporal instability of climate signals in the isotope ratios of tree ring cellulose. In the case of temperature no valid model could be estimated caused by temporal instabilities of signal strength. For relative air humidity two bivariate models RHV II = (-4.3 ± 0.7) * ^13Clw + (-2.8 ± 0.5) * ^18Olw + 44 [1] and RHV II = (-4.7 ± 0.7) * ^13Clw + (-0.35 ± 0.07) * ^2Hlw - 68 [2] were found as verifiable and applicable to reconstruct RHV II

  1. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  2. Carbonate clumped isotope thermometry in continental tectonics

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, Δ47) and provides estimates of the carbonate formation temperature independent of the δ18O value of the water from which the carbonate grew; Δ47 is measured simultaneously with conventional measurements of carbonate δ13C and δ18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 °C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of Δ47 values to a sample's thermal history. However, the thermometer is

  3. NUSIMEP-7: uranium isotope amount ratios in uranium particles.

    PubMed

    Truyens, J; Stefaniak, E A; Aregbe, Y

    2013-11-01

    The Institute for Reference Materials and Measurements (IRMM) has extensive experience in the development of isotopic reference materials and the organization of interlaboratory comparisons (ILC) for nuclear measurements in compliance with the respective international guidelines (ISO Guide 34:2009 and ISO/IEC 17043:2010). The IRMM Nuclear Signatures Interlaboratory Measurement Evaluation Program (NUSIMEP) is an external quality control program with the objective of providing materials for measurements of trace amounts of nuclear materials in environmental matrices. Measurements of the isotopic ratios of the elements uranium and plutonium in small amounts, typical of those found in environmental samples, are required for nuclear safeguards and security, for the control of environmental contamination and for the detection of nuclear proliferation. The measurement results of participants in NUSIMEP are evaluated according to international guidelines in comparison to independent external certified reference values with demonstrated metrological traceability and uncertainty. NUSIMEP-7 focused on measurements of uranium isotope amount ratios in uranium particles aiming to support European Safeguards Directorate General for Energy (DG ENER), the International Atomic Energy Agency's (IAEA) network of analytical laboratories for environmental sampling (NWAL) and laboratories in the field of particle analysis. Each participant was provided two certified test samples: one with single and one with double isotopic enrichment. These NUSIMEP test samples were prepared by controlled hydrolysis of certified uranium hexafluoride in a specially designed aerosol deposition chamber at IRMM. Laboratories participating in NUSIMEP-7 received the test samples of uranium particles on two graphite disks with undisclosed isotopic ratio values n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U). The uranium isotope ratios had to be measured using their routine analytical

  4. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  5. The first protocol of stable isotope ratio assessment in tumor tissues based on original research.

    PubMed

    Taran, Katarzyna; Frączek, Toma; Kamiński, Rafal; Sitkiewicz, Anna; Kobos, Jozef; Paneth, Piotr

    2015-09-01

    Thanks to proteomics and metabolomics, for the past several years there has been a real explosion of information on the biology of cancer, which has been achieved by spectroscopic methods, including mass spectrometry. These modern techniques can provide answers to key questions about tissue structure and mechanisms of its pathological changes. However, despite the thousands of spectroscopic studies in medicine, there is no consensus on issues ranging from the choice of research tools, acquisition and preparation of test material to the interpretation and validation of the results, which greatly reduces the possibility of transforming the achieved knowledge to progress in the treatment of individual patients. The aim of this study was to verify the utility of isotope ratio mass spectrometry in the evaluation of tumor tissues. Based on experimentation on animal tissues and human neoplasms, the first protocol of stable isotope ratio assessment of carbon and nitrogen isotopes in tumor tissues was established. PMID:26619108

  6. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    SciTech Connect

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  7. Lignin methoxyl hydrogen isotope ratios in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feakins, Sarah J.; Ellsworth, Patricia V.; Sternberg, Leonel da Silveira Lobo

    2013-11-01

    Stable hydrogen isotope ratios of plant lignin methoxyl groups have recently been shown to record the hydrogen isotopic composition of meteoric water. Here we extend this technique towards tracing water source variations across a saltwater to freshwater gradient in a coastal, subtropical forest ecosystem. We measure the hydrogen isotopic composition of xylem water (δDxw) and methoxyl hydrogen (δDmethoxyl) to calculate fractionations for coastal mangrove, buttonwood and hammock tree species in Sugarloaf Key, as well as buttonwoods from Miami, both in Florida, USA. Prior studies of the isotopic composition of cellulose and plant leaf waxes in coastal ecosystems have yielded only a weak correlation to source waters, attributed to leaf water effects. Here we find δDmethoxyl values range from -230‰ to -130‰, across a 40‰ range in δDxw with a regression equation of δDmethoxyl ‰ = 1.8 * δDxw - 178‰ (R2 = 0.48, p < 0.0001, n = 74). This is comparable within error to the earlier published relationship for terrestrial trees which was defined across a much larger 125‰ isotopic range in precipitation. Analytical precision for measurements of δD values of pure CH3I by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-P-IRMS) is σ = 6‰ (n = 31), which is considerably better than for CH3I liberated through cleavage with HI from lignin with σ = 18‰ (n = 26). Our results establish that δDmethoxyl can record water sources and salinity incursion in coastal ecosystems, where variations sufficiently exceed method uncertainties (i.e., applications with δD excursions >50‰). For the first time, we also report yields of propyl iodide, which may indicate lignin synthesis of propoxyl groups under salt-stress.

  8. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at FUSRAP Sites

    SciTech Connect

    Frederick, W.T.; Keil, K.G.; Rhodes, M.C.; Peterson, J.M.; MacDonell, M.M.

    2007-07-01

    The U.S. Army Corps of Engineers Buffalo District is evaluating environmental radioactive contamination at several Formerly Utilized Sites Remedial Action Program (FUSRAP) sites throughout New York, Pennsylvania, Ohio, and Indiana. The investigations follow the process defined in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Groundwater data from the Niagara Falls Storage Site (NFSS) in Lewiston, New York were evaluated for isotopic uranium ratios, specifically uranium-234 versus uranium-238 (U- 234 and U-238, respectively), and the results were presented at Waste Management 2006. Since uranium naturally occurs in all groundwater, it can be difficult to distinguish where low-concentration impacts from past releases differ from the high end of a site-specific natural background range. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 (unity) due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow and may take hundreds to thousands of years before a measurable increase is seen in the natural isotopic ratio. If site releases are the source of uranium being measured in groundwater, the U-234 to U-238 ratio is commonly closer to 1, which normally reflects FUSRAP-related, uranium-contaminated wastes and soils. This lower ratio occurs because not enough residence time has elapsed since the 1940's and 1950's for the alpha particle recoil effect to have significantly altered the contamination-derived ratio. An evaluation of NFSS-specific and regional groundwater data indicate that an isotopic ratio of 1.2 has been identified as a signature value to help distinguish natural groundwater, which may have a broad background range, from zones impacted by past releases. (authors)

  9. Constraining paleotemperature and water isotope signals at Lake Bonneville using carbonate clumped isotopes

    NASA Astrophysics Data System (ADS)

    Mering, J. A.; Oviatt, C. G.; Petryshyn, V. A.; Canet, J.; Tripati, A.

    2013-12-01

    Lake Bonneville was the largest pluvial system in the Great Basin during the Last Glacial Maximum (23-19 ka BP), reaching nearly 50,000 square kilometers at its high stand. Carbonate clumped isotope paleothermometry provides a new avenue to evaluate lake and atmospheric conditions by constraining the temperature and oxygen isotope ratios of lake water. Here, we present estimates of lake temperature, the oxygen isotope composition of paleowater, and Mean Annual Air Temperature (MAAT) from LGM paleoshoreline sites in Utah and Eastern Nevada. Multiple phases of ancient carbonate were evaluated, including endogenic carbonate from the ubiquitous Bonneville marl stratigraphic unit, and aragonitic shells of two species of aquatic gastropods (genera Pyrgulopsis and Stagnicola) collected from littoral deposits adjacent to the marl. These phases should record surface water conditions. Preliminary results indicate that paleotemperature estimates from gastropods and marl are similar at any given site. However, the latitudinal water isotope gradient reconstructed using marls is steeper than that reconstructed from gastropods, indicating that perhaps carbonate precipitation in marl is more evaporation-driven than shell growth of aquatic snails. Comparison with recent climate data, and clumped isotope measurements of modern samples from the Great Salt Lake, supports moderate temperature change in the Great Basin from the Last Glacial Maximum to present.

  10. Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects

    SciTech Connect

    Schell, D.M.

    1995-12-31

    Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratin of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.

  11. D/H isotope ratios in the global hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Good, Stephen P.; Noone, David; Kurita, Naoyuki; Benetti, Marion; Bowen, Gabriel J.

    2015-06-01

    Deuterium to hydrogen (D/H) ratios in Earth's hydrologic cycle have long served as important tracers of climate processes, yet the global HDO budget remains poorly constrained because of uncertainties in the isotopic compositions of continental evapotranspiration and runoff. Here bias-corrected satellite retrievals of HDO and H2O concentrations from the Tropospheric Emissions Spectrometer are used to estimate the marine atmospheric surface layer HDO vapor pressure deficit, from which we calculate the global flux-weighted average oceanic evaporation isotopic composition as -37.6‰. Using these estimates, combined with D/H ratios in precipitation, global mass balance suggests H isotope compositions for global runoff and terrestrial evapotranspiration of -77.3‰ and -40.0‰, respectively. By resolving the HDO budget, we establish an accurate global baseline for geochemically enabled Earth system models, demonstrate patterns in entrainment of moisture into the marine surface layer, and determine the isotopic composition of continental fluxes critical for global ecohydrologic investigations.

  12. Accurate and Precise Zinc Isotope Ratio Measurements in Urban Aerosols

    NASA Astrophysics Data System (ADS)

    Weiss, D.; Gioia, S. M. C. L.; Coles, B.; Arnold, T.; Babinski, M.

    2009-04-01

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of δ66Zn determinations in aerosols is around 0.05 per mil per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in δ66Zn ranging between -0.96 and -0.37 per mil in coarse and between -1.04 and 0.02 per mil in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source.

  13. Zinc Isotope Ratios as Indicators of Diet and Trophic Level in Arctic Marine Mammals.

    PubMed

    Jaouen, Klervia; Szpak, Paul; Richards, Michael P

    2016-01-01

    Carbon and nitrogen stable isotope ratios of bone collagen are an established method for dietary reconstruction, but this method is limited by the protein preservation. Zinc (Zn) is found in bioapatite and the isotopic compositions of this element constitute a very promising dietary indicator. The extent of fractionation of Zn isotopes in marine environments, however, remains unknown. We report here on the measurement of zinc, carbon and nitrogen isotopes in 47 marine mammals from the archaeological site of Arvik in the Canadian Arctic. We undertook this study to test and demonstrate the utility of Zn isotopes in recent mammal bone minerals as a dietary indicator by comparing them to other isotopic dietary tracers. We found a correlation between δ66Zn values and trophic level for most species, with the exception of walruses, which may be caused by their large seasonal movements. δ6Zn values can therefore be used as a dietary indicator in marine ecosystems for both modern and recent mammals. PMID:27010907

  14. Zinc Isotope Ratios as Indicators of Diet and Trophic Level in Arctic Marine Mammals

    PubMed Central

    Jaouen, Klervia; Szpak, Paul; Richards, Michael P.

    2016-01-01

    Carbon and nitrogen stable isotope ratios of bone collagen are an established method for dietary reconstruction, but this method is limited by the protein preservation. Zinc (Zn) is found in bioapatite and the isotopic compositions of this element constitute a very promising dietary indicator. The extent of fractionation of Zn isotopes in marine environments, however, remains unknown. We report here on the measurement of zinc, carbon and nitrogen isotopes in 47 marine mammals from the archaeological site of Arvik in the Canadian Arctic. We undertook this study to test and demonstrate the utility of Zn isotopes in recent mammal bone minerals as a dietary indicator by comparing them to other isotopic dietary tracers. We found a correlation between δ66Zn values and trophic level for most species, with the exception of walruses, which may be caused by their large seasonal movements. δ6Zn values can therefore be used as a dietary indicator in marine ecosystems for both modern and recent mammals. PMID:27010907

  15. Position-specific measurement of oxygen isotope ratios in cellulose: Isotopic exchange during heterotrophic cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Waterhouse, John S.; Cheng, Shuying; Juchelka, Dieter; Loader, Neil J.; McCarroll, Danny; Switsur, V. Roy; Gautam, Lata

    2013-07-01

    We describe the first reported method for the measurement of oxygen isotope ratios at each position in the glucose units of the cellulose molecule. The overall process comprises a series of synthetic organic sequences, by which α-cellulose is hydrolysed to glucose, and oxygen atoms at specific positions in the glucose molecule are removed in samples of benzoic acid for measurement of δ18O. Values of δ18O at specific positions in cellulose are calculated from these δ18O values and the overall δ18O value of the cellulose. We apply the method to determine the degree to which oxygen atoms at each position undergo isotopic exchange with water during heterotrophic cellulose synthesis, such as occurs in the cambium of trees. To do this we extract α-cellulose from wheat seedlings germinated in the dark in aqueous media of differing oxygen isotope ratios. Results indicate that oxygen atoms at positions 5 and 6 (O-5 and O-6 respectively) undergo around 80% exchange with medium water, O-3 undergoes around 50% exchange, and O-2 and O-4 do not undergo isotopic exchange. The results have important implications for extracting palaeoclimatic records from oxygen isotope time series obtained from tree ring cellulose. As O-5 and O-6 undergo significant exchange with medium water during heterotrophic cellulose synthesis, oxygen isotopes at these positions in tree ring cellulose should carry a predominantly trunk (source) water signal. On the other hand, O-2 and O-4 should retain the isotopic signature of leaf water in tree ring cellulose. Our method therefore potentially enables the separate reconstruction of past temperature and humidity data from oxygen isotope ratios of tree ring cellulose - something that has hitherto not been possible. The measured degrees of isotopic exchange are to some extent unexpected and cannot be fully explained using current biochemical mechanisms, suggesting that knowledge of these processes is incomplete.

  16. Site-Specific Carbon Isotopes in Organics

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2012-12-01

    Natural organic molecules exhibit a wide range of internal site-specific isotope variation (i.e., molecules with same isotopic substitution type but different site). Such variations are generally unconstrained by bulk isotopic measurements. If known, site-specific variations might constrain temperatures of equilibrium, mechanisms of formation or consumption reactions, and possibly other details. For example, lipids can exhibit carbon isotope differences of up to 30‰ between adjacent carbon sites as a result of fractionations arising during decarboxylation of pyruvate and other steps in lipid biosynthesis(1). We present a method for site-specific carbon isotope analysis of propane, based on high-resolution, multi-collector gas source mass spectrometry, using a novel prototype instrument - the Thermo MAT 253 Ultra. This machine has an inlet system and electron bombardment ion source resembling those in conventional stable isotope gas source mass spectrometers, and the energy filter, magnet, and detector array resembling those in multi-collector ICPMS and TIMS. The detector array has 7 detector positions, 6 of which are movable, and each of which can collect ions with either a faraday cup (read through amplifiers ranging from 107-1012 ohms) or an SEM. High mass resolving power (up to 27,000, MRP = M/dM definition) is achieved through a narrow entrance slit, adjustable from 250 to 5 μm. Such resolution can cleanly separate isobaric interferences between isotopologues of organic molecules having the same cardinal mass (e.g., 13CH3 and 12CH2D). We use this technology to analyze the isotopologues and fragments of propane, and use such data to solve for the site-specific carbon isotope fractionation. By measuring isotopologues of both the one-carbon (13CH3) and the two-carbon (13C12CH4) fragment ion, we can solve for both bulk δ13C and the difference in δ13C between the terminal and central carbon position. We tested this method by analyzing mixtures between natural

  17. Development of a Micropyrolyzer for Enhanced Isotope Ratio Measurement

    SciTech Connect

    Hu, Jianli; Dagle, Robert A.; Johnson, Bradley R.; Kreuzer, Helen W.; Gaspar, Daniel J.; Roberts, Benjamin Q.; Alexander, M. L.

