Science.gov

Sample records for carbon nanotube magnet

  1. Flightweight Carbon Nanotube Magnet Technology

    NASA Technical Reports Server (NTRS)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  2. Magnetic Carbon Nanotubes Tethered with Maghemite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Il Tae; Nunnery, Grady; Jacob, Karl; Schwartz, Justin; Liu, Xiaotao; Tannenbaum, Rina

    2011-03-01

    We describe a novel, facile method for the synthesis of magnetic carbon nanotubes (m-CNTs) decorated with monodisperse γ - Fe 2 O3 magnetic (maghemite) nanoparticles and their aligned feature in a magnetic field. The tethering of the nanoparticles was achieved by the initial activation of the surface of the CNTs with carboxylic acid groups, followed by the attachment of the γ - Fe 2 O3 nanoparticles via a modified sol-gel process. Sodium dodecylbenzene sulfonate (NaDDBS) was introduced into the suspension to prevent the formation of an iron oxide 3D network. Various characterization methods were used to confirm the formation of well-defined maghemite nanoparticles. The tethered nanoparticles imparted magnetic characteristics to the CNTs, which became superparamagnetic. The m-CNTs were oriented parallel to the direction of a magnetic field. This has the potential of enhancing various properties, e.g. mechanical and electrical properties, in composite materials.

  3. Magnetically Active Carbon Nanotubes at Work.

    PubMed

    Stopin, Antoine; Pineux, Florent; Marega, Riccardo; Bonifazi, Davide

    2015-06-22

    Endohedral and exohedral assembly of magnetic nanoparticles (MNPs) and carbon nanotubes (CNTs) recently gave birth to a large body of new hybrid nanomaterials (MNPs-CNTs) featuring properties that are otherwise not in reach with only the graphitic or metallic cores themselves. These materials feature enhanced magnetically guided motions (rotation and translation), magnetic saturation and coercivity, large surface area, and thermal stability. By guiding the reader through the most significant examples in this Concept paper, we describe how researchers in the field engineered and exploited the synergistic combination of these two types of nanoparticles in a large variety of current and potential applications, such as magnetic fluid hyperthermia therapeutics and in magnetic resonance imaging to name a few. PMID:26017389

  4. Magnetic Fractionation and Alignment of Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Milkie, D. E.; Yodh, A. G.; Kikkawa, J. M.

    2004-03-01

    We study mechanisms of single wall carbon nanotube (SWNT) alignment in a magnetic field. Through magnetic fractionation, we create SWNT suspensions with varying quantities of magnetic catalyst particles. The degree of tube alignment in magnetic fields up to 9 Tesla is quantified using polarized optical absorbance anisotropy. Continuous measurements of the nematic order parameter of these suspensions in variable magnetic fields provides a way to identify the origin of magnetic torques giving rise to nanotube alignment. Initial data suggests a transition from catalyst-driven to nanotube-anisotropy driven orientation as the catalyst fraction is reduced. We relate these results to observations of nanotube aggregation. This work has been supported by NSF through DMR-0203378, DMR-079909 and DGE-0221664, NASA through NAG8-2172, DARPA/ONR through N00014-01-1-0831, and SENS.

  5. Nickel clusters embedded in carbon nanotubes as high performance magnets.

    PubMed

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-01-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube's magnetoresistance as explained within the framework of weak localization. PMID:26459370

  6. Nickel clusters embedded in carbon nanotubes as high performance magnets

    PubMed Central

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-01-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization. PMID:26459370

  7. Nickel clusters embedded in carbon nanotubes as high performance magnets

    NASA Astrophysics Data System (ADS)

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-10-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization.

  8. Magnetic nanotubes

    DOEpatents

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  9. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes.

    PubMed

    Felicia, Leona J; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt% of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications. PMID:25353475

  10. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Felicia, Leona J.; Philip, John

    2014-02-01

    We investigate the effect of multiwalled carbon nanotubes (MWCNTs) on the magnetorheological properties of an oil based magnetic nanofluid (ferrofluid). The shear resistant plateau observed in a pure ferrofluid disappears when 0.5 wt % of MWCNT is incorporated. The yield stress values of the composite system are slightly smaller than that of the pure system. This shows that the presence of carbon nanotubes (CNTs) weakens the magnetic field induced microstructure of the ferrofluid due to their interaction that affects the hydrodynamic and magnetic interactions between the dispersed nanoparticles. Interestingly, the Mason number plots for both the pure and composite system show scaling of the viscosity curves onto a single master curve for magnetic fields of 80 mT and above while deviations are observed for lower magnetic fields. The weakening of the ferrofluid microstructure in the presence of CNTs is further evident in the amplitude sweep measurements where the linear viscoelastic region develops only at a higher magnetic field strength compared to lower magnetic fields in pure ferrofluids. These results are useful for tailoring ferrofluids with a faster response for various applications.

  11. Magnetism for understanding catalyst analysis of purified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bellouard, Christine; Mercier, Guillaume; Cahen, Sébastien; Ghanbaja, Jaafar; Medjahdi, Ghouti; Gleize, Jérôme; Lamura, Gianrico; Hérold, Claire; Vigolo, Brigitte

    2016-08-01

    The precise quantification of catalyst residues in purified carbon nanotubes is often a major issue in view of any fundamental and/or applicative studies. More importantly, since the best CNTs are successfully grown with magnetic catalysts, their quantification becomes strictly necessary to better understand intrinsic properties of CNT. For these reasons, we have deeply analyzed the catalyst content remained in nickel-yttrium arc-discharge single walled carbon nanotubes purified by both a chlorine-gas phase and a standard acid-based treatment. The study focuses on Ni analysis which has been investigated by transmission electron microscopy, X-ray diffraction, thermogravimetry analysis, and magnetic measurements. In the case of the acid-based treatment, all quantifications result in a decrease of the nanocrystallized Ni by a factor of two. In the case of the halogen gas treatment, analysis and quantification of Ni content is less straightforward: a huge difference appears between X-ray diffraction and thermogravimetry results. Thanks to magnetic measurements, this disagreement is explained by the presence of Ni2+ ions, belonging to NiCl2 formed during the Cl-based purification process. In particular, NiCl2 compound appears under different magnetic/crystalline phases: paramagnetic or diamagnetic, or well intercalated in between carbon sheets with an ordered magnetic phase at low temperature.

  12. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10 μs. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  13. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices

    PubMed Central

    Kim, Il Tae; Tannenbaum, Allen; Tannenbaum, Rina

    2010-01-01

    Maghemite (γ-Fe2O3)/multi-walled carbon nanotubes (MWCNTs) hybrid-materials were synthesized and their anisotropic electrical conductivities as a result of their alignment in a polymer matrix under an external magnetic field were investigated. The tethering of γ-Fe2O3 nanoparticles on the surface of MWCNT was achieved by a modified sol-gel reaction, where sodium dodecylbenzene sulfonate (NaDDBS) was used in order to inhibit the formation of a 3D iron oxide gel. These hybrid-materials, specifically, magnetized multi-walled carbon nanotubes (m-MWCNTs) were readily aligned parallel to the direction of a magnetic field even when using a relatively weak magnetic field. The conductivity of the epoxy composites formed in this manner increased with increasing m-MWCNT mass fraction in the polymer matrix. Furthermore, the conductivities parallel to the direction of magnetic field were higher than those in the perpendicular direction, indicating that the alignment of the m-MWCNT contributed to the enhancement of the anisotropic electrical properties of the composites in the direction of alignment. PMID:23019381

  14. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  15. Single Molecule Magnetic Force Detection with a Carbon Nanotube Resonator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Walker, Sean; Baugh, Jonathan

    2015-03-01

    Single molecule magnets (SMMs) sit at the boundary between macroscopic magnetic behaviour and quantum phenomena. Detecting the magnetic moment of an individual SMM would allow exploration of this boundary, and could enable technological applications based on SMMs such as quantum information processing. Detection of these magnetic moments remains an experimental challenge, particularly at the time scales of relaxation and decoherence. We present a technique for sensitive magnetic force detection that should permit such measurements. A suspended carbon nanotube (CNT) mechanical resonator is combined with a magnetic field gradient generated by a ferromagnetic gate electrode, which couples the magnetic moment of a nanomagnet to the resonant motion of the CNT. Numerical calculations of the mechanical resonance show that resonant frequency shifts on the order of a few kHz arise due to single Bohr magneton changes in magnetic moment. A signal-to-noise analysis based on thermomechanical noise shows that magnetic switching at the level of a Bohr magneton can be measured in a single shot on timescales as short as 10 μs. This sensitivity should enable studies of the spin dynamics of an isolated SMM, within the spin relaxation timescales for many available SMMs. Supported by NSERC.

  16. Anomalous magnetization of a carbon nanotube as an excitonic insulator

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo

    2014-11-01

    We show theoretically that an undoped carbon nanotube might be an excitonic insulator—the long-sought phase of matter proposed by Keldysh, Kohn, and others fifty years ago. We predict that the condensation of triplet excitons, driven by intervalley exchange interaction, spontaneously occurs at equilibrium if the tube radius is sufficiently small. The signatures of exciton condensation are its sizable contributions to both the energy gap and the magnetic moment per electron. The increase of the gap might have already been measured, albeit with a different explanation [V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov, J. Hone, and M. Bockrath, Science 323, 106 (2009), 10.1126/science.1165799]. The enhancement of the quasiparticle magnetic moment is a pair-breaking effect that counteracts the weak paramagnetism of the ground-state condensate of excitons. This property could rationalize the anomalous magnitude of magnetic moments recently observed in different devices close to charge neutrality.

  17. Magnetic Multi-Walled Carbon Nanotubes for Tumor Theranostics.

    PubMed

    Wang, Lei; Shi, Jinjin; Hao, Yongwei; Zhang, Panpan; Zhao, Yalin; Meng, Dehui; Li, Dong; Chang, Junbiao; Zhang, Zhenzhong

    2015-09-01

    Current diagnostic techniques do not reliably detect cancer at early stages, and traditional chemotherapy lacks specificity and causes systemic toxicity. To address these issues, multifunctional nanomaterials are becoming more widely studied as a means of cancer detection, therapy, and monitoring. Here, iron oxide (Fe3O4) nanoparticles were conjugated onto the surface of multi-walled carbon nanotubes (MWNTs), which were then modified with polyethylenimine (PEI) and polyethylene glycol (PEG) to improve their solubility and biocompatibility. Finally, human telomerase reverse transcriptase (hTERT) siRNA was loaded on the MWNT surface by electrostatic interaction to obtain a multifunctional delivery system (MWNT-Fe3O4-PEI-PEG/siRNA). This delivery system efficiently delivered siRNA, allowed targeting of certain sites by magnetic fields, facilitated photothermal heating by near infrared irradiation, and enabled magnetic resonance imaging, thereby indicating great potential for cancer theranostic applications. PMID:26485934

  18. Electrostatic waves in carbon nanotubes with an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Abdikian, Alireza; Bagheri, Mehran

    2013-10-01

    Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

  19. Electrostatic waves in carbon nanotubes with an axial magnetic field

    SciTech Connect

    Abdikian, Alireza; Bagheri, Mehran

    2013-10-15

    Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

  20. Structural anisotropy of magnetically aligned single wall carbon nanotube films

    SciTech Connect

    Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E.

    2000-07-31

    Thick films of aligned single wall carbon nanotubes and ropes have been produced by filtration/deposition from suspension in strong magnetic fields. We measured mosaic distributions of rope orientations in the film plane, for samples of different thicknesses. For an {approx}1 {mu}m film the full width at half maximum (FWHM) derived from electron diffraction is 25 degree sign -28 degree sign . The FWHM of a thicker film ({approx}7 {mu}m) measured by x-ray diffraction is slightly broader, 35{+-}3 degree sign . Aligned films are denser than ordinary filter-deposited ones, and much denser than as-grown material. Optimization of the process is expected to yield smaller FWHMs and higher densities. (c) 2000 American Institute of Physics.

  1. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  2. Probing Magnetic Susceptibility Anisotropy of Large-Diameter Armchair Carbon Nanotubes via Magnetic Linear Dichroism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Haroz, Erik; Kono, Junichiro; Searles, Thomas; Tu, Xiaomin; Zheng, Ming; Fagan, Jeffrey; McGill, Stephen; Smirnov, Dmitry

    2012-02-01

    We studied magnetic susceptibility anisotropy, via magnetic linear dichroism spectroscopy, of aqueous suspensions of single-walled carbon nanotubes in high magnetic fields up to 22T using a unique magnet system (Split-Florida Helix magnet). Specifically, we measured magnetic susceptibility anisotropies, δχ, of several armchair species ranging from (5,5)-(13,13) at room temperature over an excitation wavelength range of 400-900 nm. For large diameter armchairs such as (12,12) and (13,13), we have observed some of the strongest alignment in a static magnetic field due to their large diameters. Results will be discussed in comparison with detailed calculations involving the Aharonov-Bohm effect.

  3. Magnetic configuration dependence of magnetoresistance in a Fe-porphyrin-like carbon nanotube spintronic device

    SciTech Connect

    Zeng, Jing; Chen, Ke-Qiu

    2014-01-20

    By using nonequilibrium Green's functions in combination with the density functional theory, we investigate the spin-dependent transport properties in a Fe-porphyrin-like carbon nanotube spintronic device. The results show that magnetoresistance ratio is strongly dependent on the magnetic configuration of the Fe-porphyrin-like carbon nanotube. Under the application of the external magnetic field, the magnetoresistance ratio of the device can be increased from about 19% to about 1020% by tuning the magnetic configuration in the device. Our results confirm that the magnetic configuration is a key factor for obtaining a high-performance spintronic device.

  4. Influence of magnetic field on the compressive behavior of carbon nanotube with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddy, S. K.; Suri, A.; Misra, A.

    2013-06-01

    Carbon nanotubes (CNT) in their cellular like micro-structure have presented an excellent mechanical energy absorption capacity. Although, several efforts have been progressed to modify the CNT structure for further enhancing their energy absorption capacity but yet no report has revealed the effect of magnetic field on the mechanical behavior of as-grown CNT mat that contains magnetic iron nanoparticles in the form of decorated nanoparticles on the surface or filled inside core of the CNT. We report a significant impact of the presence of magnetic content that modifies the mechanical behavior of the entangled CNT mat in the presence of an external magnetic field. The energy absorption capacity doubles when magnetic field was applied in the radial direction of the CNT mat under uniaxial compression.

  5. Magnetic Brightening of Dark Excitons in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kono, Junichiro

    2007-03-01

    To gain insight into the internal energy structure and radiative properties of excitons in single-walled carbon nanotubes (SWNTs), we have studied photoluminescence (PL) from individualized HiPco and CoMoCAT samples as a function of magnetic field (B) and temperature (T). The PL intensity increased, or ``brightened,'' with B applied along the tube axis and the amount of brightening increased with decreasing T. These results are consistent with the existence of a dark state below the first bright state [1]. In the presence of time reversal symmetry, exchange-interaction-induced mixing between excitons in two equivalent valleys (the K and K' valleys) is expected to result in a set of exciton states, only one of which is optically active. This predicted bright state, however, is not the lowest in energy. Excitons would be trapped in the dark, lowest-energy state without a radiative recombination path. When a tube-threading B is applied, addition of an Aharonov-Bohm phase modifies the circumferential boundary conditions on the wave functions and lifts time reversal symmetry [2,3]. This symmetry breaking splits the K and K' valley transitions, lessening the intervalley mixing and causing the recovery of the unmixed direct K and K' excitons, which are both optically active. We have calculated PL spectra through B-dependent effective masses, populations of finite-k states, and acoustic phonon scattering, which quantitatively agree with the observations. These results demonstrate the existence of dark excitons, their influence on the PL quantum yield, and their elimination through symmetry manipulation by a B. This work was performed in collaboration with J. Shaver, S. Zaric, O. Portugall, V. Krstic, G. L. J. A. Rikken, X. Wei, S. A. Crooker, Y. Miyauchi, S. Maruyama, and V. Perebeinos and supported by the Robert A. Welch Foundation, the NSF, and EuroMagNET. [1] V. Perebeinos et al., Phys. Rev. Lett. 92, 257402 (2004); H. Zhao and S. Mazumdar, Phys. Rev. Lett. 93, 157402

  6. Orientation control of liquid crystals using carbon-nanotube-magnetic particle hybrid materials.

    PubMed

    Jeong, Hyeon Su; Youn, Sang Cheon; Kim, Yun Ho; Jung, Hee-Tae

    2013-06-28

    We have developed a simple yet versatile method for aligning liquid crystals (LCs) by using magnetic-field oriented single-walled carbon nanotubes (SWNTs) that were modified with magnetic particles. A high degree of homeotropic/planar LC alignment was achieved by SWNTs being exposed to a very low strength magnetic field, combined with strong π-π interactions between the biphenyl group in the LCs and the wall of the SWNTs. PMID:23676827

  7. Dual modality photothermal OCT and magnetic resonance imaging with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tucker-Schwartz, Jason M.; Hong, Tu; Colvin, Daniel C.; Xu, Yaqiong; Skala, Melissa C.

