Science.gov

Sample records for carbon soil distribution

  1. Distribution of calcium carbonate in desert soils: A model

    SciTech Connect

    Mayer, L.; McFadden, L.D.; Harden, J.W.

    1988-04-01

    A model that describes the distribution of calcium carbonate in desert soils as a function of dust flux, time, climate, and other soil-forming factors shows which factors most strongly influence the accumulation of carbonate and can be used to evaluate carbonate-based soil age estimates or paleoclimatic reconstructions. Models for late Holocene soils have produced carbonate distributions that are very similar to those of well-dated soils in New Mexico and southern California. These results suggest that (1) present climate is a fair representation of late Holocene climate, (2) carbonate dust flux can be approximated by its Holocene rate, and (3) changes in climate and/or dust flux at the end of the Pleistocene effected profound and complex changes in soil carbonate distributions. Both higher carbonate dust flux and greater effective precipitation are required during the latest Pleistocene-early Holocene to explain carbonate distributions in latest Pleistocene soils. 21 refs., 4 figs., 1 tab.

  2. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2010-11-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS) are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions) over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously published approach at the European

  3. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2011-05-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the

  4. The distribution in lunar soil of carbon released by pyrolysis

    NASA Technical Reports Server (NTRS)

    Desmarais, D. J.; Hayes, J. M.; Meinschein, W. G.

    1973-01-01

    The carbon contents of various lunar soil particle types and sieve fractions of Apollo 15 and 16 samples have been determined by the pyrolysis method. The mineral, glass, and high-grade breccia fragments in the soils examined contain relatively low amounts of carbon (approximately 8, 25, and 25 microg C/g sample respectively in 149-250 micron grains). Most low-grade breccias and all agglutinates examined have high carbon contents (approximately 52 and 80 microg C/g sample respectively), and agglutinate abundance is indicative of the carbon content and maturity of a soil. The distribution of carbon with respect to particle size in mature soils generally reveals a minimum in carbon content at about 100 micron particle diameter. At smaller particle diameters, carbon content is directly proportional to particle surface area and therefore increases with the ratio (surface area)/(particle mass). A model relating the cycle of comminution and aggregation of soil particles to the redistribution of surface implanted carbon is developed.

  5. Distribution of soil organic carbon in the conterminous United States

    USGS Publications Warehouse

    Bliss, Norman B.; Waltman, Sharon W.; West, Larry T.; Neale, Anne; Mehaffey, Megan

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  6. [Reserves and spatial distribution characteristics of soil organic carbon in Guangdong Province].

    PubMed

    Gan, Haihua; Wu, Shunhui; Fan, Xiudan

    2003-09-01

    Soil organic carbon is the main part of terrestrial carbon reservoir and important part of soil fertility. The spatial distribution and reserves of soil organic carbon are very important for studying soil carbon cycle. According to the data from the second soil survey, soil organic carbon reserves was estimated and its spatial distribution was analysed by using GIS technique. The results showed that the total amount of soil organic carbon is about 17.52 x 10(8) t. The carbon density of laterite, lateritic red soil and red soil in Guangdong Province is 8.83, 10.31, 9.15 kg.m-2, respectively; lower than the mean carbon density of China. The carbon density of yellow soil and rice soil is 12.08, 12.17 kg.m-2, respectively; higher than the mean carbon density of China. Soil carbon density is about 10.44 kg.m-2 in Guangdong. The spatial distribution characteristic of soil organic carbon density in Guangdong is that the carbon density in south Guangdong Province is higher than that in north Guangdong Province, in that soil organic carbon density in north and middle Guangdong Province is 5-10 kg.m-2 and in east Guangdong Province is 10-15 kg.m-2. Soil organic carbon density mostly vary among 5-15 kg.m-2. PMID:14733007

  7. [Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area].

    PubMed

    Sun, Long; Zhang, Guang-hui; Luan, Li-li; Li, Zhen-wei; Geng, Ren

    2016-02-01

    Along the 368-591 mm precipitation gradient, 7 survey sites, i.e. a total 63 investigated plots were selected. At each sites, woodland, grassland, and cropland with similar restoration age were selected to investigate soil organic carbon distribution in surface soil (0-30 cm), and the influence of factors, e.g. climate, soil depth, and land uses, on soil organic carbon distribution were analyzed. The result showed that, along the precipitation gradient, the grassland (8.70 g . kg-1) > woodland (7.88 g . kg-1) > farmland (7.73 g . kg-1) in concentration and the grassland (20.28 kg . m-2) > farmland (19.34 kg . m-2) > woodland (17.14 kg . m-2) in density. The differences of soil organic carbon concentration of three land uses were not significant. Further analysis of pooled data of three land uses showed that the surface soil organic carbon concentration differed significantly at different precipitation levels (P<0.00 1). Significant positive relationship was detected between mean annual precipitation and soil organic carbon concentration (r=0.838, P<0.001) in the of pooled data. From south to north (start from northernmost Ordos), i.e. along the 368-591 mm precipitation gradient, the soil organic carbon increased with annual precipitation 0. 04 g . kg-1 . mm-1, density 0.08 kg . m-2 . mm-1. The soil organic carbon distribution was predicted with mean annual precipitation, soil clay content, plant litter in woodland, and root density in farmland. PMID:27396128

  8. The Impact of Buried Horizons and Deep Soil Pedogenesis on Soil Carbon Content and Vertical Distribution

    NASA Astrophysics Data System (ADS)

    James, J. N.; Dietzen, C.; Harrison, R. B.; Gross, C.; Kirpach, A.

    2015-12-01

    The lower boundary of soil has been a point of contention among soil scientists for decades. Recent evidence suggests that soil is much deeper than is measured by many ecological studies and that arbitrary definitions of maximum soil depth unnecessarily exclude important regions of the soil profile. This paper provides illustrated examples of soil profiles that have important deep soil characteristics or buried horizons. Soil pits were excavated with a backhoe to at least 2.5 m depth at 35 sites throughout the Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecoregion of the Pacific Northwest. These soils cover four orders - Andisol, Inceptisol, Alfisol, and Ultisol - and highlight the hidden diversity of subsoil characteristics throughout the region. The roots of trees and understory species often extended deep into the C horizons of soil. Despite experiencing less pedogenic development than surface horizons, C horizons are important as the frontier of soil formation, as an important resource for plant growth, and as a repository of diffuse but significant carbon storage. On average, there was 188.1 Mg C ha-1 total across all 35 sites, of which 76.3 Mg ha-1 (40.5%) was found below 0.5 m and 44.4 Mg ha-1 (23.6%) was found below 1 m. There was substantial variability in the vertical distribution of C with as little as 8.0% and as much as 58.0% of total C below 1 m. In some cases, B horizons are far deeper than the 1 or 2 m depth arbitrarily assumed to represent the whole soil. In other cases, subsoil hides buried profiles that can significantly impact total soil carbon stocks as well as aboveground plant growth. These buried horizons are important repositories of nutrients and carbon that are poorly understood and rarely sampled. Ignoring subsoil precludes incorporating soil burial or deep soil processes into biogeochemical and global carbon cycle models, and limits mechanistic understanding of carbon sequestration and mobilization in soil.

  9. Soil carbon distribution in Alaska in relation to soil-forming factors

    USGS Publications Warehouse

    Johnson, K.D.; Harden, J.; McGuire, A.D.; Bliss, N.B.; Bockheim, J.G.; Clark, M.; Nettleton-Hollingsworth, T.; Jorgenson, M.T.; Kane, E.S.; Mack, M.; O'Donnell, J.; Ping, C.-L.; Schuur, E.A.G.; Turetsky, M.R.; Valentine, D.W.

