Science.gov

Sample records for carbon regimes results

  1. Changes in soil carbon and enzyme activity as a result of different long-term fertilization regimes in a greenhouse field.

    PubMed

    Zhang, Lili; Chen, Wei; Burger, Martin; Yang, Lijie; Gong, Ping; Wu, Zhijie

    2015-01-01

    In order to discover the advantages and disadvantages of different fertilization regimes and identify the best management practice of fertilization in greenhouse fields, soil enzyme activities involved in carbon (C) transformations, soil chemical characteristics, and crop yields were monitored after long-term (20-year) fertilization regimes, including no fertilizer (CK), 300 kg N ha-1 and 600 kg N ha-1 as urea (N1 and N2), 75 Mg ha-1 horse manure compost (M), and M with either 300 or 600 kg N ha-1 urea (MN1 and MN2). Compared with CK, fertilization increased crop yields by 31% (N2) to 69% (MN1). However, compared with CK, inorganic fertilization (especially N2) also caused soil acidification and salinization. In the N2 treatment, soil total organic carbon (TOC) decreased from 14.1±0.27 g kg-1 at the beginning of the long-term experiment in 1988 to 12.6±0.11 g kg-1 (P<0.05). Compared to CK, N1 and N2 exhibited higher soil α-galactosidase and β-galactosidase activities, but lower soil α-glucosidase and β-glucosidase activities (P<0.05), indicating that inorganic fertilization had different impacts on these C transformation enzymes. Compared with CK, the M, MN1 and MN2 treatments exhibited higher enzyme activities, soil TOC, total nitrogen, dissolved organic C, and microbial biomass C and N. The fertilization regime of the MN1 treatment was identified as optimal because it produced the highest yields and increased soil quality, ensuring sustainability. The results suggest that inorganic fertilizer alone, especially in high amounts, in greenhouse fields is detrimental to soil quality. PMID:25706998

  2. Changes in Soil Carbon and Enzyme Activity As a Result of Different Long-Term Fertilization Regimes in a Greenhouse Field

    PubMed Central

    Zhang, Lili; Chen, Wei; Burger, Martin; Yang, Lijie; Gong, Ping; Wu, Zhijie

    2015-01-01

    In order to discover the advantages and disadvantages of different fertilization regimes and identify the best management practice of fertilization in greenhouse fields, soil enzyme activities involved in carbon (C) transformations, soil chemical characteristics, and crop yields were monitored after long-term (20-year) fertilization regimes, including no fertilizer (CK), 300 kg N ha-1 and 600 kg N ha-1 as urea (N1 and N2), 75 Mg ha-1 horse manure compost (M), and M with either 300 or 600 kg N ha-1 urea (MN1 and MN2). Compared with CK, fertilization increased crop yields by 31% (N2) to 69% (MN1). However, compared with CK, inorganic fertilization (especially N2) also caused soil acidification and salinization. In the N2 treatment, soil total organic carbon (TOC) decreased from 14.1±0.27 g kg-1 at the beginning of the long-term experiment in 1988 to 12.6±0.11 g kg-1 (P<0.05). Compared to CK, N1 and N2 exhibited higher soil α-galactosidase and β-galactosidase activities, but lower soil α-glucosidase and β-glucosidase activities (P<0.05), indicating that inorganic fertilization had different impacts on these C transformation enzymes. Compared with CK, the M, MN1 and MN2 treatments exhibited higher enzyme activities, soil TOC, total nitrogen, dissolved organic C, and microbial biomass C and N. The fertilization regime of the MN1 treatment was identified as optimal because it produced the highest yields and increased soil quality, ensuring sustainability. The results suggest that inorganic fertilizer alone, especially in high amounts, in greenhouse fields is detrimental to soil quality. PMID:25706998

  3. Conduction regime in innovative carbon nanotube via interconnect architectures

    NASA Astrophysics Data System (ADS)

    Coiffic, J. C.; Fayolle, M.; Maitrejean, S.; Foa Torres, L. E. F.; Le Poche, H.

    2007-12-01

    We report on the electrical properties of multiwall carbon nanotube based via interconnects over a broad range of temperature and bias voltage. By using innovating processing techniques, high density nanotube vias have been fabricated from single damascene and double damascene via architectures with diameters down to 140nm. For single damascene structures, resistances as low as 20Ω have been achieved for 300nm via size. Further measurements show that the conductance increases with temperature following an exponential law, which can be interpreted in terms of a disordered quasi-one dimensional conduction regime.

  4. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbons, and Electrolyte

    SciTech Connect

    Sumpter, Bobby G; Huang, Jingsong; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy storage device with the potential to substitute batteries in applications requiring high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm) where pores are large enough so that the pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, showing the significant effects of pore curvature on the supercapacitor properties of nanoporous carbons. It is shown that the EDCC/EWCC model is universal to carbon supercapacitors with diverse carbon materials including activated carbons, template carbons, and novel carbide-derived carbons, and with diverse electrolytes including organic electrolytes such as tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium methyl-sulfonate (TEAMS) in acetonitrile, aqueous H2SO4 and KOH electrolytes, and even ionic liquid electrolyte such as 1-ethyl-3-methylimmidazolium bis(trifluromethane-sulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size, and may lend a support for the systematic optimization of the

  5. High nitrate to phosphorus regime attenuates negative effects of rising pCO2 on total population carbon accumulation

    NASA Astrophysics Data System (ADS)

    Matthiessen, B.; Eggers, S. L.; Krug, S. A.

    2012-03-01

    The ongoing rise in atmospheric pCO2 and consequent increase in ocean acidification have direct effects on marine calcifying phytoplankton, which potentially alters carbon export. To date it remains unclear, firstly, how nutrient regime, in particular by coccolithophores preferred phosphate limitation, interacts with pCO2 on particulate carbon accumulation; secondly, how direct physiological responses on the cellular level translate into total population response. In this study, cultures of Emiliania huxleyi were full-factorially exposed to two different N:P regimes and three different pCO2 levels. Cellular biovolume and PIC and POC content significantly declined in response to pCO2 in both nutrient regimes. Cellular PON content significantly increased in the Redfield treatment and decreased in the high N:P regime. Cell abundance significantly declined in the Redfield and remained constant in the high N:P regime. We hypothesise that in the high N:P regime severe phosphorous limitation could be compensated either by reduced inorganic phosphorous demand and/or by enzymatic uptake of organic phosphorous. In the Redfield regime we suggest that enzymatic phosphorous uptake to supplement enhanced phosphorous demand with pCO2 was not possible and thus cell abundance declined. These hypothesised different physiological responses of E. huxleyi among the nutrient regimes significantly altered population carrying capacities along the pCO2 gradient. This ultimately led to the attenuated total population response in POC and PIC content and biovolume to increased pCO2 in the high N:P regime. Our results point to the fact that the physiological (i.e. cellular) PIC and POC response to ocean acidification cannot be linearly extrapolated to total population response and thus carbon export. It is therefore necessary to consider both effects of nutrient limitation on cell physiology and their consequences for population size when predicting the influence of coccolithophores on

  6. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J.; McGuire, A. David; Hastings, Alan; Schimel, David S.

    2012-09-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U · τE · ?, where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  7. Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, E.; Luo, Y.; Wang, W.; Wang, H.; Hayes, D. J.; McGuire, A. D.; Hastings, A.; Schimel, D.

    2012-12-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x]=UτE λ/(λ+sτ1) , where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model , for example, approximately 1.8 Pg C will be lost in the high latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of 21st century, which will require around 12% increases in NPP to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  8. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  9. Tundra carbon balance under varying temperature and moisture regimes

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Kinoshita, G.; Gamon, J. A.; Houston, S.; Kwon, H.; Oechel, W. C.

    2010-12-01

    To understand the effects of environmental change on tundra carbon balance, a manipulation experiment was performed in wet sedge tundra near Barrow, Alaska. Three replicates of six environmental treatments were made: control, heating, raising or lowering water table, and heating along with raising or lowering water table. Carbon fluxes were measured using a portable chamber for six days during the 2001 growing season. Spectral reflectance and meteorological measurements were also collected. Empirical models derived from flux measurements were developed for daily gross ecosystem production (GEP) and ecosystem respiration (Re). The amount of photosynthetically active radiation absorbed by the plants was strongly correlated with GEP. This relationship was not affected by treatment or time during the growing season. Re was related to soil temperature with a different relationship for each water level treatment. Re in the lowered water table treatment had a strong response to temperature changes, while the raised water table treatment showed little temperature response. These models calculated daily net ecosystem exchange for all of the treatments over the growing season. Warming increased both the seasonal carbon gain and carbon loss. By the end of summer the lowered water table treatments, both heated and unheated, were net carbon sources while all other treatments were sinks. Warming and/or raising the water table increased the strength of the net sink. Over the timescale of this experiment, water table primarily determined whether the ecosystem was a source or sink, with temperature modifying the strength of the source or sink.

  10. Regime Shifts in Lakes: Organic Carbon Dynamics and Whole Ecosystem Responses

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.

    2015-12-01

    The concept of using sediment records to identify regime shifts in lakes has largely focussed on biological proxies, such as diatoms and chironomids. In this approach, long-term records of rapid ecological change are compared with independent proxies of the variables driving ecosystem change, for example, climate or catchment disturbance processes (hydrological budgets, deforestation, fire etc.). One of the main problems with this approach is that the sediment cores upon which the data analyses are made are taken from the central part of lakes, often at the deepest point. As a result, the ecological changes observed reflect pelagic (open water) processes rather than whole-lake responses. As most lakes (apart from hypertrophic systems) are dominated by benthic production it is unclear whether palaeolimnological assessments of regime shifts are representative of the whole lake response. Theoretically, this question can be addressed simply by using cores from shallow water. There are a number of problems with this approach, most notably the loss of temporal resolution in shallow water cores (due to the slower sediment accumulation rate) and the different biological assemblages in the shallow water (littoral) cores. There is a strong effect of water depth on the zonation and distribution of biological remains across any lake. An alternative approach therefore is to use total organic carbon [OC] accumulation rate as a measure of the whole lake response to see if there is, in fact, a regime shift at the whole lake scale. Here I present examples of Holocene OC accumulation rate responses to external forcing from shallow eutrophic and boreal lakes and compare them to biological records of structural ecological change to determine whether there has been a whole-lake regime shift.

  11. Thermal effects on mass detection sensitivity of carbon nanotube resonators in nonlinear oscillation regime

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Yang, Hyun-Ik; Kim, Chang-Wan

    2015-11-01

    A mass sensor using a nano-resonator has high detection sensitivity, and mass sensitivity is higher with smaller resonators. Therefore, carbon nanotubes (CNTs) are the ultimate materials for these applications and have been actively studied. In particular, CNT-based nanomechanical devices may experience high temperatures that lead to thermal expansion and residual stress in devices, which affects the device reliability. In this letter, to demonstrate the influence of the temperature change (i.e., thermal effect) on the mass detection sensitivity of CNT-based mass sensor, dynamic analysis is carried out for a CNT resonator with thermal effects in both linear and nonlinear oscillation regimes. Based on the continuum mechanics model, the analytical solution method with an assumed deflection eigenmode is applied to solve the nonlinear differential equation which involves the von Karman nonlinear strain-displacement relation and the additional axial force associated with thermal effects. A thermal effect on the fundamental resonance behavior and resonance frequency shift due to adsorbed mas, i.e., mass detection sensitivity, is examined in high-temperature environment. Results indicate a valid improvement of fundamental resonance frequency by using nonlinear oscillation in a thermal environment. In both linear and nonlinear oscillation regimes, the mass detection sensitivity becomes worse due to the increasing of temperature in a high-temperature environment. The thermal effect on the detection sensitivity is less effective in the nonlinear oscillation regime. It is concluded that a temperature change of a mass sensor with a CNT-based resonator can be utilized to enhance the detection sensitivity depending on the CNT length, linear/nonlinear oscillation behaviors, and the thermal environment.

  12. Carbon rhizodeposition by plants of contrasting strategies for resource acquisition: responses to various nitrogen fertility regimes

    NASA Astrophysics Data System (ADS)

    Baptist, Florence; Aranjuelo, I.; Lopez-Sangil, L.; Rovia, P.; Nogués, S.

    2010-05-01

    Rhizodeposition by plants is one of the most important physiological mechanisms related to carbon and nitrogen cycling which is also believed to vary along the acquisition-conservation continuum. However, owing to methodological difficulties (i.e. narrow zone of soil around roots and rapid assimilation by soil microbes), root exudation and variations between species are one of the most poorly understood belowground process. Although previous approaches such as hydroponic culture based system, permit the chemical analysis of exudates, the fact that this protocol is qualitative, conditions its utility (see review in Phillips et al. 2008). Others techniques based on pulse-labelling approach have been developed to quantify rhizodeposition but are rarely sufficient to uniformly label all plant inputs to soil. Consequently with this typical pulse chase methods, recent assimilates are labeled but the recalcitrant carbon will not be labeled and therefore the contribution of this carbon will not be considered. Hence, traditional pulse labelling is not a quantitative means of tracing carbon due to inhomogeneous labelling and so limits greatly comparative studies of rhizodeposition fluxes at the interspecific level. In this study we developped a new protocole based on a long-term (3 months) steady state 13C labelling in order (1) to quantify rhizodeposition fluxes for six graminoid species caracterized by contrasted nutrient acquisition strategies and (2) to investigate to what extent various level of nitrogen fertility regimes modulate rhizodeposition fluxes. This method will enable to quantify under natural soil conditions both the accumulation of 13C in the soil but also the quantity that has been respired by the microorganisms during a given time and so will give an integrated picture of rhizodeposition fluxes for each species under each nitrogen fertility level. Results are currently being processed and will be presented at the conference. References: Phillips RP, Erlitz

  13. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation

    PubMed Central

    Li, Xiaoqiong; Ye, Duo; Liang, Hongwen; Zhu, Hongguang; Qin, Lin; Zhu, Yuling; Wen, Yuanguang

    2015-01-01

    Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha-1 and 70.68 vs. 81.08 Mg. ha-1, respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha-1). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential. PMID:26186367

  14. Effects of Successive Rotation Regimes on Carbon Stocks in Eucalyptus Plantations in Subtropical China Measured over a Full Rotation.

    PubMed

    Li, Xiaoqiong; Ye, Duo; Liang, Hongwen; Zhu, Hongguang; Qin, Lin; Zhu, Yuling; Wen, Yuanguang

    2015-01-01

    Plantations play an important role in carbon sequestration and the global carbon cycle. However, there is a dilemma in that most plantations are managed on short rotations, and the carbon sequestration capacities of these short-rotation plantations remain understudied. Eucalyptus has been widely planted in the tropics and subtropics due to its rapid growth, high adaptability, and large economic return. Eucalyptus plantations are primarily planted in successive rotations with a short rotation length of 6~8 years. In order to estimate the carbon-stock potential of eucalyptus plantations over successive rotations, we chose a first rotation (FR) and a second rotation (SR) stand and monitored the carbon stock dynamics over a full rotation from 1998 to 2005. Our results showed that carbon stock in eucalyptus trees (TC) did not significantly differ between rotations, while understory vegetation (UC) and soil organic matter (SOC) stored less carbon in the SR (1.01 vs. 2.76 Mg.ha(-1) and 70.68 vs. 81.08 Mg. ha(-1), respectively) and forest floor carbon (FFC) conversely stored more (2.80 vs. 2.34 Mg. ha(-1)). The lower UC and SOC stocks in the SR stand resulted in 1.13 times lower overall ecosystem carbon stock. Mineral soils and overstory trees were the two dominant carbon pools in eucalyptus plantations, accounting for 73.77%~75.06% and 20.50%~22.39%, respectively, of the ecosystem carbon pool. However, the relative contribution (to the ecosystem pool) of FFC stocks increased 1.38 times and that of UC decreased 2.30 times in the SR versus FR stand. These carbon pool changes over successive rotations were attributed to intensive successive rotation regimes of eucalyptus plantations. Our eight year study suggests that for the sustainable development of short-rotation plantations, a sound silvicultural strategy is required to achieve the best combination of high wood yield and carbon stock potential. PMID:26186367

  15. Salix response to different flow regimes in controlled experiments: first results

    NASA Astrophysics Data System (ADS)

    Gorla, Lorenzo; Signarbieux, Constant; Buttler, Alexandre; Perona, Paolo

    2013-04-01

    Dams and water management for hydropower production, agriculture and other human activities alter the natural flow regime of rivers. The new river hydrograph components depend on the type of impoundment and the policy of regulation but such a different flow regime will likely affect the riparian environment. The main challenge in order to define sustainable flow releases is to quantify hydrological effects in terms of geomorphology and ecosystem response. A considerable lack of knowledge still affects the link hydrology-ecology and inadequate flow rules (e.g., minimal or residual flows) are consequently still widespread: further research in this direction is urgently required. We present an experiment, which aims to investigate the effects of different water stage regimes on riparian vegetation (salix Viminalis cuttings) development in a temperate region (Switzerland). This work describes the installation setup, together with the first results concerning the first of the two scheduled seasons of campaign. Sixty Salix cuttings were planted in non-cohesive sandy-gravel sediment within 1 meter tall plastic pots installed outside in the EPFL campus. After grouping them in three batteries, the water level within them has been varying following three river regimes simulated by adjusting the water level within the pots by means of an automatic hydraulic system. The three water level regimes reproduce a natural flow regime, a minimum residual flow policy, which only conserves peaks during flooding conditions, and an artificial regime conserving only low frequencies (e.g., seasonality) of the natural dynamic. The natural flow regime of the first battery has been applied for two months to the entire system; the three regimes above said started in June 2012. This triggered a plant response transitory regime, which we monitored by measuring plant growth, soil and atmospheric variables. Particularly, measures concern with branches development leaves photosynthesis and

  16. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part II: proofs of results.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-01-01

    In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption. PMID:20405047

  17. The characteristics of water-carbon regime of Banzhai karst subterranean stream system covered by virgin forest with soil deficiency

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Liu, Z.

    2012-04-01

    Three hydrological years' automatic monitoring (from January, 2007 to June, 2010) was made in the discharge area of karst subterranean stream system covered by virgin forest with soil deficiency by use of hydro-chemical auto-recordable instrument to investigate the characteristics of water-carbon regime of discharge from this subterranean stream system. The methods of water balance calculation, karst water discharge recession analysis and stable isotope and hydrochemistry were used. The results show that: first, the evapotranspiration of virgin forest is unexpectedly high, indicated by low infiltration coefficient and low subterranean river runoff generation; second, under the conditions of deficiency of soil cover, even the virgin forest has only moderate ability of regulation and control of hydrological (Q) and hydrochemical (e.g., bicarbonate concentration) processes, so that the karstification intensity and the relevant carbon sink capacity keep low. These characteristics reflect that soil cover plays important roles in the regulation and control of water resources and carbon cycle.

  18. Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime

    SciTech Connect

    Jung, D.; Department für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching; Max-Planck-Institut für Quantenoptik, D-85748 Garching ; Yin, L.; Gautier, D. C.; Wu, H.-C.; Letzring, S.; Shah, R.; Palaniyappan, S.; Shimada, T.; Johnson, R. P.; Fernández, J. C.; Hegelich, B. M.; Albright, B. J.; Dromey, B.; Schreiber, J.; Habs, D.; Max-Planck-Institut für Quantenoptik, D-85748 Garching

    2013-08-15

    Experimental data are presented for laser-driven carbon C{sup 6+} ion-acceleration, verifying 2D-PIC studies for multi-species targets in the Break-Out Afterburner regime. With Trident's ultra-high contrast at relativistic intensities of 5 × 10{sup 20} W/cm{sup 2} and nm-scale diamond targets, acceleration of carbon ions has been optimized by using target laser-preheating for removal of surface proton contaminants. Using a high-resolution wide angle spectrometer, carbon C{sup 6+} ion energies exceeding 1 GeV or 83 MeV/amu have been measured, which is a 40% increase in maximum ion energy over uncleaned targets. These results are consistent with kinetic plasma modeling and analytic theory.

  19. Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, D.; Yin, L.; Gautier, D. C.; Wu, H.-C.; Letzring, S.; Dromey, B.; Shah, R.; Palaniyappan, S.; Shimada, T.; Johnson, R. P.; Schreiber, J.; Habs, D.; Fernández, J. C.; Hegelich, B. M.; Albright, B. J.

    2013-08-01

    Experimental data are presented for laser-driven carbon C6+ ion-acceleration, verifying 2D-PIC studies for multi-species targets in the Break-Out Afterburner regime. With Trident's ultra-high contrast at relativistic intensities of 5 × 1020 W/cm2 and nm-scale diamond targets, acceleration of carbon ions has been optimized by using target laser-preheating for removal of surface proton contaminants. Using a high-resolution wide angle spectrometer, carbon C6+ ion energies exceeding 1 GeV or 83 MeV/amu have been measured, which is a 40% increase in maximum ion energy over uncleaned targets. These results are consistent with kinetic plasma modeling and analytic theory.

  20. Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes

    SciTech Connect

    Jardine, Philip M; Mayes, Melanie; Mulholland, Patrick J; Hanson, Paul J; Phillips, Jana Randolph; Luxmoore, Robert J; McCarthy, John F

    2006-06-01

    Scientists must embrace the necessity to offset global CO{sub 2} emissions regardless of politics. Efforts to enhance terrestrial organic carbon sequestration have traditionally focused on aboveground biomass and surface soils. An unexplored potential exists in thick lower horizons of widespread, mature soils such as Alfisols, Ultisols, and Oxisols. We present a case study of fate and transport of dissolved organic carbon (DOC) in a highly weathered Ultisol, involving spatial scales from the laboratory to the landscape. Our objectives were to interpret processes observed at various scales and provide an improved understanding of coupled hydrogeochemical mechanisms that control DOC mobility and sequestration in deep subsoils within humid climatic regimes. Our approach is multiscale, using laboratory-scale batch and soil columns (0.2 by 1.0 m), an in situ pedon (2 by 2 by 3 m), a well-instrumented subsurface facility on a subwatershed (0.47 ha), and ephemeral and perennial stream discharge at the landscape scale (38.4 ha). Laboratory-scale experiments confirmed that lower horizons have the propensity to accumulate DOC, but that preferential fracture flow tends to limit sequestration. Intermediate-scale experiments demonstrated the beneficial effects of C diffusion into soil micropores. Field- and landscape-scale studies demonstrated coupled hydrological, geochemical, and microbiological mechanisms that limit DOC sequestration, and their sensitivity to local environmental conditions. Our results suggest a multi-scale approach is necessary to assess the propensity of deep subsoils to sequester organic C in situ. By unraveling fundamental organic C sequestration mechanisms, we improve the conceptual and quantitative understanding needed to predict and alter organic C budgets in soil systems.

  1. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source.

    PubMed

    Wang, Dongbo; Li, Xiaoming; Yang, Qi; Zheng, Wei; Wu, Yan; Zeng, Tianjing; Zeng, Guangming

    2012-08-01

    Our previous studies proved that biological phosphorus removal (BPR) could be achieved in an aerobic/extended-idle (AEI) process employing two typical substrates of glucose and acetate as the carbon sources. This paper further evaluated the feasibility of another important substrate, propionate, serving as the carbon source for BPR in the AEI process, and compared the BPR performance between the AEI and anaerobic/oxic (A/O) processes. Two sequencing batch reactors (SBRs) were operated, respectively, as the AEI and A/O regimes for BPR using propionate as the sole substrate. The results showed that the AEI-reactor removed 2.98 ± 0.04-4.06 ± 0.06 mg of phosphorus per g of total suspended solids during the course of the steady operational trial, and the phosphorus content of the dried sludge was reached 8.0 ± 0.4% after 56-day operation, demonstrating the good performance of phosphorus removal. Then, the efficiencies of BPR and the transformations of the intracellular storages were compared between two SBRs. It was observed that the phosphorus removal efficiency was maintained around 95% in the AEI-reactor, and about 83% in the A/O-reactor, although the latter showed much greater transformations of both polyhydroxyalkanoates and glycogen. The facts clearly showed that BPR could be enhanced by the AEI regime using propionate as the carbon source. Finally, the mechanisms for the propionate fed AEI-reactor improving BPR were investigated. It was found that the sludge cultured by the AEI regime had more polyphosphate containing cells than that by the A/O regime. Further investigation revealed that the residual nitrate generated in the last aerobic period was readily deteriorated BPR in the A/O-SBR, but a slight deterioration was observed in the AEI-SBR. Moreover, the lower glycogen transformation measured in the AEI-SBR indicated that the biomass cultured by the AEI regime contained less glycogen accumulating organisms activities than that by the A/O regime. PMID

  3. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN)

    NASA Astrophysics Data System (ADS)

    Kuwata, M.; Shao, W.; Lebouteiller, R.; Martin, S. T.

    2013-05-01

    The governing highly soluble, slightly soluble, or insoluble activation regime of organic compounds as cloud condensation nuclei (CCN) was examined as a function of oxygen-to-carbon elemental ratio (O : C). New data were collected for adipic, pimelic, suberic, azelaic, and pinonic acids. Secondary organic materials (SOMs) produced by α-pinene ozonolysis and isoprene photo-oxidation were also included in the analysis. The saturation concentrations C of the organic compounds in aqueous solutions served as the key parameter for delineating regimes of CCN activation, and the values of C were tightly correlated to the O : C ratios. The highly soluble, slightly soluble, and insoluble regimes of CCN activation were found to correspond to ranges of [O : C] > 0.6, 0.2 < [O : C] < 0.6, and [O : C] < 0.2, respectively. These classifications were evaluated against CCN activation data of isoprene-derived SOM (O : C = 0.69-0.72) and α-pinene-derived SOM (O : C = 0.38-0.48). Isoprene-derived SOM had highly soluble activation behavior, consistent with its high O : C ratio. For α-pinene-derived SOM, although CCN activation can be modeled as a highly soluble mechanism, this behavior was not predicted by the O : C ratio, for which a slightly soluble mechanism was anticipated. Complexity in chemical composition, resulting in continuous water uptake and the absence of a deliquescence transition that can thermodynamically limit CCN activation, might explain the difference in the behavior of α-pinene-derived SOM compared to that of pure organic compounds. The present results suggest that atmospheric particles dominated by hydrocarbon-like organic components do not activate (i.e., insoluble regime) whereas those dominated by oxygenated organic components activate (i.e., highly soluble regime) for typical atmospheric cloud life cycles.

  4. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of cloud condensation nuclei (CCN)

    NASA Astrophysics Data System (ADS)

    Kuwata, M.; Shao, W.; Lebouteiller, R.; Martin, S. T.

    2012-12-01

    The governing highly soluble, slightly soluble, or insoluble activation regime of organic compounds as cloud condensation nuclei (CCN) was examined as a function of oxygen-to-carbon elemental ratio (O : C). New data were collected for adipic, pimelic, suberic, azelaic and pinonic acids. Secondary organic materials (SOMs) produced by α-pinene ozonolysis and isoprene photo-oxidation were also included in the analysis. The saturation concentrations C of the organic compounds in aqueous solutions served as the key parameter for delineating regimes of CCN activation, and the values of C were tightly correlated to the O : C ratios. The highly soluble, slightly soluble, and insoluble regimes of CCN activation were found to correspond to ranges of [O : C] > 0.6, 0.2 < [O : C] < 0.6, and [O : C] < 0.2, respectively. These classifications were evaluated against CCN activation data of isoprene-derived SOM (O : C = 0.69-0.72) and α-pinene-derived SOM (O : C = 0.38-0.48). Isoprene-derived SOM had highly soluble activation behavior, consistent with its high O : C ratio. For α-pinene-derived SOM, although CCN activation can be modeled as a highly soluble mechanism, this behavior was not predicted by the O : C ratio, for which a slightly soluble mechanism was anticipated. Complexity in chemical composition, resulting in continuous water uptake and the absence of a deliquescence transition that can thermodynamically limit CCN activation, might explain the differences of α-pinene-derived SOM compared to the behavior of pure organic compounds. The present results suggest that atmospheric particles dominated by hydrocarbon-like organic components do not activate (i.e. insoluble regime) whereas those dominated by oxygenated organic components activate (i.e. highly soluble regime).

  5. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    NASA Astrophysics Data System (ADS)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  6. Importance of soil thermal regime in terrestrial ecosystem carbon dynamics in the circumpolar north

    NASA Astrophysics Data System (ADS)

    Jiang, Yueyang; Zhuang, Qianlai; Sitch, Stephen; O'Donnell, Jonathan A.; Kicklighter, David; Sokolov, Andrei; Melillo, Jerry

    2016-07-01

    In the circumpolar north (45-90°N), permafrost plays an important role in vegetation and carbon (C) dynamics. Permafrost thawing has been accelerated by the warming climate and exerts a positive feedback to climate through increasing soil C release to the atmosphere. To evaluate the influence of permafrost on C dynamics, changes in soil temperature profiles should be considered in global C models. This study incorporates a sophisticated soil thermal model (STM) into a dynamic global vegetation model (LPJ-DGVM) to improve simulations of changes in soil temperature profiles from the ground surface to 3 m depth, and its impacts on C pools and fluxes during the 20th and 21st centuries. With cooler simulated soil temperatures during the summer, LPJ-STM estimates ~ 0.4 Pg C yr- 1 lower present-day heterotrophic respiration but ~ 0.5 Pg C yr- 1 higher net primary production than the original LPJ model resulting in an additional 0.8 to 1.0 Pg C yr- 1 being sequestered in circumpolar ecosystems. Under a suite of projected warming scenarios, we show that the increasing active layer thickness results in the mobilization of permafrost C, which contributes to a more rapid increase in heterotrophic respiration in LPJ-STM compared to the stand-alone LPJ model. Except under the extreme warming conditions, increases in plant production due to warming and rising CO2, overwhelm the e nhanced ecosystem respiration so that both boreal forest and arctic tundra ecosystems remain a net C sink over the 21st century. This study highlights the importance of considering changes in the soil thermal regime when quantifying the C budget in the circumpolar north.

  7. Response of vegetation to carbon dioxide - effect of elevated levels of CO{sub 2} on winter wheat under two moisture regimes

    SciTech Connect

    Chaudhuri, U.N.; Burnett, R.B.; Kanemasu, E.T.; Kirkham, M.B.

    1987-12-31

    This report deals with the second-year (1985-86) findings of an on going experiment with winter wheat (Triticum aestivum L.) at different carbon dioxide (CO{sub 2}) levels and under two moisture regimes. The results for the first year are given in the U.S. Department of Energy, Carbon Dioxide Research Division Response of Vegetation to Carbon Dioxide. The purpose of the second year`s experiment was to verify the results of 1984-85. However, based on the performance and the results of 1984-85 experiments, a few modifications were made.

  8. First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot

    NASA Astrophysics Data System (ADS)

    Maurand, Romain; Meng, Tobias; Bonet, Edgar; Florens, Serge; Marty, Laëtitia; Wernsdorfer, Wolfgang

    2012-01-01

    We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device loop in order to investigate the competition of strong electron correlations with a proximity effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum dot will exhibit a positive or a negative supercurrent, referred to as a 0 or π Josephson junction, respectively. In the regime of a strong Coulomb blockade, the 0-to-π transition is typically controlled by a change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling amplitude, the Kondo effect develops for an odd-charge (magnetic) dot in the normal state, and quenches magnetism. In this situation, we find that a first-order 0-to-π quantum phase transition can be triggered at a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap and the Kondo temperature. The superconducting-quantum-interference-device geometry together with the tunability of our device allows the exploration of the associated phase diagram predicted by recent theories. We also report on the observation of anharmonic behavior of the current-phase relation in the transition regime, which we associate with the two accessible superconducting states. Our results finally demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far from the mixed-valence regime in odd-charge superconducting quantum dots.

  9. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    NASA Astrophysics Data System (ADS)

    Keek, L.; Heger, A.

    2016-02-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10 per cent of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can ensue.

  10. The influence of climate cycles on the water regime and carbonate profile in chernozems of Central European Russia and adjacent territories

    NASA Astrophysics Data System (ADS)

    Bazykina, G. S.; Ovechkin, S. V.

    2016-04-01

    The influence of long-term "dry" and "wet" climatic cycles on the water regime, hydrological parameters, and carbonate profiles of chernozems in Central European Russia and adjacent territories was studied. The hydrological and carbonate profiles were found to change during the wet cycle. However, the upper part of the hydrological profile is basically unchanging, whereas in its lower part, the number of hydrological horizons and contrast in their moistening decrease in the forest-steppe chernozems and increase in the steppe chernozems. The frequency of through wetting of chernozems increases during the wet cycles. The vertical lithological heterogeneity of the parent material affects the soil moisture status. In the wet climatic cycle, the moisture content above the lithological contact increases resulting in the development of the features of soil hydromorphism. In the carbonate profile, the character of pedofeatures is changing: some carbonate neoformations disappear, while the other ones develop. Possible variations of the periodically percolative water regime were revealed in chernozems. The classification of water regime proposed by A.A. Rode may be updated based on the data obtained during the dry climatic cycle. Rode's hypothesis about cyclic variations in the soil water regime is confirmed.

  11. Future hydrological regimes of the upper Indus basin: results from the PAPRIKA project.

    NASA Astrophysics Data System (ADS)

    Bocchiola, Daniele; Soncini, Andrea; Confortola, Gabriele; Nana, Ester; Bianchi, Alberto; Rosso, Renzo; Diolaiuti, Guglielmina; Smiraglia, Claudio; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello; Giorgi, Filippo; Solmon, Fabien; Vuillermoz, Elisa

    2013-04-01

    ) hydrological cycle in the area by feeding the hydrological model with future precipitation and temperature (plus downscaling, whenever necessary) from two climate models, one global (EC-Earth), and one regional (RegCM), the latter specifically set up for SHARE-Paprika project. The projected flow duration curves, some selected flow descriptors, and the significance of modified flow regimes in the Shigar river are then evaluated. We comment upon modified snow cover, ice ablation regime and implications for future water resources and flood regime in the area. The uncertainty of the results is addressed, and future research questions are discussed. Keywords: Upper Indus basin; hydrological models; climate models; future water resources.

  12. A Recent Shift in the Carbon Balance of High-latitude Terrestrial Ecosystems in Response to Changes in Climate and Disturbance Regime

    NASA Astrophysics Data System (ADS)

    Hayes, D. J.; McGuire, A.; Kicklighter, D. W.; Gurney, K. R.; Burnside, T. J.; Melillo, J. M.

    2008-12-01

    Analyses of the global carbon budget suggest that terrestrial ecosystems have been responsible for slowing the rate of anthropogenic CO2 build-up in the atmosphere through carbon uptake and storage, with northern extratropical regions responsible for most of this land-based CO2 sink. However, recent changes in atmospheric chemistry, climate trends, disturbance regimes, land use and management systems in northern high latitude regions have the potential to alter the terrestrial sink of atmospheric CO2. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial ecosystem dynamics across the pan-arctic (north of 45°N latitude) using a process-based biogeochemistry model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 8.5 Tg C per year between 1997 and 2006. The positive carbon balance (sink) estimated for tundra regions is consistent with observations suggesting a "greening" of, or an increase in productivity in, these ecosystems. However, the simulation framework and subsequent analyses presented in this study attribute the overall shift in regional carbon balance primarily to a large loss of carbon as a result of "browning" in boreal forest ecosystems. Model results suggest that primary productivity of the boreal forest declined over this recent time period in response to a decreasing trend in water balance. However, the substantial release of CO2 as a direct result of the large area of boreal forest burned during the past decade was the largest signal in the overall negative carbon balance for the pan-arctic region. Our results, along with those of other recent studies, emphasize the importance of changes in the disturbance regime (e.g., fire events and insect outbreaks) in the weakening and possible disappearance of the terrestrial carbon sink in high latitude

  13. Sedimentary structures formed by upper-regime flows on a Pleistocene carbonate ramp (Favignana Calcarenite, Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Slootman, Arnoud; Moscariello, Andrea; Cartigny, Matthieu; de Boer, Poppe

    2015-04-01

    flow. Using published experimental Froude numbers for breaking antidune waves, average flow thickness and sediment flux is computed. The ratio of bed volume and sediment flux provides an estimate for the duration of the sediment gravity flows. We show that applying hydraulic equations to upper-regime sedimentary structures in coarse-grained carbonate sandstones reveal that about half of the ramp deposits, that formed over ca. 350 thousand years, were deposited in not more than tens of hours. Our results provide renewed insight into the evolution of the Favignana Calcarenite and other carbonate ramp deposits.

  14. Latest Results on Pulsar Wind Nebulae on the TeV Energy Regime

    NASA Astrophysics Data System (ADS)

    de Oña Wilhelmi, E.

    2011-08-01

    The last few years have seen a revolution in very high γ-ray astronomy (VHE E>100 GeV) driven largely by a new generation of Cherenkov telescopes. These new facilities, namely H.E.S.S. (High Energy Stereoscopic System), MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope) and its upgrade MAGIC 2, Veritas (Very Energetic Radiation Imaging Telescope Array System) and CANGAROO (Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback) were designed to increase the flux sensitivity in the energy regime of hundreds of GeV, expanding the observed energy range from 100 (50) GeV to multi-TeV, and fostered as a result a period of rapid growth in our understanding of the Non-Thermal Universe. As a result of this fast development the number of pulsar wind nebulae (PWNe) detected has increased from a few in the early 90's to more than two dozen of firm candidates nowadays. A review of the most relevant VHE results concerning pulsars and their relativistic winds is discussed here in the context of Cherenkov telescopes.

  15. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is a waste of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduce the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (i) recover hydrogen from the excess methane produced by the S/E process, (ii) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (iii) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. The goals of a research program on recovery of hydrogen from methane are (in descending priority order): 1) Study the kinetics of pyrolysis to arrive at a pyrolysis reactor design that produces high yields in a confined volume at the lowest possible operating temperature; 2) Study the kinetics of carbon burnoff to determine whether high yields can be obtained in a confined volume at acceptable operating temperatures; and 3) Investigate catalytic techniques for depositing carbon as a fine soot which can be physically separated from the reactor. In the JPL program, we have made significant

  16. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.

  17. Compartment Syndrome Resulting from Carbon Monoxide Poisoning.

    PubMed

    Serbest, Sancar; Belhan, Oktay; Gürger, Murat; Tosun, Haci Bayram

    2015-12-01

    Every year, especially in the cooler Fall and Winter months, hundreds of people die because of carbon monoxide poisoning. This occurs usually as an accident. It is a significant cause of poisoning worldwide. We present a case of compartment syndrome in both lower extremities with accompanying acute renal failure and systemic capillary leakage syndrome because of carbon monoxide poisoning. PMID:26588033

  18. Shelf morphology as an indicator of sedimentary regimes: A synthesis from a mixed siliciclastic-carbonate shelf on the eastern Brazilian margin

    NASA Astrophysics Data System (ADS)

    Bastos, Alex C.; Quaresma, Valéria S.; Marangoni, Mariana B.; D'Agostini, Danielle P.; Bourguignon, Silvia N.; Cetto, Paulo H.; Silva, Alex E.; Amado Filho, Gilberto M.; Moura, Rodrigo L.; Collins, Michael

    2015-11-01

    Modern shelf morphology is the result of the interplay between short and long term sedimentary processes. The relation between rates of sediment supply/carbonate growth and accommodation space creation will not only control coastal transgression and regression, but will also define the shelf sedimentary regimes acting to shape the seabed. Herein, shelf morphology and sedimentology are investigated in order to discuss how these characteristics can be representative of distinct sedimentary regimes. The study area is the eastern Brazilian shelf where coastal transgression and regression coexist with the most important coral reef system of the South Atlantic. A compilation of existing published and unpublished data was carried out in order to produce morphological and faciological maps and compare the mapped features with high-resolution seismic and sonographic data. The results show three major regions or morphological compartments: Abrolhos Shelf, Doce River Shelf and the Paleovalleys Shelf. In terms of shelf sedimentary domain, rhodolith beds predominate over the outer shelf along the entire area, coralline reefs are present along the northern Abrolhos inner shelf and a significant terrigenous mud deposit is observed associated to the Doce River adjacent inner shelf beds. The rest of the shelf is composed by bioclastic or terrigenous mud sand and gravel. Terrigenous sedimentation is always restricted to the shoreface or inner shelf shallower areas and carbonate sands and gravels are predominant elsewhere. The Abrolhos shelf shows two distinct sectors; the northern area is a typical mixed sediment environment that has a supply regime along the coast/shoreface, mainly due to longshore transport and a carbonate regime along the inner and outer shelf. The southern shelf morphology and sedimentation are controlled by the antecedent topography and is typically a accommodation regime shelf with associated rhodolith beds. The Doce river shelf is a supply regime environment

  19. Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime

    SciTech Connect

    Carati, A. Benfenati, F.; Maiocchi, A.; Galgani, L.; Zuin, M.

    2014-03-15

    The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω{sub p}/ω{sub c} between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω{sub p}/ω{sub c} in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.

  20. A Comparison of the Role of Episode Nutrient Supply on Pathways of Carbon in Upwelling Regimes

    NASA Technical Reports Server (NTRS)

    Carr, M. E.

    1997-01-01

    Nutrient supply is episode in the ocean even in regions of fairly high and continuous nutrient supply, such as coastal upwelling regimes. The structure of the ecosystem depends on nutrient availability and the different requirements of phytoplankton cells.

  1. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties

    SciTech Connect

    Reddy, K.R.; Davidonis, G.H.; Johnson, A.S.; Vinyard, B.T.

    1999-10-01

    Temperature and atmospheric carbon dioxide concentration [CO{sub 2}] affect cotton (Gossypium hirsutum L.) growth and development, but the interaction of these two factors on bill and fiber properties has not been studied. An experiment was conducted in naturally lit plant growth chambers to determine the influence of temperature and atmospheric [CO{sub 2}] on cotton (cv. DPL-51) boll and fiber growth parameters. Five temperature regimes were evaluated: the 1995 temperature at Mississippi State, MS; the 1995 temperature minus 2 C; and the 1995 temperature plus 2, 5, and 7 C. Daily and seasonal variation and amplitudes were maintained. Atmospheric [CO{sub 2}] treatments were 360 (ambient) and 720 {micro}L L{sup {minus}1}. Boll number, boll growth, and fiber properties were measured. Boll size and maturation periods decreased as temperature increased. Boll growth increased with temperature to 25 C and then declined at the highest temperature. Boll maturation period, size, and growth rates were not affected by atmospheric [CO{sub 2}]. The most temperature-sensitive aspect of cotton development is boll retention. Almost no bolls were retained to maturity at 1995 plus 5 or 7 C, but squares and bolls were continuously produced even at those high temperatures. Therefore, the upper limit for cotton boll survival is 32 C, or 5 C warmer than the 1995 US Mid-South ambient temperatures. The 720 {micro}L L{sup {minus}1} atmospheric [CO{sub 2}] had about 40% more squares and bolls across temperatures than the 360 {micro}L L{sup {minus}1} [CO{sub 2}]. Fibers were longer when bolls grew at less than optimal temperatures (25 C) for boll growth. As temperature increased, fiber length distributions were more uniform. Fiber fineness and maturity increased linearly with the increase in temperature up to 26 C, but decreased at 32 C. Short-fiber content declined linearly from 17 to 26 C, but was higher at higher temperature. As for boll growth and developmental parameters, elevated

  2. Semiclassical (qft) and Quantum (string) Anti-De Sitter Regimes:. New Results

    NASA Astrophysics Data System (ADS)

    Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.

    We compute the quantum string entropy Ss(m, H) from the microscopic string density of states ρs(m, H) of mass m in Anti-de Sitter space-time. For high m, (high Hm → c/α‧), no phase transition occurs at the Anti-de Sitter string temperature Ts = (1/2πkB)Lclc2/α‧, which is higher than the flat space (Hagedorn) temperature ts. (Lcl = c/H, the Hubble constant H acts as producing a smaller string constant α‧ and thus, a higher tension). Ts is the precise quantum dual of the semiclassical (QFT) Anti-de Sitter temperature scale Tsem = ℏc/(2πkBLcl). We compute the quantum string emission σstring by a black hole in Anti-de Sitter (or asymptotically Anti-de Sitter) space-time (bhAdS). For Tsem bhAdS ≪ Ts (early evaporation stage), it shows the QFT Hawking emission with temperature Tsem bhAdS (semiclassical regime). For Tsem bhAdS → Ts, it exhibits a phase transition into a Anti-de Sitter string state of size Ls = ls2/L_ cl, (ls = √ hbar α '/c}), and Anti-de Sitter string temperature Ts. New string bounds on the black hole emerge in the bhAdS string regime. The bhAdS string regime determines a maximal value for H : Hmax = 0.841c/ls. The minimal black hole radius in Anti-de Sitter space-time turns out to be rg min = 0.841ls, and is larger than the minimal black hole radius in de Sitter space-time by a numerical factor equal to 2.304. We find a new formula for the full AdS entropy Ssem(H), as a function of the usual Bekenstein-Hawking entropy S sem(0)(H). For Lcl ≫ ℓPlanck, i.e. for low H ≪ c/ℓPlanck, or classical regime, S sem(0)(H) is the leading term with its logarithmic correction, but for high H ≥ c/ℓPlanck or quantum regime, no phase transition operates, in contrast to de Sitter space, and the entropy Ssem(H) is very different from the Bekenstein-Hawking term S sem(0)(H).

  3. Modeling the transition between upper plane bed regime and sheet flow without an active layer formulation. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Hernandez Moreira, R. R.; Blom, A.

    2015-12-01

    A perusal of the literature on bedload transport revealed that, notwithstanding the large number of studies on bedform morphology performed in the past decades, the upper plane bed regime has not been thoroughly investigated and the distinction between the upper plane bed and sheet flow transport regimes is still poorly defined. Previous experimental work demonstrated that the upper plane bed regime is characterized by long wavelength and small amplitude bedforms that migrate downstream. These bedforms, however, were not observed in experiments on sheet flow transport suggesting that the upper plane bed and the sheet flow are two different regimes. We thus designed and performed experiments in a sediment feed flume in the hydraulic laboratory of the Department of Civil and Environmental Engineering at the University of South Carolina at Columbia to study the transition from upper plane bed to sheet flow regime. Periodic measurements of water surface and bed elevation, bedform geometry and thicknesses of the bedload layer were performed by eyes, and with cameras, movies and a system of six ultrasonic probes that record the variations of bed elevation at a point over time. We used the time series of bed elevations to determine the probability functions of bed elevation. These probability functions are implemented in a continuous model of river morphodynamics, i.e. a model that does not use the active layer approximation to describe the sediment fluxes between the bedload and the deposit and that should thus be able to capture the details of the vertical and streamwise variation of the deposit grain size distribution. This model is validated against the experimental results for the case of uniform material. We then use the validated model in the attempt to study if and how the spatial distribution of grain sizes in the deposit changes from upper plane bed regime to sheet flow and if these results are influenced by the imposed rates of base level rise.

  4. An ecological regime shift resulting from disrupted predator-prey interactions in Holocene Australia.

    PubMed

    Prowse, Thomas A A; Johnson, Christopher N; Bradshaw, Corey J A; Brook, Barry W

    2014-03-01

    The mass extinction events during human prehistory are striking examples of ecological regime shifts, the causes of which are still hotly debated. In Australia, human arrival approximately 50 thousand years ago was associated with the continental-scale extinction of numerous marsupial megafauna species and a permanent change in vegetation structure. An alternative stable state persisted until a second regime shift occurred during the late Holocene, when the largest two remaining marsupial carnivores, the thylacine and devil, disappeared from mainland Australia. These extinctions have been widely attributed to the human-assisted invasion of a competing predator, the dingo. In this unusual case, the simultaneous effects of human "intensification" (population growth and technological advances) and climate change (particularly increased ENSO variability) have been largely overlooked. We developed a dynamic model system capable of simulating the complex interactions between the main predators (humans, thylacines, devils, dingoes) and their marsupial prey (macropods), which we coupled with reconstructions of human population growth and climate change for late-Holocene Australia. Because the strength of important interspecific interactions cannot be estimated directly, we used detailed scenario testing and sensitivity analysis to identify robust model outcomes and investigate competing explanations for the Holocene regime shift. This approach identified human intensification as the most probable cause, while also demonstrating the potential importance of synergies with the effects of climate change. Our models indicate that the prehistoric impact of humans on Australian mammals was not limited to the late Pleistocene (i.e., the megafaunal extinctions) but extended into the late Holocene. PMID:24804453

  5. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification.

    PubMed

    Han, M; De Clippeleir, H; Al-Omari, A; Wett, B; Vlaeminck, S E; Bott, C; Murthy, S

    2016-01-01

    While deammonification of high-strength wastewater in the sludge line of sewage treatment plants has become well established, the potential cost savings spur the development of this technology for mainstream applications. This study aimed at identifying the effect of aeration and organic carbon on the deammonification process. Two 10 L sequencing bath reactors with different aeration frequencies were operated at 25°C. Real wastewater effluents from chemically enhanced primary treatment and high-rate activated sludge process were fed into the reactors with biodegradable chemical oxygen demand/nitrogen (bCOD/N) of 2.0 and 0.6, respectively. It was found that shorter aerobic solids retention time (SRT) and higher aeration frequency gave more advantages for aerobic ammonium-oxidizing bacteria (AerAOB) than nitrite oxidizing bacteria (NOB) in the system. From the kinetics study, it is shown that the affinity for oxygen is higher for NOB than for AerAOB, and higher dissolved oxygen set-point could decrease the affinity of both AerAOB and NOB communities. After 514 days of operation, it was concluded that lower organic carbon levels enhanced the activity of anoxic ammonium-oxidizing bacteria (AnAOB) over denitrifiers. As a result, the contribution of AnAOB to nitrogen removal increased from 40 to 70%. Overall, a reasonably good total removal efficiency of 66% was reached under a low bCOD/N ratio of 2.0 after adaptation. PMID:27438242

  6. Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica

    NASA Astrophysics Data System (ADS)

    Mallela, J.; Perry, C. T.

    2007-03-01

    A process-based carbonate budget was used to compare carbonate framework production at two reef sites subject to varying degrees of fluvial influence in Rio Bueno, Jamaica. The turbid, central embayment was subjected to high rates of fluvial sediment input, framework accretion was restricted to ≤30 m, and net carbonate production was 1,887 g CaCO3 m-2 year-1. Gross carbonate production (GCP) was dominated by scleractinians (97%), particularly by sediment-resistant species, e.g. Diploria strigosa on the reef flat (<2 m). Calcareous encrusters contributed very little carbonate. Total bioerosion removed 265 g CaCO3 m-2 year-1 and was dominated by microborers. At the clear-water site, net carbonate production was 1,236 g CaCO3 m-2 year-1; the most productive zone was on the fore-reef (10 m). Corals accounted for 82% of GCP, and encrusting organisms 16%. Bioerosion removed 126 g CaCO3 m-2 year-1 and was dominated by macroborers. Total fish and urchin grazing was limited throughout (≤20 g CaCO3 m-2 year-1). The study demonstrates that: (1) carbonate production and net reef accretion can occur where environmental conditions approach or exceed perceived threshold levels for coral survival; and (2) although live coral cover (and carbonate production rates) were reduced on reef-front sites along the North Jamaican coast, low population densities of grazing fish and echinoids to some extent offset this, thus maintaining positive carbonate budgets.

  7. Response to multi-generational selection under elevated [CO2] in two temperature regimes suggests enhanced carbon assimilation and increased reproductive output in Brassica napus L.

    PubMed Central

    Frenck, Georg; van der Linden, Leon; Mikkelsen, Teis Nørgaard; Brix, Hans; Jørgensen, Rikke Bagger

    2013-01-01

    Functional plant traits are likely to adapt under the sustained pressure imposed by environmental changes through natural selection. Employing Brassica napus as a model, a multi-generational study was performed to investigate the potential trajectories of selection at elevated [CO2] in two different temperature regimes. To reveal phenotypic divergence at the manipulated [CO2] and temperature conditions, a full-factorial natural selection regime was established in a phytotron environment over the range of four generations. It is demonstrated that a directional response to selection at elevated [CO2] led to higher quantities of reproductive output over the range of investigated generations independent of the applied temperature regime. The increase in seed yield caused an increase in aboveground biomass. This suggests quantitative changes in the functions of carbon sequestration of plants subjected to increased levels of CO2 over the generational range investigated. The results of this study suggest that phenotypic divergence of plants selected under elevated atmospheric CO2 concentration may drive the future functions of plant productivity to be different from projections that do not incorporate selection responses of plants. This study accentuates the importance of phenotypic responses across multiple generations in relation to our understanding of biogeochemical dynamics of future ecosystems. Furthermore, the positive selection response of reproductive output under increased [CO2] may ameliorate depressions in plant reproductive fitness caused by higher temperatures in situations where both factors co-occur. PMID:23762504

  8. Anthropogenic perturbation of the global carbon cycle as a result of agricultural carbon erosion and burial

    NASA Astrophysics Data System (ADS)

    Wang, Zhengang; Govers, Gerard; Kaplan, Jed; Hoffmann, Thomas; Doetterl, Sebastian; Six, Johan; Van Oost, Kristof

    2016-04-01

    Changes in terrestrial carbon storage exert a strong control over atmospheric CO2 concentrations but the underlying mechanisms are not fully constrained. Anthropogenic land cover change is considered to represent an important carbon loss mechanism, but current assessments do not consider the associated acceleration of carbon erosion and burial in sediments. We evaluated the role of anthropogenic soil erosion and the resulting carbon fluxes between land and atmosphere from the onset of agriculture to the present day. We show, here, that agricultural erosion induced a significant cumulative net uptake of 198±57 Pg carbon on terrestrial ecosystems. This erosion-induced soil carbon sink is estimated to have offset 74±21% of carbon emissions. Since 1850, erosion fluxes have increased 3-fold. As a result, the erosion and lateral transfer of organic carbon in relation to human activities is an important driver of the global carbon cycle at millennial timescales.

  9. A Numerical Study of the Effect of Periodic Nutrient Supply on Pathways of Carbon in a Coastal Upwelling Regime

    NASA Technical Reports Server (NTRS)

    Carr, Mary-Elena

    1998-01-01

    A size-based ecosystem model was modified to include periodic upwelling events and used to evaluate the effect of episodic nutrient supply on the standing stock, carbon uptake, and carbon flow into mesozooplankton grazing and sinking flux in a coastal upwelling regime. Two ecosystem configurations were compared: a single food chain made up of net phytoplankton and mesozooplankton (one autotroph and one heterotroph, A1H1), and three interconnected food chains plus bacteria (three autotrophs and four heterotrophs, A3H4). The carbon pathways in the A1H1 simulations were under stronger physical control than those of the A3H4 runs, where the small size classes are not affected by frequent upwelling events. In the more complex food web simulations, the microbial pathway determines the total carbon uptake and grazing rates, and regenerated nitrogen accounts for more than half of the total primary production for periods of 20 days or longer between events. By contrast, new production, export of carbon through sinking and mesozooplankton grazing are more important in the A1H1 simulations. In the A3H4 simulations, the turnover time scale of the autotroph biomass increases as the period between upwelling events increases, because of the larger contribution of slow-growing net phytoplankton. The upwelling period was characterized for three upwelling sites from the alongshore wind speed measured by the NASA Scatterometer (NSCAT) and the corresponding model output compared with literature data. This validation exercise for three upwelling sites and a downstream embayment suggests that standing stock, carbon uptake and size fractionation were best supported by the A3H4 simulations, while the simulated sinking fluxes are not distinguishable in the two configurations.

  10. Projected carbon stocks in the conterminous USA with land use and variable fire regimes.

    PubMed

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Timothy J; Sleeter, Benjamin M; Zhu, Zhiliang

    2015-12-01

    The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie-forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122-126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change. PMID:26207729

  11. The carbonate profile and water regime of migrational-mycelial chernozems in different ecosystems of Kursk oblast

    NASA Astrophysics Data System (ADS)

    Ovechkin, S. V.; Bazykina, G. S.