    2012-03-01

    Preclinical molecular imaging of cancer has the potential to increase the understanding of fundamental cancer biology, elucidate mechanisms of cancer treatment resistance, and increase effectiveness of drug candidates. Optical and magnetic resonance imaging contain complementary strengths, suitable for gaining a wealth of knowledge when combined. Here, we demonstrate the inherent contrast sensitivity of single walled carbon nanotubes to absorption based photothermal optical coherence tomography (PT-OCT), and magnetic resonance imaging spin dephasing contrast (T2). A spectral-domain OCT system was interfaced with an amplitude-modulated (100 Hz) titanium sapphire pump beam for PT-OCT imaging. MRI was performed with a commercial 4.7 T animal scanner. With both imaging tools, contrast agent signal linearity (r2 > 0.95) and nM sensitivity over background (p < 0.05) was experimentally determined with serially dilute solutions of carbon nanotubes coated in amine-terminated polyethylene glycol. The surface functionalization chemistry for carbon nanotubes is well understood, and molecular targeting has been demonstrated in vitro and in vivo, making carbon nanotubes an attractive agent for molecular imaging in preclinical models. We have demonstrated the initial characterization steps for using carbon nanotubes for multi-modality imaging with PT-OCT and MRI.

  8. Fe3C-filled carbon nanotubes: permanent cylindrical nanomagnets possessing exotic magnetic properties.

    PubMed

    Kumari, Reetu; Krishnia, Lucky; Kumar, Vinay; Singh, Sandeep; Singh, H K; Kotnala, R K; Juluri, R R; Bhatta, U M; Satyam, P V; Yadav, Brajesh S; Naqvi, Zainab; Tyagi, Pawan K

    2016-02-11

    The present study aims to deduce the confinement effect on the magnetic properties of iron carbide (Fe3C) nanorods filled inside carbon nanotubes (CNTs), and to document any structural phase transitions that can be induced by compressive/tensile stress generated within the nanorod. Enhancement in the magnetic properties of the nanorods is attributed to tensile stress as well as to compression, present in the radial direction and along the nanotube axis, respectively. Finally, the growth of permanent cylindrical nanomagnets has been optimized by applying a field gradient. Besides presenting the growth model of in situ filling, we have also proposed the mechanism of magnetization of the nanotubes. Magnetization along the tube axis has been probed by confirming the pole formation. Fe3C has been selected because of its ease of formation, low TC and incompressibility. PMID:26839090

  9. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging.

    PubMed

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Qin, Hongqiang; Wu, Jianlin; Zhang, Jingwen; Bao, Ruyi; Zou, Hanfa

    2014-12-12

    Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs (((SPIO))o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. ((SPIO))o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected ((SPIO))o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected ((SPIO))o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected ((SPIO))o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials. PMID:25409786

  10. Spin current generation and magnetic response in carbon nanotubes by the twisting phonon mode

    NASA Astrophysics Data System (ADS)

    Hamada, Masato; Yokoyama, Takehito; Murakami, Shuichi

    2015-08-01

    We theoretically investigate spin current and magnetic response induced by the twisting phonon mode in carbon nanotubes via the spin-rotation coupling. An effective magnetic field due to the twisting mode induces both spin and orbital magnetizations. The induced spin and orbital magnetizations have both radial and axial components. We show that ac pure spin current is generated by the twisting phonon mode. The magnitude of the spin current and orbital magnetization for a (10,10) armchair nanotube is estimated as an example. We find that the ac pure spin current is detectable in magnitude when the frequency of the twisting mode is of the order of GHz, and that the orbital magnetization is found to be larger than the spin magnetization.

  11. Linear optical response of carbon nanotubes under axial magnetic field

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  12. Preparation of Magnetic Carbon Nanotubes (Mag-CNTs) for Biomedical and Biotechnological Applications

    PubMed Central

    Masotti, Andrea; Caporali, Andrea

    2013-01-01

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. PMID:24351838

  13. Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications.

    PubMed

    Masotti, Andrea; Caporali, Andrea

    2013-01-01

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. PMID:24351838

  14. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  15. Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram

    2003-01-01

    We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.

  16. Magnetic CoFe2O4/carbon nanotubes composites: fabrication, microstructure and magnetic response

    NASA Astrophysics Data System (ADS)

    Wang, Panfeng; Xu, Jingcai; Han, Yanbing; Hong, Bo; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Li, Jing; Ge, Hongliang; Wang, Xinqing

    2014-05-01

    By combining the unique microstructure of carbon nanotubes (CNTs) with the good magnetism of CoFe2O4 ferrites, CoFe2O4/CNTs nanocomposites were prepared by the solvothermal method for the application of targeting therapy and tumor hyperthermia. X-ray diffraction (XRD), thermal gravity analysis (TGA), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) were introduced to study the influence of the solvothermal temperature, time and the CNTs content on the microstructure and magnetic properties of CoFe2O4/CNTs nanocomposites. The diameter of CoFe2O4 nanoparticles coating on the surface of CNTs and the saturation magnetization (Ms) increased with the solvothermal temperature. CoFe2O4/CNTs nanocomposites prepared at 180°C, 200°C and 220°C exhibited superparamagnetism at room temperature, while the samples prepared at 240°C and 260°C presented ferromagnetism. And the solvothermal time and CNTs content slightly affected the microstructure and magnetic properties, Ms and coercivity (Hc) increased slightly with the increasing solvothermal time and the decreasing CNTs content.

  17. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    NASA Astrophysics Data System (ADS)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  18. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    NASA Astrophysics Data System (ADS)

    Tong, Yue; Zhang, Min; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli

    2016-05-01

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N2 adsorption-desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO2-coated maghemite/CNTs nanoparticles (CNTs/Fe3O4@SiO2 composites) were synthesized by the combination of high temperature decomposition process and an sol-gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO2, respectively. The CNTs/Fe3O4@SiO2 composites revealed a core-shell structure, Then, CNTs/Fe3O4@mSiO2 was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature.

  19. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  20. Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.

    PubMed

    Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J

    2015-09-10

    Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed. PMID:26388472

  1. Optimization of Magnetic Field-Assisted Synthesis of Carbon Nanotubes for Sensing Applications

    PubMed Central

    Raniszewski, Grzegorz; Pyc, Marcin; Kolacinski, Zbigniew

    2014-01-01

    One of the most effective ways of synthesizing carbon nanotubes is the arc discharge method. This paper describes a system supported by a magnetic field which can be generated by an external coil. An electric arc between two electrodes is stabilized by the magnetic field following mass flux stabilization from the anode to the cathode. In this work four constructions are compared. Different configurations of cathode and coils are calculated and presented. Exemplary results are discussed. The paper describes attempts of magnetic field optimization for different configurations of electrodes. PMID:25295922

  2. Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Peng; Kong, Gao-Pan; Zhang, Xing; He, Guo-Wei

    2013-09-01

    Using molecular dynamics simulations, we demonstrate pumping of water through a carbon nanotube by applying the combination of a rotating electric field and a rotating magnetic field. The driving force is a Lorentz force generated from the motion of charges in the magnetic field, and the motion is caused by the rotation of the electric field. We find that there exits a linear relationship between the average pumping velocity v and magnetic field strength B, which can be used to control the flux of the continuous unidirectional water flow. This approach is expected to be used in liquid circulation without a pressure gradient.

  3. Magnetic studies of multi-walled carbon nanotube mats: Ultra-high temperature ferromagnetism or superconductivity?

    NASA Astrophysics Data System (ADS)

    Beeli, Pieder; Zhao, Guo-Meng

    2008-03-01

    We report magnetic measurements up to 1200 K on multi-walled carbon nanotube mats using a Quantum Design vibrating sample magnetometer. Extensive magnetic data consistently show two ferrromagnetic-like transitions at about 1000 K and 1275 K, respectively. The lower transition at about 1000 K is associated with an Fe impurity and its saturation magnetization is in quantitative agreement with the Fe concentration measured from an inductively coupled plasma mass spectrometer. On the other hand, the saturation magnetization for the higher transition phase corresponds to about 0.6% Co impurity concentration, which is about four orders of magnitude larger than that measured from the mass spectrometer. We show that this transition at about 1275 K is not consistent with ferromagnetism of any carbon-based phases or magnetic impurities but with the paramagnetic Meissner effect due to the existence of π Josephson junctions in a granular superconductor.

  4. Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes.

    PubMed

    Su, Yanjie; Zhang, Yaozhong; Wei, Hao; Zhang, Liling; Zhao, Jiang; Yang, Zhi; Zhang, Yafei

    2012-03-01

    We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process. PMID:22301844

  5. Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes

    SciTech Connect

    Bagheri, Mehran; Abdikian, Alireza

    2014-04-15

    We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined.

  6. Nontrivial magnetoresistive behavior of a single-wall carbon nanotube with an attached molecular magnet

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz

    2015-11-01

    The spin-resolved transport properties of a single-wall carbon nanotube quantum dot, with an attached single molecular magnet, are studied theoretically. With the aid of the real-time diagrammatic technique in the lowest-order perturbation expansion with respect to the tunnel coupling, the current, differential conductance, and the tunnel magnetoresistance (TMR) are determined in both the linear and nonlinear response regimes. It is shown that transport properties depend greatly on both the shell filling sequence of the carbon nanotube and the type of exchange interaction between the molecular magnet and nanotube. This results in highly nontrivial behavior of the TMR, which is especially visible in the low bias voltage regime. Depending on the gate voltage and parameters of the system, we find transport regimes where either a greatly enhanced or negative TMR develops. The mechanism leading to such behavior is associated with nonequilibrium spin accumulation, which builds up in the antiparallel magnetic configuration of the device. We show that it is crucial whether the spin accumulation occurs in the highest-weight spin states or in states with lower spin values. While in the former case it leads to enhanced TMR, in the latter case it may result in negative tunnel magnetoresistance. In addition, we analyze how the above effects depend on the magnitude of the molecular magnet's spin, and show that this dependence is generally nonmonotonic.

  7. Highly efficient extraction of cellular nucleic acid associated proteins in vitro with magnetic oxidized carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Wei, Xiaoluan; Cheng, Kai; Liu, Fangjie; Wu, Ren'an; Zou, Hanfa

    2012-12-01

    Nucleic acid associated proteins (NAaP) play the essential roles in gene regulation and protein expression. The global analysis of cellular NAaP would give a broad insight to understand the interaction between nucleic acids and the associated proteins, such as the important proteinous regulation factors on nucleic acids. Proteomic analysis presents a novel strategy to investigate a group of proteins. However, the large scale analysis of NAaP is yet impossible due to the lack of approaches to harvest target protein groups with a high efficiency. Herein, a simple and efficient method was developed to collect cellular NAaP using magnetic oxidized carbon nanotubes based on the strong interaction between carbon nanotubes and nucleic acids along with corresponding associated proteins. We found that the magnetic oxidized carbon nanotubes demonstrated a nearly 100% extraction efficiency for intracellular nucleic acids from cells in vitro. Importantly, the proteins associated on nucleic acids could be highly efficiently harvested using magnetic oxidized carbon nanotubes due to the binding of NAaP on nucleic acids. 1594 groups of nuclear NAaP and 2595 groups of cellular NAaP were extracted and identified from about 1,000,000 cells, and 803 groups of NAaP were analyzed with only about 10,000 cells, showing a promising performance for the proteomic analysis of NAaP from minute cellular samples. This highly efficient extraction strategy for NAaP is a simple approach to identify cellular nucleic acid associated proteome, and we believed this strategy could be further applied in systems biology to understand the gene expression and regulation. PMID:23121485

  8. Modulation of the energy gap in carbon nanotubes threaded by magnetic field

    NASA Astrophysics Data System (ADS)

    Bezryadin, Alexey

    2005-03-01

    Carbon nanotubes are molecules that have an atomic lattice equivalent to the hexagonal lattice of a single layer of graphite, seamlessly rolled into a cylinder. Their electronic properties are determined by the chirality or wrapping angle. Depending on the chirality, the molecule may have a gap in the electronic spectrum and behave as a semiconductor, or it may have zero gap and exhibit properties of a one-dimensional metal. Although, practically, it is impossible to change the chirality of a given molecule, it is possible to achieve an equivalent effect by applying a strong magnetic field along the axis of the nanotube. This behavior arises from Aharonov-Bohm coupling of the magnetic vector-potential, which is determined by the magnetic flux threading the nanotube, to the orbital motion of the electrons. In particular, the energy gap is predicted to oscillate periodically with magnetic flux, with a period of h/e. This effect, known as Ajiki-Ando (AA) splitting [1], offers the possibility of interconversion of metallic tubes into semiconducting ones and vice-versa, via a magnetic field. Our recent experiments[2] provide an experimental evidence for the AA energy-gap modulation. These measurements were performed on single electron tunneling (SET) transistors based on multiwall carbon nanotubes, in the quantum dot regime. Multiwall nanotubes are unique molecules in that they allow an application of a full magnetic flux quantum, due to their large diameter. The SET transistors used in this study showed the usual pattern of Coulomb diamonds and signatures of resonant tunneling and Zeeman splitting. Therefore the observed pattern of Coulomb peaks and their displacements with the magnetic field could be interpreted as a pattern of single-electron energy levels and was used to study their response to the magnetic flux. Spectroscopic measurements at higher bias showed an energy gap, which was induced and modulated by the magnetic flux. The period of the observed modulation

  9. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques

    PubMed Central

    Al Faraj, Achraf; Fauvelle, Florence; Luciani, Nathalie; Lacroix, Ghislaine; Levy, Michael; Crémillieux, Yannick; Canet-Soulas, Emmanuelle

    2011-01-01

    Background: Single-walled carbon nanotubes (SWCNT) hold promise for applications as contrast agents and target delivery carriers in the field of nanomedicine. When administered in vivo, their biodistribution and pharmacological profile needs to be fully characterized. The tissue distribution of carbon nanotubes and their potential impact on metabolism depend on their shape, coating, and metallic impurities. Because standard radiolabeled or fluorescently-labeled pharmaceuticals are not well suited for long-term in vivo follow-up of carbon nanotubes, alternative methods are required. Methods: In this study, noninvasive in vivo magnetic resonance imaging (MRI) investigations combined with high-resolution magic angle spinning (HR-MAS), Raman spectroscopy, iron assays, and histological analysis ex vivo were proposed and applied to assess the biodistribution and biological impact of intravenously injected pristine (raw and purified) and functionalized SWCNT in a 2-week longitudinal study. Iron impurities allowed raw detection of SWCNT in vivo by susceptibility-weighted MRI. Results: A transitional accumulation in the spleen and liver was observed by MRI. Raman spectroscopy, iron assays, and histological findings confirmed the MRI readouts. Moreover, no acute toxicological effect on the liver metabolic profile was observed using the HR-MAS technique, as confirmed by quantitative real-time polymerase chain reaction analysis. Conclusion: This study illustrates the potential of noninvasive MRI protocols for longitudinal assessment of the biodistribution of SWCNT with associated intrinsic metal impurities. The same approach can be used for any other magnetically-labeled nanoparticles. PMID:21499425

  10. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    SciTech Connect

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N.

    2014-08-28

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T < 10 K) with small variation in the corresponding Curie-Weiss temperatures, approaching closely that of metallic single wall carbon nanotubes. Interlayer coupling between the DWCNT layers is suggested to effectively reduce the difference between the transition temperatures for the inner and outer shells and enhance spin-spin interactions between defect spins via the RKKY-type interaction of localized spins with conduction electrons.

  11. Electronic structure, bonding and magnetic properties of transition metals in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Nguyen-Manh, Duc; Kenny, Steven; Pettifor, David; Cockayne, David

    2003-03-01

    A detailed knowledge of interaction between transition metals and graphitic lattice is very crucial for understanding metal-carbon nanosystems which have potential applications in quantum computing and magnetic data storage devices. In this talk, we first identify the shortcomings of orthogonal tight-binding representation in describing electronic structure of graphitic systems. The standard minimum basis set in this scheme is not sufficient to generate peculiar nearly free electron states see in these systems; whose amplitudes are not near atomic sites but in the region between graphitic units. By using an efficient ab-intio tight-binding formalism with double numeric with polarization basis set implemented in the program PLATO (Package for Linear-combination of Atomic Type Orbitals), we compute significantly more accurate electronic structures and bonding properties of new materials but similar to that of graphite such as fullerenes and carbon nanotubes. Benchmark calculations for molecules and for phase transformation paths in solids are found to be comparable to those obtained from typical plane-wave techniques showing that the PLATO technique can be used to perform large scale total energy minimizations and molecular dynamic simulations. This novel technique is then applied to study of transition metal (TM) atoms (Fe, Co, Ni) encapsulated inside single wall carbon nanotubes of different chiralities. For zigzag nanotubes, it is found that the encapsulating process of TM is energetically favorable for (5,0) situation which in turn has a strong link with bonding properties of ferocene-type (C_10H_10Fe) molecules. The TM atoms are found to be stable inside the armchair (3,3) tube with a local environment surrounding by 6 C atoms in similarity with the most stable position of Fe, Co and Ni on graphite sheet. Finally, spin-polarized local density functional calculations are performed for all the studied systems in order to determine the magnetic moments of TM atoms

  12. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  13. Magnetic impurities in single-walled carbon nanotubes and graphene: a review.