    2011-01-01

    The direction and magnitude of soil organic carbon (SOC) changes in response to climate change remain unclear and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To address these issues in Alaska, a first-order assessment of data gaps and spatial distributions of SOC was conducted from a recently compiled soil carbon database. Temperature and landform type were the dominant controls on SOC distribution for selected ecoregions. Mean SOC pools (to a depth of 1-m) varied by three, seven and ten-fold across ecoregion, landform, and ecosystem types, respectively. Climate interactions with landform type and SOC were greatest in the uplands. For upland SOC there was a six-fold non-linear increase in SOC with latitude (i.e., temperature) where SOC was lowest in the Intermontane Boreal compared to the Arctic Tundra and Coastal Rainforest. Additionally, in upland systems mineral SOC pools decreased as climate became more continental, suggesting that the lower productivity, higher decomposition rates and fire activity, common in continental climates, interacted to reduce mineral SOC. For lowland systems, in contrast, these interactions and their impacts on SOC were muted or absent making SOC in these environments more comparable across latitudes. Thus, the magnitudes of SOC change across temperature gradients were non-uniform and depended on landform type. Additional factors that appeared to be related to SOC distribution within ecoregions included stand age, aspect, and permafrost presence or absence in black spruce stands. Overall, these results indicate the influence of major interactions between temperature-controlled decomposition and topography on SOC in high-latitude systems. However, there remains a need for more SOC data from wetlands and boreal-region permafrost soils, especially at depths > 1 m in order

  10. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    NASA Astrophysics Data System (ADS)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  11. Assessment of soil organic carbon distribution in Europe scale by spatio-temporal data and geostatistics

    NASA Astrophysics Data System (ADS)

    Aksoy, Ece; Panagos, Panos; Montanarella, Luca

    2013-04-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because SOC is an important soil component that plays key roles in the functions of both natural ecosystems and agricultural systems. The SOC content varies from place to place and it is strongly related with climate variables (temperature and rainfall), terrain features, soil texture, parent material, vegetation, land-use types, and human management (management and degradation) at different spatial scales. Geostatistical techniques allow for the prediction of soil properties using soil information and environmental covariates. In this study, assessment of SOC distribution has been predicted using combination of LUCAS soil samples with local soil data and ten spatio-temporal predictors (slope, aspect, elevation, CTI, CORINE land-cover classification, parent material, texture, WRB soil classification, average temperature and precipitation) with Regression-Kriging method in Europe scale. Significant correlation between the covariates and the organic carbon dependent variable was found.

  12. The Distribution of Soil Organic Carbon Quantity and Quality in Soils of Southeastern Kentucky with Different Anthropogenic Histories

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Campbell, E. J.; Davis, C. M.; Thompson, N. E.; Sliter, M. M.

    2007-12-01

    A better understanding of the distribution of soil organic carbon across the landscape is needed for inputs to regional and global carbon budget modeling. In this field-based research we collected soil samples from southeastern Kentucky to better understand the influence of land-use, land management history, anthropogenic disturbances and geomorphologic landform upon the carbon quantity, or total soil carbon, and quality, i.e., decomposition state, turnover and history. Choice of the study site focused on comparison of soil organic trends globally as well as regionally due to increased focus on coal production thus impacting soil carbon, the geomorphologic footprint of the downcut, dissected terrain, and the predominant land-use transition from forest to reclaimed grassland and agricultural. Soil samples were collected from deciduous and mixed forests, floodplains, agricultural, reclaimed grassland and reclaimed forest. Soil sampling included homogenizing samples from ten soil pits at each site at four different depth increments, separation of samples into soil organic carbon pools based on size class and density fractionation, and analyzing the samples using an isotope ratio mass spectrometer and total elemental analyzer. Analysis of our work and other published data in the temperate forests of Appalachia show little variability of carbon isotopic records with depth across the region which contrasts published results from tropical regions and suggests larger regional variability in soil carbon turnover rates for tropical rain forests than temperate forests. At the same time variability of surface soils in the temperate region due to recent anthropogenic and geomorphologic disturbance was pronounced for both soil carbon quantity and quality including: (1) Reclaimed forest and grassland surface soils in general showed lower total carbon in comparison to undisturbed forest surface soils, as expected. (2) Carbon to nitrogen atomic ratio and carbon and nitrogen

  13. Soil type-depending effect of paddy management: Organic carbon distribution and stocks

    NASA Astrophysics Data System (ADS)

    Kölbl, Angelika; Drechsler, Susanne; Wissing, Livia; Schad, Peter; Rahayu Utami, Sri; Cao, Zhihong; Kögel-Knabner, Ingrid

    2013-04-01

    Paddy soils may originate from many different types of soil but are highly modified by human activities. These soils are mostly managed under submerged conditions, a management which is assumed to favour carbon sequestration. Therefore, the present study aims to investigate the impact of paddy management on soil organic carbon distributions and stocks in major soil types that are typically used for rice cultivation in Asia. Fluvisol and Acrisol sites (sub-tropical monsoon climate, PR China) as well as Andosol, Vertisol and Ferralsol sites (tropical climate of Java, Indonesia) were compared, as they represent a large range of soil properties to be expected in Asian paddy fields. Paddy rice at all of these sites is cultivated under flooded conditions followed by an upland crop. To evaluate the impact of paddy management, paddy soils as well as adjacent agricultural soils which are not used for paddy rice production (non-paddy soils) were chosen. At each site, three soil profiles of paddy and non-paddy soils were sampled horizontally. All samples were analysed for bulk density and organic carbon (OC) concentrations, and the corresponding OC stocks were calculated. Paddy soils derived from Fluvisols and Acrisols(PR China) showed clearly higher OC concentrations in the topsoils, leading to higher cumulative OC stocks in paddy soils compared to the respective non-paddy soils. However, other soil types did not show the expected higher OC sequestration under paddy management. For example, paddy soils derived from Ferralsols and Vertisols of Java are characterised by very similar OC concentrations and OC stocks as compared to their respective non-paddy soils. Also paddy and non-paddy soils derived from Andosols (Java) showed similar OC concentrations and depth distributions; only the slightly higher bulk density values under paddy management lead to slightly higher OC stocks in these soils. As clearly shown by our results, we cannot necessarily assume that rice production

  14. Vertical distribution of soil organic carbon in limestone Mediterranean mountains areas, southern Spain

    NASA Astrophysics Data System (ADS)

    Gil, Juan; Jordan, Antonio; Martínez-Zavala, Lorena; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2015-04-01

    Normally, soil organic carbon (SOC) investigations are related to fertility and/or soil quality so refer to surface horizon. In other cases, soil control sections or soil horizons are used to study soil carbon pool, especially in forest areas. In this line, in order to provide quantitative data of organic carbon in soils and sediments in relation to depth, the organic carbon vertical distribution was studied in selected areas of southern Spain. Significant variations in depth of organic carbon may be related with different vegetation and/or land use changes, so it can be used to select sampling points for studying these changes through pollen analysis. For this study, ten sinkholes in hard limestone Mediterranean mountains areas of southern Spain have been selected following scientific interest criteria and/or minimal human influence. Soil and sediment samples extraction was carried out using tensile steel drills up to four meters in deep driven by an electric striking hammer. Once extracted the soil columns, soil control sections are taken every 5 cm, obtaining 470 samples in the ten sinkholes selected and making four replications for each soil control section. The soil and sediments exploration in different sinkholes highlights the karst heterogeneity formations, especially in terms of its depth. Thus, it was possible to take samples of varying depth, ranging between 1 and 5 m, being the limiting factor the hard pan forming which can be soil nature (petrocalcic horizon) or lithological nature (hard limestone). SOC in every sampling point varied between 2.5 and 16.7 g kg-1. In general, SOC concentrations decreases progressively in depth, although in some sampling point 10 g kg-1 were obtained at 200 cm in depths. On the other hand, it had been observed significant increases at 100 cm in deep, sometimes repeating at high deep, which could be related to ancient sedimentary past or with edaphogenic processes past. Definitely more comprehensive studies could shed new

  15. Soil Aggregates and Organic Carbon Distribution in Red Soils after Long-term Fertilization with Different Fertilizer Treatments

    NASA Astrophysics Data System (ADS)

    Tang, J.; Wang, Y.

    2013-12-01

    Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long

  16. Organic carbon distribution, speciation, and elementalcorrelations within soil microaggregates: applications of STXM and NEXAFSspectroscopy

    SciTech Connect

    Wan, Jiamin; Tyliszczak, Tolek; Tokunaga, Tetsu K.

    2007-03-15

    Soils contain the largest inventory of organic carbon on the Earth's surface. Therefore, it is important to understand how soil organic carbon (SOC) is distributed in soils. This study directly measured SOC distributions within soil microaggregates and its associations with major soil elements from three soil groups (Phaeozem, Cambisol, and Ultisol), using scanning transmission X-ray microscopy (STXM) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at a spatial resolution of 30 nm. Unlike previous studies, small intact soil microaggregates were examined directly in order to avoid preparatory procedures that might alter C speciation. We found that SOC exists as distinct particles (tens to hundreds of nm) and as ubiquitous thin coatings on clay minerals and iron-oxides coatings. The distinct SOC particles have higher fractions of aromatic C than the coatings. NEXAFS spectra of the C coatings within individual microaggregates were relatively similar. In the Phaeozem soil, the pervasive spectral features were those of phenolic and carboxylic C, while in the Cambisol soil the most common spectral feature was the carboxyl peak. The Ultisol soil displayed a diffuse distribution of aromatic, phenolic, and carboxylic C peaks over all surfaces. In general, a wide range of C functional groups coexist within individual microaggregates. In this work we were able to, for the first time, directly quantify the major mineral elemental (Si, Al, Ca, Fe, K, Ti) compositions simultaneously with C distribution and speciation at the nm to {mu}m scale. These direct microscale measurements will help improve understanding on SOC-mineral associations in soil environments.

