Science.gov

Sample records for carbon isotopic signatures

  1. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  2. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, Renyu; Kass, David M.; Ehlmann, Bethany L.; Yung, Yuk

    2014-11-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars’s atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its iso-topic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospher-ic pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars’s atmosphere, recent orbiter, lander, and rover measurements of Mars’s surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a frac-tionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars’s atmos-phere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Mars’s history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  3. Carbon Reservoir History of Mars Constrained by Atmospheric Isotope Signatures

    NASA Astrophysics Data System (ADS)

    Hu, R.; Kass, D. M.; Ehlmann, B. L.; Yung, Y. L.

    2014-12-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars's atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. Here we use a box model to trace the evolution of the carbon reservoir and its isotopic signature on Mars, with carbonate deposition and atmospheric escape as the two sinks and magmatic activity as the sole source. We derive new quantitative constraints on the amount of carbonate deposition and the atmospheric pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars's atmosphere, recent orbiter, lander, and rover measurements of Mars's surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a fractionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars's atmosphere during the Amazonian. As a result, modest carbonate deposition must have occurred early in Mars's history to compensate the enrichment effects of photochemical processes and also sputtering, even when volcanic outgassing up to 200 mbar occurred during the Hesperian. For a photochemical escape flux that scales as the square of the solar EUV flux or more, at least 0.1 bar of CO2 must have been deposited as carbonates in the Noachian and Hesperian. More carbonate deposition would be required if carbonate deposition only occurred in the Noachian or with low fractionation factors.

  4. Analysis of isotope and organic carbon signatures in hillslope hydrographs

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana

    2015-04-01

    Headwater catchments are among the most important areas for investigation of isotope and carbon fluxes because their small sizes best enable separation of above- and below ground compartments for improved understanding of the respective transport mechanisms. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing or transport models. Stable isotopes of water and dissolved organic carbon provide basis for studying transport processes ranging from soil profile scale to hillslope and catchment scale. In this study, stormflow dynamics of oxygen-18 and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface processes during significant rainfall-runoff episodes of a summer season. Water flow and transport of solutes were assumed to take place in two mutually communicating continua, the soil matrix and the network of preferential pathways. Oxygen-18 and dissolved organic carbon were observed in soil water, stormflow discharge in the experimental hillslope trench, and stream discharge at the catchment outlet. In the present study, we analyzed the transformation of input solute signals into signatures observed in the stormflow discharge. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  5. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kreuzer, Helen W.; Horita, Juske; Moran, James J.; Tomkins, Bruce; Janszen, Derek B.; Carman, April J.

    2012-01-03

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  6. Stable Carbon and Nitrogen Isotope Ratios of Sodium and Potassium Cyanide as a Forensic Signature

    SciTech Connect

    Kruzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a future chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. A few of these samples displayed non-homogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of these, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples.

  7. Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment

    NASA Technical Reports Server (NTRS)

    Martens, C. S.; Green, C. D.; Blair, N. E.; Des Marais, D. J.

    1986-01-01

    Systematic seasonal variations in the stable carbon isotopic signature of methane gas occur in the anoxic sediments of Cape Lookout Bight, a lagoonal basin on North Carolina's Outer Banks. Values for the carbon isotope ratio of methane range from -57.3 per mil during summer to -68.5 per mil during winter in gas bubbles with an average methane content of 95 percent. The variations are hypothesized to result from changes in the pathways of microbial methane production and cycling of key substrates including acetate and hydrogen. The use of stable isotopic signatures to investigate the global methane cycle through mass balance calculations, involving various sediment and soil biogenic sources, appears to require seasonally averaged data from individual sites.

  8. Stable Carbon Isotopic Signatures of Abiotic Organics from Hydrothermal Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Summers, David P.; Kubo, Mike; Yassar, Saima

    2006-01-01

    Stable carbon isotopes can be powerful biogeochemical markers in the study of life's origins. Biogenic carbon fixation produces organics that are depleted in C-13 by about -20 to -30%0. Less attention has been paid to the isotopic signatures of abiotic processes. The possibility of abiotic processes producing organics with morphologies and isotopic signatures in the biogenic range has been at the center of recent debate over the Earth's earliest microfossils. The abiotic synthesis of organic compounds in hydrothermal environments is one possible source of endogenous organic matter to the prebiotic earth. Simulated hydrothermal settings have been shown to synthesize, among other things, single chain amphiphiles and simple lipids from a mix of CO, CO2, and H2. A key characteristic of these amphiphilic molecules is the ability to self-assemble in aqueous phases into more organized structures called vesicles, which form a selectively permeable boundary and serve the function of containing and concentrating other organic molecules. The ability to form cell like structures also makes these compounds more likely to be mistaken for biogenic. Hydrothermal simulation experiments were conducted from oxalic or formic acid in water at 175 C for 72 hr. The molecular and isotopic composition of the products of these reactions were determined and compared to biogenic fractionations . Preliminary results indicate isotopic fractionation during abiotic hydrocarbon synthesis in hydrothermal environments is on par with biological carbon fixation.

  9. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the

  10. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird.

    PubMed

    Pearson, Scott F; Levey, Douglas J; Greenberg, Cathryn H; Martínez Del Rio, Carlos

    2003-05-01

    The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine delta15N and delta13C turnover rates for blood, delta15N and delta13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for delta13C and from 0.5 to 1.7 days for delta15N . Half-life did not differ among diets. Whole blood half-life for delta13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7-3.6% for nitrogen isotopes and by -1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds on diets with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures require use of mixing models that incorporate elemental concentration. PMID:16228250

  11. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  12. Distinct iron isotope signatures in suspended matter in the northern Baltic Sea; implications for cycling of organic carbon and phosphorus

    NASA Astrophysics Data System (ADS)

    Ingri, Johan; Conrad, Sarah

    2015-04-01

    Two distinct groups of iron isotope signatures can be identified both in river water and in the Bothnian Bay, northern Baltic Sea. Particles and colloids with negative iron isotope signatures (enriched in the light isotope) are mobilised in the riparian zone during high discharge. Due to high concentration of DOC the oxidation of Fe(II) is incomplete, and un-oxidised Fe(II) is associated with Fe(III)-OH and OC (organic carbon), forming Fe(II,III)-OC colloids, and particles, with a negative iron isotope signature. Colloidal iron with a negative signature is a labile fraction that transforms during freshwater transport. Photo reduction of Fe(II,III)-OC particles and colloids will release Fe(II) and reduce Fe(III) to Fe(II), and formed Fe(II) is oxidised forming Fe(III)-OH colloids with a heavy iron isotope signature. Phosphorus and organic carbon are to different extent associated to these two suspended iron complexes during transport and early diagenesis. Flocculation of negative Fe(II,III)-OC colloids produce negative Fe(II,III)-OC particles, without changes in the isotopic composition. Most of the suspended iron is rapidly removed below 1.0 psu, due to flocculation and sedimentation. Negative Fe(II,III)-OC particles may serve as an efficient 'rusty sink' for organic carbon, when deposited in the coastal zone.

  13. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    SciTech Connect

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.; Martinez del Rio, Carlos

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures

  14. Nitrogen and Carbon Isotopes in Presolar Diamond Samples with Known Noble Gas Isotope Signature

    NASA Astrophysics Data System (ADS)

    Verchovsky, A. B.; Huss, G. R.; Pillinger, C. T.

    1994-07-01

    the noble gas results are described in detail elsewhere [7]. It should be noted that sample purity is supposed to be an important condition affecting release pattern of noble gases and N due to chemical reaction between coexisting minerals (for further discussion see [10]. Therefore we expected the influence of the reactions to be eliminated or significantly reduced for the samples studied here compared to those (OU samples) analyzed [6,8] before. Surprisingly we did not find any particular difference in C and N isotope systematics for the CT and OU samples. In particular they have the same carbon and N release profiles and isotope systematics (Figs. 1,2) although OU samples were measured without any attempt to remove spinel, SiC, or other oxidizing acid resistant phases. At low temperature pyrolysis steps, the CT samples have a similar peak of C, which we have previously correlated with P3 noble gases [11]. More important, release temperature of the light nitrogen from the CT samples (Fig. 2) is now confirmed to be significantly lower than that for HL noble gases supporting the hypothesis [11,12] of different carriers for the components or an entirely different release mechanism. Perhaps the most surprising outcome of our investigation was that none of the CT samples measured appeared to be 100% carbon; the reason for this apparent discrepancy ;the at present not clear. References: [1] Swart P. K. et al. (1983) Science, 220, 406-410. [2] Lewis R. S. et a1. (1983) Nature, 305, 767-771. [3] Pillinger C. T. (1993) Phil. Trans. Roy. Soc. Lond. A, 343, 73-76. [4] Anders E. and Zinner E. (1993) Meteoritics, 28, 490-514. [5] Ott U. (1993) Nature, 364, 25-33. [6] Russell S. S. et al. (1991) Science, 254, 1188-1191. [7] Huss G. R. and Lewis R. S. (1994) Meteoritics, in press. [8] Verchovsky A. B. et al. (1993) LPS XXV, 1435-1436. [9] Clayton D. D. et al. (1994) Astrophysics J., in press. [10] Verchovsky A. B. et al. (1994) Meteoritics, this volume. [11] Verchovsky A. B. et al

  15. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  16. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  17. Isotopic Signature of Carbon Dioxide Efflux as Affected by Vegetation Recovery in Peatland.

    NASA Astrophysics Data System (ADS)

    Epron, D.; Bortoluzzi, E.; Buttler, A.

    2005-12-01

    Peatlands are widespread ecosystems in all climatic areas of the world and provide services of global significance such as long-term storage of organic carbon. The rehabilitation of degraded peatlands as a carbon sink is a considerable challenge in the context of climate change and issues such as capability of ecosystems for carbon sequestration and mitigating greenhouse gas emissions. Our aim was to study the isotopic composition of peatland CO2 efflux at various stages of development of mire vegetation and new peat accumulation on the top of the old drained peat, in order to quantify the contribution of vegetation respiration to the whole CO2 efflux of the ecosystem. The study site is located in the Jura mountains at the altitude of 870m and belongs to the European project RECIPE (reconciling commercial exploitation of peat with biodiversity in peatland ecosystems). It exhibited various regeneration stages with patches of bare peat, patches recently recolonised with cottongrass ( Eriophorum angustifolium) and areas covered with a deep layer of Sphagnum plants and litter (advanced regeneration). Keeling plots were realized on collars located in various vegetation patches by accumulating respired CO2 into a dark chamber. δ13C of the respired CO2 was measured using a mass-spectrometer. The isotopic signature of respired CO2 was lower in the advanced regeneration than it was in recent regeneration, and the latter was lower than it was on bare peat. This difference agrees with the higher δ13C of the old peat than of the actual vegetation (both vascular plants and mosses, and their litters), suggesting a decreasing contribution of old peat mineralization to ecosystem CO2 efflux with the progression of the regeneration of the cutover bog. Discrepancies between isotopic compositions of bulk organic matter and respired CO2 suggest an apparent discrimination during respiration.

  18. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    NASA Astrophysics Data System (ADS)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1‰), good accuracy and linearity (overall SD <0.9‰). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50‰ among

  19. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates.

    PubMed

    Williford, K H; Ushikubo, T; Lepot, K; Kitajima, K; Hallmann, C; Spicuzza, M J; Kozdon, R; Eigenbrode, J L; Summons, R E; Valley, J W

    2016-03-01

    An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of δ(13) C, δ(34) S, Δ(33) S, and Δ(36) S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS δ(13) C measurement of organic matter is identified. Small (2-3 μm) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-μm domains of kerogen in a single ~0.5 cm(3) sample of the ~2.7 Ga Tumbiana Formation have δ(13) C = -52.3 ± 0.1‰ and -34.4 ± 0.1‰, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the ~2.6 Ga Jeerinah Formation and the ~2.5 Ga Mount McRae Shale is systematically (13) C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Δ(33) S and more extreme spatial gradients in Δ(33) S and Δ(36) S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of δ(34) S, Δ(33) S, and Δ(36) S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections

  20. Joint Application of Concentrations and Isotopic Signatures to Investigate the Global Atmospheric Carbon Monoxide Budget: Inverse Modeling Approach

    NASA Astrophysics Data System (ADS)

    Park, K.; Mak, J. E.; Emmons, L. K.

    2008-12-01

    Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers

  1. Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient.

    PubMed

    Gavazov, Konstantin; Hagedorn, Frank; Buttler, Alexandre; Siegwolf, Rolf; Bragazza, Luca

    2016-01-01

    Peatlands are important sinks of atmospheric carbon (C) that, in response to climate warming, are undergoing dynamic vegetation succession. Here we examined the hypothesis that the uptake of nutrients by different plant growth forms (PGFs) is one key mechanism driving changes in species abundance in peatlands. Along an altitude gradient representing a natural climate experiment, we compared the variability of the stable C isotope composition (δ(13)C) and stable nitrogen (N) isotope composition (δ(15)N) in current-year leaves of two major PGFs, i.e. ericoids and graminoids. The climate gradient was associated with a gradient of vascular plant cover, which was parallelled by different concentrations of organic and inorganic N as well as the fungal/bacterial ratio in peat. In both PGFs the (13)C natural abundance showed a marginal spatial decrease with altitude and a temporal decrease with progression of the growing season. Our data highlight a primary physical control of foliar δ(13)C signature, which is independent from the PGFs. Natural abundance of foliar (15)N did not show any seasonal pattern and only in the ericoids showed depletion at lower elevation. This decreasing δ(15)N pattern was primarily controlled by the higher relative availability of organic versus inorganic N and, only for the ericoids, by an increased proportion of fungi to bacteria in soil. Our space-for-time approach demonstrates that a change in abundance of PGFs is associated with a different strategy of nutrient acquisition (i.e. transfer via mycorrhizal symbiosis versus direct fine-root uptake), which could likely promote observed and predicted dwarf shrub expansion under climate change. PMID:26433961

  2. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-07-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  3. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures.

    PubMed

    Loyd, S J; Sample, J; Tripati, R E; Defliese, W F; Brooks, K; Hovland, M; Torres, M; Marlow, J; Hancock, L G; Martin, R; Lyons, T; Tripati, A E

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  4. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    PubMed Central

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  5. Dynamics of carbon in deep soils inferred from carbon stable isotopes signatures : a worldwide meta-analysis

    NASA Astrophysics Data System (ADS)

    Balesdent, Jérôme; Basile-Doelsch, Isabelle; Chadoeuf, Joël; Cornu, Sophie; Derrien, Delphine; Fekiacova, Zuzana; Hatté, Christine

    2014-05-01

    The contribution of soil carbon deeper than 30 cm to the atmospheric carbon balance is still poorly understood. A very straightforward quantification of the gross exchange of carbon between the atmosphere and soil organic matter can be obtained at places where the 13C/12C signature of vegetation has been changed for known durations, due to switch of the photosynthetic metabolism (C3 or C4) or to Free Air Carbon Enrichment experiments. We compiled C and 13C profile data of 113 sites of this type, either gahered from the literature or from our own measurements. Each site comprised two profiles : one where the 13C/12C of the vegetation had been changed, and a reference profile with unchanged vegetation 13C/12C. An isotope mixing equation was used, which takes into account the natural isotope enrichments with depth and decay. Three main variables were calculated at any depth from 0 to 100 cm and in a few sites down to 200 cm : the carbon content, the proportion of new carbon (aged less than the duration of change t) and the amount of new carbon. The database concerned 23 countries, various climates (58% intertropical and 42% between 23° to 56° latitude) and various soil types and textures. Landuses and vegetation consisted in 26% of forests and woodlands, 35% of grasslands and 38% of cropped systems. The duration of the natural labelling t ranged from 2 years to ca. 4000 years. Peatlands, boreal, and desert environments were absent from the database. Non-linear regressions with time across the dataset yielded kinetic parameters of the age distribution on one hand and of the flux of new carbon incorporation (kg C m-2 yr-1) on the other, each calculated by 10 cm depth increments. On the average, the median ages of carbon increase from ca. 15 years at 0 cm to more than 1000 years at 100 cm. Turnover is on the average 2 to 3 times slower for the subsoil (30-100 cm) than for the topsoil (0-30 cm). Based on the incorporation of new C in the first decades, the carbon input

  6. Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers

    PubMed Central

    McKellar, Ryan C.; Wolfe, Alexander P.; Muehlenbachs, Karlis; Tappert, Ralf; Engel, Michael S.; Cheng, Tao; Sánchez-Azofeifa, G. Arturo

    2011-01-01

    Despite centuries of research addressing amber and its various inclusions, relatively little is known about the specific events having stimulated the production of geologically relevant volumes of plant resin, ultimately yielding amber deposits. Although numerous hypotheses have invoked the role of insects, to date these have proven difficult to test. Here, we use the current mountain pine beetle outbreak in western Canada as an analogy for the effects of infestation on the stable isotopic composition of carbon in resins. We show that infestation results in a rapid (approx. 1 year) 13C enrichment of fresh lodgepole pine resins, in a pattern directly comparable with that observed in resins collected from uninfested trees subjected to water stress. Furthermore, resin isotopic values are shown to track both the progression of infestation and instances of recovery. These findings can be extended to fossil resins, including Miocene amber from the Dominican Republic and Late Cretaceous New Jersey amber, revealing similar carbon-isotopic patterns between visually clean ambers and those associated with the attack of wood-boring insects. Plant exudate δ13C values constitute a sensitive monitor of ecological stress in both modern and ancient forest ecosystems, and provide considerable insight concerning the genesis of amber in the geological record. PMID:21429925

  7. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers.

    PubMed

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; D'Affonseca, Fernando Mazo

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (>1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  8. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; Mazo D'Affonseca, Fernando

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (> 1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  9. Carbon and nitrogen stable isotopes in fast food: signatures of corn and confinement.

    PubMed

    Jahren, A Hope; Kraft, Rebecca A

    2008-11-18

    Americans spend >100 billion dollars on restaurant fast food each year; fast food meals comprise a disproportionate amount of both meat and calories within the U.S. diet. We used carbon and nitrogen stable isotopes to infer the source of feed to meat animals, the source of fat within fries, and the extent of fertilization and confinement inherent to production. We sampled food from McDonald's, Burger King, and Wendy's chains, purchasing >480 servings of hamburgers, chicken sandwiches and fries within geographically distributed U.S. cities: Los Angeles, San Francisco, Denver, Detroit, Boston, and Baltimore. From the entire sample set of beef and chicken, only 12 servings of beef had delta(13)C < -21 per thousand; for these animals only was a food source other than corn possible. We observed remarkably invariant values of delta(15)N in both beef and chicken, reflecting uniform confinement and exposure to heavily fertilized feed for all animals. The delta(13)C value of fries differed significantly among restaurants indicating that the chains used different protocols for deep-frying: Wendy's clearly used only corn oil, whereas McDonald's and Burger King favored other vegetable oils; this differed from ingredient reports. Our results highlighted the overwhelming importance of corn agriculture within virtually every aspect of fast food manufacture. PMID:19001276

  10. Carbon and Nitrogen Stable Isotopes in Fastfood: Signatures of Corn and Confinement

    NASA Astrophysics Data System (ADS)

    Jahren, H.; Kraft, R.

    2008-12-01

    Americans spend more than one hundred billion dollars on restaurant fastfood each year; fastfood meals comprise a disproportionate amount of both meat and calories within the U.S. diet. Frustrated by futile attempts to gain information about the origin and production of fastfood from the companies themselves, we used carbon and nitrogen stable isotopes to infer the source of feed to meat animals, the source of fat within fries, and the extent of fertilization and confinement inherent to production. We sampled food from McDonald's, Burger King and Wendy's chains, purchasing more than 480 servings of hamburgers, chicken sandwiches and fries within geographically-distributed U.S. cities: Los Angeles, San Francisco, Denver, Detroit, Boston and Baltimore. From the entire sample set of beef and chicken, only 12 servings of beef had δ13C < -21 ‰; for these animals only was a food source other than corn possible. We observed remarkably invariant values of δ15N in both beef and chicken, reflecting uniform confinement and exposure to heavily fertilized feed for all animals. The δ13C value of fries differed significantly among restaurants indicating that the chains employed different protocols for deep- frying: Wendy's clearly employed only corn oil, while McDonald's and Burger King favored other vegetable oils; this differed from ingredient reports. Our results highlighted the overwhelming importance of corn agriculture within virtually every aspect of fastfood manufacture.

  11. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Edger, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; DesMarais, David J.; Cady, Sherry; Hope, Janet M.; Summons, Roger E.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarkers and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber. "Thermocrinis sp. HI", Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyls. The fatty acids of all cultured organisms were dominated by a very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as CIS() monoethers with the expection of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known 'pink-streamers community' (PSC), siliceous filaments of a microbial consortia growing in the upper outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic Aquificales n-C-20:1 and cy-C-21, and in addition, a series of iso-branched fatty acids from i-C-15:0 to i-C-21:0, With i-C-17:0 dominant in the PSC and i-C-19:0 in the biofilm, suggesting the presence of two major bacterial groups. Bacteriohopanepolyols were absent and the minute quantities of archaeol detected showed that Archaea were only minor constituents. Carbon isotopic compositions of the PSC yielded information about community structure and likely physiology. Biomass was C-13-depleted (10.9%) relative to available

  12. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Eder, Wolfgang; Huber, Robert; Hinrichs, Kai-Uwe; Hayes, John M.; Cady, Sherry L.; DesMarais, David J.; Hope, Janet M.; Summons, Roger E.

    2001-01-01

    Extremely thermophilic microbial communities associated with the siliceous vent walls and outflow channel of Octopus Spring, Yellowstone National Park, have been examined for lipid biomarker and carbon isotopic signatures. These data were compared with that obtained from representatives of three Aquificales genera. Thermocrinis ruber, Thermocrinis sp. HI, Hydrogenobacter thermophilus, Aquifex pyrophilus and Aquifex aeolicus all contained phospholipids composed not only of the usual ester-linked fatty acids, but also ether-linked alkyl moieties. The fatty acids of all cultured organisms were dominated by very distinct pattern of n-C-20:1 and cy-C-21 compounds. The alkyl glycerol ethers were present primarily as C-18:0 monoethers with the exception of the Aquifex spp. in which dialkyl glycerol ethers with a boarder carbon-number distribution were also present. These Aquificales biomarker lipids were the major constituents in the lipid extracts of the Octopus Spring microbial samples. Two natural samples, a microbial biofilm growing in association with deposition of amorphous silica on the vent walls at 92 C, and the well-known "pink-streamer community" (PSC), siliceous filaments of a microbial consortia growing in the outflow channel at 87 C were analyzed. Both the biofilm and PSC samples contained mono- and dialkyl glycerol ethers with a prevalence of C-18 and C-20 alkyls. Phospholipid fatty acids were comprised of both the characteristic. Additional information is contained in the original extended abstract.

  13. DETERMINING CARBON ISOTOPE SIGNATURES FROM MICROMETEOROLOGICAL MEASUREMENTS: IMPLICATIONS FOR STUDYING BIOSPHERE-ATMOSPHERE EXCHANGE PROCESSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years considerable effort has been focused on combining micrometeorological and stable isotope techniques to elucidate and study biosphere-atmosphere exchange processes. At the ecosystem scale, these methods are increasingly being used to address a number of challenging problems, including...

  14. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    PubMed

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  15. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    NASA Astrophysics Data System (ADS)

    Kayler, Z. E.; Kaiser, M.; Gessler, A.; Ellerbrock, R. H.; Sommer, M.

    2011-03-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM) fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM stabilized in microstructures found in the chemical extraction residue (OM(ER)). Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007) to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰). We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles amount while

  16. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, Robert; Hinrichs, K-U.; Hayes, J. M.; DesMarais, D. J.; Cady, S. L.; Hope, J. M.; Summons, R. E.

    2001-01-01

    This paper describes a study of lipid biomarker composition and carbon isotopic fractionation in cultured Aquificales and natural analogues from Yellowstone National Park. Additional information is contained in the original extended abstract.

  17. Identification of Lichen Metabolism in an Early Devonian Terrestrial Fossil using Carbon Stable Isotope Signature

    NASA Astrophysics Data System (ADS)

    Porter, S.; Jahren, H.

    2002-05-01

    The fossil organismSpongiophyton minutissimum is commonly found in early terrestrial assemblages (Devonian age, 430-340 Ma). Suites of morphological descriptions of this fossil have been published, starting in 1954, and have led to two competing hypotheses: 1.) that this early colonizer of land was a primitive bryophyte, and therefore a precursor to modern plant organisms, and 2.) thatS. minutissimum was a lichen: a close association between an alga and a fungus. Because the ultimate mechanisms for carbon supply to the carboxylating enzyme in bryophytes and lichens differ fundamentally, we expect these two types of organisms to exhibit separate ranges of δ 13Ctissue value. In bryophytes, gaseous carbon dioxide diffuses through perforations in cuticle (resulting in δ 13Catmosphere - δ 13Cbryophyte = ~20 ‰ ). Within the lichen, carbon is supplied to the carboxylating enzyme of the photobiont as carbon dioxide dissolved in fungal cell fluids (resulting in δ 13Catmosphere - δ 13Clichen = ~15 ‰ ). By comparing the δ 13Ctissue value ofS. minutissimum (mean = -23 ‰ ;n = 75) with δ 13Ctissue values in twenty-five lichens, representative of the four different phylogenetic clades (mean = -23 ‰ ;n = 25) and thirty different genera of bryophytes including mosses, liverworts, and hornworts (mean = -28 ‰ ;n = 30), we conclude thatS. minutissimum was cycling carbon via processes that much more closely resembled those of lichens, and not bryophytes. We discuss the general strategies associated with lichen biology, such as the ability to withstand dessication during reproduction, and how they may have contributed to the successful colonization of terrestrial environments.

  18. Carbon and oxygen isotope signatures in conifers from the Swiss National Park

    NASA Astrophysics Data System (ADS)

    Churakova (Sidorova), Olga; Saurer, Matthias; Siegwolf, Rolf; Bryukhanova, Marina; Bigler, Christof

    2015-04-01

    Our study investigates the physiological response and plasticity of trees under climatic changes for larch (Larix decidua) and mountain pine (Pinus mugo var. uncinata) in the Swiss National Park.This research was done in the context of investigation tree mortality and their potential to survive under the harsh mountainous conditions. For the stable isotope analysis we selected four mountain pine and four larch trees from each a south- and north-facing slope. Oxygen isotope ratios can give insight into water sources and evaporative processes. To understand the differential response of mountain pine and larch to short-term climatic changes we measured 18O/16O in water extracted from twigs and needles as well as soil samples for each species at both sites. The seasonal variabilities in 18O/16O needles and twigs of mountain pine and larch trees as well as soil samples were related to changes in climate conditions from end of May until middle of October. To reveal the main climatic factors driving tree growth of pine and larch trees in the long-term, tree-ring width chronologies were built and bulk 18O/16O, 13C/12C wood chronologies were analyzed and correlated with climatic parameters over the last 100 years. The results indicate a strong influence of spring and summer temperatures for larch trees, while variation of spring and summer precipitations is more relevant for mountain pine trees. This work is supported by the Swiss National Science Foundation, Marie-Heim Vögtlin Program PMPDP-2 145507

  19. Interannual Variability in Carbon and Nitrogen Stable Isotopic Signatures of Size-Fractionated POM from the South Florida Coastal Zone

    NASA Astrophysics Data System (ADS)

    Evans, S. L.; Anderson, W. T.; Jochem, F. J.; Fourqurean, J. W.

    2004-12-01

    Environmental conditions in South Florida coastal waters have been of local and national concern over the past 15 years. Attention has focused on the ecosystem impacts of salinity increases, seagrass die-off, increased algal bloom frequency, waste water influence, groundwater discharge, and exchange between Florida Bay, the Gulf of Mexico, and the Atlantic Ocean. Changes in water quality and productivity levels may be reflected in the isotopic signatures of coastal zone primary producers. Recent work with seagrasses in South Florida has demonstrated high seasonal and spatial variability in C and N isotopic signatures and decoupling between the two isotopic systems as they vary. To better understand the sources of seasonal and spatial fluctuation, size fractionated POM (particulate organic matter) samples have been collected on a quarterly basis since Sept. 2002. Fractions collected include >150μ m, 50-150μ m, and 0.1-50μ m using Nitex mesh sieves and a portable pump system deployed from a small boat at 10 sites around the Florida Keys and Florida Bay. It was hypothesized that planktonic groups respond more quickly to changes in water quality then seagrasses, and thus variations may be more clearly attributed to environmental parameters. Significant spatial and temporal variability is evident both within site between size fractions and between sites. Seasonal oscillations of up to 4‰ were observed in N isotopic values and 6‰ in C isotopic values of the 50-150μ m size fraction, which is dominated by diatoms and dinoflagellates. δ 13C values are depleted in the late winter/early spring sampling period possibly reflecting decreased productivity stress on available C pools. 13C depletion is generally coincident with δ 15N enrichment in the late winter/early spring, possibly demonstrating changes in DIN pools (NO3- and NH4+ concentrations) or changes in decomposition or denitrification rates. Broad groupings appear to separate Atlantic coral reef sites

  20. The Lithium Isotopic Signature of Hawaiian Basalts

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.; Hanano, D. W.