    PubMed

    Vejpravova, J; Pacakova, B; Kalbac, M

    2016-04-25

    Control over magnetism in single-walled carbon nanotubes (SWCNTs) and graphene is of fundamental importance. Creation and manipulation using the unpaired spins without the need for archetypal magnetic elements results in sp(2)-hybridised nanocarbons being at the forefront of applications in both spintronics and nanoelectronics. The crucial limitation for the experimental observation of the intrinsic carbon magnetism stems from the presence of magnetic impurities, from which a magnetic response usually dominates. Thus, the rigorous identification of such magnetic impurities and their efficient removal is of enormous importance. The present review reports on the current state-of-the-art methodology for the detection and quantification of magnetic impurities in SWCNTs and graphene, reflecting both the preparation and subsequent purification procedures. First, the most common techniques for the preparation of SWCNTs (i.e., arc discharge, laser ablation and chemical vapour deposition) and the corresponding magnetic impurities are reviewed. Then, the available volume, surface and local probes for the identification and quantification of the impurities are discussed, and their efficiency and limitations are evaluated for the given cases. A summary of the current understanding of graphene-related magnetism in the context of the identified impurities is also given. Finally, the key knowledge is reviewed with respect to future prospects in the field. PMID:26938351

  14. Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity.

    PubMed

    Vermisoglou, Eleni C; Pilatos, George; Romanos, George E; Devlin, Eamon; Kanellopoulos, Nick K; Karanikolos, Georgios N

    2011-09-01

    Open-ended, multi-wall carbon nanotubes (CNTs) with magnetic nanoparticles encapsulated within their graphitic walls (magCNTs) were fabricated by a combined action of templated growth and a ferrofluid catalyst/carbon precursor, and tested as drug hosts. The hybrid nanotubes are stable under extreme pH conditions due to particle protection provided by the graphitic shell. The magCNTs are promising for high capacity drug loading given that the magnetic functionalization did not block any of the active sites available for drug attachment, either from the CNT internal void or on the internal and external surfaces. This is in contrast to typical approaches of loading CNTs with particles that proceed through surface attachment or capillary filling of the tube interior. Additionally, the CNTs exhibit enhanced hydrophilic character, as shown by water adsorption measurements, which make them suitable for biological applications. The morphological and structural characteristics of the hybrid CNTs are evaluated in conjunction to their magnetic properties and ability for drug loading (diaminophenothiazine). The fact that the magnetic functionality is provided from 'inside the walls' can allow for multimode functionalization of the graphitic surfaces and makes the magCNTs promising for targeted therapeutic applications. PMID:21817779

  15. Plumbing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  16. Functionalization and magnetization of carbon nanotubes using Co-60 gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Fu, M. J.; Tsai, C. Y.; Lin, F. H.; Chen, K. Y.

    2014-10-01

    Functionalized magnetic carbon nanotubes (CNTs) can be used in the biological and biomedical fields as biosensors, drug delivery systems, etc., which makes research into processes for manufacturing modified CNTs quite important. In this paper, Co-60 gamma irradiation is shown to be an effective tool for fabricating functionalized and magnetized CNTs. After the Co-60 gamma irradiation, the presence of carboxylic functional groups on the CNT walls was confirmed by their Fourier transform infrared spectra, and the presence of Fe3O4 was verified by the X-ray diffraction patterns. The functionalized and magnetized CNTs produced using Co-60 gamma irradiation have excellent dispersion properties. The techniques for functionalizing and magnetizing CNTs are introduced in this paper, and applications of the modified CNTs will be reported after more data are gathered.

  17. Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes.

    PubMed

    Tucker-Schwartz, Jason M; Hong, Tu; Colvin, Daniel C; Xu, Yaqiong; Skala, Melissa C

    2012-03-01

    We demonstrate polyethylene-glycol-coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic-resonance imaging (MRI). Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude-modulated 750 nm pump beam using 10 mW of power, and T(2) MRI was achieved with a 4.7 T animal system. Photothermal OCT and T(2) MRI achieved sensitivities of nanomolar concentrations to CNTs dispersed in amine-terminated polyethylene glycol, thus establishing the potential for dual-modality molecular imaging with CNTs. PMID:22378422

  18. The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications.

    PubMed

    Zarnegar, Zohre; Safari, Javad

    2015-04-01

    Chitosan-modified magnetic carbon nanotubes (CS-MCNTs) were synthesized and were investigated by FT-IR, EDX, FE-SEM, elemental analysis, XRD, VSM and TGA. In order to synthesize the CS-MCNTs composites, Fe3O4 decorated carbon nanotubes (CNTs-Fe3O4) were modified with a silica layer by the ammonia-catalysed hydrolysis of tetraethyl orthosilicate (CNTs-Fe3O4@SiO2). Then, CS-MCNTs were successfully grafted on the surface of CNTs-Fe3O4@SiO2via a suspension cross-linking method. The CS-MCNT was found to be an excellent heterogeneous catalyst for the synthesis of 1,4-dihydropyridines (DHPs). The attractive advantages of the present process include short reaction times, milder and cleaner conditions, higher purity and yields, easy isolation of products, easier work-up procedure and lower generation of waste or pollutions. This catalyst was easily separated by an external magnet and the recovered catalyst was reused several times without any significant loss of activity. A combination of the advantages of CNTs, chitosan and magnetic nanoparticles provides an important methodology for carrying out catalytic transformations. Therefore, this method provides a green and much improved protocol over the existing methods. PMID:25597431

  19. Hyperspectral imaging of exciton photoluminescence in individual carbon nanotubes controlled by high magnetic fields.

    PubMed

    Alexander-Webber, Jack A; Faugeras, Clement; Kossacki, Piotr; Potemski, Marek; Wang, Xu; Kim, Hee Dae; Stranks, Samuel D; Taylor, Robert A; Nicholas, Robin J

    2014-09-10

    Semiconducting carbon nanotubes (CNTs) provide an exceptional platform for studying one-dimensional excitons (bound electron-hole pairs), but the role of defects and quenching centers in controlling emission remains controversial. Here we show that, by wrapping the CNT in a polymer sheath and cooling to 4.2 K, ultranarrow photoluminescence (PL) emission line widths below 80 μeV can be seen from individual solution processed CNTs. Hyperspectral imaging of the tubes identifies local emission sites and shows that some previously dark quenching segments can be brightened by the application of high magnetic fields, and their effect on exciton transport and dynamics can be studied. Using focused high intensity laser irradiation, we introduce a single defect into an individual nanotube which reduces its quantum efficiency by the creation of a shallow bound exciton state with enhanced electron-hole exchange interaction. The emission intensity of the nanotube is then reactivated by the application of the high magnetic field. PMID:25158099

  20. Water confined in carbon nanotubes: Magnetic response and proton chemical shieldings

    SciTech Connect

    Huang, P; Schwegler, E; Galli, G

    2008-11-14

    We study the proton nuclear magnetic resonance ({sup 1}H-NMR) of a model system consisting of liquid water in infinite carbon nanotubes (CNT). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory (DFT) with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions, for water confined in (14,0) and (19,0) CNTs with diameters d = 11 {angstrom} and 14.9 {angstrom}, respectively. We find that confinement within the CNT leads to a large ({approx} -23 ppm) upfield shift relative to bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.

  1. Structure, composition and magnetic properties of carbon nanotubes doped by Fe during the growth process

    NASA Astrophysics Data System (ADS)

    Labunov, V. A.; Shulitski, B. G.; Prudnikava, A. L.; Yanushkevich, K. I.

    2008-03-01

    The results of complex investigations of the crystalline structure, composition and specific magnetization of the multi-wall carbon nanotubes (CNTs) filled by magnetic nanocomposite are performed. CNT arrays have been synthesized by the high temperature pyrolysis of fluid hydrocarbon - p-xylole [C8H10] in the presence of volatile catalyst - ferrocene [Fe(C5H5)2] at the walls of tubular-type quartz reactor of specially constructed equipment. It was revealed that the obtained CNTs constitute complex nanocomposite: C - Fe3C - Fe5C2 - Fe. The magnetic properties of such CNTs in the temperature region of 78<=T<=1060 K are conditioned by the ferric carbide (in the form Fe3C H Fe5C2) and Fe.

  2. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Narayanan, T. N.; Reena Mary, A. P.; Shaijumon, M. M.; Ci, Lijie; Ajayan, P. M.; Anantharaman, M. R.

    2009-02-01

    Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT-SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ~110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT-SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT-SPION composite can be envisaged as a good agent for various biomedical applications.

  3. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

    PubMed

    Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique

    2014-11-25

    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs. PMID:25343751

  4. Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation.

    PubMed

    Gui, Xuchun; Zeng, Zhiping; Lin, Zhiqiang; Gan, Qiming; Xiang, Rong; Zhu, Yuan; Cao, Anyuan; Tang, Zikang

    2013-06-26

    Development of sorbent materials with high selectivity and sorption capacity, easy collection and recyclability is demanding for spilled oil recovery. Although many sorption materials have been proposed, a systematic study on how they can be reused and possible performance degradation during regeneration remains absent. Here we report magnetic carbon nanotube sponges (Me-CNT sponge), which are porous structures consisting of interconnected CNTs with rich Fe encapsulation. The Me-CNT sponges show high mass sorption capacity for diesel oil reached 56 g/g, corresponding to a volume sorption capacity of 99%. The sponges are mechanically strong and oil can be squeezed out by compression. They can be recycled using through reclamation by magnetic force and desorption by simple heat treatment. The Me-CNT sponges maintain original structure, high capacity, and selectivity after 1000 sorption and reclamation cycles. Our results suggest that practical application of CNT macrostructures in the field of spilled oil recovery is feasible. PMID:23721652

  5. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  6. Simultaneous synthesis of single-walled carbon nanotubes and graphene in a magnetically-enhanced arc plasma.

    PubMed

    Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael

    2012-01-01

    Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the

  7. Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes.

    PubMed

    García-Merino, J A; Martínez-González, C L; San Miguel, C R Torres; Trejo-Valdez, M; Martínez-Gutiérrez, H; Torres-Torres, C

    2016-08-22

    The impact of vectorial magnetic field effects on electrical conductivity and nonlinear optical transmittance exhibited by multi-wall carbon nanotubes was studied. The samples were synthetized by an aerosol pyrolysis processing route in a thin film form. Optical signals in a two-wave mixing configuration allowed us to identify two orthogonal directions of propagation for a magnetic field travelling through the nanomaterials studied. A selective modification in optical absorption was considered to be induced by magnetic perturbations in the sample. Standard optical Kerr gate measurements were carried out for exploring the third order nonlinear optical behavior of the film. A capacitive effect influenced by optical and magnetic excitations was distinguished to be characteristic of the sample. Magneto-quantum conductivity sensitive to the direction of an external magnetic field interacting with the tubes was analyzed. Magnetically-induced changes in electronic band parameters seem to be the main responsible for the optical and electrical modulation observed in the nanostructures. Immediate applications for developing magneto-optical and magneto-electrical functions can be contemplated. PMID:27557232

  8. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-02-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (˜18 nm thick) were deposited on CNTs (˜38 nm diameter and ˜50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ˜50-100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ˜75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ˜103 times smaller than other existing work (˜105 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT-polymer nanocomposites, through controlled micro-structure and scalable manufacturing.

  9. Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite

    NASA Astrophysics Data System (ADS)

    Wang, Peifang; Cao, Muhan; Wang, Chao; Ao, Yanhui; Hou, Jun; Qian, Jin

    2014-01-01

    A solvothermal method was employed to prepare a novel magnetic composite adsorbent composed of graphene, multi-walled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles. The prepared adsorbents were characterized by X-ray diffraction, scanning electron microscopy and X-ray fluorescence spectrometry and Fourier transform infrared spectroscopy. Fourier transform infrared spectroscopy and the particle size distribution of the samples before and after adsorption was also carried out. The performance of as-prepared composites was investigated by the adsorption of dye methylene blue. Results showed that the maximum adsorption capacity of the samples was up to 65.79 mg g-1, which was almost equal to the sum of magnetic graphene and magnetic MWCNTs. The effect of pH and temperature on the adsorption performance of methylene blue onto the magnetic adsorbents was investigated. The kinetic was well-described by pseudo-second-order and intraparticle diffusion model, while the isotherm obeyed the Langmuir isotherm. Furthermore, the as-prepared composites were found to be regenerative and reusable. The application in the treatment of an artificial dye wastewater and its cost estimation were also discussed. Therefore, the as-prepared magnetic composites can be severed as a potential adsorbent for removal of dye pollutant, owing to its high adsorption performance, magnetic separability and efficient recyclable property.

  10. Influence of Magnetic Losses on Microwave Absorption by Carbon-Nanotube Nanocomposites with a Low Concentration of Ferromagnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Avramchuk, A. V.; Kasperovich, M. M.; Pevneva, N. A.; Gusinsky, A. V.; Korolik, O. V.; Tivanov, M. S.; Shulitski, B. G.; Labunov, V. A.; Danilyuk, A. L.; Komissarov, I. V.; Prischepa, S. L.

    2016-05-01

    The absorption properties of magnetic nanocomposites based on carbon nanotubes with a low concentration of ferromagnetic nanoparticles have been investigated in the 78-118 GHz frequency range. A correlation was established between the absorption properties of the nanocomposites and the character of the magnetostatic interaction between nanoparticles.

  11. Magnetic field and electromagnetic wave properties of carbon monoxide with high-pressure disproportionation single-walled carbon nanotubes

    SciTech Connect

    Tooski, S. B.

    2009-10-15

    A double-fluid theory is used to find the electromagnetic wave absorption of carbon monoxide with iron-catalyzed high-pressure disproportionation (HiPco)-grown single-walled carbon nanotubes (SWNTs). The electromagnetic wave absorption of carbon monoxide with HiPco SWNTs is obtained and is studied numerically. The absorption is then deduced and their functional dependence on the number density, collision frequency, cyclotron frequency, and angle of propagation is studied. The double-fluid theory predicts that there is an electromagnetic frequency dependency on the energy absorption properties of the system under investigation. The calculation results show that effects of magnetic field strength and the angle of microwave propagation on the absorption coefficient as well as the frequency band of resonant absorption are very significant.

  12. Nanomanipulation and Lithography: The Building (and Modeling) of Carbon Nanotube Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Louie, Richard Nam

    2002-12-01

    Aircraft fuselages suffer alternating stress during takeoffs and landings, and fatigue cracks begin to grow, usually at rivet holes. The detection of these fatigue cracks under installed fasteners in aging aircraft is a major goal of the nondestructive evaluation (NDE) community. The use of giant magnetoresistance (GMR) sensors in electromagnetic (EM) NDE has been increasing rapidly. For example, here at Langley Research Center, a Rotating Probe System (RPS) containing a GMR element has been incorporated into a product to detect deeply buried flaws in aerospace structures. In order to advance this eddy current probe application and many similar ones, research to create smaller, more sensitive and energy-efficient EM sensors has been aggressively pursued. Recent theoretical and experimental work on spin coherent transport supports the feasibility of carbon nanotube (CNT) based magnetic tunnel junctions. In this study, a spatial filtering scheme is presented that improves the signal to noise ratio of the RPS and does not significantly impact the number of false alarms. Signals due to buried flaws occur at higher frequencies than do signals due to rivet tilt or probe misalignment, and the strategy purposefully targets this fact. Furthermore, the spatial filtering scheme exploits decreases in the probe output that are observed immediately preceding and following the peak in output due to a fatigue crack. Using the new filters, an enhanced probability of flaw detection is expected. In the future, even tinier, more sensitive, low-power sensors are envisioned for the rotating probe and other nondestructive inspection systems. These may be comprised of single-walled carbon nanotubes (SWCNTs) that connect two ferromagnetic (FM) electrodes. Theoretical work has been done at Langley to model the electrical and magnetoconductance behavior of such junctions, for systems containing short "armchair" nanotubes. The present work facilitates the modeling of more realistic system

  13. Coherent mesoscopic transport through a quantum-dot embedded carbon nanotube ring threaded with magnetic flux

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Kang; Wang, Jian

    2004-03-01

    We have investigated the coherent mesoscopic transport through a quantum-dot (QD) embedded carbon nanotube ring (CNR) by employing the nonequilibrium Green's function (NGF) technique. The Landauer-Büttiker-like formula is presented to calculate the differential conductance and current-voltage characteristics. Due to the interference of the electrons transporting in the two paths of CNR, the resultant conductivity of electron through the system is determined by the compound concrete structure of CNR-QD system. The tunneling current appears quantum behavior obviously in the small region of source-drain bias. The conductance is adjusted by the gate voltage Vg and the magnetic flux φ. The reversal resonance has been displayed versus the gate voltage, and it is symmetric about Vg for the type I CNR, but it is asymmetric for the type II CNR. The phase inverse oscillations are also presented for the different types of CNRs.