  17. [Spatial distribution characteristics and ecological effects of carbon and nitrogen of soil in Huolin River catchment wetland].

    PubMed

    Bai, Junhong; Deng, Wei; Zhu, Yanming; Luan, Zhaoqing; Zhang, Yuxia

    2003-09-01

    This paper studied the spatial distribution characteristics and ecological effects of organic carbon and nitrogen in soils of Huolin River catchment wetland in horizontal and vertical levels. The results showed that the differences of horizontal and vertical distribution of organic carbon and nitrogen were very obvious, and of all the factors such as the period of wetting and drying cycles, leaching, plant and flood etc., the period of wetting and drying cycles was contents the critical one, which caused the differences. Soil organic carbon was significantly correlated with soil nitrogen (r = 0.977). The ratio of carbon and nitrogen (C/N) changed along with the humidity gradient, and soil pH values obviously influenced the concentration of organic carbon and nitrogen. The correlation of C/N values and organic carbon and nitrogen contents in wetland soil and in grassland soil were remarkably different, and the ecological effects mainly included production effect and clarification effect. PMID:14733006

  18. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth. PMID:26762934

  19. [Effects of tillage type on soil organic carbon and its distribution in oasis irrigation area].

    PubMed

    Ma, Zhong-ming; Lyu, Xiao-dong; Liu, Li-li

    2015-01-01

    A long-term trial was established in 2005 in the oasis irrigation area to determine the impact on the accumulation and distribution of total organic carbon (TOC) , particulate organic carbon (POC) and soil microbial biomass carbon (SMBC) in 0-90 cm soil layer of 4 types of tillage including conventional tillage (CT), fresh raised-bed (FRB), permanent raised-bed (PRB) and zero tillage with control traffic on flat field (ZT). The results revealed that the distribution characteristics of TOC, POC and SMBC in the soil profile were similar in the four tillage treatments, and the carbon content decreased with depth, meanwhile the difference among treatments gradually decreased. PRB significantly increased the TOC, POC contents and SMBC, which presented in the order of PRB>ZT>FRB>CT in the 0-90 cm soil layer. In 0-10 cm soil layer, the TOC was increased by 11.1%-24.8% for PRB, 9.1%-18.7% for ZT and 7.8%-8.2% for FRB when compared with CT; POC was increased by 24.1%-26.5% for PRB, 17.3%-18.7% for ZT, and -8.2% to 10.8% for FRB; SMBC was increased by 20.5%-28.3% for PRB, 10.4%-15.2% for ZT and 3.5%-3.7% for FRB. TOC had a significant promotion effect on POC. PRB significantly increased the proportion of soil POC and enhanced the overall accumulation of organic carbon. PMID:25985662

  20. Soil organic carbon in the Sanjiang Plain of China: storage, distribution and controlling factors

    NASA Astrophysics Data System (ADS)

    Mao, D. H.; Wang, Z. M.; Li, L.; Miao, Z. H.; Ma, W. H.; Song, C. C.; Ren, C. Y.; Jia, M. M.

    2015-03-01

    The accurate estimation of soil organic carbon (SOC) storage and determination of its pattern-controlling factors is critical to understanding the ecosystem carbon cycle and ensuring ecological security. The Sanjiang Plain, an important grain production base in China, is typical of ecosystems, yet its SOC storage and pattern has not been fully investigated because of insufficient soil investigation. In this study, 419 soil samples obtained in 2012 for each of the three soil depth ranges 0-30, 30-60, and 60-100 cm and a geostatistical method are used to estimate the total SOC storage and density (SOCD) of this region. The results give rise to 2.32 Pg C for the SOC storage and 21.20 kg m-2 for SOCD, which is higher than the mean value for the whole country. The SOCD shows notable changes in lateral and vertical distribution. In addition, vegetation, climate, and soil texture, as well as agricultural activities, are demonstrated to have remarkable impacts on the variation in SOCD of this region. Soil texture has stronger impacts on the distribution of SOCD than climate in the Sanjiang Plain. Specifically, clay content can explain the largest proportion of the SOC variations (21.2% in the top 30 cm) and is the most dominant environmental controlling factor. Additionally, the effects of both climate and soil texture on SOCD show a weakening with increasing soil layer depth. This study indicates that reducing the loss of SOC requires effective conservation and restoration efforts of wetlands and forestlands, as well as sensible fertilization. The results from this study provide the most up-to-date knowledge on the storage and pattern of SOC in the Sanjiang Plain and have important implications for the determination of ecosystem carbon budgets and understanding ecosystem services.

  1. Global assessment of soil organic carbon stocks and spatial distribution of histosols: the Machine Learning approach

    NASA Astrophysics Data System (ADS)

    Hengl, Tomislav

    2016-04-01

    Preliminary results of predicting distribution of soil organic soils (Histosols) and soil organic carbon stock (in tonnes per ha) using global compilations of soil profiles (about 150,000 points) and covariates at 250 m spatial resolution (about 150 covariates; mainly MODIS seasonal land products, SRTM DEM derivatives, climatic images, lithological and land cover and landform maps) are presented. We focus on using a data-driven approach i.e. Machine Learning techniques that often require no knowledge about the distribution of the target variable or knowledge about the possible relationships. Other advantages of using machine learning are (DOI: 10.1371/journal.pone.0125814): All rules required to produce outputs are formalized. The whole procedure is documented (the statistical model and associated computer script), enabling reproducible research. Predicted surfaces can make use of various information sources and can be optimized relative to all available quantitative point and covariate data. There is more flexibility in terms of the spatial extent, resolution and support of requested maps. Automated mapping is also more cost-effective: once the system is operational, maintenance and production of updates are an order of magnitude faster and cheaper. Consequently, prediction maps can be updated and improved at shorter and shorter time intervals. Some disadvantages of automated soil mapping based on Machine Learning are: Models are data-driven and any serious blunders or artifacts in the input data can propagate to order-of-magnitude larger errors than in the case of expert-based systems. Fitting machine learning models is at the order of magnitude computationally more demanding. Computing effort can be even tens of thousands higher than if e.g. linear geostatistics is used. Many machine learning models are fairly complex often abstract and any interpretation of such models is not trivial and require special multidimensional / multivariable plotting and data mining

  2. Soil carbonates and soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of soil carbonates occurring as solidified masses or dispersed particles can alter soil water dynamics from what would be expected based on non-carbonate soil properties. Carbonate minerals in the soil can be derived from high carbonate parent material, additions in the form of carbonat...

  3. The Global Turnover Time Distribution of Soil Carbon Derived from a Meta-analysis of Radiocarbon Profiles

    NASA Astrophysics Data System (ADS)

    He, Y.; Randerson, J. T.; Allison, S. D.; Torn, M. S.; Harden, J. W.; Smith, L. J.; van der Voort, T.; Trumbore, S.

    2015-12-01

    Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle feedbacks under climate change. Soil carbon turnover times provide information about the sensitivity of carbon pools to changes in inputs and warming. The spatial and vertical distribution of soil carbon turnover times emerges from the interplay between climate, vegetation, and soil properties. Radiocarbon levels of soil organic matter can be used to estimate soil carbon turnover using models that take into account radioactive decay over centuries to millennia and inputs of 14C from atmospheric weapons testing ("bomb carbon") during the second half of the 20th century. By synthesizing more than 200 soil radiocarbon profiles from all major biomes and soil orders, we 1) explored the major controlling factors for soil carbon turnover times of surface and deeper soil layers; 2) developed predictive models (tree-based regression, support vector regression and linear regression models) of ∆14C that depends on depth, climate, vegetation, and soil types; and 3) extrapolated the predictive model to produce the first global distribution of soil carbon turnover times to the depth of 1m. Preliminary results indicated that climate and depth were primary controls of the vertical distribution of ∆14C, contributing to about 70% of the variability in our model. Vegetation and soil order exerted similar level of controls (about 15% each). The predictive model performed reasonably well with an R2 of 0.81 and RMSE (root-mean-squared error) of about 50‰ for topsoil and 100‰ for subsoil, as estimated using cross-validation. Extrapolation of the predictive model to the globe in combination with existing soil carbon information (e.g., Harmonized World Soil Database) indicated that more than half of the global total soil carbon in the top 1m had a turnover time of less than 500 years. Subsoils (30-100cm) had millennium-scale turnover times, with the majority (70%) turning over

  4. Vertical Soil Carbon Distributions in the Contiguous United States: Effects of Land Cover and History of Cultivation

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Nave, L. E.; Treat, C. C.; He, Y.