    2013-12-01

    shield stage volcanoes or amongst individual volcanoes; 2) differences in degree of mantle melt and spatial structure of the mantle heterogeneity melting in the case of pre-shield, shield, and post-shield differences. In Hawaiian basalts, lithium isotopes help distinguish between 'enriched' Loa source components: Ko';olau Makapu';u shield stage lavas may have between 4-10% of a carbonate input and Hualalai post-shield and shield lavas may reflect incorporation of subduction eroded lower continental crust. Comparison of this dataset with worldwide OIB published lithium isotopic data indicates that the lithium isotopic system behaves systematically on a mantle-wide scale. Hawai'i is generally characterized as EM-I like, with Hualalai post-shield lavas exhibiting both the lightest lithium isotopic signature and the most extreme EM-I characteristics. Lithium isotopes thus provide an additional insight into the nature of EM-I type mantle. [1] Weis, D. et al. (2011) Nature Geoscience 4, doi:10.1038/NGEO1328. [2] Nobre Silva, I.G. et al. (2013) Geochem. Geophy. Geosys. 14(3), doi: doi:10.1002/ggge.20047. [3] Chan, L.H., and Frey, F.A. (2003) Geochem. Geophy. Geosys. 4(3), doi: 10.1029/2002GC000365.

  1. Leaf oxygen and Carbon Isotopic Signatures Reflect Drought Resistance and Water Use Efficiency in the C4 Grass, Setaria viridis

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.; Cousins, A. B.

    2014-12-01

    Low water availability is a major constraint in crop production, especially as agriculture is pushed to marginal lands. Therefore, improving drought resistance such as increasing water use efficiency (WUE) through plant breeding is needed to expand the range of soil water availability adequate for food production. With the goal of finding the genomic basis for WUE in C4 grasses, Setaria viridis makes an ideal model species because of its small size, short lifespan, and sequenced genome. Also it is part of the panicoid grass clade, which is one of the most important clades for food and biofuel production. In plant breeding programs, large numbers of genotypes must be quickly screened for drought resistance traits, but there is no well-defined method of screening for WUE in C4 grasses. However, bulk leaf oxygen (Δ18OBL) and carbon (δ13C) isotopic signatures have shown potential as recorders of transpiration rate (E) and stomatal conductance (gs), and combined with biomass production potentially serve as a measure of WUE. Values of Δ18OBL record differences in transpiration rate because leaf water becomes more enriched as transpiration rate decreases, and leaf tissue records the isotopic composition of leaf water in which it is synthesized. Additionally, in C4 plants δ13C values decrease as gs decreases but the change in δ13C in response to gs may not be adequate to tease apart differences in WUE. In this study, we grew S. viridis plants under well-watered and water-limited conditions to determine if Δ18OBL and δ13C could be used as proxies for E and gs, and be used to screen S. viridis for differences in WUE in breeding programs. The Δ18OBL and δ13C were significantly different between well-watered and water-limited plants and correlated with each other and with E, gs, and instantaneous water use efficiency (Anet/gs). Therefore, Δ18OBL and δ13C can be useful proxies to screen genotypes for drought resistance by recording differences in E, gs, and WUE

  2. Evaluating Carbon Isotope Signature of Bulk Organic Matter and Plant Wax Derived n-alkanes from Lacustrine Sediments as Climate Proxies along the Western Side of the Andes

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Werne, J. P.; Araneda, A.; Conejero, C. A.

    2015-12-01

    Sedimentary carbon isotope values (δ13C) of bulk organic matter and long chain (C25 to C35) n-alkanes are among the most long-lived and widely utilized proxies of organic matter and vegetation source. The carbon distribution (e.g. average carbon chain length, ACL) and isotope signature from long chain n-alkanes had been intensively used on paleoclimate studies because they are less influenced by diagenesis, differential preservation of compound classes, and changes in the sources of organic matter than bulk δ13C values. Recently, studies of modern plant n-alkanes have challenged the use of carbon distribution and carbon isotope signature from sedimentary n-alkanes as reliable indicators of vegetation and climate change. The climate in central-south western South America (SA) is projected to become significantly warmer and drier over the next several decades to centuries in response to anthropogenically driven warming. Paleolimnological studies along western SA are critical to obtain more realistic and reliable regional reconstructions of past climate and environments, including vegetation and water budget variability. Here we discuss bulk δ13C, distribution and δ13C in long chain n-alkanes from a suite of ~40 lake surface sediment (core-top) samples spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest. Data are compared to the latitudinal and orographic climatic trends of the Andes based on the climatology (e.g. precipitation and temperature) of the locations of all lakes involved in this study, using monthly gridded reanalysis products of the Climate Forecast System Reanalysis (CFSR), based on the NCEP global forecast model and meteorological stations available in the region, from January 1979 to December 2010 with a 0.5° horizontal resolution.

  3. Measurement of Histone Methylation Dynamics by One-Carbon Metabolic Isotope Labeling and High-energy Collisional Dissociation Methylation Signature Ion Detection

    PubMed Central

    Tang, Hui; Tian, Bing; Brasier, Allan R.; Sowers, Lawrence C.; Zhang, Kangling

    2016-01-01

    Accumulating evidence suggests that cellular metabolites and nutrition levels control epigenetic modifications, including histone methylation. However, it is not currently possible to measure the metabolic control of histone methylation. Here we report a novel detection method to monitor methyl transfer from serine to histones through the one-carbon metabolic pathway, using stable-isotope labeling and detection of lysine methylation signature ions generated in high-energy-dissociation (HCD) tandem mass spectrometry. This method is a long-needed tool to study the metabolic control of histone methylation. PMID:27530234

  4. Interpretation of the origin of massive replacive dolomite within atolls and submerged carbonate platforms: strontium isotopic signature ODP Hole 866A, Resolution Guyot, Mid-Pacific Mountains

    NASA Astrophysics Data System (ADS)

    Flood, P. G.; Fagerstrom, J. A.; Rougerie, F.

    1996-01-01

    Endo-upwelling is a geothermally driven convective process operating within the upper part of the volcanic foundation and overlying carbonate pile, in atolls and guyots. By this process deep oceanic water, rich in CO 2 and dissolved nitrates, phosphates and silicates is drawn into the pile, circulates slowly upward through the porous-permeable carbonate interior and emerges at either the reef crest or lagoon on atolls to support the primary productivity of the surficial communities, or towards the interior of the platform surface on guyots. Continuous operation of the endo-upwelling process requires: (a) heat from the volcanic foundation; (b) an external impermeable apron on the submerged flanks to confine the convective flow within the pile; and (c) a porous cap from which water exiting the plumbing system returns to the ocean. At ODP Hole 866A on Resolution Guyot, Mid-Pacific Mountains, the Sr isotopic signature of massive white-coloured, coarsely crystalline dolomite indicates a considerable time delay of approximately 100 Ma between carbonate deposition and dolomitization. This time delay is determined by comparing the Sr isotopic value of the dolomite and the time that ocean seawater displayed a similar Sr isotopic value. This interpretation of the Sr isotopic values assumes that all of the Sr is viewed as coming from seawater and none from any precursor limestone. The massive white replacement dolomite from Resolution Guyot possibly provides confirmation of the origin of dolomite by way of thermally driven convective flow within submerged carbonate platforms. Endo-upwelling seawater probably enters the carbonate pile at some depth, thermally circulates upwards, and produces carbonate dissolution and could conceivably produce massive dolomite replacement.

  5. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  6. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the gulf of Mexico.

    PubMed

    Zhang, Chuanlun L; Huang, Zhiyong; Cantu, James; Pancost, Richard D; Brigmon, Robin L; Lyons, Timothy W; Sassen, Roger

    2005-04-01

    White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 mum in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1omega7c/t (67%), 18:1omega7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The delta13C value of total biomass was -28.6 per thousand; those of individual fatty acids were -29.4 to -33.7 per thousand. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have delta13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations. PMID:15812044

  7. Lipid Biomarkers and Carbon Isotope Signatures of a Microbial (Beggiatoa) Mat Associated with Gas Hydrates in the Gulf of Mexico

    PubMed Central

    Zhang, Chuanlun L.; Huang, Zhiyong; Cantu, James; Pancost, Richard D.; Brigmon, Robin L.; Lyons, Timothy W.; Sassen, Roger

    2005-01-01

    White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 μm in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1ω7c/t (67%), 18:1ω7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The δ13C value of total biomass was −28.6‰; those of individual fatty acids were −29.4 to −33.7‰. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have δ13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations. PMID:15812044

  8. Does avian malaria infection affect feather stable isotope signatures?

    PubMed

    Yohannes, Elizabeth; Palinauskas, Vaidas; Valkiūnas, Gediminas; Lee, Raymond W; Bolshakov, Casimir V; Bensch, Staffan

    2011-12-01

    It is widely accepted that stable isotope ratios in inert tissues such as feather keratin reflect the dietary isotopic signature at the time of the tissue synthesis. However, some elements such as stable nitrogen isotopes can be affected by individual physiological state and nutritional stress. Using malaria infection experiment protocols, we estimated the possible effect of malaria parasite infections on feather carbon (δ(13)C) and nitrogen (δ(15)N) isotope signatures in juvenile common crossbills Loxia curvirostra. The birds were experimentally infected with Plasmodium relictum (lineage SGS1) and P. ashfordi (GRW2), two widespread parasites of passerines. Experimental birds developed heavy parasitemia of both parasites and maintained high levels throughout the experiment (33 days). We found no significant difference between experimental and control birds in both δ(13)C and δ(15)N values of feathers re-grown. The study shows that even heavy primary infections of malaria parasites do not affect feather δ(13)C and δ(15)N isotopic signatures. The results of this experiment demonstrate that feather isotope values of wild-caught birds accurately reflect the dietary isotopic sources at the time of tissue synthesis even when the animal's immune system might be challenged due to parasitic infection. PMID:21671039

  9. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Neubert, R. E. M.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Werner, R. A.

    2008-11-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects in the order of about 26‰ became obvious, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original 18O signature of the material appeared to have little or no influence.

  10. Oxygen isotopic signature of CO2 from combustion processes

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Werner, R. A.; Meijer, H. A. J.; Jansen, H. G.; Brand, W. A.; Geilmann, H.; Neubert, R. E. M.

    2011-02-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio-chemical compounds to

  11. Stable Isotope Signatures for Microbial Forensics

    SciTech Connect

    Kreuzer, Helen W.

    2012-01-03

    The isotopic distribution of the atoms composing the molecules of microorganisms is a function of the substrates used by the organisms. The stable isotope content of an organism is fixed so long as no further substrate consumption and biosynthesis occurs, while the radioactive isotopic content decays over time. The distribution of stable isotopes of C, N, O and H in heterotrophic microorganisms is a direct function of the culture medium, and therefore the stable isotope composition can be used to associate samples with potential culture media and also with one another. The 14C content depends upon the 14C content, and therefore the age, of the organic components of the culture medium, as well as on the age of the culture itself. Stable isotope signatures can thus be used for sample matching, to associate cultures with specific growth media, and to predict characteristics of growth media.

  12. Nitrogen isotopic signatures in the Acapulco meteorite

    NASA Technical Reports Server (NTRS)

    Sturgeon, G.; Marti, K.

    1991-01-01

    N isotopic abundances are reported for a bulk sample of the unique meteorite Acapulco. Although the mineral chemistry indicates a high degree of recrystallization under redox conditions between those of H and E chondrites (Palme et al., 1981), the presence of two distinct N isotopic signatures shows that the carriers of these N components were not equilibrated. In stepwise pyrolysis, the larger (65 percent) N component is released mostly below 1000 C and reveals a signature of delta(N-15) = 8.9 + or - 1.2 per mil, which is within the range observed in chondrites. A second 'light' component appears above 1000 C and has a signature of delta(N-15) less than or equal to -110.5 + or - 4.0 per mil (uncorrected for spallation N-15).

  13. Differences in hydrophyte life forms induce spatial heterogeneity of CH4 production and its carbon isotopic signature in a temperate bog peatland

    NASA Astrophysics Data System (ADS)

    Itoh, Masayuki; Shimamura, Tetsuya; Ohte, Nobuhito; Takemon, Yasuhiro

    2015-07-01

    To clarify the effect of differences in hydrophyte life forms on methane (CH4) production and its carbon stable isotopic signature (δ13C-CH4), we analyzed CH4 and carbon dioxide (CO2) concentrations, their stable carbon isotope values, and chemical constituents dissolved in pore water in a small floating peat bog in Japan. Because eutrophication has modified the surrounding water quality, the bog vegetation on the mat has been, in part, replaced by fen-type vegetation. We hypothesized that differences in hydrophyte habitats affect redox conditions, including dissolved oxygen (DO) in water and therefore the amounts and carbon isotopic values of CH4 and CO2 dissolved in pore water. Between the habitats of two Sphagnum species, DO was considerably higher, and CH4 concentrations were significantly lower in Sphagnum cuspidatum Ehrh. habitats in hollow (DO: 0.62 ± 0.20 mg/L (standard error (SE)) and CH4: 0.18 ± 0.02 mmol/L) than in Sphagnum palustre L. habitats in hummock (DO: 0.29 ± 0.08 and CH4: 0.82 ± 0.06) in pore water (10 cm depth). Both DO and CH4 concentrations in three vascular plant habitats (Rhynchospora fauriei Franch., Phragmites australis [reed], and Menyanthes trifoliata L.) in pore water (10 cm depth) were intermediate relative to the two Sphagnum species. However, CH4 flux in M. trifoliata site was significantly higher than that at both Sphagnum sites, suggesting that the type of gas transport (diffusive or convective via root and stem) affected the depth profile of CH4 concentrations and its flux. δ13C-CH4 values in pore water also varied among the vegetation types, even within Sphagnum species (e.g., at 10 cm depth, δ13C-CH4: R. fauriei, -55.3 ± 1.8‰ (SE); P. australis, -57.5 ± 1.6‰; M. trifoliata, -56.7 ± 1.5‰; S. cuspidatum, -71.2 ± 1.4‰; and S. palustre, -60.4 ± 0.6‰). Our results suggest that significant differences arise in CH4 concentration and δ13C-CH4 values among the hydrophyte habitats even within a small peat bog and

  14. Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas; Bouloubassi, Ioanna; Stadnitskaia, Alina; Taphanel, Marie-Hélène; Sinninghe Damsté, Jaap S.

    2014-06-01

    Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of -57 to -136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of -43 to -133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the

  15. Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Eder, W.; Huber, R.; Hope, J. M.; Hinrichs, K. U.; Hayes, J. M.; Des Marais, D. J.; Cady, S. L.; Summons, R. E.

    2001-01-01

    The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C(20:1) and cy-C(21) fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C(18:0). These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C(18) and C(20) alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C(20:1) and cy-C(21), plus a series of iso-branched fatty acids (i-C(15:0) to i-C(21:0)), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in (13)C relative to source water CO(2) by 10.9 and 17.2 per thousand, respectively. The C(20-21) fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6 per thousand, respectively. The biomass of T. ruber grown on CO(2) was depleted in (13)C by only 3.3 per thousand relative to C source. In contrast, biomass was depleted by 19.7 per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3 per thousand). The depletion in the C(20-21) fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO(2). Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.

  16. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  17. Linkages Between Upwelling and Shell Characteristics of Mytilus californianus: Morphology and Stable Isotope (δ13C, δ18O) Signatures of a Carbonate Archive from the California Current

    NASA Astrophysics Data System (ADS)

    Hosfelt, J. D.; Hill, T. M.; Russell, A. D.; Bean, J. R.; Sanford, E.; Gaylord, B.

    2014-12-01

    Many calcareous organisms are known to record the ambient environmental conditions in which they grow, and their calcium carbonate skeletons are often valuable archives of climate records. Mytilus californianus, a widely distributed species of intertidal mussel, experiences a spatial mosaic of oceanographic conditions as it grows within the California Current System. Periodic episodes of upwelling bring high-CO2 waters to the surface, during which California coastal waters are similar to projected conditions and act as a natural analogue to future ocean acidification. To examine the link between upwelling and shell characteristics of M. californianus, we analyzed the morphology and stable isotope (δ13C, δ18O) signatures of mussel specimens collected live from seven study sites within the California Current System. Morphometric analyses utilized a combination of elliptic Fourier analysis and shell thickness measurements to determine the influence of low pH waters on the growth morphology and ecological fitness of M. californianus. These geochemical and morphological analyses were compared with concurrent high-resolution environmental (T, S, pH, TA, DIC) records from these seven study sites from 2010-2013. With appropriate calibration, new archives from modern M. californianus shells could provide a valuable tool to enable environmental reconstructions within the California Current System. These archives could in turn be used to predict the future consequences of continuing ocean acidification, as well as reconstruct past (archeological) conditions.

  18. Microbial activity and carbonate isotope signatures as a tool for identification of spatial differences in methane advection: a case study at the Pacific Costa Rican margin

    NASA Astrophysics Data System (ADS)

    Krause, S.; Steeb, P.; Hensen, C.; Liebetrau, V.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2014-01-01

    The forearc of the convergent margin offshore Costa Rica is a region characterized by strong advection of methane-charged fluids causing the formation of ubiquitous cold seeps (mounds). Presented here are the first measurements of microbial anaerobic oxidation of methane (AOM) and sulfate reduction (SR) rates in sediments from two mounds (11 and 12), applying radiotracer techniques in combination with numerical modelling. In addition, analysis of microbial, methane-dependent carbonate δ18O, δ13C, and 87Sr / 86Sr signatures constrained the origin of the carbonate-precipitating fluid. Average rates of microbial activities differed by a factor of ~5 to 6 between Mound 11 (AOM 140.71 (±40.84 SD) mmol m-2 d-1, SR 117.25 (±82.06 SD) mmol m-2 d-1) and Mound 12 (AOM 22.37 (±0.85 SD) mmol m-2 d-1, SR 23.99 (±5.79 SD) mmol m-2 d-1). Modelling results yielded upward fluid advection velocities of 200 cm yr-1 at Mound 11 and 15 cm yr-1 at Mound 12. Analysis of oxygen and carbon isotope variations of authigenic carbonates from the two locations revealed more enriched values for Mound 11 (δ18O : 3.18 to 6.15‰; δ13C: -14.14 to -29.56‰) compared to Mound 12 (δ18O : 3.09 to 4.48‰; δ13C : -39.53 to -48.98‰). The variation of carbonate 87Sr / 86Sr indicated considerable admixture of deep-source fluid at Mound 11, while seawater 87Sr / 86Sr characteristics prevailed at Mound 12 during precipitation. The present study is in accordance with previous work supporting considerable differences of methane flux between the two mounds. It also strengthens the hypothesis of a dominant deep fluid source with thermogenic methane at Mound 11 versus a shallow source of biogenic methane at Mound 12. The results demonstrate that measurements of methane-driven microbial activity in combination with numerical modelling are a valid tool for constraining recent methane fluxes in the study area. In addition, the analysis of methane-derived authigenic carbonates provides an independent

  19. Carbon isotope signature of environmental change found in fossil ratite eggshells from a South Asian Neogene sequence

    NASA Astrophysics Data System (ADS)

    Stern, Libby A.; Johnson, Gary D.; Page Chamberlain, C.

    1994-05-01

    A >10-m.y.-long sequence of ratite (e.g., ostrich) eggshells from Siwalik Group sedimentary deposits of northern Pakistan and India shows a dramatic (˜8‰) increase in the δ13C in biomineralogic calcite by ˜4 Ma. Values of δ13C from ratite eggshell carbonate older than 7 Ma are about the same as those from carbonate from contemporaneous fossil mammal tooth enamel and paleosols. However, after 4 Ma, the ratite eggshell carbonate δ13C values are ˜5‰ less than these coexisting materials. These findings are evidence of the development of a C3-C4 vegetative mosaic probably mirroring the sedimentologic-edaphic mosaic of the aggrading alluvial plain of the Siwalik depositional system.

  20. Isotopic signatures of traffic-emitted CO and CO2

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Pathirana, Supun; Vollmer, Martin K.; Jordan, Armin; Rothe, Michael; Brand, Willi A.; Röckmann, Thomas

    2013-04-01

    Traffic is one of the main sources of CO2 and CO in highly populated regions like Western Europe. 13C and 18O isotopic signatures of traffic-emitted CO2 and CO were determined form air samples collected in the Islisberg highway tunnel (Switzerland), during a measurement and sampling campaign in 2011. The goal of the campaign was to characterize traffic emissions of the present west European vehicle fleet, at integrated fleet level. The isotopic composition of traffic CO2 reflects on average the isotopic composition of the fuel (13C) and of atmospheric oxygen (18O), although the 18O values are quite variable. In contrast, the isotopic values of CO show that significant fractionation takes place during CO formation (18O) and during the subsequent, partial CO destruction in the catalytic converter (13C). The 13C is enriched by 3 ‰ compared to the 13C in the fuel burnt, while the 18O is depleted by 7 ‰ compared to the 18O in atmospheric oxygen. We compute a kinetic isotope effect for 13C during CO destruction of 2.5 ± 0.7 ‰. The average 18O in traffic CO is 17 ‰ (VSMOW), similar to the biomass burning signature previously determined in Switzerland and Europe (e.g. Saurer et al., 2009). Thus, in the conditions represented by our study (Swiss fleet, highway driving conditions), the traffic and biomass burning CO emissions cannot be distinguished anymore based on 18O signature alone. References Saurer, M., Prévôt, A. S. H., Dommen, J., Sandradewi, J., Baltensperger, U., and Siegwolf, R. T. W.: The influence of traffic and wood combustion on the stable isotopic composition of carbon monoxide, Atmos. Chem. Phys., 9, 3147-3161, doi:10.5194/acp-9-3147-2009, 2009.

  1. Carbon Isotope Ratiometer

    SciTech Connect

    Dr. Anthony O'Keefe

    2001-05-07

    This Report details the design of a optical analyzer capable of measuring and recording the carbon 13/12 isotope ratio in atmospheric carbon dioxide. The system can operate in remote modes for long duration and will transmit real-time data via wireless contact.

  2. Carbon cycling and carbon metabolism by soil fungi in a boreal forest: impacts of wildfire and permafrost on functional genes, isotope signatures, and ectomycorrhizae

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.

    2006-12-01

    Understanding the mechanisms that control the stabilization and destabilization of soil carbon within boreal forest ecosystems is of great importance to the global carbon budget. Much is currently known about boreal soil carbon dynamics in relation to biophysical and landscape variables such as temperature, moisture, wildfire intensity, and stand age. We have less information regarding the controls on decomposition at the molecular scale, where interactions between microbial communities, their genetic `potential' for decomposition, functional genes, enzyme synthesis, and organic matter transformations occur. We have entered an age in which these connections can be made at the molecular scale, but what form do they take, and can they scale up to affect carbon dynamics at the level of the ecosystem? We examined these molecular scale processes in mature boreal forest soils and soils that had been impacted by wildfire near Delta Junction, Alaska. We also examined the interactive effect of permafrost presence, which reduces soil drainage, with wildfire. We focused on three themes: linking microbial communities and laccase functional genes to soil laccase enzyme activity and lignin decomposition, assessing substrate availability using the natural abundance δ13C isotope ratios of microbial biomass, and the influence of ectomycorrhizal mats on decomposition. Wildfire reduced fungal biomass, laccase functional gene abundance, laccase activity, and δ13C-lignin decomposition. Relationships between gene abundance and microbial activity were significant and logarithmic in form. Soil drainage, which is mediated by the presence of permafrost, had little effect on the abundance of fungi, functional genes, or potential process rates. Microbial biomass δ13C was always enriched relative to soil organic matter, and this difference was greater in control soils compared to wildfire-affected soils, indicating that ÄΔδ13C MB-SOIL may indicate the level of bioavailability of soil

  3. Stable isotope signatures confirm carbon and nitrogen gain through ectomycorrhizas in the ghost orchid Epipogium aphyllum Swartz.

    PubMed

    Liebel, H T; Gebauer, G

    2011-03-01

    Epipogium aphyllum is a rare Eurasian achlorophyllous forest orchid known to associate with fungi that form ectomycorrhizas, while closely related orchids of warm humid climates depend on wood- or litter-decomposer fungi. We conducted (13) C and (15) N stable isotope natural abundance analyses to identify the organic nutrient source of E. aphyllum from Central Norway. These data for orchid shoot tissues, in comparison to accompanying autotrophic plants, document C and N flow from ectomycorrhizal fungi to the orchid. DNA data from fungal pelotons in the orchid root cortex confirm the presence of Inocybe and Hebeloma, which are both fungi that form ectomycorrhizas. The enrichment factors for (13) C and (15) N of E. aphyllum are used to calculate a new overall average enrichment factor for mycoheterotrophic plants living in association with ectomycorrhizal fungi (ε(13) C ± 1 SD of 7.2 ± 1.6 ‰ and ε(15) N ± 1 SD of 12.8 ± 3.9 ‰). These can be used to estimate the fungal contribution to organic nutrient uptake by partially mycoheterotrophic plants where fully mycoheterotrophic plants are lacking. N concentrations in orchid tissue were unusually high and significantly higher than in accompanying autotrophic leaf samples. This may be caused by N gain of E. aphyllum from obligate ectomycorrhizal fungi. We show that E. aphyllum is an epiparasitic mycoheterotrophic orchid that depends on ectomycorrhizal Inocybe and Hebeloma to obtain C and N through a tripartite system linking mycoheterotrophic plants through fungi with forest trees. PMID:21309973

  4. Biomarker and stable carbon isotopic signatures for 100-200 year sediment record in the Chaihe catchment in southwest China.