  14. Quantum correlations of magnetic impurities by a multiple electron scattering in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gamboa Angulo, Didier; Cordourier Maruri, Guillermo; de Coss Gómez, Romeo

    In this work we analyze the quantum correlations and polarizations states of magnetic impurities spins, when a multiple electron scattering was taken place. A sequence of non-correlated electrons interacts through scattering producing quantum correlation which will have an impact on the electronic transmission. We consider a short range Heisenberg interaction between ballistic electron and static impurities. We analyze the cases when the electron scattering is produce by one and two impurities, obtaining the electronic transmission rates. Concurrence and fidelity calculations are performed to obtain the level of quantum entanglement and polarization correlations. We also discuss the possible application of this model to metallic and semiconductor carbon nanotubes, which could have important implications on spintronics and quantum information devices.

  15. Removal of oil droplets from contaminated water using magnetic carbon nanotubes.

    PubMed

    Wang, Haitao; Lin, Kun-Yi; Jing, Benxin; Krylova, Galyna; Sigmon, Ginger E; McGinn, Paul; Zhu, Yingxi; Na, Chongzheng

    2013-08-01

    Water contaminated by oil and gas production poses challenges to the management of America's water resources. Here we report the design, fabrication, and laboratory evaluation of multi-walled carbon nanotubes decorated with superparamagnetic iron-oxide nanoparticles (SPIONs) for oil-water separation. As revealed by confocal laser-scanning fluorescence microscopy, the magnetic carbon nanotubes (MCNTs) remove oil droplets through a two-step mechanism, in which MCNTs are first dispersed at the oil-water interface and then drag the droplets with them out of water by a magnet. Measurements of removal efficiency with different initial oil concentration, MCNT dose, and mixing time show that kinetics and equilibrium of the separation process can be described by the Langmuir model. Separation capacity qt is a function of MCNT dose m, mixing time t, and residual oil concentration Ce at equilibrium: [Formula in text] where qmax, kw, and K are maximum separation capacity, wrapping rate constant, and equilibrium constant, respectively. Least-square regressions using experimental data estimate qmax = 6.6(± 0.6) g-diesel g-MCNT(-1), kw = 3.36(± 0.03) L g-diesel(-1) min(-1), and K = 2.4(± 0.2) L g-diesel(-1). For used MCNTs, we further show that over 80% of the separation capacity can be restored by a 10 min wash with 1 mL ethanol for every 6 mg MCNTs. The separation by reusable MCNTs provides a promising alternative strategy for water treatment design complementary to existing ones such as coagulation, adsorption, filtration, and membrane processes. PMID:23582309

  16. D{sup 0} magnetism in Ca doped narrow carbon nanotubes: First principle chirality effect study

    SciTech Connect

    Hajiheidari, F.; Khoshnevisan, B.; Hashemifar, S. J.

    2014-06-21

    Curvature has always had crucial effects on the physical properties of narrow carbon nanotubes (CNTs) and here spin-polarized density functional calculations were employed to study electronic and magnetic properties of calcium-decorated narrow (5,5) and (9,0)CNTs with close diameters (∼7 Å) and different chiralities. Our results showed that chirality had great impact on the electronic structure and magnetization of the doped CNTs. In addition, internally or externally doping of the calcium atoms was studied comparatively and although for the (9,0)CNT the internal doping was the most stable configuration, which involves a novel kind of spin-polarization originated from Ca-4s electrons, but for the (5,5)tube the external doping was the most stable one without any spin-polarization. On the other hand, calcium doping in the center of the (5,5)CNT was an endothermic process and led to the spin-polarization of unoccupied Ca-3d orbitals via direct exchange interaction between adjacent Ca atoms. In the considered systems, the existence of magnetization in the absence of any transition-metal elements was an example of valuable d{sup 0} magnetism title.

  17. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation

    PubMed Central

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-01-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters. PMID:27535103

  18. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation.

    PubMed

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan

    2016-01-01

    Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters. PMID:27535103

  19. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification.

    PubMed

    Sharma, Virender K; McDonald, Thomas J; Kim, Hyunook; Garg, Vijayendra K

    2015-11-01

    One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water. PMID:26498500

  20. Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer-carbon nanotube layer-by-layer films.

    PubMed

    Siqueira, José R; Gabriel, Rayla C; Zucolotto, Valtencir; Silva, Anielle C A; Dantas, Noelio O; Gasparotto, Luiz H S

    2012-11-01

    Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium. PMID:23007196

  1. Applications of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  2. Controlling the magnetic state of a carbon nanotube Josephson junction with the superconducting phase

    NASA Astrophysics Data System (ADS)

    Delagrange, Raphaelle; Weil, R.; Kasumov, A.; Bouchiat, H.; Deblock, R.; Luitz, D. J.; Meden, V.

    The Kondo effect is a many-body phenomenon that screens the magnetic moment of an impurity in a metal. The associated singlet state can be probed in a single impurity by electronic transport in a quantum dot (QD), here made of a carbon nanotube (CNT), which provides a localized electron between the two contacts. Using superconducting leads, one can investigate the competition between the Kondo effect and the superconductivity induced in the CNT. The superconductivity can destroy the Kondo singlet in favor of a magnetic doublet, leading to a sign reversal of the supercurrent in the S-CNT-S junction. This singlet-doublet transition depends on the Kondo temperature and the superconducting gap, as well as the position of the impurity level. We demonstrate experimentally that the superconducting phase difference across the QD can also control this magnetic transition. We use the measurement of the relation between the supercurrent and this superconducting phase as a tool to probe the transition. We show that it has a distinctly anharmonic behavior, that reveals the phase-mediated singlet to doublet transition, in good agreement with finite temperature quantum Monte Carlo calculations. We extract as well a phase diagram of the phase-controlled quantum transition at zero temperature.

  3. Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Huang, Ying; Qi, Shuhua; Niu, Lei; Zhang, Yinling; Wu, Yanfei

    2012-02-01

    Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.

  4. Study of the thermo-magnetic fluctuations in carbon nano-tubes added Bi-2223 superconductors

    NASA Astrophysics Data System (ADS)

    Saoudel, A.; Amira, A.; Boudjadja, Y.; Mahamdioua, N.; Amirouche, L.; Varilci, A.; Altintas, S. P.; Terzioglu, C.

    2013-11-01

    We have investigated the effect of addition of carbon nano-tubes (CNT) on the properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductors. The samples are prepared from commercial powders with addition of 0.1 wt% of CNT. They are characterized by XRD, SEM and magneto-resistivity in the transition region. As it was reported for CNT added Y-123 compounds, the refined cell parameters are practically independent of this kind of addition. Under applied magnetic field, a large broadening of resistive transition is observed. The dissipative behavior of resistivity can be explained using the well known expression, ρ=ρ0(T/Tg-1)S. The modified vortex-glass to liquid transition theory is used to calculate the values of the glass-transition temperature Tg and the temperature and magnetic field dependent activation energy U0(B,T). These parameters are seen to decrease with CNT addition and applied magnetic field. Also, we have found that the undoped sample proves a better transition width, residual resistivity (ρ0) and a higher onset critical transition temperature of about 117.75 K. Also, the appearance of a double resistive transition for both samples is a confirmation of the existence of a secondary phase which plays the role of the weak links at the grain boundaries.

  5. Ab initio studies of mechanical, electric, and magnetic properties of functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Milowska, Karolina; Birowska, Magdalena; Majewski, Jacek A.

    2012-02-01

    We present results of extensive theoretical studies of mechanical, electric, and magnetic properties of functionalized carbon nanotubes (CNTs). Our studies are based on the ab initio calculations in the framework of the density functional theory. We have performed calculations for various metallic and semiconductor single wall CNTs, functionalized with simple organic molecules such as OH, COOH, NHn, CHn and metals, Al, Fe, Ni, Cu, Zn, and Pd. We have determined the stability of the functionalized CNTs, their elastic moduli, conductance, and magnetic moments (in the case of CNTs decorated with magnetic ions). These studies shed light on physical mechanisms governing the binding of the adsorbed molecules and also provide valuable quantitative predictions that are of importance for design of novel composite materials and functional devices. In particular, we find out that the Young's modulus of functionalized CNTs is smaller than in the case of bare CNTs, however it is large enough to provide a strong enforcement of composites. The functionalization with molecules leads also to the metallization of semiconducting CNTs, being relevant in the context of CNT interconnects, whereas the functionalization with metals might be used to cut CNTs into ribbons.

  6. Magnetic properties and phase transitions of gadolinium-infused carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Quetz, Abdiel; Dubenko, Igor; Samanta, Tapas; Vinson, Herbert; Talapatra, Saikat; Ali, Naushad; Stadler, Shane

    2013-05-01

    Carbon nanotube (CNT)/metal-cluster-based composites are envisioned as new materials that possess unique electronic properties which may be utilized in a variety of future applications. Superparamagnetic behavior was reported for CNTs with Gd ions introduced into the CNT openings by internal loading with an aqueous GdCl3 chemical process. In the current work, the magnetic properties of the CNT/Gd composites were obtained by the joining and annealing of Gd metal and CNTs at 850 °C for 48 h. Energy dispersive X-ray analysis shows the presence of Gd intermingled with the CNT walls with maximum and average Gd concentrations of about 20% and 4% (by weight), respectively. The Gd clusters have a non-uniform distribution and are mostly concentrated at the ends of the CNTs. A ferromagnetic-type transition at TC ˜ 320 K, accompanied by jump like change in magnetization and temperature hysteresis typical for the temperature induced first order phase transitions has been observed by magnetization measurements. It was found that Gd infused into the CNTs by the annealing results in a first order paramagnetic-ferromagnetic transition at TC = 320 K.

  7. Synthesis and characterization of magnetic carbon nanotubes/silsesquioxane nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Osorio, Alice Gonçalves; Machado, Geraldo Beyer; Pereira, Marcelo Barbalho; Benvenutti, Edilson Valmir; Pereira, Luis Gustavo; Bergmann, Carlos Perez; Oliveira, Artur Harres de; Costa, Tania Maria Haas

    2016-05-01

    In the present study, magnetic carbon nanotubes (CNTs)/silsesquioxane nanocomposites were produced by sol-gel method and deposited as thin film by dip-coating process. Blank films and films with CNTs were characterized in order to evaluate their chemical composition and morphology. Profilometry technique showed the formation of films with 305 ± 22 nm of thickness for blank samples (without CNTs) and 173 ± 05 nm thickness for samples with CNTs. Microscopy techniques indicated the presence of CNTs well dispersed in the films and, with the aid of Raman and Fourier Transform Infrared spectroscopy, chemical composition of silsesquioxane matrix was evidenced and the presence of CNTs was confirmed in the films. Finally, the magnetic response of the deposited films was analyzed by Alternating Gradient-Field Magnetometer and results indicated that films reinforced with CNTs showed a hysteresis loop that indicates a coercivity of 103 Oe and the blank film did not show any significant response to the field applied. Hence, the authors suggest that this hybrid organic-inorganic material has potential to be applied as a new material for magnetic storage.

  8. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  9. Molecular quantum spintronics: supramolecular spin valves based on single-molecule magnets and carbon nanotubes.

    PubMed

    Urdampilleta, Matias; Nguyen, Ngoc-Viet; Cleuziou, Jean-Pierre; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2011-01-01

    We built new hybrid devices consisting of chemical vapor deposition (CVD) grown carbon nanotube (CNT) transistors, decorated with TbPc(2) (Pc = phthalocyanine) rare-earth based single-molecule magnets (SMMs). The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (T(B) ~ 1 K) of isolated TbPc(2) SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs. PMID:22072910

  10. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    SciTech Connect

    Karličić, Danilo; Cajić, Milan; Murmu, Tony; Kozić, Predrag; Adhikari, Sondipon

    2014-06-21

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form

  11. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  12. Conducting carbonized polyaniline nanotubes

    NASA Astrophysics Data System (ADS)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  13. Conducting carbonized polyaniline nanotubes.

    PubMed

    Mentus, Slavko; Cirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy. PMID:19471087

  14. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  15. Carbon nanotubes: Fibrillar pharmacology

    NASA Astrophysics Data System (ADS)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  16. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Webber, Stephen E.

    2003-01-01

    These project will explore the functionalization of carbon nanotubes via the formation of molecular complexes with perylene diimide based systems. It is anticipated that these complexes would be soluble in organic solvent and enable the homogenous dispersion of carbon nanotubes in polymer films. Molecular complexes will be prepared and characterized using standard spectroscopic and thermal analytical techniques. Polymer films will be prepared with these complexes and their properties (electrical and thermal conductivity, mechanical properties, stability) evaluated.

  17. Nanotube composite carbon fibers

    NASA Astrophysics Data System (ADS)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  18. Carbon Nanotube Solar Cells

    PubMed Central

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement. PMID:22655070

  19. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  20. Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes.

    PubMed

    Zeeshan, M A; Shou, K; Pané, S; Pellicer, E; Sort, J; Sivaraman, K M; Baró, M D; Nelson, B J

    2011-07-01

    We report on the growth and fabrication of Ni-filled multi-walled carbon nanotubes (Ni-MWNTs) with an average diameter of 115 nm and variable length of 400 nm-1 µm. The Ni-MWNTs were grown using template-assisted electrodeposition and low pressure chemical vapor deposition (LPCVD) techniques. Anodized alumina oxide (AAO) templates were fabricated on Si using a current controlled process. This was followed by the electrodeposition of Ni nanowires (NWs) using galvanostatic pulsed current (PC) electrodeposition. Ni NWs served as the catalyst to grow Ni-MWNTs in an atmosphere of H2/C2H2 at a temperature of 700 °C. Time dependent depositions were carried out to understand the diffusion and growth mechanism of Ni-MWNTs. Characterization was carried out using scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), Raman spectroscopy and energy dispersive x-ray spectroscopy (EDX). TEM analysis revealed that the Ni nanowires possess a fcc structure. To understand the effects of the electrodeposition parameters, and also the effects of the high temperatures encountered during MWNT growth on the magnetic properties of the Ni-MWNTs, vibrating sample magnetometer (VSM) measurements were performed. The template-based fabrication method is repeatable, efficient, enables batch fabrication and provides good control on the dimensions of the Ni-MWNTs. PMID:21606563

  1. PEG-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging

    NASA Astrophysics Data System (ADS)

    Khandare, Jayant J.; Jalota-Badhwar, Archana; Satavalekar, Sneha D.; Bhansali, Sujit G.; Aher, Naval D.; Kharas, Firuza; Banerjee, Shashwat S.

    2012-01-01

    We report synthesis of a highly versatile multicomponent nanosystem by covalently decorating the surface of multiwalled carbon nanotubes (CNTs) by magnetite nanoparticles (Fe3O4), poly(ethylene glycol) (PEG), and fluorophore fluorescein isothiocyanate (FITC). The resulting Fe3O4-PEG-FITC-CNT nanosystem demonstrates high dispersion ability in an aqueous medium, magnetic responsiveness, and fluorescent capacity. Transmission electron microscopy images revealed that Fe3O4 nanoparticles were well anchored onto the surfaces of the CNT. In vitro time kinetic experiments using confocal microscopy demonstrated a higher uptake of the Fe3O4-PEG-FITC-CNT nanosystem localized at the perinuclear region of MCF7 cells compared to the free FITC. In addition, the CNT nanosystem demonstrated no evidence of toxicity on cell growth. Surface conjugation of multicomponents, combined with in vitro non-toxicity, enhanced cellular uptake for FITC and site specific targeting ability makes this fluorescent Fe3O4-PEG-FITC-CNT nanosystem an ideal candidate for bioimaging, both in vitro and in vivo.

  2. Properties of K,Rb-intercalated C60 encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mahfouz, R.; Bouhrara, M.; Kim, Y.; Wâgberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2015-09-01

    We present a detailed experimental study on how magnetic and electronic properties of Rb,K-intercalated C60 encapsulated inside carbon nanotubes called peapods can be derived from 13C nuclear magnetic resonance investigations. Ring currents do play a basic role in those systems; in particular, the inner cavities of nanotubes offer an ideal environment to investigate the magnetism at the nanoscale. We report the largest diamagnetic shifts down to -68.3 ppm ever observed in carbon allotropes, which is connected to the enhancement of the aromaticity of the nanotube envelope upon intercalation. The metallization of intercalated peapods is evidenced from the chemical shift anisotropy and spin-lattice relaxation (T1) measurements. The observed relaxation curves signal a three-component model with two slow and one fast relaxing components. We assigned the fast component to the unpaired electrons charged C60 that show a phase transition near 100 K. The two slow components can be rationalized by the two types of charged C60 at two different positions with a linear regime following Korringa behavior, which is typical for metallic system and allow us to estimate the density of sate at Fermi level n(EF).