    2008-11-19

    This paper presents design, fabrication and testing of a micro scale reactor for the pyrolysis of organic compounds. The reactor system described here is suitable for use in enhanced isotope ratio measurement in a continuous flow mode. A characteristic of such a system is it can be utilized to pyrolyze organic compounds with sample size 20-50 times smaller than conventional. Results have shown that organic compounds, such as 1-butanol, ethanol, and ethanol amine, can be fully decomposed to desired products CO and H2, at temperature of 1200oC, which is 200oC lower than conventionally reported. Undesired products methane and CO2 are eliminated in the pyrolysis process. The proof-of-concept experimental results clearly demonstrate that the micro pyrolyzer can be readily integrated with isotope ratio mass spectrometer (IRMS) to differentiate between different sources of the same materials.

  18. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  19. Stable isotope ratio measurements of royal jelly samples for controlling production procedures: impact of sugar feeding.

    PubMed

    Daniele, Gaëlle; Wytrychowski, Marine; Batteau, Magali; Guibert, Sylvie; Casabianca, Hervé

    2011-07-30

    The carbon and nitrogen stable ratios of royal jelly (RJ) samples from various origins are determined using an elemental analyser linked online to an isotope ratio mass spectrometer to evaluate authenticity and adulteration. The (13)C/(12)C and (15)N/(14)N stable isotope ratios are measured in more than 500 RJs (domestic, imported and derived from feeding experiments) in order to obtain isotopic measurements that take into account seasonal, botanical and geographical effects. Authenticity intervals are established for traditional beekeeping practices, without feeding, in the range -22.48 to -27.90‰ for δ(13)C. For these samples, the δ(15)N values range from -1.58 to 7.98‰, depending on the plant sources of pollen and nectar. The δ(13)C values of the commercial samples vary from -18.54 to -26.58‰. High δ(13)C values are typical of sugar cane or corn syrups which have distinctive isotopic (13)C signatures because both plants use the C4 photosynthetic cycle, in contrast to most RJs which are derived from C3 plants. These differences in the (13)C-isotopic composition allow the detection of the addition of such sugars. RJs from traditional sources and from industrial production by sugar feeding are thus successfully distinguished. PMID:21698675

  20. Isotopic Hg in an Allende carbon-rich residue

    NASA Technical Reports Server (NTRS)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  1. Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.

    2013-12-01

    Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other

  2. Speleothems as proxy for the carbon isotope composition of atmospheric CO2

    SciTech Connect

    Baskaran, M.; Krishnamurthy, R.V. |

    1993-12-01

    We have measured the stable isotope ratios of carbon in a suite of recent cave deposits (less than 200 years) from the San Saba County, Texas, USA. The methodology for dating these deposits using excess Pb-210 was recently established (Baskaran and Iliffe, 1993). The carbon isotope ratios of these samples, spanning the time period approximately 1800-1990 AD, reflect the carbon isotope ratio of atmospheric CO2 for the same period. The pathways by which the delta C-13 of atmospheric CO2 is imprinted on these speleothems can be explained using a model developed by Cerling (1984). The results suggest that the carbon isotope ratios of speleothems can be used to develop long-term, high-resolution chronologies of the delta C-13 of atmospheric CO2 and, by implication, the concentration of the atmospheric CO2.

  3. Characterizing Pb mobilization from upland soils to streams using (206)Pb/(207)Pb isotopic ratios.

    PubMed

    Dawson, Julian J C; Tetzlaff, Doerthe; Carey, Anne-Marie; Raab, Andrea; Soulsby, Chris; Killham, Kenneth; Meharg, Andrew A

    2010-01-01

    Anthropogenically deposited lead (Pb) binds efficiently to soil organic matter, which can be mobilized through hydrologically mediated mechanisms, with implications for ecological and potable quality of receiving waters. Lead isotopic ((206)Pb/(207)Pb) ratios change down peat profiles as a consequence of long-term temporal variation in depositional sources, each with distinctive isotopic signatures. This study characterizes differential Pb transport mechanisms from deposition to streams at two small catchments with contrasting soil types in upland Wales, U.K., by determining Pb concentrations and (206)Pb/(207)Pb ratios from soil core profiles, interstitial pore waters, and stream water. Hydrological characteristics of soils are instrumental in determining the location in soil profiles of exported Pb and hence concentration and (206)Pb/(207)Pb ratios in surface waters. The highest Pb concentrations from near-surface soils are mobilized, concomitant with high dissolved organic carbon (DOC) exports, from hydrologically responsive peat soils with preferential shallow subsurface flows, leading to increased Pb concentrations in stream water and isotopic signatures more closely resembling recently deposited Pb. In more minerogenic soils, percolation of water allows Pb, bound to DOC, to be retained in mineral horizons and combined with other groundwater sources, resulting in Pb being transported from throughout the profile with a more geogenic isotopic signature. This study shows that (206)Pb/(207)Pb ratios can enhance our understanding of the provenances and transport mechanisms of Pb and potentially organic matter within upland soils. PMID:19954181

  4. Exploring antimony isotope ratio variations for provenancing purposes

    NASA Astrophysics Data System (ADS)

    Lobo, L.; Degryse, P.; Vanhaecke, F.

    2012-04-01

    Production sites and trade routes of Roman glass have received much attention over the past decade. It is assumed that raw glass was produced in primary workshops near the raw material sources used, to be transported to secondary glass houses. Colourless glass was a particularly prestigious material in this process, difficult to make. It has been looked at from the perspective of the provenance of its sand and flux, but rarely from the perspective of the origin of the decolourizing material. In effect, for the production of early Roman colourless glass, antimony was used, deliberately added under the form of Sb-bearing minerals. Isotopic analysis of Sb ores could help identify the origin of the decolorizing agent present in Roman glasses and, consequently, to reconstruct how such material was traded and transported, and how this can be integrated in the network of primary and secondary glass producers. In this work, variations in the isotopic composition of Sb in different ore sources (stibnites) are explored using multi-collector ICP - mass spectrometry. A new method is proposed, where Sb is directly analysed for its isotopic composition using MC-ICP-MS after chromatographic isolation of the target element from a sample digest. The isotopic composition of the selected materials shows variations up to 6 ?-units relative to an antimony standard solution. Indium was used as internal standard for correction for instrumental mass discrimination and an external precision for the 123Sb/121Sb ratio of 0.01% RSD was obtained

  5. TOWARD A UNIQUE NITROGEN ISOTOPIC RATIO IN COMETARY ICES

    SciTech Connect

    Rousselot, Philippe; Cordier, Daniel; Mousis, Olivier; Pirali, Olivier; Vervloet, Michel; Martin-Drumel, Marie-Aline; Gruet, Sébastien; Jehin, Emmanuël; Hutsemékers, Damien; Manfroid, Jean; Arpigny, Claude; Decock, Alice

    2014-01-10

    Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in comets due to the {sup 15}NH{sub 2} radical produced by the photodissociation of {sup 15}NH{sub 3}. Analysis of our data has permitted us to measure the {sup 14}N/{sup 15}N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N{sub 2} and NH{sub 3} result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titan's atmospheric N{sub 2}, supporting the hypothesis that, if the latter is representative of its primordial value in NH{sub 3}, these bodies were assembled from building blocks sharing a common formation location.

  6. USE OF THE COMPOSITION AND STABLE CARBONIISOTOPE RATIO OF MICROBIAL FATTY ACIDS TO STUDY CARBON CYCLING

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (*13C) of individual microbial phospholipid fatty acids (PLFAs) in soils and sediments as indicators of live microbial biomass levels and microbial carbon source. For studies of soil organic matter (SOM) cy...

  7. Detailed Distribution of the Helium Isotope Ratios in Northeastern Japan

    NASA Astrophysics Data System (ADS)

    Horiguchi, K.; Ueki, S.; Sano, Y.; Takahata, N.; Hasegawa, A.

    2007-12-01

    The geographical distribution of helium isotope ratios (3He/4He ratios) is characterized by high values of 4 to 8RA (where RA is the atmospheric 3He/4He ratio of 1.39×10-6) along the volcanic front and in the back-arc region at Tohoku district, northeastern Japan. In contrast forearc region shows low values less than 1RA. On the other hand, there is no clear contrast of the 3He/4He ratios except at the central region (e.g., Sano and Wakita, 1985). We perform the helium isotope ratio analysis in northeastern Japan, and around the source region of the Niigataken Chuetsu-oki Earthquake in 2007 (M6.8) where 3He/4He ratios data were reported. We have collected 41 samples of gases from hot springs, mineral springs, and deep wells, distributing mainly in the forearc region at Tohoku district. In addition, we also collected 19 samples of gases from hot springs, volcanoes and natural gas fields around the source region of the Niigataken Chuetsu-oki Earthquake in 2007. We measured 3He/4He ratios by noble gas mass spectrometers (Helix and VG5400) of Ocean Research Institute (ORI), the University of Tokyo. The 4He/20Ne were measured by a quadruple mass spectrometer to evaluate air contamination in the samples. δ13C (CO2) values were measured by using a mass spectrometer (DELTA plus XP) of ORI. Main features of our results for Tohoku region are as follows: 1) The 3He/4He ratios in the forearc region are less than 1RA. 2) The 3He/4He ratios vary along the volcanic front. In Miyagi prefecture [38-39N], the ratios range from 2 to 5 RA. On the other hand, the ratios are less than 1RA in and around the southern boundary of Iwate and Akita prefectures [39-39.5N]. The distribution of 3He/4He ratios in Niigata plans to be discussed by comparing with the well-studied seismotectonics and the structure of the crust and upper mantle.

  8. Carbon isotope composition of Antarctic plants

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.

    2000-05-01

    Carbon isotope compositions of Antarctic land plants are first reported. The most interesting feature is the isotope specificity of the species. For example Usnea antarctica from different locations shows relatively narrow range of the δ 13C-values from -22.44 to -21.29‰ (7 samples), Drepanocladus sp. from -24.86 to -23.49‰ (8 samples), and Andreaea depressincrvis from -23.87 to -23.23‰ (3 samples) etc. Usually, in inhabited lands and parts of the world with rich flora and developed soil, isotopic specificity of species is masked by variations of carbon isotope composition of CO 2. In Antarctic conditions influence of local sources of CO 2 on the isotope composition of CO 2 is appeared to be minimal. Therefore the δ 13C-variations inherent to individual plant physiology and biochemistry can be distinguished on the background of the stable level of the atmospheric CO 2 δ 13C-value. The latter is best to reflect the global state of the carbon cycle.

  9. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  10. Utilizing Isotopic Uranium Ratios in Groundwater Evaluations at NFSS

    SciTech Connect

    Rhodes, M.C.; Keil, K.G.; Frederick, W.T.; Papura, T.R.; Leithner, J.S.; Peterson, J.M.; MacDonell, M.M.

    2006-07-01

    The U.S. Army Corps of Engineers (USACE) Buffalo District is currently evaluating environmental contamination at the Niagara Falls Storage Site (NFSS) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP). The NFSS is located in the Town of Lewiston in western New York and has been used to store uranium-contaminated materials since 1944. Most of the radioactive materials are currently contained in an on-site structure, but past contamination remains in soil and groundwater. As a naturally occurring radionuclide, uranium is present in all groundwater. Because contamination levels at the site are quite low, it can be difficult to distinguish zones that have been impacted by the past releases from those at the high end of the natural background range. The differences in the isotopic ratio of uranium-234 (U-234) to uranium-238 (U-238) between natural groundwater systems and affected areas are being used in an innovative way to better define the nature and extent of groundwater contamination at NFSS. In natural groundwater, the ratio of U-234 to U-238 exceeds 1 due to the alpha particle recoil effect, in which U-234 is preferentially mobilized to groundwater from adjacent rock or soil. This process is very slow, and it can be hundreds to thousands of years before a measurable impact is seen in the isotopic ratio. Thus, as a result of the recoil effect, the ratio of U-234 to U-238 will be higher in natural groundwater than in contaminated groundwater. This means that if site releases were the source of the uranium being measured in groundwater at NFSS, the ratio of U-234 to U-238 would be expected to be very close to 1 (the same ratio that exists in wastes and soil at the site), because not enough time has elapsed for the alpha particle recoil effect to have significantly altered that ratio. From an evaluation of site and regional groundwater data, an isotopic ratio

  11. Carbon isotopes as indicators of peatland growth?

    NASA Astrophysics Data System (ADS)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  12. Local and regional oscillations of carbon and oxygen isotopes in terestrial carbonates

    NASA Astrophysics Data System (ADS)

    Skipitytė, Raminta; Stančikaitė, Miglė

    2014-05-01

    Stable isotope ratios of carbon and oxygen in sediment carbonates are used as a tool to identify climatic changes in the past [1], [2]. Carbon is more related to humidity whereas oxygen is thought to respond the temperature [2]. Nevertheless number of questions about local, regional and global scale impacts to these records is left. In this research work carbon and oxygen isotope ratios in lacustrine carbonates are used to identify palaeoenvironmental dynamics of different locations. Samples of lacutrine carbonates were obtained from 8 sequences of different sites in Lithuania (4), Poland (1), Belarus (1) and Kaliningrad (1). Every sequence was divided into 2 cm intervals. The study showed differences in average carbon and oxygen isotope ratios between Lithuania and other countries (Poland, Belarus and Kaliningrad). Carbon and oxygen isotope ratios in 4 sites in Lithuania are: ¯U la δ13C -4.72± 2.11, o and δ18O -9.46± 1.9, o ; Zervynos δ13C -4.79± 1.82, o and δ18O -9.57± 1.69, o ; Rudnia δ13C -4.94± 7.53, o and δ18O -9.3± 3.92, o ; Pauliai δ13C -4.15± 0.67, o and δ18O -9.94± 1.07, o : In other countries: Poland δ13C -1.07± 1.94, o and δ18O -7.69± 0.95, o ; Belarus δ13C 0.97± 1.94, o and δ18O -7.61± 1.42, o ; Kaliningrad δ13C -1.14± 1.43, o and δ18O -6.51± 1.00, o : Average stable carbon and oxygen isotope values from four sites in Lithuania were -4.65 o for carbon and -9.51 o for oxygen. Despite homogeneity of average isotope signals in these four sites there are relatively large oscillations of isotopic values in Rudnia and relatively small in Pauliai. These oscillations could be related to local characteristics of particular place such as environmental conditions, water balance, input of terrigenous materials into basin, etc. Total amount of CaCO3 could also play a significant role in reconstructing palaeoenvironment from stable isotopes and creating isomaps. The comparison of isotope records from different locations could enable to

  13. Diurnal and Interannual Variation in Absorption Lines of Isotopic Carbon Dioxide in Mars Atmosphere

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade G.

    2015-11-01

    Groundbased observations of Mars in 2003, 2007, 2012, and 2014 have detected transitions of carbon dioxide containing the stable minor isotopes of oxygen and carbon as well as the primary isotopes, using the ultrahigh resolution spectrometer HIPWAC at the NASA Infrared Telescope Facility. The most well characterized minor isotope is O-18, due to strong lines and observational opportunities. The average estimated O-18/O-16 isotope ratio is roughly consistent with other in situ and remote spectroscopic measurements but demonstrates an additional feature in that the retrieved ratio appears to increase with greater ground surface temperature. These conclusions primarily come from analyzing a subset of the 2007 data. Additional observations have been acquired over a broad range of local time and meridional position to evaluate variability with respect to ground surface temperature. These additional observations include one run of measurements with C-13. These observations can be compared to local in situ measurements by the Curiosity rover to narrow the uncertainty in absolute isotope ratio and extend isotopic measurements to other regions and seasons on Mars. The relative abundance of carbon dioxide heavy isotopes on Mars is central to estimating the primordial atmospheric inventory on Mars. Preferential freeze-distillation of heavy isotopes means that any measurement of the isotope ratio can be only a lower limit on heavy isotope enrichment due to past and current loss to space.