    2015-12-01

    Soils contain the largest pool of carbon in most terrestrial ecosystems. The vertical distribution of these large carbon pools contains important information about the factors affecting soil formation and soil organic matter preservation. In addition, the depth distribution of organic matter is associated with its stability and resilience to climatic and ecological changes. We fit the vertical distribution soil organic carbon (SOC) concentration using an exponential model in order to calculate empirical parameters Z*, representing the characteristic vertical scale of the decline in SOC concentration with depth, and Csurf, representing the approximate SOC concentration in the uppermost layer of mineral soil. A higher value of Z* indicates a longer vertical scale, and therefore a slower decline with depth. This calculation was applied to a set of over 28,000 soil profiles in the coterminous United States. Limiting the analysis to fits with an r2>0.9 yielded more than 15,000 estimates of Z* and Csurf from soil profiles representing a variety of different ecosystems. We used this large dataset to test hypotheses related to the impacts of soil type, ecosystem type, and land use history on soil carbon stocks and vertical distributions. SOC concentration near the surface and its rate of decline with depth were both strongly dependent on land use, with cultivated soils having the lowest Csurf and highest Z* and forest soils having the highest Csurf and lowest Z*. These effects were more pronounced in forest soil orders (alfisols and spodosols) than in prairie soil orders (mollisols). Cultivation lowered SOC concentrations throughout the soil profile, and these effects were visible in currently forested ecosystems with a history of cultivation, indicating that the effects were persistent after reforestation. These results will be useful for both assessing land use effects on soil carbon stocks and evaluating ecosystem

  5. Watershed Scale Stable Isotope Distribution and Implications on Soil Organic Carbon Loss Monitoring under Hydrologic Uncertainty

    NASA Astrophysics Data System (ADS)

    Ahmed, I.; Karim, A.; Boutton, T. W.; Strom, K.; Fox, J.

    2013-12-01

    The thematic focus of this 3-year period multidisciplinary USDA-CBG collaborative applied research is integrated monitoring of soil organic carbon (SOC) loss from multi-use lands using state-of-the-art stable isotope science under uncertain hydrologic influences. In this study, SOC loss and water runoff are being monitored on a 150 square kilometer watershed in Houston, Texas, using natural rainfall events, and total organic carbon/nitrogen concentration (TOC/TN) and stable isotope ratio (δ13C, δ15N) measurements with different land-use types. The work presents the interdisciplinary research results to uncover statistically valid and scientifically sound ways to monitor SOC loss by (i) application of Bayesian Markov Chain Monte Carlo statistical models to assess the relationship between rainfall-runoff and SOC release during soil erosion in space and time, (ii) capturing the episodic nature of rainfall events and its role in the spatial distribution of SOC loss from water erosion, (iii) stable isotope composition guided fingerprinting (source and quantity) of SOC by considering various types of erosion processes common in a heterogeneous watershed, to be able to tell what percentage of SOC is lost from various land-use types (Fox and Papanicolaou, 2008), (iv) creating an integrated watershed scale statistical soil loss monitoring model driven by spatial and temporal correlation of flow and stable isotope composition (Ahmed et. al., 2013a,b), and (v) creation of an integrated decision support system (DSS) for sustainable management of SOC under hydrologic uncertainty to assist the end users. References: Ahmed, I., Karim, A., Boutton, T.W., and Strom, K.B. (2013a). 'Monitoring Soil Organic Carbon Loss from Erosion Using Stable Isotopes.' Proc., Soil Carbon Sequestration, International Conference, May 26-29, Reykjavik, Iceland. Ahmed, I, Bouttom, T.W., Strom, K. B., Karim, A., and Irvin-Smith, N. (2013b). 'Soil carbon distribution and loss monitoring in the

  6. Distribution of soil organic carbon in two small agricultural Mediterranean catchments.

    NASA Astrophysics Data System (ADS)

    Gomez, J. A.; Burguet, M.; Taguas, M. E.; Perez, R.; Ayuso, J. L.; Vanwallgehem, T.; Giraldez, J. V.; Vanderlinden, K.

    2012-04-01

    Soil organic carbon (SOC) is a key indicator of soil quality and a major factor for evaluating carbon sequestration schemes in forest and agricultural soils. However, at the farm or catchment scale SOC presents a large spatial variability which complicates the evaluation of soil quality (Gomez et al., 2009) and the certification of the potential for carbon sequestration. We hypothesize that the typical row crop configuration of olive orchards, with cover crops or bare soil in-between the rows, can explain a vast proportion of this variability. However, it is also expected that agricultural activities and topography-driven erosion processes at different scales (Van Oost et al., 2007) will contribute to SOC variability. Given the complexity of this problem and the important experimental effort required to resolve it, there are to our knowledge relatively few studies that have addressed this issue, especially in agricultural soils under Mediterranean conditions. This communications presents a preliminary evaluation of the top 1-m SOC content at two small, 8 and 6.7-ha, catchments in Southern Spain, covered by olive groves, that were intensively sampled in 2011. Spatial variability of SOC is analyzed across tree rows, areas in-between tree rows, and at different depths. The SOC distribution is evaluated against the topography of the catchment and the intensity of the water erosion processes analyzed by a simple model, such as SEDD, as used by Ferro and Porto (2000) and Taguas et al. (2011). The results of this communication will explore and discuss the differences between both catchments, and suggest guidelines for further exploring the sources of SOC variability, while providing guidelines to improve SOC estimation at the field scale for certification purposes.

  7. Ancient Soils in a Sunburnt Country: Nutrient and Carbon Distributions in an Australian Dryland River System

    NASA Astrophysics Data System (ADS)

    McIntyre, R. E.; Grierson, P. F.; Adams, M. A.

    2005-05-01

    Riparian systems are hotspots in dryland landscapes for nutrient supply and transformation. Biogeochemical fluxes in riparian systems are closely coupled to hydrological flowpaths, which, in dryland regions, are characterised by catastrophic flooding and long periods of erratic or no flow. Re-wetting of soils stimulates soil microbial processes that drive mineralization of nutrients necessary for plant growth. We present here the first data of a 3-year research project investigating biogeochemical processes in riparian systems in the semi-arid Pilbara region of Western Australia. Spatial patterns of nitrogen, phosphorus and carbon were closely related to topographic zone (across floodplain and channels) and vegetation type. NO3- and PCi concentrations were four-fold higher in channel, bank and riparian soils than in soils of floodplain and riparian-floodplain transition zones. Nitrogen distribution was highly heterogeneous in riparian soils (NO3- CV=102%, NH4+ CV=84%) while phosphorus was particularly heterogeneous in floodplain soils (PCi CV=153%, PCo CV=266%), in comparison to other zones. Phospholipid fatty acid (PLFA) and enzymatic profiles will be used to assess microbial functional groups, combined with mineralisation experiments and stable isotope studies (15N and 13C). These data will improve understanding of biogeochemical cycling in dryland riparian systems, and contribute to improved regional management of water resources.

  8. An exploratory spatial analysis of soil organic carbon distribution in Canadian eco-regions

    NASA Astrophysics Data System (ADS)

    Tan, S.-Y.; Li, J.