  3. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer.

    PubMed

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-01-01

    BACKGROUND The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. MATERIAL AND METHODS A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. RESULTS Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. CONCLUSIONS The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells. PMID:27385226

  4. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer

    PubMed Central

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-01-01

    Background The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. Material/Methods A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. Results Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. Conclusions The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells. PMID:27385226

  5. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides

    NASA Astrophysics Data System (ADS)

    Ma, Rongna; Hu, Junjie; Cai, Zongwei; Ju, Huangxian

    2014-02-01

    A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid (APBA) via an amide reaction. The introduction of PASE could bridge the MCNT and APBA, suppress the nonspecific adsorption and reduce the steric hindrance among the bound molecules. Due to the excellent structure of the MCNTs, the functionalization of PASE and then APBA on MCNTs was quite simple, specific and effective. The glycopeptides enrichment and separation with a magnetic field could be achieved by their reversible covalent binding with the boronic group of APBA-MCNTs. The exceptionally large specific surface area and the high density of boronic acid groups of APBA-MCNTs resulted in rapid and highly efficient enrichment of glycopeptides, even in the presence of large amounts of interfering nonglycopeptides. The functional MCNTs possessed high selectivity for enrichment of 21 glycopeptides from the digest of horseradish peroxidase demonstrated by MALDI-TOF mass spectrometric analysis showing more glycopeptides detected than the usual 9 glycopeptides with commercially available APBA-agarose. The proposed system showed better specificity for glycopeptides even in the presence of non-glycopeptides with 50 times higher concentration. The boronic acid functionalized MCNTs provide a promising selective enrichment platform for precise glycoproteomic analysis.A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid

  6. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  7. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  8. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  9. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  10. Spin splitting at the Fermi level in carbon nanotubes in the absence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Cunha, Márcio M.; Brandão, Júlio; Lima, Jonas R. F.; Moraes, Fernando

    2015-11-01

    In this paper, motivated by the possibility of experimental realization, we study the low-energy electronic states of a rotating carbon nanotube within a continuum model. An effective Dirac equation in the rotating reference frame is derived and exact analytical solutions for the eigenfunctions and energy spectrum are obtained. A Zeeman-like splitting results from the coupling of rotation to total angular momentum and the previously known static results are obtained in the no rotation limit.

  11. Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Vales-Pinzón, C.; Alvarado-Gil, J. J.; Medina-Esquivel, R.; Martínez-Torres, P.

    2014-11-01

    Magneto-optic phenomena in ferrofluids have been shown to be related to the formation of chain structures, due to the arrangement of the ferromagnetic particles, induced by an applied magnetic field. In this work, the effects on transmission of polarized light due to anisotropic effects induced by an external magnetic field in ferrofluids with carbon nanotubes are studied. The time response of the system presents two well defined stages, in the first one, which is very short, the fluid behaves as a polarizer. In contrast in the second stage, the effects of light transmission dominate. In this stage the transmitted light intensity grows with time and after a long time reaches a constant stable value. It is shown that these phenomena depend on the carbon nanotubes concentration as well as on the strength of the applied magnetic field. Using a simple model that considers a chain-like structure formation, it is possible to determine the rate of agglomeration of the formed structures and the attenuation coefficient of the transmitted light. The formation of nanostructures leads to variation in the transmitted light, depending on the polarization of the incident light. These magnetic nanostructures can find numerous applications in nanotechnology, optical devices and medicine.

  12. Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging

    PubMed Central

    Cisneros, Brandon T; Law, Justin J; Matson, Michael L; Azhdarinia, Ali; Sevick-Muraca, Eva M; Wilson, Lon J

    2014-01-01

    Aims Simultaneous positron emission tomography/MRI has recently been introduced to the clinic and dual positron emission tomography/MRI probes are rare and of growing interest. We have developed a strategy for producing multimodal probes based on a carbon nanotube platform without the use of chelating ligands. Materials & methods Gd3+ and 64Cu2+ ions were loaded into ultra-short single-walled carbon nanotubes by sonication. Normal, tumor-free athymic nude mice were injected intravenously with the probe and imaged over 48 h. Results & conclusion The probe was stable for up to 24 h when challenged with phosphate-buffered saline and mouse serum. Positron emission tomography imaging also confirmed the stability of the probe in vivo for up to 48 h. The probe was quickly cleared from circulation, with enhanced accumulation in the lungs. Stable encapsulation of contrast agents within ultra-short single-walled carbon nanotubes represents a new strategy for the design of advanced imaging probes with variable multimodal imaging capabilities. PMID:24628687

  13. Copper-philic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Belgamwar, Sachin U.; Sharma, Niti Nipun

    2016-04-01

    Carbon nanotube is having poor wet-ability with copper metal. Wet-ability of carbon nanotube was improved by exposing and creating more active sites on the surface of carbon nanotube. Carbon nanotubes were subjected to the prolong ultrasonication treatment of 20×103 Hz and 500W, which helped in disentanglement of carbon nanotube agglomerates and in breaking the weak bonds like pentagonal or heptagonal structure on the surface and on the CNT cap. Disentanglement of the carbon nanotube, resulted in exposing the defective sites on the surface and breaking of weak bonds, which assisted in creating the new defects on the surface. This process results in generates more active sites on the surface and it helps in improving the wet-ability of the carbon nanotube in copper.

  14. Transport Through Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  15. Structural, electronic and magnetic properties of hcp Fe, Co and Ni nanowires encapsulated in zigzag carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Zhang, J. M.; Huo, Y. P.

    2011-06-01

    The structural, electronic and magnetic properties of hcp transition metal (TM = Fe, Co or Ni) nanowires TM4 encapsulated inside zigzag nanotubes C( m, 0) ( m = 7, 8, 9, 10, 11 or 12), along with TM n ( n = 4, 10 or 13) encapsulated inside C(12, 0), have been systematically investigated using the first-principle calculations. The results show that the TM nanowires can be inserted inside a variety of zigzag carbon nanotubes (CNTs) exothermically, except from the systems TM4@(7, 0) and TM13@(12, 0) which are endothermic. The charge is transferred from TM nanowires to CNTs, and the transferred charge increases with decreasing CNT diameter or increasing nanowire thickness. The magnetic moments of hybrid systems are smaller than those of the freestanding TM nanowires, especially for the atoms on the outermost shell of the nanowires. The magnetic moment per TM atom of TM/CNT system increases with increasing CNT diameter or decreasing nanowire thickness. Both the density of states and spin charge density analysis show that the spin polarization and the magnetic moments of all hybrid systems mainly originate from the TM nanowires, implying these systems can be applied in magnetic data storage devices.

  16. Carbon nanotube intramolecular junctions

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Postma, Henk W. Ch.; Balents, Leon; Dekker, Cees

    1999-11-01

    The ultimate device miniaturization would be to use individual molecules as functional devices. Single-wall carbon nanotubes (SWNTs) are promising candidates for achieving this: depending on their diameter and chirality, they are either one-dimensional metals or semiconductors. Single-electron transistors employing metallic nanotubes and field-effect transistors employing semiconducting nanotubes have been demonstrated. Intramolecular devices have also been proposed which should display a range of other device functions. For example, by introducing a pentagon and a heptagon into the hexagonal carbon lattice, two tube segments with different atomic and electronic structures can be seamlessly fused together to create intramolecular metal-metal, metal-semiconductor, or semiconductor-semiconductor junctions. Here we report electrical transport measurements on SWNTs with intramolecular junctions. We find that a metal-semiconductor junction behaves like a rectifying diode with nonlinear transport characteristics that are strongly asymmetric with respect to bias polarity. In the case of a metal-metal junction, the conductance appears to be strongly suppressed and it displays a power-law dependence on temperatures and applied voltage, consistent with tunnelling between the ends of two Luttinger liquids. Our results emphasize the need to consider screening and electron interactions when designing and modelling molecular devices. Realization of carbon-based molecular electronics will require future efforts in the controlled production of these intramolecular nanotube junctions.

  17. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  18. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  19. Superhydrophobic amorphous carbon/carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Han, Z. J.; Tay, B. K.; Shakerzadeh, M.; Ostrikov, K.

    2009-06-01

    Superhydrophobic amorphous carbon/carbon nanotube nanocomposites are fabricated by plasma immersion ion implantation with carbon nanotube forests as a template. The microstructure of the fabricated nanocomposites shows arrays of carbon nanotubes capped with amorphous carbon nanoparticles. Contact angle measurements show that both advancing and receding angles close to 180° can be achieved on the nanocomposites. The fabrication here does not require patterning of carbon nanotubes or deposition of conformal coatings with low surface energy, which are usually involved in conventional approaches for superhydrophobic surfaces. The relationship between the observed superhydrophobicity and the unique microstructure of the nanocomposites is discussed.

  20. Purification of Carbon Nanotubes: Alternative Methods

    NASA Technical Reports Server (NTRS)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  1. Cell nucleus targeting for living cell extraction of nucleic acid associated proteins with intracellular nanoprobes of magnetic carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Liu, Fangjie; Cheng, Kai; Wu, Ren'an; Zou, Hanfa

    2013-08-01

    Since nanoparticles could be ingested by cells naturally and target at a specific cellular location as designed, the extraction of intracellular proteins from living cells for large-scale analysis by nanoprobes seems to be ideally possible. Nucleic acid associated proteins (NAaP) take the crucial position during biological processes in maintaining and regulating gene structure and gene related behaviors, yet there are still challenges during the global investigation of intracellular NAaP, especially from living cells. In this work, a strategy to extract intracellular proteins from living cells with the magnetic carbon nanotube (oMWCNT@Fe3O4) as an intracellular probe is developed, to achieve the high throughput analysis of NAaP from living human hepatoma BEL-7402 cells with a mass spectrometry-based proteomic approach. Due to the specific intracellular localization of the magnetic carbon nanotubes around nuclei and its strong interaction with nucleic acids, the highly efficient extraction was realized for cellular NAaP from living cells, with the capability of identifying 2383 intracellular NAaP from only ca. 10,000 living cells. This method exhibited potential applications in dynamic and in situ analysis of intracellular proteins. PMID:23815738

  2. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  3. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  4. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  5. Carbon nanotube network varactor.

    PubMed

    Generalov, A A; Anoshkin, I V; Erdmanis, M; Lioubtchenko, D V; Ovchinnikov, V; Nasibulin, A G; Räisänen, A V

    2015-01-30

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. PMID:25556375

  6. Carbon nanotube network varactor

    NASA Astrophysics Data System (ADS)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  7. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  8. Electroless Co-P-Carbon Nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Goel, Vishu; Anderson, Philip; Hall, Jeremy; Robinson, Fiona; Bohm, Siva

    2016-06-01

    The effect of Co-P-CNT coating on the magnetic properties of grain oriented electrical steel was investigated. To analyse the coating, Raman spectroscopy, Superconducting QUantum Interference Device (SQUID), single strip testing, Scanning Electron Microscopy (SEM) and talysurf surface profilometry were performed. Raman spectra showed the D and G band which corroborates the presence of Multi-Walled Carbon Nanotubes (MWCNT) in the coating. The magnetic nature of the coating was confirmed by SQUID results. Power loss results show an improvement ranging 13-15% after coating with Co-P-CNT. The resistivity of the coating was measured to be 104 μΩ cm. Loss separation graphs were plotted before and after coating to study the improvement in power loss. It was found that the coating helps in reducing the hysteresis loss. The thickness of the coating was found to be 414±40 nm. The surface profilometry results showed that the surface roughness improved after coating the sample.

  9. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-06-01

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm2 V-1 s-1 and an on/off ratio of 106. We also established a model to quantitatively calculate the percentage of m

  10. Carbon Nanotubes Based Quantum Devices

    NASA Technical Reports Server (NTRS)

    Lu, Jian-Ping

    1999-01-01

    This document represents the final report for the NASA cooperative agreement which studied the application of carbon nanotubes. The accomplishments are reviewed: (1) Wrote a review article on carbon nanotubes and its potentials for applications in nanoscale quantum devices. (2) Extensive studies on the effects of structure deformation on nanotube electronic structure and energy band gaps. (3) Calculated the vibrational spectrum of nanotube rope and the effect of pressure. and (4) Investigate the properties of Li intercalated nanotube ropes and explore their potential for energy storage materials and battery applications. These studies have lead to four publications and seven abstracts in international conferences.

  11. Magnetic multiwall carbon nanotubes modified with dual hydroxy functional ionic liquid for the solid-phase extraction of protein.

    PubMed

    Chen, Jing; Wang, Yuzhi; Huang, Yanhua; Xu, Kaijia; Li, Na; Wen, Qian; Zhou, Yigang

    2015-05-21

    A novel adsorbent based on silica-coated magnetic multiwall carbon nanotubes (MWCNTs) surface modified by dual hydroxy functional ionic liquid (FIL) ([OH]-FIL-m-MWCNTs@SiO2) has been designed and used for the purification of lysozyme (Lys) by magnetic solid-phase extraction (MSPE). Fourier transform infrared spectroscopy (FTIR), a vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were employed to characterize [OH]-FIL-m-MWCNTs@SiO2. After extraction, the concentration of Lys was determined by a UV-Vis spectrophotometer at 278 nm. A series of single-factor experiments were carried out to identify the optimal conditions of the extraction and the extraction amount could reach up to 94.6 mg g(-1). The RSD of the precision, the repeatability and the stability experiments were 0.37% (n = 3), 0.47% (n = 3) and 0.52% (n = 3), respectively. Comparison of [OH]-FIL-m-MWCNTs@SiO2 with silica-coated magnetic Fe3O4 (Fe3O4@SiO2), silica-coated magnetic multiwall carbon nanotubes (m-MWCNTs@SiO2) and alkyl quaternary ammonium ionic liquid-modified on m-MWCNTs@SiO2 was carried out by extracting Lys. The extraction of bovine serum albumin (BSA), trypsin (Try) and ovalbumin (OVA) was also done by the proposed method. Desorption of Lys was carried out by 0.005 mol L(-1) Na2HPO4-1 mol L(-1) NaCl as the eluent solution and the desorption ratio reached 91.6%. Nearly 97.8% of the [OH]-FIL-m-MWCNTs@SiO2 could be recovered from each run, and the extraction amount decreased less after five runs. The circular dichroism spectral experiment analysis indicated that the secondary structure of Lys was unchanged after extraction. PMID:25826781

  12. Transport in Carbon Nanotube Junctions

    NASA Astrophysics Data System (ADS)

    Khoo, K. H.; Chelikowsky, James R.

    2008-03-01

    There is growing interest in the use of carbon nanotube thin films as transparent electrical conductors and thin-film transistors owing to their high optical transmittance, low sheet resistivity, and ease of fabrication. [1,2] A major contribution to the sheet resistivity originates at nanotube junctions, as electrical contact is typically poor between adjacent nanotubes. It is thus important to characterize carbon nanotube junctions in order to understand the conduction properties of nanotube thin films. To this end, we have performed ab initio density functional theory calculations to investigate the structural, electronic and transport properties of carbon nanotube junctions as a function of nanotube chirality and contact geometry [1] Z. Wu et al., Science 305, 1273 (2004) [2] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, Appl. Phys. Lett. 82, 2145 (2003).

  13. Carbon nanotube core graphitic shell hybrid fibers.

    PubMed

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  14. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.