    2011-12-01

    The carbonate profiles of migrational-mycelial (typical) chernozems under regularly mown and absolutely reserved steppes in the V.V. Alekhin Central Chernozemic State Biospheric Reserve and under cropland with cereals (Kursk oblast) were studied in 2007-2009. A comparison of the results of these studies with previous results obtained in the mid-1970s attests to certain changes in the carbonate profiles of the soils. They are conditioned by the activation of the migration of carbonates and the more pronounced manifestation of differently directed processes of the leaching and accumulation of carbonates. The reasons for the observed transformation of the carbonate profiles are related to the increased moistening of the upper 3-m-deep chernozemic layer in different ecosystems because of a general rise in the humidity of the local climate in the recent decades (1973-2006).

  12. Intensification of Climate-Carbon Feedbacks after 2100 and Implications for Disturbance Regimes

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Lindsay, K. T.; Munoz, E.; Fu, W.; Hoffman, F. M.; Moore, J. K.; Doney, S. C.; Mahowald, N. M.; Bonan, G. B.

    2014-12-01

    Long-term ecosystem and carbon cycle responses to climate change are needed to inform mitigation policy, yet our understanding of how these responses may evolve after 2100 remains highly uncertain. Using the Community Earth System Model (version 1.0), we quantified climate-carbon feedbacks from 1850 to 2300 for the Representative Concentration Pathway 8.5 (and its extension). In three simulations, land and ocean biogeochemical models were exposed to the same trajectory of increasing atmospheric CO2. In one simulation, atmospheric CO2 and other forcing agents were radiatively active (fully coupled), modifying temperature and other aspects of climate. In another, CO2 was radiatively uncoupled, and in the third, both CO2 and other atmospheric forcing agents (including CH4, N2O, and aerosols) were radiatively uncoupled. In the fully coupled simulation, global mean air temperatures increased by 9.3°C from 1850 to 2300, with 4.4°C of this warming occurring after 2100. Without radiative forcing from CO2, cumulative warming was much lower at 2.4°C, but exceeding 2°C targets needed to avoid dangerous interference with the climate system. In response to climate change, ocean and land rates of carbon uptake were reduced, with the size of the impact increasing over time. In the oceans, reductions in cumulative carbon uptake from climate change increased from 3% during the 20th century to 40% during the 23rd century. By 2300, climate change had reduced cumulative ocean uptake by 330 Pg C, from 1410 Pg C to 1080 Pg C. Most of this reduction occurred after 2100 as a consequence of increases in surface stratification and decreases in Atlantic meridional overturning circulation. Land fluxes similarly diverged over time, with climate change inducing a cumulative loss of 230 Pg C by 2300. On land the intensification of the hydrological cycle globally increased terrestrial water storage, although asymmetric responses were observed across different continents in the tropics. Net

  13. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime

    NASA Astrophysics Data System (ADS)

    Jeantet, A.; Chassagneux, Y.; Raynaud, C.; Roussignol, Ph.; Lauret, J. S.; Besga, B.; Estève, J.; Reichel, J.; Voisin, C.

    2016-06-01

    The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.

  14. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed

    USGS Publications Warehouse

    Hernes, P.J.; Spencer, R.G.M.; Dyda, R.Y.; Pellerin, B.A.; Bachand, P.A.M.; Bergamaschi, B.A.

    2008-01-01

    Willow Slough, a seasonally irrigated agricultural watershed in the Sacramento River valley, California, was sampled weekly in 2006 in order to investigate seasonal concentrations and compositions of dissolved organic carbon (DOC). Average DOC concentrations nearly doubled from winter baseflow (2.75 mg L-1) to summer irrigation (5.14 mg L-1), while a concomitant increase in carbon-normalized vanillyl phenols (0.11 mg 100 mg OC-1 increasing to 0.31 mg 100 mg OC-1, on average) indicates that this additional carbon is likely vascular plant-derived. A strong linear relationship between lignin concentration and total suspended sediments (r2 = 0.79) demonstrates that agricultural management practices that mobilize sediments will likely have a direct and significant impact on DOC composition. The original source of vascular plant-derived DOC to Willow Slough appears to be the same throughout the year as evidenced by similar syringyl to vanillyl and cinnamyl to vanillyl ratios. However, differing diagenetic pathways during winter baseflow as compared to the rest of the year are evident in acid to aldehyde ratios of both vanillyl and syringyl phenols. The chromophoric dissolved organic matter (CDOM) absorption coefficient at 350 nm showed a strong correlation with lignin concentration (r2 = 0.83). Other CDOM measurements related to aromaticity and molecular weight also showed correlations with carbon-normalized yields (e.g. specific UV absorbance at 254 nm (r2 = 0.57) and spectral slope (r2 = 0.54)). Our overall findings suggest that irrigated agricultural watersheds like Willow Slough can potentially have a significant impact on mainstem DOC concentration and composition when scaled to the entire watershed of the main tributary. ?? 2008 Elsevier Ltd.

  15. Variations in the fire regime in the North American boreal forest between 1990 and 2004 and their potential impacts on terrestrial carbon storage

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Turetsky, M. R.; McGuire, A. D.; French, N. H.

    2004-12-01

    that organic layers common in boreal forests and peatlands burn deeper and release more carbon during large fire events and during late season fires. In this paper, we will present the results of a study on how recent changes in the North American boreal fire regime have influenced carbon storage in the ground-organic layer in this region based on different assumption regarding levels of consumption of organic layer burning.

  16. Analytical results for quasiparticle excitations in the Fractional Quantum Hall Effect regime

    NASA Astrophysics Data System (ADS)

    Bentalha, Z.

    2016-07-01

    In this work, quasiparticle energies for systems with N = 3 , 4 , 5 , 6 and 7 electrons are calculated analytically in both Laughlin and composite fermions (CF) theories by considering the electron-electron interaction potential. The exact results we have obtained for the first and the second excited states agree with previous numerical results. This study shows that at this level the CF-wave function has lower energy in comparison with Laughlin wave function energy.

  17. Gunshot wounds (resulting from execution) of exhumed victims of the communist regime in Poland.

    PubMed

    Szleszkowski, Łukasz; Thannhäuser, Agata; Szwagrzyk, Krzysztof; Kawecki, Jerzy; Jurek, Tomasz

    2014-07-01

    This study presents the results of the analysis of the remains of 23 executed male individuals aged between 21 and 63 years, recovered from Osobowicki Cemetery in Wroclaw (Poland), field 83B, in 2012. In 1948 and 1949, prisoners sentenced to death by firing squad--most of them associated with the post-war anti-communist underground independence movement in Poland--were buried there. The aim of the study was to analyse fatal wounds and the method of execution, and to compare the results to data from archival documents. The results were also compared with studies concerning executions during a later period, i.e. 1949-1954. The research on the method of execution during this period of history carried out during the exhumations in Osobowicki Cemetery was the first conducted on such a scale in Poland. Forensic analysis revealed a wide variety of gunshot wounds inflicted during executions, revealing both gunshots to the head, especially single shots to the back of the head, and cases corresponding to the use of a firing squad, probably equipped with machine guns. The results of the research indicate that capital punishment by shooting was carried out in ways both similar to those the specified in the regulations and completely different. PMID:24767546

  18. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  19. Critical adsorption in the undersaturated regime: Scaling and exact results in Ising strips

    NASA Astrophysics Data System (ADS)

    Ciach, A.; Maciolek, A.; Stecki, J.

    1998-04-01

    Critical adsorption for weak surface field h1 is reconsidered. On the basis of physical heuristic arguments, approximate behavior of the scaling function is derived. New form of a scaling for weak h1 in finite systems is proposed and verified by testing against exact results obtained for this purpose in the 2D Ising strips. For weak h1 we find the approximate behavior of adsorption Γ˜τβ-Δ1 for the reduced temperatures h11/Δ1˜τ≪1. This behavior is consistent with experimental data [N. S. Desai, S. Peach, and C. Franck, Phys. Rev. E 52, 4129 (1995)] obtained for τ=10-5, and is in a very good agreement with exact results in the 2D Ising strip.

  20. Shifts in the hydrodynamic regime determine patterns of regional changes of the Arctic Ocean carbon cycle in future climate change projections

    NASA Astrophysics Data System (ADS)

    Ilyina, T.; Heinze, M.; Li, H.; Jungclaus, J. H.; Six, K. D.

    2015-12-01

    In future projections the Arctic Ocean carbon cycle is a hotspot for changes driven by rising CO2 emissions. Concomitantly, the Arctic Ocean hydrodynamic regime undergoes substantial shifts so the net effect on the carbon cycle is not intuitively clear. In the high CO2 scenario RCP8.5 extended until 2300 in projections of the Max Planck Institute's Earth System Model, the averaged Arctic Ocean surface temperature rises by 4°C in 2100 and by 10°C in 2300, respectively. The Arctic becomes free of summer sea ice in the second half of the 21st century, whereas winter sea ice disappears at the beginning of the 23rd century. Owing to increased sea ice melting and runoff, fresh water content increases gradually until the end of the 22nd century and then drops abruptly as a result of an intensification of the saline Atlantic water inflow. Accumulation of Atlantic water collapses the halocline in the central basin of the Arctic Ocean by the first half of the 23rd century. Ongoing warming enhances thermal stratification and the mixed layer shoales. In contrast, halocline erosion and the cooling of the ice free water act in concert to favor formation of convection cells in the central basin. Freshening in the Canada basin and transport of salty water into the Eurasian basin generate a dipole structure in the anomalies of surface salinity. Driven by the rising CO2, the averaged dissolved inorganic carbon (DIC) is growing. Changes in the averaged total alkalinity (TA) go along with the fresh water content evolution and decreasing carbonate ion concentration so that TA drops below preindustrial values. Yet, along with salinity, the Eurasian basin receives waters with higher DIC and TA from the Atlantic. As a result, the distributions of TA and DIC anomalies resemble the dipole pattern projected for salinity. We show that while future changes in the Arctic Ocean carbon cycle proceed at rates determined by atmospheric CO2 levels, the regional patterns are driven by shifts in the

  1. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime.

    PubMed

    Jeantet, A; Chassagneux, Y; Raynaud, C; Roussignol, Ph; Lauret, J S; Besga, B; Estève, J; Reichel, J; Voisin, C

    2016-06-17

    The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands. PMID:27367407

  2. Properties of single wall carbon nanotubes array antennas in the optical regime

    NASA Astrophysics Data System (ADS)

    Wu, Xiaofang; Jiang, Yuesong; Hua, Houqiang

    2014-11-01

    Single wall carbon nanotubes (SWCNTs) can be metallic, depending on their chirality. For their nanoscale geometric dimension, SWCNTs can be used as antennas to convert high-frequency electromagnetic radiation such as optical radiation into localized energy and vice versa. However, at optical frequencies, traditional antenna design theory fails for metals behave as strongly coupled plasmas. As a matter of fact, an optical antenna responds to a shorter effective wavelength which depends on the material properties and geometric parameters. In this letter, we derived the relationship of effective wavelength with the wavelength of incident radiation for SWCNTs optical antenna, assuming that the SWCNTs can be described by a free electron gas according to the Drude model. SWCNTs optical antenna holds great promise for increasing solar energy conversion efficiency.

  3. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  4. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes

    SciTech Connect

    Brandstätter, Christian Laner, David Fellner, Johann

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • 40 year old waste from an old MSW landfill was incubated in LSR experiments. • Carbon balances for anaerobic and aerobic waste degradation were established. • The transformation of carbon pools during waste degradation was investigated. • Waste aeration resulted in the formation of a new, stable organic carbon pool. • Water addition did not have a significant effect on aerobic waste degradation. - Abstract: Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO{sub 2} and CH{sub 4}) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg{sup −1} dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg{sup −1} dry waste). Compared to that, aeration led to threefold decrease in TOC (32–36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances

  5. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime.

    PubMed

    Denyes, Mackenzie J; Rutter, Allison; Zeeb, Barbara A

    2013-11-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. PMID:23933124

  6. THERMAL ESCAPE IN THE HYDRODYNAMIC REGIME: RECONSIDERATION OF PARKER's ISENTROPIC THEORY BASED ON RESULTS OF KINETIC SIMULATIONS

    SciTech Connect

    Volkov, Alexey N.; Johnson, Robert E.

    2013-03-10

    The one-dimensional steady-state problem of thermal escape from a single-component atmosphere of mon- and diatomic gases is studied in the hydrodynamic (blow-off) regime using the direct simulation Monte Carlo method for an evaporative-type condition at the lower boundary. The simulations are performed for various depths into an atmosphere, indicated by a Knudsen number, Kn{sub 0}, equal to the ratio of the mean free path of molecules to the radial position of the source surface, ranging from 10 to 10{sup -5}, and for the range of the source Jeans parameter, {lambda}{sub 0}, equal to the ratio of gravitational and thermal energies, specific to blow-off. The results of kinetic simulations are compared with the isentropic model (IM) and the Navier-Stokes model. It is shown that the IM can be simplified if formulated in terms of the local Mach number and Jeans parameter. The simulations predict that at Kn{sub 0} < {approx} 10{sup -3} the flow includes a near-surface non-equilibrium Knudsen layer, a zone where the flow can be well approximated by the IM, and a rarefied far field. The corresponding IM solutions, however, only approach Parker's critical solution as {lambda}{sub 0} approaches the upper limit for blow-off. The IM alone is not capable for predicting the flow and requires boundary conditions at the top of the Knudsen layer. For small Kn{sub 0}, the scaled escape rate and energy loss rate are found to be independent of {lambda}{sub 0}. The simulation results can be scaled to any single-component atmosphere exhibiting blow-off if the external heating above the lower boundary is negligible, in particular, to sublimation-driven atmospheres of Kuiper belt objects.

  7. Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Current Status

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Rush, G.E.; Walters, Richard P.; Turner, Paul C.

    2001-01-01

    Direct mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable, solid final form. The process utilizes a solution of sodium bicarbonate (NaHCO3), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface and gas dispersion within the aqueous phase. The process includes dissolution of the mineral and precipitation of magnesium carbonate (MgCO3) in a single unit operation. Optimum results have been achieved using heat pretreated serpentine feed material, with a surface area of roughly 19 m2 per gram, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% stoichiometric conversion of the silicate to the carbonate was achieved in 30 minutes. Studies suggest that the mineral dissolution rate is primarily surface controlled, while the carbonate precipitation rate is primarily dependent on the bicarbonate concentration of the slurry. Current studies include further examination of the reaction pathways, and an evaluation of the resource potential for the magnesium silicate reactant, particularly olivine. Additional studies include the examination of various pretreatment options, the development of a continuous flow reactor, and an evaluation of the economic feasibility of the process.

  8. Thermal regime and potential bedrock weathering in alpine rockwalls of Austria: Results from eight years of monitoring (2006-2014)

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Wecht, Matthias

    2015-04-01

    Bedrock temperature at sites with a minor winter snow cover gives a good indication for the effects of air temperature anomalies on ground thermal conditions as well as for the intensity of near-surface physical weathering in bedrock. In this study we present results from an ongoing bedrock temperature monitoring program initiated in 2006. Within the framework of this program nine surface boreholes in rockwalls with different slope orientations and two additional boreholes at flat bedrock sites were drilled between August and September 2006 and subsequently instrumented. The altogether eleven rock temperature sites (RTS) are located in the alpine periglacial zone of the Austrian Alps at latitude 46°55' to 47°22' and longitude 12°44' to 14°41'. All RTS have been installed in metamorphic rock (5 x mica schist; 6 x gneiss) at elevations between 1960 and 2725 m asl (mean 2491 m asl.). Three temperature sensors (PT1000) have been inserted at each borehole site at vertical depths of 3, 10 and 30-40 cm. At each RTS the three sensors are connected to a 3-channel miniature temperature datalogger (MTD) manufactured by GeoPrecision, Germany. Our analysis focussed on (a) the variation of mean and extreme daily temperatures at the rock surface and at depth, (b) the variation of the daily temperature range, (c) the number of freeze-thaw-cycles (FTC) and (d) effective freeze-thaw cycles for frost shattering (eFTC), (e) the duration and intensity of freeze-thaw-cycles (DI-FTC), (f) the number of hours and days within the so-called frost-cracking-window (FCW), and effects of (g) aspect and (h) snow cover on the thermal regimes in the bedrock. Results show for instance that the number of FTC and eFTC varied substantially during the observation period at all eleven RTS and at all sensor depths. However, this variation differs from site to site related to snow cover condition, elevation and aspect. For instance, at one lower-elevated (2255 m asl) north exposed RTS the number of

  9. Amazon Forest Response to Changes in Rainfall Regime: Results from an Individual-Based Dynamic Vegetation Model

    NASA Astrophysics Data System (ADS)

    Longo, Marcos

    The Amazon is the largest tropical rainforest in the world, and thus plays a major role on global water, energy, and carbon cycles. However, it is still unknown how the Amazon forest will respond to the ongoing changes in climate, especially droughts, which are expected to become more frequent. To help answering this question, in this thesis I developed and improved the representation of biophysical processes and photosynthesis in the Ecosystem Demography model (ED-2.2), an individual-based land ecosystem model. I also evaluated the model biophysics against multiple data sets for multiple forest and savannah sites in tropical South America. Results of this comparison showed that ED-2.2 is able to represent the radiation and water cycles, but exaggerates heterotrophic respiration seasonality. Also, the model generally predicted correct distribution of biomass across different areas, although it overestimated biomass in subtropical savannahs. To evaluate the forest resilience to droughts, I used ED-2.2 to simulate the plant community dynamics at two sites in Eastern Amazonia, and developed scenarios by resampling observed annual rainfall but increasing the probability of selecting dry years. While the model predicted little response at French Guiana, results at the mid-Eastern Amazonia site indicated substantial biomass loss at modest rainfall reductions. Also, the response to drier climate varied within the plant community, with evergreen, early-successional, and larger trees being the most susceptible. The model also suggests that competition for water during prolonged periods of drought caused the largest impact on larger trees, when insufficient wet season rainfall did not recharge deeper soil layers. Finally, results suggested that a decrease in return period of long-lasting droughts could prevent ecosystem recovery. Using different rainfall datasets, I defined vulnerability based on the change in climate needed to reduce the return period of long droughts. The

  10. Carbon dioxide fluxes from Tifway bermudagrass: early results

    NASA Astrophysics Data System (ADS)

    Cotten, David L.; Zhang, G.; Leclerc, M. Y.; Raymer, P.; Steketee, C. J.

    2016-06-01

    This paper reports for the first time preliminary data on carbon uptake of warm-season turfgrass at a well-managed sod farm in south central Georgia. It examines the changes in carbon uptake from one of the most widely used warm-season turfgrass cultivars in the world, Tifway Bermudagrass. It elucidates the role of canopy density and light avalaibility on the net carbon uptake using the eddy-covariance technique. Preliminary evidence suggests that turfgrass is effective at sequestering carbon dioxide during the summer months even when the canopy is being reestablished following a grass harvest.

  11. Variation of organic carbon and nitrate with river flow within an oceanic regime in a rural area and potential impacts for drinking water production

    NASA Astrophysics Data System (ADS)

    Baurès, E.; Delpla, I.; Merel, S.; Thomas, M.-F.; Jung, A.-V.; Thomas, O.

    2013-01-01

    SummaryOver the last two decades, climate change has become a major environmental and public health concern due to the increase of the mean temperature on the Earth and its consequences on extreme meteorological events such as floods and droughts. These events induce very low or very high river flows that may impair surface water quality, and therefore result in potential health impacts when used for drinking water production. The present study aims at assessing the impact of hydrologic regime on surface water quality with a particular emphasis on total organic carbon (TOC) and nitrate. Water quality data from three French rivers acquired over a 27 years period, from January 1983 to December 2009, show the influence of extreme flows. Variation in TOC and nitrate concentrations showed opposite patterns for the whole range of flow rate (from less than 10% up to more than 100% of the mean flow). Regarding fluxes, TOC increased continuously with flow rate while nitrate was stable for very high discharges. The C/N ratio expressed from TOC and nitrate concentrations showed high values for extreme flows and particularly for very low flow rates, generally in summer, where nitrate is assimilated by biomass. Considering TOC and nitrate fluxes, it is confirmed that the worst situations were encountered for very high flow rates, namely for TOC exportation during surface runoff which was related to heavy rains or floods. These findings are of great importance with regard to the adaptation for drinking water treatment in facing extreme hydrological conditions, of which the frequency is increasing with climate change.

  12. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  13. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms.

    PubMed

    Bangert, U; Pierce, W; Boothroyd, C; Pan, C-T; Gwilliam, R

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  14. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  15. Were fossil spring-associated carbonates near Zaca Lake, Santa Barbara, California deposited under an ambient or thermal regime?

    NASA Astrophysics Data System (ADS)

    Ibarra, Yadira; Corsetti, Frank A.; Cheetham, Michael I.; Feakins, Sarah J.

    2014-03-01

    A previously undescribed succession of currently-inactive spring-associated carbonates located near Zaca Lake, Southern California, was investigated in order to determine the nature of deposition (ambient temperature or hydrothermal water, as both are found within the region). The carbonate deposits are up to ~ 1 m thick and formed discontinuously for over 200 m in a narrow valley between two ridges that drain Miocene Monterey Formation bedrock. Depositional facies along the presently dry fluvial path include barrage deposits, narrow fluvial channels, and cascade deposits. The carbonates are mesoscopically banded and contain ubiquitous micro- to macrophyte calcite encrusted fabrics. All of the depositional facies contain alternating bands (~ .05 mm to 5 mm thick) of dark brown and light brown isopachous calcite; the dark brown bands are composed of dense isopachous bladed calcite, whereas the light brown bands are composed of bundles of calcite tubules interpreted as the biosignature of the desmid microalgae Oocardium stratum. Oxygen isotope thermometry utilizing modern water δ18O values from the piped spring reveal depositional water temperature estimates that collectively range from ~ 11 to 16 °C. Stable isotope carbon values exhibit a mean δ13C value of - 9.01 ± 0.62‰ (1σ, n = 27). Our petrographic and geochemical data demonstrate that (1) inactive carbonates were likely sourced from ambient temperature water with a strong soil-zone δ13C signal, (2) the Oocardium calcite biosignature can be used to infer depositional temperature and flow conditions, and (3) the occurrence of extensive carbonates (especially the presence of a perched cascade deposit) indicate the carbonates formed when conditions were much wetter.

  16. Total carbon measurement in soils using laser-induced breakdown spectroscopy : Results from the field and implications for carbon sequestration

    SciTech Connect

    Ebinger, M. H.; Breshears, D. D.; Unkefer, P. J.; Cremers, D. A.; Kammerdiener, S. A.; Ferris, M. J.

    2001-01-01

    Rapid measurement of total carbon in soils is an important factor in modeling the effects of global change and carbon sequestration in soils. Conventional methods of carbon analysis such as dry combustion are relatively slow, and reliable estimation of carbon concentrations at the landscape scale is practically impossible because of the need for many replicate measurements. A new spectroscopic method, laser-induced breakdown spectroscopy (LIBS), provides rapid carbon analysis with little or no sample preparation time. LIBS is portable and can be used for carbon analysis in the field or even in situ, such as inside a soil borehole. Data from LIBS analyses can be used to monitor small changes in soil carbon at different times, a critical component in many global climate models and terrestrial carbon sequestration strategies. We present a comparison of dry combustion measurements with LIBS analyses using several agricultural and woodland soils. The LIBS data are highly reproducible, are not affected by differences in soil types, and there is a strong correlation with dry combustion measurements. We further show the results of carbon measurements in different parts of a pinon-juniper woodland in semiarid New Mexico. Our results highlight soil carbon concentrations under tree canopies, in intercanopy spaces, and in small-scale catchments within the woodland. The latter measurements show an important, but until use of LIBS, overlooked store of carbon in semiarid areas. The use of LIBS data shows many benefits including reducing the uncertainty inherent in measurements of soil carbon in different environments, the speed with which LIBS analyses can be obtained (minutes) compared to dry combustion (days), and in modeling the global cycling of carbon in terrestrial settings. LIBS analyses make possible the estimation of landscape-scale carbon inventories that require large sample numbers as well as detailed quantification of carbon concentrations in soils under canopies or

  17. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes

    NASA Astrophysics Data System (ADS)

    Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.

    2014-12-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence

  18. Snowpack regimes of the Western United States

    NASA Astrophysics Data System (ADS)

    Trujillo, Ernesto; Molotch, Noah P.

    2014-07-01

    Snow accumulation and melt patterns play a significant role in the water, energy, carbon, and nutrient cycles in the montane environments of the Western United States. Recent studies have illustrated that changes in the snow/rainfall apportionments and snow accumulation and melt patterns may occur as a consequence of changes in climate in the region. In order to understand how these changes may affect the snow regimes of the region, the current characteristics of the snow accumulation and melt patterns must be identified. Here we characterize the snow water equivalent (SWE) curve formed by the daily SWE values at 766 snow pillow stations in the Western United States, focusing on several metrics of the yearly SWE curves and the relationships between the different metrics. The metrics are the initial snow accumulation and snow disappearance dates, the peak snow accumulation and date of peak, the length of the snow accumulation season, the length of the snowmelt season, and the snow accumulation and snowmelt slopes. Three snow regimes emerge from these results: a maritime, an intermountain, and a continental regime. The maritime regime is characterized by higher maximum snow accumulations reaching 300 cm and shorter accumulation periods of less than 220 days. Conversely, the continental regime is characterized by lower maximum accumulations below 200 cm and longer accumulation periods reaching over 260 days. The intermountain regime lies in between. The regions that show the characteristics of the maritime regime include the Cascade Mountains, the Klamath Mountains, and the Sierra Nevada Mountains. The intermountain regime includes the Eastern Cascades slopes and foothills, the Blue Mountains, Northern and Central basins and ranges, the Columbia Mountains/Northern Rockies, the Idaho Batholith, and the Canadian Rockies. Lastly, the continental regime includes the Middle and Southern Rockies, and the Wasatch and Uinta Mountains. The implications of snow regime

  19. Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results

    NASA Technical Reports Server (NTRS)

    Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.

    1993-01-01

    This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.

  20. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes.

    PubMed

    Brandstätter, Christian; Laner, David; Fellner, Johann

    2015-06-01

    Landfill aeration has been proven to accelerate the degradation of organic matter in landfills in comparison to anaerobic decomposition. The present study aims to evaluate pools of organic matter decomposing under aerobic and anaerobic conditions using landfill simulation reactors (LSR) filled with 40 year old waste from a former MSW landfill. The LSR were operated for 27 months, whereby the waste in one pair was kept under anaerobic conditions and the four other LSRs were aerated. Two of the aerated LSR were run with leachate recirculation and water addition and two without. The organic carbon in the solid waste was characterized at the beginning and at the end of the experiments and major carbon flows (e.g. TOC in leachate, gaseous CO2 and CH4) were monitored during operation. After the termination of the experiments, the waste from the anaerobic LSRs exhibited a long-term gas production potential of more than 20 NL kg(-1) dry waste, which corresponded to the mineralization of around 12% of the initial TOC (67 g kg(-1) dry waste). Compared to that, aeration led to threefold decrease in TOC (32-36% of the initial TOC were mineralized), without apparent differences in carbon discharge between the aerobic set ups with and without water addition. Based on the investigation of the carbon pools it could be demonstrated that a bit more than 10% of the initially present organic carbon was transformed into more recalcitrant forms, presumably due to the formation of humic substances. The source of anaerobic degradation could be identified mainly as cellulose which played a minor role during aerobic degradation in the experiment. PMID:25816770

  1. Spatial distribution of seafloor bio-geological and geochemical processes as proxies of fluid flux regime and evolution of a carbonate/hydrates mound, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Macelloni, Leonardo; Brunner, Charlotte A.; Caruso, Simona; Lutken, Carol B.; D'Emidio, Marco; Lapham, Laura L.

    2013-04-01

    Woolsey Mound, a carbonate/hydrate complex of cold seeps, vents, and seafloor pockmarks in Mississippi Canyon Block 118, is the site of the Gulf of Mexico Hydrates Research Consortium's (GOMHRC) multi-sensor, multi-disciplinary, permanent seafloor observatory. In preparation for installing the observatory, the site has been studied through geophysical, biological, geological, and geochemical surveys. By integrating high-resolution, swath bathymetry, acoustic imagery, seafloor video, and shallow geological samples in a morpho-bio-geological model, we have identified a complex mound structure consisting of three main crater complexes: southeast, northwest, and southwest. Each crater complex is associated with a distinct fault. The crater complexes exhibit differences in morphology, bathymetric relief, exposed hydrates, fluid venting, sediment accumulation rates, sediment diagenesis, and biological community patterns. Spatial distribution of these attributes suggests that the complexes represent three different fluid flux regimes: the southeast complex seems to be an extinct or quiescent vent; the northwest complex exhibits young, vigorous activity; and the southwest complex is a mature, fully open vent. Geochemical evidence from pore-water gradients corroborates this model suggesting that upward fluid flux waxes and wanes over time and that microbial activity is sensitive to such change. Sulfate and methane concentrations show that microbial activity is patchy in distribution and is typically higher within the northwest and southwest complexes, but is diminished significantly over the southeast complex. Biological community composition corroborates the presence of distinct conditions at the three crater complexes. The fact that three different fluid flux regimes coexist within a single mound complex confirms the dynamic nature of the plumbing system that discharges gases into bottom water. Furthermore, the spatial distribution of bio-geological processes appears to

  2. Hydrogen storage in carbon materials—preliminary results

    NASA Astrophysics Data System (ADS)

    Jörissen, Ludwig; Klos, Holger; Lamp, Peter; Reichenauer, Gudrun; Trapp, Victor

    1998-08-01

    Recent developments aiming at the accelerated commercialization of fuel cells for automotive applications have triggered an intensive research on fuel storage concepts for fuel cell cars. The fuel cell technology currently lacks technically and economically viable hydrogen storage technologies. On-board reforming of gasoline or methanol into hydrogen can only be regarded as an intermediate solution due to the inherently poor energy efficiency of such processes. Hydrogen storage in carbon nanofibers may lead to an efficient solution to the above described problems.

  3. Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Waldmann, Nicolas; Starinsky, Abraham; Stein, Mordechai

    2007-09-01

    Lakes Samra, Lisan and the Dead Sea occupied the Dead Sea basin during the Last Interglacial (˜140-75 ka BP), last glacial (˜70-14 ka BP) and Holocene periods, respectively. The age of Lake Lisan and Samra was determined by U-Th dating of primary aragonites comprising parts of the lacustrine sedimentary sequences. The lakes have periodically deposited sequences of layered calcitic marls (Lake Samra) or laminated primary aragonite (Lake Lisan). The deposition of aragonite as the primary carbonate phase reflects the contribution of the incoming freshwater (loaded with bi-carbonate) and high Mg-, Ca-chloride brine that originated from the subsurface vicinity of the Dead Sea basin. Deposition of calcitic marls suggests a minor effect of the brines. The Ca-chloride subsurface brine has been migrating in and out of the wall rocks of the Dead Sea basin, reflecting the regional hydrological conditions. During most of the last glacial period and during the late Holocene, sufficient precipitation above the Judea Mountains pushed the subsurface Ca-chloride brines into the lakes causing the deposition of aragonite. During the Last Interglacial period the rain that precipitated above the Judea Mountains was insufficient to induce brine flow toward Lake Samra. It appears that sporadic floods provided calcium, bicarbonate and detritus to produce the Samra calcitic marls. Travertines deposited at the Samra-Lisan boundary indicate the early stage in the resumption of groundwater (springs) activity that led to the resurgence of Ca-chloride brine and rise of Lake Lisan. Similar variations in the regional rain precipitation and hydrological activity probably characterized the long-term geochemical evolution of Pleistocene lacustrine water-bodies in the Dead Sea basin, enabling the use of the carbonates as paleo-hydrological monitors.

  4. Results of the "carbon conference" international aerosol carbon round robin test stage I

    NASA Astrophysics Data System (ADS)

    Schmid, Heidrun; Laskus, Lothar; Jürgen Abraham, Hans; Baltensperger, Urs; Lavanchy, Vincent; Bizjak, Mirko; Burba, Peter; Cachier, Helene; Crow, Dale; Chow, Judith; Gnauk, Thomas; Even, Arja; ten Brink, H. M.; Giesen, Klaus-Peter; Hitzenberger, Regina; Hueglin, Christoph; Maenhaut, Willy; Pio, Casimiro; Carvalho, Abel; Putaud, Jean-Philippe; Toom-Sauntry, Desiree; Puxbaum, Hans

    An international round robin test on the analysis of carbonaceous aerosols on quartz fiber filters sampled at an urban site was organized by the Vienna University of Technology. Seventeen laboratories participated using nine different thermal and optical methods. For the analysis of total carbon (TC), a good agreement of the values obtained by all laboratories was found (7 and 9% r.s.d.) with only two outliers in the complete data set. In contrast the results of the determination of elemental carbon (EC) in two not pre-extracted samples were highly variable ranging over more than one order of magnitude and the relative standard deviations (r.s.d.) of the means were 36.6 and 45.5%. The laboratories that obtained similar results by using methods which reduce the charring artifact were put together to a new data set in order to approach a "real EC" value. The new data set consisting of the results of 10 laboratories using seven different methods showed 16 and 24% lower averages and r.s.d. of 14 and 24% for the two not pre-extracted samples. Taking the current filters as "equivalents" for urban aerosol samples we conclude that the following methods can be used for the analysis of EC in carbonaceous aerosols: thermal methods with an optical feature to correct for charring during pyrolysis, two-step thermal procedures reducing charring during pyrolysis, the VDI 2465/1 method (removal of OC by solvent extraction and thermodesorption in nitrogen) and the VDI 2465/2 method (combustion of OC and EC at different temperatures) with an additional pre-extraction with a dimethyl formamide (DMF)/toluene mixture. Only thermal methods without any correction for charring during pyrolysis and the VDI 2465/2 method were outside the range of twice the standard deviation of the new data set. For a filter sample pre-extracted with the DMF/toluene mixture the average and r.s.d. from all laboratories (20.7 μgC; 24.4% r.s.d.) was very similar as for the laboratory set reduced to 10

  5. Regime change?

    SciTech Connect

    Pilat, Joseph F.; Budlong-Sylvester, K. W.

    2004-01-01

    Following the 1998 nuclear tests in South Asia and later reinforced by revelations about North Korean and Iraqi nuclear activities, there has been growing concern about increasing proliferation dangers. At the same time, the prospects of radiological/nuclear terrorism are seen to be rising - since 9/11, concern over a proliferation/terrorism nexus has never been higher. In the face of this growing danger, there are urgent calls for stronger measures to strengthen the current international nuclear nonproliferation regime, including recommendations to place civilian processing of weapon-useable material under multinational control. As well, there are calls for entirely new tools, including military options. As proliferation and terrorism concerns grow, the regime is under pressure and there is a temptation to consider fundamental changes to the regime. In this context, this paper will address the following: Do we need to change the regime centered on the Treaty on the Nonproliferation of Nuclear Weapons (NPT) and the International Atomic Energy Agency (IAEA)? What improvements could ensure it will be the foundation for the proliferation resistance and physical protection needed if nuclear power grows? What will make it a viable centerpiece of future nonproliferation and counterterrorism approaches?

  6. Brown Carbon: Results From Ground and Airborne Studies

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Forrister, H.; Liu, J.; Nenes, A.

    2015-12-01

    Brown carbon (BrC) is directly measured with high sensitivity by isolating it from black carbon in aerosol extracts and using long path wave-guide spectrophotometry. Ambient measurements by this approach show that BrC is pervasive and can be found in almost all locations, ranging from urban environments to remote continental sites and upper reaches of the free troposphere. Biomass burning appears to be the major source in many urban and rural locations, but other sources of incomplete combustion, such as vehicle emissions in urban environments also play a role. Secondary aerosols not associated with combustion sources may also contribute, but are likely of lesser importance. Studies of ambient wildfire smoke plumes show that BrC levels decrease as it ages, with a half-life of approximately 10 hours. However, a small fraction of the emitted BrC is stable and may account for much of the BrC observed throughout the atmosphere due to widely dispersed and ubiquitous smoke. A radiative transfer model indicates that this background BrC reduced US continental TOA forcing by 20 percent. Human health studies point to similar chemical components linked to BrC (i.e., HULIS), of this same ubiquitous smoke, as a significant source of adverse cardiorespiratory effects. This talk will summarize findings on BrC sources, transformations and estimates of environmental effects based on bulk measurements.

  7. Compressible magnetic Rayleigh-Taylor instability in stratified plasmas: Comparison of analytical and numerical results in the linear regime

    SciTech Connect

    Liberatore, S.; Jaouen, S.; Tabakhoff, E.; Canaud, B.

    2009-04-15

    Magnetic Rayleigh-Taylor instability is addressed in compressible hydrostatic media. A full model is presented and compared to numerical results from a linear perturbation code. A perfect agreement between both approaches is obtained in a wide range of parameters. Compressibility effects are examined and substantial deviations from classical Chandrasekhar growth rates are obtained and confirmed by the model and the numerical calculations.

  8. Catastrophic regime shifts in coral communities exposed to physical disturbances: simulation results from object-oriented 3-dimensional coral reef model.

    PubMed

    Tam, Tze-wai; Ang, Put O

    2009-07-21

    A 3-dimensional individual-based model, the ReefModel, was developed to simulate the dynamical structure of coral reef community using object-oriented techniques. Interactions among functional groups of reef organisms were simulated in the model. The behaviours of these organisms were described with simple mechanistic rules that were derived from their general behaviours (e.g. growing habits, competitive mechanisms, response to physical disturbance) observed in natural coral reef communities. The model was implemented to explore the effects of physical disturbance on the dynamical structure of a 3-coral community that was characterized with three functional coral groups: tabular coral, foliaceous coral and massive coral. Simulation results suggest that (i) the integration of physical disturbance and differential responses (disturbance sensitivity and growing habit) of corals plays an important role in structuring coral communities; (ii) diversity of coral communities can be maximal under intermediate level of acute physical disturbance; (iii) multimodality exists in the final states and dynamic regimes of individual coral group as well as coral community structure, which results from the influence of small random spatial events occurring during the interactions among the corals in the community, under acute and repeated physical disturbances. These results suggest that alternative stable states and catastrophic regime shifts may exist in a coral community under unstable physical environment. PMID:19306887

  9. A Comparison of Symmetric and Asymmetric Warming Regimes on the Soil Carbon and Nitrogen Dynamics of Grassland Ecosystems

    NASA Astrophysics Data System (ADS)

    Wig, J.; Lajtha, K.; Gregg, J. W.

    2010-12-01

    Global mean temperatures have increased 0.10 to 0.16°C per decade over the last 50 years, and continued increases in atmospheric greenhouse gas concentrations are expected to cause temperatures to increase by more than 3°C by the middle of the 21st century. While many warming experiments have been performed, most have determined impacts of equal increases in day and night temperatures on production, diversity, or ecosystem carbon dynamics. However, there have been faster increases in daily minimum temperature (Tmin) than daily maximum temperature (Tmax), a phenomenon commonly referred to as asymmetric warming. Photosynthesis and respiration are differentially affected by altered day and night temperatures, and thus the ecological effects of alterations in Tmin could differ from alterations in Tmax. Therefore, it is imperative that we expand our understanding of potential impacts of global warming to include the effects of asymmetrically elevated temperature profiles. To examine the affects of asymmetric vs. symmetric warming, we used Terracosm chambers with planted grassland communities native to Oregon’s Willamette Valley. The warmed chambers are subjected to an average increase of +3.5°C/day, with asymmetrically warmed chambers having an increase of dawn Tmin of +5°C, and an increase of midday Tmax of +2°C; and with symmetrically warmed chambers having a constant increase of +3.5°C. The goals of this project are to assess (1) whether patterns of increased NPP, changes in species composition and altered C, H2O and nutrient cycles shown for symmetric warming are similar in the asymmetric profiles, or whether entirely different patterns emerge unique to the asymmetrically elevated temperature treatments, and (2) whether the impacts of asymmetric and symmetric warming differ for soil C stabilization and destabilization processes. Our data indicate that whole ecosystem carbon balance was negative, with higher respiration than photosynthesis, for both symmetric

  10. Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model

    SciTech Connect

    Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

    2004-04-01

    Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

  11. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow.

    PubMed

    Majumder, Mainak; Chopra, Nitin; Hinds, Bruce J

    2011-05-24

    Transport phenomena through the hollow conduits of carbon nanotubes (CNTs) are subjects of intense theoretical and experimental research. We have studied molecular transport over the large spectrum of ionic diffusion to pressure-driven gaseous and liquid flow. Plasma oxidation during the fabrication of the membrane introduces carboxylic acid groups at the CNT entrance, which provides electrostatic "gatekeeper" effects on ionic transport. Diffusive transport of ions of different charge and size through the core of the CNT is close to bulk diffusion expectations and allows estimation of the number of open pores or porosity of the membrane. Flux of gases such as N(2), CO(2), Ar, H(2), and CH(4) scaled inversely with their molecular weight by an exponent of 0.4, close to expected kinetic theory velocity expectations. However, the magnitude of the fluxes was ∼15- to 30-fold higher than predicted from Knudsen diffusion kinetics and consistent with specular momentum reflection inside smooth pores. Polar liquids such as water, ethanol, and isopropyl alcohol and nonpolar liquids such as hexane and decane were dramatically enhanced, with water flow over 4 orders of magnitude larger than "no-slip" hydrodynamic flow predictions. As direct experimental proof for the mechanism of near perfect slip conditions within CNT cores, a stepwise hydrophilic functionalization of CNT membranes from as-produced, tip-functionalized, and core-functionalized was performed. Pressure-driven water flow through the membrane was reduced from 5 × 10(4) to 2 × 10(2) to less than a factor of 5 enhancement over conventional Newtonian flow, while retaining nearly the same pore area. PMID:21500837

  12. National assessment of geologic carbon dioxide storage resources: results

    USGS Publications Warehouse

    U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery

  13. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    SciTech Connect

    Thornton, Peter E; Doney, Scott C.; Lindsay, Keith; Moore, Jefferson Keith; Mahowald, Natalie; Randerson, James T; Fung, Inez; Lamarque, Jean-Francois H; Feddema, Johan J.

    2009-01-01

    Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO{sub 2} fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO{sub 2} predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO{sub 2} emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO{sub 2} concentration and

  14. An Integrated Spatially Dynamic Disturbance and Forest Soil Carbon Model: Preliminary Results from Willow Creek Experimental Forest

    NASA Astrophysics Data System (ADS)

    Scheller, R. M.; Hua, D.; Bolstad, P. V.

    2008-12-01

    Total forest carbon (C) storage is determined by forest succession, multiple interacting disturbances, climate and the edaphic properties of a site or region, including soil texture and depth. How these complex processes interact will determine forest carbon dynamics at landscape and regional scales. We have developed a new succession extension for the LANDIS-II forest landscape simulation model that incorporates the belowground soil C dynamics of the Century soil model. This extension simulates three primary soil organic matter (SOM) pools (fast, slow, passive), litter dynamics, and nitrogen (N) feedbacks to overstory production. The extension was validated against data from the Willow Creek experimental forest in Wisconsin, USA. We subsequently initialized the full model to simulate forest dynamics of 10,000 ha of the surrounding forest landscape. We simulated a representative harvest regime and a historic wind throw regime (50 year wind rotation period, including light, moderate, and extreme events), two common disturbances in mesic forests of the Lake States. We also simulated forest change and total C storage assuming no atmospheric N deposition and N deposition equivalent to 2008 rates. Our results indicate a strong feedback from harvesting to litter C and the fast and slow SOM pools. The passive SOM pool was not significantly altered. Wind disturbance had a negligible effect on all pools. Simulations without N deposition significantly underestimated contemporary forest productivity and the system was more sensitive to disturbances when N deposition was excluded. In conclusion, we have developed a robust model of above and belowground C and N cycling that can readily plug into an existing forest modeling framework to simulate landscape and regional scale forest dynamics and the interactions among forest disturbances, climate change, and soil processes.

  15. Carbon savings resulting from the cooling effect of green areas: a case study in Beijing.

    PubMed

    Lin, Wenqi; Wu, Tinghai; Zhang, Chengguo; Yu, Ting

    2011-01-01

    Green areas cool the climate of a city, reduce the energy consumption caused by the urban heat island (UHI) effect, and bring along carbon savings. However, the calculation of carbon savings due to the cooling effect of green areas is still not well understood. We have used a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Beijing, to identify the cooled areas, compute the possible energy used to maintain the temperature differences between cooled areas and their surrounding heated areas, and calculate the carbon savings owing to the avoidance of energy use. Results show that a total amount of 14315.37 tons carbon savings was achieved in the study area and the amount was related to the biomass, the size and the shape of green areas. These results demonstrate the importance of carbon savings resulting from green areas' cooling effect. PMID:21444136

  16. 78 FR 21107 - Circular Welded Carbon Steel Pipes and Tubes from Turkey: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes from Turkey: Preliminary Results... carbon steel pipes and tubes from Turkey (pipes and tubes from Turkey) for the period of review (POR) of..., of any wall thickness (pipe and tube) from Turkey. These products are currently provided for...

  17. On the heat capacity of elements in WMD regime

    NASA Astrophysics Data System (ADS)

    Hamel, Sebatien

    2014-03-01

    Once thought to get simpler with increasing pressure, elemental systems have been discovered to exhibit complex structures and multiple phases at high pressure. For carbon, QMD/PIMC simulations have been performed and the results are guiding alternative modelling methodologies for constructing a carbon equation-of-state covering the warm dense matter regime. One of the main results of our new QMD/PIMC carbon equation of state is that the decay of the ion-thermal specific heat with temperature is much faster than previously expected. An important question is whether this is only found in carbon and not other element. In this presentation, based on QMD calculations for several elements, we explore trends in the transition from condensed matter to warm dense matter regime.

  18. Stepwise drowning of the urgonian carbonate platform and the sedimentary regime during the Mid-Cretaceous environmental crisis: new evidence from the Helvetic Alps

    NASA Astrophysics Data System (ADS)

    Linder, P.; Weissert, H.; Funk, H.; Föllmi, K. B.

    2003-04-01

    In the region of Anzeindaz (Ct. Vaud, Switzerland) the sedimentary succession of the so-called "Urgonian" of the Schrattenkalk Formation (late Barremian to early Aptian in age) and of the Garschella Formation (early Aptian to late Cenomanian in age) is well developed. These outcrops in the helvetic Morcles nappe are particularly appropriate to study the drowning events that lead to the disappearance of the urgonian carbonate platform and the subsequent development towards a sedimentary regime of condensation and authigenesis. Cavities with infillings of Garschella Formation sediments penetrating the Schrattenkalk limestone up to 20 meters deep are interpreted as karstic erosional cavities and/or neptunian dikes. The most interesting finding was the special way in which the drowning of the urgonian carbonate platform is documented. At one outcrop (La Corde) thin relics of a bed interpreted as the Upper Orbitolina Bed seem to be integrated in the Garschella Formation since it separates relics of at least two phosphoritic beds, probably the Luitere Bed but also an older bed that was not described by Föllmi and Ouwehand (1987). In fact a diploma student at the University of Neuchâtel, François Gainon (2001) just recently rediscovered and correctly interpreted a similar but less condensed succession in the nearby Rawil region that was first described (but misinterpreted) by Schaub (1936). Gainon named this older phosphoritic horizon of the Rawil region "Plaine Morte Bed" and he was able to date it with an ammonite of the earliest Aptian Weissi/Tuarkyricus Zones. In both the Rawil and Anzeindaz regions the whole ensemble is deposited over an erosive unconformity cutting off the Schrattenkalk limestone. The sedimentary succession of the Garschella Formation in the Anzeindaz region contains equivalents of nearly all beds described and defined in the type outcrops of eastern Switzerland and Austria (Föllmi &Ouwehand 1987). The study of these sediments revealed new

  19. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico

    PubMed Central

    Návar-Chaidez, Jose de Jesus

    2008-01-01

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem. For the period of 1980–1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 ± 0.06 Tg, root biomass averages 0.17 ± 0.03 Tg, and soil organic carbon averages 1.80 ± 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices. PMID:18826617

  20. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    SciTech Connect

    Weiwei, Zhang; Hu, Renming

    2009-12-18

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  1. Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: Simulating historical global burned area and fire regime

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; Archibald, S.; Poulter, B.; Hao, W. M.; Hantson, S.; Mouillot, F.; Friedlingstein, P.; Maignan, F.; Viovy, N.

    2014-04-01

    Fire is an important global ecological process that determines the distribution of biomes, with consequences for carbon, water, and energy budgets. The modelling of fire is critical for understanding its role in both historical and future changes in terrestrial ecosystems and the climate system. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate the historical burned area and the fire regime for the 20th century. For 2001-2006, the simulated global spatial extent of fire occurrence agrees well with that given by the satellite-derived burned area datasets (L3JRC, GLOBCARBON, GFED3.1) and captures 78-92% of global total burned area depending on which dataset is used for comparison. The simulated global annual burned area is 329 Mha yr-1, which falls within the range of 287-384 Mha yr-1 given by the three global observation datasets and is close to the 344 Mha yr-1 given by GFED3.1 data when crop fires are excluded. The simulated long-term trends of burned area agree best with the observation data in regions where fire is mainly driven by the climate variation, such as boreal Russia (1920-2009), and the US state of Alaska and Canada (1950-2009). At the global scale, the simulated decadal fire trend over the 20th century is in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is systematically underestimated by the model compared with the fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in boreal North America and southern Africa indicate that both the number and the size of big fires are underestimated, which could be related with too low fire spread rate (in the case of static

  2. REgional Carbon Cycle Assessment and Processes: Results and Data Legacy (Invited)

    NASA Astrophysics Data System (ADS)

    Canadell, J.; Ciais, P.

    2013-12-01

    The Global Carbon Project with the involvement of over 150 contributing scientists has finalized the largest and most comprehensive assessment of regional carbon budgets, land and oceans, ever undertaken: the REgional Carbon Cycle Assessment and Processes (RECCAP; http:// www.globalcarbonproject.org/reccap). The objective of RECCAP was to establish the mean carbon balance of 10 land regions (Africa, the Arctic tundra, Australia, Europe, Russia, East Asia, South Asia, Southeast Asia, Central and South America, and North America) and 4 major ocean basins (Atlantic and Arctic, Indian, Pacific, and Southern oceans) for the period 1990-2009. The fundamental tenet of RECCAP was to establish carbon budgets in each region by comparing and reconciling multiple bottom-up flux estimates with top-down estimates. Bottom-up flux approaches include estimates from ensembles of process-based land and ocean models, surface partial pressure of CO2 (pCO2), forest inventories, eddy covariance measurements, fire modeling, riverine export, and wood harvest among others, while top-down estimates relied on model ensembles of atmospheric CO2 and CH4 inversions. In this talk we'll present an overview of results of the various regions, compare with the independently developed global carbon budget, and emphasize major regional differences and data gaps. An important legacy of RECCAP are a number of updated and new databases including an ensemble of 9 Global Dynamic Vegetation Models (TRENDY), 4 Ocean biogeochemical models, and 10 atmospheric CO2 inversions for the period 1990-2009.

  3. Carbon dioxide injection and resultant alteration of Weber Sandstone (Pennsylvanian-Permian), Rangely field, Colorado

    SciTech Connect

    Bowker, K.A.; Shuler, P.J.

    1989-03-01

    Geologic interpretations made during the current EOR (enhanced oil recovery) project at Rangely field (Rio Blanco County, Colorado), have made interesting connections between alteration of reservoir mineralogy and texture, changes in produced water composition, and increased production problems. Carbon dioxide is being injected into the Weber Sandstone in portions of Rangely field. The carbon dioxide injection is part of a very successful tertiary recovery project initiated in late 1986. The bottomhole pH of Weber brine has decreased from approximately 7.5 to 4.5 with the addition of CO/sub 2/. Changes in the chemistry of produced water are associated with alteration of reservoir mineralogy. The CO/sub 2/ flood has caused a substantial increase in the concentrations of iron, calcium, magnesium, and strontium in the produced brine. The amount of increase is directly related to the volume of CO/sub 2/ produced in each well. This increase resulted from the dissolution of carbonate cements, authigenic clays, and detrital feldspars. An increase in the calculated scaling potential of the produced water is a result of this change in chemistry. Hypotheses based on the water-chemistry changes were confirmed in pressure-cell and core-flood experiments. Core-flood experiments also indicate no net change in permeability following carbon dioxide injection: the increase in permeability due to the dissolution of carbonate cements is being offset by a decrease caused by migratory clays plugging pore throats. The clays, which coat the authigenic carbonates, are liberated when the carbonates are dissolved.

  4. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    SciTech Connect

    Dwyer, Brian P.

    2013-03-01

    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers' objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers' test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  5. Results of JET operation with continuous carbon and beryllium X-point target plates

    NASA Astrophysics Data System (ADS)

    Lowry, C. G.; Ady, W. N.; Campbell, D. J.; Carman, P.; Clement, S.; Deksnis, E. B.; Gondhalekar, A.; Harbour, P. J.; Horton, L.; Janeschitz, G.; Lesourd, M.; Lingertat, J.; Pick, M. A.; Saibene, G.; Summers, D. D. R.; Thomas, P. R.

    1992-12-01

    The 1991/92 JET experimental campaign assessed the performance of three different toroidally continuous X-point target plates. The main differences were in the tile material, beryllium and carbon, and the presence of exposed edges. These three configurations have been tested up to power levels in excess of 22 MW and with gas fuelling at the X-point and in the midplane. With the beryllium a radiating divertor was achieved by puffing deuterium into the X-point region, while rapid ELMs resulted from deuterium puffing on the carbon target. The investigation into the importance of small edges, up to 1.5 mm, yielded some interesting results. Although the surface temperature rise was substantially reduced by eliminating exposed tile edges, the onset of the carbon bloom was not delayed by a similar amount. In this paper a model is presented which can explain this and other features of the bloom.

  6. Organic and Elemental Carbon Filter Sets: Preparation Method and Interlaboratory Results

    PubMed Central

    Chai, Ming; Birch, M. Eileen; Deye, Greg

    2012-01-01

    Carbonaceous aerosols play an important role in climate, visibility, air quality, and human health effects, and they have been routinely monitored in workplace and environmental settings. Different thermal analysis methods have been applied to determine the carbon content of carbonaceous aerosols. Good agreement between results for total carbon (TC) generally has been found, but the organic and elemental carbon (OC and EC) fractions determined by different methods often disagree. Measurement uncertainty is mainly due to pyrolysis and charring of OC sample components. Lack of reference materials has impeded progress on method standardization and understanding method biases. A relatively simple method for generating matched filter sets having known OC–EC contents is reported. After generation and analysis of each set to confirm agreement between filters, the filter sets were distributed to six laboratories for an interlaboratory comparison. Analytical results indicate a uniform carbon distribution for the filter sets and good agreement between the participating laboratories. Relative standard deviations (RSDs) for mean TC (OC + EC), OC, and EC results for seven laboratories were <10, 11, and 12% (respectively). Except for one EC result (RSD = 16%), RSDs reported by individual laboratories for TC, OC, and EC were <12%. The method of filter generation is generally applicable and reproducible. Depending on the application, different filter loadings and types of OC materials can be employed. Matched filter sets prepared by the described approach can be used for determining the accuracy of OC–EC methods and thereby contribute to method standardization. PMID:22459320

  7. 75 FR 44766 - Certain Welded Carbon Steel Standard Pipe from Turkey: Final Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...: Certain Welded Carbon Steel Pipe and Tube Products From Turkey, 51 FR 7984 (March 7, 1986). On April 1...: Preliminary Results of Countervailing Duty Administrative Review, 75 FR 16439 (April 1, 2010) (Preliminary... Countervailing Duty Administrative Review, In Part, 74 FR 47921(September 18, 2009). This administrative...

  8. Patterns and controls of winter carbon dioxide emissions and microbial biomass C and N, in two arctic ecosystem types under varying snow regimes

    NASA Astrophysics Data System (ADS)

    Larsen, K. S.