    PubMed

    Wang, Yanhua; Yang, Hao; Zhang, Jixiang; Xu, Meina; Wu, Changbin

    2015-01-01

    Natural inputs and anthropogenic influences on lakes and their catchments are reflected in the sediment record. In the present study, the extractable organic compounds from sediments in the Chaihe catchment of the Dianchi watershed were analyzed to characterize source inputs. Results show that the sediments are dominated by odd numbered n-alkanes (n-C16-n-C33), maximizing at n-C17, n-C29 and n-C31. Aliphatic hydrocarbon may be composed of terrestrial plants and bacteria. The values of δ(13)C27, δ(13)C29 and δ(13)C31 of n-alkanes exhibit a range from -33.27‰ to -25.46‰, from -35.76‰ to -28.47‰ and from -33.67‰ to -27.42‰, respectively and three records strongly covary with depth, falling within the range of C3 plants in the study area. An isotopic model revealed C3 plant contribution to sedimentary organic matter (OM) ranging from 40.75% to 97.22%. The values of ACL27-33, CPI27-33, OEP, Paq, Pr/Ph, (C27+C29)/2C31, (C21+C23+C25)/3C17 and nC26(-)/nC27(+) are consistent with the C3 plant predominance. A constant CRS model gave the accumulation rates ranging from 2.69 to 8.46mma(-1) spanning 1885-2010. It was concluded that OM transport in the Chaihe catchment was influenced strongly by human activities resulting in enhanced eutrophication. PMID:25261816

  5. Linking carbon isotope signatures of nighttime leaf-respiratory and daytime assimilatory CO2 fluxes observed with laser spectrometry under field conditions

    NASA Astrophysics Data System (ADS)

    Gentsch, Lydia; Ogée, Jérôme; Wingate, Lisa; Sturm, Patrick; Siegwolf, Rolf; Werner, Roland A.; Buchmann, Nina; Knohl, Alexander

    2015-04-01

    The 13C/12C ratio (δ13C) of atmospheric CO2 is a valuable tool for constraining the impact of the terrestrial biosphere on atmospheric CO2 dynamics. Alterations of the 13C signal of terrestrial net CO2 fluxes are generally attributed to variations in photosynthetic 13C discrimination. Yet, over the past decade, evidence has emerged that plant metabolism and respiration modify the initial δ13C signature of recent photosynthetic assimilates. Such postphotosynthetic δ13C modifications were reported for all plant organs, but leaf respiratory metabolism may play a central role as it impacts carbon turnover in other plant tissues. Leaf-respired CO2 is frequently 13C enriched with respect to leaf organic matter. Mechanisms potentially explaining this enrichment include the differential use of carbon sources, metabolite fragmentation or the expression of kinetic isotope effects of respiratory enzymes. For global and ecosystem-scale applications of δ13C, it is now important to study, under field conditions, the variability of δ13C in leaf-respired CO2 (δ13CRES) and the deviation of the latter from δ13C of recent assimilates (δ13CAS). Here, we present 74 days of hourly δ13C measurements for daytime assimilatory and nighttime respiratory CO2 fluxes on leafy branches of three mature Fagus sylvatica trees in a temperate forest. Measurements were conducted with a laser spectrometer (QCLAS-ISO, Aerodyne Research Inc.) measuring CO2 isotopologue mixing ratios in ambient and sampling air from photosynthetic gas exchange chambers. We used daytime measurements of photosynthetic 13C discrimination for diurnally flux-weighted estimates of δ13CAS, and found that flux-weighted δ13CRES roughly tracked previous-day shifts in δ13CAS. Deviations between flux-weighted δ13CAS and δ13CRES were further robustly predicted by previous-day assimilation, with δ13CRES displaying 13C enrichment on low and 13C depletion on high assimilation days. On the hourly timescale, δ13CRES either

  6. Impact of diagenetic alteration on brachiopod magnesium isotope signatures

    NASA Astrophysics Data System (ADS)

    Riechelmann, Sylvia; Mavromatis, Vasileios; Buhl, Dieter; Dietzel, Martin; Immenhauser, Adrian

    2016-04-01

    Carbonate rocks are amongst the most commonly exploited archives in palaeo-environmental studies. However, diagenetic processes overprint these carbonate rocks to different degrees, thus, the interpretation of individual proxy data sets such as element concentrations and isotope signatures is hindered. Furthermore, the process of diagenesis is still insufficiently understood. In order to shed light on diagenetic processes alteration experiments under controlled conditions were performed. Therefor, recent brachiopods of the species Notosaria nigricans were collected at Friday Harbour, USA. These shells were artificially altered using different solutions representing meteoric, marine and burial conditions. All three solutions were spiked with 16O-enriched water. Half of the shells were altered under 100°C, whilst the other half experienced a temperature of 175°C. This resulted in six different experimental setups. The duration of the experiments varied for each shell. Eighteen shells were selected in total for the analyses. Furthermore, two unaltered shells and four fossil brachiopod shells were used for comparison with the artificially altered ones. The Magnesium concentration as well as the Mg isotopic composition of the fluids and the shells were measured, whilst carbon and oxygen isotopes were analysed only on the shells. The oxygen isotopic composition of the altered shells exhibit a change in their values only at 175°C and not at 100°C. The same pattern is observed for the Mg isotopic composition of the shells, which were altered in the marine and burial solutions. The meteoric solution, however, is an exception. The original solution was Mg free and both at 100°C and 175°C the altered brachiopod shells are enriched in the lighter isotope compared to the unaltered shell. Thus, the heavier Mg isotope is preferably leached under meteoric conditions. However, solutions (marine and burial at 175°C) with a higher isotopic composition than the brachiopod

  7. Isotopic Signature of the Ancient Biosphere

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The age distribution of 261 field localities, sampled for their well-preserved Archean and Proterozoic sedimentary rocks, revealed a 500-700 Ma episodicity. Assuming that the numbers of sites are a proxy for mass of sediments, the record of well-preserved sediments is more abundant in the intervals 3.5-3.3, 2.8-2.5, 2.1-1.8, 1.5-1.3, and 1.0-0.54 Ga than in the intervening intervals. It is proposed that the crustal inventory of photosynthetic organic carbon was modulated by the volume of sedimentation in sites favorable for the burial and long-term preservation of organic carbon. Tectonic processes controlled this sediment volume. Episodic increases in the organic inventory led to stepwise increases in oxidized reservoirs (e.g., O2, SO4(2-), Fe(3+). The interval 2.9-2.5 Ga recorded a large rise in seawater Sr-87/Sr-86, the oldest-known extensive banded iron formations, and the first evidence (C-13-depleted kerogens) of O2 use by methylotrophic bacteria. The interval 2.2-1.8 Ga has both carbon isotopic evidence for a stepwise increase in the organic reservoir and also paleosol evidence for an O2 increase. The interval 1.1-0.6 Ga shows isotopic evidence for another organic carbon increase. The interval 1.5-1.3 Ga revealed no such increases as yet, perhaps because incomplete rifting of the mid-Proterozoic supercontinent was associated with extensive sedimentation in oxidized continental basins, producing redbeds, coarse clastics, etc. Such sedimentation did not promote the burial of reduced carbon.

  8. Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system

    NASA Astrophysics Data System (ADS)

    Tardani, Daniele; Reich, Martin; Roulleau, Emilie; Takahata, Naoto; Sano, Yuji; Pérez-Flores, Pamela; Sánchez-Alfaro, Pablo; Cembrano, José; Arancibia, Gloria

    2016-07-01

    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. For example, in geothermal systems and epithermal gold deposits, optimally oriented faults and fractures play a key role in promoting fluid flow through high vertical permeability pathways. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are strongly controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, δ13C-CO2 and δ15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), δ13C-CO2 values (-7.44‰ to -49.41‰) and δ15N values (0.02‰ to 4.93‰). The regional variations in 3He/4He, δ13C-CO2 and δ15N values are remarkably consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are strongly controlled by the regional spatial distribution of faults. Two fumaroles gas samples associated with the northern "horsetail" transtensional termination of the LOFS are the only datapoints showing uncontaminated MORB-like 3He/4He signatures. In contrast, the dominant mechanism controlling helium isotope ratios of hydrothermal systems towards the south appears to be the mixing between mantle-derived helium and a radiogenic component derived from, e.g., magmatic assimilation of 4He-rich country rocks or contamination during the

  9. Carbon isotopes in bulk carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Halbout, J.; Mayeda, T. K.; Clayton, R. N.

    1985-01-01

    The chemical and physical processes involved in the formation of the solar system are examined. Primitive matter has been found on a microscopic scale in a variety of meteorites: fragments of small solar system bodies that were never part of a large planet. This primitive matter has, in most cases, been identified by the presence of anomalous abundances of some isotopes of the chemical elements. Of particular interest for carbon isotope studies are the primitive meteorites known as carbonaceous chondrites. Using a selective oxidation technique to sort out the carbon contained in different chemical forms (graphite, carbonates, and organic matter), four carbonaceous chondrites are analyzed. The presence of the (13) C-rich component was confirmed and additional carbon components with different, but characteristic, isotopic signatures were resolved.

  10. A menagerie of graphite morphologies in the Acapulco meteorite with diverse carbon and nitrogen isotopic signatures: Implications for the evolution history of acapulcoite meteorites

    NASA Astrophysics Data System (ADS)

    El Goresy, Ahmed; Zinner, Ernst; Pellas, Paul; Caillet, Catherine

    2005-09-01

    Morphologies, petrographic settings and carbon and nitrogen isotopic compositions of graphites in the Acapulco meteorite, the latter determined by secondary ionization mass spectrometry, are reported. Seven different graphite morphologies were recognized, the majority of which occur enclosed exclusively in kamacite. Individual graphite grains also rarely occur in the silicate matrix. Kamacite rims surrounding taenite cores of metal grains are separated from the Ni-rich metal cores by graphite veneers. These graphite veneers impeded or prevented Ni-Fe interdiffusion during cooling. In addition, matrix FeNi metal contains considerable amounts of phosphorous (≈ 700 ppm) and silicon (≈ 300 ppm) ( Pack et al., 2005 in preparation) thus indicating that results of laboratory cooling experiments in the Fe-Ni binary system are inapplicable to Acapulco metals. Graphites of different morphologies display a range of carbon and nitrogen isotopic compositions, indicating a diversity of source regions before accretion in the Acapulco parent body. The isotopic compositions point to at least three isotopic reservoirs from which the graphites originated: (1) A reservoir with heavy carbon, represented by graphite in silicates (δ 13C = 14.3 ± 2.4 ‰ and δ 15N = -103.4 ± 10.9 ‰), (2) A reservoir with isotopically light carbon and nitrogen, characteristic for the metals. Its C- and N-isotopic compositions are probably preserved in the graphite exsolutions that are isotopically light in carbon and lightest in nitrogen (δ 13C = -17 to -23 ‰ δ 15N = -141 to -159 ‰). (3) A reservoir with an assumed isotopic composition (δ 13C ˜ -5 ‰; δ 15N ˜ -50 ‰). A detailed three-dimensional tomography in reflected light microscopy of the decorations of metal-troilite spherules in the cores of orthopyroxenes and olivines and metal-troilite veins was conducted to clarify their origin. Metal and troilite veins are present only near the fusion crust. Hence, these veins are not

  11. Variable Carbon Isotopes in ALH84001 Carbonates

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L. A.; Guan, Y.

    2002-12-01

    The Martian meteorite ALH84001 contains a small amount of carbonate that was deposited from aqueous fluids on the Martian surface approximately 3.9 Ga.. McKay et al. (1996) proposed evidence for the existence of life preserved within the carbonate grains. In order to determine the nature of the ancient Martian aqueous system we have combined previously collected oxygen isotopic data with new carbon isotopic measurements performed on the Cameca 6f ion microprobe at Arizona State University. Isotopic measurements were made at high mass resolution with a spot size of 10 microns. The measured carbon isotopic values range from 29.2‰ to 64.5‰ (PDB) with an average uncertainty of +/-1.6‰ (1σ ). These data agree very well with previous acid dissolution and stepped combustion experiments which range from a δ13C of +32‰ to +41‰ . As observed with the oxygen isotopic data, the carbon isotopic composition is correlated with the chemical composition of the carbonates. This allows us to establish that the earliest (Ca-rich) carbonates had the lightest carbon isotopic composition while the latest forming (Mg-rich) carbonates had the heaviest carbon isotopic composition. The large range of carbon isotopic compositions measured in this study cannot be explained by previously proposed models. Temperature change or a Rayleigh distillation process caused by progressive carbonate precipitation are insufficient to create the observed carbon isotopic compositions. Furthermore, processes such as evaporation or photosynthesis will not produce large carbon isotopic variations due to rapid isotopic equilibration with the atmosphere. We propose two possible models for the formation of the ALH84001 carbonates consistent with the isotopic data collected thus far. Carbonates could have formed from an evolving system where the carbon and oxygen isotopic composition of the carbonates reflects a mixing between magmatic hydrothermal fluids and fluids in equilibrium with an isotopically

  12. C and O stable isotopic signatures of fast-growing dripstones on alkaline substrates: reflection of growth mechanism, carbonate sources and environmental conditions.

    PubMed

    Zavadlav, Saša; Mazej, Darja; Zavašnik, Janez; Rečnik, Aleksander; Dominguez-Víllar, David; Cukrov, Neven; Lojen, Sonja

    2012-06-01

    Secondary carbonate precipitates (dripstones) formed on concrete surfaces in four different environments--Mediterranean and continental open-space and indoor environments (inside a building and in a karstic cave)--were studied. The fabric of dripstones depends upon water supply, pH of mother solution and carbonate-resulting precipitation rate. Very low δ(13)C (average-28.2‰) and δ(18)O (average-18.4‰) values showed a strong positive correlation, typical for carbonate precipitated by rapid dissolution of CO(2) in a highly alkaline solution and consequent disequilibrium precipitation of CaCO(3). The main source of carbon is atmospheric or biogenic CO(2) in the poorly ventilated karstic cave, which is reflected in even lower δ(13)C values. Statistical analysis of δ(13)C and δ(18)O values of the four groups of samples showed that the governing factor of isotope fractionation is not the temperature, but rather the precipitation rate. PMID:22316094

  13. Carbon and oxygen isotopic signature of tooth enamel as a proxy for the Pliocene paleoenvironment and paleoclimate from Mt. Galili Formation, Ethiopia

    NASA Astrophysics Data System (ADS)

    Bedaso, Z. K.; Wynn, J. G.; Hujer, W.

    2011-12-01

    Analyses of the isotope ratios of naturally existing materials have increasingly been used to reconstruct paleoenvironmental and paleoclimatic conditions. In this study carbon (C) and oxygen (O) isotopic composition of bioapatite from fossil tooth enamel is used to reconstruct Pliocene environmental and climatic changes at Galili, in the Awash valley of Ethiopia. Enamel samples were obtained from 15 different mammalian taxa. The samples were collected from multiple localities at different stratigraphic levels spanning between >5.29 Ma and ~3.6 Ma. The wide range of samples helps to develop both spatial and temporal framework of mammalian dietary adaptation, habitat distribution, and climate change and variability within the Galili Formation. The mammalian dietary adaptations at Galili indicate the presence of a variety of vegetation, which includes gallery forest, closed woodland, open woodland and grasslands with a heterogeneous habitat structure on the landscape. However, the temporal change indicates a general tendency towards more open habitat (i.e., grassland to wooded grassland). It is also worth noting the significance of C4 grasses on the paleolandscape by Late Miocene or early Pliocene at the latest as it could have an important implication on hominin morphological adaptation (e.g., bipedalism). The oxygen isotopic composition of tooth enamel indicates a variable temporal climatic condition, where the middle Pliocene (~4.38 Ma - ~3.6 Ma) was wetter than the early Pliocene (>5.29 Ma - ~4.38 Ma). Similarly, estimated δ18O of meteoric water based on the most 18O-depleted hippo tooth enamel, displays range of values between -1.8% (VSMOW) and -5.24% (VSMOW), which elucidate changes in the isotopic composition of source water and hence precipitation. In general, by comparing the result of this study with data from younger localities in the region, it is evident that there is a major shift in the isotopic composition of water at ~ 3.0 Ma, which was accompanied

  14. Ontogenetic changes in isotopic signatures of an omnivorous fish Cultrichthys erythropterus in East Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Li, Yunkai; Zhang, Miao

    2015-05-01

    The relationship between body size and stable isotopic signatures of the omnivorous Redfin Culter ( Cultrichthys erythropterus), commonly found in East Lake Taihu, was investigated. Previous analyses of C. erythropterus stomach contents have shown that this species undergoes a diet switch from being predominantly zooplanktivorous to piscivorous during its life history. This was confirmed by stable carbon isotopic signature (δ13C) in this study, in which δ13C was positively correlated with both standard length and weight. The importance of littoral-benthic resources in supporting C. erythropterus during its lifespan was also demonstrated using a two-source mixing model, the results of which showed a significant increasing trend in the contribution of littoral-benthic energy. However, the stable nitrogen isotopic signature (δ15N) exhibited an unusual pattern compared with previous studies. The δ15N of C. erythropterus showed no relationship with body size, even though dietary changes were observed. This indicated that δ15N alone cannot fully reflect a diet shift in a species and possible variability in isotopic signatures over its life history. This should be considered when using stable isotopic signatures to investigate intra-specific variations and the timing of life-history events, such as estimating the trophic positions of fish species.

  15. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  16. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  17. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  18. Distinguishing Biotic from Abiotic Phosphate Oxygen Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Blake, R.; Moyer, C.; Colman, A.; Liang, Y.; Dogru, D.

    2006-05-01

    On earth, phosphate has a strong biological oxygen isotope signature due to its concentration and intense cycling by living organisms as an essential nutrient. Phosphate does not undergo oxygen isotope exchange with water at low temperature without enzymatic catalysis, making the oxygen isotope ratio (18O/16O) of phosphate, δ18OP, an attractive biosignature in the search for early and extraterrestrial life. Recent laboratory and field studies have demonstrated that the δ18OP value of dissolved inorganic phosphate (PO4) records specific microbial activity and enzymatic reaction pathways in both laboratory cultures and natural waters/sediments (Blake et al., 2005; Colman et al 2005; Liang and Blake, 2005). Phosphate oxygen isotope biosignatures may be distinguished from abiotic signatures by: (1) evaluating the degree of temperature-dependent PO4-water oxygen isotope exchange in aqueous systems and deviation from equilibrium; and (2) evolution from an abiotic P reservoir signature towards a biotic P reservoir signature. Important abiotic processes potentially affecting phosphate δ18OP values include dissolution/precipitation, adsorption/desorption, recrystallization of PO4 mineral phases, diagenesis and metamorphism. For most of these processes, the recording, retention and alteration of δ18OP biosignatures have not been evaluated. Deep-sea hydrothermal vent fields are an ideal system in which to study the preservation and alteration of δ18OP biosignatures, as well as potential look-alikes produced by heat-promoted PO4 -water oxygen isotope exchange. Results from recent studies of δ18OP biosignatures in hydrothermal deposits near 9 and 21 degrees N. EPR and at Loihi seamount will be presented.

  19. Isotopic signatures: An important tool in today`s world

    SciTech Connect

    Rokop, D.J.; Efurd, D.W.; Benjamin, T.M.; Cappis, J.H.; Chamberlin, J.W.; Poths, H.; Roensch, F.R.

    1995-12-01

    High-sensitivity/high-accuracy actinide measurement techniques developed to support weapons diagnostic capabilities at the Los Alamos National Laboratory are now being used for environmental monitoring. The measurement techniques used are Thermal Ionization Mass Spectrometry (TIMS), Alpha Spectrometry(AS), and High Resolution Gamma Spectrometry(HRGS). These techniques are used to address a wide variety of actinide inventory issues: Environmental surveillance, site characterizations, food chain member determination, sedimentary records of activities, and treaty compliance concerns. As little as 10 femtograms of plutonium can be detected in samples and isotopic signatures determined on samples containing sub-100 femtogram amounts. Uranium, present in all environmental samples, can generally yield isotopic signatures of anthropogenic origin when present at the 40 picogam/gram level. Solid samples (soils, sediments, fauna, and tissue) can range from a few particles to several kilograms in size. Water samples can range from a few milliliters to as much as 200 liters.

  20. Metal stable isotope signatures as tracers in environmental geochemistry.

    PubMed

    Wiederhold, Jan G

    2015-03-01

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented. PMID:25640608

  1. Noble Gas Isotopic Signatures and X-Ray and Electron Diffraction Characteristics of Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.

    2001-01-01

    Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.

  2. Unraveling the nitrogen isotopic signature of symbiotic corals

    NASA Astrophysics Data System (ADS)

    Devlin, Q.; Swart, P. K.; Altabet, M. A.

    2013-12-01

    Coral reefs thrive in shallow, tropical, low nutrient waters. Nutrient inputs to a reef environment are often interpreted by measuring the nitrogen isotopic composition of reef organisms. The δ15N signature of scleractinian corals has been historically measured to assess the presence of anthropogenic influences such as sewage and fertilizer runoff. The majority of reef building corals form a symbiotic partnership with the dinoflagellate algae, Symbiodinium microadriaticum. The δ15N signature of symbiotic corals is complex as it is not only dependent on nitrogen acquisition by the coral, but also by the algal symbionts that reside within the gastrodermal tissue layer. The relationship between the δ15N of dissolved inorganic nitrogen (DIN) and the δ15N of coral tissue has not been established. The aim of this study is to identify considerations necessary when interpreting nitrogen sources based on δ15N of coral tissue. Incubations were carried out in order to measure isotopic fractionation associated with nitrate and ammonium incorporation by the Pacific branching coral, Pocillopora damicornis. We investigated the dependence of nitrogen isotope fractionation on species of DIN (nitrate or ammonium), concentration of DIN (range: 1-50 μM N), genetic diversity of algal symbionts (clade C or clade D) and light levels.

  3. Molybdenum isotope signatures from the Yangtze block continental margin and its indication to organic burial rate

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Zhou, H. B.; Huang, J. H.

    2007-12-01

    The paper presents the molybdenum isotope data, along with the trace element content, to investigate the geochemical behavior of authigenic Mo during long-term burial in sediments in continental margin settings of the Yangtze block, as well as their indication to the burial of original organic carbon. The burial rate of original organic carbon were estimated on the basis of the amount of sedimentary sulfur (TS content), whilst the carbon loss by aerobic degradation was estimated according to calculated Mn contents. On these points, the original organic carbon flux was calculated, exhibiting a large range of variation (2.54-15.82 mmol/m2/day). The strong correlation between sedimentary Mo isotope values and organic carbon burial rates previously proposed on the basis of the investigations on modern ocean sediments was also used here to estimate the organic carbon burial rate. The data gained through this model showed that organic carbon burial rates have large variations, ranging from 0.43- 2.87mmol/m2/day. Although the two sets of data gained through different geochemical records in the Yangtze block show a deviation of one order of magnitude, they do display a strong correlation. It is thus tempting to speculate that the Mo isotope signature of sediments may serve as a tracer for the accumulation rate of original organic carbon in the continental margin sediments. Keywords: Molybdenum isotopes; organic carbon burial rate; ancient continental margin setting ACKNOWLEDGMENTS We thank Professor Xie Shucheng for his constructive review comments. This research is co-supported by the Program for Changjiang Scholars and Innovative Research Team in University (grants IRT0441), the SinoPec project (grant no. G0800-06-ZS-319) and the National Nature Science Foundation of China (grants 40673020).

  4. Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Signatures in Bat Fur Indicate Swarming Sites Have Catchment Areas for Bats from Different Summering Areas

    PubMed Central

    Segers, Jordi L.; Broders, Hugh G.

    2015-01-01

    Migratory patterns of bats are not well understood and traditional methods to study this, like capture-mark-recapture, may not provide enough detail unless there are many records. Stable isotope profiles of many animal species have been used to make inferences about migration. Each year Myotis lucifugus and M. septentrionalis migrate from summering roosts to swarming caves and mines in the fall, but the pattern of movement between them is not well understood. In this study, fur δ13C and δ15N values of 305 M. lucifugus and 200 M. septentrionalis were analyzed to make inferences about migration patterns between summering areas and swarming sites in Nova Scotia, Canada. We expected that there would be greater variability in δ13C and δ15N among individuals at swarming sites because it was believed that these sites are used by individuals originating from many summering areas. There was extensive overlap in the standard ellipse area, corrected for small sample sizes (SEAc), of bats at swarming sites and much less overlap in SEAc among groups sampled at summering areas. Meaningful inference could not be made on M. septentrionalis because their low variation in SEAc may have been the result of sampling only 3 summering areas. However, for M. lucifugus, swarming sites had larger SEAc than summering areas and predictive discriminant analysis assigned swarming bats to multiple summering areas, supporting the contention that swarming bats are mixed aggregations of bats from several summering areas. Together, these data support the contention that swarming sites have catchment areas for bats from multiple summering areas and it is likely that the catchment areas for swarming sites overlap. These data suggest that δ13C and δ15N profiling of bat fur offer some potential to make inferences about regional migration in bats. PMID:25923696

  5. Carbon and oxygen isotope microanalysis of carbonate.

    PubMed

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  6. Cadmium Isotope Fractionation in Seawater - A Signature of Nutrient Utilization

    NASA Astrophysics Data System (ADS)

    Wichtlhuber, S.; Rehkaemper, M.; Halliday, A. N.

    2005-12-01

    .0005. The isotopic variations observed for seawater are likely to reflect isotope fractionation during uptake of Cd by phytoplankton, as recently reported by Lacan et al. (2005), because inorganic geological processes (other than evaporation/condensation) do not appear to generate isotope effects as large as those observed in the present study (Wombacher et. al, 2003). These preliminary results suggest that Cd isotopes have the potential to become a useful proxy of nutrient utilization, which could supplement the Cd/Ca and δ13C records of previous studies, if suitable sedimentary archives can be identified that preserve the Cd isotope signatures of past seawater. References: Lacan F., Francois R., Ji Y. and Sherrell R., 2005. Does oceanic productivity production lead to a cadmium isotope fractionation? Geophys. Res. Abstr. 7, 07657. Wombacher F., Rehkämper M., Mezger K. and Münker C., 2003. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple collector-ICPMS. Geochim. Cosmochim. Acta, 67, 4639-4654.

  7. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Jickells, T. D.; Baker, A. R.; Marca, A.; Johnson, M. T.

    2016-05-01

    We report aerosol ammonium 15N signatures for samples collected from research cruises on the South Atlantic and Caribbean using a new high sensitivity method. We confirm a pattern of isotopic signals from generally light (δ15N -5 to -10‰), for aerosols with very low (<2  nmol m-3) ammonium concentrations from the remote high latitude ocean, to generally heavier values (δ15N +5 to +10‰), for aerosols collected in temperate and tropical latitudes and with higher ammonium concentrations (>2  nmol m-3). We discuss whether this reflects a mixing of aerosols from two end-members (polluted continental and remote marine emissions), or isotopic fractionation during aerosol transport.

  8. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    NASA Astrophysics Data System (ADS)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  9. Geochemical and sulfur isotope signatures of microbial activity in acidic and sulfuric hot springs, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, P.; Chen, K.; Cheng, T.; Hsieh, H.; Lin, L.

    2009-12-01

    Acidic and sulfuric hot springs are natural habitats for thermophilic sulfur-utilizing microorganisms. Integration of bioenergetic evaluation, molecular analysis and stable isotopic signatures may be able to exhibit a full view of microbial activity in such an extreme environment. Widely distributed hot springs hosted by the Tatung volcano group in northern Taiwan provide a chance to evaluate the interplay between geochemical variation and microbial metabolism especially for sulfur. Several hot spring ponds varying in sizes and geochemical characteristics were studied to reveal the possible control of fluid compositions on microbial metabolisms, and vice versa. Sulfate, sulfide, elemental sulfur and dissolved organic carbon were available in spring water and sediments in the ponds. Dominant microbial metabolisms inferred from the bioenergetic evaluation were aerobic oxidations of various reduced compounds, including elemental sulfur, pyrite, ferrous iron and organic carbon. Sulfate and sulfur reductions were thermodynamically favorable but provided less energy flux, while sulfur disproportionation was thermodynamically incapable. The analyses of 16S rRNA genes extracted from the spring water and sediments indicated that aerobic oxidation of sulfur, hydrogen or organic carbon and anaerobic elemental sulfur reduction were possible metabolisms. Since the major portion of 16S rRNA sequences were affiliated with unclassified environmental sequences, their potential metabolisms remained obscure. Sulfur isotopic compositions of dissolved sulfate, pyrite and elemental sulfur exhibited significant variations among the different hot spring ponds. Apparently, the microbial effects on the sulfur isotopic signatures were various. A disproportionation reaction of volcanic gas was required to account for high sulfur isotope difference between sulfate and reduced sulfur in the large hot ponds. In contrary, abiotic or microbial oxidation of reduced sulfur might be dominant in the

  10. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  11. Effect of native and invasive cordgrass on Macoma petalum density, growth, and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Brusati, Elizabeth D.; Grosholz, Edwin D.

    2007-02-01

    Ecosystem engineers can influence community and ecosystem dynamics by controlling resources, modifying the flow of energy or biomass, or changing physical characteristics of the habitat. Invasive hybrid cordgrass ( Spartina alterniflora × Spartina foliosa ) is an ecosystem engineer in salt marshes in San Francisco Bay, California, U.S.A. that raises intertidal elevations and may be either increasing C4 plant carbon input into food webs or tying up carbon in a form that is not usable by consumers. A manipulative experiment compared abundance, growth, and stable isotope (δ 13C and δ 15N) composition of the clam Macoma petalum (= M. balthica) among native marsh, hybrid Spartina, and mudflats in central San Francisco Bay. We found higher densities (individuals m -2) of M. petalum on mudflats compared to either native or hybrid Spartina ( p < 0.001). Macoma petalum shell growth was significantly greater in mudflats than in either vegetation type in 2002 ( p = 0.005) but not 2003. Differences in shell growth between native and hybrid Spartina were not significant. Stable isotope results showed differences between habitats in δ 13C but not δ 15N. Carbon signatures of M. petalum placed in Spartina were much more depleted than the isotopic signature of Spartina. Neither native nor hybrid Spartina appears to be a significant carbon source for M. petalum in San Francisco Bay, and we found no evidence that hybrid Spartina contributes carbon to M. petalum beyond what is provided by S. foliosa, despite the hybrid's much greater biomass. Our results show that loss of mudflat habitat, rather than increased input of C4 carbon, is the greatest effect of the invasion of hybrid Spartina on M. petalum.