  14. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples

    NASA Astrophysics Data System (ADS)

    Magenheim, A. J.; Spivack, A. J.; Volpe, C.; Ransom, B.

    1994-07-01

    Investigation of stable chlorine isotopes in geological materials has been hindered by large sample requirements and/or lack of analytical precision. Here we describe precise methods for the extraction, isolation, and isotopic analysis of low levels of chlorine in both silicate and aerosol samples. Our standard procedure uses 2 μg of Cl for each isotopic analysis. External reproducibility (1 σ) is 0.25%. for the 37Cl /35Cl measurements. Chlorine is extracted from silicate samples (typically containing at least 20 μg of Cl) via pyrohydrolysis using induction heating and water vapor as the carrier, and the volatilized chlorine is condensed in aqueous solution. Atmospheric aerosols collected on filters are simply dissolved in water. Prior to isotopic measurement, removal of high levels of SO 42-, F -, and organic compounds is necessary for the production of stable ion beams. Sulfate is removed by BaSCO 4 precipitation, F - by CaF 2 precipitation, and organic compounds are extracted with activated carbon. Chlorine is converted to stoichiometric CsCl by cation exchange, and isotopic ratios are determined by thermal ionization mass spectrometry of Cs 2Cl +. We demonstrate that the sensitivity and precision of this method allow resolution of natural variations in chlorine isotopic composition, and thereby provide insight to some fundamental aspects of chlorine geochemistry.

  15. Cesium Isotope Ratios as Indicators of Nuclear Power Plant Operations

    SciTech Connect

    Darin Snyder; James Delmore; Troy Tranter; Nick Mann; Michael Abbott; John Olson

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive 135Cs/137Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these 135Cs/137Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample.

  16. Cesium isotope ratios as indicators of nuclear power plant operations.

    PubMed

    Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. PMID:21816522

  17. Simultaneous measurement of CO2 concentration and isotopic ratios in gas samples using IRMS

    NASA Astrophysics Data System (ADS)

    Yu, Eun-Ji; Lee, Dongho; Bong, Yeon-Sik; Lee, Kwang-Sik

    2014-05-01

    Isotopic methods are indispensable tools for studies on atmosphere-biosphere exchanges of CO2 and environmental monitoring such as CO2 leakage detection from subsurface carbon storages. CO2 concentration is an important variable in interpreting isotopic composition of CO2 especially in atmospheric applications (e.g., 'Keeling plot'). Optical methods such as CRDS (Cavity Ring Down Spectroscopy) are gaining attention recently because of its capability to simultaneously measure CO2 concentration and isotopic ratios with a short measurement interval (up to 1 sec.). On the other hand, IRMS (Isotope Ratio Mass Spectrometer) has been used only for isotopic measurements. In this study, we propose a method to measure CO2 concentration from gas samples along with isotopic ratios using conventional IRMS system. The system consists of Delta V Plus IRMS interfaced with GasBench II (Thermo Scientific, Germany). 12-mL vials with open top screw cap and rubber septum were used for both gas sampling and analysis. For isotopic analysis, gases in the vials were transferred into GasBench II by He carrier flow and CO2 was trapped by a single cryotrap (-180 ºC) after passing a water trap (Mg(ClO4)2). Upon release of the cryotrap, liberated CO2 was separated from N2O using gas chromatography column inside the GasBench II and introduced online into the IRMS. Isotopic ratios were measured for the masses of 44, 45 and 46, and the peak intensity (mV of mass 44 and peak area) was recorded for the concentration calculation. For the determination of CO2 concentration, a calibration curve relating the peak intensity with molar concentration of CO2 was constructed. By dissolving NaHCO3 in de-ionized water, solutions containing 0.05, 0.1, 0.25 and 0.5 µmol of inorganic carbon were prepared in 12 mL vials. Phosphoric acid was injected through rubber septum of the vials to acidify the solution and released CO2 was analyzed for the isotopic ratios and the corresponding peak intensity was recorded

  18. Potential uses of lead isotope ratios in gunshot cases.

    PubMed

    Keisch, B; Callahan, R C

    1978-05-01

    The determination of lead isotope ratios in 14 bullets, and in material taken from 9 hand swabs and 5 primers shows that there are potentially valuable forensic uses for such a method. While a more complete study is required, this method could possibly be used to prove (or disprove) relatiohships between bullets and manufacturers, weapons, or persons firing the weapons. Sample size requirements (1 microgram or less) are such that damaged or fragmented bullets, or minute particles therefrom, may be used for the required analyses. An experiment showed that gunshot residue from a test-fired weapon was detectable even after washing the hands. PMID:649545

  19. Improved isotope ratio measurement performance in liquid chromatography/isotope ratio mass spectrometry by removing excess oxygen.

    PubMed

    Hettmann, Elena; Brand, Willi A; Gleixner, Gerd

    2007-01-01

    A low dead volume oxygen scrubbing system was introduced in a commercially available liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) interface to enhance the analytical capability of the system. In the LC/IRMS interface carbon from organic samples is converted into CO(2) inside the mobile phase by wet chemical oxidation using peroxodisulfate (Na(2)S(2)O(8)). After passing the hot reaction zone, surplus oxygen (O(2)) remains dissolved in the liquid phase. Both CO(2) and O(2) diffuse through a transfer membrane into the helium carrier and are transferred to the mass spectrometer. The presence of O(2) in the ion source may have detrimental effects on measurement accuracy and precision as well as on filament lifetime. As a remedy, a new on-line O(2)-removing device has been incorporated into the system. The new O(2) scrubber consists of two parallel hot copper reduction reactors (0.8 mm i.d., active length 120 mm) and a switch-over valve between them. One reactor is regenerated using He/H(2) while the other is actively scavenging O(2) from the gas stream. The capacity of each reduction reactor, expressed as usage time, is between 40 and 50 min. This is sufficient for a single LC run for sugars and organic acids. A further increase of the reduction capacity is accompanied by a peak broadening of about 100%. After switching to a freshly reduced reactor the oxygen background and the delta(13)C values of the reference gas need up to 500 s to stabilize. For repeated injections the delta(13)C values of sucrose remain constant (+/-0.1 per thousand) for about 3000 s. The long-term stability for measurements of sucrose was 0.11 per thousand without the reduction oven and improved slightly to 0.08 per thousand with the reduction oven. The filament lifetime improved by more than 600%, thereby improving the long-term system stability and analytical efficiency. In addition the costs per analysis were reduced considerably. PMID:18041012

  20. Crystallization kinetics of rhyolitic melts using oxygen isotope ratios

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.

    2016-01-01

    Crystals provide the means to understand igneous systems, but natural constraints on crystallization kinetics are rare because thermal conditions and crystallization timescales are typically unknown. Oxygen isotope ratios in quartz and alkali feldspar crystals in spherulites provide a natural record of the temperature interval of crystallization and crystal growth rates in rhyolitic melts. Oxygen isotope compositions in both phases change progressively with position from the spherulite core to rim. Quartz δ18O increases from 5.0 ± 0.3‰ in the core to 5.6 ± 0.3‰ at the rims, whereas alkali feldspar decreases from 3.7 ± 0.4‰ in the core to 2.7 ± 0.9‰ at the rims. Fractionation therefore increases from 1.3 ± 0.7‰ in the cores to 2.9 ± 1.1‰ at the rims. Oxygen isotope thermometry tracks crystallization temperature with position. Spherulites nucleate at 578 ± 160°C and continue to grow until 301 ± 88°C. The in situ analyses demonstrate that spherulites self-contain a record of their thermal history and that of the host lava.

  1. Isotope ratio monitoring of small molecules and macromolecules by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Godin, Jean-Philippe; Hau, Jörg; Fay, Laurent-Bernard; Hopfgartner, Gérard

    2005-01-01

    In the field of isotope ratio mass spectrometry, the introduction of an interface allowing the connection of liquid chromatography (LC) and isotope ratio mass spectrometry (IRMS) has opened a range of new perspectives. The LC interface is based on a chemical oxidation, producing CO2 from organic molecules. While first results were obtained from the analysis of low molecular weight compounds, the application of compound-specific isotope analysis by irm-LC/MS to other molecules, in particular biomolecules, is presented here. The influence of the LC flow rate on the CO2 signal and on the observed delta13C values is demonstrated. The limits of quantification for angiotensin III and for leucine were 100 and 38 pmol, respectively, with a standard deviation of the delta13C values better than 0.4 per thousand. Also, accuracy and precision of delta13C values for elemental analyser-IRMS and flow injection analysis-IRMS (FIA-LC/MS) were compared. For compounds with molecular weights ranging from 131 to 66,390 Da, precision was better than 0.3 per thousand, and accuracy varied from 0.1 to 0.7 per thousand. In a second part of the work, a two-dimensional (2D)-LC method for the separation of 15 underivatised amino acids is demonstrated; the precision of delta13C values for several amino acids by irm-LC/MS was better than 0.3 per thousand at natural abundance. For labelled mixtures, the coefficient of variation was between 1% at 0.07 atom % excess (APE) for threonine and alanine, and around 10% at 0.03 APE for valine and phenylalanine. The application of irm-LC/MS to the determination of the isotopic enrichment of 13C-threonine in an extract of rat colon mucosa demonstrated a precision of 0.5 per thousand, or 0.001 atom %. PMID:16124031

  2. Detection of exogenous citric acid in fruit juices by stable isotope ratio analysis.

    PubMed

    Jamin, Eric; Martin, Frédérique; Santamaria-Fernandez, Rebeca; Lees, Michèle

    2005-06-29

    A new method has been developed for measuring the D/H ratio of the nonexchangeable sites of citric acid by isotope ratio mass spectrometry (IRMS). Pure citric acid is transformed into its calcium salt and subsequently analyzed by pyrolysis-IRMS. The citric acid isolated from authentic fruit juices (citrus, pineapple, and red fruits) systematically shows higher D/H values than its nonfruit counterpart produced by fermentation of various sugar sources. The discrimination obtained with this simplified method is similar to that obtained previously by applying site specific isotopic fractionation-nuclear magnetic resonance (SNIF-NMR) to an ester derivative of citric acid. The combination of carbon 13 and deuterium measurements of extracted citric acid is proposed as a routine method for an optimum detection of exogenous citric acid in all kinds of fruit juices. PMID:15969486

  3. Dietary Heterogeneity among Western Industrialized Countries Reflected in the Stable Isotope Ratios of Human Hair

    PubMed Central

    Valenzuela, Luciano O.; Chesson, Lesley A.; Bowen, Gabriel J.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization). Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ13C values (−22.7 to −18.3‰), and significantly higher δ15N (7.8 to 10.3‰) and δ34S (4.8 to 8.3‰) values than samples from the USA (δ13C: −21.9 to −15.0‰, δ15N: 6.7 to 9.9‰, δ34S: −1.2 to 9.9‰). Within Europe, we detected differences in hair δ13C and δ34S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments. PMID:22479574

  4. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-06-01

    An earlier analysis of pore-water salinity (chlorinity) in two deep-sea cores, using terminal constraint methods of control theory, concluded that although a salinity amplification in the abyss was possible during the LGM, it was not required by the data. Here the same methodology is applied to δ18Ow in the upper 100 m of four deep-sea cores. An ice volume amplification to the isotopic ratio is, again, consistent with the data but not required by it. In particular, results are very sensitive, with conventional diffusion values, to the assumed initial conditions at -100 ky and a long list of noise (uncertainty) assumptions. If the calcite values of δ18O are fully reliable, then published enriched values of the ratio in seawater are necessary to preclude sub-freezing temperatures, but the seawater δ18O in pore fluids does not independently require the conclusion.

  5. CO (Carbon Monoxide Mixing Ratio System) Handbook

    SciTech Connect

    Biraud, S

    2011-02-23

    The main function of the CO instrument is to provide continuous accurate measurements of carbon monoxide mixing ratio at the ARM SGP Central Facility (CF) 60-meter tower (36.607 °N, 97.489 °W, 314 meters above sea level). The essential feature of the control and data acquisition system is to record signals from a Thermo Electron 48C and periodically calibrate out zero and span drifts in the instrument using the combination of a CO scrubber and two concentrations of span gas (100 and 300 ppb CO in air). The system was deployed on May 25, 2005.

  6. Improving the Sensitivity of Uranium Isotope Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Friedrich, J.; Snow, J.

    2003-12-01

    Accurate and precise measurements of natural and anthropogenic 235/238 U isotope ratios are important for a range of investigations where the amount of sample is extremely restricted and/or the analyte is only present in ultra-trace quantities. Examples include biological, cosmochemical, environmental, geological, and radiological studies. We have developed and validated a novel method using our Nu Instruments Nu Plasma Multi Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) and a 233U, 236U mixed double spike for the measurement of 235U/238U ratios. Our multi-dynamic technique employs the installed quadrupole zoom optics and fixed positioning of the ion counting detectors such that rather than the commonly used mass dispersion of 1 or 2, we utilize a mass dispersion of 1.5. Using this configuration, we can simultaneously monitor the 235U and 238U ion beams in the first cycle followed by a second cycle that simultaneously monitors the 233U and 236U beams. This innovative approach allows us to correct for the considerable, but consistent, instrumental mass fractionation and ion-counter amplification bias within each sequence. Since we were hesitant to use a U500 (235U, 238U equal atom) solution for spike calibration because of possible enriched U laboratory and instrumentation contamination, we used a U960 (terrestrial 235U/238U) solution for isotopic calibration of the spike. This standardization corrected for the small amounts of 235U and 238U in the spike solution by using a U960 standard solution. With a mean intraday 2-sigma precision of 1.5 permil and an overall 2-sigma precision of 2.25 permil using individual sample sizes of 350 pg (8.8 x10 E11 atoms), we are confident our technique will be useful for identifying U isotopic anomalies present in many sample types.

  7. Understanding radioxenon isotopical ratios originating from radiopharmaceutical facilities

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Bowyer, T. W.; Becker, A.; de Geer, L.-E.; Nikkinen, M.; Payne, R. F.

    2009-04-01

    It was recently shown that radiopharmaceutical facilities (RPF) are major contributors to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentrations but also the ratios of the four different CTBT relevant radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) have to be well understood. First measurements taken recently in and around two of the world's largest RPF's: NTP at Pelindaba, South Africa and IRE at Fleurus, Belgium have been presented. At both sites, also stack samples were taken in close cooperation with the facility operators. The radioxenon in Belgium could be classified in four classes: the normal European background (133Xe activity between 0 - 5 mBq/m3) on one hand and then the samples where all four isotopes were detected with 133mXe/131mXe > 1. In northern South Africa the Pelindaba RPF is in practice the sole source of radioxenon. It generated a background of 133Xe at the measurement site some 230 km to the west of the RPF of 0 - 5 mBq/m3. In the cases where the air from the Pelindaba facility reached the measurement site directly and in a short time period, the 133Xe was higher, also 135Xe was present and in some samples 133mXe as well. The ratios of the activity concentrations of 135Xe/133Xe vs. 133mXe/131mXe (Multiple Isotope Ratio Plot - MIRC) have been analysed. For both facilities, the possible theoretical ratio's for different scenarios were calculated with the information available and compared with the measurements. It was found that there is an excess of 131mXe present in the European samples compared to theoretical calculations. A similar excess has also been seen in samples measured in northern America. In South Africa, neither the environmental samples nor the stack ones contained 131mXe at measurable levels. This can probably be explained by different processes and

  8. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  9. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  10. Lipid Correction for Carbon Stable Isotope Analysis of Deep-sea Fishes

    EPA Science Inventory

    Lipid extraction is used prior to stable isotope analysis of fish tissues to remove variability in the carbon stable isotope ratio (d13C) caused by varying lipid content among samples. Our objective was to evaluate an application of a mass balance correction for the effect of lip...