    2003-04-01

    In a manipulative study, snow fences were put up in sub arctic birch forest and dry heath areas near Abisko, Northern Sweden, increasing the natural snow-cover by 5-35 cm. In early March, CO2 fluxes were 77% and 157% higher in the snow-fenced areas (birch and heath, respectively) and in the snowmelt period from April to May there was a tendency to higher effluxes of CO2 in patches with increased snow-cover. This indicates that small increases in winter snowfall have the potential to increase the CO2 loss substantially from these ecosystems during the off-season. CO2 fluxes integrated over 22 days in April-May at the heath site constituted 8% of growing season net primary production at a nearby heath site, showing that a substantial part of annual CO2 loss may take place during the early spring. In a second study, measurements of CO2 emissions from birch and heath ecosystems situated across a natural snow-cover gradient were performed. The results of this study corroborates with the findings in the snow fence study, showing consistently higher fluxes from sites with higher snow depths. The microbial biomass N and P were determined in both studies and were consistently high in the sub nivean soils compared to summer estimates, indicating that microbes provide a significant buffer limiting the export of mineral nutrients in the snowmelt period. A significant decrease in microbial biomass was observed as plots became snow free at the heath site. Although such decreases have been suggested to be caused by freeze-thaw cycles, this cannot fully explain the observation in this study. The first spring thaw and the transition from constant, sub-zero temperatures and a constant water regime to more variable conditions, and possibly increased grazing by nematodes and protozoans, may also play and important role controlling the microbial population during and after snowmelt.

  9. Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-01-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  10. Interactive effects of nitrogen deposition and insect herbivory on carbon and nitrogen dynamics: Results from CENTURY

    NASA Astrophysics Data System (ADS)

    Throop, H. L.; Holland, E. A.; Parton, W. J.; Ojima, D. S.; Keough, C.

    2002-12-01

    The direct effects of nitrogen deposition on nutrient availability in ecosystems have been well studied, however, little is known about the indirect effects of nitrogen deposition on insect herbivory and subsequent changes to ecosystem processes. Numerous empirical studies have demonstrated that host plant nitrogen concentration can strongly affect individual insect consumption rates and population dynamics. We used the CENTURY ecosystem model to explore how interactions between nitrogen deposition and insect herbivory might affect plant production and the pools and fluxes of carbon and nitrogen in an old field community. We modified the preexisting CENTURY mammalian grazing functions to reflect patterns of insect herbivory. Vegetative tissue loss to herbivores was modeled as a dynamic function based on the carbon to nitrogen ratio of aboveground vegetation. Parameterization of the plant response to nitrogen and herbivory was based on field data collected on Ambrosia artemisiifolia (common ragweed, Asteraceae). The modeled response to nitrogen deposition included a strong increase in plant production, decreased plant C:N ratios, and increased soil organic carbon pools. Insect herbivory alone generally caused depressed aboveground production, decreased soil organic carbon pools, and decreased nitrogen mineralization rates. These relationships broke down, however, under moderate nitrogen deposition loads (over 30 kg N ha-1 yr-1) in simulations where insect herbivory increased in response to declining plant C:N. In these cases, herbivory acted to depress the positive influence of nitrogen deposition on carbon storage in soil and vegetative pools and caused strong increases in nitrogen mineralization rates. The results of these simulations suggest that herbivory may play an increasingly important role in affecting ecosystem processes under conditions of high nitrogen deposition. Including effects of herbivory in ecosystem analyses, particularly in systems where rates

  11. Carbon and Water Flux Observations from AmeriFlux and Fluxnet: Some Early Results

    NASA Astrophysics Data System (ADS)

    Law, B. E.

    2001-12-01

    Flux networks provide a means for scientists to make common measurements of carbon, water, and energy exchange, to share advancements in methods, and synthesize results across the network. AmeriFlux objectives are to: Determine how environmental factors and climate regulate ecosystem CO2 and H2O exchange over the short- and long-term, evaluate impacts of anthropogenic factors, and provide data and new understanding for incorporation into models. AmeriFlux is part of the larger international network, Fluxnet. Among Fluxnet sites, we investigated seasonal and annual CO2 and water vapor exchange, and relations with environmental variables to elucidate generalities within and among biomes. The data showed a strong linkage between carbon gain and water loss, with the highest water-use efficiency values for grasslands, and lowest values for tundra. Ecosystem respiration was only weakly correlated with mean annual temperature across biomes, in spite of sensitivity within site over shorter temporal scales. Mean annual temperature and site water balanced explained much of the variation in gross photosynthesis, whereby water availability limits LAI over the long-term, and inter-annual climate variability limits carbon uptake below the potential of the leaf area available for photosynthesis. We compared BIOME-BGC model results among AmeriFlux coniferous forests, and the model showed that variation in net ecosystem carbon exchange (NEE) is mostly a function of disturbance history, with important secondary effects from site climate, ecophysiology, and changing atmospheric CO2 and nitrogen deposition.

  12. 78 FR 71563 - Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... International Trade Administration Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final... administrative review of the antidumping duty order on certain circular welded carbon steel pipes and tubes from... Carbon Steel Pipes and Tubes From Taiwan: Preliminary Results of Antidumping Duty Administrative...

  13. Stable carbon isotope analysis of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in natural waters - Results from a worldwide proficiency test

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Verma, Mahendra P.; Carvalho, Matheus C.; Grassa, Fausto; Delgado Huertas, Antonio; Monvoisin, Gael; Barth, Johannes A. C.

    2014-05-01

    Stable carbon isotope ratios of dissolved inorganic (DIC) and organic carbon (DOC) are of particular interest in aquatic geochemistry. The precision for this kind of analysis is typically reported in the range of 0.1 to 0.5‰. To date, no published data attempted a comparison of δ13C measurements of DIC and DOC from for natural water samples among different laboratories. Five natural water sample types (lake water, seawater, two geothermal waters, and petroleum well water) were analyzed for their δ13C-DIC and δ13C-DOC values by 5 laboratories with isotope ratio mass spectrometry (IRMS) in an international proficiency test. Reported δ13C-DIC values for lake water and seawater showed fairly good agreement within a range of about 1‰ whereas geothermal and petroleum waters were characterized by much larger differences of up to 6.6‰ between laboratories. In contrast, δ13C-DOC values were only comparable for seawater and showed differences of 10 to 21‰ for all other samples. This study [1] indicates that scatter in δ13C-DIC isotope data can be in the range of several per mil for samples from extreme environments (geothermal waters) and may not yield reliable information with respect to dissolved carbon (petroleum wells). The analyses of lake water and seawater also revealed a larger than expected difference. Evaluation of analytical procedures of the participating laboratories indicated that the differences cannot be explained by analytical errors or different data normalization procedures and must be related to specific sample characteristics or secondary effects during sample storage and handling. Our results reveal the need for further research on sources of error and on method standardization. References [1] van Geldern, R., Verma, M.P., Carvalho, M.C., Grassa, F., Huertas, A.D., Monvoisin, G. and Barth, J.A.C. (2013): Stable carbon isotope analysis of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in natural waters - Results from a

  14. Preliminary results on estimating permeability characteristics of carbonate rocks using pore microstructures

    NASA Astrophysics Data System (ADS)

    Lee, M.; Keehm, Y.

    2013-12-01

    Direct numerical simulation on pore microstructures from X-ray microtomography is regarded as a good tool to determine and characterize the physical properties of rocks, especially for sandstone. When the same approach is considered for carbonate rocks, we face many difficulties mostly from the heterogeneous nature of carbonates. In this study, we report preliminary results on permeability estimation of carbonate rocks from X-ray tomographic pore microstructures. Since carbonate rocks have quite different types of pore geometry depending on depositional and diagenetic environments, we choose three rock samples with different porosity types: interparticle; vuggy/moldic; and fracture, and obtain high-resolution 3D pore microstructures using X-ray microtomography technique. From the original 3D pore geometry (typically 2,000^3 voxels), we choose various digital sub-blocks to determine local variation and length dependency, and calculate permeability using the Lattice-Boltzmann method. For the interparticle case, the calculated permeability values show very similar trends to clastic sediments, and we can determine a porosity-permeability relation for a given formation as we do with the Koneny-Carman relation. On the other hand, for vuggy or fracture cases, we cannot observe any significant dependence of permeability on porosity. Thus we focus more on the local variation and scale variation of permeability. We perform analyses on percolation probability; local porosity distribution; and direction/length/width of fractures. And we present preliminary conceptual models to determine permeability characteristics. Although the results are from a few limited samples and more detailed researches will be required, our approach will be helpful to estimate and characterize permeability of carbonate rocks, and to investigate scaling and representativeness issues. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and

  15. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.

    PubMed

    Rohrbach, Arno; Schmidt, Max W

    2011-04-14

    Very low seismic velocity anomalies in the Earth's mantle may reflect small amounts of melt present in the peridotite matrix, and the onset of melting in the Earth's upper mantle is likely to be triggered by the presence of small amounts of carbonate. Such carbonates stem from subducted oceanic lithosphere in part buried to depths below the 660-kilometre discontinuity and remixed into the mantle. Here we demonstrate that carbonate-induced melting may occur in deeply subducted lithosphere at near-adiabatic temperatures in the Earth's transition zone and lower mantle. We show experimentally that these carbonatite melts are unstable when infiltrating ambient mantle and are reduced to immobile diamond when recycled at depths greater than ∼250 kilometres, where mantle redox conditions are determined by the presence of an (Fe,Ni) metal phase. This 'redox freezing' process leads to diamond-enriched mantle domains in which the Fe(0), resulting from Fe(2+) disproportionation in perovskites and garnet, is consumed but the Fe(3+) preserved. When such carbon-enriched mantle heterogeneities become part of the upwelling mantle, diamond will inevitably react with the Fe(3+) leading to true carbonatite redox melting at ∼660 and ∼250 kilometres depth to form deep-seated melts in the Earth's mantle. PMID:21441908

  16. Physiological changes of the lichen Parmotrema tinctorum as result of carbon nanotubes exposition.

    PubMed

    Viana, Camila de O; Vaz, Raissa P; Cano, Abraham; Santos, Adelina P; Cançado, Luiz G; Ladeira, Luiz O; Junior, Ary Corrêa

    2015-10-01

    Carbon nanotubes (CNT) is one of the more abundant nanomaterial produced in the world. Therefore, it is desirable to access its effects in all environment compartments, in order to mitigate environmental distress. This study aims to verify the potential use of lichens - classical atmospheric pollution indicators - as biomonitors of carbon nanotubes aerosols. To examine cause-effect relationships, preserving environmental microclimatic parameters, the lichen Parmotrema tinctorum (Nyl.) Hale was transplanted to open top chambers where aerosols of CNT were daily added. Physiological parameters such as cell viability, photosynthetic efficiency, cell permeability as well as nanoparticle internalization were assessed. Carbon nanotubes exposure led to reduction on the cell viability of P. tinctorum. The treatment with 100µg/mL of MWCNT-COOH resulted in intracellular ion leakage, probably due to changes in membrane permeability. No alterations on photosynthetic efficiency were detected. Carbon nanotubes entrapment and internalization into the lichen thallus were observed. Short term exposition of CNT produced measurable physiological changes in P. tinctorum lichen. This suggests the possibility of use of lichens as models to assess the environmental impact (air related) of engineered nanomaterials. PMID:26057077

  17. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  18. OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON – TEST RESULTS

    SciTech Connect

    Nick Soelberg

    2007-05-01

    Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL “sodium bearing waste” (SBW), liquid “low activity waste” (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (“Tank 48H waste”) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

  19. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models

    PubMed Central

    Hamilton, Raymond F.; Xiang, Chengcheng; Li, Ming; Ka, Ibrahima; Yang, Feng; Ma, Dongling; Porter, Dale W.; Wu, Nianqiang; Holian, Andrij

    2014-01-01

    This study examined the consequences of surface carboxylation of multiwalled carbon nanotubes (MWCNT) on bioactivity. Since commercial raw MWCNT contain impurities that may affect their bioactivity, HCl refluxing was exploited to purify raw “as-received” MWCNT by removing the amorphous carbon layer on the MWCNT surface and reducing the metal impurities (e.g. Ni). The removal of amorphous carbon layer was confirmed by Raman spectroscopy and thermogravimetric analysis. Furthermore, the HCl-purified MWCNT provided more available reaction sites, leading to enhanced sidewall functionalization. The sidewall of HCl-purified MWCNT was further functionalized with the −COOH moiety by HNO3 oxidation. This process resulted in four distinct MWCNT: raw, purified, −COOH-terminated raw MWCNT, and −COOH-terminated purified MWCNT. Freshly isolated alveolar macrophages from C57Bl/6 mice were exposed to these nanomaterials to determine the effects of the surface chemistry on the bioactivity in terms of cell viability and inflammasome activation. Inflammasome activation was confirmed using inhibitors of cathepsin B and Caspase-1. Purification reduced the cell toxicity and inflammasome activation slightly compared to raw MWCNT. In contrast, functionalization of MWCNT with the −COOH group dramatically reduced the cytotoxicity and inflammasome activation. Similar results were seen using THP-1 cells supporting their potential use for high-throughput screening. This study demonstrated that the toxicity and bioactivity of MWCNT were diminished by removal of the Ni contamination and/or addition of −COOH groups to the sidewalls. PMID:23480196

  20. The anaerobic corrosion of carbon steel in alkaline media - Phase 2 results

    NASA Astrophysics Data System (ADS)

    Smart, N. R.; Rance, A. P.; Fennell, P. A. H.; Kursten, B.

    2013-07-01

    In the Belgian Supercontainer concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline porewater that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated porewater is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water.

  1. Early Results from the NASA Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Crisp, David; Eldering, Annmarie

    2015-04-01

    The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first satellite designed to collect the measurements needed to estimate the column-averaged carbon dioxide (CO2) dry air mole fraction, XCO2, with the sensitivity, accuracy, and resolution needed to characterize the CO2 sources and sinks on regional scales over the globe. OCO-2 was successfully launched from Vandenberg Air Force Base in California on July 2, 2014 and joined the 705-km Afternoon Constellation (A-Train) on August 3, 2014. The three-channel imaging grating spectrometer was then cooled to its operating temperatures and a comprehensive series of characterization and calibration activities were initiated. Since early October 2014, the observatory has been routinely collecting almost 1 million soundings over the sunlit hemisphere each day. Early cloud screening results indicate that 15-30% of these measurements may be sufficiently cloud free to yield precise estimates of XCO2. Initial deliveries of calibrated, geo-located OCO-2 spectra to the NASA Goddard Earth Science Data and Information Services Center (GES DISC) began on December 30, 2014. Preliminary estimates of XCO2 retrieved from these data are currently being validated against observations from the Total Carbon Column Observing Network (TCCON) and other standards. Routine deliveries XCO2 and other products, including surface pressure and chlorophyll fluorescence, to the GES DISC are expected to begin before the end of March, 2015. This presentation will summarize the status of the OCO-2 mission and the coverage, resolution, and accuracy of its early results.

  2. Scattering of sulfur ions by carbon: Classical-trajectory Monte Carlo results

    SciTech Connect

    Slabkowska, Katarzyna; Polasik, Marek; Janowicz, Maciej

    2003-01-01

    We analyze classically the scattering of sulfur ions by carbon using the classical-trajectory Monte Carlo method. It is assumed that the scatterer and scattered nuclei are coupled to each other as well as to all electrons, but there is no coupling between electrons themselves. To initialize the state of both atoms, quasiexact energies are used that are obtained from the Dirac-Fock method. Effective charges are used to partially take into account the intra-atomic interactions between electrons. We concentrate on the cross sections for production of vacancies in the K and L shells and capture of electrons to K, L, and M shells of the sulfur ions. The dependence of these cross sections on the energy of the projectile sulfur ions and on the initial charge states of these ions is analyzed. Our results will be helpful in the interpretation of x-ray spectra from highly ionized fast sulfur projectiles passing through a carbon foil.

  3. Basal insulin regime change from Lantus to Toujeo resulted in fewer hypoglycaemic episodes in a 28-year-old man with diabetes mellitus.

    PubMed

    Shields, Alexandra; Sankaranarayanan, Sailesh

    2016-01-01

    An active 28-year-old man with type 1 diabetes mellitus reported a reduced number of hypoglycaemic episodes following change in basal regime insulin glargine from U100 Lantus to U300 Toujeo. Consequently, an improved quality of life was also reported. Flash-based glucose monitoring was utilised to record 24-hour continuous glucose levels throughout two comparable 60-day periods before and after the change in regimen. Low blood glucose was most likely between 03:00 and 08:00. Nocturnal hypoglycaemic episodes (≤3.9 mmol/L) reduced by an average of 2.5 episodes per week. Severe hypoglycaemic episodes (≤2.9 mmol/L) reduced to an average of 0.4 per week, down from 1.5 per week. Nocturnal hypoglycaemic episodes reduced in frequency and severity. Furthermore, nocturnal hypoglycaemia episodes occurred in a more predictable time window. This was especially important in the reported reduction of impact on the patient's quality of life, as the episodes tended to be associated with anxiety and low mood. Patient education needed to facilitate this change was minimal, and benefits to the patient were great, including decreased sleep disturbances and reduced risk of associated anxiety symptoms. PMID:27307429

  4. An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures

    NASA Astrophysics Data System (ADS)

    Ball, S. C.; Hudson, S. L.; Thompsett, D.; Theobald, B.

    To meet automotive targets for fuel cell operation and allow higher temperature operation an understanding of the factors affecting carbon and platinum stability is critical. The stability of both carbons and carbon supported platinum and platinum/cobalt alloy catalysts was studied during 1.2 V versus RHE potentiostatic hold tests using carbon and catalyst coated electrodes in a three-chamber wet electrolyte cell at a range of temperatures. At 80 °C the wt% of carbon corroded increases with increasing BET area. Surface oxidation was followed electrochemically using the quinone/hydroquinone redox couple. Increasing temperature, time at 1.2 V and wt% platinum on the carbon increases surface oxidation. Although increasing temperature was shown to increase the extent of carbon corrosion, catalysing the carbon did not significantly change how much carbon was corroded. Platinum stability was investigated by electrochemical metal area loss (ECA). Platinum catalysts on commercial carbons lost more ECA with increasing temperature. A platinum/cobalt alloy on a low surface area carbon was demonstrated to be more stable to both carbon corrosion and metal area loss at temperatures up to 80 °C than platinum catalysts on commercial carbons, making this material an excellent candidate for higher temperature automotive operation.

  5. Reduction of FeO in smelting slags by solid carbon: Experimental results

    NASA Astrophysics Data System (ADS)

    Sarma, B.; Cramb, A. W.; Fruehan, R. J.

    1996-10-01

    The reduction of CaO-SiO2-Al2O3-FeO slags containing less than 10 wt pct FeO by solid carbonaceous materials such as graphite, coke, and coal char was investigated at reaction temperatures of 1400 °C to 1450 °C. The carbon monoxide evolution rate from the system was measured using stationary and rotating carbon rods, stationary horizontal carbon surfaces, and pinned stationary spheres as the reductants. The measured reaction rate ranged from 3.25 × 10-7 mol cm-2 s-1 at 2.1 pct FeO under static conditions to 3.6 × 10-6 mol cm-2 s-1 at 9.5 pct FeO for a rotating rod experiment. Visualization of the experiment using X-ray fluoroscopy showed that gas evolution from the reduction reaction caused the slag to foam during the experiment and that a gas film formed between the carbon surface and the slag at all times during experimentation. The reaction rate increased with increased slag FeO contents under all experimental conditions; however, this variation was not linear with FeO content. The reaction rate also increased with the rotation speed of the carbon rod at a given FeO content. A small increase in the reaction rate, at a given FeO content, was found when horizontal coke surfaces and coke spheres were used as the reductant as compared to graphite and coal char. The results of these experiments do not fit the traditional mass transfer correlations due to the evolution of gas during the experiment. The experimental results are consistent, however, with the hypothesis that liquid phase mass transfer of iron oxide is a major factor in the rate of reduction of iron oxide from slags by carbonaceous materials. In a second article, the individual rates of the possible limiting steps will be compared and a mixed control model will be used to explain the measured reaction rates.

  6. 76 FR 63902 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... Welded Carbon Steel Pipes and Tubes From Taiwan, 76 FR 33210 (June 8, 2011) (Preliminary Results). This... Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Antidumping Duty Order, 49 FR 19369 (May 7, 1984... section 773(b) of the Tariff Act of 1930, as amended (the Act). See Preliminary Results, 76 FR at...

  7. Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.

    2014-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the

  8. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  9. Preliminary results of carbon cycling in southwestern ecosystems: Implications for climate change

    SciTech Connect

    Klopatek, C.C. |; Murphy, K.L.; Klopatek, J.M.

    1995-12-31

    By determining the C pool sizes, cycling and relative sequestering rates, the authors intend to estimate the effects of a vegetation change caused by a temperature increase and available moisture decrease. A predominant source of C for the soil compartment is the plant litter and its subsequent decomposition. The resulting effect of temperature and moisture on decomposition will vary according to the biome and litter quality of that biome. Litter quality, referring to the carbon and other nutrient fractions, strongly influences the potential rate of decomposition. The preliminary findings indicate that litter quality and moisture, not temperature, are the major controlling variables in decomposition.

  10. Carbonated Eclogite Solidus Between 14 and 20 GPa: Results from the Model CMAS-CO2 System and Contrasting Solidus Behavior to Carbonated Peridotite

    NASA Astrophysics Data System (ADS)

    Keshav, S.; Gudfinnsson, G. H.

    2007-12-01

    , and magnesite. From average calculated melting reactions along these isobarically univariant curves, stishovite is produced upon melting at all pressures investigated. Significantly, cpx at 14 and 16 GPa and capv at 20 GPa are the dominant contributors toward melt production/composition, in contrast to lower pressures (3-8 GPa) where carbonate dominantly contributes toward melt generation/composition at the solidus. The solidus of model carbonated eclogite at 14, 16, and 20 GPa, lies at 1350, 1450, and 1600 degrees C, respectively, and is nearly linear in P-T space. Melts in equilibrium with all the crystalline phases are highly calcic (Ca no.-0.70), resembling calcio-carbonatites. When magnesite is exhausted from the crystalline assemblage, the melts become slightly less calcic (Ca no.-65). The model carbonated eclogite solidus is always lower than the model carbonated peridotite solidus in the same pressure range. The most remarkable feature of this work is the absence of a drop in the solidus of model carbonated eclogite between 14 and 16 GPa, a result that is in stark contrast to that observed for the model carbonated peridotite at identical pressures. Therefore, even though the solidus temperatures in both carbonated peridotite and eclogite are strongly influenced by the presence of crystalline carbonate, melt compositions and the shape of the solidus in the pressure range investigated seem to be dominantly controlled by the silicate component of the rock in question. Given these results, it is fair to say that a wide range of petrological and geochemical processes operate at these depths in the mantle, and that we have barely scratched the surface in our investigation.

  11. Carbon dioxide removal system for closed loop atmosphere revitalization, candidate sorbents screening and test results

    NASA Astrophysics Data System (ADS)

    Mattox, E. M.; Knox, J. C.; Bardot, D. M.

    2013-05-01

    Due to the difficulty and expense it costs to resupply manned-spacecraft habitats, a goal is to create a closed loop atmosphere revitalization system, in which precious commodities such as oxygen, carbon dioxide, and water are continuously recycled. Our aim is to test other sorbents for their capacity for future spacecraft missions, such as on the Orion spacecraft, or possibly lunar or Mars mission habitats to see if they would be better than the zeolite sorbents on the 4-bed molecular sieve. Some of the materials being tested are currently used for other industry applications. Studying these sorbents for their specific spacecraft application is different from that for applications on earth because in space, there are certain power, mass, and volume limitations that are not as critical on Earth. In manned-spaceflight missions, the sorbents are exposed to a much lower volume fraction of CO2 (0.6% volume CO2) than on Earth. LiLSX was tested for its CO2 capacity in an atmosphere like that of the ISS. Breakthrough tests were run to establish the capacities of these materials at a partial pressure of CO2 that is seen on the ISS. This paper discusses experimental results from benchmark materials, such as results previously obtained from tests on Grade 522, and the forementioned candidate materials for the Carbon Dioxide Removal Assembly (CDRA) system.

  12. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    SciTech Connect

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  13. Results from the CCSM Carbon-Land Model Intercomparison Project (C-LAMP)

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Fung, I.; Thornton, P.; Lee, Y. J.; Covey, C. C.

    2007-12-01

    The National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) Biogeochemistry Working Group has initiated an intercomparison of terrestrial biosphere models running within the CCSM framework. Called the CCSM Carbon-Land Model Intercomparison Project (C-LAMP), its purpose is to allow the U.S. scientific community to evaluate the performance of biogeochemical cycling models within CCSM and to identify the most important processes for inclusion in future versions of CCSM. Two terrestrial biogeochemistry modules coupled to CCSM---CLM3-CASA' and CLM3-CN---have been evaluated following a set of carefully crafted experiments that build upon the C4MIP Phase 1 protocol. In Experiment 1, the models were forced with an improved NCEP/NCAR reanalysis data set, while in Experiment 2, the models were coupled to the Community Atmosphere Model Version 3 (CAM3) with carbon, water, and energy exchanges over the 20th century. Unlike with most model intercomparisons, for C-LAMP a model performance methodology based on comparison against best-available observational data sets has been developed. Scalar metrics for each model are derived from comparisons against measurements of net primary production, leaf area index, the seasonal cycle of CO2, carbon stocks, and energy. Results from both experiments for CLM3- CASA' and CLM3-CN will be presented, along with recommendations for future evaluations of terrestrial models. C-LAMP model output will be made available by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) via the Earth System Grid (ESG). C-LAMP is a sub-project of the Computational Climate Science End Station headed by Dr. Warren Washington, using computing resources at the U.S. Department of Energy's National Center for Computational Sciences (NCCS).

  14. 78 FR 26748 - Certain Activated Carbon From the People's Republic of China: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Notice of Antidumping Duty Order: Certain Activated Carbon from the People's Republic of China, 72 FR... FR 67142 (October 31, 2011); Certain Activated Carbon From the People's Republic of China; 2010-2011... Antidumping Duty Administrative Review, 74 FR 57995 (November 10, 2009); AR4 Carbon, 77 FR at 67339...

  15. 78 FR 21105 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ..., available in Antidumping Duty Order: Circular Welded Carbon Steel Pipes and Tubes from Thailand, 51 FR 8341... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary... conducting an administrative review of the antidumping duty order on circular welded carbon steel pipes...

  16. 76 FR 77775 - Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ..., 75 FR 43448 (July 26, 2010) (Final Results), and accompanying Issues and Decision Memorandum. Tata... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final... administrative review of the countervailing duty order on certain ] hot-rolled carbon steel flat products...

  17. 75 FR 80455 - Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ..., 73 FR 40295 (July 14, 2008) (Final Results), and accompanying Issues and Decision Memorandum (``I&D... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final... administrative review of the countervailing duty order on certain hot-rolled carbon steel flat products...

  18. 76 FR 65179 - Certain Welded Carbon Steel Standard Pipe From Turkey: Extension of Time for Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Administrative Reviews, 76 FR 23545 (April 27, 2011). The preliminary results are currently due no later than... International Trade Administration Certain Welded Carbon Steel Standard Pipe From Turkey: Extension of Time for... countervailing duty order on certain welded carbon steel standard pipe from Turkey covering the period of...

  19. Cellphone Monitoring of Multi-Qubit Emission Enhancements from Pd-Carbon Plasmonic Nanocavities in Tunable Coupling Regimes with Attomolar Sensitivity.

    PubMed

    Srinivasan, Venkatesh; Manne, Anupam Kumar; Patnaik, Sai Gourang; Ramamurthy, Sai Sathish

    2016-09-01

    We demonstrate for the first time the tuning of qubit emission based on cavity engineering on plasmonic silver thin films. This tunable transition from weak to strong coupling regime in plasmon-coupled fluorescence platform was achieved with the use of palladium nanocomposites. In addition to our recently established correlation between Purcell factor and surface plasmon-coupled emission enhancements, we now show that the qubit-cavity environment experiences the Purcell effect, Casimir force, internal fano resonance, and Rabi splitting. Finite-difference time-domain simulations and time correlated single photon counting studies helped probe the molecular structure of the radiating dipole, rhodamine-6G, in palladium-based nanocavities. The sensitivity of the qubit-cavity mode helped attain a DNA detection limit of 1 aM (attomolar) and multianalyte sensing at picomolar concentration with the use of a smartphone camera and CIE color space. We believe that this low-cost technology will lay the groundwork for mobile phone-based next-gen plasmonic sensing devices. PMID:27529116

  20. Influence of laser hardening and resulting microstructure on fatigue properties of carbon steels

    SciTech Connect

    Cerny, I.; Fuerbacher, I.; Linhart, V.

    1998-06-01

    Cylindrical specimens of a CSN 12050 carbon steel, equivalent to the UNS G 10420 steel, with two different initial microstructures, normalized and heat treated, were surface processed without melting by a 2.5 kW, CO{sub 2} laser to study the effects of laser-beam hardening and resulting microstructure on fatigue properties and mechanisms. Two configurations of circumferential laser passes were made, resulting in one and three separate surface hardened lines, respectively. Fatigue resistance was studied using alternating bend tests. A detailed metallographic study and x-ray measurements of surface stresses were carried out. It was shown that the laser beam hardening under different conditions either reduced or slightly improved the fatigue life.

  1. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)

    SciTech Connect

    Key, Robert; Kozyr, Alexander; Sabine, Chris; Lee, K.; Wanninkhof, R.; Bullister, J.L.; Feely, R. A.; Millero, F. J.; Mordy, C.; Peng, T.-H.

    2004-01-01

    During the 1990s, ocean sampling expeditions were carried out as part of the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the Ocean Atmosphere Carbon Exchange Study (OACES). Subsequently, a group of U.S. scientists synthesized the data into easily usable and readily available products. This collaboration is known as the Global Ocean Data Analysis Project (GLODAP). Results were merged into a common format data set, segregated by ocean. For comparison purposes, each ocean data set includes a small number of high-quality historical cruises. The data were subjected to rigorous quality control procedures to eliminate systematic data measurement biases. The calibrated 1990s data were used to estimate anthropogenic CO{sub 2}, potential alkalinity, CFC watermass ages, CFC partial pressure, bomb-produced radiocarbon, and natural radiocarbon. These quantities were merged into the measured data files. The data were used to produce objectively gridded property maps at a 1{sup o} resolution on 33 depth surfaces chosen to match existing climatologies for temperature, salinity, oxygen, and nutrients. The mapped fields are interpreted as an annual mean distribution in spite of the inaccuracy in that assumption. Both the calibrated data and the gridded products are available from the Carbon Dioxide Information Analysis Center. Here we describe the important details of the data treatment and the mapping procedure, and present summary quantities and integrals for the various parameters.

  2. Granular Activated Carbon Treatment May Result in Higher Predicted Genotoxicity in the Presence of Bromide.

    PubMed

    Krasner, Stuart W; Lee, Tiffany Chih Fen; Westerhoff, Paul; Fischer, Natalia; Hanigan, David; Karanfil, Tanju; Beita-Sandí, Wilson; Taylor-Edmonds, Liz; Andrews, Robert C

    2016-09-01

    Certain unregulated disinfection byproducts (DBPs) are more of a health concern than regulated DBPs. Brominated species are typically more cytotoxic and genotoxic than their chlorinated analogs. The impact of granular activated carbon (GAC) on controlling the formation of regulated and selected unregulated DBPs following chlorine disinfection was evaluated. The predicted cyto- and genotoxicity of DBPs was calculated using published potencies based on the comet assay for Chinese hamster ovary cells (assesses the level of DNA strand breaks). Additionally, genotoxicity was measured using the SOS-Chromotest (detects DNA-damaging agents). The class sum concentrations of trihalomethanes, haloacetic acids, and unregulated DBPs, and the SOS genotoxicity followed the breakthrough of dissolved organic carbon (DOC), however the formation of brominated species did not. The bromide/DOC ratio was higher than the influent through much of the breakthrough curve (GAC does not remove bromide), which resulted in elevated brominated DBP concentrations in the effluent. Based on the potency of the haloacetonitriles and halonitromethanes, these nitrogen-containing DBPs were the driving agents of the predicted genotoxicity. GAC treatment of drinking or reclaimed waters with appreciable levels of bromide and dissolved organic nitrogen may not control the formation of unregulated DBPs with higher genotoxicity potencies. PMID:27467860

  3. [Tribological properties of carbon fiber-reinforced plastic. Experimental and clinical results].

    PubMed

    Früh, H J; Ascherl, R; Hipp, E

    1997-02-01

    Wear of the articulating components (especially PE-UHMW) of total hip endoprostheses is the most important technical factor limiting the functional lifetime. To minimize wear debris, ceramic heads, according to ISO 6474 (Al2O3), have been used, from 1969 paired with Al2O3 and since 1975 paired with PE-UHMW. Al2O3 balls articulating with cups made from CFRP have been in clinical use since 1988. Laboratory experiments and in-vivo testing showed minimized wear debris and mild biological response to wear products using CFRP (carbon fiber reinforced plastic) instead of PE-UHMW as the cup material. The articulating surfaces of retrieved ceramic heads (Al2O3-Biolox) and cementless CFRP cups (carbon fiber reinforced plastic, Caproman) were compared using sphericity measurement techniques, scanning electron microscopy (SEM) and roughness measurements (including advanced roughness parameters Rvk or Rpk according to ISO 4287). Altogether, the first results of the clinical study showed that the combination Al2O3-ball/CFRP-cup came up to the expected lower wear rates compared with the conventional combinations. The wear rates are comparable with the combination Al2O3/Al2O3 without the material-related problems of ceramic components in all ceramic combinations. PMID:9157355

  4. Results and Discussion on Physical Property Calculation from Pore Microstructures of Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Lee, M.; Keehm, Y.

    2014-12-01

    In this paper, we report results and discussion on the physical properties estimation of carbonate rocks using pore microstructures. We obtained high-resolution 3D microstructures with different porosity-types (inter-particle, vuggy/moldic, and fracture) from the X-ray microtomography technique. We calculated permeability, electrical conductivity, and P-wave velocity using the Lattice-Boltzmann method and finite element methods. We also applied the pore-scale simulation techniques to different sub-blocks from the original 3D pore geometry (2,0003 voxels) to determine the heterogeneity of pore geometry. For the inter-particle porosity-type, the calculated transport properties (permeability and electrical conductivity) show very similar trends to clastic sediments. These relations can be modeled by common empirical relations such as Kozeny-Carman relation for porosity-permeability or Archie's equation for porosity-formation factor. For the vuggy or fracture porosity-type, it is difficult to determine any consistent relations; therefore we tried to build conceptual models with cracks or vugs to establish quantitative relations. On the other hand, P-wave velocity showed very little dependence on the porosity-types, due to high frame stiffness of carbonate rocks. Acknowledgements: This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Trade, Industry and Energy of Korea (GP2012-029).

  5. Sequential growth of deformation bands in carbonate grainstones in the hangingwall of an active growth fault: Implications for deformation mechanisms in different tectonic regimes

    NASA Astrophysics Data System (ADS)

    Rotevatn, Atle; Thorsheim, Elin; Bastesen, Eivind; Fossmark, Heidi S. S.; Torabi, Anita; Sælen, Gunnar

    2016-09-01

    Deformation bands in porous sandstones have been extensively studied for four decades, whereas comparatively less is known about deformation bands in porous carbonate rocks, particularly in extensional settings. Here, we investigate porous grainstones of the Globigerina Limestone Formation in Malta, which contain several types of deformation bands in the hangingwall of the Maghlaq Fault: (i) bed-parallel pure compaction bands (PCB); (ii) pressure solution-dominated compactive shear bands (SCSB) and iii) cataclasis-dominated compactive shear bands (CCSB). Geometric and kinematic analyses show that the bands formed sequentially in the hangingwall of the evolving Maghlaq growth fault. PCBs formed first due to fault-controlled subsidence and vertical loading; a (semi-)tectonic control on PCB formation is thus documented for the first time in an extensional setting. Pressure solution (dominating SCSBs) and cataclasis (dominating CCSBs) appear to have operated separately, and not in concert. Our findings therefore suggest that, in some carbonate rocks, cataclasis within deformation bands may develop irrespective of whether pressure solution processes are involved. We suggest this may be related to stress state, and that whereas pressure solution is a significant facilitator of grain size reduction in contractional settings, grain size reduction within deformation bands in extensional settings is less dependent on pressure solution processes.

  6. Preliminary Results from the CCSM Carbon-Land Model Intercomparison Project (C- LAMP)

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Fung, I.; Randerson, J.; Thornton, P.; Stöckli, R.; Heinsch, F.; Running, S.; Hibbard, K.; John, J.; Covey, C.; Foley, J.; Post, W. M.; Hargrove, W. W.; Erickson, D. J.; Mahowald, N.

    2006-12-01

    The Biogeochemistry Working Group for the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) has initiated an intercomparison of terrestrial biosphere models running within the CCSM framework. Called the CCSM Carbon-Land Model Intercomparison Project (C-LAMP), its purpose is to allow the U.S. scientific community to evaluate the performance of biogeochemical cycling models within CCSM and to identify the most important processes for inclusion in a biosphere model participating in simulations supporting the IPCC Fifth Assessment Report (AR5). Three terrestrial biogeochemistry modules coupled to CCSM---CLM3-CASA', CLM3-CN, and LSX-IBIS---will be evaluated following a set of carefully crafted experiments that build upon the C4MIP Phase 1 protocol. In Experiment 1, the models will be forced with an improved NCAR/NCAR reanalysis data set, while in Experiment 2, the models will be coupled to the Community Atmosphere Model Version 3 (CAM3) with carbon, water, and energy exchanges over the 20th century. In order to quickly verify and validate the performance of these biogeochemistry models against high quality observations, a set of offline runs for Fluxnet tower sites have been performed using observed meteorology. Certain biogeochemical, hydrological, physiological, and radiation fields have been saved hourly for intercomparison across models and with high frequency tower measurements. An analysis of the offline flux tower runs will be presented along with preliminary results from the global experiments run within the CCSM framework. Model results will be made available by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) via the Earth System Grid (ESG), and this presentation will include an invitation for community participation in the analysis and evaluation of the model results. C-LAMP is a subproject of the Computational Climate Science End Station headed by Dr. Warren Washington, using computing resources at the

  7. Copper Content in Synthetic Copper Carbonate: A Statistical Comparison of Experimental and Expected Results

    NASA Astrophysics Data System (ADS)

    Sheeran, Daniel

    1998-04-01

    This paper describes a general chemistry experiment which was implemented in the 1995-96 academic year and which is based on the preparation of a basic copper(II) carbonate, Cu(OH)2(CO3), and its analysis for copper. Individual results of the copper determination were compiled and a class mean and standard deviation were computed and a frequency plot was constructed for the purpose of comparing class results to the expected result. From a student perspective, the expected result was not Cu(OH)2(CO3), rather it was CuCO3. Students were unaware that they prepared a basic salt, and assumed they prepared CuCO3. This assumption originates in the synthesis which has the appearance of a double displacement reaction. Students expected the copper determination to verify this assumption and were quite surprised when it did not. Statistics was used to reveal the discrepancy between experimental and expected results, and a t-test established that this discrepancy was significant--the prepared material cannot be formulated as CuCO3. The statistical conclusion was further substantiated by observational evidence in the synthesis and analysis steps.

  8. Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations

    NASA Astrophysics Data System (ADS)

    Schwen, D.; Bringa, E.; Krauser, J.; Weidinger, A.; Trautmann, C.; Hofsäss, H.

    2012-09-01

    The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 × 106 atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between ˜12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp3 to sp2 bonding along the tracks with the hillocks containing almost no sp3 contribution.

  9. Nano-hillock formation in diamond-like carbon induced by swift heavy projectiles in the electronic stopping regime: Experiments and atomistic simulations

    SciTech Connect

    Schwen, D.; Bringa, E.; Krauser, J.; Weidinger, A.; Trautmann, C.; Hofsaess, H.

    2012-09-10

    The formation of surface hillocks in diamond-like carbon is studied experimentally and by means of large-scale molecular dynamics simulations with 5 Multiplication-Sign 10{sup 6} atoms combined with a thermal spike model. The irradiation experiments with swift heavy ions cover a large electronic stopping range between {approx}12 and 72 keV/nm. Both experiments and simulations show that beyond a stopping power threshold, the hillock height increases linearly with the electronic stopping, and agree extremely well assuming an efficiency of approximately 20% in the transfer of electronic energy to the lattice. The simulations also show a transition of sp{sup 3} to sp{sup 2} bonding along the tracks with the hillocks containing almost no sp{sup 3} contribution.

  10. Radiative Forcing associated with Particulate Carbon Emissions resulting from the Use of Mercury Control Technology

    NASA Astrophysics Data System (ADS)

    Clack, H.; Penner, J. E.; Lin, G.

    2013-12-01

    Mercury is a persistent, toxic metal that bio-accumulates within the food web and causes neurological damage and fetal defects in humans. The U.S. was the first country to regulate the leading anthropogenic source of mercury into the atmosphere: coal combustion for electric power generation. The U.S. EPA's 2005 Clean Air Mercury Rule (CAMR) was replaced and further tightened in 2012 by the Mercury and Air Toxics Standard (MATS), which required existing coal-fired utilities to reduce their mercury emissions by approximately 90% by 2015. Outside the U.S., the Governing Council of the United Nations Environment Programme (UNEP) has passed the legally binding Minamata global mercury treaty that compels its signatory countries to prevent and reduce the emission and release of mercury. The most mature technology for controlling mercury emissions from coal combustion is the injection into the flue gas of powdered activated carbon (PAC) adsorbents having chemically treated surfaces designed to rapidly oxidize and adsorb mercury. However, such PAC is known to have electrical properties that make it difficult to remove from flue gas via electrostatic precipitation, by far the most common particulate control technology used in countries such as the U.S., India, and China which rely heavily on coal for power generation. As a result, PAC used to control mercury emissions can be emitted into the atmosphere, the sub-micron fraction of which may result in unintended radiative forcing similar to black carbon (BC). Here, we estimate the potential increases in secondary BC emissions, those not produced from combustion but arising instead from the use of injected PAC for mercury emission reduction. We also calculate the radiative forcing associated with these secondary BC emissions by using a global atmospheric chemical transport model coupled with a radiative transfer model.

  11. Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.; Martin, J.; Law, B. E.

    2012-12-01

    We sought to improve net ecosystem exchange (NEE) estimates for a tall, dense, mature Douglas-Fir forest in the Oregon Coast range located in moderately complex terrain and characterized by weak flows, directional shear, and limited turbulent mixing throughout the diurnal period. We used eddy covariance (EC) observations at two levels and concurrent biological measurements of carbon and water fluxes collected over a period of 6 years (2006-2011) to develop and test a conceptual framework with the goal of i) reducing uncertainty by retaining more measurements for the computation of annual NEE estimates, and ii) producing defendable and biologically meaningful NEE estimates by accounting for the missing sub-canopy respiration due to the weak turbulence. The framework assumes that the scalar exchange between vertical layers can be categorized into discrete canopy coupling regimes, and that advection leads to a systematic loss of scalar from the observational volume that can indirectly be estimated and accounted for as sub-canopy respiration flux when canopy layers are decoupled. The standard deviation of the vertical velocity variance was the most adequate proxy for turbulent mixing strength. It allowed for straight-forward estimation of thresholds used to delineate the exchange regimes and was more sensitive to directional shear and other mechanisms enhancing the mixing. Periods with a decoupled sub-canopy layer dominated and occupied 65 and 88 % of the day- and nighttime periods, respectively. Annual NEE derived from the new framework was estimated as 480 gC m-2 yr-1, which was reduced by 620 gC m-2 yr-1 compared to traditional estimates from single-level EC data filtered using a critical friction velocity. The reduction in NEE was caused by an enhanced ecosystem respiration (ER), while gross ecosystem productivity remained unchanged. Improved ER estimates agreed well with those from independent biological estimates including soil, stem, and foliage respiration

  12. Field-aligned magnetohydrodynamic bow shock flows in the switch-on regime. Parameter study of the flow around a cylinder and results for the axi-symmetrical flow over a sphere

    NASA Astrophysics Data System (ADS)

    de Sterck, H.; Poedts, S.

    1999-03-01

    A parameter study is undertaken for steady symmetrical planar field-aligned MHD bow shock flows around a perfectly conducting cylinder. For sets of values of the inflow plasma beta and Alfvénic Mach number (MA) which allow for switch-on shocks, a numerical solution is obtained which exhibits a complex bow shock shape and topology with multiple shock fronts and a dimpled leading front. For parameter values outside the switch-on domain, a classical single-front bow shock flow is obtained. These results show that the beta and MA parameter regime for which the complex bow shock topology occurs, corresponds closely to the parameter regime for which switch-on shocks are possible. The axi-symmetrical field-aligned bow shock flow over a perfectly conducting sphere is then calculated for one set of values for beta and MA in the switch-on domain, resulting in a complex bow shock topology similar to the topology of the flow around a cylinder. These complex shock shapes and topologies may be encountered in low-beta space plasmas. Fast coronal mass ejections moving away from the sun in the low-beta inner corona may induce preceding shock fronts with upstream parameters in the switch-on domain. Planetary and cometary bow shocks may have upstream parameters in the switch-on domain when the impinging solar wind occasionally becomes low-beta . The simulation results may be important for phenomena in the Earth's magnetosheath.

  13. 75 FR 62366 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Welded Carbon Steel ] Pipes and Tubes From Taiwan, 75 FR 32911 (June 10, 2010) (Preliminary Results...) of the Act. See Preliminary Results, 75 FR at 32913. Those results apply to these final results... accordance with section 773(a)(4) of the Act. See Preliminary Results, 75 FR 32913. Analysis of...

  14. Nanosized carbon coating formed on different surfaces at the result of carbon emission from graphite under millisecond pulses of glass: Yb, Er laser

    NASA Astrophysics Data System (ADS)

    Zulina, N. A.; Belikov, A. V.; Skrypnik, A. V.

    2013-11-01

    Possibility of nanosized carbon coatings synthesis on metal and dielectric surfaces at the result of carbon emission from different impurity amount graphite materials under millisecond pulses of Glass: Yb, Er laser. Size of particles and morphology of obtained coatings were investigated with scanning electron microscopy. It was found experimentally, that separated particles of obtained carbon coating has a size about 50-100 nm. Also Raman spectras of nanosized carbon coatings were obtained to investigate a structure. At the result of Raman spectras analysis was found, that coatings are contained of different structural units depends on graphite material impurity amount. For graphite material 99.9% products of laser evaporation are amorphous carbon nanoparticles, and for graphite material with impurity amount about 30% - graphitized nanoparticles. In this article mechanical properties, such as microhardness, of obtained coatings were estimated. It is shown that microhardness of metal surfaces and surface of substrates prepared from human tooth enamel and dentin could be increased significantly due to nanosized carbon coating. Also for tooth enamel and dentin substrates was observed an ability to increase its acid resistance and protective property of obtained coatings to the action of phosphic acid (37.5%).

  15. A Terrestrial Ecosystem Full Verified Carbon Accounting for Russian Land: Results and Uncertainty

    NASA Astrophysics Data System (ADS)

    Shvidenko, A.; Schepaschenko, D.; Maksyutov, S.

    2010-12-01

    We present a terrestrial full carbon account (FCA) for Russian land in a spatially explicit form for 2009 and aggregated country-wide annual estimates for 2004-2008. The integrated methodology of the FCA takes into account the fuzzy character of the studied systems. IIASA’s landscape-ecosystem approach (LEA) is used for designing the account boundaries and assessment of major pools and fluxes. An Integrated Land Information System (ILIS) serves as the information background of the FCA. The ILIS is based on a system integration of all available ground data and multi-sensor remote sensing applications. The ILIS includes a georeferenced hybrid land cover (~500 land classes, resolution 1 x 1 km), corresponding attributive datasets and sets of empirical and semi-empirical ecosystem and landscape models. The latter are based on long-period measurements of ecological parameters with corrections - if necessary - due to weather specifics of individual growth seasons. On average, terrestrial ecosystems of Russia served as a sink of roughly 0.6 Pg C yr-1 during the last five years which exceeds the technosphere’s emissions of the country by about one third. Two major fluxes (net primary production and heterotrophic respiration) for all productive lands of the country are estimated at 323 and 204 g C yr-1 m-2, respectively. Disturbance and consumption of plant products comprise from 15 to 20% of the net primary production. Forests serve as a major component of the sink (~85% of the country’s total). Disturbed forests and peatlands, as well as cultivated agricultural lands, are a relatively small carbon source. The interannual variability of the net ecosystem carbon balance are mostly driven by climatic conditions and natural disturbance (fire, insects) of the growth periods and is in limits of 10-15% for the country as a whole, but could exceed 25-30% for large regions with weather anomalies of the vegetation periods. Uncertainty within the LEA was assessed for all

  16. Woody plant encroachment effect on soil organic carbon dynamics: results from a latitudinal gradient in Italy

    NASA Astrophysics Data System (ADS)

    Pellis, Guido; Chiti, Tommaso; Moscatelli, Maria Cristina; Marinari, Sara; Papale, Dario

    2016-04-01

    Woody plant encroachment into pastures and grasslands represents a significant land cover change phenomenon, with a considerable impact on carbon dynamics at an ecosystem level. It was estimated that 7.64% of the Southern Europe land was subject to that process between 1950 to 2010. As a result of woody encroachment, changes in vegetation composition can produce substantial changes to the soil organic carbon (SOC) cycle. Despite the numerous papers published on land-use change, an evaluation of the IPCC terrestrial carbon pools changes occurring during woody encroachment on abandoned pastures and grasslands is still lacking, particularly for the Italian territory. Therefore, the aim of this study was to investigate the role of woody encroachment on carbon sequestration over abandoned pastures and grasslands in Alpine and Apennine ecosystems, with a particular focus on the SOC. We applied a chronosequence approach to seven selected sites located along a latitudinal gradient in Italy. Each chronosequence consisted of a pasture currently managed, three sites abandoned at different times in the past and, finally, a mature forest stand representing the last phase of the succession. The European Commission sampling protocols to certify SOC changes was adopted to estimate the variations following woody encroachment. Soil samples were collected at different depths in the topsoil (0-30 cm) and subsoil (30-70 cm), despite the original protocol formulation being limited to the topsoil only. In addition, aboveground living biomass (AGB), dead wood and litter were also measured following international protocols. Considering all C pools together, woody plant encroachment leads to a progressive C stock accumulation in all the chronosequences. The total C stock of mature forest stands ranges from 1.78±0.11 times (Eastern Alps) to 2.48±0.31 times (central Apennine) the initial value on pastures. Unsurprisingly, the C stocks of AGB, dead wood and litter all increase during the

  17. 76 FR 45509 - Final Results of Antidumping Duty Changed Circumstances Review: Carbon and Certain Alloy Steel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Circumstances Review: Carbon and Certain Alloy Steel Wire Rod from Mexico, 75 FR 67685 (November 3, 2010... of the Antidumping Duty and Countervailing Duty Orders, and Intent To Revoke Orders in Part, 68 FR...: Carbon and Certain Alloy Steel Wire Rod From Mexico, 71 FR 27989 (May 15, 2006). Notification This...

  18. 77 FR 19623 - Certain Welded Carbon Steel Standard Pipe from Turkey: Preliminary Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Pipe and Tube Products from Turkey, 51 FR 7984 (March 7, 1986). \\2\\ See Antidumping or Countervailing... certain welded carbon steel pipe and tube with an outside diameter of 0.375 inch or more, but not over 16...: Certain Welded Carbon Steel Standard Pipe from Turkey, 72 FR 62837, 62838 (November 7, 2007) (Turkey...

  19. 75 FR 16439 - Certain Welded Carbon Steel Standard Pipe From Turkey: Preliminary Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Steel Pipe and Tube Products from Turkey, 51 FR 7984 (March 7, 1986). On March 2, 2009, the Department... products covered by this order are certain welded carbon steel pipe and tube with an outside diameter of 0... Administrative Review: Certain Welded Carbon Steel Standard Pipe from Turkey, 72 FR 62837, 62838 (November...

  20. 78 FR 34335 - Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... Steel Pipes and Tubes From Taiwan: Antidumping Duty Order, 49 FR 19369 (May 7, 1984). These cash deposit... International Trade Administration Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Preliminary... conducting an administrative review of the antidumping duty order on certain circular welded carbon...

  1. Divergent trajectories in tropical rainforest carbon-climate relationships: results from a new tropical forest carbon inventory database

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Wieder, W.; Townsend, A.; Asner, G. P.; Cleveland, C.; Loarie, S.

    2010-12-01

    Intact tropical rainforests play a disproportionate role in the terrestrial carbon (C) cycle because they exchange more CO2 with the atmosphere than any other biome. As with any ecosystem, climate controls rates of C uptake and storage; however, the specific nature of climate-carbon relationships in the tropics remains poorly understood and oft-debated. Consequently, there are major uncertainties in how human-driven climate change may alter tropical C storage. One way to investigate climate - forest C interactions is via meta-analyses that examine shifts in forest C dynamics along climatic gradients. Past such analyses for the role of precipitation suggest tropical aboveground net primary production (ANPP) peaks near 2500 mm/yr, and then sharply declines in wetter regions. However, the downturn in ANPP is driven by a bias in early databases toward montane forests, which may exhibit temperature-driven biogeochemical feedbacks not present in wet lowland forests. To address this possibility, we assembled a tropical forest carbon dynamics database that includes nearly 900 different sites. We found substantial divergence in montane versus lowland forest ANPP responses to shifts in rainfall. As previous analyses imply, montane forest ANPP shows a distinct “hump-shaped” pattern, with a downturn in wetter sites. However, in contrast to prevailing assumptions, we find that lowland forest ANPP and biomass remain steady or increase with increasing rainfall. The data suggest that temperature plays a key role in determining the shape of rainfall - forest C interactions by regulating plant-soil nutrient feedbacks that underlie trends in ANPP. In montane systems, lower temperatures under wet conditions allow the development of organic horizons and the persistence of low redox conditions that reduce fertility, but in lowland systems, higher temperatures prevent organic matter accumulation, and high precipitation appears to drive rapid exchanges of nutrients between litter and

  2. Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi

    NASA Technical Reports Server (NTRS)

    Palmer, R. J. Jr; Friedmann, E. I.

    1988-01-01

    Fungi isolated from the cryptoendolithic community of the Ross Desert are capable of fixing inorganic carbon. Results suggest that lichen mycobionts and parasymbionts are adapted to different water regimes in the cryptoendolithic environment.

  3. An intercomparison of carbon monoxide, nitric oxide, and hydroxyl measurement techniques - Overview of results

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Gregory, G. L.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.; Condon, E. P.

    1984-01-01

    Results from an intercomparison of methods to measure carbon monoxide (CO), nitric oxide (NO), and the hydroxyl radical (OH) are discussed. The intercomparison was conducted at Wallops Island, Virginia, in July 1983 and included a laser differential absorption and three grab sample/gas chromatograph methods for CO, a laser-induced fluorescence (LIF) and two chemiluminescence methods for NO, and two LIF methods and a radiocarbon tracer method for OH. The intercomparison was conducted as a field measurement program involving ambient measurements of CO (150-300 ppbv) and NO (10-180 pptv) from a common manifold with controlled injection of CO in incremental steps from 20 to 500 ppbv and NO in steps from 10 to 220 pptv. Only ambient measurements of OH were made. The agreement between the techniques was on the order of 14 percent for CO and 17 percent for NO. Hardware difficulties during the OH tests resulted in a data base with insufficient data and uncertanties too large to permit a meaningful intercomposition.

  4. CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, H.; Wigley, M.; Bickle, M.; Kampman, N.; Dubacq, B.; Galy, A.; Ballentine, C.; Zhou, Z.