  12. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ► The isotopic signature of δ{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ► Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ► In situ aeration of landfills can be monitored by isotope analysis in leachate. ► The isotopic analysis of leachates can be used for assessing the stability of MSW. ► δ{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ{sup 13}C, δ{sup 2}H and δ{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ{sup 13}C-value of the dissolved inorganic carbon (δ{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ{sup 13}C-DIC of −20‰ to −25‰. The production of methane under anaerobic conditions caused an increase in δ{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW

  13. Isotopic signature of atmospheric phosphate emitted from coal combustion

    NASA Astrophysics Data System (ADS)

    Weinberger, Roi; Weiner, Tal; Angert, Alon

    2016-07-01

    Atmospheric deposition of phosphorus (P) serves as an important nutrient input for many terrestrial, marine and freshwater ecosystems, influencing their biogeochemistry and primary production. Fossil fuel combustion, principally coal, is estimated to be a major source of atmospheric-P in industrialized regions. In this research, we aim to find a distinct isotopic signature for fly coal ash, the by-product of coal combustion that is emitted to the atmosphere. This signature could be used to identify coal's contribution to atmospheric-P. For this aim, ten fly coal ash samples from different coal sources, collected by power station filters, were analyzed for P concentrations and stable oxygen isotopic composition (δ18OP). Two inorganic phosphate fractions were analyzed: HCl-extractable and resin-extractable (bioavailable P). High HCl-P concentrations of up to 3500 μg P/g ash were found with a distinct δ18OP range of 17.1-20.5‰. The resin-P concentrations were substantially lower (<8 μg/g) with a wider and significantly lower δ18OP range of 10.6-16.5‰. The ash samples were found to have HCl-P δ18OP higher in ∼0-∼9‰ relative to the source coal. Similar isotopic values were found for ash with the same coal source country, regardless of the power station. Despite the low bioavailable P concentrations, fly ash could still be an important atmospheric P source to the biosphere since these combustion products likely acidify in the atmosphere to become bioavailable. This is also supported by our finding that smaller particles, which are more indicative of the particles actually emitted to the atmosphere, are significantly P-richer. Natural dust sources' δ18OP overlap fly ash's range, complicating the assessment of coal's contribution. Nonetheless, our results provide a new tool for identification of fossil fuel combustion sources in local and global atmospheric P deposition.

  14. Isotopic Signatures of Some Anthropogenic Nitrous Oxide Sources

    NASA Astrophysics Data System (ADS)

    Wilson, S. R.; Griffith, D. W.; Menegazzo, J. M.; Naylor, T.; Turatti, F.

    2002-05-01

    The relative abundances of the four major isotopomers of N2O (14N14N16O, 14N15N16O, 15N14N16O, 14N14N18O) have been measured from sources at a series of sites in Australia. The measurements have been carried out by cryogenically extracting N2O from the air, and then analysing the sample using high resolution FTIR spectrometry. The isotopic signature of urban air in Wollongong shows significant variation in the nitrogen isotopes, over a range consistent with that observed by Yoshida and Toyoda [2000]. The average δ 15N shows an inverse correlation with N2O mixing ratio, consistent with 15N-depleting sources in the area. Samples have also been collected from two agricultural sites and two waste water sites. We observe δ 15N values in the range of --25 to 5‰ , but with less variation in the difference (δ (14N15N16O) - δ (15N14N16O)) in most samples. Under certain conditions a significant change in this 15N isotopic difference can be seen, consistent with differing production mechanisms of N2O.

  15. Biomarker and Carbon Isotope Signals from Leaf to Terrestrial Archive

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.

    2012-12-01

    Biomarker and isotopic signatures of terrestrial organic matter are increasingly used to discern organic matter provenance in transport systems as well as to reconstruct environmental conditions of ancient landscapes. Such tools help scholars evaluate river transport and the influence of climate on terrestrial biomass and soil carbon, the largest reduced carbon inventories within the global surface environment. These signals reflect isotopic fractionation during photosynthesis and the abundance and composition of plant lipids, which are ultimately influenced by plant community, ecosystem structure and climate. Case studies and literature data for plants, biomarkers, litter carbon and soil organic matter refine the framework for evaluating and interpreting ancient terrestrial environments. Such studies reveal isotopic and biomarker patterns primarily track woody cover and moisture gradients in ancient landscapes. This emerging approach is currently limited by a lack of supporting and critical information about carbon isotopic differences between lipids and leaves, which appear to vary with environment as well as plant type. Environmental reconstructions and carbon-cycle studies are also limited by incomplete understanding of carbon isotopic relationships between modern litter, mineral soil, leaf waxes, and ancient archives of these properties. The net imprint of diagenesis on bulk carbon archives can potentially be constrained with companion biomarker studies, provided biomass production, litter delivery and lipid isotopic characteristics are constrained. Soil organic matter isotopic diagenesis is not fully understood, especially on geologic timescales, but appears to vary with both climate and ecosystem properties. This presentation will highlight recent findings and current knowledge gaps in understanding biomarker and ancient soil organic carbon as landscape tracers of past vegetation and climate.

  16. Impact of environmental curium on plutonium migration and isotopic signatures.

    PubMed

    Kurosaki, Hiromu; Kaplan, Daniel I; Clark, Sue B

    2014-12-01

    Plutonium (Pu), americium (Am), and curium (Cm) activities were measured in sediments from a former radioactive waste disposal basin located on the Savannah River Site, South Carolina, and in subsurface aquifer sediments collected downgradient from the basin. In situ Kd values (Pu concentration ratio of sediment/groundwater) derived from this field data and previously reported groundwater concentration data compared well to laboratory Kd values reported in the literature. Pu isotopic signatures confirmed multiple sources of Pu contamination. The ratio of (240)Pu/(239)Pu was appreciably lower for sediment samples compared to the associated groundwater. This isotopic ratio difference may be explained by the following: (1) (240)Pu produced by decay of (244)Cm may exist predominantly in high oxidation states (Pu(V)O2(+) and Pu(VI)O2(2+)) compared to Pu derived from the disposed waste effluents, and (2) oxidized forms of Pu sorb less to sediments than reduced forms of Pu. Isotope-specific Kd values calculated from measured Pu activities in the sediments and groundwater indicated that (240)Pu, which is derived primarily from the decay of (244)Cm, had a value of 10 ± 2 mL g(-1), whereas (239)Pu originating from the waste effluents discharged at the site had a value of 101 ± 8 mL g(-1). One possible explanation for the isotope-specific sorption behavior is that (240)Pu likely existed in the weaker sorbing oxidation states, +5 or +6, than (239)Pu, which likely existed in the +3 or +4 oxidation states. Consequently, remediation strategies for radioactively contaminated systems must consider not only the discharged contaminants but also their decay products. In this case, mitigation of Cm as well as Pu will be required to completely address Pu migration from the source term. PMID:25350948

  17. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics

    NASA Technical Reports Server (NTRS)

    Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III

    2012-01-01

    Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.

  18. Carbon isotopic composition of Amazon shelf sediments

    SciTech Connect

    Showers, W.J.; Angle, D.G.; Nittrouer, C.A.; Demaster, D.J.

    1985-02-01

    The distribution of carbon isotopes in Amazon shelf sediment is controlled by the same processes that are forming the modern subaqueous delta. The terrestrial (-27 to -25 per thousand) isotopic carbon signal observed in surficial sediments near the river mouth extends over 400 km northwest along the shelf. Terrestrial carbon is associated with areas of rapid sediment accumulation (topset and foreset regions). A sharp boundary between terrestrial (-27 to -25 per thousand) and marine (-23 to -22 per thousand) isotopic carbon values in surficial sediments is associated with a change in depositional conditions (foreset to bottomset regions) and a decrease in sediment accumulation rate. POC water-column isotopic values (-27 per thousand) near the river mouth are similar to the underlying surficial-sediment TOC isotopic values, but POC water-column samples collected 20 km off the river mouth have marine carbon isotopic values (-22 to -19 per thousand) and differ from the underlying surficial-sediment TOC isotopic values. These water column observations are related to variations in turbidity and productivity. Down-core isotopic variation is only observed in cores taken in areas of lower sediment accumulation rates. These observations indicate that the organic carbon in Amazon shelf sediment is dominantly terrestrial in composition, and the location of deposition of this carbon is controlled by modern processes of sediment accumulation. The modern Amazon shelf is similar to large clinoform shale deposits of the Cretaceous in North America. Thus, the stratigraphic setting may help predict the isotopic variations of carbon in ancient deposits.

  19. Carbon isotope effects in carbonate systems

    NASA Astrophysics Data System (ADS)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  20. Microscale carbon isotope variability in ALH84001 carbonates and a discussion of possible formation environments

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Leshin, L. A.; Guan, Y.

    2005-06-01

    The carbonates in martian meteorite ALH84001 preserve a record of aqueous processes on Mars at 3.9 Ga, and have been suggested to contain signatures of ancient martian life. The conditions of the carbonate formation environment are critical for understanding possible evidence for life on Mars, the history of water on Mars, and the evolution of the martian atmosphere. Despite numerous studies of petrographic relationships, microscale oxygen isotope compositions, microscale chemical compositions, and other minerals associated with the carbonates, formation models remain relatively unconstrained. Microscale carbon isotope analyses of ALH84001 carbonates reveal variable δ 13C values ranging from +27 to +64 ‰. The isotopic compositions are correlated with chemical composition and extent of crystallization such that the Mg-poor, early-formed carbonates are relatively 13C depleted and the Mg-rich, later forming carbonates, are 13C enriched. These data are inconsistent with many of the previously proposed environments for carbonate formation, and a new set of hypotheses are proposed. Specifically, two new models that account for the data involve low temperature (<100°C) aqueous processes: (1) the carbonates formed during mixing of two fluids derived from separate chemical and isotopic reservoirs; or (2) the carbonates formed from high pH fluids that are exposed to a CO 2-rich atmosphere and precipitate carbonate, similar to high pH springs on Earth.

  1. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Colman, Albert; Olack, Gerard; Waniek, Joanna J.; Hodell, David

    2015-06-01

    Only a few studies have examined the variation of oxygen and hydrogen isotopes of seawater in NE Atlantic water masses, and data are especially sparse for intermediate and deep-water masses. The current study greatly expands this record with 527 δ18O values from 47 stations located throughout the mid- to low-latitude NE Atlantic. In addition, δD was analyzed in the 192 samples collected along the GEOTRACES North Atlantic Transect GA03 (GA03_e=KN199-4) and the 115 Iberia-Forams cruise samples from the western and southern Iberian margin. An intercomparison study between the two stable isotope measurement techniques (cavity ring-down laser spectroscopy and magnetic-sector isotope ratio mass spectrometry) used to analyze GA03_e samples reveals relatively good agreement for both hydrogen and oxygen isotope ratios. The surface (0-100 m) and central (100-500 m) water isotope data show the typical, evaporation related trend of increasing values equatorward with the exception for the zonal transect off Cape Blanc, NW Africa. Off Cape Blanc, surface water isotope signatures are modified by the upwelling of fresher Antarctic Intermediate Water (AAIW) that generally has isotopic values of 0.0 to 0.5‰ for δ18O and 0 to 2‰ for δD. Along the Iberian margin the Mediterranean Outflow Water (MOW) is clearly distinguished by its high δ18O (0.5-1.1‰) and δD (3-6‰) values that can be traced into the open Atlantic. Isotopic values in the NE Atlantic Deep Water (NEADW) are relatively low (δ18O: -0.1 to 0.5‰; δD: -1 to 4‰) and show a broader range than observed previously in the northern and southern convection areas. The NEADW is best observed at GA03_e Stations 5 and 7 in the central NE Atlantic basin. Antarctic Bottom Water isotope values are relatively high indicating modification of the original Antarctic source water along the flow path. The reconstructed δ18O-salinity relationship for the complete data set has a slope of 0.51, i.e., slightly steeper than the 0

  2. The zinc stable isotope signature of waste rock drainage in Arctic Canada

    NASA Astrophysics Data System (ADS)

    Matthies, Romy; Blowes, David

    2014-05-01

    Leachate emerging from a pilot-scale waste rock pile of the Diavik diamond mine, Northwest Territories, was monitored. The well-characterized waste rock consists of granite, pegmatitic granite and biotite schist with an average total sulfur and carbonate carbon concentration of 0.053 and 0.027 wt. %, respectively. During the field seasons of 2011 and 2012, the Zn stable isotope footprint was characterized alongside standard monitoring parameters. pH ranged between 4.3 and 6.8 and carbonate alkalinity was low or undetectable. Al and Fe concentrations averaged 6.78 mg L-1 and 175 µg L-1, respectively. The pH and metal mobility were governed by sulfide oxidation and sorption and co-precipitation onto iron and aluminium hydroxides. The main processes controlling zinc mobility in the range of 0.4 and 4.7 mg L-1 was the oxidative dissolution of sphalerite (ZnS) in the biotite schist and the attenuation of zinc onto secondary iron and aluminium hydroxides and desorption upon the pH declining below the pHpzc. The isotope ratios between -0.16 and +0.19 ‰ (δ66Zn, avg = +0.05 ‰, n = 43) are consistent with values reported from other sphalerite containing deposits. Zn isotope ratios and concentrations were largely uncorrelated suggesting that the processes affecting Zn mobility had little or no impact on the Zn isotope signature. Data indicate, that the Zn isotope ratios of the waste rock leachate may be used as a fingerprint to track anthropogenic, mine-derived Zn sources under varying environmental conditions.

  3. Towards the Tracing of NOx Sources by Isotopic Signature

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Hastings, M. G.

    2012-12-01

    Atmospheric NOx (NO and NO2) plays a significant role in both air quality (through the production of tropospheric ozone) and reactive N deposition (through production and deposition of nitric acid). NOx is released by both anthropogenic (fossil fuel combustion, biomass burning, aircraft emissions) and natural (lightning, biogenic production in soils, natural fires) sources. Global concentrations of NOx are rising because of increased anthropogenic emissions, while natural source emissions also contribute significantly to the global NOx burden. The contributions of both natural and anthropogenic sources and their considerable variability in space and time make it difficult to attribute local NOx concentrations and deposited nitric acid to a particular source or sources. Further, global atmospheric models typically use comparisons with nitric acid deposition to verify simulations that include assumptions about source magnitude and variability, chemistry, and transport. Several recent studies suggest that variability in the nitrogen isotopic composition (δ15N) of nitric acid is related to variability in the isotopic signatures of NOx emission sources. Nevertheless, considerable uncertainty remains regarding the isotopic composition of most NOx sources. We have refined a method in the laboratory that efficiently collects NOx from air, which is important for isotopic analysis, as incomplete capture can fractionate the sample NOx. The method (modeled after Margeson et al., 1984) uses a 0.5M NaOH/0.25M KMnO4 solution in a gas-washing bottle to scrub NOx from the air stream. Efficiency verification was conducted using a tank of known concentration under various conditions, including varying total flow rate, NOx concentration (by mixing with N2), solution volume and NaOH concentration. Efficient collection was achieved under a wide range of conditions. In addition to discussion of methodological details, strengths and weaknesses, our presentation will include measurements

  4. THE CD ISOTOPE SIGNATURE OF THE SOUTHERN OCEAN

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Middag, R.; de Baar, H.; Andreae, M. O.; Feldmann, H.; Raczek, I.

    2009-12-01

    The availability of micronutrients can limit and control plankton ecosystems, notably in the Southern Ocean which plays a major role in regulating the CO2 biological pump. Cadmium has a nutrient-like distribution in seawater - it is directly incorporated into living plankton in the upper water column and re-mineralised at depth. The nutritional role of Cd (Price and Morel, 1990) makes it a potentially useful tracer of biological productivity. We report Cd concentration and Cd stable isotope data obtained using a double-spike TIMS method on seawater samples collected during the Zero and Drake Passage cruise (ANTXXIV-III, IPY-GEOTRACES 2008). Four vertical profiles were collected from 40 to 70°S across the Polar Front using the ultra-clean Titan frame (De Baar et al., 2008), providing a record of changes in biological productivity from the Subantarctic to the Antarctic region. Data from two profiles from the SE Atlantic (47.66°S, 4.28W) and Drake Passage (55.13°S, 65.53°W) obtained on 1 litre-sized samples are presented. Both profiles show a increase in Cd concentration with depth, with noticeably higher concentrations in the SE Atlantic. Cd and PO4 are positively correlated with distinct slopes for the two profiles. The Cd isotope data are expressed as ɛ112/110Cd relative to our JMC Mainz standard (± 8ppm, 2SD, N=17). ɛ112/110Cd values show a continuous decrease with increasing depth and a significant shift towards heavier values in the upper 400m at both stations resolvable outside analytical error (2SE ≤ 20ppm). The sense of Cd isotope fractionation confirms previous findings of uptake of “light” Cd by phytoplankton in the upper water column (Lacan et al., 2006; Ripperger et al., 2007; Schmidt et al., 2009). Most important is the evidence for a distinctive heavier Cd isotope signature in AASW relative to AAIW. This result demonstrates that different water masses carry distinct Cd isotopic compositions reflecting changes in Cd uptake by phytoplankton

  5. Nitrate loading and isotopic signatures in subsurface agricultural drainage systems.

    PubMed

    Smith, E L; Kellman, L M

    2011-01-01

    Artificially draining soils using subsurface tiles is a common practice on many agricultural fields. High levels of nitrate-nitrogen (NO-N) are often released from these systems; therefore, knowledge on the sources and processes controlling NO-N in drainage systems is needed. A dual isotope study (δN and δO) was used to investigate three subsurface drainage systems (shallow, conventional, and controlled) in Onslow, Nova Scotia, Canada. The objectives of this study were (i) to identify which drainage system more effectively reduced the NO-N loading, (ii) to examine differences in isotopic signatures under identical nutrient and cropping regimes for a fixed soil type, and (iii) to identify the utility of different drainage systems in controlling nutrient flows. Nitrate concentrations measured ranged from 0.92 to 11.8, from 2.3 to 17.3, and from 2.1 to 19.8 mg L for the shallow, conventional, and controlled drains, respectively. Total NO-N loading from shallow and controlled drains were 20 and 5.6 kg ha, respectively, lower than conventional (39.1 kg ha). The isotopic composition of NO-N for all drainage types appeared to be a mixture of two organic sources (manure and soil organic matter) via the process of nitrification. There was no evidence that denitrification played a significant role in removing NO-N during transport. Overall, shallow drainage reduced NO-N loading but offered no water conservation benefits. Combining the benefits of decreased NO-N loading from shallow systems with water control capability may offer the best solution to reducing nutrient loadings into water systems, achieving optimal crop yield, and decreasing drainage installation costs. PMID:21712595

  6. Carbon isotope effects associated with aceticlastic methanogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  7. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-02-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems. PMID:11536629

  8. Carbon isotope effects associated with aceticlastic methanogenesis.

    PubMed Central

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems. PMID:11536629

  9. Combining stable isotope isotope geochemistry and carbonic anhydrase activity to trace vital effect in carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Thaler, C.; Ader, M.; Menez, B.; Guyot, F. J.

    2013-12-01

    Carbonates precipitated by skeleton-forming eukaryotic organisms are often characterized by non-equilibrium isotopic signatures. This specificity is referred to as the "vital effect" and can be used as an isotopic evidence to trace life. Combining stable isotope geochemistry and enzymology (using the enzyme carbonic anhydrase) we aim to demonstrate that prokaryotes are also able to precipitate carbonate with a non-equilibrium d18OCaCO3. Indeed, if in an biomineralization experiment carbonates are precipitated with a vital effect, the addition of carbonic anhydrase should drive the system to isotope equilibrium, And provide a comparison point to estimate the vital effect range. This protocol allowed us to identify a -20‰ vital effect for the d18O of carbonates precipitated by Sporosarcina pasteurii, a bacterial model of carbonatogen metabolisms. This approach is thus a powerfull tool for the understanding of microbe carbonatogen activity and will probably bring new insights into the understanding of bacterial activity in subsurface and during diagenesis.

  10. Carbon isotope effects associated with autotrophic acetogenesis.

    PubMed

    Gelwicks, J T; Risatti, J B; Hayes, J M

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. PMID:11542159

  11. Carbon isotope effects associated with autotrophic acetogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.

  12. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  13. The magnesium isotope (δ26Mg) signature of dolomites

    NASA Astrophysics Data System (ADS)

    Geske, A.; Goldstein, R. H.; Mavromatis, V.; Richter, D. K.; Buhl, D.; Kluge, T.; John, C. M.; Immenhauser, A.

    2015-01-01

    Dolomite precipitation models and kinetics are debated and complicated due to the complex and temporally fluctuating fluid chemistry and different diagenetic environments. Using well-established isotope systems (δ18O, δ13C, 87Sr/86Sr), fluid inclusions and elemental data, as well as a detailed sedimentological and petrographic data set, we established the precipitation environment and subsequent diagenetic pathways of a series of Proterozoic to Pleistocene syn-depositional marine evaporative (sabkha) dolomites, syn-depositional non-marine evaporative (lacustrine and palustrine) dolomites, altered marine ("mixing zone") dolomites and late diagenetic hydrothermal dolomites. These data form the prerequisite for a systematic investigation of dolomite magnesium isotope ratios (δ26Mgdol). Dolomite δ26Mg ratios documented here range, from -2.49‰ to -0.45‰ (δ26Mgmean = -1.75 ± 1.08‰, n = 42). The isotopically most depleted end member is represented by earliest diagenetic marine evaporative sabkha dolomites (-2.11 ± 0.54‰ 2σ, n = 14). In comparing ancient compositions to modern ones, some of the variation is probably due to alteration. Altered marine (-1.41 ± 0.64‰ 2σ, n = 4), and earliest diagenetic lacustrine and palustrine dolomites (-1.25 ± 0.86‰ 2σ, n = 14) are less negative than sabkha dolomites but not distinct in composition. Various hydrothermal dolomites are characterized by a comparatively wide range of δ26Mg ratios, with values of -1.44 ± 1.33‰ (2σ, n = 10). By using fluid inclusion data and clumped isotope thermometry (Δ47) to represent temperature of precipitation for hydrothermal dolomites, there is no correlation between fluid temperature (∼100 to 180 °C) and dolomite Mg isotope signature (R2 = 0.14); nor is there a correlation between δ26Mgdol and δ18Odol. Magnesium-isotope values of different dolomite types are affected by a complex array of different Mg sources and sinks, dissolution/precipitation and non

  14. Development of a Field-Deployable Methane Carbon Isotope Analyzer

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Baer, Douglas

    2010-05-01

    Methane is a potent greenhouse gas, whose atmospheric surface mixing ratio has almost doubled compared with preindustrial values. Methane can be produced by biogenic processes, thermogenic processes or biomass, with different isotopic signatures. As a key molecule involved in the radiative forcing in the atmosphere, methane is thus one of the most important molecules linking the biosphere and atmosphere. Therefore precise measurements of mixing ratios and isotopic compositions will help scientists to better understand methane sources and sinks. To date, high precision isotope measurements have been exclusively performed with conventional isotope ratio mass spectrometry, which involves intensive labor and is not readily field deployable. Optical studies using infrared laser spectroscopy have also been reported to measure the isotopic ratios. However, the precision of optical-based analyses, to date, is typically unsatisfactory without pre-concentration procedures. We present characterization of the performance of a portable Methane Carbon Isotope Analyzer (MCIA), based on cavity enhanced laser absorption spectroscopy technique, that provides in-situ measurements of the carbon isotope ratio (13C/12C or del_13C) and methane mixing ratio (CH4). The sample is introduced to the analyzer directly without any requirement for pretreatment or preconcentration. A typical precision of less than 1 per mill (< 0.1%) with a 10-ppm methane sample can be achieved in a measurement time of less than 100 seconds. The MCIA can report carbon isotope ratio and concentration measurements over a very wide range of methane concentrations. Results of laboratory tests and field measurements will be presented.

  15. Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, J.; Randall, Michael; Dennis, George D., III; Brooks, R.A.

    2008-01-01

    The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.

  16. Carbon isotopic fractionation in heterotrophic microbial metabolism

    SciTech Connect

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-10-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. 38 references.

  17. Carbon isotopic fractionation in heterotrophic microbial metabolism.

    PubMed Central

    Blair, N; Leu, A; Muñoz, E; Olsen, J; Kwong, E; Des Marais, D

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle. PMID:2867741

  18. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  19. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  20. Stable carbon isotope fractionation by sulfate-reducing bacteria

    NASA Technical Reports Server (NTRS)

    Londry, Kathleen L.; Des Marais, David J.

    2003-01-01

    Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

  1. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates. PMID:25393769

  2. Modeling stable isotope and organic carbon in hillslope stormflow

    NASA Astrophysics Data System (ADS)

    Dusek, Jaromir; Vogel, Tomas; Dohnal, Michal; Marx, Anne; Jankovec, Jakub; Sanda, Martin; Votrubova, Jana; Barth, Johannes A. C.; Cislerova, Milena

    2016-04-01

    Reliable prediction of water movement and fluxes of dissolved substances (such as stable isotopes and organic carbon) at both the hillslope and the catchment scales remains a challenge due to complex boundary conditions and soil spatial heterogeneity. In addition, microbially mediated transformations of dissolved organic carbon (DOC) are known to affect balance of DOC in soils, hence the transformations need to be included in a conceptual model of a DOC transport. So far, only few studies utilized stable isotope information in modeling and even fewer linked dissolved carbon fluxes to mixing and/or transport models. In this study, stormflow dynamics of oxygen-18 isotope and dissolved organic carbon was analyzed using a physically based modeling approach. One-dimensional dual-continuum vertical flow and transport model, based on Richards and advection-dispersion equations, was used to simulate the subsurface transport processes in a forest soil during several observed rainfall-runoff episodes. The transport of heat in the soil profile was described by conduction-advection equation. Water flow and transport of solutes and heat were assumed to take place in two mutually communicating porous domains, the soil matrix and the network of preferential pathways. The rate of microbial transformations of DOC was assumed to depend on soil water content and soil temperature. Oxygen-18 and dissolved organic carbon concentrations were observed in soil pore water, hillslope stormflow (collected in the experimental hillslope trench), and stream discharge (at the catchment outlet). The modeling was used to analyze the transformation of input solute signals into output hillslope signals observed in the trench stormflow. Signatures of oxygen-18 isotope in hillslope stormflow as well as isotope concentration in soil pore water were predicted reasonably well. Due to complex nature of microbial transformations, prediction of DOC rate and transport was associated with a high uncertainty.

  3. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  4. Stable isotope deltas: tiny, yet robust signatures in nature.

    PubMed

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  5. Gluconeogenesis from labeled carbon: estimating isotope dilution

    SciTech Connect

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.

  6. Carbonate clumped isotope thermometry in continental tectonics

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, Δ47) and provides estimates of the carbonate formation temperature independent of the δ18O value of the water from which the carbonate grew; Δ47 is measured simultaneously with conventional measurements of carbonate δ13C and δ18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 °C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of Δ47 values to a sample's thermal history. However, the thermometer is

  7. Constraining the global bromomethane budget from carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank

    2016-04-01

    Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition

  8. Carbon Isotopic Studies of Assimilated and Ecosystem Respired CO2 in a Southeastern Pine Forest. Final Report and Conference Proceedings

    SciTech Connect

    Conte, Maureen H

    2008-04-10

    Carbon dioxide is the major “greenhouse” gas responsible for global warming. Southeastern pine forests appear to be among the largest terrestrial sinks of carbon dioxide in the US. This collaborative study specifically addressed the isotopic signatures of the large fluxes of carbon taken up by photosynthesis and given off by respiration in this ecosystem. By measuring these isotopic signatures at the ecosystem level, we have provided data that will help to more accurately quantify the magnitude of carbon fluxes on the regional scale and how these fluxes vary in response to climatic parameters such as rainfall and air temperature. The focus of the MBL subcontract was to evaluate how processes operating at the physiological and ecosystem scales affects the resultant isotopic signature of plant waxes that are emitted as aerosols into the convective boundary layer. These wax aerosols provide a large-spatial scale integrative signal of isotopic discrimination of atmospheric carbon dioxide by terrestrial photosynthesis (Conte and Weber 2002). The ecosystem studies have greatly expanded of knowledge of wax biosynthetic controls on their isootpic signature The wax aerosol data products produced under this grant are directly applicable as input for global carbon modeling studies that use variations in the concentration and carbon isotopic composition of atmospheric carbon dioxide to quantify the magnitude and spatial and temporal patterns of carbon uptake on the global scale.

  9. Examining the Role of Multiple Carbon Sources in Isoprene Synthesis in Plants Using Stable Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Funk, J. L.; Mak, J. E.; Lerdau, M. T.

    2001-12-01

    The carbon source for phytogenc isoprene is an issue with important ramifications for both atmospheric and biological science because of its impact on the isotopic signature of isoprene and its oxidation products and because it lends insight into the function that isoprene serves within leaves. Although recently assimilated carbon is believed to be the primary carbon source for isoprene production in plants, variation in diurnal and seasonal isoprene fluxes that cannot be explained by temperature, light, and leaf development have led to the suggestion that alternative carbon sources may contribute. Stable isotopes of carbon can be used to identify changes in carbon partitioning into isoprene synthesis, and mixing models can assess the relative importance of each source. In preliminary studies, we document an additional 8-10 \\permil discrimination in isoprene emitted in the absence of photosynthesis. This change in signature suggests that the carbon source is switched from recently obtained photosynthate to a source more depleted in 13C. We propose that intermediates from carbohydrate degradation and/or re-fixation of CO2 from mitichondrial respiration and photorespiration can contribute to isoprene production. In addition, we expect alternative carbon sources to be most important when photosynthate is limiting (e.g. during water stress events). Photosynthesis, respiration, and isoprene emission measurements are used to calculate the isotopic signatures of the three potential carbon pools: photosynthate derived from ambient CO2, photosynthate derived from respired CO2, and carbohydrate-derived intermediates.