  11. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for

  12. Constraining the global bromomethane budget from carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank

    2016-04-01

    Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition

  13. Sulfur isotopic ratio of DMS and DMSP from Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Sela-Adler, Michal; Said-Ahmad, Ward; Eckert, Werner; Kamyshny, Alexey; Sivan, Orit; Amrani, Alon

    2014-05-01

    Volatile Organic sulfur compounds (VOSC) such as dimethylsulfide (DMS) are an important source of biogenic sulfur to the atmosphere. The main precursor of DMS is dimethylsulfoniopropionate (DMSP), a common osmolyte in marine algae. Atmospheric release of VOS compounds contributes to the formation of sulfate aerosols. The latter are of global importance due to their role as cloud-condensation nuclei. VOSC are abundant in terrestrial environments as well and may be involved in important biogeochemical cycles. In lake sediments, another mechanism for the formation of DMS by H2S methylation may be important. The 34S/32S ratio (d34S values) of DMSP of marine surface water around the globe is very homogeneous ranging between +18.9 o to +20.3 o and the fractionation between DMSP and DMS is < +1 o (Amrani et al. 2013). The δ34S values of DMS and other VOSC in sediments should be 34S depleted, similar to its H2S precursor (Oduro et al., 2011). Our goal was to quantify the benthic DMS and DMSP emissions from the sediments of warm monomictic Lake Kinneret relative to their formation by surface water algae by using sulfur isotope ratios. Water column samples and sediment samples from Lake Kinneret were purged and trap in order to extract the VOSC and then introduced to a GC/MC-ICPMS for isotopic measurements (Amrani et al. 2013). The δ34S of DMSP in the water and sediment columns of Lake Kinneret a mesotrophic monomictic lake were measured. Our preliminary results show δ34S values for DMSP ranged between +10.3 o and +13.4 o in the water column. The sulfate δ34S values ranged between +12.6 o to +14.9 o. δ34S -DMSP in the sediment column showed similar values between +9.4 o and +13.0 o, indicating a similar sulfur source. Similar δ34S values obtain for other VOSC such as ethanethiol that contributes significantly to the VOSC of Lake Kinneret sediments. Amrani, A., W. Said-Ahmad,Y. Shaked, and R. P. Kiene. 2013. Sulfur isotopes homogeneity of oceanic DMSP and DMS. PNAS 110

  14. Carbon to oxygen ratios in extrasolar planetesimals

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Gänsicke, Boris T.; Farihi, Jay; Koester, Detlev

    2016-04-01

    Observations of small extrasolar planets with a wide range of densities imply a variety of planetary compositions and structures. Currently, the only technique to measure the bulk composition of extrasolar planetary systems is the analysis of planetary debris accreting onto white dwarfs, analogous to abundance studies of meteorites. We present measurements of the carbon and oxygen abundances in the debris of planetesimals at ten white dwarfs observed with the Hubble Space Telescope, along with C/O ratios of debris in six systems with previously reported abundances. We find no evidence for carbon-rich planetesimals, with C/O <0.8 by number in all 16 systems. Our results place an upper limit on the occurrence of carbon-rich systems at <17 percent with a 2 σ confidence level. The range of C/O of the planetesimals is consistent with that found in the Solar System, and appears to follow a bimodal distribution: a group similar to the CI chondrites, with log ( < C/O > ) = -0.92, and oxygen-rich objects with C/O less than or equal to that of the bulk Earth. The latter group may have a higher mass fraction of water than the Earth, increasing their relative oxygen abundance.

  15. Carbon to oxygen ratios in extrasolar planetesimals

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Gänsicke, Boris T.; Farihi, Jay; Koester, Detlev

    2016-07-01

    Observations of small extrasolar planets with a wide range of densities imply a variety of planetary compositions and structures. Currently, the only technique to measure the bulk composition of extrasolar planetary systems is the analysis of planetary debris accreting on to white dwarfs, analogous to abundance studies of meteorites. We present measurements of the carbon and oxygen abundances in the debris of planetesimals at ten white dwarfs observed with the Hubble Space Telescope, along with C/O ratios of debris in six systems with previously reported abundances. We find no evidence for carbon-rich planetesimals, with C/O < 0.8 by number in all 16 systems. Our results place an upper limit on the occurrence of carbon-rich systems at <17 per cent with a 2σ confidence level. The range of C/O of the planetesimals is consistent with that found in the Solar system, and appears to follow a bimodal distribution: a group similar to the CI chondrites, with log (< C/O >) = -0.92, and oxygen-rich objects with C/O less than or equal to that of the bulk Earth. The latter group may have a higher mass fraction of water than the Earth, increasing their relative oxygen abundance.

  16. BOREAS TE-5 Leaf Carbon Isotope Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This documentation describes leaf carbon isotope data that were collected in 1993 and 1994 at the NSA and SSA OJP sites, the SSA OBS site, and the NSA UBS site. In addition, leaf carbon isotope data were collected in 1994 only at the NSA and SSA OA sites. These data was collected to provide seasonal integrated physiological information for 10 to 15 common species at these 6 BOREAS sites. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  17. Precision performance of a Cavity Ring-down isotope spectrometer for carbon and oxygen isotopes of carbonate materials

    NASA Astrophysics Data System (ADS)

    Cunningham, K. L.; Hoffnagle, J.; He, Y.; Fleck, D.; Saad, N.; Dennis, K.

    2013-12-01

    We have developed a novel laser spectrometer intended specifically for the measurement of δ18O and δ13C in solid carbonate material. Carbonate carbon and oxygen isotopes provide key contributions into our understanding of climate, biogeochemical processes and the carbon cycle. For this reason, the isotopic measurements of carbonates are one of the most abundant measures made by Earth scientists today. Conventional measurement techniques using isotope ratio mass spectrometry (IRMS), although optimized and prevalent, require dedicated personnel and can be expensive to operate. Here we present a new laser-based technique that will simplify measurements of δ18Ocarb and δ13Ccarb without compromising precision. To date, there have been no laser-based instruments with a demonstrated ability to meet the requirements of the carbonates community -- typically better than 0.1 ‰ for δ13C and δ18O for CO2 evolved from 1 mg of pure CaCO3. We will present data showing that the new Picarro G2171-i spectrometer meets these requirements. The spectrometer uses the laser-based spectroscopy technique of Cavity Ring-Down Spectroscopy (CRDS), a technology that has been successfully applied to many other isotopic ratio measurements including δ13C of CO2, δ13C of CH4, and δ18O and δD of H2O. The spectrometer has been optimized to analyze the absorption spectra of concentrated CO2, specifically the isotopologues 12C16O16O, 13C16O16O, 12C16O18O, and 12C18O16O. We employ a new sample delivery technique that enables a longer integration time period, and hence more precise data. Long-term results for a run of 540 pulses of tank CO2 (90 hours) records a 1σ standard deviation precision for δ18O and δ13C of < 0.08 ‰ and < 0.055 ‰, respectively. We coupled the CRDS spectrometer to an optimized sample acidification system and analyzed standards to assess the accuracy of the CRDS. We will present an inter-comparison between CRDS and IRMS for carbonates using standards commonly used

  18. Using Oxygen Isotopes in Fish Scale Apatite to Reconstruct Past Temperatures and Water Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Lambert, T. D.; Paytan, A.

    2009-12-01

    Oxygen isotope ratios (δ18O) of apatite phosphate in fish bones and teeth vary according to the temperature and δ18O of water during formation. Since isotope ratios in apatite are often well preserved over geologic timescales, fish bones and teeth have been used to determine past environmental conditions. Fish scales offer several advantages over bones and teeth: they are relatively common in certain sedimentary basins, and they are more easily identified to species level. Analysis of paired bone and scale samples will be presented. The data indicate that fish scale apatite similarly records environmental conditions during growth. Thus δ18O of apatite phosphate in fish scales may provide useful paleoecological information and also indicate past environmental conditions.

  19. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  20. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  1. Boron isotope fractionation in magma via crustal carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  2. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  3. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  4. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    PubMed

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-01

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock

  5. Stable isotope ratio analysis to differentiate temporal diets of a free-ranging herbivore.

    PubMed

    Walter, W D; Leslie, D M

    2009-07-01

    Stable isotope ratio analysis (SIRA) of carbon (delta13C) and nitrogen (delta15N) in tissue samples of herbivores can identify photosynthetic pathways (C3 vs. C4) of plants consumed. We present results from free-ranging Rocky Mountain elk (Cervus elaphus) that highlight the ability to differentiate diets using tissue delta13C and delta15N. The signatures of delta13C and delta15N differed in tissues of varying metabolic activity: muscle, a short-term dietary indicator (i.e., 1-2 months) and hoof, a long-term dietary indicator (i.e., 3-12 months). We also documented that delta13C and delta15N values along elk hooves (proximal, middle, distal sections) elucidated temporal shifts in dietary selection. The carbon isotopes of the composite hoof were similar to those of the middle section, but the composite hoof differed in delta(13)C from the distal and proximal sections. The delta13C and delta15N signatures also differed among elk populations, indicating temporal dietary shifts of individuals occupying disparate native range and human-derived agricultural landscapes. Analyses of stable isotopes in various tissues highlighted carbon and nitrogen assimilation through time and differences in the foraging ecology of a rangeland herbivore. PMID:19530151

  6. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Guoan; Jia, Yufu; Li, Wei

    2015-06-01

    Decomposition of soil organic matter (SOM) plays an important role in the global carbon cycle because the CO2 emitted from soil respiration is an important source of atmospheric CO2. Carbon isotopic fractionation occurs during SOM decomposition, which leads to 12C to enrich in the released CO2 while 13C to enrich in the residual SOM. Understanding the isotope fractionation has been demonstrated to be helpful for studying the global carbon cycle. Soil and litter samples were collected from soil profiles at 27 different sites located along a vertical transect from 1200 to 4500 m above sea level (a.s.l.) in the south-eastern side of the Tibetan Plateau. Their carbon isotope ratios, C and N concentrations were measured. In addition, fiber and lignin in litter samples were also analyzed. Carbon isotope fractionation factor (α) during SOM decomposition was estimated indirectly as the slope of the relationship between carbon isotope ratios of SOM and soil C concentrations. This study shows that litter quality and soil water play a significant role in isotope fractionation during SOM decomposition, and the carbon isotope fractionation factor, α, increases with litter quality and soil water content. However, we found that temperature had no significant impact on the α variance.

  7. A New Multi Collector Isotope Ratio Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Appelhans, A. D.; Olson, J. E.; Ward, M. B.; Dahl, D. A.

    2007-12-01

    With the goal of improving the sensitivity of isotope ratio measurements, particularly for actinides, a new magnetic sector mass spectrometer that utilizes up to seven full-sized discrete dynode electron multipliers operating simultaneously has been designed, constructed and is in the early stages of testing. The design is based on a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated by 35 mm; this allows a full-sized discrete dynode pulse counting multiplier to be used for each beam. The ion dispersion lens (US patents 6,297,501 and pending) is a two element electrostatic 90 degree sector device that causes the beam-to-beam dispersion to increase faster than the intra-beam dispersion. Each of the multipliers is housed in an isolated case and is equipped with a deflector/condenser lens at the entrance to optimize pulse generation. The instrument includes a 9-sample filament cartridge mounted on a micro-manipulator X-Y stage that enables adjustment of the filament position with 10 micron resolution within the ion lens. Initial testing has shown that the instrument is performing as predicted by the ion optics model of the design.

  8. Nitrogen isotopic ratios in fecal pellets produced by marine zooplankton

    SciTech Connect

    Altabet, M.A. ); Small, L.F. )

    1990-01-01

    At each site and in every season studied, zooplankton in the upper ocean produced fecal pellets that were 1.3% lower in {delta}{sup 15}N than their body tissue but 2.2% higher than their apparent food source. {sup 14}N-containing molecules are evidently preferentially assimilated in zooplankton intestinal tracts, though other isotopic effects must account for the enrichment in {sup 15}N of these organisms relative to their food. These results also show zooplankton to be important modifiers of nitrogen isotopic ratios for marine particulate matter. {delta}{sup 15}N values for sinking particles and fecal pellets are similar, supporting the perspective that macrozooplankton are important factors in producing and processing particles that sink into the ocean's interior and sediments. In contrast, the relationship in {delta}{sup 15}N between fecal pellets and suspended particles in the euphotic zone is more variable. It appears that zooplankton select food particles of varying {delta}{sup 15}N from the suspended particle pool. These results suggest that both zooplankton feeding behavior and their digestive chemistry are important in determining the composition of sinking particulate matter in the ocean with respect to the suspended particle source in the euphotic zone.

  9. Carbonate clumped isotope bond reordering and geospeedometry

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    Carbonate clumped isotope thermometry is based on the preference of 13C and 18O to form bonds with each other. At elevated temperatures such bond ordering is susceptible to resetting by diffusion of C and O through the solid mineral lattice. This type of bond reordering has the potential to obscure primary paleoclimate information, but could also provide a basis for reconstructing shallow crustal temperatures and cooling rates. We determined Arrhenius parameters for solid-state reordering of C-O bonds in two different calcites through a series of laboratory heating experiments. We find that the calcites have different susceptibilities to solid-state reordering. Reaction progress follows a first order rate law in both calcites, but only after an initial period of non-first order reaction that we suggest relates to annealing of nonequilibrium defects when the calcites are first heated to experimental temperature. We show that the apparent equilibrium temperature equations (or "closure temperature" equations) for carbonate clumped isotope reordering are analogous Dodson's equations for first order loss of daughter isotopes. For each calcite, the sensitivity of apparent equilibrium temperature to cooling rate is sufficiently high for inference of cooling rates within a factor of ˜5 or better for cooling rates ranging from tens of degrees per day to a few degrees per million years. However, because the calcites have different susceptibilities to reordering, each calcite defines its own cooling rate-apparent equilibrium temperature relationship. The cooling rates of Carrara marble inferred from carbonate clumped isotope geospeedometry are 10-6-10-3 degrees per annum and are in broad agreement with rates inferred from thermochronometric methods. Cooling rates for 13C-depleted calcites from the late Neoproterozoic Doushantou cap carbonates in south China are on the order of 102-104 degrees per annum, consistent with rapid cooling following formation of these calcites by a

  10. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  11. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time

  12. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    SciTech Connect

    Magdas, D. A. Cristea, G. Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Cordea, D. V.; Mihaiu, M.

    2013-11-13

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  13. Measurements of stable isotope ratios in milk samples from a farm placed in the mountains of Transylvania

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Cordea, D. V.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Mihaiu, M.

    2013-11-01

    Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ18O and δ2H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ18O and δ2H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.

  14. The atmosphere of Mars near the surface - Isotope ratios and upper limits on noble gases

    NASA Technical Reports Server (NTRS)

    Biemann, K.; Lafleur, A. L.; Owen, T.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Several analyses of the Martian atmosphere have been carried out with the mass spectrometer in the molecular-analysis experiment. The ratios of abundant isotopes of carbon and oxygen are within 10 per cent of terrestrial values, whereas nitrogen-15 is considerably enriched on Mars. Argon-38 has been detected, and new limits on abundances of krypton and xenon have been set. The limit on krypton is sufficiently low to suggest that the inventories of volatile substances on Mars and on earth may be distinctly different.

  15. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Epstein, S.; Krishnamurthy, R. V.; Cronin, J. R.; Pizzarello, S.; Yuen, G. U.