    PubMed

    Engtrakul, Chaiwat; Davis, Mark F; Gennett, Thomas; Dillon, Anne C; Jones, Kim M; Heben, Michael J

    2005-12-14

    The reversible protonation of carbon single-walled nanotubes (SWNTs) in sulfuric acid and Nafion was investigated using solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies. Magic-angle spinning (MAS) was used to obtain high-resolution 13C and 1H-13C cross polarization (CP) NMR spectra. The 13C NMR chemical shifts are reported for bulk SWNTs, H2SO4-treated SWNTs, SWNT-Nafion polymer composites, SWNT-AQ55 polymer composites, and SWNTs in contact with water. Protonation occurs without irreversible oxidation of the nanotube substrate via a charge-transfer process. This is the first report of a chemically induced change in a SWNT 13C resonance brought about by a reversible interaction with an acidic proton, providing additional evidence that carbon nanotubes behave as weak bases. Cross polarization was found to be a powerful technique for providing an additional contrast mechanism for studying nanotubes in contact with other chemical species. The CP studies confirmed polarization transfer from nearby protons to nanotube carbon atoms. The CP technique was also applied to investigate water adsorbed on carbon nanotube surfaces. Finally, the degree of bundling of the SWNTs in Nafion films was probed with the 1H-13C CP-MAS technique. PMID:16332107

  15. Optoelectronics with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kinoshita, Megumi

    2011-12-01

    The carbon nanotube is a promising material for future micro- and nano-scale electronics because of its unique electronic properties, high carrier mobility and extraordinary capacity for high current density. In particular, semiconducting carbon nanotubes are direct bandgap materials with a typical energy gap in the order of 1 eV, which means they emit light in the near-infrared range, making them an attractive option in telecommunications applications. However, there have been few systematic investigations of electrically-induced light emission (i.e. electroluminescence) from carbon nanotubes, and their emission properties are not well understood. In this dissertation, we explore the characteristics of electroluminescence in three different types of carbon-nanotube devices. The first is a single-tube field-effect transistor (CNTFET), whose emission has previously been found to have a very broad spectral shape and low emission efficiency. We analyze the spectral shape in detail, which reveals that a high electric field near metal contacts contributes most to the bias-dependent component of broadening, in addition to smaller contributions from tube nonuniformity, inelastic scattering of phonons, high temperature, etc. In the second part of the study, single-tube light-emitting diodes are constructed by employing a split top-gate scheme. The split gate creates p- and n-doped regions electrostatically, so that electrons and holes combine between the two sections and can decay radiatively. This configuration creates electron-hole pairs under much lower electric fields and gives us a greater control over carrier distribution in the device channel, resulting in much narrower spectral linewidths and an emission intensity several orders of magnitude larger than that of CNTFETs. The much better signal-to-noise also leads to the observation of emission from defect-induced states. Finally, we extend the idea of the single-tube p-n diode and fabricate CNT film diodes from many

  16. Thermoelectric power in carbon nanotubes

    SciTech Connect

    Mavrinskiy, A. V. Baitinger, E. M.

    2009-04-15

    The theoretical results for the temperature dependence of the thermoelectric power of graphite and semimetal carbon nanotubes are reported. In the calculations, the cylindrical superatomic range structure of nanotubes is taken into account. The Boltzmann equation and the {pi}-electron model of semimetal carbon nanotubes are used. The basic parameters of the calculation are the concentration of electrons, the Fermi energy, and the energy of the local level associated with the cylindrical structure of carbon nanotubes. The theoretical results are compared with the available experimental data.

  17. Impact of carbondiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery

    NASA Astrophysics Data System (ADS)

    Hao, Yuzhi; Xu, Peng; He, Chuan; Yang, Xiaoyan; Huang, Min; Xing, James; Chen, Jie

    2011-07-01

    1-ethyl-3-(3-dimethylaminopropyl) carbondiimide hydrochloride (EDC) is commonly used as a crosslinker to help bind biomolecules, such as DNA plasmids, with nanostructures. However, EDC often remains, after a crosslink reaction, in the micro-aperture of the nanostructure, e.g., carbon nanotube. The remaining EDC shows positive green fluorescent signals and makes a nanostructure with a strong cytotoxicity which induces cell death. The toxicity of EDC was confirmed on a breast cancer cell line (MCF-7) and two leukemic cell lines (THP-1 and KG-1). The MCF-7 cells mainly underwent necrosis after treatment with EDC, which was verified by fluorescein isothiocyanate (FITC) annexin V staining, video microscopy and scanning electronic microscopy (SEM). If the EDC was not removed completely, the nanostructures with remaining EDC produced a green fluorescent background that could interfere with flow cytometry (FACS) measurement and result in false information about GFP plasmid delivery. Effective methods to remove residual EDC on macromolecules were also developed.

  18. Fabrication of multi-walled carbon nanotube thin films via electrophoretic deposition process: effect of water magnetization on deposition efficiency

    NASA Astrophysics Data System (ADS)

    Bazubandi, Behnaz; Moaseri, Ehsan; Baniadam, Majid; Maghrebi, Morteza; Gholizadeh, Mostafa

    2015-08-01

    In this study, the effect of water magnetization was investigated on the performance of electrophoretic deposition (EPD) of multi-walled carbon nanotubes (MWCNTs). Magnetization of water was carried out via two different methods including static and dynamic magnetization processes. It has been found that magnetization of water, as the EPD medium, could enhance several characteristics of MWCNT thin films (MWCNT-TFs). Application of magnetized water as solvent in EPD process resulted in higher electrical conductivity of EPD suspension; consequently, required deposition time was reduced and the electrolysis of water, which is known as one of the main disadvantages of water-based EPDs, was controlled to some extent. Surface morphology of MWCNT-TFs was studied via scanning electron microscopy, and notable enhancement was detected in uniformity and density of MWCNT-TF network. Significant improvement was achieved in electrical conductivity (up to 54 % increase in current) of MWCNT-TF by measuring the current versus voltage characteristics of MWCNT-TFs.

  19. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field.

    PubMed

    Luo, Chengzhi; Wan, Da; Jia, Junji; Li, Delong; Pan, Chunxu; Liao, Lei

    2016-07-14

    The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm(2) V(-1) s(-1) and an on/off ratio of 10(6). We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types. PMID:27315328

  20. CARBON NANOTUBES AS MULTIPOLLUTANT SORBENTS

    EPA Science Inventory

    Exploratory Research Program Project - Carbon nanotubes (CNTs) are formed from graphite (or graphene) sheets rolled into tubes, typically with diameters of 1 - 10 nm and lengths of 200 - 500 nm. Carbon nanotubes have unique electrical properties that have led to interest in thei...

  1. Conduction in Carbon Nanotube Networks

    NASA Astrophysics Data System (ADS)

    Kaiser, A. B.; Rogers, S. A.

    2003-10-01

    Recent measurements of the resistivity of single-wall carbon nanotube (SWNT) networks are consistent with our model of metallic conduction interrupted by barriers. We extend our model of thermopower nonlinearities due to peaks in the density of electronic states and apply it to recent thermopower data for carbon nanotube networks.

  2. Studies of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  3. Teslaphoresis of Carbon Nanotubes.

    PubMed

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  4. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  5. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2, or F2, or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  6. Functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or F.sub.2 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  7. Carbon Nanotubes for Space Applications

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  8. Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Depan, D.; Misra, R. D. K.

    2012-09-01

    We describe here the success of an innovative approach of direct immobilization of magnetic nanoparticles (MNPs) onto carbon nanotubes (CNTs). The approach involved functionalization of magnetic nanoparticles and consequent covalent linkage to a copolymer (PE-b-PEG). Next, the immobilized magnetic nanoparticles on the copolymer were directly crystallized on the long axis of CNTs, where the interfacial adhesion comes from electrostatic and van der Waals interaction. The intracellular trafficking of a hybrid nanoparticle system [(PE-b-PEG)-MNP-CNT-FITC] in HeLa cells was monitored using a fluorescent marker, FITC, conjugated to the nanoparticle system. The distribution of the nanoparticle system inside cells was studied by fluorescence microscopy in a time and dose dependent manner, and it was observed that the nanoparticles are located in the cytoplasm and no apparent cell death was observed at the concentration studied. Also, the effect of an externally applied magnetic field on actin cytoskeleton, cell morphology and intracellular uptake of iron was studied. The approach described here is promising for simultaneous imaging and monitoring intracellular uptake.

  9. Dragging human mesenchymal stem cells with the aid of supramolecular assemblies of single-walled carbon nanotubes, molecular magnets, and peptides in a magnetic field.

    PubMed

    de Paula, Ana Cláudia C; Sáfar, Gustavo A M; Góes, Alfredo M; Bemquerer, Marcelo P; Ribeiro, Marcos A; Stumpf, Humberto O

    2015-01-01

    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy. PMID:25688350

  10. Dragging Human Mesenchymal Stem Cells with the Aid of Supramolecular Assemblies of Single-Walled Carbon Nanotubes, Molecular Magnets, and Peptides in a Magnetic Field

    PubMed Central

    de Paula, Ana Cláudia C.; Sáfar, Gustavo A. M.; Góes, Alfredo M.; Bemquerer, Marcelo P.; Ribeiro, Marcos A.; Stumpf, Humberto O.

    2015-01-01

    Human adipose-derived stem cells (hASCs) are an attractive cell source for therapeutic applicability in diverse fields for the repair and regeneration of damaged or malfunctioning tissues and organs. There is a growing number of cell therapies using stem cells due to their characteristics of modulation of immune system and reduction of acute rejection. So a challenge in stem cells therapy is the delivery of cells to the organ of interest, a specific site. The aim of this paper was to investigate the effects of a supramolecular assembly composed of single-walled carbon nanotubes (SWCNT), molecular magnets (lawsone-Co-phenanthroline), and a synthetic peptide (FWYANHYWFHNAFWYANHYWFHNA) in the hASCs cultures. The hASCs were isolated, characterized, expanded, and cultured with the SWCNT supramolecular assembly (SWCNT-MA). The assembly developed did not impair the cell characteristics, viability, or proliferation. During growth, the cells were strongly attached to the assembly and they could be dragged by an applied magnetic field of less than 0.3 T. These assemblies were narrower than their related allotropic forms, that is, multiwalled carbon nanotubes, and they could therefore be used to guide cells through thin blood capillaries within the human body. This strategy seems to be useful as noninvasive and nontoxic stem cells delivery/guidance and tracking during cell therapy. PMID:25688350

  11. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  12. Carbon nanotube based photocathodes

    NASA Astrophysics Data System (ADS)

    Hudanski, Ludovic; Minoux, Eric; Gangloff, Laurent; Teo, Kenneth B. K.; Schnell, Jean-Philippe; Xavier, Stephane; Robertson, John; Milne, William I.; Pribat, Didier; Legagneux, Pierre

    2008-03-01

    This paper describes a novel photocathode which is an array of vertically aligned multi-walled carbon nanotubes (MWCNTs), each MWCNT being associated with one p-i-n photodiode. Unlike conventional photocathodes, the functions of photon-electron conversion and subsequent electron emission are physically separated. Photon-electron conversion is achieved with p-i-n photodiodes and the electron emission occurs from the MWCNTs. The current modulation is highly efficient as it uses an optically controlled reconfiguration of the electric field at the MWCNT locations. Such devices are compatible with high frequency and very large bandwidth operation and could lead to their application in compact, light and efficient microwave amplifiers for satellite telecommunication. To demonstrate this new photocathode concept, we have fabricated the first carbon nanotube based photocathode using silicon p-i-n photodiodes and MWCNT bunches. Using a green laser, this photocathode delivers 0.5 mA with an internal quantum efficiency of 10% and an ION/IOFF ratio of 30.

  13. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  14. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  15. Impact of carbondiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery.

    PubMed

    Hao, Yuzhi; Xu, Peng; He, Chuan; Yang, Xiaoyan; Huang, Min; Xing, James; Chen, Jie

    2011-07-15

    1-Ethyl-3-(3-dimethylaminopropyl) carbondiimide hydrochloride (EDC) is commonly used as a crosslinker to help bind biomolecules, such as DNA plasmids, with nanostructures. However, EDC often remains, after a crosslink reaction, in the micro-aperture of the nanostructure, e.g., carbon nanotube. The remaining EDC shows positive green fluorescent signals and makes a nanostructure with a strong cytotoxicity which induces cell death. The toxicity of EDC was confirmed on a breast cancer cell line (MCF-7) and two leukemic cell lines (THP-1 and KG-1). The MCF-7 cells mainly underwent necrosis after treatment with EDC, which was verified by fluorescein isothiocyanate (FITC) annexin V staining, video microscopy and scanning electronic microscopy (SEM). If the EDC was not removed completely, the nanostructures with remaining EDC produced a green fluorescent background that could interfere with flow cytometry (FACS) measurement and result in false information about GFP plasmid delivery. Effective methods to remove residual EDC on macromolecules were also developed. PMID:21654030

  16. Method for synthesizing carbon nanotubes

    DOEpatents

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  17. Magnetic multi-walled carbon nanotubes assisted dispersive solid phase extraction of nerve agents and their markers from muddy water.

    PubMed

    Pardasani, Deepak; Kanaujia, Pankaj K; Purohit, Ajay K; Shrivastava, Anchal Roy; Dubey, D K

    2011-10-30

    The multi-walled carbon nano-tubes (MWCNT) were magnetized with iron oxide nanoparticles and were characterized by SEM and EDX analyses. These magnetized MWCNT (Mag-CNT) were used as sorbent in dispersive solid phase extraction (DSPE) mode to extract nerve agents and their markers. Mag-CNT were dispersed in water and collected with the help of an external magnet. From Mag-CNT, the adsorbed analytes were eluted and analyzed by GC-FPD in phosphorus mode. DSPE was found to be advantageous over conventional solid phase extraction (SPE) in terms of operational simplicity, speed, handling of large sample volume and recoveries. Extraction parameters such as eluting solvent, sorbent amount, pH and salinity of aqueous samples were optimized. Optimized extraction conditions included 40 mg of Mag-CNT as sorbent, chloroform as eluent, pH 3-11 and salinity 20%. Under the optimized conditions, recoveries from distilled water ranged from 60 to 96% and were comparable in tap and muddy water. Limits of quantification and limits of detection of 0.15 ng/ml and 0.05 ng/ml, respectively, were achieved. Superiority of Mag-CNT over conventional C(18) SPE was also established. PMID:22063538

  18. Carbon nanotubes in hyperthermia therapy

    PubMed Central

    Singh, Ravi; Torti, Suzy V.

    2013-01-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single-and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs. PMID:23933617

  19. Method for producing carbon nanotubes

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Chen, Chun-Ku

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  20. Cantilevered carbon nanotube hygrometer

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Toshinori; Terada, Yuki; Takei, Kuniharu; Akita, Seiji; Arie, Takayuki

    2014-05-01

    We investigate the effects of humidity on the vibrations of carbon nanotubes (CNTs) using two types of CNT cantilevers: open-ended and close-ended CNT cantilevers. As the humidity increases, the resonant frequency of the open-ended CNT cantilever decreases due to the adsorption of water molecules onto the CNT tip, whereas that of the close-ended CNT cantilever increases probably due to the change in the viscosity of the air surrounding the CNT cantilever, which is negatively correlated with the humidity of air. Our findings suggest that a close-ended CNT cantilever is more suitable for a quick-response and ultrasensitive hygrometer because it continuously reads the viscosity change of moist air in the vicinity of the CNT.

  1. On carbon nanotube resonators

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Salinas Trevino, Cone S.

    2011-04-01

    This paper deals with electrostatically actuated Carbon NanoTubes (CNT) cantilevers for sensor applications. There are three kinds of forces acting on the CNT cantilever: electrostatic, elastostatic, and van der Waals. The van der Waals forces are significant for values of 50 nm or lower of the gap between the CNT and the ground plate. As both forces, electrostatic and van der Waals, are nonlinear, and the CNT electrostatic actuation is given by AC voltage, the CNT dynamics is nonlinear parametric. The method of multiple scales is used to investigate the system under soft excitations and/or weakly nonlinearities. The frequency-amplitude and frequency-phase behavior are found in the case of primary resonance.

  2. Carbon nanotube biconvex microcavities

    SciTech Connect

    Butt, Haider Ahmed, Rajib; Yetisen, Ali K.; Yun, Seok Hyun; Dai, Qing

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  3. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  4. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  5. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  6. Carbon Nanotubes as Thermionic Emitters

    NASA Astrophysics Data System (ADS)

    Loutfy, R. O.; Samandi, M.; Moravsky, A.; Strange, S.

    2004-02-01

    Thermionic converters are an interesting option for lightweight and long-life power generators due to a number of compelling advantages, including all solid construction, no moving parts, and waste heat rejection at high temperature. An experimental set up has been built that allows the screening of thermionic coatings and new nanomaterials from room temperature to 2000 K in high vacuum and at gap sizes as small as 1 μm. A new class of very high temperature compatible materials, carbon nanotubes, has been investigated for their performance as cathodes. Seven different types of carbon nanotubes have been screened as thermionic emitter cathodes and compared to tungsten and nitrogen doped diamond. It has been found that some carbon nanotubes combine excellent temperature stability with good thermal emission performance. Yet, other carbon nanotubes exhibited exceptional combined thermal and field enhanced emission performance.

  7. Carbon Nanotube-Nanocrystal Heterostructures

    SciTech Connect

    Peng, X.; Wong, S.

    2009-04-01

    The importance of generating carbon nanotube-nanoparticle heterostructures is that these composites ought to take advantage of and combine the unique physical and chemical properties of both carbon nanotubes and nanoparticles in one discrete structure. These materials have potential applicability in a range of diverse fields spanning heterogeneous catalysis to optoelectronic device development, of importance to chemists, physicists, materials scientists, and engineers. In this critical review, we present a host of diverse, complementary strategies for the reliable synthesis of carbon nanotube-nanoparticle heterostructures using both covalent as well as non-covalent protocols, incorporating not only single-walled and multi-walled carbon nanotubes but also diverse classes of metallic and semiconducting nanoparticles.