    2012-04-01

    Dissolution of CO2 in brines and reactions of the acid brines ultimately dissolving silicate minerals and precipitating carbonate minerals are the prime long-term mechanisms for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they are likely to depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. Noble gas isotopic spikes were detected at producing wells within days of initial CO2 injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretations are complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution as the lack of increase in S and Cl concentrations preclude additions of more saline waters. Early calcite dissolution was followed by re-precipitation. 87Sr/86Sr ratios in the waters apparently exceed the 87Sr/86Sr ratios of acetic and hydrochloric acid leaches of carbonate fractions of the reservoir rocks and the silicate residues from the leaching. This may indicate incongruent dissolution of Sr or larger scale isotopic heterogeneity of the reservoir. This is being investigated

  5. CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Chapman, H.; Galy, A.; Kampman, N.; Dubacq, B.; Ballentine, C. J.; Zhou, Z.; Members Of The Crius Project

    2011-12-01

    Dissolution of CO2 in brines is a prime mechanism for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they likely depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. The injected CO2 was spiked with isotopically enriched noble gases at the start of injection. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. The noble gas spikes were detected at producing wells within days of injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretation of the water chemistry is complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution with either dissolution or precipitation of calcite. The precipitation of calcite driven by the rise in pH consequent on dissolution of silicates is as predicted by previous modelling (Knaus et al., 2005, Chemical Geology) and as observed in natural analogue systems (Kampman et al., 2009, Earth Planetary Science Letters). A key question is the extent to which the rates of dissolution are controlled by the surface reaction rates of the minerals versus the rate at which CO2 can dissolve in formation brines. Simple flow

  6. Does Iron Fertilization Lead to Enhanced Carbon Sequestration? A Synthesis of Polar Star Results.

    SciTech Connect

    Buesseler, K.O.

    2002-12-01

    This research synthesized activities related to work conducted as part of the Southern Ocean Iron Experiment (SOFeX) which investigated the effects of iron fertilization on enhanced carbon sequestration. The primary interest was in the fate of sinking particles which carry carbon to the deep ocean, where it can be sequestered from the atmosphere for >100-1000 year time scales. This was accomplished through direct measurements of thorium-234, a naturally occurring particle reactive radionuclide that traces shallow particle export; SF6 measurements to track the position of the Fe fertilized region; and the collection of ancillary data and samples to augment the study of major C, nutrient and elemental budgets as well as appropriate samples for biological study. Results of this work show a small, but progressively increasing flux of particulate organic C to depth as a consequence of Fe fertilization. This is the first data set to show any effect of Fe fertilization on C sequestration in the Southern Ocean. The changes in particle export during SOFeX are significant, but only possible to detect given what is arguably the largest 234Th data set ever collected as part of an oceanographic experiment. Most prior 234Th studies, simply use a steady-state approximation and ignore advective and diffusive fluxes in the calculation of 234Th fluxes. High resolution time-series of average 0-50m 234Th activities in and out of the Southern patch find a clear steady decrease in 234Th flux that is slightly larger in vs. out of the Fe fertilized patch. This decrease must be included in the full 234Th flux calculation and the deliberate tagging of this water mass with SF6 combined with time-series sampling allowed for a careful evaluation of this non-steady state (NSS) term. Likewise, the addition of SF6 allows for the evaluation of vertical exchange (via the gradient of SF6 below the patch) and dilution effects (after correction for atmospheric losses). In most set tings these physical

  7. A dense Black Carbon network in the region of Paris, France: Implementation, objectives, and first results

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa

    2013-04-01

    Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http

  8. On unstable periodic regime of small HAWT

    NASA Astrophysics Data System (ADS)

    Dosaev, Marat Z.; Klimina, Liubov A.; Selyutskiy, Yury D.; Tsai, Mi-Ching; Yang, Hong-Tzer

    2012-11-01

    Dynamics of a small HAWT is studied. The closed mathematical model involving phenomenological description of both aerodynamic load upon turbine blades and permanent magnet electric generator is developed, in order to take into account the inductive reactance of the electric circuit. A series of experiments is performed in the subsonic wind tunnel of the LMSU Institute of Mechanics that allowed verifying the model and identifying its parameters. Parameters of dynamic model are identified, such as the coefficient of electromechanical interaction, the active internal resistance of generator, the circuit reactance. Parametric analysis of steady regimes is performed. The model prediction that HAWT operating dynamic system has two stable steady regimes (high speed regime and low speed one) is confirmed by experiments. Transient regimes are registered depending on parameters of the system, which allows estimating the unstable steady regime. The characteristics of the unstable regime are experimentally determined. Obtained results are used for estimation of aerodynamic moment acting on HAWT blades.

  9. Carbon cycling in a rapidly changing High Arctic: Results from long-term climate experiments and observations of interannual variability in NW Greenland

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Lupascu, M.; Csank, A. Z.; Seibt, U. H.; Maseyk, K. S.; Xu, X.; Welker, J. M.

    2013-12-01

    The High Arctic, a region dominated by polar semi-deserts underlain with continuous permafrost, is experiencing dramatic changes in climate associated with the loss of sea ice, including warming and shifts in precipitation regimes (i.e. wetting and changing snow cover). Here, we present findings from a set of studies that are addressing the sign and strength of the High Arctic's summertime carbon (C) cycle feedback. We explored magnitudes, patterns and sources of C losses through CO2 and CH4 fluxes and via leaching as dissolved organic C (DOC) and particulate organic C (POC) along with measurements of net ecosystem exchange and plant C uptake. From studying long-term summertime experimental warming and/or watering and interannual weather patterns we find that in polar semi-deserts: a) Summer precipitation regime is the key driver of current summertime C budgets. Warming plus wetting results in increased ecosystem C sequestration and reduced losses of older C as CO2, while warming alone decreases C uptake and increases losses of older soil C as CO2. The system is a sink for CH4, but the sink strength will decline with increasing soil moisture. Thus, the High Arctic has the potential to remain a strong summertime C sink even as the rest of the permafrost region transitions to a net C source to the atmosphere as climate continues to warm. b) Old C is diffusing out of the High Arctic landscape into the atmosphere. This C loss is especially evident in the spring before vegetation pumps fresh C into the soil system. Further, loss of older C from the deeper active layer is highly episodic and dominates C emissions during small precipitation events. c) Precipitation regime is also the key driver of that ancient C export from the land surface as DOC, higher precipitation in the later part of the growing season (July-August), when the active layer is deeper, results in a greater fraction of old C transported to the nearshore Arctic Ocean. Collectively these findings

  10. 75 FR 64696 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Carbon Steel Pipes and Tubes from Thailand: Final Determination of Sales at Less Than Fair Value, 51 FR... Administrative Review, 75 FR 18788 (April 13, 2010) (Preliminary Results). In the Preliminary Results, the...: Extension of Time Limit for Final Results of Antidumping Duty Administrative Review, 75 FR 28557 (May...

  11. 78 FR 64916 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Final Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... Review; Calendar Year 2011, 78 FR 21107 (April 9, 2013) (Preliminary Results). \\2\\ See Decision..., 51 FR 7984 (March 7, 1986). \\4\\ See Preliminary Results. \\5\\ Petitioners in this review are Wheatland... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Turkey: Final Results...

  12. An Experimental Evaluation of HVAC-Grade Carbon-Dioxide Sensors: Part 2, Performance Test Results

    SciTech Connect

    Shrestha, Som S; Maxwell, Dr. Gregory

    2010-01-01

    This is the second paper in a four-part series reporting on the test and evaluation of typical carbon-dioxide sensors used in building HVAC applications. Fifteen models of NDIR HVAC-grade CO2 sensors were tested and evaluated to determine the accuracy, linearity, repeatability, and hysteresis of each sensor. This paper describes the performance of the sensors and provides a comparison with the manufacturers specifications. The sensors were tested at 40% relative humidity, 73oF (22.8oC) temperature, 14.70 psia (101.35 kPa) pressure, and at five different CO2 concentrations (400 ppm, 750 ppm, 1100 ppm, 1450 ppm, and 1800 ppm). The test results showed a wide variation in sensor performance among the various manufacturers and in some cases a wide variation among sensors of the same model. In all, 45 sensors were evaluated: three from each of the 15 models. Among the 15 models tested, eight models have a single-lamp, single-wavelength configuration, four models have a dual-lamp, single-wavelength configuration, and three models have a single-lamp, dual-wavelength configuration.

  13. Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis.

    PubMed

    Wenk, H R; Heidelbach, F

    1999-04-01

    Calcified tissue contains collagen associated with minute crystallites of carbonated apatite. In this study, methods of quantitative X-ray texture analysis were used to determine the orientation distribution and texture strength of apatite in a calcified turkey tendon and in trabecular and cortical regions of osteonal bovine ankle bone (metacarpus). To resolve local heterogeneity, a 2 or 10 microm synchrotron microfocus X-ray beam (lambda = 0.78 A) was employed. Both samples revealed a strong texture. In the case of turkey tendon, 12 times more c axes of hexagonal apatite were parallel to the fibril axis than perpendicular, and a axes had rotational freedom about the c axis. In bovine bone, the orientation density of the c axes was three times higher parallel to the surface of collagen fibrils than perpendicular to it, and there was no preferential alignment with respect to the long axis of the bone (fiber texture). Whereas half of the apatite crystallites were strongly oriented, the remaining half had a random orientation distribution. The synchrotron X-ray texture results were consistent with previous analyses of mineral orientation in calcified tissues by conventional X-ray and neutron diffraction and electron microscopy, but gave, for the first time, a quantitative description. PMID:10221548

  14. Photochemical alkene formation in seawater from dissolved organic carbon: Results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Ratte, M.; Bujok, O.; Spitzy, A.; Rudolph, J.

    1998-03-01

    The production mechanism of light alkenes, alkanes, and isoprene was investigated in laboratory experiments by measuring their concentrations in natural seawater as a function of spectral range, exposure time and origin, and concentration of dissolved organic carbon (DOC). The production mechanism of alkanes and of isoprene could not be clarified. Ethene and propene are produced photochemically from DOC. The relevant spectral range is UV and short-wavelength visible light. Initial production rates (up to day 10 of exposure) were in the range of several pmol L-1 h-1 (mg DOC)-1; the corresponding mean quantum yields for the spectral range of 300-420 nm were about 10-8. Generally, the production rates and the quantum yields for ethene were about 2 times that of propene. The key factors in the total column integrated oceanic alkene production are the solar photon flux at sea surface, the penetration depth of the light into the ocean (especially the relation between different light absorbers, i.e., the extinction due to absorption of DOC), and the wavelength- and DOC-dependent quantum yields. As a result of the high variability of these parameters, actual local alkene production rates for a specific oceanic region may differ considerably from the globally averaged oceanic alkene production rates. The latter were estimated to be at most 5 Mt yr-1.

  15. Effect of petroleum coke expanding by perchloric acid on the performance of the resulted activated carbon

    NASA Astrophysics Data System (ADS)

    Deng, Mei-Gen; Wang, Ren-Qing

    2014-10-01

    Petroleum coke (PC) was expanded by using KMnO4 as oxidant and HClO4 as intercalator so as to decrease the amount of KOH needed for the successive activation. Activated carbon (AC) was prepared by activation of the expanded PC (EPC) at KOH/coke mass ratio of 3:1 (denoted as EAC-3). As a comparison, AC was also made by activation of PC at KOH/coke mass ratio of 3:1, 4:1 and 5:1 (denoted as AC-3, AC-4 and AC-5). Influence of expanding modification on the structure and performance of PC and AC was investigated. The results revealed that the expanding treatment increased the interplanar distance of PC microcrystalline from 0.344 to 0.362 nm and decreased the microcrystalline thickness from 2.34 to 1.57 nm. The specific surface area of EAC-3 and AC-5 was 3461 and 3291 m2ṡg-1, respectively. The average pore size of EAC-3 was 2.19 nm, which is 0.11 nm larger than that of AC-5. At a scan rate of 0.5 mVṡs-1, EAC-3 and AC-5 achieved a specific gravimetric capacitance of 486 and 429 Fṡg-1, respectively. Supercapacitor based on EAC-3 possessed lower resistance and better power performance.

  16. Analysis of results of biomass forest inventory in northeastern Amazon for development of REDD+ carbon project.

    PubMed

    Mello, Leonel N C; Sales, Marcio H R; Rosa, Luiz P

    2016-03-01

    In Brazil, a significant reduction in deforestation rates occurred during the last decade. In spite of that fact, the average annual rates are still too high, approximately 400.000 ha/year (INPE/Prodes). The projects of emissions reduction through avoided deforestation (REED+) are an important tool to reduce deforestation rates in Brazil. Understanding the amazon forest structure, in terms of biomass stock is key to design avoided deforestation strategies. In this work, we analyze data results from aboveground biomass of 1,019.346,27 hectares in the state of Pará. It was collected data from 16,722 trees in 83 random independent plots. It was tested 4 allometric equations, for DBH > 10cm: Brown et al. (1989), Brown and Lugo (1999), Chambers et al. (2000), Higuchi et al. (1998). It revealed that the biggest carbon stock of above ground biomass is stocked on the interval at DBH between 30cm and 80cm. This biomass compartment stocks 75.70% of total biomass in Higuchi et al. (1998) equation, 75.56% of total biomass in Brown et al. (1989) equation, 78.83% of total biomass in Chambers et al. (2000) equation, and 73.22% in Brown and Lugo (1999) equation. PMID:26959317

  17. DISSOLVED ORGANIC CARBON TRENDS RESULTING FROM CHANGES IN ATMOSPHERIC DEPOSITION CHEMISTRY

    EPA Science Inventory

    Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through ...

  18. Structure and single-phase regime of boron carbides

    NASA Astrophysics Data System (ADS)

    Emin, David

    1988-09-01

    The boron carbides are composed of twelve-atom icosahedral clusters which are linked by direct covalent bonds and through three-atom intericosahedral chains. The boron carbides are known to exist as a single phase with carbon concentrations from about 8 to about 20 at. %. This range of carbon concentrations is made possible by the substitution of boron and carbon atoms for one another within both the icosahedra and intericosahedral chains. The most widely accepted structural model for B4C (the boron carbide with nominally 20% carbon) has B11C icosahedra with C-B-C intericosahedral chains. Here, the free energy of the boron carbides is studied as a function of carbon concentration by considering the effects of replacing carbon atoms within B4C with boron atoms. It is concluded that entropic and energetic considerations both favor the replacement of carbon atoms with boron atoms within the intericosahedral chains, C-B-C-->C-B-B. Once the carbon concentration is so low that the vast majority of the chains are C-B-B chains, near B13C2, subsequent substitutions of carbon atoms with boron atoms occur within the icosahedra, B11C-->B12. Maxima of the free energy occur at the most ordered compositions: B4C,B13C2,B14C. This structural model, determined by studying the free energy, agrees with that previously suggested by analysis of electronic and thermal transport data. These considerations also provide an explanation for the wide single-phase regime found for boron carbides. The significant entropies associated with compositional disorder within the boron carbides, the high temperatures at which boron carbides are formed (>2000 K), and the relatively modest energies associated with replacing carbon atoms with boron atoms enable the material's entropy to be usually important in determining its composition. As a result, boron carbides are able to exist in a wide range of compositions.

  19. Differences in Chemical Composition of Soil Organic Carbon Resulting From Long-Term Fertilization Strategies

    PubMed Central

    Li, Zengqiang; Zhao, Bingzi; Wang, Qingyun; Cao, Xiaoyan; Zhang, Jiabao

    2015-01-01

    Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1–3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4–6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3–52.6% and 9.4–64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration. PMID:25884713

  20. Testing and Results of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    McMillin, Summer D.; Broerman, Craig D.; Swickrath, Michael; Anderson, Molly

    2011-01-01

    A principal concern for extravehicular activity (EVA) spacesuits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O control become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing regenerable beds has been developed by Hamilton Sundstrand. The application of solidamine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with nonregenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA implements radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrated the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or sub-ambient atmosphere.

  1. Testing and Results of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    McMillin, Summer; Broerman, Craig; Swickrath, Mike; Anderson, Molly

    2010-01-01

    A principal concern for extravehicular activity (EVA) space suits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing re-generable beds has been developed by Hamilton Sundstrand. The application of solid-amine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with non-regenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA is the first RCA unit implementing radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrate the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or subambient atmosphere.

  2. Interactions Between Mineral Surfaces, Substrates, Enzymes, and Microbes Result in Hysteretic Temperature Sensitivities and Microbial Carbon Use Efficiencies and Weaker Predicted Carbon-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Tang, J.

    2014-12-01

    We hypothesize that the large observed variability in decomposition temperature sensitivity and carbon use efficiency arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. To test this hypothesis, we developed a numerical model that integrates the Dynamic Energy Budget concept for microbial physiology, microbial trait-based community structure and competition, process-specific thermodynamically ­­based temperature sensitivity, a non-linear mineral sorption isotherm, and enzyme dynamics. We show, because mineral surfaces interact with substrates, enzymes, and microbes, both temperature sensitivity and microbial carbon use efficiency are hysteretic and highly variable. Further, by mimicking the traditional approach to interpreting soil incubation observations, we demonstrate that the conventional labile and recalcitrant substrate characterization for temperature sensitivity is flawed. In a 4 K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker carbon-climate feedbacks than did the static temperature sensitivity and carbon use efficiency model when forced with yearly, daily, and hourly variable temperatures. These results imply that current earth system models likely over-estimate the response of soil carbon stocks to global warming.

  3. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and

  4. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model

    NASA Astrophysics Data System (ADS)

    Furmaniak, Sylwester; Terzyk, Artur P.; Gauden, Piotr A.; Harris, Peter J. F.; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N2 and CO2 isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.

  5. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N(2) and CO(2) adsorption isotherms? Simulation results for a realistic carbon model.

    PubMed

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO(2), and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions. PMID:21828590

  6. Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems.

    PubMed

    Condon, Robert H; Steinberg, Deborah K; del Giorgio, Paul A; Bouvier, Thierry C; Bronk, Deborah A; Graham, William M; Ducklow, Hugh W

    2011-06-21

    Jellyfish blooms occur in many estuarine and coastal regions and may be increasing in their magnitude and extent worldwide. Voracious jellyfish predation impacts food webs by converting large quantities of carbon (C), fixed by primary producers and consumed by secondary producers, into gelatinous biomass, which restricts C transfer to higher trophic levels because jellyfish are not readily consumed by other predators. In addition, jellyfish release colloidal and dissolved organic matter (jelly-DOM), and could further influence the functioning of coastal systems by altering microbial nutrient and DOM pathways, yet the links between jellyfish and bacterioplankton metabolism and community structure are unknown. Here we report that jellyfish released substantial quantities of extremely labile C-rich DOM, relative to nitrogen (25.6 ± 31.6 C:1N), which was quickly metabolized by bacterioplankton at uptake rates two to six times that of bulk DOM pools. When jelly-DOM was consumed it was shunted toward bacterial respiration rather than production, significantly reducing bacterial growth efficiencies by 10% to 15%. Jelly-DOM also favored the rapid growth and dominance of specific bacterial phylogenetic groups (primarily γ-proteobacteria) that were rare in ambient waters, implying that jelly-DOM was channeled through a small component of the in situ microbial assemblage and thus induced large changes in community composition. Our findings suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of C toward bacterial CO(2) production and away from higher trophic levels. These results further suggest fundamental transformations in the biogeochemical functioning and biological structure of food webs associated with jellyfish blooms. PMID:21646531

  7. Thermostructural Analysis of Carbon Cloth Phenolics "Ply Lifting" and Correlation to LHMEL Test Results

    NASA Technical Reports Server (NTRS)

    Clayton, Louie

    2004-01-01

    This paper provides a discussion of the history of Carbon Cloth Phenolic (CCP) ply lifting in the Redesigned Solid Rocket Motor (RSRM) Program, a brief presentation of theoretical methods used for analytical evaluation, and results of parametric analyses of CCP material subject to test conditions of the Laser Hardened Material Evaluation Laboratory. CCP ply lift can occur in regions of the RSRM nozzle where ply angle to flame surface is generally less than about 20 degrees. There is a heat rate dependence on likelihood and severity of the condition with the higher heating rates generally producing more ply lift. The event occurs in-depth, near the heated surface, where the load necessary to mechanically separate the CCP plies is produced by the initial stages of pyrolysis gas generation due to the thermal decomposition of the phenolic resin matrix. Due to the shallow lay-up angle of the composite, normal components of the indepth mechanical load, due to "pore pressure", are imparted primarily as a cross-ply tensile force on the interlaminar ply boundaries. Tensile capability in the cross-ply (out of plane) direction is solely determined by the matrix material capability. The elevated temperature matrix material capabilities are overcome by pressure induced mechanical normal stress and ply-lift occurs. A theoretical model used for CCP in-depth temperature, pressure, and normal stress prediction, based on first principles, is briefly discussed followed by a parametric evaluation of response variables subject to boundary conditions typical of on-going test programs at the LHMEL facility. Model response demonstrates general trends observed in test and provides insight into the interactivity of material properties and constitutive relationships.

  8. 77 FR 67337 - Certain Activated Carbon From the People's Republic of China; 2010-2011; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ...The Department of Commerce (``the Department'') published its Preliminary Results of the antidumping duty order on certain activated carbon from the People's Republic of China (``PRC'') on May 4, 2012,\\1\\ and we gave interested parties an opportunity to comment on the Preliminary Results. Based upon our analysis of the comments and information received, we made changes to the margin......

  9. 78 FR 70533 - Certain Activated Carbon From the People's Republic of China: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...; 2011-2012, 78 FR 26748 (May 8, 2013) (``Preliminary Results''). DATES: Effective Date: November 26....\\12\\ \\2\\ See id. \\3\\ See id., 78 FR at 26749. \\4\\ See Memorandum to Christian Marsh, Deputy Assistant... Results, 78 FR at 26749; see also Notice of Antidumping Duty Order: Certain Activated Carbon from...

  10. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE): Results from 2011 Engineering Test Flights

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Dinardo, S. J.

    2011-12-01

    The carbon balance of Arctic ecosystems is not known with confidence since fundamental elements of the complex Arctic biological-climatologic-hydrologic system are poorly quantified. CARVE - The Carbon in Arctic Reservoirs Vulnerability Experiment - will address this key gap in science knowledge by: 1) Directly testing hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; 2) Delivering the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the critical Arctic ecozone; and 3) Demonstrating new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic. CARVE measurements and integrated science data will provide unprecedented experimental insights into Arctic carbon cycling and its response to climate change. CARVE employs a robust, flexible strategy to reconcile Arctic carbon fluxes estimated from atmospheric concentrations of CO2 and CH4 (top-down approach) with carbon fluxes estimated from coincident measurements of surface state controls (bottom-up approach). The CARVE Science Operations involve deployments in Alaska during the spring, summer, and fall each year from 2012-2014. CARVE flight plans sample multiple permafrost domains and ecosystems, and deliver detailed observations over ground-based measurement sites, fires, and burn-recovery chronosequences. CARVE flies aboard the De Havilland DHC-6 Twin Otter. The science payload consists of: JPL's Passive Active L-band System (PALS) to deliver the measurements of soil moisture, freeze/thaw state, inundation state, and surface temperature; an airborne Fourier Transform Spectrometer (FTS) to deliver total atmospheric column measurements of CO2 and CH4, and CO; and (3) an In Situ Gas Analyzer (ISGA) to deliver continuous measurements of CO2 and CH4, and CO, calibration standards, and whole air flask samples for point measurements of over 50 trace gases

  11. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  12. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  13. 78 FR 34340 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... for Revocation in Part, 77 FR 40565 (July 10, 2012). \\3\\ The Department initiated a review on the... Order; Welded Carbon Steel Standard Pipe and Tube Products from Turkey, 51 FR 17784 (May 15, 1986). The... clarification, see Antidumping and Countervailing Duty Proceedings: Assessment of Antidumping Duties, 68...

  14. 75 FR 18788 - Circular Welded Carbon Steel Pipes and Tubes from Thailand: Preliminary Results and Rescission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ...: Circular Welded Carbon Steel Pipes and Tubes from Thailand, 51 FR 8341 (March 11, 1986). On March 2, 2009..., Finding or Suspended Investigation; Opportunity to Request Administrative Review, 74 FR 9077 (March 2... Reviews and Request for Revocation in Part, 74 FR 19042 (April 27, 2009). On May 5, 2009, Pacific...

  15. 75 FR 70208 - Certain Activated Carbon From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Second Antidumping Duty Administrative Review, and Preliminary Rescission in Part, 75 FR 26927 (May 13... review was requested. See Initiation of Antidumping and Countervailing Duty Administrative Reviews, 74 FR... Administrative Review, 74 FR 31690 (July 2, 2009). \\3\\ See Certain Activated Carbon From the People's Republic...

  16. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    PubMed

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions. PMID:26990865

  17. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model

    PubMed Central

    Andersen, Lykke E.; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990–2000 and 2000–2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990–2000 to about 93 million tons per year during 2000–2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions. PMID:26990865

  18. How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods

    PubMed Central

    Endeward, Volker; Al-Samir, Samer; Itel, Fabian; Gros, Gerolf

    2013-01-01

    We review briefly how the thinking about the permeation of gases, especially CO2, across cell and artificial lipid membranes has evolved during the last 100 years. We then describe how the recent finding of a drastic effect of cholesterol on CO2 permeability of both biological and artificial membranes fundamentally alters the long-standing idea that CO2—as well as other gases—permeates all membranes with great ease. This requires revision of the widely accepted paradigm that membranes never offer a serious diffusion resistance to CO2 or other gases. Earlier observations of “CO2-impermeable membranes” can now be explained by the high cholesterol content of some membranes. Thus, cholesterol is a membrane component that nature can use to adapt membrane CO2 permeability to the functional needs of the cell. Since cholesterol serves many other cellular functions, it cannot be reduced indefinitely. We show, however, that cells that possess a high metabolic rate and/or a high rate of O2 and CO2 exchange, do require very high CO2 permeabilities that may not be achievable merely by reduction of membrane cholesterol. The article then discusses the alternative possibility of raising the CO2 permeability of a membrane by incorporating protein CO2 channels. The highly controversial issue of gas and CO2 channels is systematically and critically reviewed. It is concluded that a majority of the results considered to be reliable, is in favor of the concept of existence and functional relevance of protein gas channels. The effect of intracellular carbonic anhydrase, which has recently been proposed as an alternative mechanism to a membrane CO2 channel, is analysed quantitatively and the idea considered untenable. After a brief review of the knowledge on permeation of O2 and NO through membranes, we present a summary of the 18O method used to measure the CO2 permeability of membranes and discuss quantitatively critical questions that may be addressed to this method. PMID

  19. Hall effect in hopping regime

    NASA Astrophysics Data System (ADS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-02-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO.

  20. Regime shifts in the anthropocene: drivers, risks, and resilience.

    PubMed

    Rocha, Juan Carlos; Peterson, Garry D; Biggs, Reinette

    2015-01-01

    Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers. PMID:26267896

  1. Regime Shifts in the Anthropocene: Drivers, Risks, and Resilience

    PubMed Central

    Rocha, Juan Carlos; Peterson, Garry D.; Biggs, Reinette

    2015-01-01

    Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers. PMID:26267896

  2. Modeling of the Ablation of Fibrous Materials in the Knudsen Regime

    NASA Technical Reports Server (NTRS)

    Lachaud, J.; Mansour, N. N.

    2008-01-01

    During atmospheric entry of planetary probes, the thermal protection system (TPS) of the probe is exposed to high temperatures under low pressures. In these conditions, carbonous TPS materials undergo gasification in the Knudsen regime leading to mass loss and wall recession called ablation. This work aims to improve the understanding of materiaVenvironment interactions through a study of the coupling between carbon dioxide transport in the Knudsen regime, heterogeneous oxidation of carbon, and sutface recession. A 3D Monte-Carlo simulation tool is used for this study. The fibrous architecture of the materiils, consisting of high porosity random array of carbon fibers, is numerically reproduced on a 3D Cartesian grid. Mass transport in the Knudsen regime from the boundary layer to the surface, and inside this porous material is simulated by random walk. A reaction probability is used to simulate the heterogeneous oxidation reaction. The surface recession is followed by front tracking using a simplified marching cube approach. The output data of the simulations are ablation velocity and dynamic evolution of the material porosity. A parametric study is carried out to analyze the material behavior as a function of Knudsen number for the porous media (length of the mean free path compared to the mean pore diameter) and the intrinsic reactivity of the carbon fibers. The results enable extrapolation of laboratory experimental data to actual entry conditions.

  3. 77 FR 13545 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Antidumping Duty Administrative Review 76 FR 67407 (November 1, 2011) (Preliminary Results). \\2\\ We determined... Changed Circumstances Review: Carbon and Certain Alloy Steel Wire Rod from Mexico, 76 FR 45509 (July 29... Countervailing Duty Proceedings: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003) (Assessment...

  4. 75 FR 64254 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products From Brazil; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... Antidumping Duty Administrative Review and Extension of Time Limit for the Final Results, 75 FR 19369 (April... Carbon-Quality Steel Products from the Russian Federation, 65 FR 5510, 5518 (February 4, 2000) (Russian...: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). This clarification will apply to entries...

  5. 75 FR 43488 - Certain Hot-Rolled Carbon Steel Flat Products From India: Final Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Hot-Rolled Carbon Steel Flat Products from India, 66 FR 60198 (December 3, 2001). On February 2, 2009...; 75 FR 1495 (January 11, 2010) (Preliminary Results). We preliminarily found that Tata Steel Limited... Countervailing Duty Administrative Reviews and Requests for Revocation in Part, 74 FR 5821 (February 2,...

  6. 76 FR 33204 - Certain Welded Carbon Steel Pipe and Tube From Turkey; Notice of Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Results of Antidumping Duty Administrative Review, 75 FR 6627 (February 10, 2010) (``SSSS from Mexico..., 75 FR 37759 (June 30, 2010) (``Review Initiation'').\\1\\ This review covers the Borusan Group \\2... Order; Welded Carbon Steel Standard Pipe and Tube Products From Turkey, 51 FR 17784 (May 15,...

  7. 78 FR 60850 - Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of the Expedited Second Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Alloy Steel Wire Rod from Brazil, 67 FR 55805 (August 30, 2002). \\2\\ See Initiation of Five-Year (``Sunset'') Review, 78 FR 33063 (June 3, 2013). On June 18, 2013, the Department received a notice of... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of...

  8. 75 FR 33262 - Certain Welded Carbon Steel Pipe and Tube from Turkey: Notice of Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Turkey, 51 FR 17784 (May 15, 1986) (``Antidumping Duty Order''). On May 1, 2009, the Department published... and Tube From Turkey, 74 FR 6368 (February 9, 2009), unchanged in Certain Welded Carbon Steel Pipe and Tube from Turkey: Notice of Final Results of Antidumping Duty Administrative Review, 74 FR 22883...

  9. Fracture trace map and single-well aquifer test results in a carbonate aquifer in Berkeley County, West Virginia

    USGS Publications Warehouse

    McCoy, Kurt J.; Podwysocki, Melvin H.; Crider, E. Allen; Weary, David J.

    2005-01-01

    These data contain information on the results of single-well aquifer tests, lineament analysis, and a bedrock geologic map compilation for the low-lying carbonate and shale areas of eastern Berkeley County, West Virginia. Efforts have been initiated by management agencies of Berkeley County in cooperation with the U.S. Geological Survey to further the understanding of the spatial distribution of fractures in the carbonate regions and their correlation with aquifer properties. This report presents transmissivity values from about 200 single-well aquifer tests and a map of fracture-traces determined from aerial photos and field investigations. Transmissivity values were compared to geologic factors possibly affecting its magnitude.

  10. Solid and Gas-Phase Spectroscopy of Cosmic Carbon Analogs: Results and Perspectives

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The laboratory studies of interstellar carbon materials analogs (PAHs, Fullerenes, chains) will be discussed with their advantages and limitations from the point of view of the application to astrophysical processes. The discussion will focus on the newest generation of laboratory experiments that has been developed in order to provide a closer simulation of space environments and a better support to space missions. The astrophysical implications and future perspectives will be stressed.

  11. Carbon isotope analysis of conodont organic material--Procedure and preliminary results

    SciTech Connect

    Over, D.J. . Dept. of Geological Sciences); Grossman, E.L. )

    1992-01-01

    Conodonts, the phosphatic microfossil remains of an extinct pelagic animal, are well suited for isotopic studies of Paleozoic marine organic carbon. The author report here what they believe are the first delta C-13 data for the organic matrix of conodont elements. Conodont delta C-13 values (PDB) for Upper Devonian Palmatolepis platform elements from a single interval of the Chappel Limestones in Texas range from [minus]24.5 to [minus]25.6 [per thousand] (n = 5). Lower Carboniferous Siphonodella platform elements from the same interval in the Chappel Limestone range from [minus]26.3 to [minus]27.3 [per thousand] (n = 2). Upper Carboniferous Streptognathodus elegantulus platform elements from four intervals in a 3.9 m section of the Necessity Shale in Texas range from [minus]23.0 to [minus]24.0 [per thousand] (n = 4). delta C-13 values also differ significantly between the three sample groups. Average values were [minus]4.7, [minus]7.1, and [minus]8.3 [per thousand] respectively, however, the relevance of these values is unclear. The conodont organic carbon isotopic values are within the range of delta C-13 values in sedimentary organic matter of late Paleozoic age. Although the data are limited, they show that significant isotopic differences occur between genera and between stratigraphically separate units. These isotopic differences in delta C-13 may be related to local changes in source of organic carbon, global changes in the carbon budget, or to dietary differences among conodont animals. Future study is directed toward evaluating the importance of each of these factors.

  12. JPL Carbon Dioxide Laser Absorption Spectrometer Data Processing Results for the 2010 Flight Campaign

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Spiers, Gary D.; Menzie, Robert T.; Christensen, Lance E.

    2011-01-01

    As a precursor to and validation of the core technology necessary for NASA's Active Sensing of CO2 Emissions over Nights, Days,and Seasons (ASCENDS) mission, we flew JPL's Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) in a campaign of five flights onboard NASA's DC-8 Airborne Laboratory in July 2010. This is the latest in a series of annual flight campaigns that began in 2006, and our first on the DC-8 aircraft.

  13. CO2 release due to impact devolatilization of carbonate: Results of shock experiments

    NASA Astrophysics Data System (ADS)

    Bell, Mary Sue

    2016-04-01

    A study of pure, single crystal calcite shocked to pressures from 9.0 to 60.8 GPa was conducted to address contradictory data for carbonate shock behavior. The recovered materials were analyzed optically and by transmission electron microscopy (TEM), as well as by thermogravimetry (TGA), X-ray diffraction (XRD), and Raman-spectroscopy. In thin section, progressive comminution of calcite is observed although grains remain birefringent to at least 60.8 GPa. TGA analysis reveals a positive correlation between percent of mass loss due to shock and increasing shock pressure (R = 0.77) and suggests that shock loading leads to the modest removal of structural volatiles in this pressure range. XRD patterns of shocked Iceland spar samples produce peaks that are qualitatively and quantitatively less intense, more diffuse, and shift to lower o2θ. However, the regularity observed in these shocked powder patterns suggests that structures with very uniform unit cell separations persist to shock pressures as high as 60.8 GPa. Raman spectral analyses indicate no band asymmetry and no systematic peak shifting or broadening. TEM micrographs display progressively diminishing crystallite domain sizes. Selected area electron diffraction (SAED) patterns reveal no signatures of amorphous material. These data show that essentially intact calcite is recovered at shock pressures up to 60.8 GPa with only slight mass loss (~7%). This work suggests that the amount of CO2 gas derived from shock devolatilization of carbonate by large meteorite impacts into carbonate targets has been (substantially) overestimated.

  14. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    PubMed

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-01

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential). PMID:25093939

  15. Regimes of DNA confined in a nanochannel

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Doyle, Patrick

    2014-03-01

    Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. In the literature, there is no clear consensus regarding the intermediate region and if subregimes even exist to connect these two classic bounding regimes. The confluence of emerging single DNA mapping technologies and a resurged interest in the fundamental properties of confined polymers has led to extensive research in this area using DNA as a model system. Due to the DNA molecule's properties and limitations of nanofabrication, most experiments are performed in this intermediate regime with channel dimensions of a few Kuhn lengths. Here we use simulations and theory to reconcile conflicting theories and show that there are indeed extended de Gennes, partial alignment and hairpin regimes located between the two classic regimes. Simulations results for both chain extension and free energy support the existence of these regimes. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (CBET-1335938).

  16. Regimes of Helium Burning

    SciTech Connect

    Timmes, F. X.; Niemeyer, J. C.

    2000-07-10

    The burning regimes encountered by laminar deflagrations and Zeldovich von Neumann Doering [ZND] detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts that start with a thermonuclear runaway on the surface of a neutron star and to the thin-shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial direction encounter a transition from the distributed regime to the flamelet regime at a density of {approx}108 g cm-3. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}106 g cm-3. Self-sustained laminar deflagrations traveling in the radial direction cannot exist below this density. Similarly, the planar ZND detonation width becomes larger than the pressure scale height at {approx}107 g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. In the thin helium shell case, turbulent deflagrations traveling in the lateral or radial direction encounter the distributed regime at densities below {approx}107 g cm-3 and the flamelet regime at larger densities. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than {approx}104 g cm-3, indicating that steady state laminar deflagrations cannot form below this density. The planar ZND detonation width becomes larger than the pressure scale height at {approx}5x10{sup 4} g cm-3, suggesting that steady state, self-sustained detonations cannot come into existence in the radial direction. (c) 2000 The American Astronomical Society.

  17. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.

    PubMed

    van Zomeren, André; van der Laan, Sieger R; Kobesen, Hans B A; Huijgen, Wouter J J; Comans, Rob N J

    2011-11-01

    Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO2 pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 °C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO2 and the resulting pH reduction occurred within 24h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted. The pH of the K3 slag (originally pH±12.5) was reduced by about 1.5 units, while the K1 slag showed a smaller decrease in pH from about 11.7 to 11.1. However, the pH reduction after carbonation of the K3 slag was observed to lead to an increased V-leaching. Vanadium leaching from the K1 slag resulted in levels above the limit values of the Dutch Soil Quality Decree, for both the untreated and carbonated slag. V-leaching from the carbonated K3 slag remained

  18. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  19. He-accreting white dwarfs: accretion regimes and final outcomes

    NASA Astrophysics Data System (ADS)

    Piersanti, L.; Tornambé, A.; Yungelson, L. R.

    2014-12-01

    The behaviour of carbon-oxygen (CO) white dwarfs (WDs) subject to direct helium accretion is extensively studied. We aim to analyse the thermal response of an accreting WD to mass deposition at different timescales. The analysis has been performed for initial WD masses and accretion rates in the range 0.60-1.02 M⊙ and 10-9-10-5 M⊙ yr-1, respectively. Thermal regimes in the parameter space MWD-dot{M}_He leading to formation of red-giant-like structures, steady burning of He, and mild, strong and dynamical flashes have been identified and the transition between these regimes has been studied in detail. In particular, the physical properties of WDs experiencing the He-flash accretion regime have been investigated to determine the mass retention efficiency as a function of the accretor total mass and accretion rate. We also discuss to what extent the building up of a He-rich layer via H burning could be described according to the behaviour of models accreting He-rich matter directly. Polynomial fits to the obtained results are provided for use in binary population synthesis computations. Several applications for close binary systems with He-rich donors and CO WD accretors are considered and the relevance of the results for interpreting He novae is discussed.

  20. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  1. Diagenesis of bank margin carbonates monitors glacio-eustacy: modeling and core study results

    SciTech Connect

    Matthews, R.K.; Al-Saqri, K.; Frohlich, C.

    1985-01-01

    Subsiding bank margin carbonates provide a monitoring system for high frequency sea level fluctuations. When sea level rises, new reefs and skeletal sands accumulate to near high-stand sea level. When sea level falls, subaerial exposure and related meteoric and mixed water diagenesis rapidly impart their mineralogic, isotopic, chemical, and petrographic signature on the strata. The authors model the interaction of fluctuating sea level (Milankovitch frequencies) and subsiding bank margin carbonates. Characteristic diagenetic lithologies occur seemingly randomly interbedded and unrelatable to specific subaerial exposure surfaces. This is similar to the pattern observed in Eocene bank margin skeletal sands of Kirkuk Field, Iraq. Meteoric diagenesis dominates the upper 35 meters of the authors core. The next 85 meters contain randomly alternating beds of meteoric limestone, mixed water dolomite, and limestone with well-preserved skeletal grains. This sequence is consistent with rapid glacio-eustatic fluctuations of Late Eocene sea level followed by a 35 to 50 meter glacio-eustatic lowering of average sea level at or near Eocene/Oligocene boundary.

  2. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy.

    PubMed

    Caserini, Stefano; Galante, Silvia; Ozgen, Senem; Cucco, Sara; de Gregorio, Katia; Moretti, Marco

    2013-04-15

    This paper presents a methodology and its application for the compilation of elemental carbon (EC) and organic carbon (OC) emission inventories. The methodology consists of the estimation of EC and OC emissions from available total suspended particulate matter (TSP) emission inventory data using EC and OC abundances in TSP derived from an extensive literature review, by taking into account the local technological context. In particular, the method is applied to the 2008 emissions of Lombardy region, Italy, considering 148 different activities and 30 types of fuels, typical of Western Europe. The abundances estimated in this study may provide a useful basis to assess the emissions also in other emission contexts with similar prevailing sources and technologies. The dominant sources of EC and OC in Lombardy are diesel vehicles for EC and the residential wood combustion (RWC) for OC which together account for about 83% of the total emissions of both pollutants. The EC and OC emissions from industrial processes and other fuel (e.g., gasoline, kerosene and LPG) combustion are significantly lower, while non-combustion sources give an almost negligible contribution. Total EC+OC contribution to regional greenhouse gas emissions is positive for every sector assuming whichever GWP100 value within the range proposed in literature. An uncertainty assessment is performed through a Monte Carlo simulation for RWC, showing a large uncertainty range (280% of the mean value for EC and 70% for OC), whereas for road transport a qualitative analysis identified a narrower range of uncertainty. PMID:23454906

  3. Translaminar fracture toughness test methods and results from interlaboratory tests of carbon/epoxy laminates

    SciTech Connect

    Underwood, J.H.; Kortschot, M.T.; Lloyd, W.R.; Eidinoff, H.L.; Wilson, D.A.; Ashbaugh, N.

    1995-12-31

    Fracture tests were performed with carbon/polymer laminates and analyzed for the purpose of developing translaminar fracture toughness test and analysis procedures. Notched specimens were tested of two types of symmetrical layups--quasi-isotropic [0/45/90] and [0/90]; two carbon fiber/epoxy materials--a relatively brittle T300 fiber/976 epoxy and a tougher AS4 fiber/977-2 epoxy; two laminate thicknesses--2 mm and 4 mm; and three specimen configurations--the standard three-point bend and compact configurations, and an extended compact specimen with arm-height to specimen-width ratio of 1.9. Stress and displacement expressions were obtained for the extended compact specimen, including those for stress intensity factor, K, and crack mouth opening displacement, V, in terms of relative notch length, a/W, and for a/W in terms of V. Relationships for the bending stresses that control self-similar and off-axis cracking for the extended compact specimen were derived.

  4. Health effects of carbon-containing particulate matter: focus on sources and recent research program results.

    PubMed

    Rohr, Annette; McDonald, Jacob

    2016-02-01

    Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue. PMID:26635181

  5. Results of a European interlaboratory comparison on CO2 sorption on activated carbon and coals

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Busch, Andreas; Krooss, Bernhard; de Weireld, Guy; Billemont, Pierre; van Hemert, Patrick; Wolf, Karl-Heinz

    2013-04-01

    For the assessment of CO2 storage in coal seams or enhanced coalbed methane production (ECBM), the sorption properties of natural coals are important parameters. Since more and more laboratories worldwide are concerned with measurements of gas sorption on coal it is indispensable to establish quality standards for such experiments. The first two interlaboratory studies on CO2 sorption on coal (Goodman et al. 2004, 2007) revealed a poor agreement of sorption isotherms among the participating laboratories, particularly in the high-pressure range. During the MOVECBM (http://www.movecbm.eu/) project funded by the European Commission (6th framework), an interlaboratory comparison of CO2 sorption on selected coals and activated carbon was initiated. Measurements were performed on dry samples at 45° C using the manometric and the gravimetric method. up to a final pressure of 15 MPa. The first set of high-pressure sorption measurements was performed on a Filtrasorb 400 activated carbon sample in order to minimise heterogeneity effects and to optimize the experimental procedures for the individual (manometric or gravimetric) methods (Gensterblum et al. 2009). Since comparability for the activated carbon was excellent, the measurements were continued using natural coals of various rank (anthracite, bituminous coal and lignite) to study the influence of heterogeneities and varying starting conditions on the CO2 sorption properties (Gensterblum et al. 2010). Compared to the poor reproducibility observed in previous interlaboratory studies (Goodman et al., 2004, 2007) this European study showed excellent agreement (<5 % deviation) among the participating laboratories with good repeatability. The sorption data and technical information on the different experimental setups have been used to investigate errors and potential pitfalls in the assessment of high-pressure CO2 sorption isotherms. References Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, B.M. Krooss, G. de

  6. Dynamic Treatment Regimes

    PubMed Central

    Chakraborty, Bibhas; Murphy, Susan A.

    2014-01-01

    A dynamic treatment regime consists of a sequence of decision rules, one per stage of intervention, that dictate how to individualize treatments to patients based on evolving treatment and covariate history. These regimes are particularly useful for managing chronic disorders, and fit well into the larger paradigm of personalized medicine. They provide one way to operationalize a clinical decision support system. Statistics plays a key role in the construction of evidence-based dynamic treatment regimes – informing best study design as well as efficient estimation and valid inference. Due to the many novel methodological challenges it offers, this area has been growing in popularity among statisticians in recent years. In this article, we review the key developments in this exciting field of research. In particular, we discuss the sequential multiple assignment randomized trial designs, estimation techniques like Q-learning and marginal structural models, and several inference techniques designed to address the associated non-standard asymptotics. We reference software, whenever available. We also outline some important future directions. PMID:25401119

  7. Preliminary Results from the NASA Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Eldering, A.; Gunson, M. R.

    2014-12-01

    The NASA Orbiting Carbon Observatory - 2 (OCO-2) was successfully launched from Vandenberg Air Force Base at 9:56:44 UTC on July 2, 2014. After a series of spacecraft checkout activities and orbit raising maneuvers, OCO-2 was inserted at the front of the 705-km Afternoon constellation (A-Train) on August 3rd. This presentation will summarize the science objectives, review the measurement approach, and introduce some preliminary data from the first few months of operation. OCO-2 was designed to return estimates of the column-averaged atmospheric carbon dioxide (CO2) dry air mole fraction (XCO2) with the precision, resolution, and coverage needed to quantify CO2 surface fluxes on regional scales. To meet these goals, it carries and points a 3-channel grating spectrometer that collects high resolution, co-bore-sighted spectra of reflected sunlight in the 765 nm O2 A-band and in the CO2 bands centered near 1610 and 2060 nm. Each channel records 24 spectra per second along a narrow (< 0.8-degree) track, returning about one million soundings each day. At least 10% of these soundings are expected to be sufficiently cloud free to yield full-column estimates of XCO2with single-sounding accuracies of 0.25 % on regional scales at monthly intervals. The instrument is calibrated using on-board sources and targets, the Moon, well-characterized surface sites (Pollock et al. this session), and comparisons with nearly-coincident observations from the Japanese Greenhouse gases Observing SATellite (GOSAT; Kuze et al. this session). Cloudy soundings are identified and screened out (Taylor et al. this session) and the remaining soundings are analyzed to yield spatially-resolved estimates of XCO2 and other geophysical products (c.f. Frankenberg et al. this session). OCO-2 XCO2 estimates are then validated against those from the Total Carbon Column Observing Network (TCCON) to assess their accuracy and precision (Wennberg et al. this session). Preliminary products from each step of this

  8. Microbial Growth and Air Pollutants in the Corrosion of Carbonate Rocks: Results from Laboratory and Outdoor Experimental Tests

    NASA Astrophysics Data System (ADS)

    Moroni, B.; Poli, G.; Pitzurra, L.

    2003-04-01

    Microorganisms and atmospheric pollution are primary causes of deterioration of materials exposed to open air. Due to the variety of chemical-mineralogical compositions and textures, stone represents a variegated substrate that interacts with environmental fluids and particulate, and is a selective environment for biological proliferation. Carbonate rocks, in particular, are highly exposed to environmental decay and extremely susceptible to acid attack caused by atmospheric pollutants and metabolic acid production. The aim of this work is to study the combined effect of microbial contamination and atmospheric pollutants in the weathering of carbonate rocks by means of laboratory and outdoor exposure tests. Laboratory experiments performed on carbonate rocks allowed evaluation of the influence of the gas mixture in the chemical modifications of the lithic substrate, and formulation of a kinetic model of sulphation. The obtained results suggest that nucleation alternates with growth as leading processes in the development of sulphation. In particular, nucleation of the reaction products is the leading process in the initial period of sulphation, which is characterized by a marked slowdown of the reaction progress, whereas growth of the products is the leading process in the subsequent period of resumption of sulphation. In situ experiments performed by exposing limestone specimens at two air monitoring stations in Perugia with different degrees of urban air pollution showed high levels of fungal colonization at early times and the presence of weathering products (i.e. gypsum) in the longer term. Results point to a combined effect of microbial colonization and atmospheric pollutants in promoting the weathering of stone through acid attack within the film of water present on the surface of the exposed material, and through the oxidation of metal sulphide particulate pollutant to sulphate. Laboratory tests assaying the extent of fungal colonization and/or chemical

  9. Climate change impacts on the vegetation carbon cycle of the Iberian Peninsula—Intercomparison of CMIP5 results

    NASA Astrophysics Data System (ADS)

    Aparício, Sara; Carvalhais, Nuno; Seixas, Júlia

    2015-04-01

    The vulnerability of a water-limited region like the Iberian Peninsula (IP) to climate changes drives a great concern and interest in understanding its impacts on the carbon cycle, namely, in terms of biomass production. This study assesses the effects of climate change and rising CO2 on forest growth, carbon sequestration, and water-use efficiency on the IP by late 21st century using 12 models from the CMIP5 project (Coupled Model Intercomparison Project Phase 5). We find a strong agreement among the models under representative concentration pathway 4.5 (RCP4.5) scenario, mostly regarding projected forest growth and increased primary production (13, 9% of gross primary production (GPP) increase projected by the models ensemble). Under RCP8.5 scenario, the results are less conclusive, as seven models project both GPP and net primary production to increase (up to 83% and 69%, respectively), while the remaining four models project the IP as a potential carbon source by late century. Divergences in carbon mass in wood predictions could be attributed to model structures, such as the N cycle, land model component, land cover data and parameterization, and distinct clusters of Earth System Models (ESMs). ESMs divergences in carbon feedbacks are likely being highly impacted by parameterization divergences and susceptibility to climate change and CO2 fertilization effect. Despite projected rainfall reductions, we observe a strong agreement between models regarding the increase of water-use efficiency (by 21% and 34%) under RCP4.5 and RCP8.5, respectively. Results suggest that rising CO2 has the potential to partially alleviate the adverse effects of drought.

  10. Black Carbon Emissions from In-use Ships: Results from CalNex 2010

    NASA Astrophysics Data System (ADS)

    Buffaloe, Gina Marise

    Black carbon (BC) mass emission factors (EFBC; g-BC (kg-fuel)--1) from a variety of ocean going vessels have been determined from measurements of BC and CO2 concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex) campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels. Black carbon concentrations within the plumes, from which EFBC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. The measured EFBC have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EFBC, determined from over 71 vessels and 135 plumes encountered, was 0.31 g-BC (kg-fuel)--1. The most frequent engine type encountered was the slow speed diesel (SSD), and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EF BC values from these two categories are compared to previous observations from the Texas Air Quality Study (TexAQS) in 2006, in which the ships encountered were predominately operating high sulphur fuels. There is some indication that the EFBC values for SSD vessels during CalNex were lower than during TexAQS, although ship-to-ship variability in these data sets makes it difficult to draw firm conclusions about the influence of fuel quality on EFBC.

  11. Cryogenic cave carbonates as an archive of Late Pleistocene permafrost in the Ural Mountains: preliminary results

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri; Kadebskaya, Olga; Cheng, Hai; Luetscher, Mark; Spötl, Christoph

    2015-04-01

    A specific type of cave deposits, cryogenic cave carbonates (CCCs), was discovered in the late 1980s in several caves of Central Europe. Unlike 'common' speleothems that form primarily due to degassing of CO2 from Ca2+ and HCO3- -rich waters, CCCs form by freezing-induced segregation (Žák et al., 2004). The formation of CCCs, hence, requires the presence of both liquid water and freezing temperatures. The latter combination may occur in caves in two situations: (1) freezing-thawing cycles in cave entrance zones; and (2) degrading permafrost conditions, when the active layer reaches the cave ceiling, whilst the deeper parts of the cave remain frozen. The latter situation is associated with a particular type of CCCs, which can be used as a marker for permafrost conditions. Because cave carbonates can be accurately dated using the U/Th method, CCCs may be used to identify events of (degrading) palaeo-permafrost conditions. In this study, CCCs were identified and sampled in four caves, located along a 1000 km-long transect from the northern to the southern Ural Associating the CCCs to permafrost conditions was possible on the basis of field observations (locations deep inside the cave, far from entrance zones) and stable isotope properties (strongly depleted δ18O values, inverse correlation between δ18O and δ13C). Chaikovskiy et al. (2014) reported five U/Th analyses of CCC from three caves: 16.7 ka and 104.8 ka (Divja Cave, northern Ural); and 13.4 ka, 86.5 ka and 125.3 ka (Rossijskaya and Usvinskaya Caves, central Ural). In this study we report 25 additional U/Th ages from northern and central Ural, as well as the first CCC age from southern Ural (Shulgan-Tash Cave). Most of the younger ages (

  12. First results on stable isotopes in fluid inclusions in cryogenic carbonates from Ural Mountains (Russia)

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri; Luetscher, Mark; Spötl, Christoph; Töchterle, Paul; Kadebskaya, Olga

    2015-04-01

    Cryogenic cave carbonates (CCC) were found in a number of caves in the Ural. In contrast to the CCC previously reported from Central Europe, the Uralian CCC have larger sizes (up to 4-5 cm), which allows for more detailed petrographic and geochemical studies. CCCs from Uralian caves commonly show spherulitic shapes due to crystal splitting, supporting the model of calcite precipitating in a freezing water pond. δ18O values of studied CCCs are lower by 1 to 14 o compared to noncryogenic speleothems of Pleistocene and Holocene age from the same caves. δ18O and δ13C values are inversely correlated and typically show a fractionation between the core and the rim of individual samples. These trends are similar to those reported for CCCs from European caves (Žák et al., 2004). Petrographic observations performed on doubly polished, 100-150 micron-thick sections revealed abundant fluid inclusions, trapped between fibres of the spherulites. Petrographic relationships suggest that these inclusions are primary. The isotopic composition of water trapped in fluid inclusions in CCCs from two caves was analyzed following mechanical crushing at 120 °C, cryo-trapping of released water, pyrolysis on glassy carbon at 1400 °C (TC/EA device; Thermo), and analysis of the evolved gases on an isotope ratio mass spectrometer (Delta V Advantage; Thermo Fisher). The lack of peaks on the m/z 2 trace during the heating of the loaded crushing cell attests for a good sealing of the fluid inclusions. The measured δD values range between -136 o and -145 o VSMOW. The values measured in CCCs are more negative than the typical values of fluid inclusion water measured in the Holocene stalagmites from central Ural (-99 to -108 ). This shift toward more negative values is attributed to the isotopic fractionation between ice and water during the freezing. Reference: Žák et al., 2004, Chemical Geology, 2006, 119-136.