    1987-01-01

    The isotopic composition of hydrogen, nitrogen, and carbon in amino acid and monocarboxylic acid extracts from the Murchison meteorite has been determined. The unusually high D/H and N-15/N-14 ratios in the amino acid fraction are uniquely characteristic of known interstellar organic materials. The delta D value of the monocarboxylic acid fraction is lower but still consistent with an interstellar origin. These results confirm the extraterrestrial origin of both classes of compound and provide the first evidence suggesting a direct relationship between the massive organosynthesis occurring in interstellar clouds and the presence of prebiotic compounds in primitive planetary bodies.

  16. The carbon isotope composition of ancient CO2 based on higher-plant organic matter.

    PubMed

    Gröcke, Darren R

    2002-04-15

    Carbon isotope ratios in higher-plant organic matter (delta(13)C(plant)) have been shown in several studies to be closely related to the carbon isotope composition of the ocean-atmosphere carbon reservoir, and, in particular, the isotopic composition of CO(2). These studies have primarily been focused on geological intervals in which major perturbations occur in the oceanic carbon reservoir, as documented in organic carbon and carbonates phases (e.g. Permian-Triassic and Triassic-Jurassic boundary, Early Toarcian, Early Aptian, Cenomanian-Turonian boundary, Palaeocene-Eocene Thermal Maximum (PETM)). All of these events, excluding the Cenomanian-Turonian boundary, record negative carbon isotope excursions, and many authors have postulated that the cause of such excursions is the massive release of continental-margin marine gas-hydrate reservoirs (clathrates). Methane has a very negative carbon isotope composition (delta(13)C, ca. 60 per thousand ) in comparison with higher-plant and marine organic matter, and carbonate. The residence time of methane in the ocean-atmosphere reservoir is short (ca. 10 yr) and is rapidly oxidized to CO(2), causing the isotopic composition of CO(2) to become more negative from its assumed background value (delta(13)C, ca. -7 per thousand ). However, to date, only the Early Toarcian, Early Aptian and PETM are well-constrained chronometric sequences that could attribute clathrate release as a viable cause to create such rapid negative delta(13)C excursions. Notwithstanding this, the isotopic analysis of higher-plant organic matter (e.g. charcoal, wood, leaves, pollen) has the ability to (i) record the isotopic composition of palaeoatmospheric CO(2) in the geological record, (ii) correlate marine and non-marine stratigraphic successions, and (iii) confirm that oceanic carbon perturbations are not purely oceanographic in their extent and affect the entire ocean-atmosphere system. A case study from the Isle of Wight, UK, indicates that the

  17. Mg Isotopic Compositions of Modern Marine Carbonates

    NASA Astrophysics Data System (ADS)

    Krogstad, E.; Bizzarro, M.; Hemming, N.

    2003-12-01

    We have used a MC-ICP-MS to measure the isotopic composition of magnesium in a number of samples of modern marine carbonate. Due to the large mass difference between 26Mg and 24Mg (similar to that between 13C and 12C), there is potential for mass fractionation during geologic and biologic processes that may make this isotope system useful for geochemical studies. These samples are from the study of Hemming and Hanson (1992, GCA 56: 537-543). The carbonate minerals analyzed include aragonite, low-Mg calcite, and high-Mg calcite. The samples include corals, echinoderms, ooids, etc., from subtropical to Antarctic settings. Mg purification was accomplished by ion-exchange chromatography, using Bio-Rad AG50W-X12 resin on which greater than 99 percent recovery of Mg is achieved. Samples were introduced into the MC-ICP-MS (VG Axiom) using a Cetac MCN-6000 nebuliser. We use a standard-sample-standard bracketing technique, and samples are analysed at least three times. For lab standards we find that the reproducibility on the 26Mg/24Mg to be about ñ 0.12 permil (2 s.d.). We monitored our separated samples for Na and Ca, as we have found that high Ca/Mg and Na/Mg produce variable magnesium isotopic fractionation during mass spectrometry due to as yet unclear matrix effects. We have normalized our results to our measured values for seawater. We observed a d26Mg(s.w.) range of -1.4 to -2.4 permil in our modern carbonate samples relative to present day seawater. Due to the long residence time of Mg in the oceans (ca. 50 my), this must be due to kinetic or biologic effects. Our d25Mg(s.w.) variations as a function of d26Mg(s.w.) plot along the terrestrial fractionation trend. With an average d26Mg(s.w.) of ca. +0.5 permil in all samples of mantle lithologies and mantle-derived igneous rocks (Bizzarro et al., Goldschmidt abs., 2003), we can assume that the Mg isotopic composition of Earth's river water lies between ca. -2.4 and +0.5 permil (relative to seawater). The actual

  18. Low stable carbon isotope fractionation by coccolithophore RubisCO

    NASA Astrophysics Data System (ADS)

    Boller, Amanda J.; Thomas, Phaedra J.; Cavanaugh, Colleen M.; Scott, Kathleen M.

    2011-11-01

    The 13C/ 12C ratio of carbon compounds is used to identify sources and sinks in the global carbon cycle. However, the relatively enriched 13C content observed for marine organic carbon remains enigmatic. The majority of oceanic carbon is fixed by algae and cyanobacteria via the Calvin-Benson-Bassham cycle, yet isotopic discrimination by the CO 2 fixation enzyme, RubisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase), has only been measured for a single marine cyanobacterium. Different forms of RubisCO occur in different phytoplankton species (overall amino acid identity varying by as much as ˜75%) and thus may vary in the degree to which they fractionate carbon. Here we measured isotope discrimination by RubisCO from the coccolithophore Emiliania huxleyi, a cosmopolitan species used as a marine algal model .E. huxleyi RubisCO discriminated substantially less ( ɛ = 11.1‰) against 13CO 2 than other RubisCO enzymes (18-29‰), despite having Michaelis-Menten kinetic parameters ( K = 72 μM; Vmax = 0.66 μmol min -1 mg -1 protein) similar to those measured for RubisCO enzymes from different organisms. If widespread, decreased isotope discrimination of 13C by phytoplankton RubisCO may be a major factor influencing the enriched 13C content of marine organic carbon. This finding emphasizes the necessity of (a) determining ɛ values for RubisCOs of other marine phytoplankton and (b) re-evaluation of δ13C values from physiological, environmental, and geological studies.

  19. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGESBeta

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  20. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  1. Carbon Isotope Chemostratigraphy, the Baby and the Bathwater

    NASA Astrophysics Data System (ADS)

    Arthur, M. A.

    2008-12-01

    Secular variations in the carbon isotopic values of carbonate sediments and rocks and their individual components have been applied successfully to problems of stratigraphic correlation and for interpretation of past changes in the global carbon cycle. However, this methodology is not without problems. A major tenet of stable isotope chemostratigraphy involves sampling and analyzing multiple, widely separated sequences, and, if possible, multiple carbon-bearing components (e.g., carbonate and organic carbon) in order to demonstrate a global signal. In some cases, this methodology has been short-circuited in the zeal to reveal a new event or excursion, particularly for time intervals for which adequate sequences are somewhat rare. Likewise, although most carbonate researchers are quite aware of the possible importance of diagenesis, particularly in organic-carbon rich sequences or in shoal-water carbonate sequences with longer-term subaerial exposure events, such overprints commonly go unrecognized or are considered of minor impact. Studies of stable isotope variations in carbonate sequences should always employ textural and geochemical methodologies for detecting and even quantifying diagenesis, if possible. Although some diagenetically overprinted or misinterpreted geochemical data have undoubtedly appeared in the literature, there are many excellent examples of global carbon isotope variations in records expressed in pelagic biogenic carbonate, marine organic carbon, platform carbonates, and terrestrial organic matter. Arguably, one of the best-documented examples is the Cenomanian-Turonian (ca. 93 Ma) positive carbon isotope excursion. The amplitude of the Cenomanian-Turonian carbon isotope excursion is similar among all types of records, but there are subtle pattern differences that arise from differences in sedimentation rate among and within sequences. Organic carbon and carbonate carbon isotope signals also may differ in phasing and amplitude for certain

  2. Correction of mass spectrometric isotope ratio measurements for isobaric isotopologues of O2, CO, CO2, N2O and SO2.

    PubMed

    Kaiser, Jan; Röckmann, Thomas

    2008-12-01

    Gas isotope ratio mass spectrometers usually measure ion current ratios of molecules, not atoms. Often several isotopologues contribute to an ion current at a particular mass-to-charge ratio (m/z). Therefore, corrections have to be applied to derive the desired isotope ratios. These corrections are usually formulated in terms of isotope ratios (R), but this does not reflect the practice of measuring the ion current ratios of the sample relative to those of a reference material. Correspondingly, the relative ion current ratio differences (expressed as delta values) are first converted into isotopologue ratios, then into isotope ratios and finally back into elemental delta values. Here, we present a reformulation of this data reduction procedure entirely in terms of delta values and the 'absolute' isotope ratios of the reference material. This also shows that not the absolute isotope ratios of the reference material themselves, but only product and ratio combinations of them, are required for the data reduction. These combinations can be and, for carbon and oxygen have been, measured by conventional isotope ratio mass spectrometers. The frequently implied use of absolute isotope ratios measured by specially calibrated instruments is actually unnecessary. Following related work on CO2, we here derive data reduction equations for the species O2, CO, N2O and SO2. We also suggest experiments to measure the required absolute ratio combinations for N2O, SO2 and O2. As a prelude, we summarise historic and recent measurements of absolute isotope ratios in international isotope reference materials. PMID:19016255

  3. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement sampled near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87Sr/86Sr, and eolian material has 87Sr/86Sr ratios at the lower end of the pedogenic range. The average 87Sr/86Sr of Paleozoic basement from Black Marble Hill is similar to the 87Sr/86Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87Sr/86Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain.

  4. Further carbon isotope measurements of LEW 88516

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1993-01-01

    Douglas et al. have previously analyzed the carbon content and isotopic composition of a crushed sample (sub-sample 13) of the shergottite, LEW 88516. The powder, which was from a relatively large portion of the meteorite in order to obtain a representative sample, was distributed amongst the scientific community. However, it is probable that the preparation procedure was not optimized for the purposes of carbon measurements. Indeed, it was found that LEW 88516,13 contained over 1200 ppm carbon, a concentration which is greater than that present in any other SNC meteorite. That a close relative, ALH A77005, contains only 141 ppm carbon seems to implicate the preparation procedure as being responsible for the apparently high carbon content of LEW 88516. However, it may also be the nature of the fine powder which has resulted in contamination. The observation of high carbon content in LEW 88516,13 highlights the extreme difficulty of trying to obtain representative samples of whole meteorites for this kind of investigation. Presented herein are some further measurements of LEW 88516 which should serve to clarify some of the issues raised by the previous investigation.

  5. STABLE CARBON ISOTOPE ANALYSIS OF NUCLEIC ACIDS TO TRACE SOURCES OF DISSOLVED SUBSTRATES USED BY ESTUARINE BACTERIA

    EPA Science Inventory

    The natural abundance of stable carbon isotopes measured in bacterial nucleic acids that were extracted from estuarine bacterial concentrates were used to trace sources of organic matter for bacteria in.aquatic environments. he stable carbon isotope ratios of P. aeruginosa and nu...

  6. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry.

    PubMed

    Merritt, D A; Freeman, K H; Ricci, M P; Studley, S A; Hayes, J M

    1995-07-15

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer. PMID:11536720

  7. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Freeman, K. H.; Ricci, M. P.; Studley, S. A.; Hayes, J. M.

    1995-01-01

    Conditions and systems for on-line combustion of effluents from capillary gas chromatographic columns and for removal of water vapor from product streams were tested. Organic carbon in gas chromatographic peaks 15 s wide and containing up to 30 nanomoles of carbon was quantitatively converted to CO2 by tubular combustion reactors, 200 x 0.5 mm, packed with CuO or NiO. No auxiliary source of O2 was required because oxygen was supplied by metal oxides. Spontaneous degradation of CuO limited the life of CuO reactors at T > 850 degrees C. Since NiO does not spontaneously degrade, its use might be favored, but Ni-bound carbon phases form and lead to inaccurate isotopic results at T < 1050 degrees C if gas-phase O2 is not added. For all compounds tested except CH4, equivalent isotopic results are provided by CuO at 850 degrees C, NiO + O2 (gas-phase mole fraction, 10(-3)) at 1050 degrees C and NiO at 1150 degrees C. The combustion interface did not contribute additional analytical uncertainty, thus observed standard deviations of 13C/12C ratios were within a factor of 2 of shot-noise limits. For combustion and isotopic analyses of CH4, in which quantitative combustion required T approximately 950 degrees C, NiO-based systems are preferred, and precision is approximately 2 times lower than that observed for other analytes. Water must be removed from the gas stream transmitted to the mass spectrometer or else protonation of CO2 will lead to inaccuracy in isotopic analyses. Although thresholds for this effect vary between mass spectrometers, differential permeation of H2O through Nafion tubing was effective in both cases tested, but the required length of the Nafion membrane was 4 times greater for the more sensitive mass spectrometer.

  8. Predicting the Hydrogen Isotope Ratios of Leaf Waxes Across Landscapes

    NASA Astrophysics Data System (ADS)

    Tipple, B. J.; Berke, M. A.; Hambach, B.; Ehleringer, J. R.

    2014-12-01

    Leaf wax n-alkanes 2H/1H ratios are widely used as a proxy of paleoprecipitation in climate reconstruction. While the broad nature of the relationships between n-alkane δ2H values and climate are appreciated on geologic scales, the quantitative details of what this proxy is reflecting remain ambiguous on plant and ecosystem levels. Areas of uncertainty on these smaller scales of importance to geologic interpretations are both the biosynthetic fractionation and the leaf-growth interval that is recorded by the isotope signal. To clarify these details, we designed a series of experiments in which modern plants were grown under controlled and monitored conditions. To determine the biosynthetic fractionation, we analyzed n-alkanes from plant grown hydroponically on isotopically distinct waters and under contrasting and controlled humidities. We observed δ2H values of n-alkane were linearly related to growth water δ2H values, but with slope differences associated with humidity. These findings suggested leaf water were central controls on δ2H values of n-alkane and support a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. To determine the interval that the leaf wax isotope signal reflects, we studied a species naturally growing on water with a constant δ2H value. Here we found the δ2H values of n-alkanes recorded only a two-week period during leaf flush and did not vary thereafter. These data indicated the δ2H values of n-alkanes record conditions early in the season, rather than integrating over the entire growing season. Using these data, we are beginning to develop geospatial predictions of the δ2H values of n-alkane across landscapes for given climate conditions, plant phenologies, and ecosystems. These emerging modeling tools may be used to assess modern ecosystem dynamics, to estimate weathering of leaf waxes to geologic repositories, and to define and test paleoclimate reconstructions from the δ2H values of n-alkanes.

  9. Calibration and Data Processing in Gas Chromatography Combustion Isotope Ratio Mass Spectrometry

    PubMed Central

    Zhang, Ying; Tobias, Herbert J.; Sacks, Gavin L.; Brenna, J. Thomas

    2013-01-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis (13C/12C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ13C = δ13CM – δ13CE difference measurements required for establishing adverse analytical findings for metabolites relative to endogenous reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  10. Calibration and data processing in gas chromatography combustion isotope ratio mass spectrometry.