  8. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  9. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  10. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  11. Connecting carbon nanotubes using Sn.

    PubMed

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  12. Carbon Nanotube Purification

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  13. Carbon Nanotubes for Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Anctil, Annick; Dileo, Roberta; Schauerman, Chris; Landi, Brian; Raffaelle, Ryne

    2007-03-01

    Carbon nanotubes are being investigated for optical absorption, exciton dissociation, and carrier transport in polymer photovoltaic devices. In the present work, single wall carbon nanotubes (SWNTs) were synthesized by an Alexandrite pulsed laser vaporization reactor at standard conditions and purified based upon our previously reported TOP procedure. The SWNTs were dispersed in polymer composites for pure MEH-PPV, pure P3HT, and [C60]-PCBM-P3HT (1:1 by weight) as a function of nanotube weight loading (0.1 -- 5% w/w). The AM0 current-voltage measurements for structures sandwiched between PEDOT/PSS coated ITO substrates and an evaporated aluminum contact demonstrate the dramatic effect of SWNT content on the short circuit current density, with conversions efficiencies consistently greater than 1%. The temperature coefficient for nanotube-containing polymer photovoltaics has been compared to conventional PCBM-P3HT devices, and the general relationship of increasing efficiency with increasing temperature is observed. However, the necessity to control nanotube percolation to prevent device shunting has led to recent developments which focus on controlling nanotube length through oxidative cutting, the deposition of intrinsic polymer layers, and the use of aligned carbon nanotube arrays for preferential charge transport.

  14. Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution.

    PubMed

    Yu, Fei; Ma, Jie; Wang, Juan; Zhang, Mingzheng; Zheng, Jie

    2016-03-01

    An effectively and functionally magnetic multi-walled carbon nanotube (MWCNTs) nano-composite (APCNT-KOH) was synthesized by a one-pot and facile method. The residual Fe catalyst particles of the as-prepared MWCNTs were utilized as magnetic materials through KOH activation. The resulting APCNT-KOH exhibited very high adsorption capacities for toluene (T), ethylbenzene (E), and xylene (X) (TEX) pollutants than many other adsorbents, because of their large specific surface area and high degree of surface activity. The adsorption process was found to be pH, ionic strength, and temperature dependent, and the maximum adsorption capacity was observed at pH 6 for TEX pollutants. The adsorption isotherm data were analyzed by applying the Langmuir, Freundlich, and Dubinin-Radushkevich isothermal models. The Langmuir model showed the best fit to the experimental isotherm data with a maximum adsorption capacity(qm,toluene = 63.34 mg/g, qm, ethylbenzene = 249.44 mg/g, qm,m-xylene = 227.05 mg/g, qm,o-xylene = 138.04 mg/g, qm,p-xylene = 105.59 mg/g). Adsorption kinetics of TEX on APCNT-KOH was appropriately described by the pseudo-second-order rate model. The desorption experiments revealed the typical adsorption-desorption hysteresis, indicating that the adsorption and desorption processes of TEX undergo different pathways due to porous structure changes before and after adsorption and desorption. Collective results demonstrate that the functionalized magnetic APCNT-KOH composites are highly-effective adsorbents for TEX removal, which provides a promising and green route for MWCNTs in wastewater treatment. PMID:26714299

  15. Occupational Exposure to Carbon Nanotubes and Nanofibers

    MedlinePlus

    ... Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers Recommend on Facebook Tweet Share Compartir ... composed of engineered nanoparticles, such as metal oxides, nanotubes, nanowires, quantum dots, and carbon fullerenes (buckyballs), among ...

  16. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  17. Carbon Nanotube Based Molecular Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  18. Multiscale Modeling with Carbon Nanotubes

    SciTech Connect

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  19. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    PubMed Central

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  20. Properties of K,Rb-intercalated C{sub 60} encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance

    SciTech Connect

    Mahfouz, R.; Bouhrara, M.; Kim, Y.; Wågberg, T.; Goze-Bac, C.; Abou-Hamad, E.

    2015-09-21

    We present a detailed experimental study on how magnetic and electronic properties of Rb,K-intercalated C{sub 60} encapsulated inside carbon nanotubes called peapods can be derived from {sup 13}C nuclear magnetic resonance investigations. Ring currents do play a basic role in those systems; in particular, the inner cavities of nanotubes offer an ideal environment to investigate the magnetism at the nanoscale. We report the largest diamagnetic shifts down to −68.3 ppm ever observed in carbon allotropes, which is connected to the enhancement of the aromaticity of the nanotube envelope upon intercalation. The metallization of intercalated peapods is evidenced from the chemical shift anisotropy and spin-lattice relaxation (T{sub 1}) measurements. The observed relaxation curves signal a three-component model with two slow and one fast relaxing components. We assigned the fast component to the unpaired electrons charged C{sub 60} that show a phase transition near 100 K. The two slow components can be rationalized by the two types of charged C{sub 60} at two different positions with a linear regime following Korringa behavior, which is typical for metallic system and allow us to estimate the density of sate at Fermi level n(E{sub F})

  1. Large-Scale Processing of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Finn, John; Sridhar, K. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Scale-up difficulties and high energy costs are two of the more important factors that limit the availability of various types of nanotube carbon. While several approaches are known for producing nanotube carbon, the high-powered reactors typically produce nanotubes at rates measured in only grams per hour and operate at temperatures in excess of 1000 C. These scale-up and energy challenges must be overcome before nanotube carbon can become practical for high-consumption structural and mechanical applications. This presentation examines the issues associated with using various nanotube production methods at larger scales, and discusses research being performed at NASA Ames Research Center on carbon nanotube reactor technology.

  2. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  3. Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor.

    PubMed

    Lee, Jaewook; Mulmi, Suresh; Thangadurai, Venkataraman; Park, Simon S

    2015-07-22

    Functionalized carbon nanotubes (f-CNTs), particularly CNTs decorated with nanoparticles (NPs), are of great interest because of their synergic effects, such as surface-enhanced Raman scattering, plasmonic resonance energy transfer, magnetoplasmonic, magnetoelectric, and magnetooptical effects. In general, research has focused on a single type of NP, such as a metal or metal oxide, that has been modified on a CNT surface. In this study, however, a new strategy is introduced for the decoration of two different NP types on CNTs. In order to improve the functionality of modified CNTs, we successfully prepared binary NP-decorated CNTs, namely, iron oxide/gold (Au) NP-decorated CNTs (IA-CNTs), which were created through two simple reactions in deionized water, without high temperature, high pressure, or harsh reducing agents. The physicochemical properties of IA-CNTs were characterized by ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, a superconducting quantum interference device, scanning electron microscopy, and transmission electron microscopy. In this study, IA-CNTs were utilized to detect humidity. Magnetic IA-CNTs were aligned on interdigitated platinum electrodes under external magnetic fields to create a humidity-sensing channel, and its electrical conductivity was monitored. As the humidity increased, the electrical resistance of the sensor also increased. In comparison with various gases, for example, H2, O2, CO, CO2, SO2, and dry air, the IA-CNT-based humidity sensor exhibited high-selectivity performances. IA-CNTs also responded to heavy water (D2O), and it was established that the humidity detection mechanism had D2O-sensing capabilities. Further, the humidity from human out-breathing was also successfully detected by this system. In conclusion, these unique IA-CNTs exhibited potential application as gas detection materials. PMID:26112318

  4. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  5. Gears Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  6. Photodetector based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  7. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  8. Novel magnetic SPE method based on carbon nanotubes filled with cobalt ferrite for the analysis of organochlorine pesticides in honey and tea.

    PubMed

    Du, Zhuo; Liu, Miao; Li, Gongke

    2013-10-01

    A novel magnetic SPE method based on magnetic cobalt ferrite filled carbon nanotubes (MFCNTs) coupled with GC with electron capture detection was developed to determine organochlorine pesticides (OCPs) in tea and honey samples. The MFCNTs were prepared through the capillarity of carbon nanotubes for drawing mixed cobalt and iron nitrates solution into their inner cavity followed by heating to 550°C under Ar to form the cobalt ferrite nanoparticles. SEM images provided visible evidence of the filled cobalt ferrite nanoparticles in the multiwalled nanotubes. X-ray photoelectron spectroscopy indicated no adhesion of cobalt ferrite nanoparticles and metal salts on the outer surface of the MFCNTs. Eight OCPs were extracted with the MFCNTs. The enrichment factors were in the range of 52-68 for eight OCPs. The LODs for the eight OCPs were in the range of 1.3-3.6 ng/L. The recoveries of the OCPs for honey and tea samples were 83.2-128.7 and 72.6-111.0%, respectively. The RSDs for these samples were below 6.8%. The new method is particularly suited to extract nonpolar and weakly polar analytes from a complex matrix and could potentially be extended to other target analytes. PMID:23926126

  9. All carbon nanotubes are not created equal

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Rouleau, Christopher M

    2010-01-01

    This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ~1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

  10. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  11. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    NASA Astrophysics Data System (ADS)

    Kruszka, Bartosz; Terzyk, Artur P.; Wiśniewski, Marek; Gauden, Piotr A.; Szybowicz, Mirosław

    2014-09-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices.

  12. Modified carbon nanotubes and methods of forming carbon nanotubes

    DOEpatents

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  13. Formation of ice nanotube with hydrophobic guests inside carbon nanotube.

    PubMed

    Tanaka, Hideki; Koga, Kenichiro

    2005-09-01

    A composite ice nanotube inside a carbon nanotube has been explored by molecular-dynamics and grand canonical Monte Carlo simulations. It is made from an octagonal ice nanotube whose hollow space contains hydrophobic guest molecules such as neon, argon, and methane. It is shown that the attractive interaction of the guest molecules stabilizes the ice nanotube. The guest occupancy of the hollow space is calculated by the same method as applied to clathrate hydrates. PMID:16164361

  14. Hydrogen storage in carbon nanotubes.

    PubMed

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications. PMID:12908227

  15. Effect of Carbon Nanotubes on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Chen, Michelle; Ahmed, Asma; Black, Melanie; Kawamoto, Nicole; Lucas, Jessica; Pagala, Armie; Pham, Tram; Stankiewicz, Sara; Chen, Howard

    2010-03-01

    Carbon Nanotubes possess extraordinary electrical, mechanical, and thermal properties. Research on applying the carbon nanotubes for ultrasensitive detection, disease diagnosis, and drug delivery is rapidly developing. While the fundamental and technological findings on carbon nanotubes show great promise, it is extremely important to investigate the effect of the carbon nanotubes on human health. In our experiments, we introduce purified carbon nanotubes in suspension to ovary cells cultured from Hamsters. These cells are chosen since they show robust morphological changes associated with cytotoxicity that can easily be observed under a light microscope. We will discuss the toxicity of carbon nanotubes by characterizing the cell morphology and viability as a function of time and the concentration of carbon nanotube suspension.

  16. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  17. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  18. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  19. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  20. Redox sorting of carbon nanotubes.

    PubMed

    Gui, Hui; Streit, Jason K; Fagan, Jeffrey A; Hight Walker, Angela R; Zhou, Chongwu; Zheng, Ming

    2015-03-11

    This work expands the redox chemistry of single-wall carbon nanotubes (SWCNTs) by investigating its role in a number of SWCNT sorting processes. Using a polyethylene glycol (PEG)/dextran (DX) aqueous two-phase system, we show that electron-transfer between redox molecules and SWCNTs triggers reorganization of the surfactant coating layer, leading to strong modulation of nanotube partition in the two phases. While the DX phase is thermodynamically more favored by an oxidized SWCNT mixture, the mildly reducing PEG phase is able to recover SWCNTs from oxidation and extract them successively from the DX phase. Remarkably, the extraction order follows SWCNT bandgap: semiconducting nanotubes of larger bandgap first, followed by semiconducting nanotubes of smaller bandgap, then nonarmchair metallic tubes of small but nonvanishing bandgap, and finally armchair metallic nanotubes of zero bandgap. Furthermore, we show that redox-induced surfactant reorganization is a common phenomenon, affecting nanotube buoyancy in a density gradient field, affinity to polymer matrices, and solubility in organic solvents. These findings establish redox modulation of surfactant coating structures as a general mechanism for tuning a diverse range of SWCNT sorting processes and demonstrate for the first time that armchair and nonarmchair metallic SWCNTs can be separated by their differential response to redox. PMID:25719939

  1. Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, Supriyo; Anatram, M. P.

    1998-01-01

    The recent report of quantized conductance in a 4 m long multiwalled nanotube (MWNT) raises the exciting possibility of ballistic transport at room temperature over relatively long distances. We argue that this is made possible by the special symmetry of the eigenstates of the lowest propagating modes in metallic nanotubes which suppresses backscattering. This unusual effect is absent for the higher propagating modes so that transport is not ballistic once the bias exceeds the cut-off energy for the higher modes, which is estimated to be approximately 75 meV for nanotubes of diameter approximately 15 nm. Also, we show that the symmetry of the eigenstates can significantly affect their coupling to the reservoir and hence the contact resistance. A simple model is presented that can be used to understand the observed conductance-voltage characteristics.

  2. Thermoelectrics: Carbon nanotubes get high

    NASA Astrophysics Data System (ADS)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  3. Terahertz detection and carbon nanotubes

    ScienceCinema

    Leonard, Francois

    2014-06-13

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  4. Terahertz detection and carbon nanotubes

    SciTech Connect

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  5. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  6. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G. P. 'Bud' (Inventor)

    2014-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  7. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G. P. " Bud" (Inventor)

    2016-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  8. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    PubMed

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse. PMID:25725890

  9. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix

    NASA Astrophysics Data System (ADS)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  10. Carbon nanotubes by the metallocene route

    NASA Astrophysics Data System (ADS)

    Sen, Rahul; Govindaraj, A.; Rao, C. N. R.

    1997-03-01

    Pyrolysis of metallocenes such as ferrocene, cobaltocene and nickelocene, is shown to yield carbon nanotubes and metal-filled onion-like structures. Pyrolysis of benzene in the presence of a metallocene gives high yields of nanotubes, the wall thickness of the nanotubes depending on the metallocene content. Pyrolysis of benzene in the absence of any metal however gives monodispersed nanospheres of carbon rather than nanotubes.

  11. Endohedral impurities in carbon nanotubes.

    PubMed

    Clougherty, Dennis P

    2003-01-24

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale. PMID:12570507

  12. Endohedral Impurities in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2003-01-01

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.

  13. Simultaneous determination of phenolic compounds in sesame oil using LC-MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes.

    PubMed

    Wu, Rao; Ma, Fei; Zhang, Liangxiao; Li, Peiwu; Li, Guangming; Zhang, Qi; Zhang, Wen; Wang, Xiuping

    2016-08-01

    A novel magnetic carboxylated multi-walled carbon nanotubes (c-MWCNT-MNPs) was proposed for magnetic solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry to determine phenolic compounds in sesame oil. In this study, c-MWCNT-MNPs were acquired by simply dispersing Fe3O4 magnetic nanoparticles into carboxylated multi-walled carbon nanotubes. The major parameters affecting extraction efficiency were optimized, including the type and volume of desorption solvents, extraction and desorption time, washing solution, and sorbent amount. The limit of quantifications and limit of detections were from 0.03μg/kg to 43.00μg/kg and from 0.01μg/kg to 13.60μg/kg, respectively. The recoveries of phenolic compounds in vegetable oils were in the range of 83.8-125.9% with inter-day and intra-day precisions of less than 13.2%. It was confirmed that this method was simple, rapid and reliable with an excellent potential for routine analysis of phenolic compounds in oil samples. PMID:26988510

  14. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  15. Novel Magnetic Properties in Multi-Walled Carbon Nanotube Mats:. Consistent with the Paramagnetic Meissner Effect due to Ultrahigh-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Beeli, Pieder

    We report magnetic measurements up to 1200 K on iron-contaminated multi-walled carbon nanotube mats with a Quantum Design vibrating sample magnetometer. Extensive magnetic data consistently show a ferrromagnetic transition at about 1000 K and a ferromagnetic-like transition at about 1275 K. The ferromagnetic transition at about 1000 K is associated with an Fe impurity phase and its saturation magnetization is in quantitative agreement with the Fe concentration measured by an inductively coupled plasma mass spectrometer. On the other hand, the saturation magnetization for the ferromagnetic-like phase (at 1275 K) is about four orders of magnitude larger than that expected from the measured concentration of Co or CoFe. We show that this ultrahigh-temperature ferromagnetic-like behavior cannot be explained by ferromagnetism of any Fe-carbon phases, carbon-based phases, or magnetic impurities, but is consistent with the paramagnetic Meissner effect (orbital ferromagnetism) due to the existence of π Josephson junctions in a granular superconductor.