  13. Carbon dioxide laser vaporization of the inferior turbinate for allergic rhinitis: short-term results.

    PubMed

    Imamura, Shun-ichi; Honda, Hideyuki

    2003-12-01

    Carbon dioxide laser vaporization of the turbinate has recently become accepted as a common treatment for allergic rhinitis. Usually, only a single procedure is applied to minimize trauma. However, repeated procedures on separate days are often required to achieve an adequate effect. Therefore, we attempted a new method of vaporization and evaluated the outcome, and also tried to determine which patients have good indications for laser treatment. To widely and deeply vaporize the inferior turbinate, we repeated the procedure 3 times in 1 session after removing the carbon coating from the previous vaporization under nasal endoscopic observation. After the procedure, most patients experienced complete nasal obstruction for 2 or 3 days, but there was no intraoperative or postoperative bleeding or severe pain. All patients obtained improvement of their chief complaints and were satisfied 2 months after the operation. In particular, 60% of the patients were completely relieved of refractory nasal obstruction. Most patients were more satisfied with the effects than are those treated by the usual methods. Completely successful cases (improvement in all symptoms and complete satisfaction obtained) were selected and were compared with other cases. Favorable prognostic factors are more severe complaints, longer symptomatic periods, stronger allergic reactions, and worse nasal resistance and its greater improvement with administration of decongestant nasal drops. This method may be especially accepted by patients with severe complaints, in particular nasal obstruction, who do not experience enough relief with conservative therapies or have enough time to make frequent visits to an outpatient clinic over a period of several weeks. PMID:14703108

  14. Gas flaring and resultant air pollution: A review focusing on black carbon.

    PubMed

    Fawole, Olusegun G; Cai, X-M; MacKenzie, A R

    2016-09-01

    Gas flaring is a prominent source of VOCs, CO, CO2, SO2, PAH, NOX and soot (black carbon), all of which are important pollutants which interact, directly and indirectly, in the Earth's climatic processes. Globally, over 130 billion cubic metres of gas are flared annually. We review the contribution of gas flaring to air pollution on local, regional and global scales, with special emphasis on black carbon (BC, "soot"). The temporal and spatial characteristics of gas flaring distinguishes it from mobile combustion sources (transport), while the open-flame nature of gas flaring distinguishes it from industrial point-sources; the high temperature, flame control, and spatial compactness distinguishes gas flaring from both biomass burning and domestic fuel-use. All of these distinguishing factors influence the quantity and characteristics of BC production from gas flaring, so that it is important to consider this source separately in emissions inventories and environmental field studies. Estimate of the yield of pollutants from gas flaring have, to date, paid little or no attention to the emission of BC with the assumption often being made that flaring produces a smokeless flame. In gas flares, soot yield is known to depend on a number of factors, and there is a need to develop emission estimates and modelling frameworks that take these factors into consideration. Hence, emission inventories, especially of the soot yield from gas flaring should give adequate consideration to the variation of fuel gas composition, and to combustion characteristics, which are strong determinants of the nature and quantity of pollutants emitted. The buoyant nature of gas flaring plume, often at temperatures in the range of 2000 K, coupled with the height of the stack enables some of the pollutants to escape further into the free troposphere aiding their long-range transport, which is often not well-captured by model studies. PMID:27262132

  15. A quantitative comparison of Soil Development in four climatic regimes

    USGS Publications Warehouse

    Harden, J.W.; Taylor, E.M.

    1983-01-01

    A new quantitative Soil Development Index based on field data has been applied to chronosequences formed under different climatic regimes. The four soil chronosequences, developed primarily on sandy deposits, have some numeric age control and are located in xeric-inland (Merced, Calif.), xeric-coastal (Ventura, Calif.), aridic (Las Cruces, N. Mex.), and udic (Susquehanna Valley, Pa.) soil-moisture regimes. To quantify field properties, points are assigned for developmental increases in soil properties in comparison to the parent material. Currently ten soil-field properties are quantified and normalized for each horizon in a given chronosequence, including two new properties for carbonate-rich soils in addition to the eight properties previously defined. When individual properties or the combined indexes are plotted as a function of numeric age, rates of soil development can be compared in different climates. The results demonstrate that (1) the Soil Development Index can be applied to very different soil types, (2) many field properties develop systematically in different climatic regimes, (3) certain properties appear to have similar rates of development in different climates, and (4) the Profile Index that combines different field properties increases significantly with age and appears to develop at similar rates in different climates. The Soil Development Index can serve as a preliminary guide to soil age where other age control is lacking and can be used to correlate deposits of different geographical and climatic regions. ?? 1983.

  16. Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; d'Ovidio, F.

    2014-12-01

    The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second Kerguelen Ocean and Plateau compared Study expedition (KEOPS2) in austral spring (October-November 2011), one Carioca buoy was deployed east of the Kerguelen plateau. It drifted eastward downstream in the Kerguelen plume. Hourly surface measurements of pCO2, O2 and ancillary observations were collected between 1 November 2011 to 12 February 2012 with the aim of characterizing the spatial and temporal variability of the biological Net Community Production (NCP) downstream the Kerguelen plateau, assess the impact of iron-induced productivity on the biological carbon consumption and consequently on the CO2 flux exchanged at the air-sea interface. The trajectory of the buoy until mid-December was within the longitude range, 72-83° E, close to the polar front and then in the polar frontal zone, PFZ, until 97° E. From 17 November to 16 December, the buoy drifted within the Kerguelen plume following a filament carrying dissolved iron, DFe, for a total distance of 700 km. In the first part of the trajectory, the ocean surface waters are a sink for CO2 and a source for CO2, with fluxes of respective mean values equal to -8 and +38 mmol CO2 m-2 d-1. Eastward, as the buoy escapes the iron enriched filament, the fluxes are in opposite direction, with respective mean values of +5 and -48 mmol O2 m-2 d-1. These numbers clearly indicate the strong impact of biological processes on the biogeochemistry in the surface waters within the Kerguelen plume in November-mid-December, while it is undetectable eastward in the PFZ from mid-December to mid-February. While the buoy follows the Fe enriched filament, simultaneous observations of dissolved inorganic carbon, DIC, and dissolved oxygen, O2, highlight biological events lasting from 2 to 4 days. Stoichiometric ratios, O2/C, between 1.1 and 1.4 are

  17. [Factors influencing the spatial variability in soil respiration under different land use regimes].

    PubMed

    Chen, Shu-Tao; Liu, Qiao-Hui; Hu, Zheng-Hua; Liu, Yan; Ren, Jing-Quan; Xie, Wei

    2013-03-01

    In order to investigate the factors influencing the spatial variability in soil respiration under different land use regimes, field experiments were performed. Soil respiration and relevant environment, vegetation and soil factors were measured. The spatial variability in soil respiration and the relationship between soil respiration and these measured factors were investigated. Results indicated that land use regimes had significant effects on soil respiration. Soil respiration varied significantly (P < 0.001) among different land use regimes. Soil respiration rates ranged from 1.82 to 7.46 micromol x (m2 x s)(-1), with a difference of 5.62 micromol x (m2 x s)(-1) between the highest and lowest respiration rates. Soil organic carbon was a key factor controlling the spatial variability in soil respiration. In all, ecosystems studied, the relationship between soil respiration and soil organic carbon content can be described by a power function. Soil respiration increased with the increase of soil organic carbon. In forest ecosystem, the relationship between soil respiration and diameter at breast height (DBH) of trees can be explained by a natural logarithmic function. A model composed of soil organic carbon (C, %), available phosphorous (AP, g x kg(-1)) and diameter at breast height (DBH, cm) explained 92.8% spatial variability in soil respiration for forest ecosystems. PMID:23745410

  18. The relationship between void waves and flow regime transition

    SciTech Connect

    Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.

    1992-12-31

    The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.

  19. Carbon and hydrogen isotopic compositions of stratospheric methane: 2. Two-dimensional model results and implications for kinetic isotope effects

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Boering, K. A.; Rice, A. L.; Tyler, S. C.; Connell, P.; Atlas, E.

    2003-08-01

    New high-precision measurements of the carbon and hydrogen isotopic compositions of stratospheric CH4 made on whole air samples collected aboard the NASA ER-2 aircraft are compared with results from the Lawrence Livermore National Laboratory 2-D model. Model runs incorporating sets of experimentally determined kinetic isotope effects (KIEs) for the reactions of CH4 with each of the oxidants OH, O(1D), and Cl are examined with the goals of determining (1) how well the 2-D model can reproduce the observations for both the carbon and hydrogen isotopic compositions, (2) what factors are responsible for the observed increase in the apparent isotopic fractionation factors with decreasing methane mixing ratios, and (3) how sensitive the modeled isotopic compositions are to various experimentally determined KIEs. Bound by estimates of the effects of uncertainties in model chemistry and transport on isotopic compositions, we then examine the constraints the ER-2 observations place on values for the KIEs. For the carbon KIE for reaction of CH4 with O(1D), for example, the analysis of model results and observations favors the larger of the experimental values, 1.013, over a value of 1.001. These analyses also suggest that intercomparisons of results from different models using a given set of KIEs may be useful as a new diagnostic of model-model differences in integrated chemistry and transport.

  20. Changes in Snow Albedo Resulting from Snow Darkening Caused by Black Carbon

    NASA Astrophysics Data System (ADS)

    Engels, J.; Kloster, S.; Bourgeois, Q.

    2014-12-01

    We investigate the potential impact of snow darkening caused by pre-industrial and present-day black carbon (BC) emissions on snow albedo and subsequently climate. To assess this impact, we implemented the effect of snow darkening caused by BC emitted from natural as well as anthropogenic sources into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM). Considerable amounts of BC are emitted e.g. from fires and are transported through the atmosphere for several days before being removed by rain or snow precipitation in snow covered regions. Already very small quantities of BC reduce the snow reflectance significantly, with consequences for snow melting and snow spatial coverage. We implemented the snow albedo reduction caused by BC contamination and snow aging in the one layer land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at MPI-M. For this we used the single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online (Flanner et al., 2007); http://snow.engin.umich.edu) model to derive snow albedo values for BC in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) for different snow grain sizes for the visible (0.3 - 0.7 μm) and near infrared range (0.7 - 1.5 μm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 μm). Here, a radius of 50 μm corresponds to new snow, whereas a radius of 1000 μm corresponds to old snow. The deposition rates of BC on snow are prescribed from previous ECHAM6-HAM simulations for two time periods, pre-industrial (1880-1889) and present-day (2000-2009), respectively. We perform a sensitivity study regarding the scavenging of BC by snow melt. To evaluate the newly implemented albedo scheme we will compare the modeled black carbon in snow concentrations to observed ones. Moreover, we will show the impact of the BC contamination and snow aging on the simulated snow albedo. The

  1. Spatial Variation in Carbon Release From Arctic Tundra Resulting From Microtopography Created by Permafrost Thawing

    NASA Astrophysics Data System (ADS)

    Lee, H.; Schuur, E. A.; Vogel, J. G.

    2007-12-01

    One of the biggest potential feedbacks to global climate change from high latitude ecosystems may come from thawing of permafrost, which stores 30% of the total global terrestrial soil organic carbon (SOC). Thawing of permafrost may accelerate decomposition of soil organic matter (SOM) and increase carbon dioxide (CO2) emissions and such emissions from soil can lead to further warming in global scale. When permafrost thaws in ice-rich areas, it creates localized topographical surface subsidence called thermokarst, which can induce variations in soil abiotic properties. By altering multiple resources in soil, thermokarst can change C cycling in high latitude ecosystems beyond simple increases in temperature alone. The objective was to determine how thermokarst affects ecosystem C exchange. We hypothesized that there would be a positive relationship between the degree of ground subsidence and CO2 emissions from decomposition of SOM. This study was conducted in a tundra site near Denali National Park, Alaska. Three study sites were established according to the degree of surface depressions: Severe Thaw, Moderate Thaw, and Minimal Thaw. We established 50 equally spaced grid points each site and they were surveyed using GPS to measure the micro-elevation. Clear static chamber measurements were used to measure ecosystem C exchange, while soil properties such as temperature and volumetric water content (VWC) were measured simultaneously. Normalized Difference Vegetation Index (NDVI) was measured as an indicator of primary productivity. We used forward stepwise regression analysis to quantify how much microtopography explained ecosystem C exchange. There was a negative correlation between ecosystem respiration and relative elevation at the Severe and Minimal site. The best predictor variable for ecosystem C exchange was VWC alone, which was better than temperature alone, or mixed effects of temperature and VWC. There was no relationship between NDVI and microtopography

  2. Preliminary results on the effects of afforestation of maize soils with Populus alba L., on carbon metabolism

    NASA Astrophysics Data System (ADS)

    García-Campos, Elena; Zorita, Félix; Gil-Sotres, Fernando; Leirós, Mā Carmen; Trasar-Cepeda, Carmen

    2010-05-01

    Transformation of a natural soil to agricultural land is generally assumed to be accompanied by increased mineralization of the organic matter and increased CO2emissions; in contrast, afforestation of agricultural soil is thought to lead to sequestration of carbon and incorporation of atmospheric CO2 into the organic matter. In other words the type of management and land use determine whether soils act as carbon sinks or sources, so that transformation of agricultural land to forest land is generally considered to be accompanied by an increase in edaphic carbon, although it is not clear whether this effect is always produced or if it depends on the agricultural history of the land being afforested. In light of the recognised importance of forest land in sequestering C, and therefore in regulating climate change, in 1992 the EU established Regulation 2080 to promote the afforestation of marginal agricultural land. This had strong repercussions in regions such as Galicia (NW Spain) as the afforestation was mainly applied to good quality agricultural land rather than to marginal land. Although, as a result, large areas of agricultural land have been afforested in Galicia, the associated effects on edaphic carbon have not been widely investigated. The present study involves analysis of large number of afforested soils, planted with different trees and located in different areas throughout Galicia (NW Spain), with the aim of investigating the effects on carbon metabolism in agricultural soils transformed for forestry use. Here we report the preliminary results concerning the observed effects on carbon metabolism in six soils afforested with poplar, Populus alba L., of age between 4 and 8 years. In addition to the six soils planted with poplars, adjacent agricultural soils (x6) were analyzed. In each case the adjacent soil was the same as the original soil prior to afforestation, and all were maize soils. Samples of the soils were collected in autumn, after harvesting

  3. Experimental Results in Support of Simulating Progressive Crush in Carbon-Fiber Textile Composites

    SciTech Connect

    DeTeresa, S J; Allison, L M; Cunningham, B J; Freeman, DC; Saculla, M D; Sanchez, R J; Winchester, S W

    2001-04-02

    This report summarizes the findings of an experimental program conducted to support the modeling of the crush behavior of triaxial braid carbon fiber composites. The matrix material as well as braided panels and tubes were characterized in order to determine material properties, to assess failure modes, and to provide a test bed for new analytical and numerical tools developed specifically for braided composites. The matrix material selected by the ACC was an epoxy vinyl ester (Ashland Hetron 922). Tensile tests were used to compare two formulations-one used by the ACC and one recommended by the resin supplier. The latter was a faster reacting system and gelled in one-third the time of the ACC formulation. Both formulations had an average elongation at failure that was only half of the resin supplier's reported value. Only one specimen of each type came close to the reported elongation value and it was shown that failure invariably initiated at both surface and internal defects. Overall, the tensile properties of the two formulations were nearly identical, but those of the ACC system were more consistent. The properties of the ACC matrix formulation were measured in tension, shear, and compression and the average properties obtained in these tests are summarized.

  4. A new carbon monoxide occupational dosimeter: results from a worker exposure assessment survey.

    PubMed

    Apte, M G; Cox, D D; Hammond, S K; Gundel, L A

    1999-01-01

    The LBNL/QGI occupational carbon monoxide (CO) dosimeter (LOCD), a new, inexpensive CO passive sampler, was field-validated in an occupational exposure assessment study in the Moscone Convention Center (MCC) in San Francisco, CA in January, 1997. The LOCD measures time-weighed-average (TWA) CO exposures from 10 to 800 parts per million hours (ppm h; accuracy +/- 20%; precision 10 ppm h). This device represents a major improvement over currently available low-cost personal CO monitors. At the MCC, over 1000 workers set up and remove exhibitions. Forty propane-powered forklifts moved materials throughout the 42,000 m2 of exhibit halls. Diesel truck emissions enter the building via three internal underground loading docks. The LOCD was used to measure 154 worker exposures on 3 days. Sampler performance was compared to a standard method at 15 fixed sites. The geometric mean (GM) of all 154 exposures was 7 ppm (geometric standard deviation (GSD) = 1.6); 10% of the exposures was 10 ppm or more. Dock Walkers and Forklift Operators had the highest exposures (maximum = 34 ppm) with GM (GSD) of 9 (1.7) and 9 (1.6) ppm, respectively. Attendants and Installer/Decorators had the lowest exposures with GMs of 6 (1.6) and 7 (1.4), respectively. The Cal/OSHA personal exposure limit for CO is 25 ppm time-weighted average (TWA). PMID:10638840

  5. Measurements of Electrode Skin Impedances using Carbon Rubber Electrodes - First Results

    NASA Astrophysics Data System (ADS)

    Kaufmann, Steffen; Ardelt, Gunther; Ryschka, Martin

    2013-04-01

    Non-invasive bioimpedance measurement as a tool in biomedical engineering and life sciences allows conclusions about condition and composition of living tissue. For interfacing the electronic conduction of the instrumentation and the ionic conduction of the tissue, electrodes are needed. A crucial point is the uncertainty arising from the unknown, time-varying and current density depend Electrode Skin Impedance (ESI). This work presents ESI measurements using carbon rubber electrodes on different human test subjects. The measurements for this work are carried out by employing a high accuracy Bioimpedance Measurement System (BMS) developed by the authors group, which is based on a Field Programmable Gate Array (FPGA) System on Chip (SoC). The system is able to measure magnitude and phase of complex impedances using a two- or four-electrode setup, with excitation currents from 60 μA to 5 mA in a frequency range from about 10 kHz to 300 kHz. Achieved overall measurement uncertainties are below 1%.

  6. Effect of Carbon Ion Radiotherapy for Sacral Chordoma: Results of Phase I-II and Phase II Clinical Trials

    SciTech Connect

    Imai, Reiko; Kamada, Tadashi; Tsuji, Hiroshi; Sugawara, Shinji; Serizawa, Itsuko; Tsujii, Hirohiko; Tatezaki, Shin-ichiro

    2010-08-01

    Purpose: To summarize the results of treatment for sacral chordoma in Phase I-II and Phase II carbon ion radiotherapy trials for bone and soft-tissue sarcomas. Patients and Methods: We performed a retrospective analysis of 38 patients with medically unresectable sacral chordomas treated with the Heavy Ion Medical Accelerator in Chiba, Japan between 1996 and 2003. Of the 38 patients, 30 had not received previous treatment and 8 had locally recurrent tumor after previous resection. The applied carbon ion dose was 52.8-73.6 Gray equivalents (median, 70.4) in a total of 16 fixed fractions within 4 weeks. Results: The median patient age was 66 years. The cranial tumor extension was S2 or greater in 31 patients. The median clinical target volume was 523 cm{sup 3}. The median follow-up period was 80 months. The 5-year overall survival rate was 86%, and the 5-year local control rate was 89%. After treatment, 27 of 30 patients with primary tumor remained ambulatory with or without supportive devices. Two patients experienced severe skin or soft-tissue complications requiring skin grafts. Conclusion: Carbon ion radiotherapy appears effective and safe in the treatment of patients with sacral chordoma and offers a promising alternative to surgery.

  7. Sources of Respired Carbon in a Northern Minnesota Ombrotrophic Spruce Bog: Preliminary 14C Results from the SPRUCE Site.

    NASA Astrophysics Data System (ADS)

    Guilderson, T. P.; McNicol, G.; Machin, A.; Hanson, P. J.; McFarlane, K. J.; Osuna, J. L.; Pett-Ridge, J.; Singleton, M. J.

    2014-12-01

    A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A corollary and related question is the future net climate (radiative) forcing impact from wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2. CO2 has a longer atmospheric lifetime and a longer 'tail' to its radiative influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on ecosystem response to rising temperatures and elevated CO2. The largest uncertainty in future wetland C-budgets, and their climate forcing is the stability of the large below-ground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4 released via ecosystem respiration. In advance of a long-term experimental warming and elevated CO2 manipulation at the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, we have characterized the source of respired carbon used for both the production of CO2 and CH4. Samples were collected in early June, late July, and will be collected in early September from three large (~1.1 m2, ~0.5m3) chambers from the control plot, and two of the experimental plots selected for heating (+9°C, +4.5°C). Early June fluxes from the three chambers were ~5500 mgC-m-2-d-1 and ~16 mgC-m-2-d-1 for CO2 and CH4 respectively. Radiocarbon analysis of CO2 and CH4 indicate that the source for the respired carbon is for the most part recent, with most 14C values between 30 and 40‰ - i.e., carbon that was photosynthetically fixed in the last few years. In concert with rising air and ground temperatures fluxes in late July increased to ~6500 mgC-m-2-d-1 and ~86 mgC-m-2-d-1. Although deep-heating was initiated in mid to late June we hypothesize that the July respiration signal is dominated by the regular seasonal cycle of natural warming

  8. Ruthenium-bipyridine complexes bearing fullerene or carbon nanotubes: synthesis and impact of different carbon-based ligands on the resulting products.

    PubMed

    Wu, Zhen-yi; Huang, Rong-bin; Xie, Su-yuan; Zheng, Lan-sun

    2011-09-01

    This paper discusses the synthesis of two carbon-based pyridine ligands of fullerene pyrrolidine pyridine (C(60)-py) and multi-walled carbon nanotube pyrrolidine pyridine (MWCNT-py) via 1,3-dipolar cycloaddition. The two complexes, C(60)-Ru and MWCNT-Ru, were synthesized by ligand substitution in the presence of NH(4)PF(6), and Ru(II)(bpy)(2)Cl(2) was used as a reaction precursor. Both complexes were characterized by mass spectroscopy (MS), elemental analysis, nuclear magnetic resonance (NMR) spectroscopy, infrared spectroscopy (IR), ultraviolet/visible spectroscopy (UV-VIS) spectrometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and cyclic voltammetry (CV). The results showed that the substitution way of C(60)-py is different from that of MWCNT-py. The C(60)-py and a NH(3) replaced a Cl(-) and a bipyridine in Ru(II)(bpy)(2)Cl(2) to produce a five-coordinate complex of [Ru(bpy)(NH(3))(C(60)-py)Cl]PF(6), whereas MWCNT-py replaced a Cl(-) to generate a six-coordinate complex of [Ru(bpy)(2)(MWCNT-py)Cl]PF(6). The cyclic voltammetry study showed that the electron-withdrawing ability was different for C(60) and MWCNT. The C(60) showed a relatively stronger electron-withdrawing effect with respect to MWCNT. PMID:21769337

  9. Acid rain and weathering damage to carbonate building stone: Results of material loss measurements

    SciTech Connect

    Reddy, M.; Youngdahl, C.A.

    1987-01-01

    Marble and limestone specimens were exposed to atmospheric conditions at four eastern U.S. sites. A number of methods were employed for damage assessment; this paper describes the results of chemical and physical measurements of material loss. Good agreement was observed among results obtained with different methods. A rate of surface recession near 15 ..mu..m/y was observed for skyward surfaces of marble tested in North Carolina, and comparable results were obtained at the other test sites. Response of the porous limestone was assessed with greater difficulty; a rate of loss similar to that of marble was inferred. Initial correlations of material loss with environmental factors are briefly discussed.

  10. Acid rain and weathering damage to carbonate building stone: Results of material loss measurements

    SciTech Connect

    Reddy, M.M.; Youngdahl, C.A.

    1986-11-01

    Marble and limestone specimens were exposed to atmospheric conditions at four eastern US sites. A number of methods were employed for damage assessment; this paper describes the results of chemical and physical measurements of material loss. Good agreement was observed among results obtained with different methods. A rate of surface recession near 15 ..mu..m/y was observed for skyward surfaces of marble tested in North Carolina, and comparable results were obtained at the other test sites. Response of the porous limestone was assessed with greater difficulty; a rate of loss similar to that of marble was inferred. Initial correlations of material loss with environmental factors are briefly discussed.

  11. Second Generation International Space Station (ISS) Total Organic Carbon Analyzer (TOCA) Verification Testing and On-Orbit Performance Results

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole L.; Thomas, Evan A.; VanWie, Michael; Morrison, Chad; Stinson, Richard G.

    2010-01-01

    The Total Organic Carbon Analyzer (TOGA) is designed to autonomously determine recovered water quality as a function of TOC. The current TOGA has been on the International Space Station since November 2008. Functional checkout and operations revealed complex operating considerations. Specifically, failure of the hydrogen catalyst resulted in the development of an innovative oxidation analysis method. This method reduces the activation time and limits the hydrogen produced during analysis, while retaining the ability to indicate TOC concentrations within 25% accuracy. Subsequent testing and comparison to archived samples returned from the Station and tested on the ground yield high confidence in this method, and in the quality of the recovered water.

  12. Results obtained with position sensitive multiwire proportional chambers with helium, carbon, and oxygen nuclei

    NASA Technical Reports Server (NTRS)

    Emming, J. G.; Gilland, J. R.; Godden, G. D.; Smith, L. H.; Zardiackas, F.

    1974-01-01

    Spatial resolution performance results obtained at the Lawrence Radiation Laboratory Bevatron with prototype multiwire proportional chamber spatial detectors with integral delay line readout are presented. The effects due to incident nuclei charge, chamber operating parameters, chamber design, electronics, gas mixtures, and magnetic field presence have been investigated and are discussed.

  13. Consistent Methodologies for Determining, Relating and Disseminating Light Stable Isotopic Measurement Results: The Carbon Dioxide Example

    NASA Astrophysics Data System (ADS)

    Klinedinst, D. B.; Verkouteren, R. M.

    2001-05-01

    In conjunction with the International Atomic Energy Agency (IAEA), the Atmospheric Chemistry Group (ACG) of National Institute of Standards and Technology (NIST) has coordinated an international CO2 isotope ratio mass spectrometry (IRMS) intercomparison exercise. The results of this exercise, specifically designed to overcome inherent deficiencies revealed by previous intercomparisons, achieved a 2 to 3 fold reduction (improvement) in the reproducibility of reported results across laboratories. Concurrently, the ACG developed and deployed an interactive Web-based data processing interface [http://www.nist.gov/widps-co2]. The interface has open architecture and a transparent, downloadable source code. This data processing system leverages the results of the intercomparison exercise and provides a consistent means by which raw CO2 measurement results are related to the internationally accepted Vienna Pee Dee Belemnite (VPDB) scale. Prominent features of the CO2 intercomparison exercise included: mandatory chemical and operational procedures, reporting of discretionary factors, direct determination of the cross contamination effect within the ion source, the reporting of raw measurement results and centralized data processing. The data reduction interface uses IAEA defined standard procedures for stable isotope measurements and data processing. It incorporates currently defined reference values for selected IAEA and NIST CO2 Reference Materials (RMs). On a routine basis, users can also determine and use assigned values for secondary laboratory standards as input. One or two point (i.e., normalized) realization of the VPDB scale is provided as are optional inputs for the oxygen isotope fractionation factor(α ). We attribute the success of the CO2 intercomparison exercise primarily to the centralized data processing using raw measurements rather than customary result-based data. The centralized processing, in essence, eliminates inconsistencies between integrated

  14. Nitrogen as a factor for enhanced carbon sequestration: Results from four NitroEurope-IP forest supersites

    NASA Astrophysics Data System (ADS)

    Ibrom, A.

    2012-04-01

    Nitrogen (N) fertilization, both intended and unintended, interacts with carbon cycling in terrestrial ecosystems, because the major processes of carbon (C) turnover depend on enzymes and thus on N availability. Comparisons between annual carbon dioxide flux (CO2) budgets and wet N deposition in forests showed a very strong linear increase of CO2 sequestration with increased N deposition. After considering total rather than only wet N deposition the ratios between increased carbon uptake and atmospheric N input were closer to C/N that can be found in wood. This suggested that the observed ecosystems responses to enhanced N inputs were mainly driven by plant responses. Finally, looking at changes in soil organic matter changes indicated even lower sensitivities of carbon sequestration to N addition. The objective of this study is to describe the mechanisms of the responses and the fate of the N in the ecosystem based on results from intensively investigated forest sites. Within the European NitroEuope-IP project the annual fluxes and pool sizes of C and N were estimated in four so-called forest supersites, including temperate coniferous forests in Southern Germany (Höglwald) and in the Netherlands (Speulderbos), one temperate beech forest close to Sorø on Zealand in Denmark and a boreal pine forest (Hyytiälä, Southern Finland). Due to differences in vegetation, bedrock and climate history, soils differed in acidity, organic matter content and biological activity; the levels of atmospheric N deposition varied from very low (Hyytiälä) to high (the other sites). Comparisons of N and C budgets of plants and soils confirmed a simple and stoichiometric effect dCuptake/dNdep = constant and in the order of magnitude of (C/N)wood for plants but not for soils and thus not for the forest ecosystems as a whole. Differences in soil processes as indicated by the differing C/N of SOM, differing amounts of N stored in the soil and considerable differences in N leaching rates

  15. Preliminary Results of the Permafrost Carbon Study in the Lower Kolyma Lowland (Eastern Siberia) Based on Drilling Record

    NASA Astrophysics Data System (ADS)

    Spektor, V. V.; Kholodov, A. L.; Bulygina, E. B.; Andreeva, V.; Broderick, D.; Spawn, S.; Natali, S.; Davydova, A.

    2012-12-01

    In 2012, the Polaris Project (thepolarisproject.org, Director R.M. Holmes) has conducted the permafrost drilling on the Kolyma Lowland for a complex study of permafrost carbon as a potential source for microbial decomposition. In July 2012, the first two boreholes, 15.1 and 13.4 m in depth, were drilled. The first borehole (BH 12/1) was drilled in the stratum of ice complex (yedoma) on the local watershed near the Schuch'e lake in the vicinity of the town Chersky (N68°44.7' E161°23'). The depth of active layer is 45 cm. The permafrost to the depth of 15.1 m represents grey and brown silts with predominant homogeneous structure. Silts contain numerous thread-like roots, scarce plant macrofossils, and in places are colored with unclear spots of ferrugination. Cryostructure is mainly pore ice or thin lense-like ice layers. Wedge ice is observed in the interval 12.5-12.9 m. The moisture volumetric percentage of silts varies along the stratum, mainly, between 40-50%. The organic content, defined in every 20 cm of the core as a loss on ignition, varies between 2-4%. The second borehole (BH 12/2), located in the Pleistocene Park (N68°30.8' E161°30') was drilled through modern floodplain sediments (0-0.6 m) of the Kolyma River with polygonal network at the surface, underlain by peat (0.6-1.3 m), silt deposits of thermokarst lake (1.3-12.0 m), and river grey sands (12.0-13.4 m). The active layer thickness is 65 cm. The cryostructure is predominantly lattice-like. Silts contain modern wedge ice at the depth of 2.5-2.7 m. Mollusk shells and large amount of plant macrofossils are observed in the interval 5.7-8.0 m. The organic content in the thermokarst deposits varies in average within 2-3 %, but is about 1% in the underlying river sands. To investigate permafrost carbon, samples for microbial and enzyme activities, as well as samples of trapped gases were collected from different horizons of frozen cores. Samples for palynological, diatom, and lithological analyses, as

  16. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  17. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  18. Results from Carbon Dioxide Washout Testing Using a Suited Manikin Test Apparatus with a Space Suit Ventilation Test Loop

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike

    2016-01-01

    NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.

  19. Spin glasses in the nonextensive regime

    NASA Astrophysics Data System (ADS)

    Wittmann, Matthew; Young, A. P.

    2012-04-01

    Spin systems with long-range interactions are “nonextensive” if the strength of the interactions falls off sufficiently slowly with distance. It has been conjectured for ferromagnets and, more recently, for spin glasses that, everywhere in the nonextensive regime, the free energy is exactly equal to that for the infinite range model in which the characteristic strength of the interaction is independent of distance. In this paper we present the results of Monte Carlo simulations of the one-dimensional long-range spin glasses in the nonextensive regime. Using finite-size scaling, our results for the transition temperatures are consistent with this prediction. We also propose and provide numerical evidence for an analogous result for diluted long-range spin glasses in which the coordination number is finite, namely, that the transition temperature throughout the nonextensive regime is equal to that of the infinite-range model known as the Viana-Bray model.

  20. Identifying natural flow regimes using fish communities

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.

    2011-10-01

    SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.

  1. Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Middlebrook, A. M.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Roberts, J. M.; Fehsenfeld, F. C.; Worsnop, D. R.; Canagaratna, M. R.; Pszenny, A. A. P.; Keene, W. C.; Marchewka, M.; Bertman, S. B.; Bates, T. S.

    2005-08-01

    An extensive set of volatile organic compounds (VOCs) and particulate organic matter (POM) was measured in polluted air during the New England Air Quality Study in 2002. Using VOC ratios, the photochemical age of the sampled air masses was estimated. This approach was validated (1) by comparing the observed rates at which VOCs were removed from the atmosphere with the rates expected from OH oxidation, (2) by comparing the VOC emission ratios inferred from the data with the average composition of urban air, and (3) by the ability to describe the increase of an alkyl nitrate with time in terms of the chemical kinetics. A large part of the variability observed for oxygenated VOCs (OVOCs) and POM could be explained by a description that includes the removal of the primary anthropogenic emissions, the formation and removal of secondary anthropogenic species, and a biogenic contribution parameterized by the emissions of isoprene. The OVOC sources determined from the data are compared with the available literature, and a satisfactory agreement is obtained. The observed sub-μm POM was highly correlated with secondary anthropogenic gas-phase species, strongly suggesting that the POM was from secondary anthropogenic sources. The results are used to describe the speciation and total mass of gas- and particle-phase organic carbon as a function of the photochemical age of an urban air mass. Shortly after emission the organic carbon mass is dominated by primary VOCs, while after two days the dominant contribution is from OVOCs and sub-μm POM. The total measured organic carbon mass decreased by about 40% over the course of two days. The increase in sub-μm POM could not be explained by the removal of aromatic precursors alone, suggesting that other species must have contributed and/or that the mechanism for POM formation is more efficient than previously assumed.

  2. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) FTS: Results From the 2012/13 Alaska Campaigns

    NASA Astrophysics Data System (ADS)

    Kurosu, Thomas P.; Miller, Charles E.; Dinardo, Stephen J.

    2014-05-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is an aircraft-based Earth Venture 1 mission to study the carbon balance of the Alaskan Arctic ecosystem, with a particular focus on carbon release from melting permafrost. Operating from its base in Fairbanks, AK, the CARVE aircraft covers a range of principle flight paths in the Alaskan interior, the Yukon River valley, and the northern Alaska coast around Barrow and Dead Horse. Flight paths are chosen to maximize ecosystem variability and cover burn-recovery/regrowth sequences. CARVE observations cover the Arctic Spring/Summer/Fall seasons, with multiple flights per season and principle flight path. Science operations started in May 2012 and are currently envisaged to continue until 2015. The CARVE suite of instruments includes flask measurements, in situ gas analyzers for CO2, CH4 and CO observations, and a three-band polarizing Fourier Transform Spectrometer (FTS) for column measurements of CO2, CH4, CO, their interfering species (e.g., H2O), and O2. The FTS covers the spectral regions of 4,200-4,900 cm-1, 5,800-6,400 cm-1, and 12,900-13,200 cm-1, with a spectral resolution of 0.2 cm-1. Aircraft-based FTS science observations in Alaska have been performed since 23-05-2012. First-version data products from all CARVE instruments derived from observations during the 2012 campaign were publicly released earlier in 2013. The FTS has performed well during flight conditions, particularly with respect to vibration damping. Outstanding challenges include the need for improved spectral and radiometric calibration, as well as compensating for low signal-to-noise spectra acquired under Alaskan flight conditions. We present results from FTS column observations of CO2, CH4, and CO, observed during the 2012 and 2013 campaigns, including preliminary comparisons of CARVE FTS measurements with satellite observations of CO2 from TANSO/GOSAT and CO from MOPITT.

  3. 75 FR 1495 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Countervailing Duty Orders: Certain Hot-Rolled Carbon Steel Flat Products From India and Indonesia, 66 FR 60198... Investigation: Certain Hot-Rolled Carbon Steel Flat Products From India, 66 FR 49635 (September 28, 2001) (HRS...: Certain Hot-Rolled Carbon Steel Products from India, 66 FR 20240, 20249 (April 20, 2001)...

  4. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  5. 75 FR 63439 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Extension of the Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... International Trade Administration Certain Welded Carbon Steel Standard Pipes and Tubes From India: Extension of... the administrative review of the antidumping duty order on certain welded carbon steel standard pipes and tubes from India. See Certain Welded Carbon Steel Standard Pipes and Tubes from India:...

  6. 75 FR 73033 - Circular Welded Carbon Steel Pipes and Tubes from Thailand: Amended Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Carbon Steel Pipes and Tubes From Thailand: Final Determination of Sales at Less Than Fair Value, 51 FR... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes from Thailand: Amended Final... published in the Federal Register on October 20, 2010. See Circular Welded Carbon Steel Pipes and Tubes...

  7. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-01-01

    Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results. PMID:21969994

  8. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen - Preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1980-01-01

    The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.

  9. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration

    PubMed Central

    Zhao, Lihong; Spassieva, Stefka; Gable, Kenneth; Gupta, Sita D.; Shi, Lan-Ying; Wang, Jieping; Bielawski, Jacek; Hicks, Wanda L.; Krebs, Mark P.; Naggert, Juergen; Hannun, Yusuf A.; Dunn, Teresa M.; Nishina, Patsy M.

    2015-01-01

    Sphingolipids typically have an 18-carbon (C18) sphingoid long chain base (LCB) backbone. Although sphingolipids with LCBs of other chain lengths have been identified, the functional significance of these low-abundance sphingolipids is unknown. The LCB chain length is determined by serine palmitoyltransferase (SPT) isoenzymes, which are trimeric proteins composed of two large subunits (SPTLC1 and SPTLC2 or SPTLC3) and a small subunit (SPTssa or SPTssb). Here we report the identification of an Sptssb mutation, Stellar (Stl), which increased the SPT affinity toward the C18 fatty acyl-CoA substrate by twofold and significantly elevated 20-carbon (C20) LCB production in the mutant mouse brain and eye, resulting in surprising neurodegenerative effects including aberrant membrane structures, accumulation of ubiquitinated proteins on membranes, and axon degeneration. Our work demonstrates that SPT small subunits play a major role in controlling SPT activity and substrate affinity, and in specifying sphingolipid LCB chain length in vivo. Moreover, our studies also suggest that excessive C20 LCBs or C20 LCB-containing sphingolipids impair protein homeostasis and neural functions. PMID:26438849

  10. Gradual regime shifts in fairy circles

    PubMed Central

    Zelnik, Yuval R.; Meron, Ehud; Bel, Golan

    2015-01-01

    Large responses of ecosystems to small changes in the conditions—regime shifts—are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water–vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787

  11. Gradual regime shifts in fairy circles.

    PubMed

    Zelnik, Yuval R; Meron, Ehud; Bel, Golan

    2015-10-01

    Large responses of ecosystems to small changes in the conditions--regime shifts--are of great interest and importance. In spatially extended ecosystems, these shifts may be local or global. Using empirical data and mathematical modeling, we investigated the dynamics of the Namibian fairy circle ecosystem as a case study of regime shifts in a pattern-forming ecosystem. Our results provide new support, based on the dynamics of the ecosystem, for the view of fairy circles as a self-organization phenomenon driven by water-vegetation interactions. The study further suggests that fairy circle birth and death processes correspond to spatially confined transitions between alternative stable states. Cascades of such transitions, possible in various pattern-forming systems, result in gradual rather than abrupt regime shifts. PMID:26362787

  12. Determination of the Hall Thruster Operating Regimes

    SciTech Connect

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-09

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile.

  13. Validation and Intercomparison of a 'Bottom-up' and 'Top-Down' modeling paradigm for estimating energy and carbon fluxes over a variety of vegetative regimes across the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate quantification of energy and carbon fluxes is of great importance for a wide range of ecological, agricultural, and meteorological applications. Two contrasting modeling strategies are currently used widely to retrieve this goal. ‘Bottom-up’ models of land-atmosphere carbon exchange are ...

  14. Experimental floods cause ecosystem regime shift in a regulated river.

    PubMed

    Robinson, Christopher T; Uehlinger, Urs

    2008-03-01

    Reservoirs have altered the flow regime of most rivers on the globe. To simulate the natural flow regime, experimental floods are being implemented on regulated rivers throughout the world to improve their ecological integrity. As a large-scale disturbance, the long-term sequential use of floods provides an excellent empirical approach to examine ecosystem regime shifts in rivers. This study evaluated the long-term effects of floods (15 floods over eight years) on a regulated river. We hypothesized that sequential floods over time would cause a regime shift in the ecosystem. The floods resulted in little change in the physicochemistry of the river, although particulate organic carbon and particulate phosphorus were lower after the floods. The floods eliminated moss cover on bed sediments within the first year of flooding and maintained low periphyton biomass and benthic organic matter after the third year of flooding. Organic matter in transport was reduced after the third year of flooding, although peaks were still observed during rain events due to tributary inputs and side slopes. The floods reduced macroinvertebrate richness and biomass after the first year of floods, but density was not reduced until the third year. The individual mass of invertebrates decreased by about one-half after the floods. Specific taxa displayed either a loss in abundance, or an increase in abundance, or an increase followed by a loss after the third year. The first three flood years were periods of nonequilibrium with coefficients of variation in all measured parameters increasing two to five times from those before the floods. Coefficients of variation decreased after the third year, although they were still higher than before the floods. Analysis of concordance using Kendall's W confirmed the temporal changes observed in macroinvertebrate assemblage structure. An assessment of individual flood effects showed that later floods had approximately 30% less effect on macroinvertebrates

  15. Examination Regimes and Student Achievement

    ERIC Educational Resources Information Center

    Cosentino de Cohen, Clemencia

    2010-01-01

    Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…

  16. Dynamic treatment regimes: technical challenges and applications

    PubMed Central

    Lizotte, Daniel J.; Qian, Min; Pelham, William E.; Murphy, Susan A.

    2014-01-01

    Dynamic treatment regimes are of growing interest across the clinical sciences because these regimes provide one way to operationalize and thus inform sequential personalized clinical decision making. Formally, a dynamic treatment regime is a sequence of decision rules, one per stage of clinical intervention. Each decision rule maps up-to-date patient information to a recommended treatment. We briefly review a variety of approaches for using data to construct the decision rules. We then review a critical inferential challenge that results from nonregularity, which often arises in this area. In particular, nonregularity arises in inference for parameters in the optimal dynamic treatment regime; the asymptotic, limiting, distribution of estimators are sensitive to local perturbations. We propose and evaluate a locally consistent Adaptive Confidence Interval (ACI) for the parameters of the optimal dynamic treatment regime. We use data from the Adaptive Pharmacological and Behavioral Treatments for Children with ADHD Trial as an illustrative example. We conclude by highlighting and discussing emerging theoretical problems in this area. PMID:25356091

  17. Assessment of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters (sea lochs): methodology and preliminary results

    NASA Astrophysics Data System (ADS)

    Loh, P. S.; Reeves, A. D.; Overnell, J.; Harvey, S. M.; Miller, A. E. J.

    This paper addresses the assessment of terrestrially derived organic carbon in sediments from two Scottish sea lochs. The results illustrate a smooth decrease in area-specific sediment oxygen uptake rates along a transect of six stations from the head of Loch Creran to the sea, from 18.7 mmol O2m-2d-1 to 6.6 mmol O2m-2d-1. Measurement of the losses on ignition at two temperatures (250°C and 500°C) of the sediment fraction from 1-2 cm depth at the same stations enabled the proportion of weight loss that occurred over the high temperature range to be calculated. These show a smooth increase from 0.33 to 0.62. These observations indicate that (a) the amount of easily biodegradable organic material in the sediment decreases by two-thirds along the transect and (b) the proportion of refractory organic material in the sediment increases along the same transect. This suggests strongly that terrigenous organic material, brought down by the River Creran is a very important fuel for sediment diagenetic processes in this system. Preliminary analyses of the lignin composition of the same sediments indicate the predominance of non-woody gymnosperm tissue. Lignin is used as a proxy for terrigenous allochthonous material. Comparative data for Loch Etive are also presented.

  18. Carbon sink activity is stronger under grazing than under mowing: results from a paired eddy flux towers experiment

    NASA Astrophysics Data System (ADS)

    Pintér, Krisztina; Balogh, János; Koncz, Péter; Hidy, Dóra; Cserhalmi, Dóra; Papp, Marianna; Fóti, Szilvia; Nagy, Zoltán

    2014-05-01

    Effect of grazing vs. mowing on carbon balance of a grassland was investigated by a paired eddy towers (one of them measuring the grazed, the another the mowed treatment) experiment at the Bugacpuszta sandy grassland site (HU-Bug, 46.69° N, 19.6° E, 114m asl, 10.4 ° C annual mean temperature, 562 mm annual precipitation sum) located in the Hungarian Plain. Eddy covariance measurements started in July, 2002. The area of the mowed treatment is 1 ha, it is located within the grazed treatment (500 ha). Electric fence was set up around the selected area in spring of 2011. Study years include 2011, 2012 and 2013. The pasture is managed extensively (average grazing pressure of 0.5 cattle per hectare), the cattle herd regularly took several kilometres during a grazing day. Annual net ecosystem exchange (NEE) of the grassland is strongly limited by precipitation, there were 2 source years within the 11 years (2003-2013) of measurements, during which the average annual balance was -109 gCm-2year-1 with standard deviation of 106 gCm-2year-1. Carbon sink activity of the grassland was stronger in the grazed treatment than in the mowed treatment during the three year study period (paired t-test, P=0.058). In the grazed treatment the average sink strength was -142.8 ±40 gCm-2year-1, while in the mowed treatment the average sink strength was -61.5 ±46.5 gCm-2year-1. Differences of carbon balances between the treatments were positively correlated to the annual sum of evapotranspiration (ET), while ETs of the treatments were almost identical (differences within a 10mm year-1 range) in each study year. Water use efficiency in the mowed treatment was 44% of that in the grazed treatment (P=0.045) as a result of the differences in sink capacity. The higher sensitivity to drought by the mowed treatment manifested in decreased sink capacity during summer and in decreased regeneration capacity during autumn rains as shown by the cumulative NEE in the different years. Minor but

  19. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  20. Optical and Thermo-optical Properties of Polyimide-Single-Walled Carbon Nanotube Films: Experimental Results and Empirical Equations

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Connell, John W.; Watson, Kent A.; Danehy, Paul M.

    2005-01-01

    The incorporation of single-walled carbon nanotubes (SWNTs) into the bulk of space environmentally durable polymers at loading levels greater than or equal to 0.05 wt % has afforded thin films with surface and volume resistivities sufficient for electrostatic charge mitigation. However, the optical transparency at 500 nm decreased and the thermo-optical properties (solar absorptivity and thermal emissivity) increased with increaed SWNT loading. These properties were also dependent on film thickness. The absorbance characteristics of the films as a function of SWNT loading and film thickness were measured and determined to follow the classical Beer-Lambert law. Based on these results, an empirical relationship was derived and molar absorptivities determined for both the SWNTs and polymer matrix to provide a predictive approximation of these properties. The molar absorptivity determined for SWNTs dispersed in the polymer was comparable to reported solution determined values for HiPco SWNTs.

  1. Magnetostratigraphy of Mesozoic shallow-water carbonates: Preliminary results from the Middle Jurassic of the Paris basin

    SciTech Connect

    Aissaoui, D.M.; Kirschvink, J.L. )

    1991-03-01

    The use of sedimentary paleomagnetism has enhanced greatly our understanding of the timing of deposition and diagenesis of Cenozoic platform and reefal carbonates. Its application to similar but older deposits will have direct implications for economic exploration and development. The authors report here preliminary paleomagnetic results from the Middle Jurassic limestones of the Paris basin (France). The samples consist mainly of bioclastic and oolitic limestones deposited in ancient counterpart of the shallow-water environments of the Bahama platform. The Jurassic samples are stable to progressive, incremental demagnetization and exhibit magnetization patterns identical to Cenozoic rocks from the Bahama platform or Mururoa Atoll. The natural remanent magnetization of these limestones is weak and comprised between 7.7 x 10{sup {minus}9} to 1.8 x 10{sup {minus}8} AM{sup 2}/kg. Magnetic components of both normal and reversed polarity are observed. Paired isothermal remanent magnetization (IRM) and alternating field demagnetization experiments show that most of the remanence is lost between 20 and 45 mT, which is typical of single-domain biogenic magnetite or maghemite. The ratio of IRM at H{sub RG} to the saturation IRM ranges from 35 to 42% indicating a moderate to low interparticle interaction. This is confirmed by the anhysteretic remanent magnetization as compared with intact, freeze-dried cells of magnetotactic bacteria and chiton teeth. Magnetic minerals extracted from the Jurassic samples are examined to further confirm the occurrence of SD magnetite within the Middle Jurassic limestones of the Paris basin. The preliminary results suggest that the strata should be good for the paleomagnetic investigation of Mesozoic shallow-water carbonates.

  2. Carbon dioxide production in surface sediments of temporarily anoxic basins (Baltic Sea) and resulting sediment-water interface fluxes

    NASA Astrophysics Data System (ADS)

    Böttcher, M. E.; Al-Raei, A. M.; Winde, V.; Lenz, C.; Dellwig, O.; Leipe, T.; Segl, M.; Struck, U.

    2009-04-01

    Organic matter is mineralized in marine sediments by microbial activity using predominantly oxygen, sulfate, and metal oxides as electron acceptors. Modern euxinic basins as found in the Baltic Sea or the Black Sea are of particular importance because they may serve as type systems for anoxia in Earth's history. We present here results from biogeochemical investigations carried out in the Baltic deeps (Gotland Basin, Landsort Deep) during the first scientific cruise of RV M.S. MERIAN in 2006, additionally during RV Prof. Penck cruises in 2006 and 2007. Short sediment cores were obtained with a multi-corer and analyzed for particulate and dissolved main, minor and trace elements, pH, DIC, methane alkalinity, besides the stable carbon isotopes of dissolved inorganic carbon (DIC). Microsensors were applied to analyze steep gradients of oxygen, sulphide and sulphate. Pore water profiles are evaluated in terms of process rates and associated element fluxes using the PROFILE software (Berg et al., 1998, L&O). Gross and net anaerobic mineralization rates were additionally obtained from core incubations with 35S. Steep gradients in DIC are associated with a strong enrichment of the light stable isotope resulting in the Gotland basin from oxidized OM. Element fluxes across the sediment-water interface are compared with literature data and show for the Baltic Sea a dependence from bottom water redox conditions, and sediment compositions and formation conditions (e.g., accumulation rates). DIC in the anoxic part of the water column in the Landsort Deep and the Gotland Deep show relatively similar isotope values, close to the bottom water value, but steep gradients towards heavier values above the pelagic redoxcline. Acknowledgements: The research was supported by Leibniz IO Warnemünde, DFG (Cruise RV MSM MERIAN 01), and MPG. Thanks to B. Schneider and F. Pollehne stimulating discussions, and S. Lage and A. Schipper for technical support.

  3. Fermi's golden rule beyond the Zeno regime

    NASA Astrophysics Data System (ADS)

    Debierre, Vincent; Goessens, Isabelle; Brainis, Edouard; Durt, Thomas

    2015-08-01

    We reconsider the problem of the spontaneous emission of light by an excited atomic state. We scrutinize the survival probability of this excited state for very short times, in the so-called Zeno regime, for which we show that the dynamics is dictated by a coherent, in-phase, response of the on-shell and off-shell vacuum modes. We also develop a perturbative approach in order to interpolate between different temporal regimes: the Zeno, golden rule (linear), and Wigner-Weisskopf (exponential) regimes. We compare results obtained with the E ̂.x ̂ and A ̂.p ̂ interaction Hamiltonians, using successively the dipole approximation and the exact coupling.

  4. On the regimes of charge reversal.

    PubMed

    Jiménez-Angeles, Felipe; Lozada-Cassou, Marcelo

    2008-05-01

    Charge reversal of the planar electrical double layer is studied by means of a well known integral equation theory. By a numerical analysis, a diagram is constructed with the onset points of charge reversal in the space of the fundamental variables of the system. Within this diagram, two regimes of charge reversal are identified, which are referred to as oscillatory and nonoscillatory. We found that these two regimes can be distinguished through a simple formula. Furthermore, a symmetry between electrostatic and size correlations in charge reversal is exhibited. Agreement of our results with other theories and molecular simulations data is discussed. PMID:18465930

  5. Anomalous Hall effect in localization regime

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Zhu, Kai; Yue, Di; Tian, Yuan; Jin, Xiaofeng

    2016-06-01

    The anomalous Hall effect in the ultrathin film regime is investigated in Fe(001)(1-3 nm) films epitaxial on MgO(001). The logarithmic localization correction to longitudinal resistivity and anomalous Hall resistivity are observed at low temperature. We identify that the coefficient of skew scattering has a reduction from metallic to localized regime, while the contribution of side jump has inconspicuous change except for a small drop below 10 K. Furthermore, we discover that the intrinsic anomalous Hall conductivity decreases with the reduction of thickness below 2 nm. Our results provide unambiguous experimental evidence to clarify the problem of localization correction to the anomalous Hall effect.

  6. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  7. Analytical results and sample locality map of rock and stream-sediment samples from the Ferris Mountains Wilderness Study Area (WY-030-407), Carbon County, Wyoming

    SciTech Connect

    Detra, D.E.; Reynolds, M.W.; Roemer, T.A.

    1989-01-01

    A U.S. Geological Survey report is presented detailing the analytical results and sample locality map of rock and stream-sediment samples from the Ferris Mountains Wilderness Study Area (WY-030-407), Carbon County, Wyoming.

  8. Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    SciTech Connect

    Dehairs, F.; Jacquet, S.; Savoye, N.; Van Mooy, B.A.S.; Buesseler, K.; Bishop, J.K.B.; Lamborg, C.H.; Elskens, M.; Baeyens, W.; Boyd, P.W.; Casciotti, K.L.; Monnin, C.

    2008-04-10

    This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22 degrees 45 minutes N 158 degrees W; Hawaii; studied during June-July 2004) and the mesotrophic Subarctic Pacific K2 site (47 degrees N, 161 degrees W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Ba{sub xs}) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general Ba{sub xs} contents were significantly larger at K2 than at ALOHA. At ALOHA the Ba{sub xs} profiles from repeated sampling (5 casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (6 casts sampled) reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Ba{sub xs} concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50m and 500m, reflecting production and release of Ba{sub xs}. Larger mesopelagic Ba{sub xs} contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function (Dehairs et al., 1997) relating oxygen consumption to the observed Ba{sub xs} data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Ba{sub xs} as a proxy for organic carbon remineralization. The range of POC remineralization rates calculated from twilight zone excess particulate Ba contents did also compare well with the depth dependent POC flux decrease as recorded by neutrally buoyant sediment traps

  9. Barium in twilight zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific

    NASA Astrophysics Data System (ADS)

    Dehairs, F.; Jacquet, S.; Savoye, N.; Van Mooy, B. A. S.; Buesseler, K. O.; Bishop, J. K. B.; Lamborg, C. H.; Elskens, M.; Baeyens, W.; Boyd, P. W.; Casciotti, K. L.; Monnin, C.