    PubMed

    Zhang, Ying; Tobias, Herbert J; Sacks, Gavin L; Brenna, J Thomas

    2012-12-01

    Compound-specific isotope analysis (CSIA) by gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) is a powerful technique for the sourcing of substances, such as determination of the geographic or chemical origin of drugs and food adulteration, and it is especially invaluable as a confirmatory tool for detection of the use of synthetic steroids in competitive sport. We review here principles and practices for data processing and calibration of GCC-IRMS data with consideration to anti-doping analyses, with a focus on carbon isotopic analysis ((13)C/(12)C). After a brief review of peak definition, the isotopologue signal reduction methods of summation, curve-fitting, and linear regression are described and reviewed. Principles for isotopic calibration are considered in the context of the Δ(13)C = δ(13)C(M) - δ(13)C(E) difference measurements required for establishing adverse analytical findings for metabolites (M) relative to endogenous (E) reference compounds. Considerations for the anti-doping analyst are reviewed. PMID:22362612

  11. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    Amino acids containing natural-abundance levels of 15N were derivatized and analyzed isotopically using a technique in which individual compounds are separated by gas chromatography, combusted on-line, and the product stream sent directly to an isotope-ratio mass spectrometer. For samples of N2 gas, standard deviations of ratio measurement were better than 0.1% (Units for delta are parts per thousand or per million (%).) for samples larger than 400 pmol and better than 0.5% for samples larger than 25 pmol (0.1% 15N is equivalent to 0.00004 atom % 15N). Results duplicated those of conventional, batchwise analyses to within 0.05%. For combustion of organic compounds yielding CO2/N2 ratios between 14 and 28, in particular for N-acetyl n-propyl derivatives of amino acids, delta values were within 0.25% of results obtained using conventional techniques and standard deviations were better than 0.35%. Pooled data for measurements of all amino acids produced an accuracy and precision of 0.04 and 0.23%, respectively, when 2 nmol of each amino acid was injected on column and 20% of the stream of combustion products was delivered to the mass spectrometer.

  12. Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Xiao, H.; Zhou, J.; Wang, L.; Cheng, G.; Zhou, M.; Yin, L.; McCabe, M. F.

    2011-12-01

    As an alternative to isotope ratio mass spectrometry (IRMS) the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and capacity for field based application for the analysis of stable water isotopes. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in errant readings for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every two hours for 24-48 hours) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic composition of the extracted water from these samples was measured using both an IRMS and IRIS instrument. Results show that the mean discrepancy between the IRMS and IRIS approach, for δ18O and δD respectively, was: -5.6% and -75.7% for leaf water; -4.0% and -23.3% for stem water; -3.4% and -28.2% for root water; -6.7% and -0.5% for xylem water; -0.06% and -0.3% for xylem flow; and -0.1% and 0.3% for soil water. The order of the discrepancy followed: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling during the nighttime did not remove the observed deviations.

  13. Detailed assessment of isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.

    PubMed

    Zhao, Liangju; Xiao, Honglang; Zhou, Jian; Wang, Lixin; Cheng, Guodong; Zhou, Maoxian; Yin, Li; McCabe, Matthew F

    2011-10-30

    As an alternative to isotope ratio mass spectrometry (IRMS), the isotope ratio infrared spectroscopy (IRIS) approach has the advantage of low cost, continuous measurement and the capacity for field-based application for the analysis of the stable isotopes of water. Recent studies have indicated that there are potential issues of organic contamination of the spectral signal in the IRIS method, resulting in incorrect results for leaf samples. To gain a more thorough understanding of the effects of sample type (e.g., leaf, root, stem and soil), sample species, sampling time and climatic condition (dry vs. wet) on water isotope estimates using IRIS, we collected soil samples and plant components from a number of major species at a fine temporal resolution (every 2 h for 24-48 h) across three locations with different climatic conditions in the Heihe River Basin, China. The hydrogen and oxygen isotopic compositions of the extracted water from these samples were measured using both an IRMS and an IRIS instrument. The results show that the mean discrepancies between the IRMS and IRIS approaches for δ(18) O and δD, respectively, were: -5.6‰ and -75.7‰ for leaf water; -4.0‰ and -23.3‰ for stem water; -3.4‰ and -28.2‰ for root water; -0.5‰ and -6.7‰ for xylem water; -0.06‰ and -0.3‰ for xylem flow; and -0.1‰ and 0.3‰ for soil water. The order of the discrepancy was: leaf > stem ≈ root > xylem > xylem flow ≈ soil. In general, species of the same functional types (e.g., woody vs. herbaceous) within similar habitats showed similar deviations. For different functional types, the differences were large. Sampling at nighttime did not remove the observed deviations. PMID:21953962

  14. Can stable isotope ratios provide for community-wide measures of trophic structure?

    PubMed

    Layman, Craig A; Arrington, D Albrey; Montaña, Carmen G; Post, David M

    2007-01-01

    Stable isotope ratios (typically of carbon and nitrogen) provide one representation of an organism's trophic niche and are widely used to examine aspects of food web structure. Yet stable isotopes have not been applied to quantitatively characterize community-wide aspects of trophic structure (i.e., at the level of an entire food web). We propose quantitative metrics that can be used to this end, drawing on similar approaches from ecomorphology research. For example, the convex hull area occupied by species in delta13C-delta15N niche space is a representation of the total extent of trophic diversity within a food web, whereas mean nearest neighbor distance among all species pairs is a measure of species packing within trophic niche space. To facilitate discussion of opportunities and limitations of the metrics, we provide empirical and conceptual examples drawn from Bahamian tidal creek food webs. These examples illustrate how this methodology can be used to quantify trophic diversity and trophic redundancy in food webs, as well as to link individual species to characteristics of the food web in which they are embedded. Building from extensive applications of stable isotope ratios by ecologists, the community-wide metrics may provide a new perspective on food web structure, function, and dynamics. PMID:17489452

  15. [Effects of lipid extraction on stable carbon and nitrogen isotope analyses of Ommastrephes bartramii muscle].

    PubMed

    Gong, Yi; Chen, Xin-Jun; Gao, Chun-Xia; Li, Yun-Kai

    2014-11-01

    Stable isotope analysis (SIA) has become an important tool to investigate diet shift, habitat use and trophic structure of animal population. Muscle is considered to be the most common tissue for SIA, however, lipid content in muscle causes a considerable bias to the interpretation of isotopic ratios of animals. Neon flying squid (Ommastrephes bartramii) is an important economic cephalopod of Chinese distant water fishery, and plays a major role in marine ecosystems. In this study, the effects of lipid extraction on stable isotope ratios of the muscles of 53 neon flying squids were investigated and the interference mechanism of lipid in SIA was clarified with the aim of contrasting the suitability of different lipid correction models of stable carbon isotope. Results showed that the stable carbon and nitrogen isotopic values of non-lipid extracted samples significantly increased after lipid extractions by 0.71 per thousand and 0.47 per thousand, respectively, which suggested that lipid extraction in cephalopod isotope study is needed prior to stable carbon isotope analysis but not recommended for stable nitrogen isotope analysis. The results could help remove the effects of lipid contents and standardize SIA muscle samples, thereby getting better understanding of the isotopic change of neon flying squids in the future. PMID:25898636

  16. High precision Faraday collector MC-ICPMS thorium isotope ratio determination

    NASA Astrophysics Data System (ADS)

    Potter, Emma-Kate; Stirling, Claudine H.; Andersen, Morten B.; Halliday, Alex N.

    2005-12-01

    Uranium-series dating of carbonate materials requires precise determination of the spike sample thorium isotope ratio, 230Th/229Th. This ratio is commonly measured using ion counting techniques, however the precision of analyses using ion counting devices suffers from beam intensity limitations, drift in multiplier gain and non-linearities in electron multiplier response. Here, we describe the application of multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) to determine thorium isotope ratios at hitherto unattained precision. For the first time, thorium isotope analyses were performed using only Faraday collectors coupled to 1011 [Omega] feedback resistors in the amplifier system. Spiked thorium solutions were concentrated to produce 230Th and 229Th signal intensities of around 50 mV and 100 mV, respectively (across a 1011 [Omega] resistor) and are run at high intensity for a short period of time (~1 min). These analyses yield a 230Th/229Th external reproducibility of better than 0.3[per mille sign] for ~25-30 pg of consumed 230Th. This is a factor of two better than the best published thermal ionisation mass spectrometry (TIMS) and MC-ICPMS techniques for similar sample sizes, and represents up to an order of magnitude improvement over many other established protocols. Combined with new techniques for high precision Faraday measurement of uranium isotopic composition [1], this permits improvements in the uncertainty of U-series ages to better than 0.1 thousand years (ka) at 100 ka and 1 ka at 300 ka. It should also be possible to resolve events to ~14 ka at 600 ka. Using these techniques, the U-series dating limit can be extended from 500-600 ka to 800 ka enabling a more detailed study of the frequency of late Pleistocene climate events.

  17. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  18. Biogeochemistry of a mesotrophic lake and it's carbon isotope geochemistry

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Ehresman, W.; Sadurski, S. E.

    2010-12-01

    Crystal Lake, located in west-central Ohio, is the main lake of a series of 4 interconnected lakes. The location and orientation indicate that they are most likely moulin-induced glacial lakes. Crystal Lake is about 5 hectares (12.5 acres). The maximum depth and mean depth are about 11.9 meters and 3.8 meters, respectively. As a result of this high depth-to-surface area ratio, it creates a strong thermal stratification during warm season. The lake was classified as eutrophic lake. However, the water quality has improved in the past decades. The chlorophyll in the epillimnion and upper metalimlion is about 4 μg/l and the Secchi disk depth is about 3.0 meters (10 feet). It is therefore reclassified as mesotrophic lake. Dissolved oxygen maximum (15.6 ppm) and pH peak (8.6) existed at 4.1 meter on August 16, 2010. At around 7.3 meter, where redox potential reading shows a sudden change from oxidizing to reducing , a ~half meter layer of dense purple sulfur bacteria coincides with turbidity, chlorophyll, and sulfate maxima. The chemical depth profiles are a result of thermal stratification, oxygenic photosynthesis by algae, non-oxygenic photosynthesis by purple sulfur bacteria, and respiration in the hypolimnion. Precipitation of calcium carbonate in the epilimnion and metalimnion is coupled by it’s dissolution in the hypolimnion. The purpose of the current project is to present extensive background study to form the framework for quantifying the carbon isotope evolution with multiple reaction pathways. Carbon isotope composition of dissolved inorganic carbon is being analyzed. Wigley-Plummer-Pearson mass transfer model will be used for the quantification of carbon isotope reaction pathways.

  19. Is my C isotope excursion global, local, or both? Insights from the Mg and Ca isotopic composition of primary, diagenetic, and authigenic carbonates

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Blättler, C. L.; Husson, J. M.

    2014-12-01

    The C isotopic composition of ancient limestones and dolomites is a widely used proxy for the global geochemical cycles of carbon and oxygen in the ocean-atmosphere system and a critical tool for chemostratigraphy in Precambrian rocks. Although relatively robust to diagenesis, the C isotopic composition of bulk carbonates can be reset when conditions favor high water-to-rock ratios or fluids with high C concentrations and distinct isotopic compositions. Authigenic carbonates and different pools of primary carbonate (e.g. calcite vs. aragonite) may also bias the C isotopic composition of bulk carbonates if they are both abundant and isotopically distinct. New approaches to quantifying contributions from diagenesis, authigenesis, and mixing of primary carbonates to the C isotopic composition of bulk sedimentary carbonates are needed. Here we present preliminary Mg and Ca isotope data sets of primary, diagenetic, and authigenic carbonates, both modern and ancient. We show that recrystallization, dolomitization, and authigenesis produce Mg and Ca isotope fingerprints that may be used to identify and characterize these processes in ancient carbonate sediments.

  20. Radiogenic Carbon Isotopes in Authigenic Carbonate from Lake Neusiedl, Austria

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Steier, Peter; Gier, Susanne; Draganits, Erich; Kogelbauer, Ilse

    2015-04-01

    Formation of authigenic carbonate in Lake Neusiedl, Austia, has been reported since the 1960ies. The reaction pathways resulting in carbonate precipitation (protodolomite and high magnesium calcite) have yet to be identified. Lake Neusiedl is a shallow lake without significant sediment accumulation but constant reworking of sediment due to its shallow depth (1.8m) and influence by wind. The sediments are water-saturated silts and clays that overly Neogene sediments. The age of Lake Neusiedl is unknown due to its low sedimentation rate and constant remixing of sediment. Dating of authigenic minerals is an alternative method to determine the minimum age of water present - even episodically - at the location. We characterize the sediments mineralogy in different size fractions by X-Ray Diffractometry (XRD), Simultaneous Themo Analysis (STA) and Fourier Transform Infra Red Spectroscopy, stable carbon and oxygen isotopes as well as radiogenic carbon. To describe the authigenic carbonates and find the fractions with highest authigenic carbonate minerals we investigate the size fractions <4 µm, <3 µm, <2 µm, <1 µm, 0.5 µm and <0.2 µm. The "coarser" fractions (4 µm to 2 µm) contain detrital minerals such as chlorite, muscovite, quartz, feldspar, stoichiometric calcite and stoichiometric dolomite as well as authigenic high Mg calcite. Radiogenic carbon ages increase with increasing grain size from 850 years before present to 2300 years before present and indicate a very slow growth rate or episodic growth of authigenic carbonate phases.

  1. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  2. Atmospheric Trace Gas Abundances and Stable Isotope Ratios via IR-LIF

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2004-01-01

    We propose to develop new technologies with support provided by PIDDP that will enable the in situ measurements of abundances and stable isotope ratios in important radiatively and biogenically active gases such as carbon dioxide, carbon monoxide, water, methane, nitrous oxide, and hydrogen sulfide to very high precision (0.1 per mil or better for the isotopic ratios, for example). Such measurements, impossible at present, could provide pivotal new constraints on the global (bio)geochemical budgets of these critical species, and could also be used to examine the dynamics of atmospheric transport on Mars, Titan, and other solar system bodies. We believe the combination of solid state light sources with imaging of the IR laser induced fluorescence (IR-LIF) via newly available detector arrays will make such in situ measurements possible for the first time. Even under ambient terrestrial conditions, the LIF yield from vibrational excitation of species such as water and carbon dioxide should produce emission measures well in excess of ten billion photons/sec from samples volumes of order 1 c.c. These count rates can, in principle, yield detection limits into the sub-ppt range that are required for the in situ isotopic study of atmospheric trace gases. While promising, such technologies are relatively immature, but developing rapidly, and there are a great many uncertainties regarding their applicability to in situ IR-LIF planetary studies. We therefore feel PIDDP support will be critical to developing these new tools, and propose a three-year program to combine microchip near-IR lasers with low background detection axes and state-of-the-art HgCdTe detectors developed for astronomical spectroscopy to investigate the sensitivity of IR-LIF under realistic planetary conditions, to optimize the optical pumping and filtering schemes for important species, and to apply the spectrometer to the non-destructive measurement of stable isotopes in a variety of test samples. These

  3. Areal Distribution of the Oxygen-Isotope Ratio in Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Giovinetto, Mario B.

    1997-01-01

    Mean values of the oxygen-isotope ratio relative to standard mean ocean water reported for 46 sites on the Greenland ice sheet are compiled together with data on mean annual surface temperature, latitude, 6180 elevation, and mean annual shortest distance to the open ocean denoted by the 10% sea-ice concentration boundary. Stepwise regression analyses, with 6180 as the dependent variable, define two robust models. In the forward mode at the 99.9% confidence level, only temperature enters the model. In the backward mode at the 95% confidence level, only temperature, latitude, and distance to the open ocean remain in the model. Inversions of the models on the basis of 160 gridpoint locations 100 km apart in the area delimited by the surface equilibrium line produce four contoured distributions of 6"0. Two distributions are based on the bivariate model and two on the multivariate model. The second distribution for each model is obtained substituting mean annual surface-temperature values obtained from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) database. All four distributions are considered valid, and differences between them are evaluated using contoured anomaly maps. It is suggested that the inversion of the multivariate model using THIR data provides the more reliable pattern for studies of atmospheric advection or for the derivation of ice-flow adjustments for 6180 series obtained from deep-core or ablation-zone sites.

  4. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  5. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  6. Carbon isotope fractionation in synthetic magnesian calcite

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  7. Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.