    2014-11-01

    As the largest carbon reservoir in ecosystems, soil accounts for more than twice as much carbon storage as that of vegetation biomass or the atmosphere. This paper examines spatial patterns of soil organic carbon (SOC) in Canadian forest areas at an eco-region scale of analysis. The goal is to explore the relationship of SOC levels with various climatological variables, including temperature and precipitation. The first Canadian forest soil database published in 1997 by the Canada Forest Service was analyzed along with other long-term eco-climatic data (1961 to 1991) including precipitation, air temperature, slope, aspect, elevation, and Normalized Difference Vegetation Index (NDVI) derived from remote sensing imagery. In addition, the existing eco-region framework established by Environment Canada was evaluated for mapping SOC distribution. Exploratory spatial data analysis techniques, including spatial autocorrelation analysis, were employed to examine how forest SOC is spatially distributed in Canada. Correlation analysis and spatial regression modelling were applied to determine the dominant ecological factors influencing SOC patterns at the eco-region level. At the national scale, a spatial error regression model was developed to account for spatial dependency and to estimate SOC patterns based on ecological and ecosystem factors. Based on the significant variables derived from the spatial error model, a predictive SOC map in Canadian forest areas was generated. Although overall SOC distribution is influenced by climatic and topographic variables, distribution patterns are shown to differ significantly between eco-regions. These findings help to validate the eco-region classification framework for SOC zonation mapping in Canada.

  9. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    USGS Publications Warehouse

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  10. Depth distribution of soil organic carbon as a signature of soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter is a key component of soil quality that sustains many key soil functions by providing the energy, substrates, and biological diversity to support biological activity, which affects aggregation (important for habitat space, oxygen supply, and preventing soil erosion), infiltration...

  11. [Distribution and transferring of carbon in kast soil system of peak forest depression in humid subtropical region].

    PubMed

    Pan, G; Sun, Y; Teng, Y; Tao, Y; Han, F

    2000-02-01

    Taking Guilin Yaji Karst Experiment Site as an exemple and with the methods of field monitoring and laboratory analysis, this paper studied the distribution and transferring of carbon in the karst soil system of peak forest depression in the humid subtropical region of China. The carbon pools in biomass, litters and soil organic matter(SOM) and their mobility as expressed by oxidizability and decomposition rate of SOM, the concentration of soil CO2 and the emission rate of CO2 from soil were investigated. The mobile carbon pool in the system supplied a rich source of CO2, which drived the karst process. When active karst process happened in Spring and Summer, over 60% of carbon in the output water was derived from soil CO2, as traced by delta 13 C distribution in the system. Therefore, owing to the carbon transfer in the pathway of air-plant-soil-water, karst process took place rather under soil-rock-water interface than under air-rock-water interface. Thus, the epigenetic karst process was driven and accelerated by soil as an interface of carbon environmental geochemistry. PMID:11766593

  12. How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area

    NASA Astrophysics Data System (ADS)

    Gouttevin, I.; Menegoz, M.; Dominé, F.; Krinner, G.; Koven, C.; Ciais, P.; Tarnocai, C.; Boike, J.

    2012-06-01

    We demonstrate the effect of an ecosystem differentiated insulation by snow on the soil thermal regime and on the terrestrial soil carbon distribution in the pan-Arctic area. This is done by means of a sensitivity study performed with the land surface model ORCHIDEE, which furthermore provides a first quantification of this effect. Based on field campaigns reporting higher thermal conductivities and densities for the tundra snowpack than for taiga snow, two distributions of near-equilibrium soil carbon stocks are computed, one relying on uniform snow thermal properties and the other using ecosystem-differentiated snow thermal properties. Those modeled distributions strongly depend on soil temperature through decomposition processes. Considering higher insulation by snow in taiga areas induces warmer soil temperatures by up to 12 K in winter at 50 cm depth. This warmer soil signal persists over summer with a temperature difference of up to 4 K at 50 cm depth, especially in areas exhibiting a thick, enduring snow cover. These thermal changes have implications on the modeled soil carbon stocks, which are reduced by 8% in the pan-Arctic continental area when the vegetation-induced variations of snow thermal properties are accounted for. This is the result of diverse and spatially heterogeneous ecosystem processes: where higher soil temperatures lift nitrogen limitation on plant productivity, tree plant functional types thrive whereas light limitation and enhanced water stress are the new constrains on lower vegetation, resulting in a reduced net productivity at the pan-Arctic scale. Concomitantly, higher soil temperatures yield increased respiration rates (+22% over the study area) and result in reduced permafrost extent and deeper active layers which expose greater volumes of soil to microbial decomposition. The three effects combine to produce lower soil carbon stocks in the pan-Arctic terrestrial area. Our study highlights the role of snow in combination with

  13. Distribution of organic carbon in physical fractions of soils as affected by agricultural management

    SciTech Connect

    Sindhu, Jagadamma; Lal, Dr. Rattan

    2010-08-01

    Soil organic carbon (SOC) is distributed heterogeneously among different-sized primary particles and aggregates. Further, the SOC associated with different physical fractions respond differently to managements. Therefore, this study was conducted with the objective to quantify the SOC associated with all the three structural levels of SOC (particulate organic matter, soil separates and aggregate-size fractions) as influenced by long-term change in management. The study also aims at reevaluating the concept that the SOC sink capacity of individual size-fractions is limited. Long-term tillage and crop rotation effects on distribution of SOC among fractions were compared with soil from adjacent undisturbed area under native vegetation for the mixed, mesic, Typic Fragiudalf of Wooster, OH. Forty five years of no-till (NT) management resulted in more SOC accumulation in soil surface (0 7.5 cm) than in chisel tillage and plow tillage (PT) treatments. However, PT at this site resulted in a redistribution of SOC from surface to deeper soil layers. The soils under continuous corn accumulated significantly more SOC than those under corn soybean rotation at 7.5 45 cm depth. Although soil texture was dominated by the silt-sized particles, most of the SOC pool was associated with the clay fraction. Compared to PT, the NT treatment resulted in (i) significantly higher proportion of large macroaggregates (>2,000 m) and (ii) 1.5 2.8 times higher SOC concentrations in all aggregate-size classes. A comparative evaluation using radar graphs indicated that among the physical fractions, the SOC associated with sand and silt fractions quickly changed with a land use conversion from native vegetation to agricultural crops. A key finding of this study is the assessment of SOC sink capacity of individual fractions, which revealed that the clay fraction of agricultural soils continues to accumulate more SOC, albeit at a slower rate, with progressive increase in total SOC concentration

  14. Erosional distribution of metal oxides and its implication for soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Berhe, A. A.; Newman, A.; Hunsaker, C. T.

    2015-12-01

    Iron (Fe) and Aluminum (Al) oxides are common minerals in the soil system that can constitute 0.5 to 50% of soil mass. Fe and Al oxides occur in both crystalline and poorly crystalline forms, typically as <150nm in diameter nano-particles that have high specific surface area, high degree of hydration, and are very reactive with a variable charge. Fe and Al oxides have a tendency to form strong organic matter (OM)-mineral bonds through anion and inner-sphere ligand exchange reactions that enable them to be critical for persistence of OM in the soil system. Currently, we lack basic measurements and understanding of rates of lateral distribution of metal oxides with soil erosion; factors regulating transport of reactive soil minerals; and its implications for SOM dynamics. In this study, we determined concentration in soils and the rate of sediment and carbon erosional export from catchments within the Kings River Experimental Watersheds of California (Sierra National Forest in the southern part of the Sierra Nevada). In addition, we determined soil concentrations and rate of erosion of three classes of Fe and Al oxides (total pedogenic Fe, poorly crystalline Fe and Al oxides, and Fe and Al complexed with organic matter). Our results show that considerable variability exists in the concentration and transport rates of Fe and Al oxides in the study watersheds, but slope is strongly associated with rate of oxide transport across the three years (2009-2011) that we studied. We also found that the crystalline and poorly crystalline species of Fe and Al were transported at higher rates than the metal oxides that were complexed with iron oxides.

  15. Regional scale characterization of the topographic control on soil organic carbon spatial distribution

    NASA Astrophysics Data System (ADS)

    Stevens, François; Bogaert, Patrick; van Wesemael, Bas

    2013-04-01

    The influence of geomorphology on the spatial distribution of soil organic carbon (SOC) has been studied for a large range of scales and conditions. The larger SOC stocks found in dry valleys and concave footslopes of the Belgian loam belt have been explained jointly by the transfer of sediments along the slope and the reduced decomposition rate of buried organic matter. While erosion effect on SOC has been simulated at the hillslope scale, it is generally not considered in SOC inventories and prediction models at regional scale. However, more precise large scales inventories are demanded by the carbon modelling community. The goal of this paper is to characterize the relative importance of geomorphology on the SOC horizontal and vertical variability across whole agricultural region. The large historic dataset of soil horizons Aardewerk together with 147 recently sampled profiles was exploited for cost efficiency reasons. Mean profiles for different soil properties classes were compared. Various topographic indices were computed from a digital elevation model, and their potential to predict SOC content at different depth was quantified using multiple regression and terrain morphologic classification. Both dataset were able to show differences in mean SOC profile among soil properties classes, but only the new profiles dataset shows a clear relationship between SOC content and topographic indices. The various errors in then historic data set (e.g., positioning errors) may explain these limitations. This study thus brings in evidence the major control of topography on SOC vertical distribution in a region where observed heterogeneities for other commonly involved factors are limited. However, the large amount of unexplained variability still limits the usefulness of SOC content spatial prediction and should be addressed by alternative spatial methods.