  10. Site-Specific Carbon Isotopes in Organics

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2012-12-01

    Natural organic molecules exhibit a wide range of internal site-specific isotope variation (i.e., molecules with same isotopic substitution type but different site). Such variations are generally unconstrained by bulk isotopic measurements. If known, site-specific variations might constrain temperatures of equilibrium, mechanisms of formation or consumption reactions, and possibly other details. For example, lipids can exhibit carbon isotope differences of up to 30‰ between adjacent carbon sites as a result of fractionations arising during decarboxylation of pyruvate and other steps in lipid biosynthesis(1). We present a method for site-specific carbon isotope analysis of propane, based on high-resolution, multi-collector gas source mass spectrometry, using a novel prototype instrument - the Thermo MAT 253 Ultra. This machine has an inlet system and electron bombardment ion source resembling those in conventional stable isotope gas source mass spectrometers, and the energy filter, magnet, and detector array resembling those in multi-collector ICPMS and TIMS. The detector array has 7 detector positions, 6 of which are movable, and each of which can collect ions with either a faraday cup (read through amplifiers ranging from 107-1012 ohms) or an SEM. High mass resolving power (up to 27,000, MRP = M/dM definition) is achieved through a narrow entrance slit, adjustable from 250 to 5 μm. Such resolution can cleanly separate isobaric interferences between isotopologues of organic molecules having the same cardinal mass (e.g., 13CH3 and 12CH2D). We use this technology to analyze the isotopologues and fragments of propane, and use such data to solve for the site-specific carbon isotope fractionation. By measuring isotopologues of both the one-carbon (13CH3) and the two-carbon (13C12CH4) fragment ion, we can solve for both bulk δ13C and the difference in δ13C between the terminal and central carbon position. We tested this method by analyzing mixtures between natural

  11. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    NASA Astrophysics Data System (ADS)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  12. Shear heating and clumped isotope reordering in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  13. Tracking diet preferences of bats using stable isotope and fatty acid signatures of faeces.

    PubMed

    Lam, Monika My-Y; Martin-Creuzburg, Dominik; Rothhaupt, Karl-Otto; Safi, Kamran; Yohannes, Elizabeth; Salvarina, Ioanna

    2013-01-01

    Stable isotope and fatty acid signatures of biomaterials can provide important information about the dietary niche of animals. Stable isotope and fatty acid signatures differ between aquatic and terrestrial food webs, and therefore can be used to assess the aquatic and terrestrial contributions to the diets of species. We studied faecal samples of three co-occurring bat species with known differences in feeding preferences. The aim was to assess whether stable isotope and fatty acid signatures of faeces can be used to determine feeding preferences. We used bat faeces because they can be easily and non-invasively collected. We hypothesised that faeces stable isotope and fatty acid signatures will reveal the terrestrial, aquatic and mixed feeding niches of Myotis myotis, M. daubentonii, and M. mystacinus, respectively. As predicted, the faeces of M. myotis were characterized by higher δ(13)C values and higher concentrations of linoleic acid and total ω6 polyunsaturated fatty acids (PUFAs), which are typically higher in terrestrial food webs. The faeces of M. daubentonii had higher δ(15)Ν values and higher concentrations of docosahexaenoic acid and total ω3 PUFAs, characteristic features of aquatic systems. Myotis mystacinus faeces had intermediate δ(15)Ν values and concentrations of both types of fatty acids. Our results show that analysing stable isotope and/or fatty acid signatures of faeces provides a promising, non-invasive tool to study the feeding ecology of bats and to assess aquatic-terrestrial interactions. PMID:24376703

  14. Tracking Diet Preferences of Bats Using Stable Isotope and Fatty Acid Signatures of Faeces

    PubMed Central

    Lam, Monika My-Y; Martin-Creuzburg, Dominik; Rothhaupt, Karl-Otto; Safi, Kamran; Yohannes, Elizabeth; Salvarina, Ioanna

    2013-01-01

    Stable isotope and fatty acid signatures of biomaterials can provide important information about the dietary niche of animals. Stable isotope and fatty acid signatures differ between aquatic and terrestrial food webs, and therefore can be used to assess the aquatic and terrestrial contributions to the diets of species. We studied faecal samples of three co-occurring bat species with known differences in feeding preferences. The aim was to assess whether stable isotope and fatty acid signatures of faeces can be used to determine feeding preferences. We used bat faeces because they can be easily and non-invasively collected. We hypothesised that faeces stable isotope and fatty acid signatures will reveal the terrestrial, aquatic and mixed feeding niches of Myotis myotis, M. daubentonii, and M. mystacinus, respectively. As predicted, the faeces of M. myotis were characterized by higher δ13C values and higher concentrations of linoleic acid and total ω6 polyunsaturated fatty acids (PUFAs), which are typically higher in terrestrial food webs. The faeces of M. daubentonii had higher δ15Ν values and higher concentrations of docosahexaenoic acid and total ω3 PUFAs, characteristic features of aquatic systems. Myotis mystacinus faeces had intermediate δ15Ν values and concentrations of both types of fatty acids. Our results show that analysing stable isotope and/or fatty acid signatures of faeces provides a promising, non-invasive tool to study the feeding ecology of bats and to assess aquatic-terrestrial interactions. PMID:24376703

  15. Carbonate abundances and isotopic compositions in chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.; Bowden, R.; Fogel, M. L.; Howard, K. T.

    2015-04-01

    We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25-75‰ and δ18O ≈ 15-35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0-130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH4 (δ13C ≈ -33‰ or -20‰ for CO- or CH4-dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ -5.5‰, and δ13C ≈ -31‰ or -17‰ for CO- or CH4-dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10-40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65-80‰) and less altered samples (δ13C ≈ 30-40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic

  16. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  17. Stable Isotope Measurements of Carbon Dioxide, Methane, and Hydrogen Sulfide Gas Using Frequency Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowak-Lovato, K.

    2014-12-01

    Seepage from enhanced oil recovery, carbon storage, and natural gas sites can emit trace gases such as carbon dioxide, methane, and hydrogen sulfide. Trace gas emission at these locations demonstrate unique light stable isotope signatures that provide information to enable source identification of the material. Light stable isotope detection through surface monitoring, offers the ability to distinguish between trace gases emitted from sources such as, biological (fertilizers and wastes), mineral (coal or seams), or liquid organic systems (oil and gas reservoirs). To make light stable isotope measurements, we employ the ultra-sensitive technique, frequency modulation spectroscopy (FMS). FMS is an absorption technique with sensitivity enhancements approximately 100-1000x more than standard absorption spectroscopy with the advantage of providing stable isotope signature information. We have developed an integrated in situ (point source) system that measures carbon dioxide, methane and hydrogen sulfide with isotopic resolution and enhanced sensitivity. The in situ instrument involves the continuous collection of air and records the stable isotope ratio for the gas being detected. We have included in-line flask collection points to obtain gas samples for validation of isotopic concentrations using our in-house isotope ratio mass spectroscopy (IRMS). We present calibration curves for each species addressed above to demonstrate the sensitivity and accuracy of the system. We also show field deployment data demonstrating the capabilities of the system in making live dynamic measurements from an active source.

  18. Carbon isotope fractionation of methyl bromide during agricultural soil fumigations

    USGS Publications Warehouse

    Bill, M.; Miller, L.G.; Goldstein, Allen H.

    2002-01-01

    The isotopic composition of methyl bromide (CH3Br) has been suggested to be a potentially useful tracer for constraining the global CH3Br budget. In order to determine the carbon isotopic composition of CH3Br emitted from the most significant anthropogenic application (pre-plant fumigation) we directly measured the ??13C of CH3Br released during commercial fumigation. We also measured the isotopic fractionation associated with degradation in agricultural soil under typical field fumigation conditions. The isotopic composition of CH3Br collected in soil several hours after injection of the fumigant was -44.5??? and this value increased to -20.7??? over the following three days. The mean kinetic isotope effect (KIE) associated with degradation of CH3Br in agricultural soil (12???) was smaller than the reported value for methylotrophic bacterial strain IMB-1, isolated from previously fumigated agricultural soil, but was similar to methylotrophic bacterial strain CC495, isolated from a pristine forest litter zone. Using this fractionation associated with the degradation of CH3Br in agricultural soil and the mean ??13C of the industrially manufactured CH3Br (-54.4???), we calculate that the agricultural soil fumigation source has a carbon isotope signature that ranges from -52.8??? to -42.0???. Roughly 65% of industrially manufactured CH3Br is used for field fumigations. The remaining 35% is used for structural and post-harvest fumigations with a minor amount used during industrial chemical manufacturing. Assuming that the structural and post-harvest fumigation sources of CH3Br are emitted without substantial fractionation, we calculate that the ??13C of anthropogenically emitted CH3Br ranges from -53.2??? to -47.5???.

  19. Groundwater chemistry and isotope signatures of potential CCS sites in Korea - A baseline study for leakage detection

    NASA Astrophysics Data System (ADS)

    Choi, H.; Jeong, T.; Woo, N. C.

    2013-12-01

    This research aimed at drawing a baseline of groundwater chemistry and its stable isotope signatures of hydrogen, oxygen and carbon from the deep groundwater above the CO2 sequestration layer, in which physico-chemical conditions are conceived as temperature over 40 degree Celcius and high total dissolved solids. Samples were collected from hot springs (at surface and from seep wells) and high-carbonate springs. Based on water compositions, three groups were identified as saline, alkali-carbonate and soda spring types. Saline type hot springs at the west coastline area contain -14.5‰ δ13C of CO2. Before and after rainfall events, δ13C value of samples shows no change. Hot springs at Suanbo region, located at the center are of the Korean Peninsular, were collected from deep wells of 750 m in depth, and they show the alkali-carbonate type water having δ13C values (-11.3~-10.9‰) and ECs (364~431μS/cm). Both saline and alkali-carbonate type waters show no significant change in composition, indicating that recharge by precipitation has no effect on these groundwater. All the high-carbonate springs were collected at ground surface, and enriched with Ca, Mg and HCO3., probably caused by the dissolution of CO2, and high EC values of 1,016 μS/cm. Soda springs located in Chungcheongbuk-do region have -6.8~-6.7‰ δ13C of CO2, indicating that the source of CO2 could be the upper mantle affected by the carbonate minerals in the Quaternary sedimentary bedrock. On the contrary, carbonate waters in the Gangwon-do region have -3.9~-3.7‰ δ13C of CO2, clearly indicating the source of CO2 being the upper mantle (Gerlach and Taylor, 1990). More detailed chemical and isotopic signatures of the sampled waters will be discussed in presentation.

  20. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  1. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation. PMID:22191586

  2. Triple oxygen isotopes in biogenic and sedimentary carbonates

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  3. Isotopic signatures and origin of nitrogen in IIE and IVA iron meteorites

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Palma, R. L.; Marti, K.; Lavielle, B.

    2000-02-01

    Nitrogen concentrations and isotopic signatures have been determined in groups IIE and IVA iron meteorites. Contrary to assumptions made in the literature, the present data show that spallation components significantly modify the N signatures of the metal. All 15N data are corrected for cosmic-ray produced spallation components using 21Ne concentrations measured in aliquots. A production-rate ratio 21Ne/ 15N = 0.80 is obtained, which can reliably be used for this correction, since it is not sensitive to shielding differences. The trapped N signatures in group IVA irons fall into two subgroups IVA (-26) with δ 15N = -26 ± 2 ‰ and IVA (-6) with δ 15N = -6 ± 1.4‰, respectively. Only the latter is close to values reported for metal of L-chondrites. Group IIE irons also define two distinct subgroups IIE (Y) with δ 15N = -7.5 ± 1.5‰ and IIE (O) with δ 15N = -2.3 ± 1‰. Therefore, the earlier proposed subdivision of IIE irons into "young" and "old" subgroups is substantiated by the different trapped N signatures. With regard to a possible relationship with H-chondrites as suggested by oxygen isotopes, only the young IIE subgroup overlaps the range of signatures reported in H-chondrite metal. Seymchan has a distinctly lighter signature (δ 15N = -54‰), consistent with its reclassification as an ungrouped iron. We observe no correlation of either nitrogen concentrations or isotopic signatures with abundances of Ga, Ge, Ir or Ni. The distinct N components in the so-called magmatic group IVA constrain the thermal history of the parent body, as these signatures need to be reconciled with the magmatic history. Implications for the origin of nitrogen components are discussed. Some of the spread in N isotopic data in the literature apparently is due to inclusions.

  4. Carbon isotope composition of Antarctic plants

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.

    2000-05-01

    Carbon isotope compositions of Antarctic land plants are first reported. The most interesting feature is the isotope specificity of the species. For example Usnea antarctica from different locations shows relatively narrow range of the δ 13C-values from -22.44 to -21.29‰ (7 samples), Drepanocladus sp. from -24.86 to -23.49‰ (8 samples), and Andreaea depressincrvis from -23.87 to -23.23‰ (3 samples) etc. Usually, in inhabited lands and parts of the world with rich flora and developed soil, isotopic specificity of species is masked by variations of carbon isotope composition of CO 2. In Antarctic conditions influence of local sources of CO 2 on the isotope composition of CO 2 is appeared to be minimal. Therefore the δ 13C-variations inherent to individual plant physiology and biochemistry can be distinguished on the background of the stable level of the atmospheric CO 2 δ 13C-value. The latter is best to reflect the global state of the carbon cycle.

  5. Clumped isotope thermometry of cryogenic cave carbonates

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Spötl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 °C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate δ18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing

  6. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  7. Nitrogen isotopic signatures in agglutinates from breccia 79035

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.; Kim, Yoosook; Kim, Jin S.; Marti, Kurt

    1993-01-01

    Agglutinates in the size range 125-175 microns from regolith breccia 79035 are substantially depleted in N compared with bulk 79035. Isotopically, agglutinate N closely resembles that found previously in ilmenite separates. The minimum (delta)N-15 value found during stepwise pyrolysis of agglutinates is significantly heavier than that observed for bulk 79035. The major host phase for trapped N in 79035, and the host phase of the lightest isotopic component(s), remain unidentified.

  8. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  9. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Hangx, S.; Pijnenburg, R. P.; Niemeijer, A. R.; Bakker, E.; Samuelson, J. E.; Spiers, C. J.

    2014-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  10. Through a temporal window, we see isotopic signatures

    SciTech Connect

    Mizutani, Hiroshi

    1995-12-31

    Stable isotope composition of bioelements is different between diet and assimilated tissues. Furthermore, the apparent fractionation factors from diet to tissues seem to differ among different tissues: each tissue of an organism reflects the isotope abundances of diet in a different manner. The turnover rate of a tissue, its biochemical composition, its immediate source, and distribution of available resources within an individuals body are among the possible factors that would affect the fractionation factor. Stable isotope composition of an animal tissue or particular biochemical molecules would give a glimpse of the animal itself and its environments only through a particular window, whose width and height are dependent on many factors including animal age. Some tissues that form in a relatively short period during which material exchanges in an animal body can be considered nearly in a steady state would give a clearly defined window frame. One example is feathers of adult birds: the change in the isotope composition from diet to the tissue has been shown stable with time. Tissues formed during a rapid growth of animal body or during a metamorphosis would be an example of another extreme, the window frame being subject to a rapid change with time in its shape. Isotopic knowledge on characteristics of the window is needed to extend the applicability of stable isotope study into researches in ecogeochemistry and environmental chemistry.

  11. Carbon isotopes as indicators of peatland growth?

    NASA Astrophysics Data System (ADS)

    Alewell, Christine; Krüger, Jan Paul; von Sengbusch, Pascal; Szidat, Sönke; Leifeld, Jens

    2016-04-01

    As undisturbed and/or growing peatlands store considerable amounts of carbon and are unique in their biodiversity and species assemblage, the knowledge of the current status of peatlands (growing with carbon sequestration, stagnating or degrading with carbon emissions) is crucial for landscape management and nature conservation. However, monitoring of peatland status requires long term measurements and is only feasible with expert knowledge. The latter determination is increasingly impeded in a scientific world, where taxonomic expert knowledge and funding of long term monitoring is rare. Stable carbon and nitrogen isotopes depth profiles in peatland soils have been shown to be a useful tool to monitor the degradation of peatlands due to permafrost thawing in Northern Sweden (Alewell et al., 2011; Krüger et al., 2014), drainage in Southern Finland (Krüger et al., 2016) as well as land use intensification in Northern Germany (Krüger et al., 2015). Here, we tackle the questions if we are able to differentiate between growing and degrading peats with the use of a combination of carbon stable (δ13C) and radiogenic isotope data (14C) with peat stratification information (degree of humification and macroscopic plant remains). Results indicate that isotope data are a useful tool to approximate peatland status, but that expert taxonomic knowledge will be needed for the final conclusion on peatland growth. Thus, isotope tools might be used for landscape screening to pin point sites for detailed taxonomic monitoring. As the method remains qualitative future research at these sites will need to integrate quantitative approaches to determine carbon loss or gain (soil C balances by ash content or C accumulation methods by radiocarbon data; Krüger et al., 2016). Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for micro-geomorphic changes in palsa peats. Biogeosciences, 8, 1769-1778. Krüger, J. P., Leifeld, J

  12. Ecologically and geologically relevant isotope signatures of C, N, and S: okenone producing purple sulfur bacteria Part I.

    PubMed

    Smith, D A; Steele, A; Bowden, R; Fogel, M L

    2015-05-01

    Purple sulfur bacteria (PSB) are known to couple the carbon, nitrogen, and sulfur cycling in euxinic environments. This is the first study with multiple strains and species of okenone-producing PSB to examine the carbon (C), nitrogen (N), and sulfur (S) metabolisms and isotopic signatures in controlled laboratory conditions, investigating what isotopic fractionations might be recorded in modern environments and the geologic record. PSB play an integral role in the ecology of euxinic environments and produce the unique molecular fossil okenane, derived from the diagenetic alteration of the carotenoid pigment okenone. Cultures of Marichromatium purpuratum 1591 (Mpurp1591) were observed to have carbon isotope fractionations ((13)ε biomass - CO2), via RuBisCO, ranging from -16.1 to -23.2‰ during exponential and stationary phases of growth. Cultures of Thiocapsa marina 5653 (Tmar5653) and Mpurp1591 had a nitrogen isotope fractionation ((15)ε biomass - NH 4) of -15‰, via glutamate dehydrogenase, measured and recorded for the first time in PSB. The δ(34) SVCDT values and amount of stored elemental sulfur for Mpurp1591 cells grown autotrophically and photoheterotrophically were dependent upon their carbon metabolic pathways. We show that PSB may contribute to the isotopic enrichments observed in modern and ancient anoxic basins. In a photoheterotrophic culture of Mpurp1591 that switched to autotrophy once the organic substrate was consumed, there were bulk biomass δ(13)C values that span a broader range than recorded across the Late Devonian, Permian-Triassic, Triassic-Jurassic, and OAE2 mass extinction boundaries. This finding stresses the complexities in interpreting and assigning δ(13)C values to bulk organic matter preserved in the geologic record. PMID:25857753

  13. Distinct iron isotopic signatures and supply from marine sediment dissolution

    PubMed Central

    Homoky, William B.; John, Seth G.; Conway, Tim M.; Mills, Rachel A.

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from ‘non-reductive’ dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean. PMID:23868399

  14. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    USGS Publications Warehouse

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  15. Laser ablation molecular isotopic spectrometry of carbon isotopes

    SciTech Connect

    Bol'shakov, Alexander A.; Jain, Jinesh; Russo, Richard E.; McIntyre, Dustin; Mao, Xianglei

    2015-08-28

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented:empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5–476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrumyielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies

  16. Laser ablation molecular isotopic spectrometry of carbon isotopes

    NASA Astrophysics Data System (ADS)

    Bol‧shakov, Alexander A.; Mao, Xianglei; Jain, Jinesh; McIntyre, Dustin L.; Russo, Richard E.

    2015-11-01

    Quantitative determination of carbon isotopes using Laser Ablation Molecular Isotopic Spectrometry (LAMIS) is described. Optical emission of diatomic molecules CN and C2 is used in these measurements. Two quantification approaches are presented: empirical calibration of spectra using a set of reference standards and numerical fitting of a simulated spectrum to the experimental one. Formation mechanisms of C2 and CN in laser ablation plasma are briefly reviewed to provide insights for implementation of LAMIS measurements. A simulated spectrum of the 12C2 Swan system was synthesized using four constituents within 473.5-476.5 nm. Simulation included three branches of 12C2 (1-0), branches R(0-0) and R(1-1), and branch P(9-8) of 12C2. Spectral positions of the tail lines in R(0-0) and R(1-1) were experimentally measured, since they were not accurately known before. The Swan band (1-0) of the isotopologue 13C12C was also simulated. Fitting to the experimental spectrum yielded the ratio 13C/12C = 1.08% in a good agreement with measurements by isotope ratio mass spectrometry. LAMIS promises to be useful in coal, oil and shale exploration, carbon sequestration monitoring, and agronomy studies.

  17. Atmospheric lead in urban Guiyang, Southwest China: Isotopic source signatures

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Qi; Zhang, Wei; Li, Xiao-Dong; Yang, Zhou; Zheng, Hou-Yi; Ding, Hu; Wang, Qi-Lian; Xiao, Jun; Fu, Ping-Qing

    2015-08-01

    Total suspended particles (TSP) and their source-related samples from Guiyang, Southwest China, were collected and analyzed for their lead (Pb) concentrations and Pb isotopic compositions, to identify the sources of atmosphere lead in urban Guiyang. Coals from Guizhou Province had significantly high radiogenic Pb, different to those from North China. Local vehicle exhaust had similar Pb isotope ratios to those of other areas in China. Pb isotopic compositions of atmospheric aerosols, rainwaters, plant samples, and acid-soluble fraction of street dusts were similar to each other. The results clearly suggest that the Pb-Zn ore-related industrial emission, and/or vehicle exhaust, rather than the local coal combustion, are the main sources of atmospheric Pb in Guiyang. Furthermore, binary mixing model indicates that the contribution of coal combustion to the local atmospheric Pb decreased from about 40% in 1988 to about 10% in 2013.

  18. Stable carbon isotope fractionation by methanogens growing on different Mars regolith analogs

    NASA Astrophysics Data System (ADS)

    Sinha, Navita; Kral, Timothy A.

    2015-07-01

    In order to characterize stable carbon (13C/12C) isotope fractionation of metabolically produced methane by methanogens in martian settings, Methanothermobacter wolfeii, Methanosarcina barkeri, and Methanobacterium formicicum were cultured on four different Mars regolith analogs - JSC Mars-1, Artificial Mars Simulant, montmorillonite, and Mojave Mars Simulant - and also in their growth supporting media. These chemoautotrophic methanogens utilize CO2 for their carbon source and H2 for their energy source. When compared to the carbon isotope signature of methane when grown on their respective growth media, M. wolfeii and M. barkeri demonstrated variability in carbon isotope fractionation values during methanogenesis on the Mars analogs, while M. formicicum showed subtle or negligible difference in carbon isotope fractionation values. Interestingly, M. wolfeii and M. barkeri have shown relatively consistent enriched values of 12C on montmorillonite, a kind of clay found on Mars, compared to other Mars regolith analogs. In general, M. barkeri showed large carbon isotope fractionation compared to M. wolfeii and M. formicicum during methanognesis on various kinds of analogs. Stable carbon isotope fractionation is one of the techniques used to infer different origins, environments, and pathways of methanogensis. The results obtained in this novel research can provide clues to determine ambiguous sources of methane on Mars.

  19. Extreme crustal oxygen isotope signatures preserved in coesite in diamond.

    PubMed

    Schulze, Daniel J; Harte, Ben; Valley, John W; Brenan, James M; Channer, Dominic M De R

    2003-05-01

    The anomalously high and low oxygen isotope values observed in eclogite xenoliths from the upper mantle beneath cratons have been interpreted as indicating that the parent rock of the eclogites experienced alteration on the ancient sea floor. Recognition of this genetic lineage has provided the foundation for a model of the evolution of the continents whereby imbricated slabs of oceanic lithosphere underpin and promote stabilization of early cratons. Early crustal growth is thought to have been enhanced by the addition of slab-derived magmas, leaving an eclogite residuum in the upper mantle beneath the cratons. But the oxygen isotope anomalies observed in eclogite xenoliths are small relative to those in altered ocean-floor basalt and intermediate-stage subduction-zone eclogites, and this has hindered acceptance of the hypothesis that the eclogite xenoliths represent subducted and metamorphosed ocean-floor basalts. We present here the oxygen isotope composition of eclogitic mineral inclusions, analysed in situ in diamonds using an ion microprobe/secondary ion mass spectrometer. The oxygen isotope values of coesite (a polymorph of SiO2) inclusions are substantially higher than previously reported for xenoliths from the subcratonic mantle, but are typical of subduction-zone meta-basalts, and accordingly provide strong support for the link between altered ocean-floor basalts and mantle eclogite xenoliths. PMID:12721625

  20. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  1. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  2. Carbon isotopic composition of individual Precambrian microfossils

    NASA Astrophysics Data System (ADS)

    House, Christopher H.; Schopf, J. William; McKeegan, Kevin D.; Coath, Christopher D.; Harrison, T. Mark; Stetter, Karl O.

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the ˜850 Ma Bitter Springs Formation, Australia, and the ˜2100 Ma Gunflint Formation, Canada. The δ13CPDB values from individual microfossils of the Bitter Springs Formation ranged from -21.3 ± 1.7‰ to -31.9 ± 1.2‰, and the δ13CPDB values from microfossils of the Gunflint Formation ranged from -32.4 ± 0.7‰ to -45.4 ± 1.2‰. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  3. Carbon Reservoir History of Mars Constrained by Atmospheric Isotopic Measurements and Carbonate Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hu, R.; Kass, D. M.; Ehlmann, B. L.; Yung, Y. L.

    2015-12-01

    The evolution of the atmosphere on Mars is one of the most intriguing problems in the exploration of the Solar System, and the climate of Mars may have evolved from a warmer, wetter early state to the cold, dry current state. Because CO2 is the major constituent of Mars's atmosphere, its isotopic signatures offer a unique window to trace the evolution of climate on Mars. We derive new quantitative constraints on the amount of carbonate deposition and the atmospheric pressure of Mars through time, extending into the Noachian, ~3.8 Gyr before present. This determination is based on recent Mars Science Laboratory (MSL) isotopic measurements of Mars's atmosphere, recent orbiter, lander, and rover measurements of Mars's surface, and a newly identified mechanism (photodissociation of CO) that efficiently enriches the heavy carbon isotope. In particular, we find that escape via CO photodissociation on Mars has a fractionation factor of 0.6 and hence, photochemical escape processes can effectively enrich 13C in the Mars's atmosphere during the Amazonian. This enrichment is partially compensated by moderate carbonate precipitation during the late Noachian and/or Hesperian. The current atmospheric 13C/12C and rock and soil carbonate measurements indicate an early atmosphere with a surface pressure less than 1 bar. Only scenarios with large amounts of carbonate formation in open lakes permit higher values up to 1.8 bars. The evolutionary scenarios are fully testable with data from the MAVEN mission and further studies of the isotopic composition of carbonate in the Martian rock record through time.

  4. Monsoonal influence on variation of hydrochemistry and isotopic signatures: Implications for associated arsenic release in groundwater

    NASA Astrophysics Data System (ADS)

    Majumder, Santanu; Datta, Saugata; Nath, Bibhash; Neidhardt, Harald; Sarkar, Simita; Roman-Ross, Gabriela; Berner, Zsolt; Hidalgo, Manuela; Chatterjee, Debankur; Chatterjee, Debashis

    2016-04-01

    The present study examines the groundwater and surface water geochemistry of two different geomorphic domains within the Chakdaha block, West Bengal, in an attempt to decipher potential influences of groundwater abstraction on the hydrochemical evolution of the aquifer, the effect of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and concomitant As release. A low-land flood plain and a natural levee have been selected for this purpose. Although the stable isotopic signatures of oxygen (δ18O) and hydrogen (δ2H) are largely controlled by local precipitation, the isotopic composition falls sub-parallel to the Global Meteoric Water Line (GMWL). The Cl/Br molar ratio indicates vertical recharge into the wells within the flood plain area, especially during the post-monsoon season, while influences of both evaporation and vertical mixing are visible within the natural levee wells. Increase in mean DOC concentrations (from 1.33 to 6.29 mg/L), from pre- to post-monsoon season, indicates possible inflow of organic carbon to the aquifer during the monsoonal recharge. Concomitant increase in AsT, Fe(II) and HCO3- highlights a possible initial episode of reductive dissolution of As-rich Fe-oxyhydroxides. The subsequent sharp increase in the mean As(III) proportions (by 223%), particularly in the flood plain samples during the post-monsoon season, which is accompanied by a slight increase in mean AsT (7%) may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without triggering additional As release from the aquifer sediments.