    PubMed

    West, Adam G; Goldsmith, Gregory R; Brooks, Paul D; Dawson, Todd E

    2010-07-30

    The use of isotope ratio infrared spectroscopy (IRIS) for the stable hydrogen and oxygen isotope analysis of water is increasing. While IRIS has many advantages over traditional isotope ratio mass spectrometry (IRMS), it may also be prone to errors that do not impact upon IRMS analyses. Of particular concern is the potential for contaminants in the water sample to interfere with the spectroscopy, thus leading to erroneous stable isotope data. Water extracted from plant and soil samples may often contain organic contaminants. The extent to which contaminants may interfere with IRIS and thus impact upon data quality is presently unknown. We tested the performance of IRIS relative to IRMS for water extracted from 11 plant species and one organic soil horizon. IRIS deviated considerably from IRMS for over half of the samples tested, with deviations as large as 46 per thousand (delta(2)H) and 15.4 per thousand (delta(18)O) being measured. This effect was reduced somewhat by using activated charcoal to remove organics from the water; however, deviations as large as 35 per thousand (delta(2)H) and 11.8 per thousand (delta(18)O) were still measured for these cleaned samples. Interestingly, the use of activated charcoal to clean water samples had less effect than previously thought for IRMS analyses. Our data show that extreme caution is required when using IRIS to analyse water samples that may contain organic contaminants. We suggest that the development of new cleaning techniques for removing organic contaminants together with instrument-based software to flag potentially problematic samples are necessary to ensure accurate plant and soil water analyses using IRIS. PMID:20552579

  8. A Clumped Isotope Calibration for Lacustrine Carbonates

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B. A.; Mering, J. A.; Petryshyn, V. A.; Dunbar, R. B.; Cohen, A. S.; Liu, X.; Kaufman, D. S.; Eagle, R.; Tripati, A.

    2014-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of past climate reconstructions. Unfortunately, many terrestrial proxies—tree rings, speleothems, leaf margin analyses, etc.—are influenced by the effects of both temperature and precipitation. Methods that can isolate the effects of temperature alone are needed, and clumped isotope thermometry has the potential to be a useful tool for determining terrestrial climates. Multiple studies have shown that the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed and may be a useful proxy for reconstructing temperatures on land. An in-depth survey of lacustrine carbonates, however, has not yet been published. Therefore we have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of modern lake samples' carbonate minerals in phosphoric acid and comparing results to independently known estimates of lake water temperature and air temperature. Some of the sample types we have investigated include endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  9. Biogeochemistry of the Stable Isotopes of Hydrogen and Carbon in Salt Marsh Biota 1

    PubMed Central

    Smith, Bruce N.; Epstein, Samuel

    1970-01-01

    Deuterium to hydrogen ratios of 14 plant species from a salt marsh and lagoon were 55‰ depleted in deuterium relative to the environmental water. Carbon tetrachloride-extractable material from these plants was another 92‰ depleted in deuterium. This gave a fractionation factor from water to CCl4 extract of 1.147. This over-all fractionation was remarkably constant for all species analyzed. Plants also discriminate against 13C, particularly in the lipid fraction. Data suggest that different mechanisms for carbon fixation result in different fractionations of the carbon isotopes. Herbivore tissues reflected the isotopic ratios of plants ingested. Apparently different metabolic processes are responsible for the different degrees of fractionation observed for hydrogen and carbon isotopes. PMID:16657539

  10. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  11. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  12. Carbon and chlorine isotope fractionation during Fenton-like degradation of trichloroethene.

    PubMed

    Liu, Yunde; Gan, Yiqun; Zhou, Aiguo; Liu, Cunfu; Li, Xiaoqian; Yu, Tingting

    2014-07-01

    Dual isotope approach has been proposed as a viable tool for characterizing and assessing in situ contaminant transformation, however, little data is currently available on its applicability to chlorinated ethenes. This study determined carbon and chlorine isotope fractionation during Fenton-like degradation of trichloroethene (TCE). Carbon and chlorine isotope enrichment factors were εC=-2.9 ± 0.3‰ and εCl=-0.9 ± 0.1‰, respectively. An observed small secondary chlorine isotope effect (AKIECl=1.001) was consistent with an initial transformation by adding hydroxyl radicals (OH) to CC bonds without cleavage of CCl bonds. The relative change in carbon and chlorine isotope ratios (Δ=Δδ(13)C/Δδ(37)Cl) was calculated to be 3.1 ± 0.2, approximately equal to the ratio of chlorine and carbon isotope enrichment factors (εC/εCl=3.2). The similarity of the Δ (or εC/εCl) values between Fenton-like degradation and microbial reductive dechlorination of TCE was observed, indicating that application of solely dual isotope approach may be limited in distinguishing the two transformation pathways. PMID:24875875

  13. Systematic AMD+GCM Study of Structure of Carbon Isotopes

    SciTech Connect

    Thiamova, G.; Itagaki, N.; Otsuka, T.; Ikeda, K.

    2004-02-27

    The structure of low-lying states of the carbon isotopes is investigated using the extended version of the Antisymmetrized Molecular Dynamics (AMD) Multi-Slater Determinant model. We can reproduce reasonably well many experimental data for carbon isotopes 12C-22C. A special approach is adopted for 15C to better describe the tail of the wave function.

  14. Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Zeebe, Richard E.

    2014-08-01

    Kinetic isotope effects (KIEs) during the inorganic hydration of carbon dioxide (CO2) in aqueous solution cause reduced stable carbon and oxygen isotope ratios (13C/12C and 18O/16O) in the reaction product carbonic acid (H2CO3) or bicarbonate ion (HCO3-), relative to CO2. While such KIEs are of importance in various physicochemical, geochemical, and biological systems, very few experimental and theoretical studies have attempted to determine the magnitude of the carbon and oxygen kinetic isotope fractionation (KIF) during hydration of CO2. Here I use transition state theory (TST) and quantum chemistry calculations to investigate the reaction rates of isotopic reactants CO2+nH2O (n = 1-8) along the hydration pathway to H2CO3 or HCO3-. Locating transition states is difficult and the quantum chemistry calculations time-consuming at large n. My results suggest that the hydration mechanism for n = 1-3 is unlikely to be the dominant pathway producing KIFs during CO2 hydration in aqueous solution; hydration mechanisms for n ⩾ 4 appear more likely. For n = 4-8, the predicted KIF based on MP2/aug-cc-pVDZ calculations at 25 °C is ∼1.023-1.033 and ∼1.013-1.015, for carbon and oxygen, respectively. However, these values are uncertain and the results of the present study suggest that new experimental work is required to accurately determine the KIF of carbon and oxygen during CO2 hydration.

  15. Preservation of carbonate clumped isotopes in sedimentary paleoclimate archives

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Shenton, B.; Perez-Huerta, A.

    2014-12-01

    Carbonate clumped isotope thermometry is increasingly used to reconstruct paleotemperatures of ancient terrestrial environments. One promising application is elucidating paleoelevation from carbonate archives such as paleosols, lacustrine marls, and fossil freshwater shells. Unlike conventional stable isotope approaches (e.g., mineral δ18O or δD), clumped isotope thermometry is independent of the isotopic composition of the precipitating waters and can therefore be used to reconstruct elevation by both the temperature-altitude relationship and the rainfall δ18O-altitude relationship. However, interpretation of clumped isotope data is not without its own complications. Like conventional stable isotopes, clumped isotope paleotemperatures can be effectively reset to warmer values by dissolution/reprecipitation-type diagenesis during sedimentary burial. It is also known that carbonate clumped isotope bonds (i.e., 13C-18O) are susceptible to 'reordering' in the solid mineral lattice at warmer burial temperatures, with laboratory studies of natural carbonates indicating activation of this phenomenon at temperatures as low as 100 °C over geologic timescales. A challenge in applying carbonate clumped isotope thermometry to natural samples is now evaluating terrestrial archives with respect to both types of alteration: 'open-system' alteration and 'closed-system' bond reordering. In this talk we will review our experimental efforts to constrain the kinetics of clumped isotope reordering, with relevance to low-temperature carbonates like fossil shells and early diagenetic minerals, and present new laboratory data that further inform our theoretical framework for the mechanism(s) of 13C-18O bond reordering. Together with traditional analytical and petrographic screening for recrystallization, empirical and laboratory studies of carbonate clumped isotope reordering represent the next steps in evaluating isotopic records of paleoclimate, paleobiology, and paleoelevation

  16. Carbon Isotope Discrimination Varies Genetically in C4 Species

    PubMed Central

    Hubick, Kerry T.; Hammer, Graeme L.; Farquhar, Graham D.; Wade, Len J.; von Caemmerer, Susanne; Henderson, Sally A.

    1990-01-01

    Carbon-isotope discrimination (Δ) is used to distinguish between different photosynthetic pathways. It has also been shown that variation in Δ occurs among varieties of C3 species, but not as yet, in C4 species. We now report that Δ also varies among genotypes of sorghum (Sorghum bicolor Moench), a C4 species. The discrimination in leaves of field-grown plants of 12 diverse genotypes of sorghum was measured and compared with their grain yields. Discrimination varied significantly among genotypes, and there was a significant negative correlation between grain yield and Δ. The variation in Δ may be caused by genetic differences in either leakiness of the bundle-sheath cells or by differences in the ratio of assimilation rate to stomatal conductance. At the leaf level, the former should be related to light-use efficiency of carbon fixation and the latter should be related to transpiration efficiency. Both could relate to the yield of the crop. PMID:16667310

  17. Carbon and hydrogen isotopic compositions of stratospheric methane: 2. Two-dimensional model results and implications for kinetic isotope effects

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Boering, K. A.; Rice, A. L.; Tyler, S. C.; Connell, P.; Atlas, E.

    2003-08-01

    New high-precision measurements of the carbon and hydrogen isotopic compositions of stratospheric CH4 made on whole air samples collected aboard the NASA ER-2 aircraft are compared with results from the Lawrence Livermore National Laboratory 2-D model. Model runs incorporating sets of experimentally determined kinetic isotope effects (KIEs) for the reactions of CH4 with each of the oxidants OH, O(1D), and Cl are examined with the goals of determining (1) how well the 2-D model can reproduce the observations for both the carbon and hydrogen isotopic compositions, (2) what factors are responsible for the observed increase in the apparent isotopic fractionation factors with decreasing methane mixing ratios, and (3) how sensitive the modeled isotopic compositions are to various experimentally determined KIEs. Bound by estimates of the effects of uncertainties in model chemistry and transport on isotopic compositions, we then examine the constraints the ER-2 observations place on values for the KIEs. For the carbon KIE for reaction of CH4 with O(1D), for example, the analysis of model results and observations favors the larger of the experimental values, 1.013, over a value of 1.001. These analyses also suggest that intercomparisons of results from different models using a given set of KIEs may be useful as a new diagnostic of model-model differences in integrated chemistry and transport.

  18. Stable isotope ratio determination of the origin of vanillin in vanilla extracts and its relationship to vanillin/potassium ratios

    SciTech Connect

    Martin, G.E.; Alfonso, F.C.; Figert, D.M.; Burggraff, J.M.

    1981-09-01

    A method is described for isolating vanillin from vanilla extract, followed by stable isotope ratio analysis to determine the amount of natural vanillin contained in adulterated vanilla extracts. After the potassium content is determined, the percent Madagascar and/or Java vanilla beans incorporated into the extract may then be approximated from the vanillin/potassium ratio.

  19. Dynamical and Microphysical Controls on Subtropical Water Vapor Isotope Ratios: Using New Spectroscopic Measurements to Link Isotopic and Climatic Variability

    NASA Astrophysics Data System (ADS)

    Raudzens Bailey, A.; Nusbaumer, J. M.; Sato, P.; Noone, D. C.

    2014-12-01

    Water vapor isotope ratios are critical in shaping the isotopic composition of paleo-proxies used to interpret past climate. Indeed, previous research suggests speleothems are sensitive to water vapor transport, and experiments currently underway are evaluating the role of Greenlandic vapor in setting the isotopic record of the ice sheet. The recent and rapid spread of commercial vapor isotopic analyzers—based on cavity-enhanced near-infrared laser absorption spectroscopy—is creating unparalleled opportunities to elucidate which climatic factors control the vapor isotopic composition globally. This presentation describes both an exciting application of this new technology and relevant limitations imposed by measurement uncertainties associated with long-term field deployments. Using three years of continuous water vapor isotope ratio observations from Hawaii's Mauna Loa Observatory—one of the longest records of its kind—we evaluate the influence of large-scale dynamics and cloud microphysical processes in establishing the isotopic composition of water vapor during strong convective activity. Despite the fact that vapor isotope ratios tend to decrease with latitude, greater enrichment in Mauna Loa vapor is associated with a westward retraction of the jet stream, which funnels Asiatic outflow southward, while greater depletion is associated with southwesterly low-level flow. Differences in precipitation efficiency—which are verified by differences in aerosol concentration and total scattering—cause this apparent discrepancy. These results suggest local cloud and precipitation processes are more influential than airmass origin in setting the isotope ratios observed during these strong convective events. The length of the Mauna Loa record, meanwhile, presents a unique opportunity to evaluate long-term stability of biases associated with laser-based isotopic analyzers and to discuss calibration strategies best suited for monitoring programs designed to

  20. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    USGS Publications Warehouse

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  1. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  2. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  3. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  4. Isotopic ratios of rainfall in eastern Africa: insights into reconstructing past climate from terrestrial archives

    NASA Astrophysics Data System (ADS)

    Levin, N. E.; Cerling, T. E.; Brown, F. H.; Quade, J.; Harris, J. M.

    2010-12-01

    The timing and intensity of rainfall dominate climate variability in eastern Africa on seasonal, interannual, and precessional timescales. Today, rainfall in eastern Africa is coupled to the position of the Intertropical Convergence Zone and the Congo Air Boundary; major wet and dry intervals during the late Pleistocene and Holocene are viewed with respect to the movement of these convergence zones. Oxygen and hydrogen isotopic ratios of rainfall in eastern Africa today reflect rainfall amount, moisture source and position relative to convergence zones, such that rainfall sourced in the Indian Ocean yields δ18O and δD values that are lower than δ18O and δD values of rainfall from interior sources (e.g., Congo Basin, Sud). An interior, recycled moisture source is likely responsible for the high δ18O and δD values of meteoric waters in Ethiopia today relative to other regions in East Africa. Here we propose that the connections between isotopic composition and moisture source in rainfall today can be used as a template for identifying shifts in moisture source and the position of convergence zones in the past. The isotopic composition of meteoric water is recorded in a variety of terrestrial materials such as soil and spring carbonates, bioapatites, mollusks and plant waxes, which have the potential to document the seasonality, intensity and source of rainfall. Soil carbonates and bioapatite from Pliocene and Pleistocene rift sediments in Kenya and Ethiopia indicate a >4‰ increase in δ18O values of rainfall since 2.0 Ma. In the Turkana Basin of northern Kenya, this record indicates more intense rainfall from the southeasterly monsoon prior to 2.0 Ma. In the Awash Basin of northeastern Ethiopia, low δ18O values in Plio-Pleistocene carbonates and bioapatite likely reflect the input of Indian Ocean moisture, which does not contribute substantial amounts of rainfall to the Awash Basin today. A northwestward shift of the Congo Air Boundary and an intensified

  5. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    SciTech Connect

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  6. Recent measurements of 234U/238U isotope ratio in spring waters from the Hadzici area.