    2008-07-01

    This study focuses on the fate of exported organic carbon in the twilight zone at two contrasting environments in the North Pacific: the oligotrophic ALOHA site (22°45'N, 158°W; Hawaii; studied during June-July 2004) and the mesotrophic Subarctic Pacific K2 site (47°N, 161°W; studied during July-August 2005). Earlier work has shown that non-lithogenic, excess particulate Ba (Ba xs) in the mesopelagic water column is a potential proxy of organic carbon remineralization. In general, Ba xs contents were significantly larger at K2 than at ALOHA. At ALOHA, the Ba xs profiles from repeated sampling (five casts) showed remarkable consistency over a period of three weeks, suggesting that the system was close to being at steady state. In contrast, more variability was observed at K2 (six casts sampled), reflecting the more dynamic physical and biological conditions prevailing in this environment. While for both sites Ba xs concentrations increased with depth, at K2 a clear maximum was present between the base of the mixed layer at around 50 and 500 m, reflecting production and release of Ba xs. Larger mesopelagic Ba xs contents and larger bacterial production in the twilight zone at the K2 site indicate that more material was exported from the upper mixed layer for bacterial degradation deeper, compared to the ALOHA site. Furthermore, application of a published transfer function [Dehairs, F., Shopova, D., Ober, S., Veth, C., Goeyens, L., 1997. Particulate barium stocks and oxygen consumption in the Southern Ocean mesopelagic water column during spring and early summer: relationship with export production. Deep-Sea Research II 44(1-2), 497-516] relating oxygen consumption to the observed Ba xs data indicated that the latter were in good agreement with bacterial respiration, calculated from bacterial production. These results corroborate earlier findings highlighting the potential of Ba xs as a proxy for organic carbon remineralization. The range of POC remineralization

  10. The First Eighteen Months of NASA's Orbiting Carbon Observatory-2 (OCO-2): Mission Status, Error Characterization, and Preliminary Results

    NASA Astrophysics Data System (ADS)

    O'Dell, Christopher

    2016-04-01

    OCO-2 began taking science data in September 2014 and continues to operate well, returning nearly 1 million observations per day. Approximately 10% of these are sufficiently free of cloud and aerosol contamination to allow for an accurate determination of the column mean carbon dioxide dry air mole fraction, XCO2. The measurements have relatively low noise, of order 0.5-1.0 ppm for most nadir soundings over land and sun-glint geometry soundings over water surfaces. A number of changes have been made to the observing strategy to maintain performance and enhance the science quality of the data: change in glint yaw angle in October 2014, change in nadir glint cycling in July 2015, change to nadir yaw and glint orbit optimization in late 2015, in addition to periodic instrument cyclings. In this presentation, we will summarize the data quality enabled via comparison to a number of validation metrics, discuss the current health and long-term prospects for the instrument, and give an overview of some early science results from the first 18 months of observations. While XCO2 and other products are still being validated to identify and correct biases, OCO-2's XCO2 observations are starting to reveal the most robust features of the atmospheric carbon cycle. At regional scales, fluxes from the eastern U.S. and China are most clear in the fall, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the some parts of the tropics, in particular central Africa, is also obvious in the fall. The annual growth rate of CO2 was anomalously high in 2015 according to OCO-2, consistent with NOAA surface measurements and in accord with the warmer annual average surface temperature that year. This was also apparent in the decreased northern hemisphere summer uptake, likely due to anomalously warm boreal temperatures in the northern hemisphere summer of 2015.

  11. Stability analysis of synchronization regimes of spinning rockets

    NASA Astrophysics Data System (ADS)

    Dron, N. M.

    1993-10-01

    A method is studied for estimating the formation of synchronization regimes in rocket ballistic flight in which the roll rate approaches the pitch rate. Supporting resonance angular motion regimes due to induced moments are analyzed, and the nonlinear second-order differential equation of the rolling motion is addressed. The results permit synchronization regimes to be prevented, which is important for motion stability and trajectory parameter dispersion in sounding rockets.

  12. The influence of temperature calibration on the OC–EC results from a dual-optics thermal carbon analyzer

    EPA Science Inventory

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often this instrument is used to measure total carbon (TC), organic carbon (O...

  13. Historical and future land carbon cycle, results from the 5th Coupled Model Intercomparison Project (CMIP5)

    NASA Astrophysics Data System (ADS)

    Friedlingstein, Pierre; Anav, Alessandro; Murray-Tortarolo, Guillermo; Wenzel, Sabrina; Cox, Peter; Eyring, Veronika

    2014-05-01

    The 5th Coupled Model Intercomparison Project (CMIP5) provided a unique source of Earth System Models simulations, generating an unprecedented range of analysis of many components of the climate system. In this presentation we will focus on the land carbon cycle, its response to the historical perturbation and its projected response in the future under the forcing of the different Representative Concentration Pathways (RCPs) scenarios. There is a broad agreement across models on the evolution of the carbon exchange between the atmosphere and the land since the beginning of the industrial revolution. Carbon sink driven by atmospheric CO2 increase more than compensates now the carbon sources due to land use changes, consistent with independent estimates. The future of the land carbon cycle is significantly more uncertain, even for a given RCP scenario. There is no overall agreement across models on the sign of the land carbon sink by the end of the 21st century, land carbon cycle sensitivity to atmospheric CO2 increase and climate change being strongly model dependent. Model evaluation and use of emerging constraint should help reduce uncertainties in future carbon cycle projections.

  14. 75 FR 19369 - Certain Hot-Rolled Flat-Rolled Carbon Quality Steel Products from Brazil: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... Products From Brazil, 64 FR 8299 (February 19, 1999); see also Certain Hot-Rolled Flat-Rolled Carbon... Carbon Quality Steel Products from Brazil, 67 FR 11093 (March 12, 2002) (Antidumping Order). ] On March 2... Investigation; Opportunity To Request Administrative Review, 74 FR 9077 (March 2, 2009). In response, on...

  15. Results of rainfall simulation to estimate sediment-bound carbon and nitrogen loss from an Atlantic Coastal Plain (USDA) ultisol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of erosion on soil and carbon loss and redistribution within landscapes is an important component for developing estimates of carbon sequestration potential, management plans to maintain soil quality, and transport of sediment bound agrochemicals. Soils of the Southeastern U.S. Coastal Pl...

  16. 78 FR 67334 - Suspension Agreement on Certain Cut-to-Length Carbon Steel Plate From Ukraine; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Carbon Steel Plate From Ukraine; Administrative Review, 78 FR 46570 (August 1, 2013) and accompanying...: Certain Cut-to-Length Carbon Steel Plate from Ukraine, 73 FR 57602 (October 3, 2008) (Agreement). On... covering Metinvest Holding LLC (Metinvest) and its affiliated companies Azovstal Iron & Steel...

  17. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea... Requests for Revocation in Part, 77 FR 59168 (September 26, 2012). \\2\\ The period of review (POR) ends...

  18. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17, 1993). On... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products...

  19. Understanding the fate of black (pyrogenic) carbon in soil: Preliminary results from a long term field trial

    NASA Astrophysics Data System (ADS)

    Meredith, Will; Ascough, Philippa; Bird, Michael; Large, David; Shen, Licheng; Snape, Colin

    2014-05-01

    Black carbon (BC, also known as pyrogenic carbon) is an 'inert' form of carbon and has been proposed as a means of long-term carbon sequestration, particularly by amending soils and sediments with BC known as biochar. While there is abundant anecdotal evidence of biochar stability over extended timescales it is essential to gain a greater understanding of the degree and mechanisms of biochar degradation in the environment. This study aims to quantitatively assess the stability of biochar by investigating samples from field degradation trials first buried during 2009 in a tropical soil, and recovered after 12 and 36 month intervals. Catalytic hydropyrolysis (HyPy) is a novel analytical tool for the isolation of BC [1] in which high hydrogen pressure (150 bar) and a sulphided Mo catalyst reductively remove the non-BC fraction of the chars, and so isolate the most stable portion of the biochar, defined as BC(HyPy). This method also allows for the non-BC(HyPy) fraction of a sample, which from charcoal is known to include small ring PAHs (<7 rings) of pyrogenic origin to be recovered for molecular characterisation by GC-MS [2]. Biochars made from algae, sugarcane bagasse, and beech wood at 305, 414 and 512°C were emplaced under a variety of conditions allowing variables such as leaf cover, soil depth and pH to be investigated. Char stability (as measured by BC(HyPy) content) is dependent on both the feedstock and temperature of formation. HyPy is known to discriminate (in terms of BC isolation) against low temperature chars, composed of relatively small aromatic clusters [1], resulting in the low BC(HyPy) contents reported for the 305°C chars. Fresh charcoals, and those not subject to environmental degradation have display a similar distribution of aromatic clusters in the non-BC(HyPy) fraction, with 2 to 7 ring PAHs abundant [2]. However, environmentally degraded charcoals such as that from a Chinese river sediment, and an Australian river estuary [3] show a more

  20. Origin of carbonate deposits in the vicinity of Yucca Mountain, Nevada. Preliminary results of strontium-isotope analyses

    USGS Publications Warehouse

    Marshall, B.D.; Futa, K.; Mahan, S.A.; Peterman, Z.E.; Stuckless, J.S.; Downey, J.S.; Gutentag, E.D.

    1990-01-01

    As part of the paleohydrology study of the Yucca Mountain Project, strontium-isotope analyses of carbonate deposits, ground water, and major rock reservoirs of strontium are in progress. This paper presents a summary of the strontium-isotope data obtained through 1989. Calcium carbonate is ubiquitous in the vicinity of Yucca Mountain, where it occurs as pedogenic horizons and rhizoliths, small veins and fracture fillings in Tertiary volcanic rocks, large veins and masses along faults, and freshwater and marine limestones. With the exception of marine limestones, which are Paleozoic, the calcium carbonate has been precipitated directly from water during the past 107 years. This paper reports strontium-isotope compositions of the following carbonate groups: 1) limestones of the Paleozoic basement, 2) calcite-silica veins, 3) small calcite veins, 4) pedogenic carbonate deposits, and 5) spring deposits (i.e., tufa). The authors have also analyzed the strontium from samples of Tertiary volcanic rocks and from ground water.

  1. Impact of land use change on the land atmosphere carbon flux of South and South East Asia: A Synthesis of Dynamic Vegetation Model Results

    NASA Astrophysics Data System (ADS)

    Cervarich, M.; Shu, S.; Jain, A. K.; Poulter, B.; Stocker, B.; Arneth, A.; Viovy, N.; Kato, E.; Wiltshire, A.; Koven, C.; Sitch, S.; Zeng, N.; Friedlingstein, P.

    2015-12-01

    Understanding our present day carbon cycle and possible solutions to recent increases in atmospheric carbon dioxide is dependent upon quantifying the terrestrial carbon budget. Currently, global land cover and land use change is estimated to emit 0.9 PgC yr-1 compared to emissions due to fossil fuel combustion and cement production of 8.4 PgC yr-1. South and Southeast Asia (India, Nepal, Bhutan, Bangladesh, Burma, Thailand, Laos, Vietnam, Cambodia, Malaysia, Philippines, Indonesia, Pakistan, Myanmar, and Singapore) is a region of rapid land cover and land use change due to the continuous development of agriculture, deforestation, reforestation, afforestation, and the increased demand of land for people to live. In this study, we synthesize outputs of nine models participated in Global Carbon Budget Project to identify the carbon budget of South and southeast Asia, diagnose the contribution of land cover and land use change to carbon emissions and assess areas of uncertainty in the suite of models. Uncertainty is determined using the standard deviation and the coefficient of variation of net ecosystem exchange and its component parts. Results show the region's terrestrial biosphere was a source of carbon emissions from the 1980 to the early 1990s. During the same time period, land cover and land use change increasingly contributed to carbon emission. In the most recent two decades, the region became a carbon sink since emission due to land cover land use changes. Spatially, the greatest total emissions occurred in the tropical forest of Southeast Asia. Additionally, this is the subregion with the greatest uncertainty and greatest biomass. Model uncertainty is shown to be proportional to total biomass. The atmospheric impacts of ENSO are shown to suppress the net biosphere productivity in South and Southeast Asia leading to years of increased carbon emissions.

  2. Technology Advancement for Active Remote Sensing of Carbon Dioxide from Space Using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Nehrir, Amin R.; Lin, Bing; Harrison, F. Wallace; Kooi, Susan; Choi, Yonghoon; Plant, James; Yang, Melissa; Antill, Charles; Campbell, Joel; Ismail, Syed; Browell, Edward V.; Meadows, Byron; Dobler, Jeremy; Zaccheo, T. Scott; Moore, Berrien; Crowell, Sean

    2015-01-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number

  3. Size distribution characteristics of elemental carbon emitted from Chinese vehicles: results of a tunnel study and atmospheric implications.

    PubMed

    Huang, Xiao-Feng; Yu, Jian Zhen; He, Ling-Yan; Hu, Min

    2006-09-01

    The size distribution characteristics of elemental carbon (EC) emissions from Chinese vehicles have not been previously described. In this study, we collected size-segregated aerosol samples using a 10-stage MOUDI sampler (0.056-18 microm) in the Zhujiang tunnel, a roadway tunnel in the urban area of Guangzhou, China. The samples were analyzed for EC, organic carbon (OC), and inorganic ions. Fine particles had an OC/EC ratio of 0.57, indicating a dominant contribution of EC from diesel vehicles. Both EC and OC showed a dominant accumulation mode with a mass median aerodynamic diameter (MMAD) of 0.42 microm. In comparison, studies available in the literature typically reported a much lower MMAD for EC (approximately 0.1 microm) in vehicular emissions in North America. A theoretical analysis indicated that the larger EC particles observed in this study could not have resulted from after-emission growth processes (i.e., water accretion, coagulation, and vapor condensation). This leaves operating conditions such as high engine loads and low combustion efficiencies, which are more prevalent in diesel-fueled Chinese vehicles, as a more plausible inherent reason for producing the larger EC agglomerates. While fresh 0.1 microm EC particles are unlikely to act as cloud condensation nuclei (CCN), calculations showed that EC particles as large as 0.42 microm are effective CCN at atmospherically relevant critical supersaturation values of less than 1%. As a result, fresh EC particles from Chinese vehicle emissions could readily undergo cloud processing and form internal mixtures with sulfate in the residue droplet mode particles. This prediction is consistent with observations that EC frequently showed a dominant droplet mode in urban atmospheres in this region. The internal mixing of EC with highly hygroscopic sulfate would facilitate its removal by wet deposition and shorten its lifetime in the atmosphere. In addition, the light-absorbing capabilities of EC particles could

  4. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    SciTech Connect

    Li, X.; Nilsson, D.; Danielsson, Ö.; Pedersen, H.; Janzén, E.; Forsberg, U.; Bergsten, J.; Rorsman, N.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement shows a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.

  5. Delinating Thermohaline Double-Diffusive Rayleigh Regimes

    NASA Astrophysics Data System (ADS)

    Graf, T.; Walther, M.; Kolditz, O.; Liedl, R.

    2013-12-01

    In natural systems, convective flow induced from density differences may occur in near-coastal aquifers, atmospheric boundary layers, oceanic streams or within the earth crust. Whether an initially stable, diffusive regime evolves into a convective (stable or chaotic) regime, or vice versa, depends on the system's framing boundary conditions. A conventional parameter to express the relation between diffusive and convective forces of such a density-driven regime is Rayleigh number (Ra). While most systems are mainly dominated by only a single significant driving force (i.e. only temperature or salinity), some systems need to consider two boundary processes (e.g. deep, thus warm, haline flow in porous media). In that case, a two-dimensional, 'double-diffusive' Rayleigh system can be defined. Nield (1998) postulated a boundary between diffusive and convective regime at RaT + RaC = 4pi^2 in the first quadrant (Q1), with Rayleigh numbers for temperature and concentration respectively. The boundary in the forth quadrant (Q4) could not exactly be determined, yet the approximate position estimated. Simulations with HydroGeoSphere (Therrien, 2010) using a vertical, quadratic, homogeneous, isotropic setup confirmed the existence of the 4pi^2-boundary and revealed additional regimes (diffusive, single-roll, double-roll, chaotic) in Q1. Also, non-chaotic, oscillating patterns could be identified in Q4. More detailed investigations with OpenGeoSys (Kolditz, 2012) confirmed the preceding HGS results, and, using a 1:10-scaled domain (height:length), uncovered even more distinctive regimes (diffusive, minimum ten roles, supposely up to 25 roles, and chaotic?) in Q1, while again, oscillating patterns were found in the transition zone between diffusive and chaotic regimes in Q4. Output of numerical simulations from Q1 and Q4 show the mentioned regimes (diffusive, stable-convective, stable-oscillatory, chaotic) while results are displayed in context of a possible delination between

  6. Comparison of Global Model Results from the Carbon-Land Model Intercomparison Project (C-LAMP) with Free-Air Carbon Dioxide Enrichment (FACE) Manipulation Experiments

    SciTech Connect

    Hoffman, Forrest M; Randerson, Jim; Fung, Inez; Thornton, Peter E; Covey, Curtis; Bonan, Gordon; Running, Steven; Norby, Richard J

    2008-01-01

    Free-Air CO{sub 2} Enrichment (FACE) manipulation experiments have been carried out at a handful of sites to gauge the response of the biosphere to significant increases in atmospheric [CO{sub 2}]. Early synthesis results from four temperate forest sites suggest that the response of net primary productivity (NPP) is conserved across a broad range of productivity with a stimulation at the median of 23 {+-} 2% when the surrounding air [CO{sub 2}] was raised to 550{approx}ppm. As a part of the Carbon-Land Model Intercomparison Project (C-LAMP), a community-based model-data comparison activity, the authors have performed a global FACE modeling experiment using two terrestrial biogeochemistry modules, CLM3-CASA and CLM3-CN, coupled to the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). The two models were forced with an improved NCEP/NCAR reanalysis data set and reconstructed atmospheric [CO{sub 2}] and N deposition data through 1997. At the beginning of 1997 in the transient simulations, global atmospheric [CO{sub 2}] was abruptly raised to 550{approx}ppm, the target value used at the FACE sites. In the control runs, [CO{sub 2}] continued to rise following observations until 2004, after which it was held constant out to year 2100. In both simulations, the last 25 years of reanalysis forcing and a constant N deposition were applied after year 2004. Across all forest biomes, the NPP responses from both models are weaker than those reported for the four FACE sites. Moreover, model responses vary widely geographically with a decreasing trend of NPP increases from 40{sup o}N to 70{sup o}N. For CLM3-CASA, the largest responses occur in arid regions of western North America and central Asia, suggesting that responses are most strongly influenced by increased water use efficiency for this model. CLM3-CN exhibits consistently weaker responses than CLM3-CASA' with the strongest responses in central Asia, but significantly constrained by N

  7. Cost-effective choices of marine fuels in a carbon-constrained world: results from a global energy model.

    PubMed

    Taljegard, Maria; Brynolf, Selma; Grahn, Maria; Andersson, Karin; Johnson, Hannes

    2014-11-01

    The regionalized Global Energy Transition model has been modified to include a more detailed shipping sector in order to assess what marine fuels and propulsion technologies might be cost-effective by 2050 when achieving an atmospheric CO2 concentration of 400 or 500 ppm by the year 2100. The robustness of the results was examined in a Monte Carlo analysis, varying uncertain parameters and technology options, including the amount of primary energy resources, the availability of carbon capture and storage (CCS) technologies, and costs of different technologies and fuels. The four main findings are (i) it is cost-effective to start the phase out of fuel oil from the shipping sector in the next decade; (ii) natural gas-based fuels (liquefied natural gas and methanol) are the most probable substitutes during the study period; (iii) availability of CCS, the CO2 target, the liquefied natural gas tank cost and potential oil resources affect marine fuel choices significantly; and (iv) biofuels rarely play a major role in the shipping sector, due to limited supply and competition for bioenergy from other energy sectors. PMID:25286282

  8. Reactivity of Hontomín carbonate rocks to acidic solution injection: reactive "push-pull" tracer tests results

    NASA Astrophysics Data System (ADS)

    De Gaspari, Francesca; Cabeza, Yoar; Luquot, Linda; Rötting, Tobias; Saaltink, Maarten W.; Carrera, Jesus

    2014-05-01

    Several field tests will be carried out in order to characterize the reservoir for CO2 injection in Hontomín (Burgos, Spain) as part of the Compostilla project of "Fundación Ciudad de la Energía" (CIUDEN). Once injected, the dissolution of the CO2 in the resident brine will increase the acidity of the water and lead to the dissolution of the rocks, constituted mainly by carbonates. This mechanism will cause changes in the aquifer properties such as porosity and permeability. To reproduce the effect of the CO2 injection, a reactive solution with 2% of acetic acid is going to be injected in the reservoir and extracted from the same well (reactive "push-pull" tracer tests) to identify and quantify the geochemical reactions occurring into the aquifer. The reactivity of the rock will allow us also to evaluate the changes of its properties. Previously, theoretical calculations of Damkhöler numbers were done to determine the acid concentrations and injection flow rates needed to generate ramified-wormholes patterns, during theses "push-pull" experiments. The aim of this work is to present the results and a preliminary interpretation of the field tests.

  9. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    USGS Publications Warehouse

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  10. An Experimental Evaluation of HVAC-Grade Carbon-Dioxide Sensors: Part 3, Humidity, Temperature, and Pressure Sensitivity Test Results

    SciTech Connect

    Shrestha, Som S; Maxwell, Dr. Gregory

    2010-01-01

    This is the third paper in a four-part series reporting on the test and evaluation of typical carbon-dioxide sensors used in building HVAC applications. Fifteen models of NDIR HVAC-grade CO2 sensors were tested and evaluated to determine the humidity, temperature, and pressure sensitivity of the sensors. This paper reports the performance of the sensors at various relative humidity, temperature, and pressure levels common to building HVAC applications and provides a comparison with manufacturer specifications. Among the 15 models tested, eight models have a single-lamp, single-wavelength configuration, four models have a dual-lamp, single-wavelength configuration, and three models have a single-lamp, dual-wavelength configuration. The sensors were tested in a chamber specifically fabricated for this research. A description of the apparatus and the method of test are described in Part 1 (Shrestha and Maxwell 2009). The test result showed a wide variation in humidity, temperature, and pressure sensitivity of CO2 sensors among manufacturers. In some cases, significant variations in sensor performance exist between sensors of the same model. Even the natural variation in relative humidity could significantly vary readings of some CO2 sensor readings. The effects of temperature and pressure variation on NDIR CO2 sensors are unavoidable without an algorithm to compensate for the changes. For the range of temperature and pressure variation in an air-conditioned space, the effect of pressure variation is more significant compared to the effect of temperature variation.

  11. Epidemiological Study of the Incidence of Cancers Eligible for Proton or Carbon Ions Therapy: Methodology and Results of Recruitment Estimation

    PubMed Central

    Patin, Stéphanie; Pommier, Pascal; Yi, Hu; Baron, Marie Hélène; Balosso, Jacques

    2013-01-01

    Context. Hadrontherapy is an innovative form of radiotherapy using beams of protons or carbon ions able to destroy some radio-resistant tumours. Because these tumours are highly specific amongst all cancerous tumours, it is impossible to determine the incidence of these diseases from surveillance registries. Goal. To assess, within the Rhône-Alpes region, the incidence of cancers being hadrontherapy indications. Method. Prospective, multicentre continuous data collection during 1 year, by practitioners participating to multidisciplinary tumor board. Tumours are inoperable, radio resistant, at primary stage of development, or locally recurrent, with low metastatic potential. Results. Study involved 27 healthcare centres, 52 groups of specialist practitioners. The estimated incidence of cancers eligible for hadrontherapy in the Rhône-Alpes region in 2010, that is, for 34 locations in all, is of 8.5/100 000 inhabitants. Appraisal of the low potential of metastatic progression is impeded, because these are rare diseases, whose outcome is unfamiliar to investigators. Conclusion. Future epidemiological studies will need to focus on prognosis and on the metastatic progression rate of these diseases. Indeed, there are few information available on this subject in the literature that could be used to improve preventive measures, medical care, and the surveillance of these rare cancers. PMID:23864858

  12. Radiative effects of global MODIS cloud regimes

    NASA Astrophysics Data System (ADS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2016-03-01

    We update previously published Moderate Resolution Imaging Spectroradiometer (MODIS) global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 data set. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux data sets. Our results clearly show that the CRs are radiatively distinct in terms of shortwave, longwave, and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles, to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance data sets suffering from imperfect spatiotemporal matching depend on CR and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  13. Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the southeastern United States

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Zheng, Mei; He, Ke-bin; Chen, Yingjun; Yan, Bo; Russell, Armistead G.; Shi, Wenyan; Jiao, Zheng; Sheng, Guoying; Fu, Jiamo; Edgerton, Eric S.

    2011-02-01

    A total of 333 PM 2.5 samples were collected at four sites in the southeastern Aerosol Research and Characterization Study (SEARCH) network during four seasons from 2003 to 2005 and were simultaneously analyzed by two common thermal-optical methods, the National Institute of Occupational Safety and Health (NIOSH) method and the Interagency Monitoring of Protected Visual Environments (IMPROVE) method. The concentrations of total carbon measured by the two methods were comparable, whereas the split of organic carbon (OC) and elemental carbon (EC) was significantly different. The NIOSH-defined EC was lower (up to 80%) than that defined by IMPROVE since the NIOSH method applied the transmittance charring correction and a much higher peak inert mode temperature. The discrepancy between NIOSH- and IMPROVE-defined EC showed distinct seasonal and spatial variations. Potential factors contributing to this discrepancy besides the analytical method were investigated. The discrepancy between NIOSH- and IMPROVE-defined EC was larger in the spring compared to winter due to the influence of biomass burning, which is known to emit significant amount of brown carbon that would complicate the split of OC and EC. The NIOSH-defined EC to IMPROVE-defined EC ratio reached its minimum (0.2-0.5) in the summer, when the largest discrepancy was observed. This was most likely to be attributed to the influence of secondary organic aerosol (SOA). Moreover, the discrepancy between NIOSH- and IMPROVE-defined EC was larger in the coastal and the rural sites where the presence of abundant SOA was found based on previous studies in this region, providing supporting evidence that SOA could contribute to the observed discrepancy in summer.

  14. Simulation of Carbon-14 Migration Through a Thick Unsaturated Alluvial Basin Resulting from an Underground Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Martian, P.; Larentzos, J.

    2008-12-01

    Yucca Flat is one of several areas on the Nevada Test Site that was used for underground nuclear testing. Extensive testing performed in the unsaturated and saturated zones have resulted in groundwater contamination and surface subsidence craters in the vicinity of the underground test areas. Simulation of multiphase 14C transport through the thick Yucca Flat alluvial basin was performed to estimate the magnitude of radionuclide attenuation occurring within the unsaturated zone. Parameterization of the 14C transport in the multiphase flow and transport simulator (FEHM) was verified with experimental data collected from a large unsaturated soil column experiment. The experimental data included 14C as a radio-labeled bicarbonate solution, SF6 gas, and lithium bromide solution breakthroughs. Two representative simulation cases with working points located at shallow and deep depths relative to the water table were created to investigate the impact of subsidence crater-enhanced recharge, crater-playa areal extent, gas-phase partitioning, solid-phase partitioning, and a reduced permeability/porosity compressed zone created during the explosion on 14C transport. The representative shallow test had a detonation point located 175 m below land surface, and the deep test had a working point 435 m below land surface in a 500 m deep unsaturated zone. Carbon-14 transport is influenced by gas-phase diffusion and sorption within the alluvium. Gas-phase diffusion is an attenuation mechanism that transports 14C gas as 14CO2 throughout the unsaturated zone and exposes it to a large amount of soil moisture, resulting in dilute concentrations. The simulations indicated that the majority of the 14C inventory remains in the unsaturated zone over a 1,000-year time period after detonation because gas-phase diffusion moves the bulk of the 14C away from the higher recharge occurring in crater playas. Retardation also plays a role in slowing advective aqueous phase transport to the water

  15. Estimation of metabolic heat production and methane emission in Sahiwal and Karan Fries heifers under different feeding regimes

    PubMed Central

    Kumar, Sunil; Singh, S. V.; Pandey, Priyanka; Kumar, Narendra; Hooda, O. K.

    2016-01-01

    Aim: The objective of this study was designed to estimate the metabolic heat production and methane emission in Sahiwal and Karan Fries (Holstein-Friesian X Tharparkar) heifers under two different feeding regimes, i.e., feeding regime-1 as per the National Research Council (NRC) (2001) and feeding regime-2 having 15% higher energy (supplementation of molasses) than NRC (2001). Materials and Methods: Six (n = 6) healthy heifers of Sahiwal and Karan Fries with 18-24 months of age were selected from Indian Council of Agricultural Research-National Dairy Research Institute, Karnal. An initial 15 days was maintained under feeding regime-1 and feeding regime-2 as adaptation period; actual experiment was conducted from 16th day onward for next 15 days. At the end of feeding regimes (on day 15th and 16th), expired air and volume were collected in Douglas bag for two consecutive days (morning [6:00 am] and evening [4:00 pm]). The fraction of methane and expired air volume were measured by methane analyzer and wet test meter, respectively. The oxygen consumption and carbon dioxide production were measured by iWorx LabScribe2. Results: The heat production (kcal/day) was significantly (p<0.05) higher in feeding regime-2 as compared to feeding regimen-1 in both breeds. The heat production per unit metabolic body weight was numerically higher in feeding regime-1 than feeding regime-2; however, the values were found statistically non-significant (p>0.05). The energy loss as methane (%) from total heat production was significantly (p<0.05) higher in feeding regime-1. The body weight (kg), metabolic body weight (W0.75), and basal metabolic rate (kcal/kg0.75) were significantly (p<0.05) higher in feeding regime-2 in both breeds. Conclusions: This study indicates that higher energy diet by supplementing molasses may reduce energy loss as methane and enhance the growth of Sahiwal and Karan Fries heifers. PMID:27284226

  16. Inter- and intraspecific variations of the chemical properties of high-Arctic mosses along water-regime gradients

    NASA Astrophysics Data System (ADS)

    Ueno, Takeshi; Osono, Takashi; Kanda, Hiroshi

    We examined and compared the contents of organic chemical components (lignin-like compounds, total carbohydrates and extractives), carbon and nutrients (nitrogen, phosphorus, potassium, calcium, magnesium) among the mosses Calliergon giganteum, Hylocomium splendens, Racomitrium lanuginosum, and among three populations of H. splendens collected from habitats in contrasting water regimes in the Canadian high-arctic tundra. C:N:P ratios were analyzed among and within moss species. Mosses from hydric habitats had lower total carbohydrate and higher nutrients contents than did mosses from drier habitats; however, we found no intraspecific variations in nitrogen and calcium contents in the different populations of H. splendens along water-regime gradients. The contents in lignin-like compounds, extractives and carbon showed no clear trends along water-regime gradients. Mosses from hydric habitats had lower C:N, C:P and N:P ratios than mosses from drier habitats, although we found no intraspecific variations in C:N ratios in H. splendens along water-regime gradients. These results suggest that chemical properties of mosses, especially nutrient contents, are strongly correlated with water availability in high-Arctic tundra.

  17. Cloud regimes as phase transitions

    NASA Astrophysics Data System (ADS)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  18. Flow regimes in a single dimple on the channel surface

    NASA Astrophysics Data System (ADS)

    Kovalenko, G. V.; Terekhov, V. I.; Khalatov, A. A.

    2010-12-01

    The boundaries of the domains of existence of flow regimes past single dimples made as spherical segments on a flat plate are determined with the use of available experimental results. Regimes of a diffuser-confuser flow, a horseshoe vortex, and a tornado-like vortex in the dimple are considered. Neither a horseshoe vortex nor a tornado-like vortex is observed in dimples with the relative depth smaller than 0.1. Transformations from the diffuser-confuser flow regime to the horseshoe vortex regime and from the horseshoe vortex flow to the tornado-like vortex flow are found to depend not only on the Reynolds number, but also on the relative depth of the spherical segment. Dependences for determining the boundaries of the regime existence domains are proposed, and parameters at which the experimental results can be generalized are given.

  19. Results of the TTF-TCNQ and the calcium carbonate crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1992-01-01

    Experiment A0139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit five years with crystal growth solutions for lead sulfide, calcium carbonate, and TTF-TCNQ. Although temperature data was lost, the experimental program had been working since the valves in all containers had been opened. All four experiments produced crystals of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X ray investigations as well as conductivity measurements on long duration space grown TTF-TCNQ crystals will be presented. Comparisons will be made with our previous space solution growth experiments. The TTF-TCNQ crystals are no longer of the highest interest, so this activity has been terminated in favor of calcium carbonate and calcium phosphate crystallizations.

  20. An Experimental Investigation of Swelling and Elastic Property Changes Resulting from Carbon Dioxide Injection into Prismatic Coal Specimens

    NASA Astrophysics Data System (ADS)

    Dlamini, Bongani

    The world currently relies heavily on fossil fuels to meet its energy needs. The demand from a growing population for energy continues to increase and cannot be met solely by renewable sources of energy. As a result of this high dependence on fossil fuels, various methods of reducing emissions are under investigation. Carbon dioxide Capture and Storage (CCS) has been identified as a potential technique that can be employed to reduce emissions. Unmineable coal seams have been identified as a possible carbon dioxide geologic storage formation. The behavior of coal in response to CO 2 injection is not yet fully understood or well documented. There is a need to understand and quantify the physical changes of coal in response to CO2 injection. These physical changes include properties such as strain (swelling), sonic velocity (compressional and shear velocity), and elastic moduli. Understanding the physical changes undergone by coal during CO2 injection is crucial in evaluating the efficiency and integrity of coal as a potential geologic storage formation. To study and quantify the effect of CO2 injection on adsorption induced strain (swelling) and coal elastic properties, specifically ultrasonic velocity (compressional and shear velocity) and elastic moduli, an experimental approach was followed. Two prismatic coal samples with approximate dimensions of 25cm (9.8 inches) x 17cm (6.7 inches) x 6cm (2.4 inches) were prepared. The coal samples used were from the Lower Sunnyside Coal Seam of the Books Cliffs Coalfields in Utah. A specially designed steel frame was used to contain the samples. Two extreme cases were tested using the samples. For case one, a high (4 MPa) injection pressure and high confining pressure (12 MPa) was used and in case two, both injection pressure and confining pressure were dramatically decreased. The conventional pulse transmission method was used to determine sonic velocities. This method uses transducers to send an ultrasonic wave through the

  1. Altered peat hydrophysical properties following drainage and wildfire increases peatland vulnerability to ecosystem regime shift

    NASA Astrophysics Data System (ADS)

    Waddington, James; Kettridge, Nick; Sherwood, James; Granath, Gustaf

    2015-04-01

    Northern peatlands represent a globally significant carbon reservoir, composed largely of legacy carbon which is no longer part of the active carbon cycle. However, it is unclear whether this legacy carbon is vulnerable as a result of enhanced peat smouldering and combustion under the moderate drying conditions predicted for northern peatlands as a result of climate change and/or disturbance from forestry, mining, and associated transport development. A significant loss in legacy carbon as a result of wildfire has already been observed in smaller tropical peatlands where deep peat soils have been destabilized due to severe drainage and a shift in vegetation. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland several decades post drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition, previously observed within only severely disturbed tropical peatlands, when accompanied by wildfire. The combined impact of moderate drainage followed by wildfire resulted in a shift of the peat surface down the peat profile, exposing denser peat at the surface. In undisturbed northern peatlands where depth of burn is typically low, low-density near-surface peats help regulate water-table position and near-surface moisture availability post-fire, both of which are favourable to Sphagnum recolonization. As a result of drainage and fire at the study site, the self-regulating properties of the low-density Sphagnum surface were lost. We demonstrate that changes in peat hydrophysical properties increased hydrological limitations to Sphagnum recovery leading to the conversion to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy carbon stored in the peat.

  2. Tracing Nitrate Contributions to Streams During Varying Flow Regimes at the Sleepers River Research Watershed, Vermont, USA

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.

    2003-12-01

    Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.

  3. Re-Evaluation of Results in NUREG/CR-6674 for Carbon and Low-Alloy Steel Components (MRP-76)

    SciTech Connect

    A. Deardorff; D. Harris; D. Dedhia

    2002-11-30

    This report evaluates the conservatisms and uncertainties reported in NUREG/CR-6674 that lead to high probabilities of cracking in carbon and low-alloy steel for reactor piping. The report uses additional data generated since the completion of the report to eliminate uncertainties and show lower probabilities of cracking.

  4. 77 FR 66954 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... Rod from Mexico: Affirmative Final Determination of Circumvention of the Antidumping Duty Order, 77 FR... of Sales at Less Than Fair Value: Carbon and Certain Alloy Steel Wire Rod From Mexico, 67 FR 55800..., Trinidad and Tobago, and Ukraine, 67 FR 65945 (October 29, 2002), remains dispositive. On October 1,...

  5. 77 FR 32508 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Notice of Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Duty Administrative Reviews and Request for Revocation in Part, 76 FR 37781 (June 28, 2011) (``Review... Order; Welded Carbon Steel Standard Pipe and Tube Products From Turkey, 51 FR 17784 (May 15, 1986... Investigation; Opportunity to Request Administrative Review, 76 FR 24460 (May 2, 2011). \\6\\ See Letter...

  6. Using a Class to Conduct a Carbon Inventory: A Case Study with Practical Results at Macalester College

    ERIC Educational Resources Information Center

    Wells, Christopher W.; Savanick, Suzanne; Manning, Christie

    2009-01-01

    Purpose: The purpose of this paper is to discuss the practical realities of using a college seminar to fulfill the carbon audit requirement for signatories to the American College and University Presidents Climate Commitment (ACUPCC) and presents evidence of this approach's advantages as an educational and practical tool.…

  7. 75 FR 64700 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ...-Quality Steel Products from Brazil, 64 FR 38797 (July 19, 1999); see also Final Affirmative Countervailing Duty Determination: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil, 64 FR... FR 56040 (September 17, 2004) (HRS Order). The order was issued five years after the completion...

  8. 75 FR 1031 - Certain Hot-Rolled Carbon Steel Flat Products from India: Notice of Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... Antidumping Duty Order: Certain Hot-Rolled Carbon Steel Flat Products From India, 66 FR 60194 (December 3... from India, 66 FR 60194 (December 3, 2001) (``Amended Final Determination''). On December 1, 2008, the..., Finding, or Suspended Investigation; Opportunity To Request Administrative Review, 73 FR 72764 (December...

  9. 76 FR 2344 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Antidumping Duty Order: Certain Hot-Rolled Carbon Steel Flat Products From India, 66 FR 60194 (December 3...; Opportunity To Request Administrative Review, 74 FR 62743 (December 1, 2009). On December 31, 2009... FR 4770 (January 29, 2010) (``Initiation Notice''). On February 2, 2010, Ispat and Essar, and...

  10. 77 FR 33420 - Certain Activated Carbon From the People's Republic of China: Final Results of Expedited Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... materials with a lignocellulosic component such as cellulose, including wood, sawdust, paper mill waste and... Initiation of Five-Year (``Sunset'') Review, 77 FR 12562 (March 1, 2012); see also Notice of Antidumping Duty Order: Certain Activated Carbon From the People's Republic of China, 72 FR 20988 (April 27,...

  11. 77 FR 61738 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... Antidumping Duty Order: Circular Welded Carbon Steel Pipes and Tubes From Thailand, 51 FR 8341 (January 27... FR 20782 (April 6, 2012). DATES: Effective Date: October 11, 2012. FOR FURTHER INFORMATION CONTACT... Proceedings: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). Cash Deposit Requirements...

  12. 76 FR 64312 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Final Results of the Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ...) of the Act. See Initiation of Five-Year (``Sunset'') Review, 76 FR 38613 (July 1, 2011) (Notice of... FR 12467 (March 27, 1989). The Department received a notice of intent to participate in this sunset... International Trade Administration Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan:...

  13. Sr-isotopic constraints on brine-mineral reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, H.; Kampman, N.; Dubacq, B.; Galy, A.; Bickle, M. J.; Ballentine, C. J.; Zhou, Z.; Crius Team

    2011-12-01

    Reactions between CO2-charged brines and minerals in reservoirs used for geological carbon storage may either enhance the storage of CO2 by precipitating carbonate minerals and increasing dissolution of CO2 in brines or allow migration of CO2 by corroding cap rocks. However the nature and rates of such reactions are too poorly constrained for reliable modelling of the impact of the reactions. This study attempts to infer the nature and rates of such reactions by sampling brines during a phase of CO2 injection for enhanced oil recovery in a small oil field. The interpretation of the fluid-mineral reactions from changes in the water chemistry is complicated by the previous history of the field and re-injection of produced water prior to injection of CO2. Anion (Cl, F, Br, I) and stable isotope ratios (δ18O, D/H) primarily track fluid sources and fluid mixing. Cation concentrations and Sr-isotopic compositions reflect both mixing of injected waters and fluid mineral reactions (Fig. 1). The variations in Sr-isotopic ratios are interpreted to reflect the relative inputs from dissolution of unradiogenic carbonate minerals and radiogenic silicate minerals. It is notable that Sr-isotopic ratios decrease after CO2 breakthrough as Sr concentrations continue to rise implying, increased carbonate dissolution although increases in Na, K and Si also require dissolution of silicate minerals.

  14. 76 FR 23978 - Certain Activated Carbon From the People's Republic of China: Preliminary Results of the Third...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Countervailing Duty Administrative Reviews, 75 FR 29976 (May 28, 2010); see also Initiation of Antidumping and Countervailing Duty Administrative Reviews and Requests for Revocation in Part, 75 FR 37759 (June 30, 2010... Duty Administrative Review, 75 FR 48644 (August 11, 2010). \\4\\ See Certain Activated Carbon from...

  15. The influence of temperature calibration on the OC-EC results from a dual optics thermal carbon analyzer

    NASA Astrophysics Data System (ADS)

    Pavlovic, J.; Kinsey, J. S.; Hays, M. D.

    2014-04-01

    Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the NIOSH 5040 and IMPROVE protocols. Application of the oven calibration procedure to our dual optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the wide-spread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.

  16. 78 FR 61335 - Circular Welded Carbon-Quality Steel Pipe From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...: Circular Welded Carbon Quality Steel Pipe from the People's Republic of China, 73 FR 42547 (July 22, 2008). \\2\\ See Initiation of Five-Year (``Sunset'') Review, 78 FR 33063 (June 3, 2013). Scope of the Order... Quality Steel Pipe from the People's Republic of China, 73 FR 42547 (July 22, 2008); Correction to...

  17. 75 FR 4779 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ...-Rolled Flat-Rolled Carbon-Quality Steel Products From Japan, 64 FR 24329 (May 6, 1999). In Nippon Steel... home-market sales database. See Stainless Steel Sheet and Strip in Coils from Taiwan: Preliminary... (August 5, 2008) (Coils from Taiwan), unchanged in Stainless Steel Sheet and Strip in Coils From...

  18. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO{sub 2} pressure

    SciTech Connect

    Zomeren, Andre van; Laan, Sieger R. van der; Kobesen, Hans B.A.; Huijgen, Wouter J.J.; Comans, Rob N.J.

    2011-11-15

    Highlights: > Accelerated carbonation studied to improve environmental properties of steel slag. > Carbonation found to occur predominantly at surface of the steel slag grains. > Combined geochemical modelling and mineral analysis revealed controlling processes. > Enhanced V-leaching with di-Ca silicate (C2S) dissolution identified as major source. > Identified mineral transformations provide guidance for further quality improvement. - Abstract: Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential of accelerated steel slag carbonation, at relatively low pCO{sub 2} pressure (0.2 bar), to improve the environmental pH and the leaching properties of steel slag, with specific focus on the leaching of vanadium. Carbonation experiments are performed in laboratory columns with steel slag under water-saturated and -unsaturated conditions and temperatures between 5 and 90 {sup o}C. Two types of steel slag are tested; free lime containing (K3) slag and K1 slag with a very low free lime content. The fresh and carbonated slag samples are investigated using a combination of leaching experiments, geochemical modelling of leaching mechanisms and microscopic/mineralogical analysis, in order to identify the major processes that control the slag pH and resulting V leaching. The major changes in the amount of sequestered CO{sub 2} and the resulting pH reduction occurred within 24 h, the free lime containing slag (K3-slag) being more prone to carbonation than the slag with lower free lime content (K1-slag). While carbonation at these conditions was found to occur predominantly at the surface of the slag grains, the formation of cracks was observed in carbonated K3 slag, suggesting that free lime in the interior of slag grains had also reacted

  19. Monitoring and diagnostics systems for nuclear power plant operating regimes

    SciTech Connect

    Abagyan, A.A.; Dmitriev, V.M.; Klebanov, L.A.; Kroshilin, A.E.; Larin, E.P.; Morozov, S.K.

    1988-05-01

    The development of new monitoring and diagnostics systems for Soviet reactors is discussed. An experimental test station is described where industrial operation of new experimental systems can be conducted for purposes of bringing their performance to the level of standard Soviet systems for monitoring reactor operation regimes and equipment resources. The requirements and parameters of the systems are described on a unit-by-unit basis, including the sensor reading monitoring unit, the vibroacoustic monitoring unit, the noise monitoring unit, the accident regime identification unit, and the nonstationary regime monitoring unit. Computer hardware and software requirements are discussed. The results of calculational and experimental research on two complex nonstationary regimes of reactor operation are given. The accident regimes identification unit for the VVER-1000 is analyzed in detail.

  20. Global regime shift dynamics of catastrophic sea urchin overgrazing

    PubMed Central

    Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.

    2015-01-01

    A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.

  1. The Sensitivity of Ocean Circulation and Carbon Uptake to the Rate of CO2 Increase and the Resultant Changes in Climate and Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Cao, L.; Jain, A. K.

    2003-12-01

    We investigate an important feedback loop in the climate-carbon cycle system that involves increase in atmospheric CO2 and the resulting changes in temperature, the hydrological cycle, ocean circulation, and oceanic carbon uptake. This study is conducted using the coupled atmosphere-ocean-carbon cycle component of the Integrated Science Assessment Model (ISAM). The coupled model includes an energy-moisture balance atmosphere module, a thermodynamic sea-ice module, and a zonal mean ocean module. The ocean component resolves major ocean basins and is based on the balance equations of momentum, temperature, salinity and carbon and its isotopes. The coupled model has the ability to successfully simulate historical and current climates, the ocean thermohaline circulation (THC), oceanic carbon uptake, and bomb 14C. Global warming may cause a weakening or even a collapse of the THC through the increased sea surface temperature and an enhanced hydrological cycle, which can reduce oceanic carbon uptake, thus accelerate the global warming. Recent studies find that the change in the THC is dependent not only on the concentration of atmospheric CO2, but also on the rate of CO2 increase. Using a variety of CO2 increase scenarios (e.g., 0.5%, 1%, 2%/yr CO2 increase from present concentration to the level of doubling or quadrupling of CO2), we extend previous studies by assessing the effect of the rate of CO2 increase, temperature, and hydrological cycle not only on the THC but also on the oceanic carbon uptake. We also explore the threshold values of the rate of CO2 increase and the absolute amount of atmospheric CO2 that are likely to induce the collapse of the North Atlantic Deep Water (NADW) formation, which can have dramatic effects on oceanic uptake of CO2.

  2. Photon blockade in the ultrastrong coupling regime.

    PubMed

    Ridolfo, A; Leib, M; Savasta, S; Hartmann, M J

    2012-11-01

    We explore photon coincidence counting statistics in the ultrastrong coupling regime, where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. In this regime, usual normal order correlation functions fail to describe the output photon statistics. By expressing the electric-field operator in the cavity-emitter dressed basis, we are able to propose correlation functions that are valid for arbitrary degrees of light-matter interaction. Our results show that the standard photon blockade scenario is significantly modified for ultrastrong coupling. We observe parametric processes even for two-level emitters and temporal oscillations of intensity correlation functions at a frequency given by the ultrastrong photon emitter coupling. These effects can be traced back to the presence of two-photon cascade decays induced by counterrotating interaction terms. PMID:23215383

  3. The optomechanical instability in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ludwig, Max; Kubala, Björn; Marquardt, Florian

    2008-09-01

    We consider a generic optomechanical system, consisting of a driven optical cavity and a movable mirror attached to a cantilever. Systems of this kind (and analogues) have been realized in many recent experiments. It is well known that these systems can exhibit an instability towards a regime where the cantilever settles into self-sustained oscillations. In this paper, we briefly review the classical theory of the optomechanical instability, and then discuss the features arising in the quantum regime. We solve numerically a full quantum master equation for the coupled system, and use it to analyze the photon number, the cantilever's mechanical energy, the phonon probability distribution and the mechanical Wigner density, as a function of experimentally accessible control parameters. When a suitable dimensionless 'quantum parameter' is sent to zero, the results of the quantum mechanical model converge towards the classical predictions. We discuss this quantum-to-classical transition in some detail.

  4. Dominant takeover regimes for genetic algorithms

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.

  5. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of <20%, have been accelerated at up to ~500 MeV, demonstrating 3 out of 4 for key requirements for ion fast ignition. The shown results now approach or exceed the limits set by many applications from ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can

  6. Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion.

    PubMed

    Wang, Jinzhang; Cai, Zhiping; Xu, Ping; Du, Geguo; Wang, Fengqiu; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2015-04-20

    We numerically and experimentally analyze the output characteristics and pulse dynamics of carbon nanotube mode-locked fiber lasers near zero cavity dispersion (from 0.02 to ~-0.02 ps(2)). We focus on such near zero dispersion cavities to reveal the dispersion related transition between different mode-locking regimes (such as soliton-like, stretched-pulse and self-similar regimes). Using our proposed model, we develop a nanotube-mode-locked fiber laser setup generating ~97 fs pulse which operates in the stretched-pulse regime. The corresponding experimental results and pulse dynamics are in good agreement with the numerical results. Also, the experimental results from soliton-like and self-similar regimes exhibit the same trends with simulations. Our study will aid design of different mode-locking regimes based on other new saturable absorber materials to achieve ultra-short pulse duration. PMID:25969036

  7. Constructing an interdisciplinary flow regime recommendation

    USGS Publications Warehouse

    Bartholow, J.M.

    2010-01-01

    It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river's natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river's channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river. ?? 2010 American Water Resources Association.

  8. 75 FR 75455 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ...: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 64 FR 38741, 38744 (July 19... FR 16437 (April 1, 2010). The domestic interested parties timely filed a notice of intent to...-Quality Steel Products from Brazil: Preliminary Results of Full Sunset Review, 75 FR 43931 (July 27,...

  9. Distribution of organic carbon, selected stable elements and artificial radionuclides among dissolved, colloidal and particulate phases in the Rhône River (France): preliminary results.

    PubMed

    Eyrolle, F; Charmasson, S

    2001-01-01

    The behaviour of radionuclides discharged from nuclear facilities in the Rhône River depends on their distribution among the dissolved, colloidal and particulate phases. A large water sample was fractionated using sequential ultrafiltration. Size distributions of organic carbon, Fe, Al, Si, Ca, Mg, Cu, Zn, 137Cs, 60Co and 106Ru were obtained. Our results show that organic colloids account for 11% of the total organic carbon content. Approximately 20% of the dissolved (< 450 nm) Fe and Al are in colloidal classes. 137Cs is not significantly transferred by the colloidal phase while 25% of 60Co or 106Ru is associated with organic and inorganic colloids. PMID:11398374

  10. The influence of temperature calibration on the OC-EC results from a dual-optics thermal carbon analyzer

    NASA Astrophysics Data System (ADS)

    Pavlovic, J.; Kinsey, J. S.; Hays, M. D.

    2014-09-01

    Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the National Institute of Occupational Safety and Health Method 5040 (NIOSH) and Interagency Monitoring of Protected Visual Environment (IMPROVE) protocols. The application of the oven calibration procedure to our dual-optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the widespread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.

  11. Vegetation management with fire modifies peatland soil thermal regime.

    PubMed

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15 + years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15 + years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching +6.2 °C for daily mean temperatures and +19.6 °C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15 + years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime

  12. Results of the TTF-TCNQ- and the calcium carbonate-crystallization on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Nielsen, Kjeld Flemming; Lind, M. David

    1991-01-01

    Experiment AO139A on the Long Duration Exposure Facility (LDEF) carried four large containers into orbit for five years with crystal growth solutions for lead sulfide, calcium carbonate, and tetra thiafulvalene- tetra cyanoquino methane (TTF-TCNQ). The LDEF was in excellent condition after the long orbital stay, and although the temperature data was lost, the experiment program had been working since the valves in all containers were opened. All four experiments produced crystals; however, they were of varying quality. The calcium carbonate crystals had the best appearance. The TTF-TCNQ crystals were packed together near the valve openings of the container. When taken apart, the single crystals showed some unusual morphological properties. X-ray investigations as well as conductivity measurements on the long duration space grown TTF-TCNQ crystals are presented, and pictures of the calcium carbonate are shown. Comparisons are made with previous space solution growth experiments on the European Spacelab Mission and the Apollo-Soyuz Test Project.

  13. Measurement of contemporary and fossil carbon contents of PM 2.5 aerosols: results from Turtleback Dome, Yosemite National Park

    SciTech Connect

    Bench, G

    2003-10-17

    The impact of aerosol particulate matter of mean mass aerodynamic diameter {le} 2.5 {proportional_to}m (PM 2.5 aerosols), on health, visibility, and compliance with EPA's regional haze regulations is a growing concern. Techniques that can help better characterize particulate matter are required to better understand the constituents, causes and sources of PM 2.5 aerosols. Measurement of the {sup 14}C/C ratio of the PM 2.5 aerosols, the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials allows use of a two-component model to derive contemporary and fossil carbon contents of the particulate matter. Such data can be used to estimate the relative contributions of fossil fuels and biogenic aerosols to the total aerosol loading. Here, the methodology for performing such an assessment using total suspended particulate Hi-vol aerosol samplers to collect PM 2.5 aerosols on quartz fiber filters and the technique of accelerator mass spectrometry to measure {sup 14}C/C ratios is presented and illustrated using PM 2.5 aerosols collected at Yosemite National Park.

  14. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    USGS Publications Warehouse

    Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.A.; Sandford, S.A.; Mastrapa, R.M.E.; Filacchione, G.; Ore, C.M.D.; Nicholson, P.D.; Buratti, B.J.; McCord, T.B.; Nelson, R.M.; Dalton, J.B.; Baines, K.H.; Matson, D.L.

    2010-01-01

    Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 ??m (2343.3 cm-1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule's nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ???4.255 ??m (???2350.2 cm-1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe's CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior. The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 ??m, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector

  15. Optics in the Relativistic Regime

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki

    2012-06-01

    Optics has extended the frontier of low energy physics. Here we present the progress in the opposite direction of relativistic intensity regime of optics. With intense and large energy laser, particles may be accelerated to high energies via laser wakefield acceleration (Tajima and Dawson, 1979) over a compact distance orders of magnitude shorter than the RF approach. We should be able to accelerate electrons (over 30m) and ions (over cm) toward TeV with an existing kJ laser. We can check Lorentz invariance in the ultrarelativistic regime. Further, laser allows us to explore the presence of weakly coupling fields such as Dark Matter and Dark Energy with an unprecedented sensitivity. We call this emerging capability as the Laser Particle Physics Paradigm (LP^3).

  16. Demystifying optimal dynamic treatment regimes.

    PubMed

    Moodie, Erica E M; Richardson, Thomas S; Stephens, David A

    2007-06-01

    A dynamic regime is a function that takes treatment and covariate history and baseline covariates as inputs and returns a decision to be made. Murphy (2003, Journal of the Royal Statistical Society, Series B 65, 331-366) and Robins (2004, Proceedings of the Second Seattle Symposium on Biostatistics, 189-326) have proposed models and developed semiparametric methods for making inference about the optimal regime in a multi-interval trial that provide clear advantages over traditional parametric approaches. We show that Murphy's model is a special case of Robins's and that the methods are closely related but not equivalent. Interesting features of the methods are highlighted using the Multicenter AIDS Cohort Study and through simulation. PMID:17688497

  17. The emerging climate change regime

    SciTech Connect

    Bodansky, D.M.

    1995-11-01

    The emerging climate change regime--with the UN Framework Convention on Climate Change (FCCC) at its core--reflects the substantial uncertainties, high stakes and complicated politics of the greenhouse warming issue. The regime represents a hedging strategy. On the one hand, it treats climate change as a potentially serious problem, and in response, creates a long-term, evolutionary process to encourage further research, promote national planning, increase public awareness, and help create a sense of community among states. But it requires very little by way of substantive--and potentially costly--mitigation or adaptation measures. Although the FCCC parties have agreed to negotiate additional commitments, substantial progress is unlikely without further developments in science, technology, and public opinion. The FCCC encourages such developments, and is capable of evolution and growth, should the political will to take stronger international action emerge. 120 refs., 3 tabs.

  18. The International Climate Change Regime

    NASA Astrophysics Data System (ADS)

    Yamin, Farhana; Depledge, Joanna

    2005-01-01

    Aimed at the increasing number of policy-makers, stakeholders, researchers, and other professionals working on climate change, this volume presents a detailed description and analysis of the international regime established in 1992 to combat the threat of global climate change. It provides a comprehensive accessible guide to a high-profile area of international law and politics, covering not only the obligations and rights of countries, but ongoing climate negotiations as well.