  5. Geochemical and isotopic signatures for the identification of seawater intrusion in an alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Nair, Indu S.; Rajaveni, S. P.; Schneider, M.; Elango, L.

    2015-08-01

    Seawater intrusion is one of the alarming processes that reduces the water quality and imperils the supply of freshwater in coastal aquifers. The region, north of the Chennai city, India is one such site affected by seawater intrusion. The objective of this study is to identify the extent of seawater intruded area by major geochemical and isotopic signatures. A total of 102 groundwater samples were collected and analysed for major and minor ions. Groundwater samples with electrical conductivity (EC) greater than 5000 μS/cm and a river mouth sample were analyzed for Oxygen-18 (δ 18O) and Deuterium (δ 2H) isotopes to study their importance in monitoring seawater intrusion. The molar ratio of geochemical indicators and isotopic signatures suggests an intrusion up to a distance of 13 km from the sea as on March 2012 and up to 14.7 km during May 2012.

  6. Stable isotope signatures in bulk samples from two soils with contrasting characteristics. What do they tell about ongoing pedogenic processes?

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; dos Anjos Leal, Otávio; Knicker, Heike; Pinheiro Dick, Deborah; González-Vila, Francisco J.; González-Pérez, José A.

    2014-05-01

    Isotopic ratio mass spectrometry (IRMS) has been proven as a promising tool for the monitoring of biogeochemical processes in soil. In this work, stable isotope signatures of light elements δ15N, δ13C, δ18O and δD were determined for two soils with contrasting characteristics in terms of climate, vegetation, land use and management. The studied soils were a Cambisol from a subtropical area (Paraná region, South Brazil) and an Arenosol from a Mediterranean climate (Andalusia, South Spain). A Flash 2000 HT (N, C, S, H and O) elemental analyzer (Thermo Scientific) coupled to a Delta V Advantage IRMS (Thermo Scientific) was used. Isotopic ratios are reported as parts per thousand (o ) deviations from appropriate standards recognized by the international atomic energy agency (IAEA). In a first approach we took advantage of the well-known different δ13C signature between plants using either the C4 or C3 carbon fixation pathway (O'Leary, 1981). The Arenosol (Spain) revealed a δ13C signature which is clearly in the range of C3 plants (-26 to -30 o ). Different plant canopies (tree, shrubs or ferns) caused only slight variations δ13C (STD= 0.98). In contrast, the Cambisol (Brazil) showed less depletion of the heavier carbon isotope corresponding to C4 predominant vegetation. In addition an increase from -19 o in the soil surface (0 - 5 cm) to -16 o in the subsoil (20 - 30 cm) was observed in line with a recent (2 years old) shift of the land use from the predominant C4 grassland to eucalypt (C3) cultivation. Crossplots of δ15N vs. δ18O may provide information about nitrate (NO3-) sources and N cycling (Kendall, 1998). In the Mediterranean Arenosol this signal (δ18O = 30o δ15N = 2o ) was found compatible with a predominant nitrate atmospheric deposition, whereas the signal in the Brazilian Cambisol pointed to the use of a mineral N fertilization with signs of denitrification processes (δ18O = 13o δ15N = 9o ). No conclusive results could be obtained from the

  7. BOREAS TE-5 Leaf Carbon Isotope Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This documentation describes leaf carbon isotope data that were collected in 1993 and 1994 at the NSA and SSA OJP sites, the SSA OBS site, and the NSA UBS site. In addition, leaf carbon isotope data were collected in 1994 only at the NSA and SSA OA sites. These data was collected to provide seasonal integrated physiological information for 10 to 15 common species at these 6 BOREAS sites. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures

    NASA Astrophysics Data System (ADS)

    Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben

    2014-07-01

    Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and

  9. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  10. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  11. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    PubMed

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. PMID:25989520

  12. A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise.

    PubMed

    Mougel, Berengere; Agranier, Arnaud; Hemond, Christophe; Gente, Pascal

    2014-01-01

    Radiogenic isotopes in oceanic basalts provide a window into the different geochemical components defining the composition of Earth's mantle. Here we report the discovery of a novel geochemical signature in volcanic glasses sampled at a sub-kilometre scale along the East Pacific Rise between 15°37'N and 15°47'N. The most striking aspect of this signature is its unradiogenic lead ((206)Pb/(204)Pb=17.49, (207)Pb/(204)Pb=15.46 and (208)Pb/(204)Pb=36.83). In conjunction with enriched Sr, Nd and Hf signatures, Pb isotopes depict mixing lines that trend away from any known mantle end-members. We suggest that this unradiogenic lead component sampled by magmatic melts corresponds to a novel upper mantle reservoir that should be considered in the Pb isotope budget of the bulk silicate Earth. Major, trace element and isotope compositions are suggestive of an ancient and lower continental origin for this unradiogenic lead component, possibly sulphide-bearing pyroxenites that were preserved even after prolonged stirring within the ambient upper mantle. PMID:25027032

  13. Carbonate clumped isotope bond reordering and geospeedometry

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    Carbonate clumped isotope thermometry is based on the preference of 13C and 18O to form bonds with each other. At elevated temperatures such bond ordering is susceptible to resetting by diffusion of C and O through the solid mineral lattice. This type of bond reordering has the potential to obscure primary paleoclimate information, but could also provide a basis for reconstructing shallow crustal temperatures and cooling rates. We determined Arrhenius parameters for solid-state reordering of C-O bonds in two different calcites through a series of laboratory heating experiments. We find that the calcites have different susceptibilities to solid-state reordering. Reaction progress follows a first order rate law in both calcites, but only after an initial period of non-first order reaction that we suggest relates to annealing of nonequilibrium defects when the calcites are first heated to experimental temperature. We show that the apparent equilibrium temperature equations (or "closure temperature" equations) for carbonate clumped isotope reordering are analogous Dodson's equations for first order loss of daughter isotopes. For each calcite, the sensitivity of apparent equilibrium temperature to cooling rate is sufficiently high for inference of cooling rates within a factor of ˜5 or better for cooling rates ranging from tens of degrees per day to a few degrees per million years. However, because the calcites have different susceptibilities to reordering, each calcite defines its own cooling rate-apparent equilibrium temperature relationship. The cooling rates of Carrara marble inferred from carbonate clumped isotope geospeedometry are 10-6-10-3 degrees per annum and are in broad agreement with rates inferred from thermochronometric methods. Cooling rates for 13C-depleted calcites from the late Neoproterozoic Doushantou cap carbonates in south China are on the order of 102-104 degrees per annum, consistent with rapid cooling following formation of these calcites by a

  14. Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU" in ancient lithospheric mantle: Distinguishing source from process

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Bennett, Vickie C.; Amelin, Yuri

    2016-08-01

    Chemical and isotopic heterogeneities in the lithospheric mantle are increasingly being recognised on all scales of examination, although the mechanisms responsible for generating this variability are still poorly understood. To investigate the relative behaviour of different isotopic systems in off-cratonic mantle, and specifically the origin of the regional southwest Pacific "HIMU" (high time integrated 238U/204Pb) Pb isotopic signature, we present the first U-Th-Pb, Rb-Sr, Sm-Nd and Re-Os isotopic dataset for spinel peridotite xenoliths sampling the subcontinental lithospheric mantle (SCLM) beneath Zealandia. Strongly metasomatised xenoliths converge to a restricted range of Sr and Nd isotopic compositions (87Sr/86Sr = 0.7028-0.7033; εNd ≈ +3-+6) reflecting pervasive overprinting of their original melt depletion signatures by carbonatite-rich melts. In contrast, rare, weakly metasomatised samples possess radiogenic Nd isotopic compositions (εNd > +15) and unradiogenic Sr isotopic compositions (87Sr/86Sr < 0.7022). This is consistent with melt extraction at ca. 2.0 Ga and in accord with widespread Paleoproterozoic Re-Os model ages from both weakly metasomatised and the more numerous, strongly metasomatised xenoliths. The coupling of chalcophile (Os), and lithophile (Sr and Nd) melt depletion ages from peridotite xenoliths on a regional scale under Zealandia argues for preservation of a significant mantle keel (⩾2 million km3) associated with a large-scale Paleoproterozoic melting event. Lead isotopic compositions are highly variable with 206Pb/204Pb = 17.3-21.3 (n = 34) and two further samples with more extreme compositions of 22.4 and 25.4, but are not correlated with other isotopic data or U/Pb and Th/Pb ratios in either strongly or weakly metasomatised xenoliths; this signature is thus a recent addition to the lithospheric mantle. Lead model ages suggest that this metasomatism occurred in the last 200 m.y., with errorchrons from individual localities

  15. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    SciTech Connect

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  16. Isotopic Signatures of Meteorolgoical Drivers of Inflow Variability in Apline Areas of the Snowy Mountains, Australia

    NASA Astrophysics Data System (ADS)

    Callow, J. N.; McGowan, H. A.; Denholm, J.

    2011-12-01

    Hydrometeorological instrument records in Australia are particularly short, rarely spanning more than 100-150 years. Analysis of these records has revealed the impact of short term climate variability cycles such as the El Niño - Southern Oscillation (ENSO) on drought and flood frequency. The impacts of longer-term climate cycles not repetitively recorded in the instrument record are less well understood. Palaeoclimate archives have begun to reveal the significance of cycles such as the Pacific Decadal Oscillation (PDO) and their interaction with ENSO as a driver of flood and drought. Our research is focused on field data collection and atmospheric modelling studies to build an archive of distinctive meteorological events and their characteristic precipitation stable oxygen isotope signature. Characteristic isotope signatures of particular weather systems were identified from analysis of real time precipitation and snowpack samples. Together with water vapour trajectory modelling, this study has shown strong agreement of with conventional models of isotopic behaviour associated with temperature/uplift and circulatory isotopic fractionation. More depleted signatures have been associated with "East-Coast Lows" and neutral signatures with localised convective activity associated with warm air masses originating in central Australia. Cold fronts are associated with cool air masses and water vapour trajectories from higher latitudes the Southern Ocean and have an intermediate signature. The overall objective of this research is to understand dominant drivers of precipitation variability such as ENSO-PDO (and other) cycles and their impacts on the hydrology of the Snowy Mountains region. Development of this capability would provide for better informed water resource planning and decision making in the Snowy Mountains region. As we continue to build our database of isotopic signatures of distinct precipitation events, we will build our capacity to interpret dominant

  17. Unique Hg stable isotope signatures of compact fluorescent lamp-sourced Hg.

    PubMed

    Mead, Chris; Lyons, James R; Johnson, Thomas M; Anbar, Ariel D

    2013-03-19

    The recent widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Stable isotope analysis can identify the sources of environmental Hg, but the isotopic composition of Hg from CFL is not yet known. Results from analyses of CFL with a range of hours of use show that the Hg they contain is isotopically fractionated in a unique pattern during normal CFL operation. This fractionation is large by comparison to other known fractionating processes for Hg and has a distinctive, mass-independent signature, such that CFL Hg could be uniquely identified from other sources. The fractionation process described here may also explain anomalous fractionation of Hg isotopes in precipitation. PMID:23373764

  18. Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources.

    PubMed

    Wiederhold, Jan G; Skyllberg, Ulf; Drott, Andreas; Jiskra, Martin; Jonsson, Sofi; Björn, Erik; Bourdon, Bernard; Kretzschmar, Ruben

    2015-01-01

    Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) may cause characteristic isotope signatures of different mercury (Hg) sources and help understand transformation processes at contaminated sites. Here, we present Hg isotope data of sediments collected near industrial pollution sources in Sweden contaminated with elemental liquid Hg (mainly chlor-alkali industry) or phenyl-Hg (paper industry). The sediments exhibited a wide range of total Hg concentrations from 0.86 to 99 μg g(-1), consisting dominantly of organically-bound Hg and smaller amounts of sulfide-bound Hg. The three phenyl-Hg sites showed very similar Hg isotope signatures (MDF δ(202)Hg: -0.2‰ to -0.5‰; MIF Δ(199)Hg: -0.05‰ to -0.10‰). In contrast, the four sites contaminated with elemental Hg displayed much greater variations (δ(202)Hg: -2.1‰ to 0.6‰; Δ(199)Hg: -0.19‰ to 0.03‰) but with distinct ranges for the different sites. Sequential extractions revealed that sulfide-bound Hg was in some samples up to 1‰ heavier in δ(202)Hg than organically-bound Hg. The selectivity of the sequential extraction was tested on standard materials prepared with enriched Hg isotopes, which also allowed assessing isotope exchange between different Hg pools. Our results demonstrate that different industrial pollution sources can be distinguished on the basis of Hg isotope signatures, which may additionally record fractionation processes between different Hg pools in the sediments. PMID:25437501

  19. 13CH3D kinetic isotope effects for methane oxidation by OH - predicting the "clumped" isotopic signature of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Joelsson, L. M. T.; Wang, D. T.; Johnson, M. S.; Ono, S.

    2015-12-01

    Methane is a significant long-lived greenhouse gas, but the tropospheric methane budget is not entirely constrained. "Clumped" isotopologues of methane, including 13CH3D, can provide additional constraints on the atmospheric methane cycle. Interpretation of these novel isotope tracers requires an understanding of the "clumped" isotopic signature of various methane sources, as well as the kinetic isotope effects of the methane sink reactions. We performed a series of photochemical experiments to measure the isotopic fractionation during the CH4+OH reaction. Experiments were carried out in a 100 L quartz photochemical reactor. Photolysis of ozone (O3) in the presence of water (H2O) was used to produce OH radicals. Experiments were performed in a helium bath gas. Fourier transform infrared spectroscopy (FTIR) was used to monitor reaction progress. At various intervals during the reaction, methane was sampled from the cell and analyzed for isotope ratios by tunable infrared laser direct absorption spectroscopy (TILDAS). By simultaneously measuring four different isotopologues of methane (12CH4,12CH3D, 13CH4, 13CH3D), we were able to constrain the kinetic isotope effects for 12CH3D, 13CH4, and the doubly-substitued isotopologue 13CH3D. These results are combined with published clumped isotope data from different methane sources to model the Δ13CH3D (i.e. deviation from "stochastic" distribution of isotopes) of tropospheric methane and its sensitivity to different sources. The Δ13CH3D value of tropospheric methane does not strongly depend upon isotope fractionation during the OH sink reaction. Rather, the Δ13CH3D value of tropospheric methane reflects a mixing of different source signatures. Due to nonlinearity in mixing of Δ13CH3D, the Δ13CH3D value of tropospheric methane will be larger than the weighted average of the Δ13CH3D value of the sources. A first order interpretation of variations in the Δ13CH3D value of tropospheric methane is that it reflects changes

  20. Mg Isotopic Compositions of Modern Marine Carbonates

    NASA Astrophysics Data System (ADS)

    Krogstad, E.; Bizzarro, M.; Hemming, N.

    2003-12-01

    We have used a MC-ICP-MS to measure the isotopic composition of magnesium in a number of samples of modern marine carbonate. Due to the large mass difference between 26Mg and 24Mg (similar to that between 13C and 12C), there is potential for mass fractionation during geologic and biologic processes that may make this isotope system useful for geochemical studies. These samples are from the study of Hemming and Hanson (1992, GCA 56: 537-543). The carbonate minerals analyzed include aragonite, low-Mg calcite, and high-Mg calcite. The samples include corals, echinoderms, ooids, etc., from subtropical to Antarctic settings. Mg purification was accomplished by ion-exchange chromatography, using Bio-Rad AG50W-X12 resin on which greater than 99 percent recovery of Mg is achieved. Samples were introduced into the MC-ICP-MS (VG Axiom) using a Cetac MCN-6000 nebuliser. We use a standard-sample-standard bracketing technique, and samples are analysed at least three times. For lab standards we find that the reproducibility on the 26Mg/24Mg to be about ñ 0.12 permil (2 s.d.). We monitored our separated samples for Na and Ca, as we have found that high Ca/Mg and Na/Mg produce variable magnesium isotopic fractionation during mass spectrometry due to as yet unclear matrix effects. We have normalized our results to our measured values for seawater. We observed a d26Mg(s.w.) range of -1.4 to -2.4 permil in our modern carbonate samples relative to present day seawater. Due to the long residence time of Mg in the oceans (ca. 50 my), this must be due to kinetic or biologic effects. Our d25Mg(s.w.) variations as a function of d26Mg(s.w.) plot along the terrestrial fractionation trend. With an average d26Mg(s.w.) of ca. +0.5 permil in all samples of mantle lithologies and mantle-derived igneous rocks (Bizzarro et al., Goldschmidt abs., 2003), we can assume that the Mg isotopic composition of Earth's river water lies between ca. -2.4 and +0.5 permil (relative to seawater). The actual

  1. Predicting isotopic signatures resulting from melting in global mantle models

    NASA Astrophysics Data System (ADS)

    van Heck, Hein; Davies, Huw; Elliott, Tim; Porcelli, Don

    2014-05-01

    Many outstanding problems in Earth science relate to the geodynamical explanation of geochemical observations. Nowadays, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying processes are lacking. Longstanding problems such as; the possible existence and sustainability of chemically distinct reservoirs in the Earth's mantle; the possible need of layered convection through much of Earth's history to explain chemical observations; and the heat flow paradox remain unsolved. One way to address these problems is through numerical modeling of mantle convection while tracking chemical information throughout the convective mantle. In the past decade, both numerical mantle convection codes and computer power have grown sufficiently to begin to grasp much of the full problem of the complex interlocking physics, chemistry and thermodynamics of the convecting mantle, lithosphere, continents and atmosphere. We implemented a new way to track both bulk composition and concentration of trace elements in the well-developed mantle convection code TERRA. Our approach is to track bulk composition and trace element abundance via particles. One value on each particle represents bulk composition; it can be interpreted as the basalt component. The system is set up to track both radioactive isotopes (in the U, Th, K system) and noble gases (He, Ar). In our model, chemical separation on bulk composition and trace elements happens at self-consistent, evolving melting zones. Melting is defined via a composition dependent solidus, such that the amount of melt generated depends on pressure, temperature and bulk composition of each particle. A novel aspect is that we do not move particles that undergo melting; instead we transfer the chemical information carried by the particle to other particles. Molten material is instantaneously transported to the surface, thereby increasing the basalt component carried by the particles close to the surface

  2. Methane and its Stable Isotope Signature Across Pennsylvania: Assessing the Potential Impacts of Natural Gas Development and Agriculture

    NASA Astrophysics Data System (ADS)

    Ramos-Garcés, F.; Fuentes, J. D.; Grannas, A. M.; Martins, D. K.

    2012-12-01

    Methane is an important greenhouse gas with a global warming potential 72 times that of carbon dioxide (20 year time horizon). Many recent efforts have been focused on improving our understanding of methane sources to the atmosphere and better quantifying the atmospheric methane budget. Increased natural gas exploration, particularly associated with shale gas drilling, has been hypothesized to be a potential source of atmospheric methane during well development and also due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, measurements of methane and its stable isotope signature were obtained from a mobile measurement platform using cavity ringdown spectroscopy. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and well-impacted sites. Particular emphasis was placed on performing air sampling in the vicinity of natural gas wells under development, just completed, and in full operation. In the rural atmosphere, away from cattle farms and natural gas systems, the ambient levels of methane were around 1.75 ppm. Near and around gas wells under development, ambient methane levels resembled those found in the rural atmosphere. In some cases, the atmosphere was enriched with methane (up to 2.2 ppm) in areas near old wells and existing pipelines. Ambient methane levels around cattle farms were significantly enhanced, with mixing ratios reaching about 4 ppm. We will discuss here the impact of both gas well development and agricultural activities on observed methane concentrations and stable isotope signatures.

  3. Food sources of macro-invertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures

    NASA Astrophysics Data System (ADS)

    Tue, Nguyen Tai; Hamaoka, Hideki; Sogabe, Atsushi; Quy, Tran Dang; Nhuan, Mai Trong; Omori, Koji

    2012-08-01

    Dual stable isotope signatures (δ13C and δ15N) were applied to determine the contribution of mangrove materials and other organic carbon sources to the invertebrate community in an ecologically important mangrove ecosystem of Vietnam. We have analyzed 181 specimens of 30 invertebrate species and found δ13C and δ15N ranging from - 14.5 to - 26.8‰ and from 1.3 to 12.1‰, respectively. From taxa measured for stable isotopes, polychaete, gastropods, bivalves, and grapsid crabs living in mangrove forest showed relative low δ13C values, while fiddler crabs inhabiting in the land-water ecotone showed the highest δ13C values. The δ13C showed that just a few mangrove inhabitants directly relied on the mangrove materials. The wide ranges of δ13C and δ15N signatures indicated that the invertebrates utilized heterogeneous diets, comprising benthic microalgae, marine phytoplankton, particulate organic matter, sediment organic matter, mangrove detritus, and meiofauna and rotten animal tissues as the supplemental nutrient food sources. Moreover, the significant correlation between δ13C values and body sizes of invertebrates showed that snails Littoraria melanostoma and Terebralia sulcata, bivalve Glauconome virens, and portunid crab Scylla serrata exhibited ontogenetic shifts in diets. The present study showed that adjacent habitats such as tidal flat and mangrove creeks seem to contribute an important microalgal food resource for invertebrates and highlighted the need for conservations of mangrove forests and the adjacent habitats.

  4. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  5. Carbon Isotope Chemostratigraphy, the Baby and the Bathwater

    NASA Astrophysics Data System (ADS)

    Arthur, M. A.

    2008-12-01

    Secular variations in the carbon isotopic values of carbonate sediments and rocks and their individual components have been applied successfully to problems of stratigraphic correlation and for interpretation of past changes in the global carbon cycle. However, this methodology is not without problems. A major tenet of stable isotope chemostratigraphy involves sampling and analyzing multiple, widely separated sequences, and, if possible, multiple carbon-bearing components (e.g., carbonate and organic carbon) in order to demonstrate a global signal. In some cases, this methodology has been short-circuited in the zeal to reveal a new event or excursion, particularly for time intervals for which adequate sequences are somewhat rare. Likewise, although most carbonate researchers are quite aware of the possible importance of diagenesis, particularly in organic-carbon rich sequences or in shoal-water carbonate sequences with longer-term subaerial exposure events, such overprints commonly go unrecognized or are considered of minor impact. Studies of stable isotope variations in carbonate sequences should always employ textural and geochemical methodologies for detecting and even quantifying diagenesis, if possible. Although some diagenetically overprinted or misinterpreted geochemical data have undoubtedly appeared in the literature, there are many excellent examples of global carbon isotope variations in records expressed in pelagic biogenic carbonate, marine organic carbon, platform carbonates, and terrestrial organic matter. Arguably, one of the best-documented examples is the Cenomanian-Turonian (ca. 93 Ma) positive carbon isotope excursion. The amplitude of the Cenomanian-Turonian carbon isotope excursion is similar among all types of records, but there are subtle pattern differences that arise from differences in sedimentation rate among and within sequences. Organic carbon and carbonate carbon isotope signals also may differ in phasing and amplitude for certain

  6. Investigation of Isotopic Signatures for Sources of Groundwater Contamination at the Hanford Site

    SciTech Connect

    Dresel, P Evan; Evans, John C.; Farmer, Orville T.

    2002-01-25

    The Hanford Site Groundwater Monitoring Project at Pacific Northwest National Laboratory (PNNL) investigated selected isotopic signature techniques to aid interpretation of contaminant plumes in Hanford Site groundwater. The main approach was to select groundwater samples expected to exhibit a variety of contaminant characteristics and then develop inductively coupled plasma mass spectrometry (ICP-MS) analytical methods for the groundwater matrix. Initial broad scans were used to identify interferences and to focus the method development on isotopes showing the greatest promise of practical application. In addition, earlier work characterizing chlorine-36 in Hanford Site groundwater by accelerator mass spectrometry (AMS) will be discussed.

  7. Isotopic signatures of CH 4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Lacrampe-Couloume, G.; Voglesonger, K.; Onstott, T. C.; Pratt, L. M.; Slater, G. F.

    2008-10-01

    Previous studies of methane and higher hydrocarbon gases in Precambrian Shield rocks in Canada and the Witwatersrand Basin of South Africa identified two major gas types. Paleometeoric waters were dominated by hydrocarbon gases with compositional and isotopic characteristics consistent with production by methanogens utilizing the CO 2 reduction pathway. In contrast the deepest, most saline fracture waters contained gases that did not resemble the products of microbial methanogenesis and were dominated by both high concentrations of H 2 gas, and CH 4 and higher hydrocarbon gases with isotopic signatures attributed to abiogenic processes of water-rock reaction in these high rock/water ratio, hydrogeologically-isolated fracture waters. Based on new data obtained for the higher hydrocarbon gases in particular, a model is proposed to account for carbon isotope variation between CH 4 and the higher hydrocarbon gases (specifically ethane, propane, butane, and pentane) consistent with abiogenic polymerization. Values of δ 13C for CH 4 and the higher hydrocarbon gases predicted by the model are shown to match proposed abiogenic hydrocarbon gas end-members identified at five field sites (two in Canada and three in South Africa) suggesting that the carbon isotope patterns between the hydrocarbon homologs reflect the reaction mechanism. In addition, the δ 2H isotope data for these gases are shown to be out of isotopic equilibrium, suggesting the consistent apparent fractionation observed between the hydrocarbon homologs may also reflect reaction mechanisms involved in the formation of the gases. Recent experimental and field studies of proposed abiogenic hydrocarbons such as those found at mid-ocean spreading centers and off-axis hydrothermal fields such as Lost City have begun to focus not only on the origin of CH 4, but on the compositional and isotopic information contained in the higher hydrocarbon gases. The model explored in this paper suggests that while the extent of

  8. Compound-specific carbon isotopic fractionation during transport of phthalate esters in sandy aquifer.

    PubMed

    Liu, Hui; Li, YanXi; He, Xi; Sissou, Zakari; Tong, Lei; Yarnes, Chris; Huang, Xianyu

    2016-02-01

    The present paper aims to evaluate the carbon isotopic fractionation of phthalate esters (PAEs) during transport in an sandy aquifer. Breakthrough curves of di-methyl phthalate (DMP), di-ethyl phthalate (DEP), and di-n-butyl phthalate (DBP) in mixed solution were determined by miscible displacement experiment, and simulated using HYDRUS-1D software. The stable carbon isotopes (δ(13)C) of 3 PAEs in effluent were analyzed at different times. Results showed that, in the transport process in sandy sediment, PAEs are mainly trapped into the pore space instead of being adsorbed on the surface of particles. At the initial stage of transport, PAEs with lighter carbon tend to run faster in the sandy sediment, and PAEs with heavier carbon run after. However, there is no priority for the transport of PAEs with different carbon isotopes at Stage Ⅱ with mainly time-limited sorption. So the transport-based isotope fractionation occurs in the front area of contaminant plume. This effect may be relevant for interpreting carbon isotope signatures in the real contaminant site. PMID:26539707

  9. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  10. Further carbon isotope measurements of LEW 88516

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1993-01-01

    Douglas et al. have previously analyzed the carbon content and isotopic composition of a crushed sample (sub-sample 13) of the shergottite, LEW 88516. The powder, which was from a relatively large portion of the meteorite in order to obtain a representative sample, was distributed amongst the scientific community. However, it is probable that the preparation procedure was not optimized for the purposes of carbon measurements. Indeed, it was found that LEW 88516,13 contained over 1200 ppm carbon, a concentration which is greater than that present in any other SNC meteorite. That a close relative, ALH A77005, contains only 141 ppm carbon seems to implicate the preparation procedure as being responsible for the apparently high carbon content of LEW 88516. However, it may also be the nature of the fine powder which has resulted in contamination. The observation of high carbon content in LEW 88516,13 highlights the extreme difficulty of trying to obtain representative samples of whole meteorites for this kind of investigation. Presented herein are some further measurements of LEW 88516 which should serve to clarify some of the issues raised by the previous investigation.