    PubMed

    Vidic, Alfred; Ilić, Zorana; Benedik, Ljudmila

    2013-06-01

    The Hadzici area has become interesting for investigation since depleted uranium ammunition had been employed in 1995 during the NATO air strike campaign in Bosnia and Herzegovina. The purpose of this study is to determine uranium concentration and (234)U/(238)U activity ratio in the spring waters of this area and to investigate their relationship, as well as spatial variations. The spring water samples were taken at 18 sites in total. For the determination of uranium radioisotopes, radiochemical separation procedure followed by alpha-particle spectrometry was applied. Uranium concentration in analyzed waters range from 0.15 to 1.12 μg/L. Spring waters from carbonate based sediments have a lower uranium concentration of between 0.15 and 0.43 μg/L, in comparison to waters sampled within sandstone-based sediments ranging from 0.53 to 1.12 μg/L. Dissolved uranium shows significant spatial variability and correlation with bedrock type confirmed by Principal Component Analysis and Hierarchical Cluster Analysis. The majority of the analyzed waters have a (234)U/(238)U activity ratio ranging from 1.02 to 1.90, of which half of the results range between 1.02 and 1.16. No apparent depleted uranium (DU) contamination was observed, as (234)U/(238)U activity ratio is dependent on geochemical conditions in the environment. Even though the tested spring waters demonstrate significant variability in uranium concentration, (234)U/(238)U activity ratio and (234)U excess, waters with similar uranium isotopic signatures are observable within the region. The guidelines on the spatial redistribution of dissolved uranium (corresponding to (238)U mass concentration), along with (234)U/(238)U activity ratios were provided by the Inverse Distance Weighting (IDW) method. Waters having similar isotopic signature have been delineated. PMID:23410592

  7. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results

    USGS Publications Warehouse

    Coplen, Tyler B.

    2011-01-01

    To minimize confusion in the expression of measurement results of stable isotope and gas-ratio measurements, recommendations based on publications of the Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) are presented. Whenever feasible, entries are consistent with the Système International d'Unités, the SI (known in English as the International System of Units), and the third edition of the International Vocabulary of Basic and General Terms in Metrology (VIM, 3rd edition). The recommendations presented herein are approved by the Commission on Isotopic Abundances and Atomic Weights and are designed to clarify expression of quantities related to measurement of isotope and gas ratios to ensure that quantity equations instead of numerical value equations are used for quantity definitions. Examples of column headings consistent with quantity calculus (also called the algebra of quantities) and examples of various deprecated usages connected with the terms recommended are presented.

  8. Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains

    SciTech Connect

    Garten, C.T. Jr.; Cooper, L.W.; Post, W.M. III; Hanson, P.J.

    2000-04-01

    A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. The authors hypothesize that, if other environmental factors are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

  9. Climate controls on forest soil C isotope ratios in the southern Appalachian Mountains

    SciTech Connect

    Garten Jr, Charles T; Cooper, Lee W; Post, Wilfred M; Hanson, Paul J

    2000-04-01

    A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil (20 cm deep) is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. We hypothesize that, if other environmental factors (like soil moisture) are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

  10. Isotope Dependence of Chemical Erosion of Carbon

    SciTech Connect

    Reinhold, Carlos O; Krstic, Predrag S; Stuart, S. J.; Zhang, Hengda; Harris, Peter R; Meyer, Fred W

    2010-01-01

    We study the chemical erosion of hydrogen-supersaturated carbon due to bombardment by hydrogen isotopes H, D, and T at energies of 1 30 eV using classical molecular dynamics simulations. The chemical structure at the hydrogen-saturated interface (the distribution of terminal hydrocarbon moieties, in particular) shows a weak dependence on the mass of the impinging atoms. However the sputtering yields increase considerably with increasing projectile mass. We analyze the threshold energies of chemical sputtering reaction channels and show that they are nearly mass independent, as expected from elementary bond-breaking chemical reactions involving hydrocarbons. Chemical sputtering yields for D impact are compared with new experimental data. Good agreement is found for small hydrocarbons but the simulations overestimate the production of large hydrocarbons for energies larger than 15 eV. We present a thorough analysis of the dependence of our simulations on the parameters of the bombardment schemes and discuss open questions and possible avenues for development.

  11. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  12. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  13. Reducing and correcting for contamination of ecosystem water stable isotopes measured by isotope ratio infrared spectroscopy.

    PubMed

    Schmidt, Markus; Maseyk, Kadmiel; Lett, Céline; Biron, Philippe; Richard, Patricia; Bariac, Thierry; Seibt, Ulli

    2012-01-30

    Concern exists about the suitability of laser spectroscopic instruments for the measurement of the (18)O/(16)O and (2)H/(1)H values of liquid samples other than pure water. It is possible to derive erroneous isotope values due to optical interference by certain organic compounds, including some commonly present in ecosystem-derived samples such as leaf or soil waters. Here we investigated the reliability of wavelength-scanned cavity ring-down spectroscopy (CRDS) (18)O/(16)O and (2)H/(1)H measurements from a range of ecosystem-derived waters, through comparison with isotope ratio mass spectrometry (IRMS). We tested the residual of the spectral fit S(r) calculated by the CRDS instrument as a means to quantify the difference between the CRDS and IRMS δ-values. There was very good overall agreement between the CRDS and IRMS values for both isotopes, but differences of up to 2.3‰ (δ(18)O values) and 23‰ (δ(2)H values) were observed in leaf water extracts from Citrus limon and Alnus cordata. The S(r) statistic successfully detected contaminated samples. Treatment of Citrus leaf water with activated charcoal reduced, but did not eliminate, δ(2)H(CRDS) - δ(2)H(IRMS) linearly for the tested range of 0-20% charcoal. The effect of distillation temperature on the degree of contamination was large, particularly for δ(2)H values but variable, resulting in positive, negative or no correlation with distillation temperature. S(r) and δ(CRDS) - δ(IRMS) were highly correlated, in particular for δ(2)H values, across the range of samples that we tested, indicating the potential to use this relationship to correct the δ-values of contaminated plant water extracts. We also examined the sensitivity of the CRDS system to changes in the temperature of its operating environment. We found that temperature changes ≥4 °C for δ(18)O values and ≥10 °C for δ(2)H values resulted in errors larger than the CRDS precision for the respective isotopes and advise the use of such

  14. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.

    PubMed

    Webster, Chris R; Mahaffy, Paul R; Flesch, Gregory J; Niles, Paul B; Jones, John H; Leshin, Laurie A; Atreya, Sushil K; Stern, Jennifer C; Christensen, Lance E; Owen, Tobias; Franz, Heather; Pepin, Robert O; Steele, Andrew; Achilles, Cherie; Agard, Christophe; Alves Verdasca, José Alexandre; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F; Blanco Avalos, Juan J; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John; Cantor, Bruce; Caplinger, Michael; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie; de la Torre Juarez, Manuel; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette Malvitte, Alain; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean

    2013-07-19

    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing. PMID:23869013

  15. The quality control of fruit juices by using the stable isotope ratios and trace metal elements concentrations

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Dehelean, A.; Puscas, R.; Cristea, G.; Tusa, F.; Voica, C.

    2012-02-01

    In the last years, a growing number of research articles detailing the use of natural abundance light stable isotopes variations and trace metal elements concentration as geographic "tracers" to determine the provenance of food have been published. These investigations exploit the systematic global variations of stable hydrogen, oxygen and carbon isotope ratios in (combination) relation with trace metal element concentrations. The trace metal elements content of plants and also their light stable isotopic ratios are mainly related to the geological and pedoclimatic characteristics of the site of growth. The interpretation of such analysis requires an important number of data for authentic natural juices regarding the same seasonal and regional origin, because the isotopic analysis parameters of fruit juices show remarkable variability depending on climatologically factors. In this work was mesured H, C, O stable isotope ratios and the concentrations of 16 elements (P, K, Mg, Na, Ca, Cu, Cr, Ni, Zn, Pb, Co, As, Cd, Mn, Fe and Hg) from 12 single strength juices. The natural variations that appear due to different environmental and climatic conditions are presented and discussed.

  16. Oligocene to Miocene carbon isotope cycles and abyssal circulation changes

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth G.; Fairbanks, Richard G.

    Three cycles of δ13C occurred in Oligocene to Miocene benthic and planktonic foraminifera at western North Atlantic Sites 558 and 563. Intervals of high δ13C occurred at about 35-33 Ma (early Oligocene), 25-22 Ma (across the Oligocene/Miocene boundary), and 18-14 Ma (across the early/middle Miocene boundary). Similar carbon isotopic fluctuations have been measured in benthic and planktonic foraminifera from the Atlantic, Pacific, and Indian oceans, suggesting that these cycles represent global changes in the δ13C of mean ocean water. The average duration of the carbon cycles is 50 times greater than the residence time of carbon in the oceans. Therefore, the mechanism controlling these cycles must be tied to changes in the input ratio of organic carbon to carbonate from weathering rocks or to changes in the output ratio of organic carbon to carbonate in marine sediments. Following a strategy used to study modern and Pleistocene oceans, benthic foraminiferal δ13C differences between the Atlantic and Pacific are used to infer Oligocene through Miocene abyssal circulation changes. The Atlantic was most enriched in l3C relative to the Pacific from about 36-33 Ma (early Oligocene) and 26-10 Ma (late Oligocene to late Miocene). We interpret this as indicating supply of nutrient-depleted bottom water in the North Atlantic, perhaps analogous to modern North Atlantic Deep Water. High benthic foraminiferal δ13O values at about 36-35 Ma, 31-28 Ma, 25-24 Ma, and younger than 15 Ma indicate the presence of ice sheets at these times. Covariance between benthic and planktonic foraminiferal δ18O records of 0.3-0.5°/ºº at 36 Ma, 31 Ma, and 25 Ma suggests that three periods of continental glaciation caused eustatic (global sea-level) lowerings of 30-50 m during the Oligocene epoch. The δ13C cycles do not correlate with sea-level changes deduced from oxygen isotopic data, nor do they correlate with other proxy indicators for sea level.

  17. Carbon kinetic isotope effect in the reaction of CH4 with HO

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Cantrell, C. A.; Tyler, S. C.; Shetter, R. E.; Cicerone, R. J.

    1987-01-01

    The carbon kinetic isotope effect in the CH4 + HO reaction is measured experimentally and the use of carbon isotope ratios to diagnose atmospheric methane is examined. The chemical, photolysis, and analytical experimental conditions and procedures are described. It is determined that the CH4 + HO reaction has a carbon kinetic isotope effect of 1.010 + or 0.007 for k(12)k(13) (rate constants ratio) at 297 + or - 3 K. This value is compared with the data of Rust and Stevens (1980). Causes for the poor correlation between the data at high methane conversions are discussed. It is supposed that the difference between the k(12) and k(13) values is due to a difference in the activation energy of the two reactions.

  18. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Yuen, G.; Blair, N.; Des Marais, D. J.; Chang, S.

    1984-01-01

    Carbon isotopic compositions have been measured for individual hydrocarbons and monocarboxylic acids from the Murchison meteorite, a C2 carbonaceous chondrite which fell in Australia in 1969. With few exceptions, notably benzene, the volatile products are substantially isotopically heavier than their terrestrial counterparts, signifying their extraterrestrial origin. For both classes of compounds, the ratio of C-13 to C-12 decreases with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic ratio than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with the kinetically controlled synthesis of higher homologues from lower ones. The results suggest the possibility that the production mechanisms for hydrocarbons and carboxylic acids may be similar, and impose constraints on the identity of the reactant species.

  19. Secondary ionization mass spectrometric analysis of impurity element isotope ratios in nuclear reactor materials

    NASA Astrophysics Data System (ADS)

    Gerlach, D. C.; Cliff, J. B.; Hurley, D. E.; Reid, B. D.; Little, W. W.; Meriwether, G. H.; Wickham, A. J.; Simmons, T. A.

    2006-07-01

    During reactor operations and fuel burn up, some isotopic abundances change due to nuclear reactions and provide sensitive indicators of neutron fluence and fuel burnup. Secondary ion mass spectrometry (SIMS) analysis has been used to measure isotope ratios of selected impurity elements in irradiated nuclear reactor graphite. Direct SIMS measurements were made in graphite samples, following shaping and surface cleaning. Models predicting local fuel burnup based on isotopic measurements of B and Li isotopes by SIMS agreed well with U and Pu isotopic measurements obtained by thermal ionization mass spectrometry (TIMS).

  20. Stable isotope ratios of atmospheric CO_{2} and CH_{4} over Siberia measured at ZOTTO

    NASA Astrophysics Data System (ADS)

    Timokhina, Anastasiya; Prokushkin, Anatily; Lavric, Jost; Heimann, Martin

    2016-04-01

    The boreal and arctic zones of Siberia housing the large amounts of carbon stored in the living biomass of forests and wetlands, as well as in soils and specifically permafrost, play a crucial role in earth's global carbon cycle. The long-term studies of greenhouse gases (GHG) concentrations are important instruments to analyze the response of these systems to climate warming. In parallel to GHG observations, the measurements of their stable isotopic composition can provide useful information for distinguishing contribution of individual GHG source to their atmospheric variations, since each source has its own isotopic signature. In this study we report first results of laboratory analyses of the CO2 and CH4 concentrations, the stable isotope ratio of δ13C-CO2, δ18O-CO2, δ13C-CH4, δD-CH4 measured in one-liter glass flasks which were obtained from 301 height of ZOTTO (Zotino Tall Tower Observatory, near 60° N, 90° E, about 20 km west of the Yenisei River) during 2008 - 2013 and 2010 - 2013 for stable isotope composition of CO2 and CH4. The magnitudes of δ13C-CO2 and δ18O-CO2 in a seasonal cycle are -1.4±0.1‰ (-7.6 - -9.0‰) and -2.2±0.2‰ (-0.1 - -2.3‰), respectively. The δ13C-CO2 seasonal pattern opposes the CO2 concentrations, with a gradual enrichment in heavy isotope occurring during May - July, reflecting its discrimination in photosynthesis, and further depletion in August - September as photosynthetic activity decreases comparatively to ecosystem respiration. Relationship between the CO2 concentrations and respective δ13C-CO2 (Keeling plot) reveals isotopic source signature for growing season (May - September) -27.3±1.4‰ and -30.4±2.5‰ for winter (January - March). The behavior of δ18O-CO2 associated with both high photosynthetic rate in the June (enrichment of atmospheric CO2 by 18O as consequence of CO2 equilibrium with "heavy" leaf water) and respiratory activity of forest floor in June - October (depletion of respired CO2 by 18O

  1. Monitoring CO2 concentration and δ13C in an underground cavity using a commercial isotope ratio infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Guillon, Sophie; Agrinier, Pierre; Pili, Éric

    2015-04-01

    CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based isotope ratio infrared spectrometers (IRIS) allow in situ continuous monitoring of CO2 isotopes, and therefore they have a potential for unprecedented understanding of carbon sources and dynamics with a high temporal resolution. Here we present the performance assessment of a commercial IRIS analyzer, including the measurement setup and the data processing scheme that we used. Even if the analyzer performs 1-Hz measurements, an integration time of the order of 1 h is commonly needed to obtain acceptable precision for δ13C. The main sources of uncertainty on δ13C come from the concentration dependence and from the temporal instability of the analyzer. The method is applied to the in situ monitoring of the CO2 carbon isotopes in an underground cavity (Roselend Natural Laboratory, France) during several months. On a weekly timescale, the temporal variability of CO2 is dominated by transient contamination by human breath. Discarding these anthropogenic contaminations, CO2 and δ13C backgrounds do not show diurnal or seasonal fluctuations. A CO2 flux released into the tunnel by the surrounding rocks is measured. The carbon isotope composition of this CO2, identified with a Keeling plot, is consistent with a main production by microbial respiration and a minor production from weathering of carbonate minerals. The presented instrument and application study are relevant to cave monitoring, whether to understand CO2 dynamics in visited and/or painted caves for preservation purposes or to understand paleoclimate recording in speleothems.

  2. Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long-term culture of Porites spp.

    NASA Astrophysics Data System (ADS)

    Omata, Tamano; Suzuki, Atsushi; Sato, Takanori; Minoshima, Kayo; Nomaru, Eriko; Murakami, Akio; Murayama, Shohei; Kawahata, Hodaka; Maruyama, Tadashi

    2008-06-01

    Whereas the oxygen isotope ratio of the coral skeleton is used for reconstruction of past information on seawater, the carbon isotope ratio is considered a proxy for physi