  16. Soil Organic Carbon and Nitrogen Content and Distribution in a Vertisol under Mixed Land-Use.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils can play a significant role in the amounts of Carbon (C) sequestered from the atmosphere which can mitigate increased atmospheric CO2. The amounts of C and nitrogen (N) stored in soil is the net result of inputs and outputs, which will vary due to inherent soil properties that impart protectio...

  17. [Determination of major, minor and trace elements in soils by polarized energy X-ray fluorescence spectrometry and the application to vertical distribution characteristics of soil organic carbon].

    PubMed

    Shen, Ya-Ting

    2012-11-01

    It is difficult to get accurate, precise and reliable analytical data when using X-ray fluorescence spectrometry (XRF) to determinate sulfur in geological sample. The possible ways to improve sulfur determination accuracy are discussed. Sulfur, and the major, minor and trace elements in soils were determined by polarization energy dispersion XRF (EDXRF) spectrometry and the element profiles and vertical distribution were obtained. Based on this, replacement of two short-term vegetation soil profiles was studied. Significant correlations among the vertical distribution of soil organic carbon content (TOC), organic carbon stable carbon isotopes (delta13C) and several elements were found. The study showed that the EDXRF method can be well applied to element soil geochemical cycle and carbon cycle researches. PMID:23387191

  18. Predicting the cropland soil organic carbon (SOC) distribution on a regional scale using airborne spectroscopy and topographic features

    NASA Astrophysics Data System (ADS)

    Doetterl, S.; Stevens, S.; Van Wesemael, B.; Quine, T. A.; Van Oost, K.

    2012-04-01

    The effects of soil redistribution on the carbon cycle have recently been receiving growing attention. In eroding agricultural landscapes, carbon gets transported from erosional to depositional landscape features forming a heterogeneous pattern in quantity and quality of the distributed carbon. At present, methods and research to characterize this horizontal (across the earth surface) and vertical (with depth) variability are focused on local slope scales. Approaches linking detailed local assessments to larger scales are limited. This significantly hampers our ability to understand the impact of soil redistribution processes on the global C cycle that occur at larger spatial and temporal scales. Here, we present a method to predict the SOC distribution on a regional scale for high-input cropping systems using a combination of airborne spectroscopy, GIS-based analysis of a digital elevation model (DEM) and calibration with empirical data. For a North/South transect in Luxembourg, spatial modeling is used to integrate soil surface SOC data from airborne image spectroscopy (2m resolution), vertical SOC gradients from high resolution (0.10m) soil sampling and derivates of a high-res elevation model (5m resolution). This allows the prediction of the 3D distribution of cropland soil C to be interpolated over an area of c. 150 km2 in Luxemburg which is characterized by intensive agricultural land use, a high variability in soils and a complex topography. The model is able to predict patterns of C stock distribution for cropland on a regional scale using simple hydrologic and geomorphologic parameters and provides new insights into the spatial heterogeneity of soil carbon storage covering a large area. Eroding positions have a sharper decline of carbon content with depth than stable and especially depositional sites, which in contrast store high amounts of carbon in greater depths. Relative root mean square errors range between 23-49 % and the model is in good agreement

  19. Structure Stability and Carbon Distribution in Silty Loam Soil Aggregates as Affected Tillage and Corn-Soybean Crop Rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different tillage intensities may influence soil physical and chemical properties, distribution of nutrients and organic carbon between and within the aggregates. We studied the effect of long term (25 years) conservation tillage on structure stability and the total C and N distribution in Miami sil...

  20. Global distribution of soil organic carbon - Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Hiederer, R.; Freibauer, A.

    2015-04-01

    The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".

  1. The distribution and fluvial redistribution of soil organic carbon in semiarid rangelands

    NASA Astrophysics Data System (ADS)

    Cunliffe, Andrew; Puttock, Alan; Anderson, Karen; Brazier, Richard

    2014-05-01

    Compared to other terrestrial biomes, the carbon dynamics of drylands have attracted relatively little attention, perhaps due to their characteristically low primary productivity, low soil organic carbon (OC) contents and slow OC turnover rates. However, covering approximately 40% of the land surface, drylands represent a significant component of the global terrestrial carbon sink. Our study examines the distribution and fluvial redistribution of particulate-associated OC over a dynamic grass to shrub ecotone in semiarid central New Mexico, USA. Surface soil (0-0.05 m) samples from beneath different vegetation covers across the ecotone were collected and physically fractionated by density (>1 g ml) and particle size (one phi intervals from <0.0625 to >4 mm, with no deliberate dispersion of aggregates). There were significant (P<0.05) differences in OC concentration between different particle-size fractions, with peaks in the silt-clay (<0.0625 mm) fraction, and, unexpectedly, in the three coarse-medium sand (2-1, 1-0.5, and 0.5-0.25 mm) fractions. As soil erosion by runoff is particle size-selective, this suggests estimating erosional carbon fluxes as a function of total sediment flux may be overly simplistic. Given that many soil erosion models already explicitly consider the transport of several particle size classes, we believe that the results presented here justify the particle-size variant parameterisation of OC concentration, which we are currently working to implement. Importantly, both of the coarsest (>4 and 4-2 mm) fractions had OC concentrations comparable to the <2 mm average, attributed to the aggradation of finer primary particles which suggests that, in dryland soils at least, the current practice of ignoring the >2 mm fraction may underestimate the magnitude of the soil OC sink. In addition to topsoil characterisation, we monitored natural erosion events from four 300 m2 runoff plots over four monsoon seasons, capturing all eroded sediment which

  2. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2012-08-01

    High latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage has been linked to pedon data (n = 1647) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in Geographic Information Systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analyses procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data-portal with all the described GIS-datasets is available online at: http://dev1.geo.su.se/bbcc/dev/ncscd/.

  3. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2013-01-01

    High-latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage have been linked to pedon data (n = 1778) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in geographic information systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analytical procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data portal with all the described GIS-datasets is available online at: http://www.bbcc.su.se/data/ncscd/.

  4. Driving Factors of Carbon Distribution in Soils as Determined by z*

    NASA Astrophysics Data System (ADS)

    Mnich, M.; Lawrence, C. R.; Harden, J. W.; Treat, C. C.; Schulz, M. S.

    2015-12-01

    Terrestrial soils store approximately three times the amount of carbon(C) stored in the atmosphere. Understanding the mechanisms resulting in soil organic carbon stabilization is necessary for predicting the fate of this carbon and potential feedbacks to climate change. Here, we explore how soil carbon depth gradients are influenced by factors such as age, parent material, mean annual temperature (MAT) and a modeled moisture/leaching index (LI). Specifically, we calculate a quantitative metric reflecting the depth gradient of organic carbon, z*, described by Rosenbloom et al. 2006, which describes the depth attenuation of C turnover by fitting the %C by depth relationship with an exponential decay function. We compare z* across several soil chronosequences (n=33) spanning a broad array of ecosystems and climates. The compiled chronosequence data were collected from previously published studies and ongoing USGS work. Each sequence consisted of at least two soils spanning a developmental age gradient and each soil included depth resolved carbon concentrations, with at least four different depths sampled in vertical profile. When the soil profile data were integrated across all depths, we found only weak relationships between total C in these profiles with various soil forming factors. Comparing depth resolved concentrations provided an opportunity to determine the significance of depth resolved gradients and particularly the importance of deep soil C. We found a significant positive relationship between z* and age, (R2=0.57, p=4.0*10-13), a significant negative relationship between z* and LI (R2=0.02, p=0.02), a significant relationship between (age x LI) and z* (R2=0.02, p=0.02, a positive relationship between z* and MAT (R2=0.1 p=0.01), and no relationship between z* and general parent material type (felsic, mafic, calcareous ; R2=0.04, p=0.01). These findings aid in determining the drivers of soil carbon storage across sites.

  5. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China.

    PubMed

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250-2000 μm), rather than within the microaggregates (53-250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  6. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China

    PubMed Central

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S.