  11. Spatio-temporal variability in isotopic signatures of atmospheric NOx emissions from vehicles

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Wojtal, P.; O'Connor, M.; Clark, S.; Hastings, M. G.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry and radiative forcing. Their oxidation products, nitric acid or nitrate, have significant contributions to nitrogen (N) deposition, with implications for ecosystem health. On-road vehicle NOx sources currently dominate U.S. anthropogenic emission budgets, yet vehicle NOx emissions contributions to local and regional N deposition patterns are highly uncertain. NOx isotopic signatures offer a potentially valuable observational tool to trace source contributions to N deposition. We characterize the spatio-temporal variability of vehicle NOx emission isotopic signatures with a field and laboratory-verified technique for actively capturing NOx in solution to quantify the nitrogen isotopic composition (δ15N-NOx) to within ±1.5‰ (1σ) precision. We present a novel combination of on-road mobile and stationary urban δ15N-NOx measurements at minutes to hourly resolution along with NOx and CO2 concentration measurements. We evaluate spatial gradients of δ15N-NOx on U.S. Northeast and Midwest highways, including six urban metropolitan areas and rural interstate highways during summer and autumn. We also assess on-road diurnal δ15N-NOx variations over ~800 km driving distance in Providence, RI by targeting the upwind footprint of urban background measurements to distinguish background and source NOx. We observe on-road δ15N-NOx signatures range from -3 to -10‰ under different traffic conditions in the U.S. Northeast and Midwest. On-road δ15N-NOx daytime variations from -3 to -6‰ agree well with simultaneous urban background sampling in Providence, RI, suggesting that vehicles dominate NOx emissions in this region. We use these datasets to estimate the range of representative δ15N-NOx source signatures for U.S. vehicle fleet-integrated emission plumes. Our novel approach suggests that previously reported isotopic signatures for vehicle NOx are not necessarily representative. These

  12. Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg mine.

    PubMed

    Wiederhold, Jan G; Smith, Robin S; Siebner, Hagar; Jew, Adam D; Brown, Gordon E; Bourdon, Bernard; Kretzschmar, Ruben

    2013-06-18

    Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes provides a new tool for tracing Hg in contaminated environments such as mining sites, which represent major point sources of Hg pollution into surrounding ecosystems. Here, we present Hg isotope ratios of unroasted ore waste, calcine (roasted ore), and poplar leaves collected at a closed Hg mine (New Idria, CA, U.S.A.). Unroasted ore waste was isotopically uniform with δ(202)Hg values from -0.09 to 0.16‰ (± 0.10‰, 2 SD), close to the estimated initial composition of the HgS ore (-0.26‰). In contrast, calcine samples exhibited variable δ(202)Hg values ranging from -1.91‰ to +2.10‰. Small MIF signatures in the calcine were consistent with nuclear volume fractionation of Hg isotopes during or after the roasting process. The poplar leaves exhibited negative MDF (-3.18 to -1.22‰) and small positive MIF values (Δ(199)Hg of 0.02 to 0.21‰). Sequential extractions combined with Hg isotope analysis revealed higher δ(202)Hg values for the more soluble Hg pools in calcines compared with residual HgS phases. Our data provide novel insights into possible in situ transformations of Hg phases and suggest that isotopically heavy secondary Hg phases were formed in the calcine, which will influence the isotope composition of Hg leached from the site. PMID:23662941

  13. Isotopic signatures of H2 and CO uptake and emissions by soil

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Chen, Qianjie; Röckmann, Thomas

    2016-04-01

    We performed soil chamber experiments in order to determine the isotopic signatures of the exchange of H2 and CO between soil and atmosphere. The experiments took place at two sites in the Netherlands, a forest (Speuld) and a grass field (Cabauw). Flask samples were filled from the soil chamber, and then analyzed in the laboratory for δD in H2 and δ13C and δ18O in CO. The isotope results prove that, for both species, uptake and emission occur simultaneously regardless of the direction of the net flux. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  14. Biotic and abiotic experimental identification of bacterial influence on calcium isotopic signatures.

    PubMed

    Cobert, Florian; Schmitt, Anne-Désirée; Calvaruso, Christophe; Turpault, Marie-Pierre; Lemarchand, Damien; Collignon, Christelle; Chabaux, François; Stille, Peter

    2011-10-15

    In this study, we tested experimentally the influence of plant and bacterial activities on the calcium (Ca) isotope distribution between soil solutions and plant organs. Abiotic apatite weathering experiments were performed under two different pH conditions using mineral and organic acids. Biotic experiments were performed using either apatite or Ca-enriched biotite substrates in the presence of Scots pines, inoculated or not with the rhizosphere bacterial strain Bulkholderia glathei PML1(12), or the B. glathei PML1(12) alone. For each experiment, the percolate was collected every week and analyzed for Ca concentrations and Ca isotopic ratios. No Ca isotopic fractionation was observed for the different abiotic experimental settings. This indicates that no Ca isotopic fractionation occurs during apatite dissolution, whatever the nature of the acid (mineral or organic). The main result of the biotic experiments is the 0.22 ‰ (44)Ca enrichment recorded for a solution in contact with Scots pines grown on the bacteria-free apatite substrate. In contrast, the presence of bacteria did not cause Ca isotopic fractionation of the solution collected after 14 weeks of the experiments. These preliminary results suggest that bacteria influence the Ca isotopic signatures by dissolving Ca from apatite more efficiently. Therefore, Ca isotopes might be suitable for detecting bacteria-mediated processes in soils. PMID:21913253

  15. Detailed Carbon Isotopic Characterization of Aerosol-Derived Organic Carbon Deposited to two Temperate Watersheds

    NASA Astrophysics Data System (ADS)

    Wozniak, A. S.; Bauer, J. E.; Keesee, E. E.; McNichol, A. P.; Xu, L.; Dickhut, R. M.

    2008-12-01

    Atmospheric deposition of carbonaceous aerosols can be a quantitatively significant flux in the carbon budgets of temperate watersheds. Characterizing the sources and fates of this material is therefore critical for assessing its role in carbon and organic matter cycling in these systems. Aerosol samples were collected in the Hudson and York River watersheds throughout 2006-2007 and analyzed for quantities and isotopic signatures (δ13C, Δ14C) of total and water-soluble organic carbon (TOC, WSOC, respectively). On average ~2.4 and 2.1 mg m-2 d-1 of aerosol TOC were deposited to the Hudson and York River watersheds, respectively, and nearly half of this material was water-soluble. δ13C analyses indicated that both the TOC and the WSOC were primarily terrestrial in nature. TOC Δ14C signatures covered a broad range for both watersheds, with calculated contributions from fossil sources (e.g., anthropogenic combustion of petroleum, coal, etc.) ranging from 0% for samples collected during the summer of 2007 to approximately 50% for samples collected in the winter of 2007. Aerosol-derived WSOC Δ14C values were less variable and were nearly always enriched in 14C with respect to the corresponding TOC, indicating that contemporary aerosol material tends to partition into the aqueous phase, while fossil-derived aerosol OC is more likely to remain insoluble. However, WSOC still often showed considerable contributions from fossil OC (up to 20%). Thus, some portion of the anthropogenic fossil-derived aerosol OC is relatively soluble and may be transported hydrologically through watersheds and aquatic systems. A subset of aerosol samples from each watershed was selected for more thorough isotopic analysis of operationally-defined components of the carbonaceous material. Isotopic signatures were obtained for TOC, WSOC, total solvent-extract, and the aliphatic, aromatic, and polar components. Isotopic information on these fractions allows us to determine which components

  16. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  17. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils

    PubMed Central

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-01-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  18. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils.

    PubMed

    Jung, Man-Young; Well, Reinhard; Min, Deullae; Giesemann, Anette; Park, Soo-Je; Kim, Jong-Geol; Kim, So-Jeong; Rhee, Sung-Keun

    2014-05-01

    N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ(15)N(bulk) and δ(18)O -N2O of soil AOA strains were 13-30%, -13 to -35% and 22-36%, respectively, and strains MY1-3 and other soil AOA strains had distinct isotopic signatures. A (15)N-NH4(+)-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA. PMID:24225887

  19. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  20. Determining Clumped Isotope (Δ47) Signatures of CO2 During Ion-Molecule Isotopic Exchange Reactions

    NASA Astrophysics Data System (ADS)

    Sarna, J.; Priyadarshi, A.; Pourmorady, P.; Tripati, A.; Estaris, J.

    2015-12-01

    The abundance of multiply-substituted isotopologues such as 13C16O18O can be used to understand fundamental mechanisms that controls isotopic fractionation in chemical reactions. Knowledge of the energy-dependent ion-molecule isotopic exchange rate for 13C16O18O may also provide important insights into the CO2 ion-molecular exchange that occurs in the source of the mass spectrometer. It may offer an explanation for the recently observed nonlinearities associated with clumped isotope measurements. We designed a controlled set of laboratory experiments to investigate variations in the abundance of 13C16O18O associated with different ion-molecular isotopic exchange reactions. In our experiments, we characterize the effects of changing ionization energy, reaction time, CO2 amount, the presence of different compounds, and reaction chamber temperature on the clumped isotopic composition of CO2.

  1. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae.

    PubMed

    Derse, Elizabeth; Knee, Karen L; Wankel, Scott D; Kendall, Carol; Berg, Carl J; Paytan, Adina

    2007-08-01

    Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (delta(15)N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low delta(15)N values (average -0.5% per hundred) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impact this coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans. PMID:17822082

  2. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae

    USGS Publications Warehouse

    Derse, E.; Knee, K.L.; Wankel, Scott D.; Kendall, C.; Berg, C.J., Jr.; Paytan, A.

    2007-01-01

    Sewage effluent, storm runoff, discharge from polluted rivers, and inputs of groundwater have all been suggested as potential sources of land derived nutrients into Hanalei Bay, Kauai. We determined the nitrogen isotopic signatures (??15N) of different nitrate sources to Hanalei Bay along with the isotopic signature recorded by 11 species of macroalgal collected in the Bay. The macroalgae integrate the isotopic signatures of the nitrate sources over time, thus these data along with the nitrate to dissolved inorganic phosphate molar ratios (N:P) of the macroalgae were used to determine the major nitrate source to the bay ecosystem and which of the macro-nutrients is limiting algae growth, respectively. Relatively low ??15N values (average -0.5???) were observed in all algae collected throughout the Bay; implicating fertilizer, rather than domestic sewage, as an important external source of nitrogen to the coastal water around Hanalei. The N:P ratio in the algae compared to the ratio in the Bay waters imply that the Hanalei Bay coastal ecosystem is nitrogen limited and thus, increased nitrogen input may potentially impactthis coastal ecosystem and specifically the coral reefs in the Bay. Identifying the major source of nutrient loading to the Bay is important for risk assessment and potential remediation plans. ?? 2007 American Chemical Society.

  3. Investigation into nitrogen attenuation in groundwater pathways in Irish RBDs through the use of stable isotopic signature analysis

    NASA Astrophysics Data System (ADS)

    Orr, Alison; Ofterdinger, Ulrich; Flynn, Raymond

    2010-05-01

    Nitrogen has been identified by the Water Framework Directive as a major pollutant of concern in terms of water quality. Nitrogen contamination can pose a threat to human health and excessive loading into surface waters can lead to eutrophication. This research aims to investigate groundwater pathways from diffuse sources of nitrogen contamination and attenuation processes in various geological settings in Ireland. As part of the EPA Strive Pathways Project, the overall purpose of this research is to improve the understanding of nitrogen attenuation processes in groundwater for the development of a catchment management tool to assess the risk posed by diffuse contamination to surface and groundwater receptors. This will be undertaken through examining nitrogen attenuation pathways in various geological settings in distinctly different catchments in Ireland. These catchments include Gortinlieve in Co. Donegal and Mattock in Co. Louth which are both poorly drained catchments and Nuenna in Co. Kilkenny which is a well drained limestone catchment. This research will be useful to develop further ongoing research carried out into the natural chemistry of the Gortinlieve catchment. The research will focus mainly on characterising the fractionation of stable nitrogen isotopes in groundwater. The use of the stable isotopes δ15N and δ18O in the study of denitrification has been well documented in literature. In addition, the isotopes δ13C and δ34S have also been shown to be useful in evaluating the influence of sulphur and carbon as electron donors in denitrification. For example FeS2 produced as a result of denitrification has a different isotopic signature than FeS2 produced from other processes. This research aims to apply these established stable isotope signatures to a new context in terms of the catchment geology and the broader integrated approach of the Pathways project. Furthermore factors influencing the rate of attenuation will be explored, such as: strata

  4. Why do Different Anthropogenic Sources of Atmospheric Nitrate have Distinctive Isotopic Signatures?

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Elliott, E. M.; Wankel, S. W.; Boyer, E. W.; Burns, D. A.

    2007-12-01

    Do different sources of atmospheric nitrate (power plants, vehicles, agricultural emissions) have distinctive isotopic signatures? To answer this question, we conducted a national survey of nitrate isotopes in wet deposition samples collected throughout the USA from 156 NADP sites. Archived samples from the year 2000 were pooled into bimonthly composites and analyzed for d15N and d18O, with a subset analyzed for D17O. In this presentation, we present our current thoughts about why the different sources have distinctive isotopic signatures, focusing mainly on oxygen isotopes of nitrate. Our original conceptual model was based largely on (1) Heaton's 1990 paper that showed that NOx emissions from power plants in South Africa had d15N values significantly higher than exhaust from vehicles, and (2) anecdotal data from several studies showing higher d15N and/or d18O values of nitrate in precipitation downwind of areas dominated by power plants. Our model proposed that atmospheric nitrate derived from near- surface sources (e.g., vehicle and biogenic emissions) would obtain d18O and D17O signatures predominantly from near-surface O2 produced by photosynthesis (averaging +23 permil), whereas NOx exiting power plant stacks would circulate higher into the atmosphere and obtain nitrate d18O and D17O signatures predominantly from tropospheric O3 (+95 and +35 permil, respectively). We speculated that the source discrimination seen in NOx emissions would be maintained in the atmospheric nitrate ultimately derived from it, despite potential isotopic fractionation during conversion to nitrate. Furthermore, because of the likelihood of temporal and spatial variation in the compositions of NOx exiting individual combustion engines due to changes in temperature, fuel types, and other operating conditions, we suspected that source signatures would best be determined after the NOx had been converted to nitrate. Hence, we proposed to determine source signatures primarily from

  5. Radiogenic Carbon Isotopes in Authigenic Carbonate from Lake Neusiedl, Austria

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Steier, Peter; Gier, Susanne; Draganits, Erich; Kogelbauer, Ilse

    2015-04-01

    Formation of authigenic carbonate in Lake Neusiedl, Austia, has been reported since the 1960ies. The reaction pathways resulting in carbonate precipitation (protodolomite and high magnesium calcite) have yet to be identified. Lake Neusiedl is a shallow lake without significant sediment accumulation but constant reworking of sediment due to its shallow depth (1.8m) and influence by wind. The sediments are water-saturated silts and clays that overly Neogene sediments. The age of Lake Neusiedl is unknown due to its low sedimentation rate and constant remixing of sediment. Dating of authigenic minerals is an alternative method to determine the minimum age of water present - even episodically - at the location. We characterize the sediments mineralogy in different size fractions by X-Ray Diffractometry (XRD), Simultaneous Themo Analysis (STA) and Fourier Transform Infra Red Spectroscopy, stable carbon and oxygen isotopes as well as radiogenic carbon. To describe the authigenic carbonates and find the fractions with highest authigenic carbonate minerals we investigate the size fractions <4 µm, <3 µm, <2 µm, <1 µm, 0.5 µm and <0.2 µm. The "coarser" fractions (4 µm to 2 µm) contain detrital minerals such as chlorite, muscovite, quartz, feldspar, stoichiometric calcite and stoichiometric dolomite as well as authigenic high Mg calcite. Radiogenic carbon ages increase with increasing grain size from 850 years before present to 2300 years before present and indicate a very slow growth rate or episodic growth of authigenic carbonate phases.

  6. The "Flood of the Century" as Isotopic Fingerprint in Canopy d18O Signatures

    NASA Astrophysics Data System (ADS)

    Seibt, U.; Wingate, L.; Berry, J. A.

    2006-12-01

    The d18O composition of water and CO2 exchange at smaller scales (leaf and ecosystem) can be affected by changes in environmental conditions at larger (regional) scales. During a sampling campaign in a beech forest in Germany in August 2002, we encountered such a large scale change when dry sunny weather was followed by a large storm system with heavy rains leading to floods across Europe. During the first, sunny period, bulk leaf water d18O was -1 permil at night and 7 permil at mid-day. Foliage CO2 exchange had positive values of 18O discrimination during photosynthesis (10-30 permil) and nocturnal respiration (11 permil). The second period had frequent rains and mostly diffuse light, with reduced foliage water fluxes but similar carbon fluxes. Canopy vapour d18O decreased at least 2 permil, and leaf water then reflected isotopic exchange with this depleted vapour due to the high humidity. Hence, bulk leaf water was substantially more depleted at night (-8 permil) and showed virtually no evaporative enrichment during the day (-5 permil). Values of 18O discrimination during CO2 exchange were small or even negative for photosynthesis (-2 to 6 permil) but larger for nocturnal respiration (23-39 permil). Model simulations indicated that the small positive foliage isoflux during the day was offset by the negative isoflux at night. As a consequence, the d18O of CO2 in canopy air decreased from -0.3 permil during the sunny period to -3 permil during the wet period. The d18O signatures of canopy water and CO2 thus reflected the transition from local water to the regional regime of depleted water deposited across the area by the storm.

  7. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  8. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars

    PubMed Central

    Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.

    2010-01-01

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  9. Stable carbon and oxygen isotopes as an indicator for soil degradation

    NASA Astrophysics Data System (ADS)

    Alewell, C.; Schaub, M.; Seth, B.

    2009-04-01

    Analyses of soil organic carbon content (SOC) and stable carbon and oxygen isotope signatures (^13C) of soils were assessed for their suitability to detect early stage soil erosion. Results were validated with Cs-137 measurements. We investigated the soils in the alpine Urseren Valley (Southern Central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visual soil erosion and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of ^13C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of ^13C of these upland soils mainly reflect decomposition of SOC. Long term disturbance of an upland soil is indicated by decreasing correlation of ^13C and SOC (r ? 0.80) which goes parallel to increasing (visual) damage at the site. Early stage soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate ^13C value (27.5 ) for affected wetland soil horizons (0 - 12 cm) between upland (aerobic metabolism, relatively heavier ^13C of 26.6 ) and wetland isotopic signatures (anaerobic metabolism, relatively lighter ^13C of 28.6 ). Cs-137 measurements confirmed stable isotope analysis. Stable oxygen isotope signature (^18O) of soil is the result of a mixture of the components within the soil with varying ^18O signatures. Thus, ^18O of soils should provide information about the soil's substrate, especially about the relative contribution of organic matter versus minerals. As there is no standard method available for measuring soil ^18O, the method for measurement of single components using High Temperature Conversion Elemental Analyzer (TC/EA) was adapted. We measured ^18O in standard materials (IAEA 601, IAEA 602, Merck Cellulose

  10. Carbon-isotopic analysis of dissolved acetate

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Hayes, J. M.

    1990-01-01

    Heating of dried, acetate-containing solids together with oxalic acid dihydrate conveniently releases acetic acid for purification by gas chromatography. For determination of the carbon-isotopic composition of total acetate, the acetate-containing zone of the chromatographic effluent can be routed directly to a combustion furnace coupled to a vacuum system allowing recovery, purification, and packaging of CO2 for mass-spectrometric analysis. For analysis of methyl carbon, acetic acid can be cryogenically trapped from the chromatographic effluent, then transferred to a tube containing excess NaOH. The tube is evacuated, sealed, and heated to 500 degrees C to produce methane by pyrolysis of sodium acetate. Subsequent combustion of the methane allows determination of the 13C content at the methyl position in the parent acetate. With typical blanks, the standard deviation of single analyses is less than 0.4% for acetate samples larger than 5 micromoles. A full treatment of uncertainties is outlined.

  11. Stable Hg isotope signatures in creek sediments impacted by a former Hg mine.

    PubMed

    Smith, Robin S; Wiederhold, Jan G; Jew, Adam D; Brown, Gordon E; Bourdon, Bernard; Kretzschmar, Ruben

    2015-01-20

    The goal of this study was to investigate the Hg stable isotope signatures of sediments in San Carlos Creek downstream of the former Hg mine New Idria, CA, USA and to relate the results to previously studied Hg isotope signatures of unroasted ore waste and calcine materials in the mining area. New Idria unroasted ore waste was reported to have a narrow δ(202)Hg range (−0.09 to 0.16‰), while roasted calcine materials exhibited a very large variability in δ(202)Hg (−5.96 to 14.5‰). In this study, creek sediment samples were collected in the stream bed from two depths (0–10 and 10–20 cm) at 10 locations between the mine adit and 28 km downstream. The sediment samples were size-fractionated into sand, silt, and (if possible) clay fractions as well as hand-picked calcine pebbles. The sediment samples contained highly elevated Hg concentrations (8.2 to 647 μg g(–1)) and displayed relatively narrow mass-dependent fractionation (MDF, δ(202)Hg; ± 0.08‰, 2SD) ranges (−0.58 to 0.24‰) and little to no mass-independent fractionation (MIF, Δ(199)Hg; ± 0.04‰, 2SD) (0.00 to 0.10‰), similar to what was observed previously for the unroasted ore waste. However, due to the highly variable and overlapping δ(202)Hg signatures of the calcines, they could not be ruled out as source of Hg to the creek sediments. Overall, our results suggest that analyzing creek sediments downstream of former Hg mines can provide a more reliable Hg isotope source signature for tracing studies at larger spatial scales, than analyzing the isotopically highly heterogeneous tailing piles typically found at former mining sites. Creek sediments carry an integrated isotope signature of Hg transported away from the mine with runoff into the creek, eventually affecting ecosystems downstream. PMID:25489982

  12. Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2014-04-01

    Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for

  13. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  14. The Oxygen Isotopic Signature of Nitrous Oxide is Determined by Oxygen Exchange

    NASA Astrophysics Data System (ADS)

    Kool, D. M.; Wrage, N.; Oenema, O.; Harris, D.; van Groenigen, J.

    2008-12-01

    In order to derive accurate budget estimations and effective mitigation strategies for the greenhouse gas nitrous oxide (N2O), it is essential to identify the processes involved in its production. Analyses of the isotopic composition of N2O are increasingly used to characterize the importance of these processes. However, we argue that the reliability of results based on oxygen (O) isotopic analysis of N2O may be questioned due to insufficient consideration of O exchange between H2O and nitrogen oxides. We studied the process of O exchange in 12 widely varying soils using a novel combination of 18O and 15N tracing experiments. Incorporation of O from 18O-enriched H2O into N2O exceeded theoretical maxima based on reaction stoichiometry, revealing the presence of O exchange. Novel methodology based on the retention of the 18O:15N-enrichment ratio of NO3- in N2O allowed to quantify O exchange during denitrification: up to 97% of N2O-O originated from H2O instead of NO3-. Our results show that in soil, the main source of N2O, the conventional assumption that the O isotopic composition of N2O is determined by reaction stoichiometry and isotopic fractionation during its production does not hold. In all cases, the O isotopic signature of N2O was found to be dominated by the effect of O exchange between nitrogen oxides and water. We speculate that the implications of O exchange will extend across terrestrial and aquatic ecosystems, and possibly to other nitrogen oxides as well. Especially, a potential effect of O exchange on the O isotopic signature of NO3- needs to be studied, as this is routinely used for NO3- source determination. Our results may facilitate the development of improved methodology to study and understand the global N cycle.

  15. Carbon isotope fractionation in synthetic magnesian calcite

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  16. Isotopic and Geochemical signatures of different aged drained thaw lake basins (DTLBs) and drainage channels in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Throckmorton, H.; Perkins, G.; Rearick, M.; Altmann, G. L.; Cohen, L. R.; Hudak, M.; Gard, M.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.

    2013-12-01

    associated with large drainage channels had highly reducing conditions, relative to less distinct, smaller internal drainages. Dissolved inorganic carbon (DIC) concentrations ranged from 0-734ppm HCO3-, and exhibited a trend of greater concentration with depth for nearly all sites. The 13C DIC isotope signature ranged widely, from -2.2 to -25.1, with the lightest values at the shallow subsurface depth for all sites relative to the surface and deeper subsurface. Additional results will discuss concentrations and isotope signatures of dissolved CH4 (C13 and H2) and organic C at the selected sites; as well as geochemistry (anions and metals).

  17. Compound-Specific Stable Carbon Isotope Analysis of Chlorofluorocarbons in Groundwater.

    PubMed

    Horst, Axel; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2015-10-20

    Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), controlled substances due to their role in stratospheric ozone loss, also occur as dissolved contaminants in groundwaters. Stable carbon isotopic signatures may provide valuable new information on the fate of these compounds as has been seen for other priority hydrocarbon contaminants, but to date no method for extraction and isotopic analysis of dissolved CFCs from groundwaters has been developed. Here we describe a cryogenic purge and trap system coupled to continuous flow compound-specific stable carbon isotope analysis mass spectrometry for concentrations as low as 35 μg/L. The method is validated by comparing isotopic signatures from water extracted CFCs against a new suite of isotopic CFC standards. Fractionation of CFCs in volatilization experiments from pure-phase CFC-11 and CFC-113 resulted in enrichment factors (ε) of +1.7 ± 0.1‰ and +1.1 ± 0.1‰, respectively, indicating that such volatile loss, if significant, would produce a more (13)C depleted signature in the remaining CFCs. Importantly, no significant fractionation was observed during volatile extraction of dissolved CFCs from aqueous solutions. δ(13)C values for groundwaters from a CFC-contaminated site were, on average, more enriched than δ(13)C values for pure compounds. Such enriched δ(13)C values have been seen in other hydrocarbon contaminants such as chlorinated ethenes and ethanes due to in situ degradation, but definitive interpretation of such enriched signatures in field samples requires additional experiments to characterize fractionation of CFCs during biodegradation. The establishment of a robust and sensitive method of extraction and analysis, as described here, provides the foundation for such future directions. PMID:26383531

  18. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by

  19. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    SciTech Connect

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organic carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.

  20. A Clumped Isotope Calibration for Lacustrine Carbonates

    NASA Astrophysics Data System (ADS)

    Mitsunaga, B. A.; Mering, J. A.; Petryshyn, V. A.; Dunbar, R. B.; Cohen, A. S.; Liu, X.; Kaufman, D. S.; Eagle, R.; Tripati, A.

    2014-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of past climate reconstructions. Unfortunately, many terrestrial proxies—tree rings, speleothems, leaf margin analyses, etc.—are influenced by the effects of both temperature and precipitation. Methods that can isolate the effects of temperature alone are needed, and clumped isotope thermometry has the potential to be a useful tool for determining terrestrial climates. Multiple studies have shown that the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed and may be a useful proxy for reconstructing temperatures on land. An in-depth survey of lacustrine carbonates, however, has not yet been published. Therefore we have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of modern lake samples' carbonate minerals in phosphoric acid and comparing results to independently known estimates of lake water temperature and air temperature. Some of the sample types we have investigated include endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  1. Nutrient cycling in the Atlantic basin: The evolution of nitrate isotope signatures in water masses

    NASA Astrophysics Data System (ADS)

    Tuerena, R. E.; Ganeshram, R. S.; Geibert, W.; Fallick, A. E.; Dougans, J.; Tait, A.; Henley, S. F.; Woodward, E. M. S.

    2015-10-01

    A basin-wide transect of nitrate isotopes (δ15NNO3, δ18ONO3), across the UK GEOTRACES 40°S transect in the South Atlantic is presented. This data set is used to investigate Atlantic nutrient cycling and the communication pathways of nitrogen cycling processes in the global ocean. Intermediate waters formed in the subantarctic are enriched in δ15NNO3 and δ18ONO3 from partial utilization of nitrate by phytoplankton and distant denitrification processes, transporting heavy isotope signatures to the subtropical Atlantic. Water mass modification through the Atlantic is investigated by comparing data from 40°S (South Atlantic) and 30°N (North Atlantic). This reveals that nitrate in the upper intermediate waters is regenerated as it transits through the subtropical Atlantic, as evidenced by decreases in δ18ONO3. We document diazotrophy-producing high N:P particle ratios (18-21:1) for remineralization, which is further confirmed by a decrease in δ15NNO3 through the subtropical Atlantic. These modifications influence the isotopic signatures of the North Atlantic Deep Water (NADW) which is subsequently exported from the Atlantic to the Southern Ocean. This study reveals the dominance of recycling processes and diazotrophy on nitrate cycling in the Atlantic. These processes provide a source of low δ15NNO3 to the Southern Ocean via the NADW, to counteract enrichment in δ15NNO3 from water column denitrification in the Indo/Pacific basins. We hence identify the Southern Ocean as a key hub through which denitrification and N2 fixation communicate in the ocean through deepwater masses. Therefore, the balancing of the oceanic N budget and isotopic signatures require time scales of oceanic mixing.