  19. Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program site synthesis

    NASA Astrophysics Data System (ADS)

    Sulman, Benjamin N.; Desai, Ankur R.; Schroeder, Nicole M.; Ricciuto, Dan; Barr, Alan; Richardson, Andrew D.; Flanagan, Lawrence B.; Lafleur, Peter M.; Tian, Hanqin; Chen, Guangsheng; Grant, Robert F.; Poulter, Benjamin; Verbeeck, Hans; Ciais, Philippe; Ringeval, Bruno; Baker, Ian T.; Schaefer, Kevin; Luo, Yiqi; Weng, Ensheng

    2012-03-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pools and vulnerability to hydrological change. Use of non-peatland-specific models could lead to bias in modeling studies of peatland-rich regions. Here, seven ecosystem models were used to simulate CO2fluxes at three wetland sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor,sphagnum-dominated bog, over periods between 1999 and 2007. Models consistently overestimated mean annual gross ecosystem production (GEP) and ecosystem respiration (ER) at all three sites. Monthly flux residuals (simulated - observed) were correlated with measured water table for GEP and ER at the two fen sites, but were not consistently correlated with water table at the bog site. Models that inhibited soil respiration under saturated conditions had less mean bias than models that did not. Modeled diurnal cycles agreed well with eddy covariance measurements at fen sites, but overestimated fluxes at the bog site. Eddy covariance GEP and ER at fens were higher during dry periods than during wet periods, while models predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP did not depend on water table, while simulated GEP was higher during wet periods. Carbon cycle modeling in peatland-rich regions could be improved by incorporating wetland-specific hydrology and by inhibiting GEP and ER under saturated conditions. Bogs and fens likely require distinct plant and soil parameterizations in ecosystem models due to differences in nutrients, peat properties, and plant communities.

  20. Merging of Rhine flow regimes

    NASA Astrophysics Data System (ADS)

    Boessenkool, Berry; Bronstert, Axel; Bürger, Gerd

    2016-04-01

    The Rhine flow regime is changing: (a) in the alpine nival regime, snow melt floods occur earlier in the year and (b) in the pluvial middle-Rhine regime, rainfall induced flood magnitudes rise. The seasonality of each is currently separated in time, but it is conceivable that this may shift due to climate change. If extremes of both flood types coincide, this would create a new type of hydrologic extreme with disastrous consequences. Quantifying the probability for a future overlap of pluvial and nival floods is therefore of high relevance to society and particularly to reinsurance companies. In order to investigate possible changes in magnitude and timing of flood types, we are developing a chain of physical models for spatio-temporal combination of flood probabilities. As input, we aim to use stochastically downscaled temperature and rainfall extremes from climate model weather projections. Preliminary research shows a six-week forward-shift of peak discharge at the nival gauge Maxau in the past century. The aim of presenting our early-stage work as a poster is to induce an exchange of ideas with fellow scientists in close research disciplines.

  1. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems.

    PubMed

    Nielsen, Uffe N; Ball, Becky A

    2015-04-01

    Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as

  2. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  3. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  4. Multiple planetary flow regimes in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Yoden, Shigeo; Shiotani, Masato; Hirota, Isamu

    1987-01-01

    Low-frequency variations in the general circulation of the Southern Hemisphere during 1983 were studied using daily geopotential height and temperature analyses for 12 pressure levels from 1000 mb up to 50 mb, performed by the National Meteorological Center of Japan. Results disclosed the presence, in the Southern Hemisphere troposphere, of an irregular fluctuation of two zonal mean geostrophic wind patterns (named single-jet and double-jet regimes) during wintertime. The fluctuation is characterized by the persistence of one geostrophic wind regime, with characteristic duration of a month, followed by a rather rapid transition to another regime.

  5. Results of high temperature processing of high-carbon materials from the lower Cambrian period of the Earth's history

    NASA Astrophysics Data System (ADS)

    Maslov, O. D.

    2016-07-01

    The paper reports on the observation of spontaneous fission of nuclides, concentrated in fly ash during the combustion of high-carbon (graphite) material, chemogenic siliceous-carbonaceous rocks and carbonaceous shale in the mixture with brown coal. In the samples obtained, the spontaneous fission was measured by track method. The zones of precipitation of spontaneous fission of nuclides and their lighter homologues on thermochromatographic column were determined. A nuclide with a half-life of 62 days was detected in the alkaline trap. The chemical treatment procedure included co-precipitation with iron hydroxide, dissolution in NH4OH + H2O2 solution and distillation by heating up to 100°C followed by AgI co-precipitation. Based on the chemical behavior it can be concluded that the detected radionuclide belongs to the halides. The content of the parent nuclide in high-carbon (graphite) material and chemogenic siliceous-carbonaceous rock corresponds to 10-14 g/g.

  6. Film thickness for different regimes of fluid-film lubrication. [elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    Mathematical formulas are presented which express the dimensionless minimum film thickness for the four lubrication regimes found in elliptical contacts: isoviscous-rigid regime; piezoviscous-rigid regime; isoviscous-elastic regime; and piezoviscous-elastic regime. The relative importance of pressure on elastic distortion and lubricant viscosity is the factor that distinguishes these regimes for a given conjunction geometry. In addition, these equations were used to develop maps of the lubrication regimes by plotting film thickness contours on a log-log grid of the dimensionless viscosity and elasticity parameters for three values of the ellipticity parameter. These results present a complete theoretical film thickness parameter solution for elliptical constants in the four lubrication regimes. The results are particularly useful in initial investigations of many practical lubrication problems involving elliptical conjunctions.

  7. Toward a Physical Characterization of Raindrop Collision Outcome Regimes

    NASA Technical Reports Server (NTRS)

    Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.

    2011-01-01

    A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.

  8. An Examination of the Nature of Global MODIS Cloud Regimes

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  9. The effect of refrigerants in the mixed lubrication regime

    SciTech Connect

    Mizuhara, Kazuyuki; Tomimoto, Makoto

    1997-12-31

    Because of environmental concerns, CFC (chlorofluorocarbon) refrigerants must be replaced with HFCs (hydrofluorocarbons). As a result, many tribological problems are caused especially in rotary piston compressors. To solve the problem, the effects of refrigerants on friction and wear characteristics of the oil and refrigerant mixtures at the mixed lubrication regime are investigated. The difference in refrigerants are clearly observed not only in boundary but also in the mixed lubrication regime. The effects of operating conditions on sliding conditions and experimental results are also discussed. It is concluded that for practical application where long life is essential, experiments must be conducted under the mixed lubrication regime. Also, the importance of defining the lubrication regime in terms of film parameter is emphasized.

  10. Summary of 1978 Southeastern Virginia Urban Plume study: Aircraft results for carbon monoxide, methane, nonmethane hydrocarbons, and ozone

    NASA Technical Reports Server (NTRS)

    Hill, G. F.; Sachse, G. W.; Cofer, W. R., III

    1981-01-01

    The characteristics of the Southeastern Virginia urban plume were defined with emphasis on the photon-oxidant species. The measurement area was a rectangle, approximately 150 km by 100 km centered around Cape Charles, Virginia. Included in this area are the cities of Norfolk, Virginia Beach, Chesapeake, Newport News, and Hampton. The area is bounded on the north by Wallops Island, Virginia, and on the south by the Hampton Roads area of Tidewater Virginia. The major axis of the rectangle is oriented in the southwest-northeast direction. The data set includes aircraft measurements for carbon monoxide, methane, nonmethane hydrocarbons, and ozone. The experiment shows that CO can be successfully measured as a tracer gas and used as an index for determining localized and urban plumes. The 1978 data base provided sufficient data to assess an automated chromatograph with flame ionization detection used for measuring methane and nonmethane hydrocarbons in flight.

  11. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite.

    PubMed

    Guo, Huiying; Li, Hao; Liang, Ni; Chen, Fangyuan; Liao, Shaohua; Zhang, Di; Wu, Min; Pan, Bo

    2016-05-01

    Bisphenol S (BPS), a new bisphenol analog, is considered to be a potential replacement for bisphenol A (BPA), which has gained concern because of its potentially adverse health impacts. Therefore, studies are needed to investigate the environmental fate and risks of this compound. In this study, the adsorption of BPS and four structural analogs on multi-walled carbon nanotubes (MWCNTs) and graphite (GP) were investigated. When solid-phase concentrations were normalized by the surface areas, oxygen-containing functional groups on the absorbents showed a positive impact on phenol sorption but inhibited the sorption of chemicals with two benzene rings. Among BPS analogs, diphenyl sulfone showed the lowest sorption when hydrophobic effects were ruled out. Chemicals with a butterfly structure, formed between the two benzene rings, showed consistently high sorption on MWCNTs, independent of the substituted electron-donating or accepting functional groups. This study emphasizes the importance of chemical conformation on organic, contaminant sorption on engineered, carbonaceous materials. PMID:26822215

  12. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density

  13. Changes in Forest Production, Biomass and Carbon: Results From the 2015 UN FAO Global Forest Resource Assessment

    NASA Astrophysics Data System (ADS)

    Navar, J.

    2015-12-01

    Forests are important sources of livelihoods to millions of people and contribute to national economic development of many countries. In addition, they are vital sources and sinks of carbon and contribute to the rate of climate change. The UN Food and Agriculture Organization has been collecting and presenting data on global forest resources and forest cover since 1948. This paper builds on data from FAO's 2015 Global Forest Resource Assessment (FRA) and presents information on growing stock, biomass, carbon stock, wood removals, and changes of forest area primarily designated for production and multiple use of the world's forests. Between 1990 and 2015, the total growing stock volume has increased in East Asia, Caribbean, Western and Central Asia, North America, Europe (including the Russian Federation), and Oceania with the highest relative increase in East Asia and the Caribbean. In all other subregions the total growing stock volume decreased. North and Central America, Europe and Asia report forest C stock increases while South America and Africa report strong decreases and Oceania reports stable forest C stocks. The annual rate of decrease of forest C stock weakened between 1990 and 2015. The total volume of annual wood removals including wood fuel removals increased between 1990 and 2011, but shows a remarkable decline during the 2008-2009 economic crisis. Forest areas designated for production purposes differ considerably between subregions. The percentage of production area out of total forest area ranges between 16 percent in South America and 53 percent in Europe. Globally about one quarter of the forest area is designated to multiple use forestry. The balance between biomass growth and removals shows considerable sub-regional differences and related implications for the sustainable use of forests.

  14. Breddin's graph for tectonic regimes

    NASA Astrophysics Data System (ADS)

    Célérier, Bernard; Séranne, Michel

    2001-05-01

    A simple graphical method is proposed to infer the tectonic regime from a fault and slip data set. An abacus is overlaid on a plot of the rake versus strike of the data. This yields the horizontal principal stress directions and a constraint on the stress tensor aspect ratio, in a manner similar to Breddin's graph for two-dimensional strain analysis. The main requirement is that one of the principal stress directions is close to the vertical. This method is illustrated on monophase synthetic and natural data, but is also expected to help sort out multiphase data sets.

  15. Ireland unveils new license regime

    SciTech Connect

    Not Available

    1992-11-23

    Ireland has unveiled new terns designed to integrate the licensing regime for oil and gas exploration and development. They apply to new exploration and development authorizations and replace the exclusive offshore licensing terns introduced in 1975. Holders of existing licenses are still subject to the 1975 terms but can choose the new terns under appropriate circumstances. Frontier exploration licenses are currently available to complement the standard and deepwater exploration licenses in use. Rental fees are now spread evenly over the duration of the license, thereby eliminating large upfront payments. Lease extensions also have been introduced to enable operators to judge commerciality of a discovery beyond the set license period.

  16. Bose Polarons in the Strongly Interacting Regime.

    PubMed

    Hu, Ming-Guang; Van de Graaff, Michael J; Kedar, Dhruv; Corson, John P; Cornell, Eric A; Jin, Deborah S

    2016-07-29

    When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of ^{87}Rb with a much lower density gas of fermionic ^{40}K impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges. PMID:27517776

  17. Bose Polarons in the Strongly Interacting Regime

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; Van de Graaff, Michael J.; Kedar, Dhruv; Corson, John P.; Cornell, Eric A.; Jin, Deborah S.

    2016-07-01

    When an impurity is immersed in a Bose-Einstein condensate, impurity-boson interactions are expected to dress the impurity into a quasiparticle, the Bose polaron. We superimpose an ultracold atomic gas of 87Rb with a much lower density gas of fermionic 40 impurities. Through the use of a Feshbach resonance and radio-frequency spectroscopy, we characterize the energy, spectral width, and lifetime of the resultant polaron on both the attractive and the repulsive branches in the strongly interacting regime. The width of the polaron in the attractive branch is narrow compared to its binding energy, even as the two-body scattering length diverges.

  18. Preliminary Results from the First Year of Operations of the NASA Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Eldering, A.; O'Dell, C.; Fisher, B.; Wunch, D.; Wennberg, P. O.; Osterman, G. B.; Mandrake, L.; Payne, V.; Natraj, V.; Frankenberg, C.; Taylor, T.; Worden, J. R.; Bloom, A. A.; Nelson, R. R.; Schwandner, F. M.; Fu, D.; Braverman, A. J.; Chatterjee, A.; Baker, I. T.; Avis, C.; Livermore, T. R.

    2015-12-01

    On September 6, 2014, OCO-2 began routinely returning almost 106 soundings over the sunlit hemisphere each day. Over 10% of these soundings are sufficiently cloud free to yield full-column estimates of the column-averaged CO2 dry air mole fraction, XCO2. Nadir soundings over land yield XCO2 estimates with single-sounding random errors of 0.5 - 1 ppm at solar zenith angles (SZA) < 60° while ocean glint soundings yield precisions near 0.5 ppm at SZA < 70°. Nadir soundings over the ocean and glint soundings over high-latitude land are less precise. Initially, OCO-2 recorded only nadir soundings or glint soundings on alternate, 16-day ground-track repeat cycles. This provided adequate coverage of the globe each month, but produced 16-day gaps in ocean coverage while observing nadir, and similar gaps over high-latitude land while observing glint. In July 2015, this strategy was modified to alternate between glint and nadir soundings on consecutive orbits to yield more continuous coverage each day. While XCO2 and other products are being validated to identify and correct biases, global XCO2 maps are starting to reveal the most robust features of the atmospheric carbon cycle. XCO2 enhancements co-located with intense fossil fuel emissions in eastern U.S. and eastern China are most obvious in the fall, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesian is also obvious in the fall. In mid spring, when the north-south XCO2 gradient was largest, these sources were less apparent in global maps. From late May to mid-July, OCO-2 maps show a 2-3% reduction in XCO2 across the northern hemisphere, as the land biosphere rapidly absorbs CO2. As the carbon cycle community continues to analyze these OCO-2 data, quantitative estimates of regional-scale emission sources and natural sinks are expected to emerge. This presentation will summarize the OCO-2 mission status, early products, and near

  19. Porous anodes with helical flow pathways in bioelectrochemical systems: The effects of fluid dynamics and operating regimes

    NASA Astrophysics Data System (ADS)

    Kim, Jung Rae; Boghani, Hitesh C.; Amini, Negar; Aguey-Zinsou, Kondo-François; Michie, Iain; Dinsdale, Richard M.; Guwy, Alan J.; Guo, Zheng Xiao; Premier, Giuliano C.

    2012-09-01

    Bioelectrochemical systems (BES) and/or microbial fuel cell (MFC) mass transport and associated over-potential limitations are affected by flow regimes, which may simultaneously increase the power and pollution treatment capacities. Two electrodes with helical flow channels were compared in the same tubular MFC reactor. 1). A machined monolithic microporous conductive carbon (MMCC). 2). A layered carbon veil with spoked ABS former (LVSF); both presented helical flow channel. Anode performances were compared when subject to temperature, substrate concentration and flow rate variations. The MMCC maximum power increased from 2.9 ± 0.3 to 7.6 ± 0.7 mW with influent acetate concentration, from 1 to 10 mM (with 2 mL min-1), but decreased power to 5.5 ± 0.5 mW at 40 mM, implicated localized pH/buffering. Flow rate (0.1 to 7.5 mL min-1) effects were relatively small but an increase was evident from batch to continuous operation at 0.1 mL min-1. The LVSF configuration showed improved performance in power as the flow rate increased, indicating that flow pattern affects BES performance. Computational fluid dynamics (CFD) modelling showed less uniform flow with the LVSF. Thus flow regime driven mass transfer improves the power output in continuously fed system operation. These results indicate that electrode configuration, flow regime and operating condition need consideration to optimize the bioelectrochemical reaction.

  20. A surfactant film spreading regime

    SciTech Connect

    Nikishov, V.I.

    1984-06-01

    Interest has recently increased in the study of the mechanisms whereby oil spills spread over sea and ocean surfaces. In the later stages of this process, when the petroleum film thickness becomes sufficiently small, the main forces determining the growth of its horizontal dimensions are surface tension and viscosity. In this case the flow characteristics do not depend on total quantity of spreading substance nor its surface concentration distribution. However, in the final stages of the spreading process the film becomes so thin that it is necessary to consider the effect of surface concentration distribution of the material on the process. Similar problems occur in the study of the spreading of a surfactant in the case where the total quantity of material is small and the surface tension regime sets in quickly. Therefore, the author examines here the spreading of a film in a regime wherein it is necessary to consider the total quantity of surfactant present, initially located on the surface of a viscous incompressible liquid.

  1. Adaptation in Collaborative Governance Regimes

    NASA Astrophysics Data System (ADS)

    Emerson, Kirk; Gerlak, Andrea K.

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.

  2. Adaptation in collaborative governance regimes.

    PubMed

    Emerson, Kirk; Gerlak, Andrea K

    2014-10-01

    Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program. PMID:25073764

  3. Different regimes of dynamic wetting

    NASA Astrophysics Data System (ADS)

    Gustav, Amberg; Wang, Jiayu; Do-Quang, Minh; Shiomi, Junichiro; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team

    2014-11-01

    Dynamic wetting, as observed when a droplet contacts a dry solid surface, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. Here we discuss how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. This is complemented by matching numerical simulations. We present a parameter map, based on the properties of the liquid and the solid surface, which identifies qualitatively different spreading regimes, where the spreading speed is limited by either the liquid viscosity, the surface properties, or the liquid inertia. The peculiarities of the different spreading regimes are studied by detailed numerical simulations, in conjuction with experiments. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W. and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).

  4. 75 FR 69626 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Antidumping Duty Administrative Review, 75 FR 33578 (June 14, 2010) (Preliminary Results). The administrative... Final Results of Antidumping Duty Administrative Review, 75 FR 63439 (October 15, 2010). We invited... Results of Antidumping Duty Administrative Reviews, 56 FR 26650, 26651 (June 10, 1991). As a result...

  5. 76 FR 65497 - Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...: Final Results of Countervailing Duty Administrative Review, 73 FR 40295 (July 14, 2008) (Final Results... Final Results of Administrative Review, 75 FR 59689 (September 28, 2010). The Department's... Review and Notice of Amended final Results of Administrative Review Pursuant to Court Decision, 76...

  6. 78 FR 22235 - Certain Magnesia Carbon Bricks From the People's Republic of China: Final Results of and Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... China: 2010 Countervailing Duty Administrative Review, 77 FR 61397 (October 9, 2012) (Preliminary Results). \\2\\ See Preliminary Results, 77 FR 61399. DATES: Effective Date: April 15, 2013. FOR FURTHER... RHI companies, and NCR for these final results. \\5\\ See Preliminary Results, 77 FR 61398....

  7. Nonlinear Trapped Electron Mode Pinch in Strong Turbulence Regime

    NASA Astrophysics Data System (ADS)

    Hatch, David; Terry, P. W.

    2006-10-01

    Recent work has shown that there is an inward flux component in collisionless trapped electron mode turbulence produced by a nonlinear cross phase^2. The result was obtained for a weak turbulence regime, consistent with near threshold conditions. We extend this work to the strong turbulence regime, applying asymptotic analysis to the nonlinear frequency expressions generated from self-consistent statistical closure theory. We first check to see if there is a consistent strong turbulence regime for the previously considered threshold ordering^2, and examine the properties and scalings of the inward flux components. We then examine other orderings that are further above the instability threshold. The orderings will be compared with experimental profiles to determine likely regimes and nonlinear pinch properties. ^2P.W. Terry and R. Gatto, Phys. Plasmas 13, 062309 (2006).

  8. Regime shifts and resilience in China's coastal ecosystems.

    PubMed

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services. PMID:26286204

  9. Fixed points, stable manifolds, weather regimes, and their predictability

    DOE PAGESBeta

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less

  10. Fixed points, stable manifolds, weather regimes, and their predictability

    SciTech Connect

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  11. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood.

    PubMed

    van Karnebeek, Clara D; Sly, William S; Ross, Colin J; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A; Eydoux, Patrice; Lehman, Anna M; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W; Stockler-Ipsiroglu, Sylvia

    2014-03-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child. PMID:24530203

  12. Mitochondrial Carbonic Anhydrase VA Deficiency Resulting from CA5A Alterations Presents with Hyperammonemia in Early Childhood

    PubMed Central

    van Karnebeek, Clara D.; Sly, William S.; Ross, Colin J.; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A.; Eydoux, Patrice; Lehman, Anna M.; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D.; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P.; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W.; Stockler-Ipsiroglu, Sylvia

    2014-01-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child. PMID:24530203

  13. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  14. Inter-species comparisons in Water use with Different water Irrigation Regimes in a Semi-arid area of Korea-Mongolia Greenbelt Plantation

    NASA Astrophysics Data System (ADS)

    Cho, S.; Ser-Oddamba, B.; Batkhuu, N. O.; Kim, H. S.

    2014-12-01

    As an effort to mitigate desertification and to restore desert areas in Mongolia, Korea-Mongolia Green Belt was established to develop a 3000 ha plantation in 2006. Two native tree species, Populus sibirica and Ulmus pumila L., have been planted under different irrigation regimes (control, control+2L, control +4L and control +8L) since 2008. To investigate the responses of different tree species to different treatment and the effect of plantation on water balance, intensive field experiments have been carried out in 2013-2014 in Mongolia. The objectives of our study are 1) to investigate whether different irrigation regimes changed the physiological characteristics of tree species, 2) to quantify transpirations and water balance under different irrigation regimes, and 3) to compare the water-use-efficiencies among species and irrigation regimes. We used Granier type thermal dissipation sensor, portable photosynthesis analyzer (Li-Cor 6400) and species and site specific allometric equations for transpiration, photosynthetic characteristics and net primary production, respectively. Our preliminary results show that the transpiration rates of P. sibirica increased with the increase of irrigation amount. For examples, the average water consumption of P. sibirica was 1.87kg/tree under control+2L irrigation and 2.97kg/tree at controal+4L irrigation. However, the transpiration rates of U. pumila were not different among different irrigation regimes; the average transpiration of U. pumila at control+2L was 1.1kg/tree compared to 0.89kg/tree at control+4L. But, photosynthetic characteristic showed similar results, which no apparent response under high irrigation regimes. The water use and carbon assimilation of P. sibirica responded to the water irrigation, however, U. pumila did not show any significant response to added water. Our results show different species respond differently to irrigation regimes, and this would lead to different effects on water balance. Therefore

  15. Crossover from Ballistic to Diffusive Thermal Transport in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Konabe, Satoru; Shiomi, Junichiro; Maruyama, Shigeo

    2009-09-01

    We present a theoretical scheme that seamlessly handles the crossover from fully ballistic to diffusive thermal transport regimes and apply it to carbon nanotubes. At room temperature, micrometer-length nanotubes belong to the intermediate regime in which ballistic and diffusive phonons coexist. According to our scheme, the thermal conductance of these nanotubes exhibit anomalous nonlinear dependence of tube length due to this coexistence. This result is in excellent agreement with molecular-dynamics simulation results showing the nonlinear thermal conductance. Additionally, we clarify the mechanism of crossover in terms of the length-dependent characteristic frequency.

  16. Quantity and quality of black carbon molecular markers as obtained by two chromatographic methods (GC-FID and HPLC-DAD) - How do results compare?

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Smittenberg, R. H.; Dittmar, T.; Schmidt, M. W. I.

    2009-04-01

    Chars produced by wildfires are an important source of black carbon (BC) in the environment. After their deposition on the soil surface they can be distributed into rivers, marine waters and sediments. The analysis of benzenepolycarboxylic acids (BPCAs) as a quantitative measure for black carbon (BC) in soil and sediment samples is a well-established method (Glaser et al., 1998; Brodowski et al., 2005). Briefly, the nitric acid oxidation of fused aromatic ring systems in BC forms eight molecular markers (BPCAs), which can be assigned to BC, and which subsequently can be quantified by GC-FID (gas chromatography with flame ionization detector). Recently, this method was modified for the quantification of BC in seawater samples using HPLC-DAD (High performance liquid chromatography with diode array detector) for the determination of individual BPCAs (Dittmar, 2008). A direct comparison of both analytical techniques is lacking but would be important for future data comparison aimed at the calculation of global BC budgets. Here we present a systematic comparison of the two BPCA quantification methods. We prepared chars under well-defined laboratory conditions. In order to cover a broad spectrum of char properties we used two sources of biomass and a wide range of pyrolysis temperatures. Chestnut hardwood chips (Castanea sativa) and rice straw (Oryza sativa) were pyrolysed at temperatures between 200 and 1000°C under a constant N2 stream. The maximum temperatures were held constant for 5 hours (Hammes et al., 2006). The BC contents of the chars have been analysed using the BPCA extraction method followed by either GC-FID or HPLC-DAD quantification. Preliminary results suggest that both methods yield similar total quantities of BPCA, and also the proportions of the individual markers are similar. Ongoing experiments will allow for a more detailed comparison of the two methods. The BPCA composition of chars formed at different temperatures and from different precursor

  17. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  18. Numerical simulation of transitions between back discharge regimes

    NASA Astrophysics Data System (ADS)

    Jánský, Jaroslav; Bessières, Delphine; Paillol, Jean; Lemont, Florent

    2014-11-01

    This paper presents numerical simulations of transitions between back discharge regimes. Back discharge refers to any discharge initiated at or near a dielectric layer covering a passive electrode. In this work, a pinhole in a dielectric layer on a plane anode serves as a model for back discharge activity. We have studied transitions between back discharge regimes by varying the surface charge density on the dielectric layer and the electric field in front of the pinhole. From the variation of these two independent parameters, the back discharge regimes have been depicted as a mode diagram inspired by the experimental study of Masuda and Mizuno. The resulting diagram includes the different discharge regimes that are commonly observed in experiments. The propagation of a positive ionizing wave inside the pinhole toward its edge, and the resulting formation of a plasma zone at its exit constitute the onset stage of back discharge. From this stage, the transitions to volume discharge or surface discharge can occur. The volume discharge regime consists of the propagation of a discharge in space toward the cathode which can be superimposed with the propagation of a discharge above the dielectric layer surface. The diagram reveals the conditions for transitions between back discharge regimes.

  19. Deposition of organic carbon-rich sediments in narrow marine basins and open-marine upwelling environments - New results from the ocean drilling program

    SciTech Connect

    Stein, R. )

    1988-08-01

    Detailed sedimentological and organic geochemical investigations have been performed on Neogene sediments from ODP site 645 (Baffin Bay), ODP site 658 (upwelling area of northwest Africa), and ODP site 679 (upwelling area off Peru). The study is mainly based on (1) data derived from total organic carbon and nitrogen analyses, Rock-Eval pyrolysis, and kerogen microscopy (2) sedimentation rates, and (3) x-ray diffraction analyses. The main objective of this study was to point out the most important factors controlling the accumulation of organic carbon in the different sedimentary environments, such as supply of terrigenous organic matter, productivity of marine organic matter, and preservation of organic matter. These new results from the investigation of ODP sediments are compared with DSDP data from the Mesozoic Atlantic Ocean to characterize the depositional environments of Mesozoic black shales.

  20. Laboratory experiment on boundaries of upper stage plane bed regime

    NASA Astrophysics Data System (ADS)

    Zrostlík, Štěpán; Matoušek, Václav

    2016-04-01

    Results are discussed of laboratory experiments on criteria determining the transition between the regime of dunes and the upper stage plane bed (UPB) regime and the transition between the UPB regime and the regime of wavy flow. The experiments were carried for 3 fractions of plastic material and two fractions of glass beads in a broad range of flow conditions (different discharges of water and solids and longitudinal bed slopes) in a tilting flume. The experiments reveal that, contrary to expectations, a constant value of the Shields parameter is not an appropriate criterion for the transition between the dune regime and the UPB regime. Furthermore, the transition appears to be insensitive to the total discharge of solids and water. Instead, the criterion seems to be well represented by a constant value of the average transport concentration of sediment (the ratio of volumetric discharge of solids and volumetric discharge of mixture). The experimental results exhibit a very tight correlation between the transport concentration and the longitudinal bed slope. Hence, a constant value of the bed slope can be considered an appropriate criterion for the transition. The transition between the UPB regime and the wavy regime (significant waves develop but they are not always standing waves) is found at a constant value of Froude number, which is in agreement with literature, although it is found at a higher value than the literature usually suggests (Fr = 1.2 instead of 1.0). Hence, the transition occurs in the super-critical flow but it is not necessarily associated with the critical flow.

  1. Synchronous marine pelagic regime shifts in the Northern Hemisphere

    PubMed Central

    Beaugrand, G.; Conversi, A.; Chiba, S.; Edwards, M.; Fonda-Umani, S.; Greene, C.; Mantua, N.; Otto, S. A.; Reid, P. C.; Stachura, M. M.; Stemmann, L.; Sugisaki, H.

    2015-01-01

    Regime shifts are characterized by sudden, substantial and temporally persistent changes in the state of an ecosystem. They involve major biological modifications and often have important implications for exploited living resources. In this study, we examine whether regime shifts observed in 11 marine systems from two oceans and three regional seas in the Northern Hemisphere (NH) are synchronous, applying the same methodology to all. We primarily infer marine pelagic regime shifts from abrupt shifts in zooplankton assemblages, with the exception of the East Pacific where ecosystem changes are inferred from fish. Our analyses provide evidence for quasi-synchronicity of marine pelagic regime shifts both within and between ocean basins, although these shifts lie embedded within considerable regional variability at both year-to-year and lower-frequency time scales. In particular, a regime shift was detected in the late 1980s in many studied marine regions, although the exact year of the observed shift varied somewhat from one basin to another. Another regime shift was also identified in the mid- to late 1970s but concerned less marine regions. We subsequently analyse the main biological signals in relation to changes in NH temperature and pressure anomalies. The results suggest that the main factor synchronizing regime shifts on large scales is NH temperature; however, changes in atmospheric circulation also appear important. We propose that this quasi-synchronous shift could represent the variably lagged biological response in each ecosystem to a large-scale, NH change of the climatic system, involving both an increase in NH temperature and a strongly positive phase of the Arctic Oscillation. Further investigation is needed to determine the relative roles of changes in temperature and atmospheric pressure patterns and their resultant teleconnections in synchronizing regime shifts at large scales.

  2. Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models

    NASA Astrophysics Data System (ADS)

    Heo, Jongbae; Dulger, Muaz; Olson, Michael R.; McGinnis, Jerome E.; Shelton, Brandon R.; Matsunaga, Aiko; Sioutas, Constantinos; Schauer, James J.

    2013-07-01

    Four hundred fine particulate matter (PM2.5) samples collected over a 1-year period at two sites in the Los Angeles Basin were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and organic molecular markers. The results were used in a Positive Matrix Factorization (PMF) receptor model to obtain daily, monthly and annual average source contributions to PM2.5 OC. Results of the PMF model showed similar source categories with comparable year-long contributions to PM2.5 OC across the sites. Five source categories providing reasonably stable profiles were identified: mobile, wood smoke, primary biogenic, and two types of secondary organic carbon (SOC) (i.e., anthropogenic and biogenic emissions). Total primary emission factors and total SOC factors contributed approximately 60% and 40%, respectively, to the annual-average OC concentrations. Primary sources showed strong seasonal patterns with high winter peaks and low summer peaks, while SOC showed a reverse pattern with highs in the spring and summer in the region. Interestingly, smoke from forest fires which occurred episodically in California during the summer and fall of 2009 was identified and combined with the primary biogenic source as one distinct factor to the OC budget. The PMF resolved factors were further investigated and compared to a chemical mass balance (CMB) model and a second multi-variant receptor model (UNMIX) using molecular markers considered in the PMF. Good agreement between the source contribution from mobile sources and biomass burning for three models were obtained, providing additional weight of evidence that these source apportionment techniques are sufficiently accurate for policy development. However, the CMB model did not quantify primary biogenic emissions, which were included in other sources with the SOC. Both multivariate receptor models, the PMF and the UNMIX, were unable to separate source contributions from diesel and gasoline engines.

  3. Fourier-transform infrared spectroscopy for the assesment of soil organic carbon removal by superheated water: preliminary results

    NASA Astrophysics Data System (ADS)

    Ćirić, Vladimir; Švarc-Gajić, Jaroslava; Jović, Branislav; Kordić, Branko; Šodić, Bojana; Šeremešić, Srđan

    2016-04-01

    Soil organic carbon (SOC) is key determinant of soil quality and thus can considerably affect ecosystem services, environmental and global climate changes. Consequently, characterization of SOC and its fractions is of an increasing interest. No standard method for assessment of SOC fractions was adopted. Subcritical water extraction (SCWE) provides great flexibility and could be used for the extraction of different organic compounds from soil as well as for the removal of different SOC fractions from soil. The purpose of this study was to assess the potential of the treatment with subcritical water (SCW), or superheated water, in combination with different catalysts to affect different SOC fractions and thus its spectral bands. Subcritical water treatment of soil samples was performed at 180°C and pressure of 40 bars, whilst three different catalysts were separately applied: titanium dioxide (TiO2), cerium sulfate Ce (SO4)2 and zeolite. Fourier-transform infrared (FTIR) spectroscopy was used as known technique for SOC characterization. After the SCW treatment the efficiency of catalysts regarding the removal of SOC fractions was studied via spectral bands of treated soil samples. Soil treatment with SCW without catalyst caused most changes in the region of 3800-3000 nm (-OH) that corresponds to cellulose. The aromatic compounds (C=C groups) in the region of 1800-1550 nm that corresponds to stable SOC fractions (humic materials and lignin) was strongly affected by treatment with TiO2. Aliphatic compounds in the region of 1500-1350 nm (C-H and C-O groups) were mostly affected by SCW in combination with zeolite, while SCW in combination with Ce(SO4)2 besides aliphatic region altered aromatic groups in lesser extent. Zeolite in combination with SCW was proved to be good tool for aliphatic (labile) SOC removal, while TiO2 in combination with SCW was proved efficient for the removal of aromatic (stable) SOC fractions.

  4. Carbon and Nitrogen Stable Isotope Composition of OM From Florida Bay, the Initial Results of a Paleoenvironmental Seagrass Reconstruction

    NASA Astrophysics Data System (ADS)

    Evans, S. L.; Anderson, W. T.; Fourqurean, J. W.; Jaffe, R.; Gaiser, E. E.; Collins, L. S.; Holmes, C. W.

    2002-12-01

    The shallow marine waters of Florida Bay provide an ideal environment for seagrasses, which are the most common benthic community in the region. However, these communities are susceptible to a variety of anthropogenic disturbances, particularly changes in water quality, and environmental conditions in Florida Bay have become a concern due to recent increases in salinity, the frequency of algal blooms, and seagrass die-off. These changes have been attributed to 20th century decreases in freshwater discharge from the Everglades to Florida Bay, deteriorated water quality, and changes in exchange between Florida Bay and the Atlantic Ocean. In order to better understand environmental change over long timescales, sediment cores were collected in the summer, 2002, from four locations in Florida Bay for multiple proxy analyses of seagrass abundance, which is an excellent indicator of water quality. Sediment depths ranged from 96 to 244 cm, potentially representing a 5000-year time series. Cores were sampled in 2-cm increments representing an average of 2-10 years for bulk isotopic analysis of sediment organic content. In 2 cores analyzed, δ15N values ranged between 3.2 and 7.6‰ , following an oscillating pattern over time. δ13C values ranged between -11.2 and -8.6‰ along a progressive enrichment trend that is inconsistent with the adjacent development of the metro Miami area and agricultural activities. These patterns show evidence of decoupling between carbon and nitrogen isotopic systems, although values throughout suggest that buried organic matter at these 2 sites is seagrass-derived. Further bulk isotopic analyses of remaining cores, together with organic biomarker analyses, diatom and foraminiferal community analyses, and development of an age model for the cores, will allow more definitive interpretation of the isotope patterns with implications to seagrass productivity levels, and thus, water quality, over time in Florida

  5. 78 FR 286 - Circular Welded Carbon Steel Pipes and Tubes From Turkey; Amended Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ..., 77 FR 72818 (December 6, 2012) (Final Results). \\2\\ The Borusan Group includes the following entities...., Borusan Ithicat ve Dagitim A.S., and Tubeco Pipe and Steel Corporation. See Final Results, 77 FR at 72818... and Tube From Turkey: Notice of Final Results of Antidumping Duty Administrative Review, 76 FR...

  6. 78 FR 79665 - Welded Carbon Steel Standard Pipe and Tube Products From Turkey: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Administrative Review; 2011-2012, 78 FR 34340 (June 7, 2013) (Preliminary Results). \\2\\ The Department initiated... during the POR. See Preliminary Results, 78 FR at 34340 n. 4. Furthermore, as we stated in the draft cash... Results, 78 FR at 34341. The Department has conducted this administrative review in accordance...

  7. 78 FR 25701 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Second Amended Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ...: Final Results and Partial Rescission of Countervailing Duty Administrative Review, 74 FR 20,923 (May 6... Pursuant to Court Decision, 76 FR 7810 (February 11, 2011) (Amended Final Results). DATES: Effective Date... deposits for Essar at the cash deposit rate of 22.19 percent. \\17\\ Amended Final Results, 76 FR at...

  8. 75 FR 27297 - Certain Hot-Rolled Carbon Steel Flat Products from India: Notice of Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Results of Antidumping duty Administrative Review, and Intent to Rescind in Part, 75 FR 1031 (January 8... companies. See Preliminary Results, 75 FR at 1033. We received no comment concerning our intent to rescind... FR at 1033-1036. As we explained in the Preliminary Results, the rate of 28.25 percent selected...

  9. 77 FR 46713 - Circular Welded Carbon Steel Pipes and Tubes From Turkey: Final Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Results of Countervailing Duty Administrative Review, 77 FR 19623 (April 2, 2012) (Preliminary Results... Administrative Review, In Part, 77 FR 6542 (February 8, 2012). \\3\\ See Issues and Decision Memorandum from... Steel Pipe and Tube Products From Turkey, 51 FR 7984 (March 7, 1986). \\5\\ See Preliminary Results, 77...

  10. 76 FR 27987 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Amended Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Review, 73 FR 61019 (October 15, 2008) (Final Results). FOR FURTHER INFORMATION CONTACT: Jacqueline... Not in Harmony with Final Results of Administrative Review, 75 FR 2487 (January 15, 2010). On February... Tubes From Thailand: Amended Final Results of Antidumping Duty Administrative Review, 75 FR...

  11. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  12. Fate of organic carbon in paddy soils - results of Alisol and Andosol incubation with 13C marker

    NASA Astrophysics Data System (ADS)

    Winkler, Pauline; Cerli, Chiara; Fiedler, Sabine; Woche, Susanne; Rahayu Utami, Sri; Jahn, Reinhold; Kalbitz, Karsten; Kaiser, Klaus

    2016-04-01

    For a better understanding of organic carbon (OC) decomposition in paddy soils an incubation experiment was performed. Two soil types with contrasting mineralogy (Alisol and Andosol) were exposed to 8 anoxic‒oxic cycles over 1 year. Soils received rice straw marked with 13C (228 ‰) at the beginning of each cycle. A second set of samples without straw addition was used as control. Headspaces of the incubation vessels were regularly analysed for CO2 and CH4. In soil solutions, redox potential, pH, dissolved organic C (DOC), and Fe2+ were measured after each anoxic and each oxic phase. Soils were fractionated by density at the end of the experiment and the different fractions were isotopically analysed. Samples of genuine paddy soils that developed from the test soils were used as reference. During anoxic cycles, soils receiving rice straw released large amounts of CO2 and CH4, indicating strong microbial activity. Consequently, Eh values dropped and pH as well as Fe2+ concentrations increased. Concentrations of DOC were relatively small, indicating either strong consumption and/or strong retention of dissolved organic compounds. During oxic cycles, concentrations of dissolved Fe dropped in both soils while DOC concentrations remained constant in the Alisol and decreased in the Andosol. Density fractionation revealed increased contents of mineral associated OC for the Andosol incubated with straw addition as compared to the parent soil. No changes were found for the Alisol. However, the mineral-associated OC fraction of both soil types contained 13C of the added straw. Hence, fresh organic matter is incorporated while part of the older organic matter has been released or mineralized. The increase in the Andosol might be due to effective binding of fresh OC to minerals and/or stronger retention/preservation of older OC. Both could be explained by the more reactive mineralogy of the Andosol than of the Alisol. XPS analyses of the soils are currently performed and

  13. Preliminary Results from High Time-Resolution Measurements of Particulate Inorganic Ions and Black Carbon Downwind of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Ghim, Y.; Lee, Y.; Kim, C.; Choi, Y.; Lee, T.

    2011-12-01

    Concentrations of inorganic ions and black carbon (BC) in PM2.5 were measured using PILS (particle-into-liquid sampler, ADI 2081, Applikon) and MAAP (Multiangle Absorption Photometer, Model 5012, Thermo), respectively, at intervals of 20-30 minutes. The measurements were made at the Yongin campus of Hankuk University of Foreign Studies, about 35 km southeast of downtown Seoul, which is affected by prevailing northwesterlies. The site is considered as an ideal place for exploring transport of air pollutants and variations of secondary ion formation caused by photochemical reactions since there are no major emission sources nearby except a 4-lane road running about 1.4 km to the west. The concentration of BC has been continuously measured since July 2010. However, the concentrations of inorganic ions were measured intermittently since February 2011. In the measurements in February, nitrate accounted for about 39% of the total inorganic ion concentrations and showed the highest correlation coefficient of 0.93 with ammonium. The fraction of sulfate among inorganic ions was about 31%, and the correlation coefficient with ammonium was 0.85, lower than that of nitrate. As was in other rural areas in Korea, potassium was highly correlated with major secondary ions such as sulfate, nitrate and ammonium, whose correlation coefficients were 0.70-0.74. Total inorganic ion concentrations were highest at 09:30 local time (LT) on February 9 probably due to the effect of vehicle emissions during the morning rush hour, but the concentration of nitrate was the highest at 13:00 LT on February 17 because of secondary ion formation just before a full development of the convective boundary layer. BC concentrations during the measurement period in February were generally higher at midnight than in the daytime including rush hours. BC showed moderately higher correlations with secondary ions. The BC concentration from MAAP obtained by aerosol absorption coefficient divided by mass

  14. Environmental and Physiological Influences on the TEX86 Proxy: Results from Continuous Culture Studies and Stable Carbon Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Hurley, S.; Elling, F. J.; Koenneke, M.; Santoro, A. E.; Buchwald, C.; Wankel, S. D.; Hinrichs, K. U.; Zhang, Y.; Shah Walter, S. R.

    2015-12-01

    Membrane lipids of marine Archaea - known as GDGTs - are the basis of the TEX86 sea surface temperature (SST) paleoproxy. GDGTs are ubiquitous in marine sediments, and their broad distribution and high preservation potential have led to an ever-increasing use of TEX86. The planktonic Thaumarchaeota that are believed to be the major sources of GDGTs to marine sediments are autotrophic nitrifiers, assimilating carbon directly from dissolved CO2. Therefore the δ13C values of GDGTs additionally provide information about the DIC system and paleoproductivity. However, as for all biological proxies, understanding the physiology and biochemistry of the responsible organisms is essential to understanding how the proxies work. From this perspective, the TEX86-SST proxy is uniquely perplexing: How is it possible that multiple approaches to calibration show a good correlation between TEX86 and SSTs, when maximum activity of Thaumarchaeota is near and below the base of the photic zone? Here we show data from two studies that help address this question. Analyses of GDGT δ13C values show that the dominant GDGT flux to sediments is not from the sea surface. The data are measured on intact GDGTs purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values on a Spooling Wire Microcombustion (SWiM)-IRMS with 1σ precision of ±0.2‰ and accuracy of ±0.3‰. Using this approach, we confirm that GDGTs, generally around -19.0‰ to -18.5‰, are isotopically "heavy" compared to other marine lipids, and that crenarchaeol in particular is a good tracer of water column GDGT export. In parallel, we investigated the mechanistic underpinning of the TEX86 proxy using isothermal culture studies of the ammonia-oxidizing thaumarchaeon Nitrosopumilus maritimus SCM1 to explore the relationship between TEX86 and growth conditions. Evidence suggests that growth rate and electron donor supply are important controls on GDGT ratios and that TEX86 scales with the in-situ rate of

  15. Evaluation of interregional variability in MODIS cloud regimes

    NASA Astrophysics Data System (ADS)

    Leinonen, J. S.; Lebsock, M. D.; Oreopoulos, L.; Cho, N.

    2015-12-01

    Clustering techniques have been used in the last few decades to classify cloud types automatically from satellite observations, most commonly using cloud top pressure and cloud optical depth. The underlying assumption is that the resulting clusters, called "cloud regimes" or "weather states", represent some type of basic states of the atmosphere, and thus that their occurrence can be used as a proxy for related variables such as radiative balance or precipitation. We have examined the validity of these assumptions by using independent measurements from the CloudSat and CALIPSO satellites. The CloudSat radar yields a reflectivity product that is sensitive to many aspects of the physics of the clouds, while CloudSat together with the CALIPSO lidar can retrieve the vertical structure of the cloud column, including multi-layer clouds. These observations have been separated into groups according to the recently published cloud regimes based on data from the MODIS instrument, deployed on the Aqua satellite orbiting in the same constellation with CloudSat and CALIPSO. The distributions of these observations have been constructed both globally and in a number of regions in different parts of the Earth. By analyzing the differences in the distributions between these regions, we can evaluate the usefulness of the cloud regimes as a proxy for the measured variables. Some cloud regimes have been found to be rather stable between regions, while others display considerable variability. Moreover, some cloud regimes appear much more similar to each other in CloudSat observations than they do using the MODIS regimes. We analyze the implications of these differences for the usability of the cloud regimes as climate indicators. We also explore various filtering techniques and different clustering methods that can potentially be used to reduce these differences, and thus to improve the universality of the cloud regimes.

  16. The effect of abrupt permafrost thaw on the water table, vegetation and carbon feedback: results from a sub-arctic peatland

    NASA Astrophysics Data System (ADS)

    Malhotra, A.; Roulet, N. T.

    2015-12-01

    Uncertainty in estimating the carbon loss from thawing ice-rich permafrost is attributed, in part, to the abrupt changes in ecosystem structure and function after thaw. In a thawing peat plateau in the discontinuous permafrost zone (Stordalen, Mire, Sweden; ST), we tested for the occurrence of abrupt changes in hydrology and the effects of these changes on the water table and vegetation feedback. Using a chronosequence approach along three transects that capture several transitional thaw stages, we found abrupt hydrological changes following thaw, wherein adjacent areas (1 m apart) had unrelated water table depth (WTD) fluctuations. Despite these abrupt changes, surprisingly, the same Gaussian model of plant abundance explained by WTD could be applied to data from both ST and an undisturbed ombrotrophic peatland (Mer Bleue Bog, Canada; MB). However, the Gaussian model fit was better at MB than at ST. Furthermore, explanatory power of the model at ST decreased with increasing permafrost thaw. While water table and vegetation feedback in a thawing landscape is similar to that of a peatland without transitional land cover types, the vegetation and carbon feedback is complicated by non-linear shifts in the partitioning of gaseous effluxes between CO2 and CH4. These results will be presented along with key implications for modeling carbon loss from thawing landscapes.

  17. Trends in the hydrologic regime of Alpine rivers

    NASA Astrophysics Data System (ADS)

    Bard, Antoine; Renard, Benjamin; Lang, Michel; Giuntoli, Ignazio; Korck, Jane; Koboltschnig, Gernot; Janža, Mitja; d'Amico, Michele; Volken, David

    2015-10-01

    This paper describes a trend analysis performed on 177 streamflow time series collected over the Alps in Central Europe. The analysis covers several facets of the Alpine hydrologic regimes, including winter droughts and spring snowmelt flows, both in terms of severity and timing of occurrence. Statistical trend tests are applied at a local scale (i.e. on a site-by-site basis) and at a regional scale (seeking a common trend for sites within the same hydro-climatic region). The overall results indicate a trend toward less severe winter droughts, and consistent changes in the timing of snowmelt flows. However, a more in-depth analysis at the scale of hydro-climatic regimes reveals more contrasted changes. While most glacial- and snowmelt-dominated regimes show a decreasing trend in the severity of winter droughts, contrasted trends are found for mixed snowmelt-rainfall regimes in the Southeastern Alps. Changes in the timing of snowmelt flows (earlier start and increased duration of the snowmelt season) mostly affect glacial- and snowmelt-dominated regimes. Lastly, glacial regimes show an increase in the volume and the peak of snowmelt flows.

  18. Sensitivity of streamflows to hydroclimatic fluctuations: resilience and regime shifts

    NASA Astrophysics Data System (ADS)

    Botter, Gianluca; Basso, Stefano; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-04-01

    Landscape and climate alterations foreshadow global-scale shifts of river flow regimes. However, a theory that identifies the range of foreseen impacts on streamflows resulting from inhomogeneous forcings and sensitivity gradients across diverse regimes is lacking. In this contribution, we use a dimensionless index embedding simple climate and landscape attributes (the ratio of the mean interarrival of streamflow-producing rainfall events and the mean catchment response time) to discriminate erratic regimes with enhanced intra-seasonal streamflow variability from persistent regimes endowed with regular flow patterns. The proposed classification is successfully applied to 110 seasonal streamflow distributions observed in 44 catchments of the Alps and the United States, allowing the identification of emerging patterns in space and time. In the same framework, the impact of multi-scale fluctuations of the underlying climatic drivers (temperature, precipitation) on the streamflow distributions can be analyzed. Theoretical and empirical data show that erratic regimes, typical of rivers with low mean discharges, are highly resilient in that they hold a reduced sensitivity to variations in the external forcing. Specific temporal trajectories of streamflow distributions and flow regime shifts driven by land-cover change and rainfall patterns can be also evidenced. The approach developed offers an objective basis for the analysis and prediction of the impact of climate/landscape change on water resources.

  19. 77 FR 72818 - Circular Welded Carbon Steel Pipes and Tubes From Turkey; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Turkey: Notice of Preliminary Results of Antidumping Duty Administrative Review, 77 FR 32508 (June 1...\\ \\3\\ See id., 77 FR at 32510. \\4\\ See id., 77 FR at 32512. On October 23, 2012, the Department issued...: Notice of Final Results of Antidumping Duty Administrative Review, 76 FR 76939 (December 9,...

  20. 77 FR 69790 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... Results of 2010-2011 Antidumping Duty Administrative Review and Intent To Rescind in Part, 77 FR 45576... Products from the People's Republic of China, 66 FR 59561 (November 29, 2001), remains dispositive. Final... & Trading Co., Ltd., and Baoshan Iron & Steel Co., Ltd. \\3\\ See Preliminary Results, 77 FR at 45577. \\4\\...

  1. 77 FR 73616 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... Administrative Review and Preliminary Determination of No Shipments, 77 FR 47593 (August 9, 2012) (``Preliminary... Republic of China; Termination of Suspension Agreement and Notice of Antidumping Duty Order, 68 FR 60081... Results, 77 FR at 47594. Assessment Upon issuance of the final results, the Department will determine,...

  2. 78 FR 22230 - Certain Magnesia Carbon Bricks From the People's Republic of China: Final Results and Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ...: Antidumping Duty Administrative Review; 2010- 2011, 77 FR 61394 (October 9, 2012) (``Preliminary Results... Republic of China: Antidumping Duty Orders, 75 FR 57257 (September 20, 2010). Changes Since the Preliminary... Preliminary Results, 77 FR 61394-61395. \\5\\ See, e.g., Certain Tissue Paper Products from the...

  3. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ..., and Partial Rescission, 77 FR 54891 (September 6, 2012) (Preliminary Results). DATES: Effective Date...'s Preliminary Results.\\5\\ \\2\\ See id., 77 FR at 54893. \\3\\ See id., 77 FR at 54896. \\4\\ See Dongbu's... Modification, 77 FR 8101 (February 14, 2012). For any individually examined respondents whose...

  4. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Countervailing Duty Administrative Review, 77 FR 58512 (September 21, 2012) (Preliminary Results). DATES...: Revocation of Antidumping and Countervailing Duty Orders, 78 FR 16832 (March 19, 2013) (Revocation Notice... Pohang Iron & Steel Co. Ltd. (POSCO), received subsidies that result in de minimis net subsidy rates....

  5. 75 FR 8301 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Administrative Review, 74 FR 39921 (August 10, 2009) (``Preliminary Results''). The period of review (``POR'') is... of Extension of Time Limit for Final Results of Administrative Review, 74 FR 60237 (November 20, 2009..., 64 FR 46343 (August 25, 1999). See also Continuation of Antidumping Duty Order on Certain...

  6. Soil Organic Matter Feedback to changes in soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Strunk, R.

    2012-04-01

    The reaction of the soil organic matter (SOM) pool to climate change is largely assessed based on simple models linking temperature and soil moisture, in more sophisticated models also Net Primary Productivity (NPP), to Carbon (C) stocks. Experiments on the sensitivity of vegetation growth and soil properties also mostly consider only temperature as a driver for NPP and thus SOM turnover in soils, while keeping moisture either constant or not distinguishing between moisture and temperature effects. All approaches ignore the feedback of secondary soil properties such aggregation and pore size distribution, to changes in rainfall regime and litter input. In this study, we present an experiment which is designed specifically to identifying the long-term effects of contrasting soil moisture regimes on NPP, soil C stocks and secondary soil properties such as aggregate stability and porosity. In addition, soil respiration as well as SOM quantity and quality are analyzed.

  7. Dynamic regimes of random fuzzy logic networks

    NASA Astrophysics Data System (ADS)

    Wittmann, Dominik M.; Theis, Fabian J.

    2011-01-01

    Random multistate networks, generalizations of the Boolean Kauffman networks, are generic models for complex systems of interacting agents. Depending on their mean connectivity, these networks exhibit ordered as well as chaotic behavior with a critical boundary separating both regimes. Typically, the nodes of these networks are assigned single discrete states. Here, we describe nodes by fuzzy numbers, i.e. vectors of degree-of-membership (DOM) functions specifying the degree to which the nodes are in each of their discrete states. This allows our models to deal with imprecision and uncertainties. Compatible update rules are constructed by expressing the update rules of the multistate network in terms of Boolean operators and generalizing them to fuzzy logic (FL) operators. The standard choice for these generalizations is the Gödel FL, where AND and OR are replaced by the minimum and maximum of two DOMs, respectively. In mean-field approximations we are able to analytically describe the percolation and asymptotic distribution of DOMs in random Gödel FL networks. This allows us to characterize the different dynamic regimes of random multistate networks in terms of FL. In a low-dimensional example, we provide explicit computations and validate our mean-field results by showing that they agree well with network simulations.

  8. Coherent Random Fiber Laser Based on Nanoparticles Scattering in the Extremely Weakly Scattering Regime

    NASA Astrophysics Data System (ADS)

    Hu, Zhijia; Zhang, Qun; Miao, Bo; Fu, Qiang; Zou, Gang; Chen, Yang; Luo, Yi; Zhang, Douguo; Wang, Pei; Ming, Hai; Zhang, Qijin

    2012-12-01

    We demonstrate the realization of a coherent random fiber laser (RFL) in the extremely weakly scattering regime, which contains a dispersive solution of polyhedral oligomeric silsesquioxanes nanoparticles (NPs) and laser dye pyrromethene 597 in carbon disulfide that was injected into a hollow optical fiber. Multiple scattering of polyhedral oligomeric silsesquioxanes NPs greatly enhanced by the waveguide confinement effect was experimentally verified to account for coherent lasing observed in our RFL system. This Letter extends the NPs-based RFLs from the incoherent regime to the coherent regime.