  16. Novel Magnetic Properties in Multi-Walled Carbon Nanotube Mats:. Consistent with the Paramagnetic Meissner Effect due to Ultrahigh-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Beeli, Pieder

    2010-12-01

    We report magnetic measurements up to 1200 K on iron-contaminated multi-walled carbon nanotube mats with a Quantum Design vibrating sample magnetometer. Extensive magnetic data consistently show a ferrromagnetic transition at about 1000 K and a ferromagnetic-like transition at about 1275 K. The ferromagnetic transition at about 1000 K is associated with an Fe impurity phase and its saturation magnetization is in quantitative agreement with the Fe concentration measured by an inductively coupled plasma mass spectrometer. On the other hand, the saturation magnetization for the ferromagnetic-like phase (at 1275 K) is about four orders of magnitude larger than that expected from the measured concentration of Co or CoFe. We show that this ultrahigh-temperature ferromagnetic-like behavior cannot be explained by ferromagnetism of any Fe-carbon phases, carbon-based phases, or magnetic impurities, but is consistent with the paramagnetic Meissner effect (orbital ferromagnetism) due to the existence of π Josephson junctions in a granular superconductor.

  17. Quantum transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  18. Roping and wrapping carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  19. Carbon nanotube coatings as chemical absorbers

    DOEpatents

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  20. Twisting Graphene into Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kit, Oleg O.; Tallinen, Tuomas; Mahadevan, L.; Timonen, Jussi; Koskinen, Pekka

    2012-02-01

    Carbon nanotubes are usually described as being rolled up from graphene sheets; this process, however, have never been realized experimentally. We showed that graphene can indeed be transformed into nanotube by twisting [1]. Further, we showed that tube formation can be well-explained within classical theory of elasticity---in fact the very mechanism of tube formation can be observed by twisting a strap from one's backpack (try now!). Furthermore, we showed that nanotube chirality may not only be predicted, but can also be controlled externally. The quantum molecular dynamic simulations at T=300K were achieved thanks to the revised periodic boundary conditions (RPBC) approach [2-3]. The structures similar to simulated have been recently observed experimentally [4]. This novel rote for nanotube formation opens new opportunities in nanomaterial manipulation not restricted to carbon alone. In the presentation, I will describe tube formation, as well as outline the easy and efficient technique for distorted nanostructures simulation, the RPBC approach. [4pt] [1] O. O. Kit et al. arXiv:1108.0048[0pt] [2] P. Koskinen & O. O. Kit PRL 105, 106401 (2010)[0pt] [3] O. O. Kit, L. Pastewka, P. Koskinen PRB 84, 155431 (2011)[0pt] [4] A. Chuvilin et al. Nature Materials 10, 687 (2011)

  1. Local gate control in carbon nanotube quantum devices

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael Jordan

    This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single

  2. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    NASA Astrophysics Data System (ADS)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  3. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  4. Nondestructive evaluation techniques for development and characterization of carbon nanotube based superstructures

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2015-03-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns [1]. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking [2]. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-to-weight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  5. Rapid determination of trans-resveratrol in vegetable oils using magnetic hydrophilic multi-walled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Ma, Fei; Li, Peiwu; Zhang, Qi; Yu, Li; Zhang, Liangxiao

    2015-07-01

    In the present work, a rapid and simple procedure was developed and validated for the analysis of trans-resveratrol in vegetable oils based on magnetic hydrophilic multi-walled carbon nanotubes (h-MWCNT-MNPs) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). h-MWCNT-MNPs were simply obtained by wrapping amine-functionalized Fe3O4 magnetic nanoparticles into previously oxidized hydrophilic multi-walled carbon nanotubes. The major parameters affecting extraction efficiency were investigated, including the type and volume of desorption solvents, extraction and desorption time, washing solution, and sorbent amount. The limit of detection (LOD) and the limit of quantification (LOQ) were calculated as 0.6 and 2.0 μg/kg, respectively. The recoveries of trans-resveratrol in oil samples were in the range of 90.0-110.0% with RSDs of less than 17.5%. The results showed that only peanut oil contained trans-resveratrol, ranging from 8 ± 1 to 103 ± 12 μg/kg. The proposed method is reliable and robust, having an excellent potential for the analysis of trans-resveratrol in edible oils. PMID:25704710

  6. Carbon nanotube devices: Sorting, Assembling, Characterizing

    NASA Astrophysics Data System (ADS)

    Krupke, Ralph

    2009-03-01

    Carbon nanotubes have been studied extensively over the last decade. Various exceptional properties have been revealed which still drive the vision about using carbon nanotube in future electronics, for instance as molecular nanoscale transistors or electromigration resistant interconnects. For many years a major obstacle was the inability to grow nanotubes with defined dimensions (length, diameter) and electronic properties (metallic,semiconducting). Recently those problems have been solved to a large extent by advanced sorting techniques. Today the challenge is to assemble nanotubes devices with defined properties to form a complex circuitry. As progress is made in making highly-integrated nanotube device arrays new characterization techniques have to be developed which allow testing large number of devices within an acceptable time. Along this line I will report on the state-of-the-art of sorting of carbon nanotube, as a base for nanotube device fabrication [1]. I will then explain our strategy to assemble high-density arrays of nanotube devices [2] and discuss a new characterization technique for nanotube devices [3]. Finally I will introduce a novel device engineering tool [4]. [4pt] [1] R. Krupke et al., ``Separation techniques for carbon nanotubes'' in Chemistry of Carbon Nanotubes, p.129-139, American Scientific Publishers 2008[0pt] [2] A. Vijayaraghavan et al., ``Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices'', Nano Lett. 7 (2007) 1556-1560[0pt] [3] A. Vijayaraghavan et al., ``Imaging Electronic Structure of Carbon Nanotubes by Voltage-Contrast Scanning Electron Microscopy'', Nano Resarch 1 (2008) 321-332[0pt] [4] C. W. Marquardt et al., ``Reversible metal-insulator transitions in metallic single-walled carbon nanotubes'', Nano Lett. 9 (2008) 2767-2772

  7. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  8. Multilayer Film Assembly of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.; Han, Jie; Arnold, J. (Technical Monitor)

    2000-01-01

    An approach to assemble multilayers of carbon nanotubes on a substrate is presented. Chemical vapor deposition using a transition metal catalyst formulation is used to grow the nanotubes. Results show a bilayer assembly of nanotubes each with a different density of tubes.

  9. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  10. Torsional Carbon Nanotube Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  11. From carbon nanobells to nickel nanotubes

    SciTech Connect

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  12. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents <;A article="1367-2630/5/1/117">Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau

  13. LDRD final report on carbon nanotube composites

    SciTech Connect

    Cahill, P.A.; Rand, P.B.

    1997-04-01

    Carbon nanotubes and their composites were examined using computational and experimental techniques in order to modify the mechanical and electrical properties of resins. Single walled nanotubes were the focus of the first year effort; however, sufficient quantities of high purity single walled nanotubes could not be obtained for mechanical property investigations. The unusually high electrical conductivity of composites loaded with <1% of multiwalled nanotubes is useful, and is the focus of continuing, externally funded, research.

  14. Carbon nanotube atomic force microscopy probes

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  15. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  16. Lipid Bilayers Covalently Anchored to Carbon Nanotubes

    PubMed Central

    Dayani, Yasaman; Malmstadt, Noah

    2012-01-01

    The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multi-walled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules. PMID:22568448

  17. Plasticity and Kinky Chemistry of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  18. Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption.

    PubMed

    Duman, Osman; Tunç, Sibel; Polat, Tülin Gürkan; Bozoğlan, Bahar Kancı

    2016-08-20

    In this study, magnetic oxidized multiwalled carbon nanotube (OMWCNT)-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites were synthesized and used as adsorbent for the removal of Methylene Blue (MB) from aqueous solution. Magnetic nanocomposites were characterized by using of specific surface area, Fourier transform infrared, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, scanning electron microscope and transmission electron microscope measurements. The results of characterization analyses exhibited that OMWCNT was successfully modified with κ-carrageenan. Furthermore, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites were of a super-paramagnetic property. Adsorption studies revealed that the data of adsorption kinetics and isotherm were well fitted by the pseudo second-order kinetic model and Langmuir isotherm model, respectively. The adsorption amounts of magnetic adsorbents increased with contact time and initial dye concentration. Compared with magnetic OMWCNT-Fe3O4 nanocomposite, magnetic OMWCNT-κ-carrageenan-Fe3O4 nanocomposite showed a better adsorption performance for the removal of MB from aqueous solution. Therefore, OMWCNT-κ-carrageenan-Fe3O4 nanocomposite may be used as a magnetic adsorbent to remove the cationic dyes from wastewaters. PMID:27178911

  19. γ-Fe2O3 magnetic nanoparticle functionalized with carboxylated multi walled carbon nanotube: Synthesis, characterization, analytical and biomedical application

    NASA Astrophysics Data System (ADS)

    Kılınç, Ersin

    2016-03-01

    In recent years, magnetic nanoparticles attained special interest in nanobiotechnology and nanomedicine due to their uniqe properties and biocompatibilities. From this perspective, hybride nanostructure composed from γ-Fe2O3 magnetic nanoparticle and carboxylated multi walled carbon nanotube was synthesized and characterized by FT-IR, VSM, SEM, HR-TEM and ICP-OES. Microscopy images showed that magnetic nanoparticles were nearly spherical structure that arranged on the axis of carboxylated MWCNT. Particle size was found lower than 10 nm. VSM results showed that the obtained magnetic nanoparticles presented superparamagnetic properties at room temperature. The magnetic saturation value was determined as 35.2 emu/g. It was used for the adsorption and controlled release of harmane, a potent tremor-producing neurotoxin. Maximum adsorption capacity was calculated as 151.5 mg/g from Langmuir isotherm. Concentration of harmane was determined by HPLC with fluorescence detection. The antimicrobial activity of synthesized magnetic nanoparticle was investigated against gram-negative and gram-positive bacteria. However, no activity was observed.

  20. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    SciTech Connect

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  1. Covalent Sidewall Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chiang, I.W.; Saini, R. K.; Mickelson, E. T.; Billups, W. E.; Hauge, R. H.; Margrave, J. L.

    2001-01-01

    Progress of fluorination of single-wall carbon nanotubes is being reported. Covalent attachment of alkyl groups including methyl, n-butyl and n-hexyl groups to the sidewalls of single wall carbon nanotubes (SWNTs) has been achieved. Quantitative measurement of the alkylation was done by thermal gravimetric analysis. FTIR, Raman and UV-Vis-NIR were used to characterize these alkylated SWNTs. Application of these nanotubes are being investigated-fibers, composites, batteries, lubricants, etc.

  2. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  3. Longitudinal solitons in carbon nanotubes

    SciTech Connect

    Astakhova, T. Yu.; Gurin, O. D.; Menon, M.; Vinogradov, G. A.

    2001-07-15

    We present results on soliton excitations in carbon nanotubes (CNT's) using Brenner's many-body potential. Our numerical simulations demonstrate high soliton stability in (10,10) CNT's. The interactions of solitons and solitary excitation with CNT defect are found to be inelastic if the excitations and defects length scales are comparable, resulting in a substantial part of soliton energy being distributed inhomogeneously over the defect bonds. In these solitary-excitation--cap collisions the local energy of a few bonds in the cap can exceed the average energy by an order of magnitude and more. This phenomenon, denoted the ''Tsunami effect,'' can contribute dynamically to the recently proposed ''kinky chemistry.'' We also present results of changes in the local density of states and variations in the atomic partial charges estimated at different time instants of the solitary-excitation Tsunami at the nanotube cap.

  4. Hydrogen Storage in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Gilbert, Joseph; Gilbert, Matthew; Naab, Fabian; Savage, Lauren; Holland, Wayne; Duggan, Jerome; McDaniel, Floyd

    2004-10-01

    Hydrogen as a fuel source is an attractive, relatively clean alternative to fossil fuels. However, a major limitation in its use for the application of automobiles has been the requirement for an efficient hydrogen storage medium. Current hydrogen storage systems are: physical storage in high pressure tanks, metal hydride, and gas-on-solid absorption. However, these methods do not fulfill the Department of Energy's targeted requirements for a usable hydrogen storage capacity of 6.5 wt.%, operation near ambient temperature and pressure, quick extraction and refueling, reliability and reusability.Reports showing high capacity hydrogen storage in single-walled carbon nanotubes originally prompted great excitement in the field, but further research has shown conflicting results. Results for carbon nanostructures have ranged from less than 1 wt.% to 70 wt.%. The wide range of adsorption found in previous experiments results from the difficulty in measuring hydrogen in objects just nanometers in size. Most previous experiments relied on weight analysis and residual gas analysis to determine the amount of hydrogen being adsorbed by the CNTs. These differing results encouraged us to perform our own analysis on single-walled (SWNTs), double-walled (DWNTs), and multi-walled carbon nanotubes (MWNTs), as well as carbon fiber. We chose to utilize direct measurement of hydrogen in the materials using elastic recoil detection analysis (ERDA). This work was supported by the National Science Foundation's Research Experience for Undergraduates and the University of North Texas.

  5. Control of multiple excited image states around segmented carbon nanotubes.

    PubMed

    Knörzer, J; Fey, C; Sadeghpour, H R; Schmelcher, P

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems. PMID:26627961

  6. Control of multiple excited Rydberg states around segmented carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Schmelcher, Peter; Sadeghpour, Hossein; Knoerzer, Johannes; Fey, Christian

    2016-05-01

    Electronic image Rydberg states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored long-range interacting quantum systems.

  7. Control of multiple excited image states around segmented carbon nanotubes

    SciTech Connect

    Knörzer, J. Fey, C.; Sadeghpour, H. R.; Schmelcher, P.

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  8. Ophthalmologial Applications of Carbon Nanotube Nanotechology

    NASA Technical Reports Server (NTRS)

    Loftus, David; Girten, Beverly (Technical Monitor)

    2002-01-01

    The development of an implantable device consisting of an array of carbon nanotubes on a silicon chip for restoration of vision in patients with macular degeneration and other retinal disorders is presented. The use of carbon nanotube bucky paper for retinal cell transplantation is proposed. This paper is in viewgraph form.

  9. Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Ye, Haihui; Lam, Hoa; Titchenal, Nick; Gogotsi, Yury; Ko, Frank

    2004-09-01

    High-resolution transmission electron microscopy examination of carbon nanotube-polyacrylonitrile composite fibers synthesized by electrospinning was conducted. Both single-wall carbon nanotubes and multi-wall carbon nanotubes have been used to reinforce the polymer fibers. A two-stage rupture behavior of the composite fibers under tension, including crazing of polymer matrix and pull-out of carbon nanotubes, has been observed. Carbon nanotubes reinforce the polymer fibers by hindering crazing extension, reducing stress concentration, and dissipating energy by pullout. Distribution of nanotubes in the polymer matrix and interfacial adhesion between nanotubes and polymers are two major factors to determine the reinforcement effect of carbon nanotubes in polymer fibers.

  10. Making Macroscopic Assemblies of Aligned Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; Colbert, Daniel T.; Smith, Ken A.; Walters, Deron A.; Casavant, Michael J.; Qin, Xiaochuan; Yakobson, Boris; Hauge, Robert H.; Saini, Rajesh Kumar; Chiung, Wan-Ting; Huffman, Charles B.

    2005-01-01

    A method of aligning and assembling single-wall carbon nanotubes (SWNTs) to fabricate macroscopic structures has been invented. The method entails suspending SWNTs in a fluid, orienting the SWNTs by use of a magnetic and/or electric field, and then removing the aligned SWNTs from suspension in such a way as to assemble them while maintaining the alignment. SWNTs are essentially tubular extensions of fullerene molecules. It is desirable to assemble aligned SWNTs into macroscopic structures because the common alignment of the SWNTs in such a structure makes it possible to exploit, on a macroscopic scale, the unique mechanical, chemical, and electrical properties that individual oriented SWNTs exhibit at the molecular level. Because of their small size and high electrical conductivity, carbon nanotubes, and especially SWNTs, are useful for making electrical connectors in integrated circuits. Carbon nanotubes can be used as antennas at optical frequencies, and as probes in scanning tunneling microscopes, atomic-force microscopes, and the like. Carbon nanotubes can be used with or instead of carbon black in tires. Carbon nanotubes are useful as supports for catalysts. Ropes of SWNTs are metallic and, as such, are potentially useful in some applications in which electrical conductors are needed - for example, they could be used as additives in formulating electrically conductive paints. Finally, macroscopic assemblies of aligned SWNTs can serve as templates for the growth of more and larger structures of the same type. The great variety of tubular fullerene molecules and of the structures that could be formed by assembling them in various ways precludes a complete description of the present method within the limits of this article. It must suffice to present a typical example of the use of one of many possible variants of the method to form a membrane comprising SWNTs aligned substantially parallel to each other in the membrane plane. The apparatus used in this variant