  2. Isotopic noble gas signatures released from medical isotope production facilities - Simulations and measurements

    SciTech Connect

    Saey, Paul R.; Bowyer, Ted W.; Ringbom, Anders

    2010-09-09

    Journal article on the role that radioxenon isotopes play in confirming whether or not an underground explosion was nuclear in nature. Radioxenon isotopes play a major role in confirming whether or not an underground explosion was nuclear in nature. It is then of key importance to understand the sources of environmental radioxenon to be able to distinguish civil sources from those of a nuclear explosion. Based on several years of measurements, combined with advanced atmospheric transport model results, it was recently shown that the main source of radioxenon observations are strong and regular batch releases from a very limited number of medical isotope production facilities. This paper reviews production processes in different medical isotope facilities during which radioxenon is produced. Radioxenon activity concentrations and isotopic compositions are calculated for six large facilities. The results are compared with calculated signals from nuclear explosions. Further, the outcome is compared and found to be consistent with radioxenon measurements recently performed in and around three of these facilities. Some anomalies in measurements in which {sup 131m}Xe was detected were found and a possible explanation is proposed. It was also calculated that the dose rate of the releases is well below regulatory values. Based on these results, it should be possible to better understand, interpret and verify signals measured in the noble gas measurement systems in the International Monitoring of the Comprehensive Nuclear-Test-Ban Treaty.

  3. Variations of Carbon Isotopes during Shale Gas Production from the Horn River Basin, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Norville, G.; Muehlenbachs, K.

    2014-12-01

    Chemical and stable isotope compositions of natural gases are key parameters for characterizing gas and hydrocarbon reservoirs. Produced gases were obtained from eight wells at multi-well pad sites located in the Horn River Basin (HRB), NE British Columbia. Shale gas wells were drilled and completed in the Devonian Muskwa, Otter Park and Evie Formations of the HRB, and gases collected as time series over short term (~50 days) and long term periods (~ 1250 days). δ13C of gases from HRB formations confirm high thermal maturity and the shale gases frequently showed partial or full isotope reversals among hydrocarbon components. A 10‰ variation in δ13C values of methane was observed during production. In general, during early phases of production shale gases appear enriched in 12C compared to gases sampled at later stages and δ13Cmethane values were approximately between -38‰ and -35‰ during times up to 50 days. The majority of cases of carbon isotope reversals between methane and ethane components of gases (δ13Cmethane > δ13Cethane) were observed at times greater than 100 days, while ethane and propane reversals were common throughout production. Gas production rates differed significantly among the sampled wells from ~ 50 to 400 e3m3/d. Higher rates were frequently associated with gases showing 12Cmethane enrichment. Subsequent to periods of well 'shut in' a change in the carbon isotope composition was detected with enrichment in 13Cmethane of gases. Carbon isotope signatures of produced gases likely reflect a combination of both the in-situ shale gas isotope signature as well as effects of isotope fractionation which may occur during transport through pores and fractures of the shale.

  4. Genetic Effect on Carbon-Isotope Composition of a Plant

    NASA Astrophysics Data System (ADS)

    Yeh, H.

    2005-05-01

    Stable carbon isotopes of organic sediments are potential tools in investigating a wide spectrum of geological problems. These include paleoclimate, paleoecology, and the origin of life. The quality of the information the tools provides depends largely on our knowledge on the factors determining the isotopic composition of a plant. This is because most biogenic organic sediments are derived from plants. The factors can be grouped into internal and external. The internal factors are ultimately attributable to the genetic make-up of a plant. The most well known internal factor is the photosynthetic pathway. Others include structure of the leave tissue and metabolic characteristics of a plant. External factors are concentration and the isotopic composition of the source CO2 and the physical and chemical conditions of the plant's growth environments. This study addresses primarily the genetic effect, the internal factors. Based on the results of two suites of natural plant samples, it is concluded that the difference in photosynthetic pathway entails about 20.0 % of spread in terms of ä13CPDB values. Genetic effect is also accountable for up to 7.0 to 8.0 % spread in ä13CPDB values within a single category of photosynthetic pathway (i.e. the Calvin cycle). With constrains from the relevant known knowledge, it is concluded that the ä13CPDB values of terrestrial plants are probably ranging from - 8.0 to equal or less than -44.9 %. This range of ä13CPDB values may also be considered the bio-signature of organic sediments of great antiquity.

  5. Systematic AMD+GCM Study of Structure of Carbon Isotopes

    SciTech Connect

    Thiamova, G.; Itagaki, N.; Otsuka, T.; Ikeda, K.

    2004-02-27

    The structure of low-lying states of the carbon isotopes is investigated using the extended version of the Antisymmetrized Molecular Dynamics (AMD) Multi-Slater Determinant model. We can reproduce reasonably well many experimental data for carbon isotopes 12C-22C. A special approach is adopted for 15C to better describe the tail of the wave function.

  6. Preservation of carbonate clumped isotopes in sedimentary paleoclimate archives

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Shenton, B.; Perez-Huerta, A.

    2014-12-01

    Carbonate clumped isotope thermometry is increasingly used to reconstruct paleotemperatures of ancient terrestrial environments. One promising application is elucidating paleoelevation from carbonate archives such as paleosols, lacustrine marls, and fossil freshwater shells. Unlike conventional stable isotope approaches (e.g., mineral δ18O or δD), clumped isotope thermometry is independent of the isotopic composition of the precipitating waters and can therefore be used to reconstruct elevation by both the temperature-altitude relationship and the rainfall δ18O-altitude relationship. However, interpretation of clumped isotope data is not without its own complications. Like conventional stable isotopes, clumped isotope paleotemperatures can be effectively reset to warmer values by dissolution/reprecipitation-type diagenesis during sedimentary burial. It is also known that carbonate clumped isotope bonds (i.e., 13C-18O) are susceptible to 'reordering' in the solid mineral lattice at warmer burial temperatures, with laboratory studies of natural carbonates indicating activation of this phenomenon at temperatures as low as 100 °C over geologic timescales. A challenge in applying carbonate clumped isotope thermometry to natural samples is now evaluating terrestrial archives with respect to both types of alteration: 'open-system' alteration and 'closed-system' bond reordering. In this talk we will review our experimental efforts to constrain the kinetics of clumped isotope reordering, with relevance to low-temperature carbonates like fossil shells and early diagenetic minerals, and present new laboratory data that further inform our theoretical framework for the mechanism(s) of 13C-18O bond reordering. Together with traditional analytical and petrographic screening for recrystallization, empirical and laboratory studies of carbonate clumped isotope reordering represent the next steps in evaluating isotopic records of paleoclimate, paleobiology, and paleoelevation

  7. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  8. Carbon isotope stratigraphy of the upper Kharaib and Shuaiba formations: Implications for the Early Cretaceous evolution of the Arabian Gulf Region

    SciTech Connect

    Vahrenkamp, V.C.

    1996-05-01

    The carbon isotope profiles of shallow-marine carbonates from the Barremian-Aptian Kharaib and Shuaiba formations of the Arabian Gulf region range between 0.5 and 7{per_thousand} {delta}{sup 13}C PDB (Peedee belemnite). Systematic variations can be correlated with isotope profiles reported from Tethyan pelagic limestone sequences. The detailed correspondence between the isotopic signature of the relatively well-dated pelagic limestones and the poorly dated shallow-water limestones from the Arabian Gulf region suggests that global marine carbon isotope changes apparently affected deep-sea and shallow-water carbonate sediments similarly and at a similar time resolution. Although oxygen isotopes have been reset during diagenesis, carbon isotopes appear to have maintained their primary marine signature through time. No evidence has been found to connect carbon isotope trends to subaerial exposure or later meteoric diagenesis. In combination with other data, the investigated carbon isotope profiles can be used for basin-to-platform and regional correlations beyond the current resolution of biostratigraphy in shallow-water limestones. Carbon isotope stratigraphy confirms significant hiatuses in the investigated shallow-water carbonate sequences. Using carbon isotope trends as a proxy for sea level fluctuations, the carbon isotope cycles of the late Early Cretaceous of the Arabian Gulf region may represent four cycles of rising and falling sea level with a duration corresponding to that of third-order sea level fluctuations. Regional correlations derived from isotope trends provide a scenario for the larger scale stratigraphic evolution of the Arabian peninsula during the end of the Early Cretaceous.

  9. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Blättler, Clara L.; Miller, Nathaniel R.; Higgins, John A.

    2015-06-01

    Authigenic carbonates in marine sediments frequently have carbon isotope ratios that reflect local organic carbon processing rather than the δ13C of the global DIC (dissolved inorganic carbon) reservoir, but their contributions to ancient sedimentary sections are difficult to assess. In this study of authigenic dolomite from the Miocene-age Monterey Formation of offshore California, Mg and Ca isotopes are shown to vary with stratigraphic depth as a result of early diagenetic processes. The dolomite is a pre-compaction authigenic phase that occurs as beds and nodules with δ13C ranging from -16 to + 9 ‰. Light δ13C values were likely acquired from the sedimentary zone of microbial sulfate reduction, while heavy δ13C values were acquired from the zone of methanogenesis. Mg and Ca isotopes are roughly anti-correlated, with intervals of negative δ13C associated with low δ26Mg and higher δ 44/40Ca values. The variability is observed over a wide range of length-scales, from 10-2 meters within individual authigenic beds/nodules, to 102 meters over the entire stratigraphic column, and can be understood as the consequence of dolomite precipitation in pore fluids where Mg supply is limited by diffusive transport. The relationship of δ26Mg and δ 44/40Ca to the more common stable isotope measurements of δ13C and δ18O represents a new, diagenetically robust, geochemical fingerprint for identifying synsedimentary authigenic carbonates in the geological record.

  10. Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic.

    PubMed

    Pereira, N S; Voegelin, A R; Paulukat, C; Sial, A N; Ferreira, V P; Frei, R

    2016-01-01

    Chromium-isotope compositions (expressed as δ(53) Cr) of recent and ancient skeletal and non-skeletal carbonates are currently explored as a (paleo-) redox-proxy for shallow seawater. The idea behind this approach is that biogenic and non-biogenic carbonates could potentially be used as archives recording the Cr-isotope composition of seawater in which they formed, and with this contribute to the reconstruction of past paleo-environmental changes in the marine realm, and potentially to climate changes on land. However, investigations addressing the behavior and uptake mechanism of Cr, and the potential isotope fractionations between seawater and biogenic carbonates are scarce. Here, we present a study of Cr-isotope variations in three species of corals and contemporary seawater from the Rocas Atoll, NE, Brazil. Cr-isotope values of the studied coral species (Siderastrea stellata, Porites sp., and Montastrea cavernosa) vary from -0.5 to +0.33‰ and point to significant isotopic disequilibrium with coexisting seawater characterized by a Cr-isotope value of +0.92 ± 0.2‰. This isotopic offset requires reduction of hexavalent Cr(VI) in the sequestration process of all the studied coral species. Cr-isotope values in a profile across an S. stellata colony returned homogeneous, slightly positively fractioned δ(53) Cr values of +0.07 ± 0.08‰ (n = 8, 2σ), which we interpret to reflect a constant reductive uptake during the 20-year growth period recorded in this coral. In contrast, samples across a 12-year growth profile from Porites sp. display rather heterogeneous Cr-isotope values with δ(53) Cr varying from -0.50 to +0.10‰, indicating Cr incorporation under changing redox processes during its growth intervals. We propose a mechanism whereby initial photoreduction of isotopically heavy Cr(VI) to isotopically lighter Cr(III) in the endodermal layer of corals must be followed by efficient and effective re-oxidation of reduced Cr species to favor subsequent

  11. Oxygen isotope signature of P i regeneration from organic compounds by phosphomonoesterases and photooxidation

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2006-08-01

    Phosphomonoesters are an important source of dissolved inorganic orthophosphate (PO 4 or P i), the preferred form of P utilized by microbiota and aquatic plants in marine and freshwater ecosystems. Two enzymes involved in phosphomonoester metabolism and commonly detected in natural waters (alkaline phosphatase and 5'-nucleotidase) have been studied to determine the oxygen isotope signature of P i-regeneration from phosphomonoesters by enzymatic degradation. Oxygen (O) isotope ratios of water and P i released from phosphomonoesters during enzyme hydrolysis experiments demonstrate that released P i incorporates one oxygen atom from water. The isotopic fractionation between this incorporated water O and ambient water O is -30 (±8)‰ for alkaline phosphatase and -10 (±1)‰ for 5'-nucleotidase, with very weak dependence on temperature. The result of these enzyme-specific isotopic fractionations at one of the four O sites in PO 4 is that the δ 18O value of P i regenerated by 5'-nucleotidase is 5‰ higher than P i regenerated by alkaline phosphatase from the same phosphomonoester substrate. The δ 18O value of regenerated P i also reflects inheritance of 75% of O from the phosphomonoester substrate, thus making the δ 18O of phosphomonoester-derived P i a potential tracer of organophosphorous compound sources. Phosphomonoesterase-regenerated P i has a distinct phosphate oxygen isotope signature that is different and distinguishable from that of biologically recycled and subsequently equilibrated P i and P i regenerated from photooxidation of organic matter. The δ 18O value of regenerated P i will correlate positively with the δ 18O value of bulk water and the fractionation, α, between regenerated P i and water, αregen Pi-water , should converge toward equilibrium αPi-water values with increased biological cycling of P i.

  12. Isotopic noble gas signatures released from medical isotope production facilities--simulations and measurements.

    PubMed

    Saey, Paul R J; Bowyer, Theodore W; Ringbom, Anders

    2010-09-01

    Radioxenon isotopes play a major role in confirming whether or not an underground explosion was nuclear in nature. It is then of key importance to understand the sources of environmental radioxenon to be able to distinguish civil sources from those of a nuclear explosion. Based on several years of measurements, combined with advanced atmospheric transport model results, it was recently shown that the main source of radioxenon observations are strong and regular batch releases from a very limited number of medical isotope production facilities. This paper reviews production processes in different medical isotope facilities during which radioxenon is produced. Radioxenon activity concentrations and isotopic compositions are calculated for six large facilities. The results are compared with calculated signals from nuclear explosions. Further, the outcome is compared and found to be consistent with radioxenon measurements recently performed in and around three of these facilities. Some anomalies in measurements in which (131m)Xe was detected were found and a possible explanation is proposed. It was also calculated that the dose rate of the releases is well below regulatory values. Based on these results, it should be possible to better understand, interpret and verify signals measured in the noble gas measurement systems in the International Monitoring of the Comprehensive Nuclear-Test-Ban Treaty. PMID:20447828

  13. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was

  14. Use of stable isotope signatures to determine mercury sources in the Great Lakes

    USGS Publications Warehouse

    Lepak, Ryan F.; Yin, Runsheng; Krabbenhoft, David P.; Ogorek, Jacob M.; DeWild, John F.; Holsen, Thomas M.; Hurley, James P.

    2015-01-01

    Sources of mercury (Hg) in Great Lakes sediments were assessed with stable Hg isotope ratios using multicollector inductively coupled plasma mass spectrometry. An isotopic mixing model based on mass-dependent (MDF) and mass-independent fractionation (MIF) (δ202Hg and Δ199Hg) identified three primary Hg sources for sediments: atmospheric, industrial, and watershed-derived. Results indicate atmospheric sources dominate in Lakes Huron, Superior, and Michigan sediments while watershed-derived and industrial sources dominate in Lakes Erie and Ontario sediments. Anomalous Δ200Hg signatures, also apparent in sediments, provided independent validation of the model. Comparison of Δ200Hg signatures in predatory fish from three lakes reveals that bioaccumulated Hg is more isotopically similar to atmospherically derived Hg than a lake’s sediment. Previous research suggests Δ200Hg is conserved during biogeochemical processing and odd mass-independent fractionation (MIF) is conserved during metabolic processing, so it is suspected even is similarly conserved. Given these assumptions, our data suggest that in some cases, atmospherically derived Hg may be a more important source of MeHg to higher trophic levels than legacy sediments in the Great Lakes.

  15. Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Slater, Richard D.; Hain, Mathis P.; Brzezinski, Mark A.; Sarmiento, Jorge L.

    2015-12-01

    It has been suggested that the uniquely high δ30Si signature of North Atlantic Deep Water (NADW) results from the contribution of isotopically fractionated silicic acid by mode and intermediate waters that are formed in the Southern Ocean and transported to the North Atlantic within the upper limb of the meridional overturning circulation (MOC). Here, we test this hypothesis in a suite of ocean general circulation models (OGCMs) with widely varying MOCs and related pathways of nutrient supply to the upper ocean. Despite their differing MOC pathways, all models reproduce the observation of a high δ30Si signature in NADW, as well showing a major or dominant (46-62%) contribution from Southern Ocean mode/intermediate waters to its Si inventory. These models thus confirm that the δ30Si signature of NADW does indeed owe its existence primarily to the large-scale transport of a distal fractionation signal created in the surface Southern Ocean. However, we also find that more proximal fractionation of Si upwelled to the surface within the Atlantic Ocean must also play some role, contributing 20-46% of the deep Atlantic δ30Si gradient. Finally, the model suite reveals compensatory effects in the mechanisms contributing to the high δ30Si signature of NADW, whereby less export of high-δ30Si mode/intermediate waters to the North Atlantic is compensated by production of a high-δ30Si signal during transport to the NADW formation region. This trade-off decouples the δ30Si signature of NADW from the pathways of deep water upwelling associated with the MOC. Thus, whilst our study affirms the importance of cross-equatorial transport of Southern Ocean-sourced Si in producing the unique δ30Si signature of NADW, it also shows that the presence of a deep Atlantic δ30Si gradient does not uniquely constrain the pathways by which deep waters are returned to the upper ocean.

  16. Isotope Dependence of Chemical Erosion of Carbon

    SciTech Connect

    Reinhold, Carlos O; Krstic, Predrag S; Stuart, S. J.; Zhang, Hengda; Harris, Peter R; Meyer, Fred W

    2010-01-01

    We study the chemical erosion of hydrogen-supersaturated carbon due to bombardment by hydrogen isotopes H, D, and T at energies of 1 30 eV using classical molecular dynamics simulations. The chemical structure at the hydrogen-saturated interface (the distribution of terminal hydrocarbon moieties, in particular) shows a weak dependence on the mass of the impinging atoms. However the sputtering yields increase considerably with increasing projectile mass. We analyze the threshold energies of chemical sputtering reaction channels and show that they are nearly mass independent, as expected from elementary bond-breaking chemical reactions involving hydrocarbons. Chemical sputtering yields for D impact are compared with new experimental data. Good agreement is found for small hydrocarbons but the simulations overestimate the production of large hydrocarbons for energies larger than 15 eV. We present a thorough analysis of the dependence of our simulations on the parameters of the bombardment schemes and discuss open questions and possible avenues for development.

  17. Burial Diagenesis Effects on Clumped Isotope Signatures of Coexisting Dolomites and Calcites

    NASA Astrophysics Data System (ADS)

    Winkelstern, I. Z.; Lohmann, K. C.

    2014-12-01

    Carbonate clumped isotope paleothermometry is a promising method for diagenetic and deep time paleoclimate studies, but original clumped isotope (Δ47) compositions can be altered by fluid and thermal diagenetic processes. Previous work shows Δ47 resetting of calcite occurs at temperatures exceeding 100°C over time periods of millions of years, but such thermally-driven effects have not been considered for dolomite. Differences between calcite and dolomite temperature calibrations are also largely unquantified, and the effect of burial diagenesis on dolomite Δ47 has not been measured. Coexisting calcites and dolomites in a ~4500 meter core from Andros Island, Bahamas, offer a unique opportunity to address these questions. These dolomites and calcites formed over a time span from the Cretaceous to Pleistocene under near-surface temperature conditions. Clumped isotope analysis of this material reveals that where these carbonate phases are buried to depths greater than ~3000 meters, realistic surface temperatures (~25 °C) are not preserved. Moreover, these phases do not record reasonable geothermal conditions (> 80 °C), but rather record temperatures between 40 and 60°C. Here we evaluate whether this Δ47 "error" is due to solid-state resetting of clumped isotopes, emplacement of minor burial cements, fabric retentive recrystallization, or some combination thereof. Our results show that clumped isotope compositions of both calcite and dolomite respond similarly to diagenetic resetting of primary values under conditions of burial. These data further emphasize the need to constrain the diagenetic history of samples used for clumped isotope work. The similar Δ47 temperatures recorded by each carbonate type suggest that dolomites and calcites are equally viable temperature proxy sources under shallow burial conditions, yet both seem equally susceptible to "resetting" of their primary clumped isotope abundances.

  18. Carbon Isotopic Constraints on Arctic Methane Sources, 2008-2010

    NASA Astrophysics Data System (ADS)

    Fisher, R. E.; Lowry, D.; Lanoiselle, M.; Sriskantharajah, S.; Nisbet, E. G.

    2010-12-01

    Arctic methane source strengths are particularly vulnerable to large changes with year-to year meteorological variations and with climatic change. A global increase in methane seen in 2007 (Dlugokencky et al., 2009) may have been in part be due to elevated wetland emissions caused by a warm, wet summer over large parts of Siberia. In 2010 wildfires over large areas of Russia will have added methane to the Arctic atmosphere. Carbon isotopic composition of methane in air from the Arctic arriving at a measurement station can be used to identify sources of the gas. Measurement of methane δ13C in air close to sources, including wetlands, permafrost, pine forest and submarine methane clathrate has extended the available data of source signatures of methane from northern sources. Keeling plot analysis of diurnal records from field campaigns in Arctic wetlands show that bulk wetland methane emissions are typically close to δ13CCH4 -69±1 ‰. Air samples from Zeppelin (Spitsbergen, Norway), Pallas (Finland) and Barra (Outer Hebrides, Scotland) have been regularly analysed for methane δ13C. Summer campaigns at Zeppelin point to a 13C depleted bulk Arctic source of dominantly biogenic origin, at -67‰. In spring, while the wetlands are still frozen, the source signature is more enriched, -53‰, with trajectory analysis implying a large contribution from onshore gas fields. Arctic methane emissions respond rapidly to warming with strong positive feedbacks. With rapid warming there is the potential to release large stores of carbon from permafrost and methane hydrates. Isotopic data are powerful discriminants of sources. High frequency, ideally continuous, monitoring of methane δ13C from a number of Arctic sites, onshore and offshore, coupled with back-trajectory analysis and regional modelling, will be important if future changes in Arctic source strengths are to be quantified. Reference: Dlugokencky, E. J., et al. (2009), Observational constraints on recent increases

  19. Signatures of shape transitions in odd-A neutron-rich rubidium isotopes

    SciTech Connect

    Rodriguez-Guzman, R.; Sarriguren, P.; Robledo, L. M.

    2010-12-15

    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We use a self-consistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M, and implemented with the equal-filling approximation. We find clear signatures of a sharp shape transition at N=60 in both the charge radii and spin parity of the ground states, which are robust, consistent with each other, and in agreement with experiment. We point out that the combined analysis of these two observables could be used to predict unambiguously new regions where shape transitions might develop.

  20. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures

    PubMed Central

    Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W. N.; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn

    2013-01-01

    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ199Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude. PMID:24270081

  1. Isotopic signature of N(2)O produced by marine ammonia-oxidizing archaea.

    PubMed

    Santoro, Alyson E; Buchwald, Carolyn; McIlvin, Matthew R; Casciotti, Karen L

    2011-09-01

    The ocean is an important global source of nitrous oxide (N(2)O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N(2)O, but the isotopic signatures of N(2)O produced by these processes are not consistent with the marine contribution to the global N(2)O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N(2)O. Natural-abundance stable isotope measurements indicate that the produced N(2)O had bulk δ(15)N and δ(18)O values higher than observed for ammonia-oxidizing bacteria but similar to the δ(15)N and δ(18)O values attributed to the oceanic N(2)O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N(2)O source. PMID:21798895

  2. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    NASA Astrophysics Data System (ADS)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  3. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  4. From the Arctic Lake to the Arctic Ocean: Radiogenic Isotope Signature of Transitional Sediments

    NASA Astrophysics Data System (ADS)

    Poirier, A.; Hillaire-Marcel, C.; Veron, A. J.; Stevenson, R.; Carignan, J.

    2011-12-01

    The Arctic Ocean was once an enclosed basin with fresh surface water conditions during the Paleocene and most of the Eocene epochs (e.g. Moran et al. 2004), until a readjustment in high latitude plate tectonics allowed North Atlantic marine water to flow into the Arctic basin some 36 Ma ago (Poirier and Hillaire-Marcel, 2011). This first input was sufficient to overprint the earlier osmium isotopic composition in the basin (ibid.) and deposit marine sediments on the Lomonosov Ridge between 36 Ma and present day. Here, we present Sr and Pb isotope signatures in the transitional layers of the same ACEX sequence from Lomonosov Ridge (ca. 190 to 210 mcd). Bulk sediment samples were leached prior to total dissolution in order to remove the hydrogeneous Sr fraction of the sediment. The Sr isotopic signature of the residual fraction is thought to reflect the origin of the sedimentary load that was deposited before, during, and after the transition (source tracing). Leaching was not required for the Pb isotope analyses as leached residues and bulk sediments yielded similar isotopic composition for the oxic sediments. Moreover, correction for in-situ production is needed within the anoxic lacustrine section (see below), so bulk sediments were measured. Above and below the lacustrine/marine boundary, we note relatively constant source provenances (or mixture of sources). This implies that the relative contributions from regional detrital sedimentary sources, and thus relative erosion rates over surrounding continents, did not change much on the long term scale. On the other hand, a sharp change in the isotopic compositions highlights the transition level itself, with an abrupt shift to low 87Sr/88Sr isotope compositions and by a smaller excursion in all three 204Pb-normalised lead isotopes compositions (corrected for in-situ decay of U). In the light of the recently revised age of the transitional layer (~36 Ma at the lacustrine/marine transition), this isotopic excursion

  5. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  6. Searching for isovector signatures in the neutron-rich oxygen and calcium isotopes

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Piekarewicz, J.

    2015-09-01

    We search for potential isovector signatures in the neutron-rich oxygen and calcium isotopes within the framework of a relativistic mean-field theory with an exact treatment of pairing correlations. To probe the isovector sector we calibrate a few relativistic density functionals using the same isoscalar constraints but with one differing isovector assumption. It is found that under certain conditions, the isotopic chain in oxygen can be made to terminate at the experimentally observed 24O isotope and in the case of the calcium isotopes at 60Ca. To produce such behavior, the resulting symmetry energy must be soft, with predicted values for the symmetry energy and its slope at saturation density being J = (30.92 ± 0.47) MeV and L = (51.0 ± 1.5) MeV, respectively. As a consequence, the neutron-skin thickness of 208Pb is rather small: Rskin208 = (0.161 ± 0.011) fm. This same model-labeled "FSUGarnet"-predicts R1.4 = (13.0 ± 0.1) km for the radius of a "canonical" 1.4M⊙ neutron star, yet is also able to support a two-solar-mass neutron star.

  7. Stable Carbon Isotope Record in a Palau Sclerosponge

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2002-12-01

    The ratio of stable carbon isotopes (δ13C) deposited in the calcium carbonate skeleton of marine sclerosponges appears to record the carbon isotopic composition of seawater mixed-layer dissolved inorganic carbon (δ13CDIC). Thus the δ13C signature chronicled in sclerosponge skeletons offers a promising multi-century proxy record of seawater mixed-layer δ13CDIC throughout the tropics. Here, a high-resolution (0.1 mm) δ13C record for a 7.7 cm Acanthocheatetes wellsi sclerosponge from Palau (7N, 134W) is presented. At a published growth rate of 0.45 mm per year, this record spans ~s170 years beginning in July 2001 and going back to 1831. The δ13C values for a definitive 10-year A. wellsi record spanning 1989-1998 were similar to δ13C values here for the first 4.7 mm of the record providing supporting evidence for the growth rate. The sclerosponge δ13C shows a distinct Seuss Effect. At the time this abstract was submitted, the analysis of the first 16 mm of the sclerosponge revealed a significant decrease in δ13C with time [δ13C = 0.02 (distance) + 2.64, r2 = 0.73, p < 0.0001, where time is marked by distance in millimeters from the growing edge] corresponding to a decrease in δ13C of 0.076‰ per decade. For comparison, published low-frequency measurements in Australian, New Caledonian and Jamaican sclerosponges have yielded decreases in δ13C of ~s0.05 to 0.08 ‰ per decade over the past 40 years. Preliminary interpretation of the data indicates that the amount of atmospheric CO2 contributing to the seawater δ13CDIC at Palau is intermediate to Australia and Jamaica. In addition, visual examination of the δ13C record reveals regular fluctuation in δ13C that may correspond to annual variability in δ13CDIC. This research presents the first century or longer sclerosponge δ13C record from the northwester equatorial Pacific.

  8. Searching for signatures of life on Mars: an Fe-isotope perspective.

    PubMed

    Anand, M; Russell, S S; Blackhurst, R L; Grady, M M

    2006-10-29

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars. PMID:17008212

  9. Searching for signatures of life on Mars: an Fe-isotope perspective

    PubMed Central

    Anand, M; Russell, S.S; Blackhurst, R.L; Grady, M.M

    2006-01-01

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars. PMID:17008212

  10. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    SciTech Connect

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.