  9. Electronic structure in the crossover regimes in lower dimensional structures

    NASA Astrophysics Data System (ADS)

    Batabyal, R.; Dev, B. N.

    2014-11-01

    Modern growth and fabrication techniques can produce lower dimensional structures in the crossover regimes. Such structures in the crossover regimes can provide tunability of various properties of materials. For example, a zero-dimensional (0-D) structure (quantum dot) evolving towards a 3-D structure (bulk) shows electronic structure, which is neither 0-D-like, nor 3-D-like in the dimensional crossover regime. Within the crossover regime the electronic density of states (DOS) at Fermi level (Ef) keeps on changing as the size of the system changes. DOS at Ef determines many properties of materials, such as electronic specific heat, spin susceptibility, etc. Such properties can be tuned by controlling the size of the system in the crossover regimes. Keeping the importance of DOS at Ef in mind, we determine their values and other details of electronic structure of lower dimensional structures, in the 0-D to 1-D, 1-D to 2-D, 2-D to 3-D, 0-D to 2-D, 0-D to 3-D and 1-D to 3-D crossover regimes, in a simple free electron model. We compare our results with analytical theory and experimental results, wherever available. We also present some results obtained by scanning tunneling spectroscopy measurements on Ag islands on Si(1 1 1) substrates evolving from a 0-D to a 2-D structure. This simple model is quite useful in understanding lower dimensional structures in the crossover regimes and, in general, in nanoscale science. Fabrication of such structures would provide control on materials properties.

  10. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell, Alison

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration.
    This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached

  11. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...: Preliminary Results of Countervailing Duty Administrative Review, 75 FR 64700 (October 20, 2010) (Preliminary... Duty Administrative Review, 75 FR 77828 (December 14, 2010). On January 21, 2011, USS submitted... percent of cobalt, or 0.40 percent of lead, or 1.25 percent of nickel, or 0.30 percent of tungsten, or...

  12. 75 FR 47777 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... Administrative Review, 75 FR 4779 (January 29, 2010) (Preliminary Results). We invited interested parties to... Review, 75 FR 29976 (May 28, 2010). We have conducted this review in accordance with section 751(a) of...: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). We intend to issue appropriate...

  13. 78 FR 28190 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Certain Alloy Steel Wire Rod From Mexico, 67 FR 55800 (August 30, 2002). Notification to Importers This... Antidumping Duty Administrative Review; 2010- 2011, 77 FR 66954 (November 8, 2012) (Preliminary Results... Ukraine, 67 FR 65945 (October 29, 2002), remains dispositive. On October 1, 2012, the Department...

  14. 75 FR 8650 - Carbon and Certain Alloy Steel Wire Rod from Trinidad and Tobago; Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Antidumping Duty Administrative Review, 74 FR 57648 (November 9, 2009) (Preliminary Results). We gave... Duties, 68 FR 23954 (May 6, 2003) (Assessment of Antidumping Duties). This clarification will apply to... from Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine, 67 FR 65945, 65947...

  15. 76 FR 76939 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Notice of Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... of Antidumping Duty Administrative Review, 76 FR 33204 (June 8, 2011) (``Preliminary Results''). We...: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003). Cash Deposit Requirements The following... Products From Turkey, 51 FR 17784 (May 15, 1986). Notification to Importers This notice serves as a...

  16. 76 FR 62039 - Certain Hot-Rolled Carbon Steel Flat Products From India: Final Results of 2009-2010 Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ...: Notice of Preliminary Results of 2009-2010 Antidumping Duty Administrative Review, 76 FR 31938 (June 2... proceeding.\\4\\ \\3\\ See Antidumping Duties; Countervailing Duties: Final Rule, 62 FR 27296, 27393 (May 19, 1997). \\4\\ See Antidumping and Countervailing Duty Proceedings: Assessment of Antidumping Duties, 68...

  17. 76 FR 42679 - Certain Hot-Rolled Carbon Steel Flat Products From India: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Preliminary Results of Antidumping Duty Administrative Review, 76 FR 2344 (January 13, 2011) (``Preliminary... Review, 76 FR 28419 (May 17, 2011). Period of Review The period covered by this review is December 1... date of entry. \\7\\ See Antidumping Duties; Countervailing Duties, 62 FR 27296, 27393 (May 19, 1997)....

  18. 75 FR 4529 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Final Results of Antidumping Duty New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... Steel Pipes and Tubes from Thailand: Preliminary Results of Antidumping Duty New Shipper Review, 74 FR... New Shipper Review, 74 FR 59961 (November 19, 2009). Scope of the Order The products covered by this... Less Than Fair Value, 51 FR 3384 (January 27, 1986). These cash deposit requirements shall remain...

  19. 78 FR 76279 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Final Results and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...; 2011-2012, 78 FR 44525 (July 24, 2013) (``Preliminary Results''). DATES: Effective Date: December 17... FR 65694 (October 24, 2011) (``Assessment Practice Refinement''); see also the ``Assessment'' section... PRC companies: Hunan Valin Xiangtan Iron & Steel Co., Ltd. (``Hunan Valin''), Shanghai Pudong Iron...

  20. 78 FR 65272 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... of Antidumping Duty Administrative Review; 2011-2012, 78 FR 21105 (April 9, 2013) (Preliminary... during the POR.\\5\\ \\5\\ See Preliminary Results, 78 FR at 21105. Analysis of Comments Received All issues... Assessment Rate in Certain Antidumping Proceedings: Final Modification, 77 FR 8101, 8102 (February 14,...

  1. Discriminatory Proofreading Regimes in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Huse, David A.; Leibler, Stanislas

    2014-04-01

    We use ideas from kinetic proofreading, an error-correcting mechanism in biology, to identify new kinetic regimes in nonequilibrium systems. These regimes are defined by the sensitivity of the occupancy of a state of the system to a change in its energy. In biological contexts, higher sensitivity corresponds to stronger discrimination between molecular substrates with different energetics competing in the same reaction. We study this discriminatory ability in systems with discrete states that are connected by a general network of transitions. We find multiple regimes of different discriminatory ability when the energy of a given state of the network is varied. Interestingly, the occupancy of the state can even increase with its energy, corresponding to an "antiproofreading" regime. The number and properties of such discriminatory regimes are limited by the topology of the network. Finally, we find that discriminatory regimes can be changed without modifying any "hard-wired" structural aspects of the system but rather by simply changing external chemical potentials.

  2. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  3. UV-VIS regime band gap in a 3-d photonic system

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Arammash, Fouzi; Datta, Timir; Tsu, Ray

    2013-03-01

    Synthetic opals are self-organized bulk, close packed systems that are three-dimensionally ordered with periodicity determined by the sphere diameter. These materials have been used as templates for nano devices with novel properties. For example, in carbon inverse opals show quantum hall effect and related magneto electric responses. Inverse are also reported to show photonic band gap. It is expected that devices based on these materials will be an alternative to electronic devices. These opal specimens were hexagonal or face centered cubic crystals with silica sphere diameter ranging between 220 nm and 270nm. Here we will present results of structural and imaging studies such as SEM, AFM and XRD. In addition results of the (UV-VIS) optical behavior will be provided. The optical response will be analyzed in terms of photonic band gaps in the sub-micrometer optical and UV regime.

  4. Non-Hamiltonian molecular dynamics implementation of the Gibbs ensemble method. II. Molecular liquid-vapor results for carbon dioxide.

    PubMed

    Bratschi, Christoph; Huber, Hanspeter; Searles, Debra J

    2007-04-28

    The Gibbs ensemble molecular dynamics algorithm introduced in the preceding paper (paper I) [C. Bratschi and H. Huber, J. Chem. Phys. v126, 164104 (2007)] is applied to two recently published CO2 ab initio pair potentials, the Bock-Bich-Vogel and symmetry-adapted perturbation theory site-site potentials. The critical properties of these potentials are calculated for the first time. Critical values and points in the single and two-phase zones are compared with Monte Carlo results to demonstrate the accuracy of the molecular dynamics algorithm, and are compared with experiment to test the accuracy of the potentials. Pressure calculations in the liquid, gas, and supercritical states are carried out and are used to explain potential-related effects and systematic discrepancies. The best ab initio potential yields results in good agreement with experiment. PMID:17477587

  5. Non-Hamiltonian molecular dynamics implementation of the Gibbs ensemble method. II. Molecular liquid-vapor results for carbon dioxide

    NASA Astrophysics Data System (ADS)

    Bratschi, Christoph; Huber, Hanspeter; Searles, Debra J.

    2007-04-01

    The Gibbs ensemble molecular dynamics algorithm introduced in the preceding paper (paper I) [C. Bratschi and H. Huber, J. Chem. Phys. v126, 164104 (2007)] is applied to two recently published CO2 ab initio pair potentials, the Bock-Bich-Vogel and symmetry-adapted perturbation theory site-site potentials. The critical properties of these potentials are calculated for the first time. Critical values and points in the single and two-phase zones are compared with Monte Carlo results to demonstrate the accuracy of the molecular dynamics algorithm, and are compared with experiment to test the accuracy of the potentials. Pressure calculations in the liquid, gas, and supercritical states are carried out and are used to explain potential-related effects and systematic discrepancies. The best ab initio potential yields results in good agreement with experiment.

  6. Multistability of synchronous regimes in rotator ensembles.

    PubMed

    Kryukov, A K; Petrov, V S; Osipov, G V; Kurths, J

    2015-12-01

    We study collective dynamics in rotator ensembles and focus on the multistability of synchronous regimes in a chain of coupled rotators. We provide a detailed analysis of the number of coexisting regimes and estimate in particular, the synchronization boundary for different types of individual frequency distribution. The number of wave-based regimes coexisting for the same parameters and its dependence on the chain length are estimated. We give an analytical estimation for the synchronization frequency of the in-phase regime for a uniform individual frequency distribution. PMID:26723160

  7. North Sea wind climate in changing weather regimes

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Rockel, Burkhardt

    2015-04-01

    Results from regional climate models (RCMs) are getting more and more important in future wind climate assessment. From RCMs often only the daily wind speed is available, but no information on prevailing wind direction of each day. Weather regime classification can close this gap and models ability of simulating surface wind speed can be analysed in detail. Several objective regime classifications have been investigated to be a sufficient diagnostic tool to evaluate the present wind climate at the German and Dutch coastal area of the North Sea. The classification by Jenkinson and Collison (1977) uses values for mean sea level pressure at 16 locations centered over the North Sea. Beside the predefined 8 prevailed wind directions and the two possibilities on cyclonic or anticyclonic turbulence, 2x8 hybrid weather types can be defined. In this way 27 different regimes can be distinguished including a class of non-classifiable cases. The 27 regimes could be reduced to a number of 11 by allotting the hybrid types to the directional or the centered types. As the classification is carried out for the North Sea based on ERA40 mean sea level pressure the different regimes clearly reflect the mean wind characteristics at the stations. Comparing the wind roses for the individual observations leads to the assumption that the regime classification described before fits the requirements to carry out the regime dependent evaluation of the RCMs with a focus on the German and Dutch coast. Trends in the occurrence of the regimes in the winter period of 1961 to 2000 show an increase of the regimes with Western and Southwestern wind directions and a decrease of wind events from Eastern directions in the North Sea. The trend is dominated by the strong positive phase of the NAO especially in the months January to March starting in the beginning of the 1980s. Due to the applied method ERA40 and the RCMs do not necessarily show the same regime at each day. The agreement among the RCM

  8. Hydrogen bonding induced distortion of CO3 units and kinetic stabilization of amorphous calcium carbonate: results from 2D (13)C NMR spectroscopy.

    PubMed

    Sen, Sabyasachi; Kaseman, Derrick C; Colas, Bruno; Jacob, Dorrit E; Clark, Simon M

    2016-07-27

    Systematic correlation in alkaline-earth carbonate compounds between the deviation of the CO3 units from the perfect D3h symmetry and their (13)C nuclear magnetic resonance (NMR) chemical shift anisotropy (CSA) parameters is established. The (13)C NMR CSA parameters of amorphous calcium carbonate (ACC) are measured using two-dimensional (13)C phase adjusted spinning sidebands (PASS) NMR spectroscopy and are analyzed on the basis of this correlation. The results indicate a distortion of the CO3 units in ACC in the form of an in-plane displacement of the C atom away from the centroid of the O3 triangle, resulting from hydrogen bonding with the surrounding H2O molecules, without significant out-of-plane displacement. Similar distortion for all C atoms in the structure of ACC suggests a uniform spatial disposition of H2O molecules around the CO3 units forming a hydrogen-bonded amorphous network. This amorphous network is stabilized against crystallization by steric frustration, while additives such as Mg presumably provide further stabilization by increasing the energy of dehydration. PMID:27276013

  9. Ocean Wave Energy Regimes of the Circumpolar Coastal Zones

    NASA Astrophysics Data System (ADS)

    Atkinson, D. E.

    2004-12-01

    Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.

  10. Effects of atmospheric carbon dioxide on insect herbivores and their host plants. Technical progress report

    SciTech Connect

    Lincoln, D.E.

    1984-01-01

    The goal was to examine and confirm the observation that leaf eting insects feed at higher rates on plants grown under elevated carbon dioxide regimes. Results confirm and refine the preliminary observation. Subsequent experiments are designd to examine the basis for the increased feeding and examine the generality by testing another plant/herbivore system. (ACR)

  11. Dynamically strained ferroelastics: Statistical behavior in elastic and plastic regimes

    NASA Astrophysics Data System (ADS)

    Ding, X.; Lookman, T.; Zhao, Z.; Saxena, A.; Sun, J.; Salje, E. K. H.

    2013-03-01

    The dynamic evolution in ferroelastic crystals under external shear is explored by computer simulation of a two-dimensional model. The characteristic geometrical patterns obtained during shear deformation include dynamic tweed in the elastic regime as well as interpenetrating needle domains in the plastic regime. As a result, the statistics of jerk energy differ in the elastic and plastic regimes. In the elastic regime the distributions of jerk energy are sensitive to temperature and initial configurations. However, in the plastic regime the jerk distributions are rather robust and do not depend much on the details of the configurations, although the geometrical pattern formed after yield is strongly influenced by the elastic constants of the materials and the configurations we used. Specifically, for all geometrical configurations we studied, the energy distribution of jerks shows a power-law noise pattern P(E)˜E-(γ-1)(γ-1=1.3-2) at low temperatures and a Vogel-Fulcher distribution P(E) ˜ exp-(E/E0) at high temperatures. More complex behavior occurs at the crossover between these two regimes where our simulated jerk distributions are very well described by a generalized Poisson distributions P(E)˜E-(γ-1) exp-(E/E0)n with n = 0.4-0.5 and γ-1 ≈ 0 (Kohlrausch law). The geometrical mechanisms for the evolution of the ferroelastic microstructure under strain deformation remain similar in all thermal regimes, whereas their thermodynamic behavior differs dramatically: on heating, from power-law statistics via the Kohlrausch law to a Vogel-Fulcher law. There is hence no simple way to predict the local evolution of the twin microstructure from just the observed statistical behavior of a ferroelastic crystal. It is shown that the Poisson distribution is a convenient way to describe the crossover behavior contained in all the experimental data without recourse to specific scaling functions or temperature-dependent cutoff lengths.

  12. Institutional design and regime effectiveness in transboundary river management - the Elbe water quality regime

    NASA Astrophysics Data System (ADS)

    Dombrowsky, I.

    2008-02-01

    The literature on transboundary river management suggests that institutions play an important role in bringing about cooperation. However, knowledge about how such institutions should be designed in order to do so remains limited. One way to learn more about adequate institutional design is to assess the effectiveness of existing regimes, and to trace the causal relationships that lead to the respective outcomes. In order to gain further insights into the relationship between institutional design and regime effectiveness, this paper presents a study on the water quality regime of the International Commission for the Protection of the Elbe (ICPE). The analysis is based on a review of pertinent documents and ten qualitative interviews with Czech and German Commission members and NGO representatives. Particular emphasis has been put on determining the ICPE's specific contribution and the no-regime counterfactual as well as on the perceived expediency of the institutional arrangements. The study shows overall that the countries were relatively successful in improving water quality in the Elbe basin. However, this outcome can only partly be attributed to the ICPE itself. Furthermore, the ICPE's contribution towards achieving the various goals varied significantly between the different areas of activity: it was relatively significant where the main responsibility for action lay with the public authorities, such as in the area of wastewater treatment and the establishment of an international alarm plan and model, but was practically non-existent in the reduction of non-point pollution from agriculture, where success depended on the behavior of individual private actors (farmers). The commission contributed towards problem solving by serving as a forum for the joint identification of priorities for action from a basin-wide perspective. The resulting international obligations increased the power of national water administrations and their access to funds. At the same time

  13. Laser Wakefield Acceleration in the PetaWatt Regime

    NASA Astrophysics Data System (ADS)

    Katsouleas, Tom; Tsung, Frank; Mori, Warren

    2002-11-01

    Laser wakefield acceleration with multi-terawatt lasers has demonstrated impressive results in experiments around the world-- e.g., energy gains up to 200 MeV in mm-scale gas jets. With the prospects good for a number of petawatt class lasers in the near future, we examine with 2-D and 3-D PIC simulations the potential energy gain and new physics of laser wakefield acceleration in this regime. Prospects for producing GeV electron beams in underdense plasmas will be described. In addition, the differences in physics between terawatt and petawatt regimes will be explored. Preliminary results indicate that there are two acceleration stages in the petawatt regime -- with the early electrons dephasing due to elongation of the laser wake as the laser pump evolves. The later stage produces a long beam of electrons several times the initial plasma wake wavelength with a fairly defined energy in the GeV range.

  14. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  15. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks.

    PubMed

    Farrior, Caroline E; Rodriguez-Iturbe, Ignacio; Dybzinski, Ray; Levin, Simon A; Pacala, Stephen W

    2015-06-01

    Increasing atmospheric CO2 concentrations and changing rainfall regimes are creating novel environments for plant communities around the world. The resulting changes in plant productivity and allocation among tissues will have significant impacts on forest carbon storage and the global carbon cycle, yet these effects may depend on mechanisms not included in global models. Here we focus on the role of individual-level competition for water and light in forest carbon allocation and storage across rainfall regimes. We find that the complexity of plant responses to rainfall regimes in experiments can be explained by individual-based competition for water and light within a continuously varying soil moisture environment. Further, we find that elevated CO2 leads to large amplifications of carbon storage when it alleviates competition for water by incentivizing competitive plants to divert carbon from short-lived fine roots to long-lived woody biomass. Overall, we find that plant dependence on rainfall regimes and plant responses to added CO2 are complex, but understandable. The insights developed here will serve as an important foundation as we work to predict the responses of plants to the full, multidimensional reality of climate change, which involves not only changes in rainfall and CO2 but also changes in temperature, nutrient availability, and disturbance rates, among others. PMID:26039985

  16. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks

    PubMed Central

    Farrior, Caroline E.; Rodriguez-Iturbe, Ignacio; Dybzinski, Ray; Levin, Simon A.; Pacala, Stephen W.

    2015-01-01

    Increasing atmospheric CO2 concentrations and changing rainfall regimes are creating novel environments for plant communities around the world. The resulting changes in plant productivity and allocation among tissues will have significant impacts on forest carbon storage and the global carbon cycle, yet these effects may depend on mechanisms not included in global models. Here we focus on the role of individual-level competition for water and light in forest carbon allocation and storage across rainfall regimes. We find that the complexity of plant responses to rainfall regimes in experiments can be explained by individual-based competition for water and light within a continuously varying soil moisture environment. Further, we find that elevated CO2 leads to large amplifications of carbon storage when it alleviates competition for water by incentivizing competitive plants to divert carbon from short-lived fine roots to long-lived woody biomass. Overall, we find that plant dependence on rainfall regimes and plant responses to added CO2 are complex, but understandable. The insights developed here will serve as an important foundation as we work to predict the responses of plants to the full, multidimensional reality of climate change, which involves not only changes in rainfall and CO2 but also changes in temperature, nutrient availability, and disturbance rates, among others. PMID:26039985

  17. Is Thawing Permafrost as a Result of Global Warming a Possible Significant Source of Degradable Carbon for Microbiota Residing In Situ and in Arctic Rivers?

    NASA Astrophysics Data System (ADS)

    Zhu, E. Y.; Coolen, M. J.

    2008-12-01

    Northern high-latitude ecosystems contain about half of the world's soil carbon, most of which is stored in permanently frozen soil (permafrost). Global warming through the 21st century is expected to induce permafrost thaw, which will increase microbial organic matter (OM) decomposition and release large amounts of the greenhouse gasses methane and carbon dioxide into the atmosphere. In addition, Arctic rivers are a globally important source of terrestrial organic carbon to the ocean and further permafrost melting will impact surface runoff, directly affecting groundwater storage and river discharge. Up to now, it remains largely unknown to what extent the ancient OM stored in newly thawing permafrost can be consumed by microbes in situ or by microbes residing in Arctic rivers which become exposed to newly discharged permafrost OM. In addition, we know little about which microbes are capable of degrading permafrost OM. During a field trip to the Toolik Lake Arctic Long Term Ecological Research (LTER) field station in northern Alaska in August 2008, we cored permafrost located near the Kuparuk River down to 110 cm below the active layer (i.e. the top layer which melts each summer) and analyzed the initial microbial enzymatic cleavage of particulate OM (POM) stored in permafrost. Alkaline phosphatase activity remained fairly constant throughout the permafrost and was only one order of magnitude lower than in the active layer. The latter enzyme cleaves organic phosphoesters into phosphate, which could cause eutrophication of lakes and rivers via ground water discharge. Similar results were found for β-glucosidase, which cleaves cellobiose into glucose. This process could fuel heterotrophic bacteria to produce carbon dioxide which, in return, could be converted to the stronger greenhouse gas methane by methanogenic archaea. Leucine aminopeptidase activities, on the other hand, were highest in the top Sphagnum root layer and quickly dropped to below detection limit

  18. FISHER INFORMATION AND ECOSYSTEM REGIME CHANGES

    EPA Science Inventory

    Following Fisher’s work, we propose two different expressions for the Fisher Information along with Shannon Information as a means of detecting and assessing shifts between alternative ecosystem regimes. Regime shifts are a consequence of bifurcations in the dynamics of an ecosys...

  19. Capacitance densitometer for flow regime identification

    DOEpatents

    Shipp, Jr., Roy L.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid.

  20. Testing new approaches to carbonate system simulation at the reef scale: the ReefSam model first results, application to a question in reef morphology and future challenges.

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Webster, Jody

    2016-04-01

    Numerical simulation of the stratigraphy and sedimentology of carbonate systems (carbonate forward stratigraphic modelling - CFSM) provides significant insight into the understanding of both the physical nature of these systems and the processes which control their development. It also provides the opportunity to quantitatively test conceptual models concerning stratigraphy, sedimentology or geomorphology, and allows us to extend our knowledge either spatially (e.g. between bore holes) or temporally (forwards or backwards in time). The later is especially important in determining the likely future development of carbonate systems, particularly regarding the effects of climate change. This application, by its nature, requires successful simulation of carbonate systems on short time scales and at high spatial resolutions. Previous modelling attempts have typically focused on the scales of kilometers and kilo-years or greater (the scale of entire carbonate platforms), rather than at the scale of centuries or decades, and tens to hundreds of meters (the scale of individual reefs). Previous work has identified limitations in common approaches to simulating important reef processes. We present a new CFSM, Reef Sedimentary Accretion Model (ReefSAM), which is designed to test new approaches to simulating reef-scale processes, with the aim of being able to better simulate the past and future development of coral reefs. Four major features have been tested: 1. A simulation of wave based hydrodynamic energy with multiple simultaneous directions and intensities including wave refraction, interaction, and lateral sheltering. 2. Sediment transport simulated as sediment being moved from cell to cell in an iterative fashion until complete deposition. 3. A coral growth model including consideration of local wave energy and composition of the basement substrate (as well as depth). 4. A highly quantitative model testing approach where dozens of output parameters describing the reef

  1. An assessment of biodegradability of quaternary carbon-containing fragrance compounds: comparison of experimental OECD screening test results and in silico prediction data.

    PubMed

    Seyfried, Markus; Boschung, Alain

    2014-05-01

    An assessment of biodegradability was carried out for fragrance substances containing quaternary carbons by using data obtained from Organisation for Economic Co-operation and Development (OECD) 301F screening tests for ready biodegradation and from Biowin and Catalogic prediction models. Despite an expected challenging profile, a relatively high percentage of common-use fragrance substances showed significant biodegradation under the stringent conditions applied in the OECD 301F test. Among 27 test compounds, 37% met the pass level criteria after 28 d, while another 26% indicated partial breakdown (≥20% biodegradation). For several compounds for which structural analogs were available, the authors found that structures that were rendered less water soluble by either the presence of an acetate ester or the absence of oxygen tended to degrade to a lesser extent compared to the primary alcohols or oxygenated counterparts under the test conditions applied. Difficulties were encountered when attempting to correlate experimental with in silico data. Whereas the Biowin model combinations currently recommended by regulatory agencies did not allow for a reliable discrimination between readily and nonbiodegradable compounds, only a comparably small proportion of the chemicals studied (30% and 63% depending on the model) fell within the applicability domain of Catalogic, a factor that critically reduced its predictive power. According to these results, currently neither Biowin nor Catalogic accurately reflects the potential for biodegradation of fragrance compounds containing quaternary carbons. PMID:24453060

  2. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects

    USGS Publications Warehouse

    Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, J.S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B., III; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2002-01-01

    An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.

  3. Carbon dioxide emissions and the overshoot ratio change resulting from the implementation of 2nd Energy Master Plan in South Korea

    NASA Astrophysics Data System (ADS)

    Yeo, M. J.; Kim, Y. P.

    2015-12-01

    The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.

  4. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  5. Positron acceleration in doughnut wakefields in the blowout regime

    NASA Astrophysics Data System (ADS)

    Vieira, Jorge; Mendonca, Jose; Fonseca, Ricardo; Silva, Luis

    2014-10-01

    Most important plasma acceleration results were reached in the so called bubble or blowout regime. Although ideally suited for electron acceleration, it has been recognized that non-linear regimes are not adequate to accelerate positrons. New configurations enabling positron acceleration in non-linear regimes would therefore open new research paths for future plasma based collider configurations. In this work, we explore, analytically and through 3D OSIRIS simulations, a novel configuration for positron acceleration in strongly non-linear laser wakefield excitation regimes using Laguerre-Gaussian laser drivers to drive doughnut shaped wakefields with positron focusing and accelerating fields. We demonstrate that positron focusing-fields can be up to an order of magnitude larger than electron focusing in the spherical blowout regime. The amplitude of the accelerating fields is similar to the spherical blowout. Simulations demonstrate laser self-guiding and stable positron acceleration until the laser energy has been exhausted to the plasma. Other realisations of the scheme, using two Gaussian laser pulses, will also be explored. FCT Grant No EXPL/FIS-PLA/0834/2012 and European Research Council ERC-2010-AdG Grant No. 267841.

  6. Are there multiple scaling regimes in Holocene temperature records?

    NASA Astrophysics Data System (ADS)

    Nilsen, Tine; Rypdal, Kristoffer; Fredriksen, Hege-Beate

    2016-04-01

    The concept of multiple scaling regimes in temperature time series is examined, with emphasis on the question whether or not a monoscaling model with one single scaling regime can be rejected from observation data from the Holocene. A model for internal variability with only one regime is simpler and allows more certain predictions on timescales of centuries when combined with existing knowledge of radiative forcing. Our analysis of spectra from stable isotope ratios from Greenland and Antarctica ice cores shows that a scale break around centennial timescales is evident for the last glacial period, but not for the Holocene. Spectra from a number of late Holocene multiproxy temperature reconstructions, and one from the entire Holocene, have also been analysed, without identifying a significant scale break. Our results indicate that a single-regime scaling climate noise, with some non-scaling fluctuations on a millennial timescale superposed, cannot be rejected as a null model for the Holocene climate. The scale break observed from the glacial time ice-core records is likely caused by the influence of Dansgaard-Oeschger events and teleconnections to the Southern Hemisphere on centennial timescales. From our analysis we conclude that the two-regime model is not sufficiently justified for the Holocene to be used for temperature prediction on centennial timescales.

  7. THE IMPACT OF THE GLOBAL NUCLEAR SAFETY REGIME IN BRAZIL

    SciTech Connect

    Almeida, C.

    2004-10-06

    A turning point of the world nuclear industry with respect to safety occurred due to the accident at Chernobyl, in 1986. A side from the tragic personal losses and the enormous financial damage, the Chernobyl accident has literally demonstrated that ''a nuclear accident anywhere is an accident everywhere''. The impact was felt immediately by the nuclear industry, with plant cancellations (e.g. Austria), elimination of national programs (e.g. Italy) and general construction delays. However, the reaction of the nuclear industry was equally immediate, which led to the proposal and establishment of a Global Nuclear Safety Regime. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. In a previous work, the author has presented in detail the components of this Regime, and briefly discussed its impact in the Brazilian nuclear power organizations, including the Regulatory Body. This work, on the opposite, briefly reviews the Global Nuclear Safety Regime, and concentrates in detail in the discussion of its impact in Brazil, showing how it has produced some changes, and where the peer pressure regime has failed to produce real results.

  8. Early regimes of water capillary flow in slit silica nanochannels.

    PubMed

    Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A

    2015-06-14

    Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus. PMID:25976034

  9. Decoherence induced by a dynamic spin environment: The universal regime

    SciTech Connect

    Cormick, Cecilia; Paz, Juan Pablo

    2008-02-15

    This paper analyzes the decoherence induced on a single qubit by the interaction with a spin chain with nontrivial internal dynamics (XY-type interactions). The aim of the paper is to study the existence and properties of the so-called universal regime, in which the decoherence time scale becomes independent of the strength of the coupling with the environment. It is shown that, although such a regime does exist, as previously established by Cucchietti et al. [Phys. Rev. A 75, 032337 (2007)], it is not a clear signature of a quantum phase transition in the environment. In fact, this kind of universality also exists in the absence of quantum phase transitions. A universal regime can be related to the existence of an energy scale separation between the Hamiltonian of the environment and the one characterizing the system-environment interaction. The results presented also indicate that in the strong-coupling regime the quantum phase transition does not produce an enhancement of decoherence (as opposed to what happens in the weak-coupling regime)

  10. Aerodynamic Optimization of Supersonic Transport at Near-Sonic Regime

    NASA Astrophysics Data System (ADS)

    Yamazaki, Wataru; Matsushima, Kisa; Obayashi, Shigeru; Nakahashi, Kazuhiro

    Recently, an airplane cruising at near-sonic regime is watched with keen interest. The Sonic-Cruiser, of which the Boeing Company has examined and challenged the development, is the most remarkable case. In this paper, motivated by this trend, aerodynamic performance optimization for an airplane cruising at near-sonic regime is discussed based on CFD simulations. NAL’s experimental supersonic airplane, called NEXST-1, was employed as the baseline model for optimization. Aerodynamic performance was evaluated by solving the Euler equations with the unstructured grid method. It was confirmed that the performance Euler simulation predicted was qualitatively correct. By the evaluation to select a baseline model for optimization, NEXST-1 was accepted as a candidate of sonic plane because of the existence of drag bucket at near-sonic regime. In the optimization, Genetic Algorithm was used with Euler simulations. The objective was to reduce drag keeping lift constant, at the flying speed of Mach 0.98. The optimized result showed L/D improvement not only for near-sonic regime but also for transonic regime. The mechanism of design to reduce drag force was found through the analysis and comparison of the geometries and aerodynamic phenomena about the baseline model and the optimized one.

  11. Blowout regimes of plasma wakefield acceleration.

    PubMed

    Lotov, K V

    2004-04-01

    A wide region of beam parameters is numerically scanned and the dependence of wakefield properties on the beam length and current is clarified for the blowout regime of beam-plasma interaction. The main regimes of the plasma response are found, which qualitatively differ in the plasma behavior. To characterize the efficiency of the energy exchange between the beam and the plasma, the energy flux through the comoving window is introduced. Scalings of the energy flux for the linear plasma response and the main blowout regimes are studied. The most efficient energy transfer occurs in the so-called "strong beam" regime of interaction. For this regime, analytical approximations for various aspects of the plasma response are obtained. PMID:15169104

  12. Discrete fluorescent saturation regimes in multilevel systems

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1988-01-01

    Using models of multilevel atoms, the fluorescent process was examined for the ratio of the photooxidation rate, Pij, to the collisional oxidation rate, Cij, in the pumped resonance transition i-j. It is shown that, in the full range of the parameter Pij/Cij, there exist three distinct regimes (I, II, and III) which may be usefully exploited. These regimes are defined, respectively, by the following conditions: Pij/Cij smaller than about 1; Pij/Cij much greater than 1 and Pij much lower than Cki; and Pij/Cij much greater than 1 and Pij much higher than Cki, where Cki is the collisional rate populating the source level i. The only regime which is characterized by the sensitivity of fluorescent-fluorescent line intensity ratios to Pij is regime I. If regime III is reached, even fluorescent-nonfluorescent line ratios become independent of Pij. The analysis is applied to the resonant photoexcitation of a carbonlike ion.

  13. Generation of stretched pulses and dissipative solitons at 2  μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers.

    PubMed

    Wang, Yu; Alam, Shaif-Ul; Obraztsova, Elena D; Pozharov, Anatoly S; Set, Sze Y; Yamashita, Shinji

    2016-08-15

    We demonstrate for the first time, to the best of our knowledge, a thulium-doped, all-fiber, mode-locked laser using a carbon nanotube saturable absorber, operating in the dissipative-soliton regime and the stretched-pulse-soliton regime. The net dispersion of the laser cavity is adjusted by inserting different lengths of normal dispersion fiber, resulting in different mode-locking regimes. These results could serve as a foundation for the optimization of mode-locked fiber-laser cavity design at the 2 μm wavelength region. PMID:27519109

  14. L-[METHYL-{sup 11}C] Methionine Positron Emission Tomography for Target Delineation in Malignant Gliomas: Impact on Results of Carbon Ion Radiotherapy

    SciTech Connect

    Mahasittiwat, Pawinee; Mizoe, Jun-etsu Hasegawa, Azusa; Ishikawa, Hiroyuki; Yoshikawa, Kyosan; Mizuno, Hideyuki; Yanagi, Takeshi; Takagi, Ryou D.D.S.; Pattaranutaporn, Pittayapoom; Tsujii, Hirohiko

    2008-02-01

    Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined by means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.

  15. Coarsening foams robustly reach a self-similar growth regime.

    PubMed

    Lambert, Jérôme; Mokso, Rajmund; Cantat, Isabelle; Cloetens, Peter; Glazier, James A; Graner, François; Delannay, Renaud

    2010-06-18

    Dry liquid foams coarsen like other diphasic systems governed by interfacial energy: gas slowly diffuses across liquid films, resulting in large bubbles growing at the expense of smaller ones which eventually shrink and disappear. A foam scatters light very effectively, preventing direct optical observation of bubble sizes and shapes in large foams. Using high speed x-ray tomography, we have produced 4D movies (i.e., 3D + time) of up to 30,000 bubbles. After a transient regime, the successive images look alike, except that the average bubble size increases as the square root of time: This scaling state is the long sought self-similar growth regime. The bubble size and face-number distributions in this regime are compared with experimental distributions for grains in crystals and with numerical simulations of foams. PMID:20867343

  16. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height. PMID:26871175

  17. Dynamic regimes of local homogeneous population model with time lag

    NASA Astrophysics Data System (ADS)

    Neverova, Galina; Frisman, Efim

    2016-06-01

    We investigated Moran - Ricker model with time lag 1. It is made analytical and numerical study of the model. It is shown there is co-existence of various dynamic regimes under the same values of parameters. The model simultaneously possesses several different limit regimes: stable state, periodic fluctuations, and chaotic attractor. The research results show if present population size substantially depends on population number of previous year then it is observed quasi-periodic oscillations. Fluctuations with period 2 occur when the growth of population size is regulated by density dependence in the current year.

  18. The transition between the niche and neutral regimes in ecology

    PubMed Central

    Fisher, Charles K.; Mehta, Pankaj

    2014-01-01

    An ongoing debate in ecology concerns the impacts of ecological drift and selection on community assembly. Here, we show that there is a transition in diverse ecological communities between a selection-dominated regime (the niche phase) and a drift-dominated regime (the neutral phase). Simulations and analytic arguments show that the niche phase is favored in communities with large population sizes and relatively constant environments, whereas the neutral phase is favored in communities with small population sizes and fluctuating environments. Our results demonstrate how apparently neutral populations may arise even in communities inhabited by species with varying traits. PMID:25157131

  19. Geothermal regimes at Clearlake California: A preliminary review

    SciTech Connect

    Burns, K.L.; Potter, R.M.; Zyvoloski, G.

    1992-08-01

    Three distinct geothermal regimes are inferred in the vicinity of the city of Clearlake, California. The first is a conductive heat flow regime, the second is a fault-controlled hot spring flow of ``magmatic`` fluids, and the third is a resurgent flow of meteoric warm water. The conductive heat flow results in flat, horizontal isotherms. The hot spring generates a localized spike in the isotherms. The advective disturbance carries heat laterally to a fault-line resurgence, lowering the apparent heat flow at the surface.

  20. Stochastic Parametrisations and Regime Behaviour of Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Arnold, Hannah; Moroz, Irene; Palmer, Tim

    2013-04-01

    the predictability of regime changes (Lorenz 1996, 2006). Three types of models are considered: a deterministic parametrisation scheme, stochastic parametrisation schemes with additive or multiplicative noise, and a perturbed parameter ensemble. Each forecasting scheme was tested on its ability to reproduce the attractor of the full system, defined in a reduced space based on EOF decomposition. None of the forecast models accurately capture the less common regime, though a significant improvement is observed over the deterministic parametrisation when a temporally correlated stochastic parametrisation is used. The attractor for the perturbed parameter ensemble improves on that forecast by the deterministic or white additive schemes, showing a distinct peak in the attractor corresponding to the less common regime. However, the 40 constituent members of the perturbed parameter ensemble each differ greatly from the true attractor, with many only showing one dominant regime with very rare transitions. These results indicate that perturbed parameter ensembles must be carefully analysed as individual members may have very different characteristics to the ensemble mean and to the true system being modelled. On the other hand, the stochastic parametrisation schemes tested performed well, improving the simulated climate, and motivating the development of a stochastic earth-system simulator for use in climate prediction. J. Berner, G. J. Shutts, M. Leutbecher, and T. N. Palmer. A spectral stochastic kinetic energy backscatter scheme and its impact on flow dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66(3):603-626, 2009. Y. Frenkel, A. J. Majda, and B. Khouider. Using the stochastic multicloud model to improve tropical convective parametrisation: A paradigm example. J. Atmos. Sci., 69(3):1080-1105, 2012. E. N. Lorenz. Predictability: a problem partly solved. In Proceedings, Seminar on Predictability, 4-8 September 1995, volume 1, pages 1

  1. Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results

    NASA Astrophysics Data System (ADS)

    Nishina, K.; Ito, A.; Falloon, P.; Friend, A. D.; Beerling, D. J.; Ciais, P.; Clark, D. B.; Kahana, R.; Kato, E.; Lucht, W.; Lomas, M.; Pavlick, R.; Schaphoff, S.; Warszawaski, L.; Yokohata, T.

    2015-07-01

    We examined the changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVMs) obtained from the Inter-Sectoral Impact Model Intercomparison Project. Simulation results were obtained using five global climate models (GCMs) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (i.e., emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. At the end of the simulation period, changes from the year 2000 in all three variables varied considerably from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC and SOC projections, GVMs are the main influence on uncertainties (60 % and 90 %, respectively) rather than climate-driving scenarios (RCPs and GCMs). Moreover, the divergence of changes in vegetation carbon residence times is dominated by GVM uncertainty, particularly in the latter half of the 21st century. In addition, we found that the contribution of each uncertainty source is spatiotemporally heterogeneous and it differs among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division becomes cooler (from ca. 80 % in the equatorial division to 40 % in the snow division). Our results suggest that to assess climate change impacts on global ecosystem C cycling among each RCP scenario, the long-term C dynamics within the ecosystems (i.e., vegetation turnover and soil decomposition) are more critical factors than photosynthetic processes. The different trends in the

  2. A Laminated Carbonate Record of Late Holocene Mid-Continental Hydroclimate: Geochemical and Sedimentological Results from Martin Lake, LaGrange County, Indiana

    NASA Astrophysics Data System (ADS)

    Stamps, L. G.; Bird, B. W.; Gilhooly, W., III

    2014-12-01

    Paleoclimate records from the mid-continental United States that span the Holocene with sub-decadal resolution are rare. This is especially true for geochemical records that capture the isotopic composition of precipitation or local precipitation/evaporation balances. As a result, many questions remain about the hydrologic expression of abrupt climate events in this region that today is one of the world's largest agricultural centers. Here, we present sedimentological, geochemical, and chronological data spanning the last 3,000 years from a set of sediment cores from Martin Lake in northeastern Indiana. Today, this kettle lake is hydrologically open with persistent water column stratification and bottom water anoxia. Radiometric dating shows that the lake formed at approximately 16,000 cal yr BP and continuously accumulated sediment thereafter. We focus here on developing a stable isotope record of the late Holocene at decadal resolution to provide a detailed view of precipitation isotopic variability during this time. The Midwest has been influenced by changes in atmospheric circulation patterns throughout the late Holocene, leading to climate events like the Little Ice Age and Medieval Climate Anomaly, which significantly changed temperature and precipitation regimes. The isotopic composition of precipitation in the Midwest has been shown to be heavily influenced by the source of atmospheric moisture as mediated by the Pacific North American mode of atmospheric variability that in turn affects the position of the Polar Front Jetstream. Using high-resolution stable isotope measurements and ultimately climate modeling, we seek to reconstruct the isotopic expression of late Holocene climate events in the mid continental United States and assess the possible relationship with these dominant modes of atmospheric variability. Future work includes extending this reconstruction through the Holocene and increasing the temporal resolution of the data.

  3. Impacts of Arctic Climate Change on Tundra Fire Regimes at Interannual to Millennial Timescales

    NASA Astrophysics Data System (ADS)

    Hu, F.; Young, A. M.; Chipman, M. L.; Duffy, P.; Higuera, P. E.

    2014-12-01

    Tundra burning is emerging as a key process in the rapidly changing Arctic, and knowledge of tundra fire-regime responses to climate change is essential for projecting Earth system dynamics. This presentation will focus on climate-fire relationships in the Arctic, spatiotemporal patterns of Holocene tundra burning, and the effects of tundra burning on carbon cycling. Analysis of historical records reveals that across the Arctic, tundra burning occurred primarily in areas where mean summer temperature exceeded 9 °C and total summer precipitation was below 115 mm. In Alaska, summer temperature and precipitation explain >90% of the interannual variability in tundra area burned from AD 1950-2009, with thresholds of 10.5 °C and 140 mm. These patterns imply tipping points in tundra fire-regime responses to climate change. The frequency of tundra fires has varied greatly across space and through time. Approximately 1.0% of the circum-Arctic tundra burned from AD 2002-2013, and 4.5% of the Alaskan tundra burned from AD 1950-2009. The latter encompassed ecoregions with fire rotation periods ranging from ~400 to 13,640 years. Charcoal analysis of lake sediments also shows that Arctic tundra can sustain a wide range of fire regimes. Fires were rare on the Alaskan North Slope throughout the Holocene, implying that the climate thresholds evident in the historical records have seldom been crossed. In contrast, in areas of NW Alaska, tundra has burned regularly at 100-250 year intervals during the late Holocene. Tundra burning may cause sudden releases of the enormous amount of Arctic soil C. Charcoal particles from recent burns yielded 14C ages of AD 1952-2006. Thus the C consumed in recent fires may recover through vegetation succession. However, our results suggest that in areas that have burned multiple times in recent decades, old soil C is vulnerable to future fires.

  4. THE WIDESPREAD OCCURRENCE OF WATER VAPOR IN THE CIRCUMSTELLAR ENVELOPES OF CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS: FIRST RESULTS FROM A SURVEY WITH HERSCHEL /HIFI

    SciTech Connect

    Neufeld, D. A.; Gonzalez-Alfonso, E.; Melnick, G.; Szczerba, R.; Schmidt, M.; Decin, L.; Alcolea, J.; De Koter, A.; Dominik, C.; Waters, L. B. F. M.; Schoeier, F. L.; Justtanont, K.; Olofsson, H.; Bujarrabal, V.; Planesas, P.; Cernicharo, J.; Teyssier, D.; Marston, A. P.; Menten, K.

    2011-02-01

    We report the preliminary results of a survey for water vapor in a sample of eight C stars with large mid-IR continuum fluxes: V384 Per, CIT 6, V Hya, Y CVn, IRAS 15194-5115, V Cyg, S Cep, and IRC+40540. This survey, performed using the HIFI instrument on board the Herschel Space Observatory, entailed observations of the lowest transitions of both ortho- and para-water: the 556.936 GHz 1{sub 10}-1{sub 01} and 1113.343 GHz 1{sub 11}-0{sub 00} transitions, respectively. Water vapor was unequivocally detected in all eight of the target stars. Prior to this survey, IRC+10216 was the only carbon-rich asymptotic giant branch (AGB) star from which thermal water emissions had been discovered, in that case with the use of the Submillimeter Wave Astronomy Satellite (SWAS). Our results indicate that IRC+10216 is not unusual, except insofar as its proximity to Earth leads to a large line flux that was detectable with SWAS. The water spectral line widths are typically similar to those of CO rotational lines, arguing against the vaporization of a Kuiper Belt analog being the general explanation for water vapor in carbon-rich AGB stars. There is no apparent correlation between the ratio of the integrated water line fluxes to the 6.3 {mu}m continuum flux-a ratio which measures the water outflow rate-and the total mass-loss rate for the stars in our sample.

  5. Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenario, climate projection, and ecosystem simulation using the ISI-MIP result

    NASA Astrophysics Data System (ADS)

    Nishina, K.; Ito, A.; Falloon, P.; Friend, A. D.; Beerling, D. J.; Ciais, P.; Clark, D. B.; Kahana, R.; Kato, E.; Lucht, W.; Lomas, M.; Pavlick, R.; Schaphoff, S.; Warszawaski, L.; Yokohata, T.

    2014-10-01

    Changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVM) obtained from an Inter-Sectoral Impact Model Intercomparison Project study were examined. Simulation results were obtained using five global climate models (GCM) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. In the end of simulation period, the changes from the year of 2000 in all three variables considerably varied from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC, and SOC projections, GVMs dominate uncertainties (60 and 90%, respectively) rather than climate driving scenarios, i.e., RCPs and GCMs. These results suggested that we don't have still enough resolution among each RCP scenario to evaluate climate change impacts on ecosystem conditions in global terrestrial C cycling. In addition, we found that the contributions of each uncertainty source were spatio-temporally heterogeneous and differed among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division gets cooler (from ca. 80% in the equatorial division to 40% in the snow climatic division). To evaluate the effects of climate change on ecosystems with practical resolution in RCP scenarios, GVMs require further improvement to reduce the uncertainties in global C cycling as much as, if not more than, GCMs. Our study suggests that the improvement of GVMs is a priority for

  6. The two-antidot system in the ballistic regime

    NASA Astrophysics Data System (ADS)

    Sachrajda, A. S.; Gould, C.; Kirczenow, G.; Johnson, B.; Feng, Y.; Kelly, P. J.; Delage, A.

    1998-01-01

    A tunable two-antidot device is studied in the cyclotron-trapping regime. Periodic quantum oscillations are found to be superimposed on the peaks reminiscent of those observed in antidot lattices. The results are compared to quantum and classical simulations and Feynman path integral analysis. Published by Elsevier Science B.V.

  7. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; Gettelman, A.; Morrison, H.; Lee, Y. H.; Shindell, D. T.; Partridge, D. G.; Stier, P.; Kipling, Z.; Fu, C.

    2015-09-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascend (ω500 < -25 hPa d-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  8. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    NASA Astrophysics Data System (ADS)

    Zhang, Shipeng; Wang, Minghuai; Ghan, Steven J.; Ding, Aijun; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, Ulrike; Ferrachat, Sylvaine; Takeamura, Toshihiko; Gettelman, Andrew; Morrison, Hugh; Lee, Yunha; Shindell, Drew T.; Partridge, Daniel G.; Stier, Philip; Kipling, Zak; Fu, Congbin

    2016-03-01

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascent (ω500 < -25 hPa day-1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is close to that in subsidence regimes, which indicates that regimes with strong large-scale ascent are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm day-1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes compared to the uncertainty in its global mean values, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.

  9. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  10. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  11. In vivo and in situ rhizosphere respiration in Acer saccharum and Betula alleghaniensis seedlings grown in contrasting light regimes.

    PubMed

    Delagrange, Sylvain; Huc, Frédéric; Messier, Christian; Dizengremel, Pierre; Dreyer, Erwin

    2006-07-01

    A perfusive method combined with an open-system carbon dioxide measurement system was used to assess rhizosphere respiration of Acer saccharum Marsh. (sugar maple) and Betula alleghaniensis Britton (yellow birch) seedlings grown in 8-l pots filled with coarse sand. We compared in vivo and in situ rhizosphere respiration between species, among light regimes (40, 17 and 6% of full daylight) and at different times during the day. To compute specific rhizosphere respiration, temperature corrections were made with either species-specific coefficients (Q10) based on the observed change in respiration rate between 15 and 21 degrees C or an arbitrarily assigned Q10 of 2. Estimated, species-specific Q10 values were 3.0 and 3.4 for A. saccharum and B. alleghaniensis, respectively, and did not vary with light regime. Using either method of temperature correction, specific rhizosphere respiration did not differ either between A. saccharum and B. alleghaniensis, or among light regimes except in A. saccharum at 6% of full daylight. At this irradiance, seedlings were smaller than in the other light treatments, with a larger fine root fraction of total root dry mass, resulting in higher respiration rates. Specific rhizosphere respiration was significantly higher during the afternoon than at other times of day when temperature-corrected on the basis of an arbitrary Q10 of 2, suggesting the possibility of diurnal variation in a temperature-independent component of rhizosphere respiration. PMID:16585038

  12. Magnetised Kelvin-Helmholtz instability in the intermediate regime between subsonic and supersonic regimes

    SciTech Connect

    Henri, P.; Califano, F.; Pegoraro, F.; Faganello, M.

    2012-07-15

    The understanding of the dynamics at play at the Earth's Magnetopause, the boundary separating the Earth's magnetosphere and the solar wind plasmas, is of primary importance for space plasma modeling. We focus our attention on the low latitude flank of the magnetosphere where the velocity shear between the magnetosheath and the magnetospheric plasmas is the energetic source of Kelvin-Helmholtz instability. On the shoulder of the resulting vortex chain, different secondary instabilities are at play depending on the local plasma parameters and compete with the vortex pairing process. Most important, secondary instabilities, among other magnetic reconnection, control the plasma mixing as well as the entry of solar wind plasma in the magnetosphere. We make use of a two-fluid model, including the Hall term and the electron mass in the generalized Ohm's law, to study the 2D non-linear evolution of the Kelvin-Helmholtz instability at the magnetosheath-magnetosphere interface, in the intermediate regime between subsonic and supersonic regimes. We study the saturation mechanisms, depending on the density jump across the shear layer and the magnetic field strength in the plane. In the presence of a weak in-plane magnetic field, the dynamics of the Kelvin-Helmholtz rolled-up vortices self-consistently generates thin current sheets where reconnection instability eventually enables fast reconnection to develop. Such a system enables to study guide field multiple-island collisionless magnetic reconnection as embedded in a large-scale dynamic system, unlike the classical static, ad hoc reconnection setups. In this regime, reconnection is shown to inhibit the vortex pairing process. This study provides a clear example of nonlinear, cross-scale, collisionless plasma dynamics.

  13. Initial results of comparing cold-seep carbonates from mussel- and tubeworm-associated environments at Atwater Valley lease block 340, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Roberts, Harry H.

    2010-11-01

    Chemosymbiotic macrofauna (such as mussels and tubeworms) and authigenic carbonates are typical of many hydrocarbon seeps. To address whether mussels and tubeworms could impact the sediment geochemistry of their habitat where authigenic carbonates are precipitated, a comparative study of petrographic and geochemical features of the authigenic carbonates from mussel- and tubeworm-associated environments at hydrocarbon seeps in Atwater Valley lease area block 340 (AT340) of the Gulf of Mexico was undertaken. Both mussel- and tubeworm-associated carbonates are dominated by high-magnesium calcite (HMC) and aragonite, and two tubeworm-associated carbonate samples have minor amounts of dolomite. The δ13C values of all carbonates are low, ranging from -60.8‰ to -35.5‰ PDB. Although there is much overlap, surprisingly the δ13C values of mussel-associated carbonates are generally higher than those of tubeworm-associated carbonates (-51.8‰ vs. -54.8‰ for an average of over 60 subsamples). It is suggested that (1) carbon isotopic vital effect of seep mussels and tubeworms, (2) fluid physical pumping of mussels, and (3) release of sulfate by tubeworm roots may be responsible for the relatively lower δ13C values of tubeworm-associated carbonates. It has been suggested that the heterogeneities in mineralogy and stable carbon isotope geochemistry of the seep carbonates may be attributed to the activity of macrofauna (mussels and tubeworms) and associated microbes. Our observations also suggest that at AT340 the geochemical evolution of seep macrofauna is from a mussel-dominated environment to a mixed mussel-tubeworm environment, and finally to a mostly tubeworm-dominated environment. This evolution is controlled mainly by the habitat, e.g., hydrocarbon seep flux.

  14. Analytical results and sample locality map for stream-sediment and heavy-mineral-concentrate samples from the Desolation Canyon Wilderness Study Area (UT-060-068A), Emery and Carbon Counties, Utah

    SciTech Connect

    Detra, D.E.; Kilburn, J.E.; Jones, J.L.

    1989-01-01

    A U.S. Geological Survey report is presented giving Analytical results and sample locality map for stream-sediment and heavy-mineral-concentrate samples from the Desolation Canyon Wilderness Study Area in Emery and Carbon Counties, Utah.

  15. A climatology of low level wind regimes over Central America using a weather type classification approach.

    NASA Astrophysics Data System (ADS)

    Sáenz, Fernán; Durán-Quesada, Ana María

    2015-04-01

    Based on the potential of the weather types classification method to study synoptic features, this study proposes the application of such methodology for the identification of the main large scale patterns related with weather in Central America. Using ERA Interim low-level winds in a domain that encompasses the intra-Americas sea, the eastern tropical Pacific, southern North America, Central America and northern South America; the K-means clustering algorithm was applied to find recurrent regimes of low-level winds. Eleven regimes were identified and good coherency between the results and known features of regional circulation was found. It was determined that the main large scale patterns can be either locally forced or a response to tropical-extratropical interactions. Moreover, the local forcing dominates the summer regimes whereas mid latitude interactions lead winter regimes. The study of the relationship between the large scale patterns and regional precipitation shows that winter regimes are related with the Caribbean-Pacific precipitation seesaw. Summer regimes, on the other hand, enhance the Caribbean-Pacific precipitation contrasting distribution as a function of the dominant regimes. A strong influence of ENSO on the frequency and duration of the regimes was found. It was determined that the specific effect of ENSO on the regimes depends on whether the circulation is locally forced or lead by the interaction between the tropics and the mid-latitudes. The study of the cold surges using the information of the identified regimes revealed that three regimes are linkable with the occurrence of cold surges that affect Central America and its precipitation. As the winter regimes are largely dependent of mid-latitude interaction with the tropics, the effect that ENSO has on the Jet Stream is reflected in the winter regimes. An automated analysis of large scale conditions based on reanalysis and/or model data seems useful for both dynamical studies and as a tool

  16. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  17. Ten Years of Near-Surface-Sensitive Satellite O