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  7. Land-use affects the radiocarbon age, storage and depth distribution of soil organic carbon in Eastern Australia

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Wilson, Brian; Hua, Quan

    2015-04-01

    Land-use has been shown to affect soil organic carbon (SOC) storage, with natural systems generally storing larger quantities of SOC than anthropogenically managed systems in surface soils. However, these effects are often difficult to detect deeper in the soil profile. Little is known regarding the effects of land-use on the radiocarbon age of SOC, both at the surface and deeper in the soil profile. We investigated the storage, radiocarbon content and depth distribution of soil organic carbon from across the state of NSW, Australia. A total of 100 profiles were analysed for total SOC concentration at numerous depths (up to 1 m) and a machine learning approach implementing tree ensemble methods was used to identify the key drivers of SOC depth distribution. Surface SOC storage was strongly associated with climate (predominately precipitation, to a lesser degree relative humidity and temperature), whereas SOC depth distribution was predominately influenced by land-use, soil type and to a lesser extent temperature. A subset of 12 soil profiles from a range of climate zones were analysed for radiocarbon content with a view to contrasting three land-use systems: natural, cleared/grazed and cropped. Radiocarbon content was affected strongly by land-use, with effects most pronounced at depth. Native systems appeared to have the youngest carbon throughout the profile, with cropped and grazed systems having older SOC. Radiocarbon content was also strongly associated with SOC content. Our results indicate that natural systems act as a carbon pump into the soil, injecting young, fresh organic carbon which is vertically distributed throughout the profile. In contrast, managed systems are deprived of this input and are depleted in SOC at all depths, leading to higher radiocarbon ages throughout the profile.

  8. Soil carbon and plant diversity distribution at the farm level in the savannah region of Northern Togo (West Africa)

    NASA Astrophysics Data System (ADS)

    Sebastiã, M.-T.; Marks, E.; Poch, R. M.

    2008-10-01

    In western Africa, soil organic matter is a source of fertility for food provision and a tool for climate mitigation. In the Savannah region, strong soil degradation linked to an increase in population threatens organic matter conservation and agricultural yield. Soil degradation is also expected to impact biodiversity and, with it, increase the vulnerability of ecosystem goods and services, including the storage of soil organic carbon. Studies of land use, plant species composition and soil fertility were conducted for a conservation project at a demonstration farm in Northern Togo (West Africa), host to various management regimes. Results showed a low organic matter content of the surface soil horizons, often around 0.5%. The highest values were found in a sacred forest within the farm (2.2%). Among crops, rice had the highest soil organic matter, around 1%. In a survey of grasslands, pastures showed the highest organic matter content, with vegetation composition differing from grazed fallows and abandoned grasslands. Plant species richness showed a positive relationship with soil organic matter (R2adj=41.2%), but only by the end of the wet season, when species richness was also highest. Sampling date had a strong effect on vegetation composition. Results showed a strong influence of human activity on soil formation and distribution, and also on plant diversity. The soil characteristics found under the permanent forest suggest a high potential of the soils of the region for improvement of both agricultural yields and as a potential carbon sink relevant to global change policies.

  9. Study on the distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ashim

    2010-05-01

    STUDY ON THE DISTRIBUTION OF ORGANIC CARBON IN SOIL FRACTIONS AND ITS REACTION POTENTIAL OF BINDING THE PESTICIDES **SUMITRA ROY1, SANKHAJIT ROY1, *ASHIM CHOWDHURY2, SASWATI PRADHAN2 and PETER BURAUEL3 1Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalay, Mohanpur, West Bengal, India. 2Department of Agricultural Chemistry and Soil Science, University of Calcutta, West Bengal, India. 3Institute of Chemical Dynamics & Geosphere, FZ-Juelich, Germany. *Correspondence: ashimkly@hotmail.com **Research work carried out as DAAD Sandwich research fellow at FZ- Juelich, Germany Soil is the ultimate sink of all selectively applied pesticides. In addition to the basic physicochemical data of an active ingredient, the fate of the various compounds is largely determined by the type of application. Finally, pesticide and their metabolites, as well as structural elements, remain in the native carbon reserves of the soil or are sorbed & fixed to clay minerals and clay- humus complexes. Soil organic matter (SOM) and the soil microbial community are the crucial components which regulate soil processes and contribute towards the stability of the soil ecosystem. It is an energy source for biological mineralization processes, functions as a buffer and participates in chemical reaction. Knowledge is essential to understand the extent to which the SOM influences the mobilization and immobilization processes of foreign substance in soil and the substance transport and pollutant decomposition in soil. The freshly incorporated organic matter undergoes mineralization and the non mineralized carbon fraction is of special relevance with respect to soil stability in general and decisive for the fate and particular the persistence of xenobiotics in soil. The biological and physicochemical interactions establishing equilibrium between the organic matter bound, fixed or complexed to the soil matrix and that dissolve in the soil solution must be understood in detail to realize

  10. Study on the distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ashim

    2010-05-01

    STUDY ON THE DISTRIBUTION OF ORGANIC CARBON IN SOIL FRACTIONS AND ITS REACTION POTENTIAL OF BINDING THE PESTICIDES **SUMITRA ROY1, SANKHAJIT ROY1, *ASHIM CHOWDHURY2, SASWATI PRADHAN2 and PETER BURAUEL3 1Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalay, Mohanpur, West Bengal, India. 2Department of Agricultural Chemistry and Soil Science, University of Calcutta, West Bengal, India. 3Institute of Chemical Dynamics & Geosphere, FZ-Juelich, Germany. *Correspondence: ashimkly@hotmail.com **Research work carried out as DAAD Sandwich research fellow at FZ- Juelich, Germany Soil is the ultimate sink of all selectively applied pesticides. In addition to the basic physicochemical data of an active ingredient, the fate of the various compounds is largely determined by the type of application. Finally, pesticide and their metabolites, as well as structural elements, remain in the native carbon reserves of the soil or are sorbed & fixed to clay minerals and clay- humus complexes. Soil organic matter (SOM) and the soil microbial community are the crucial components which regulate soil processes and contribute towards the stability of the soil ecosystem. It is an energy source for biological mineralization processes, functions as a buffer and participates in chemical reaction. Knowledge is essential to understand the extent to which the SOM influences the mobilization and immobilization processes of foreign substance in soil and the substance transport and pollutant decomposition in soil. The freshly incorporated organic matter undergoes mineralization and the non mineralized carbon fraction is of special relevance with respect to soil stability in general and decisive for the fate and particular the persistence of xenobiotics in soil. The biological and physicochemical interactions establishing equilibrium between the organic matter bound, fixed or complexed to the soil matrix and that dissolve in the soil solution must be understood in detail to realize

  11. [Effects of land use type on the distribution of organic carbon in different sized soil particles effects of land use type on the distribution of organic carbon in different sized soil particles and its relationships to herb biomass in hilly red soil region of South China].

    PubMed

    Li, Zhong-Wu; Guo, Wang; Wang, Xiao-Yan; Shen, Wei-Ping; Zhang, Xue; Chen, Xiao-Lin; Zhang, Yue-Nan

    2012-04-01

    The changes in organic carbon content in different sized soil particles under different land use patterns partly reflect the variation of soil carbon, being of significance in revealing the process of soil organic carbon cycle. Based on the long-term monitoring of soil erosion, and by the methods of soil particle size fractionation, this paper studied the effects of different land use types (wasteland, pinewood land, and grassland) on the distribution of organic carbon content in different sized soil particles and its relationships to the herb biomass. Land use type and slope position had obvious effects on the organic carbon content in different sized soil particles, and the organic carbon content was in the order of grassland > pinewood land > wasteland. The proportion of the organic carbon in different sized soil particles was mainly depended on the land use type, and had little relationships with slope position. According to the analysis of the ratio of particle-associated organic carbon to mineral-associated organic carbon (POC/MOC), the soil organic carbon in grassland was easily to be mineralized, whereas that in wasteland and pinewood land was relatively stable. On the slopes mainly in hilly red soil region, the soil organic carbon in sand fraction had great effects on herb biomass. PMID:22803447

  12. Soil Carbon Distribution along a Hill Slope in the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Bunn, A. G.; Schade, J. D.

    2011-12-01

    Arctic ecosystems are warming at an accelerated rate relative to lower latitudes, and this warming has significant global significance. In particular, the thawing of permafrost soils has the potential to strongly influence global carbon cycling and the functioning of terrestrial and aquatic ecosystems. Our overarching scientific goal is to study the impact of thawing permafrost on the transport and processing of carbon and other nutrients as they move with water from terrestrial ecosystems to the Arctic Ocean. Transport of materials from soil to headwater aquatic ecosystems is the first step in this movement. Processes occurring along hill slopes strongly influence the form and concentration of material available for transport. These processes include downhill accumulation of materials due to groundwater movement, or alternatively, local effects of changes in soil and vegetation characteristics. In this project, we studied a hill slope adjacent to a small first order stream in the Kolyma River in Eastern Siberia. We sampled soil at several points along three transects from the top of the hill to the riparian zone by coring and homogenizing the entire active layer at each point. We measured soil organic matter content, soil moisture, water extractable dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NH4, NO3, soluble reactive phosphorus (SRP), and CDOM absorbance. We also measured soil respiration using a laboratory-based biological oxygen demand protocol conducted on soil-water slurries. Active layer depth decreased down the hillslope, while soil moisture, organic matter, and DOC all increased down the hillslope. CDOM absorbance increased downhill, which indicates a decrease in molecular weight of organic compounds at the bottom of the hill. This suggests either an input of newer carbon or processing of high molecular weight DOM down the slope. Soil respiration also increased downhill and was likely driven in part by increased OM in the shallower

  13. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  14. Modelling the distribution of soil organic carbon with depth, as a function of land use and soil type at the regional scale in north Belgium (Flanders).

    NASA Astrophysics Data System (ADS)

    Meersmans, J.; van Wesemael, B.; De Ridder, F.; van Molle, M.

    2009-04-01

    Recent research identified the Soil Organic Carbon (SOC) pool as an important element of the global C-cycle. Nevertheless, a great uncertainty still exists in the CO2 fluxes between soil and atmosphere. The rate of exchange of CO2 between soil and atmosphere depends to a large extent on the stability of the stored SOC. As carbon stored in the subsoil is more stable than carbon stored in the topsoil, not only the amount of SOC stored, but also its distribution within the profile is essential to improve sustainable management of this reservoir. Here we study the depth distribution of SOC is studied in relation to land use and soil type based on a large dataset containing almost 7000 profile pits sampled throughout Flanders (Belgium) during the Belgian national soil survey. Hence, a general depth distribution model was constructed and applied to all land use - soil type combinations in the database. For each parameter (e.g. SOC content at the surface) a specific pedo transfer function (PTF), expressing its relationship with land use, texture and drainage variables, was constructed. Combining the output of the different PTF's, allowed us to construct an overall model, predicting the distribution of SOC density by depth using land use and soil type information. Furthermore, this approach enables SOC mapping at the regional scale until a reference depth free of choice. The results indicate that the influence of land use on SOC content is restricted to the topsoil, while soil type determines the SOC content throughout the profile. Significantly lower SOC contents were found under cropland than under forest or grassland near the surface of the profile, while at the bottom of the profile no differences in SOC content could be observed between these land uses. Furthermore, the SOC content near the surface of the profile is remarkably higher in fine textured soils than in coarse textured soils and tends to increase with soil wetness under sand and silt textured soils. SOC

  15. Distribution of black carbon in Ponderosa pine litter and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2014-12-01

    Black carbon (BC), the heterogeneous product of burned biomass, is a critical component in the global carbon cycle, yet timescales and mechanisms for incorporation into the soil profile are not well understood. The High Park Fire, which took place in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire intenstiy and geomorphology on properties of carbon (C), nitrogen (N), and BC in the Cache La Poudre River drainage. We sampled montane Ponderosa pine litter, 0-5 cm soils, and 5-15 cm soils four months post-fire in order to examine the effects of slope and burn intensity on %C, C stocks, %N and black carbon (g kg-1 C, and g m-2). We developed and implemented the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes, but that there was no difference in black carbon content or stocks. BC content was greatest in the litter in burned sites (19 g kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g m-2). At the time of sampling, none of the BC deposited on the land surface post-fire had been incorporated into to either the 0-5 cm or 5-15 cm soil layers. The ratio of B5CA : B6CA (less condensed to more condensed BC) indicated there was significantly more older, more processed BC at depth. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely transported off the surface through erosion events. Future work examining mechanisms for BC transport will be required for understanding the role BC plays in the global carbon cycle.

  16. Effect of Crop cultivation after Mediterranean maquis on soil carbon stock, δ13C spatial distribution and root turnover

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Santoro, Antonino; La Mantia, Tommaso

    2013-04-01

    The aim of this work was investigate the effect of land use change on soil organic carbon (SOC) stock and distribution in a Mediterranean succession. A succession composed by natural vegetation, cactus pear crop and olive grove, was selected in Sicily. The land use change from mediterranena maquis (C3 plant) to cactus pear (C4 plant) lead to a SOC decrease of 65% after 28 years of cultivation, and a further decrease of 14% after 7 years since the land use from cactus pear to olive grove (C3 plant). Considering this exchange and decrease as well as the periods after the land use changes we calculated the mean residence time (MRT) of soil C of different age. The MRT of C under Mediterranean maquis was about 142 years, but was 10 years under cactus pear. Total SOC and δ13 C were measured along the soil profile (0-75cm) and in the intra-rows in order to evaluate the distribution of new and old carbon derived and the growth of roots. After measuring of weight of cactus pear root, an approach was developed to estimate the turnover of root biomass. Knowledge of root turnover and carbon input are important to evaluate the correlation between carbon input accumulation and SOC stock in order to study the ability of C sink of soils with different use and managements.

  17. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    NASA Astrophysics Data System (ADS)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  18. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Zell, Claudia; Moreira-Turcq, Patricia; Pérez, Marcela A. P.; Abril, Gwenaël; Mortillaro, Jean-Michel; Weijers, Johan W. H.; Meziane, Tarik; Sinninghe Damsté, Jaap S.

    2012-08-01

    In order to trace the transport of soil organic carbon (OC) in the lower Amazon basin, we investigated the distributions of crenarchaeol and branched glycerol dialkyl glycerol tetraethers (GDGTs) by analyzing riverbed sediments and river suspended particulate matter (SPM) collected in the Solimões-Amazon River mainstem and its tributaries. The Branched and Isoprenoid Tetraether (BIT) index, a proxy for river-transported soil OC into the ocean, was determined from the distributions of these GDGTs. The GDGT-derived parameters were compared with other bulk geochemical data (i.e. C:N ratio and stable carbon isotopic composition). The GDGT-derived and bulk geochemical data indicate that riverine SPM and riverbed sediments in the lower Amazon River and its tributaries are a mixture of C3 plant-derived soil OC and aquatic-derived OC. The branched GDGTs in the SPM and riverbed sediments did not predominantly originate from the high Andes soils (>2500 m in altitude) as was suggested previously. However, further constraint on the soil source area of branched GDGTs was hampered due to the deficiency of soil data from the lower montane forest areas in the Andes. Our study also revealed seasonal and interannual variation in GDGT composition as well as soil OC discharge, which was closely related to the hydrological cycle. By way of a simple binary mixing model using the flux-weighted BIT values at Óbidos, the last gauging station in the Amazon River, we estimated that 70-80% of the POC pool in the river was derived of soil OC. However, care should be taken to use the BIT index since it showed a non-conservative behaviour along the river continuum due to the aquatic production of crenarchaeol. Further investigation using a continuous sampling strategy following the full hydrological cycle is required to fully understand how soil-derived GDGT signals are transformed in large tropical river systems through their transport pathway to the ocean.

  19. Global distribution of soil organic carbon, based on the Harmonized World Soil Database - Part 1: Masses and frequency distribution of SOC stocks for the tropics, permafrost regions, wetlands, and the world

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Hiederer, R.; Freibauer, A.

    2014-09-01

    The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget. We review current estimates of soil organic carbon stocks (mass/area) and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg. Correcting the HWSD's bulk density of organic soils, especially Histosols, results in a mass of 1062 Pg. The uncertainty of bulk density of Histosols alone introduces a range of -56 to +180 Pg for the estimate of global SOC in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arc minutes, the areal masses of SOC and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. Incorporating more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Data Base (496 Pg SOC) and tropical peatland carbon, global soils contain 1324 Pg SOC in the upper 1 m including 421 Pg in tropical soils, whereof 40 Pg occur in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".

  20. Spatial Distribution of Soil Organic Carbon and Its Influencing Factors in Desert Grasslands of the Hexi Corridor, Northwest China

    PubMed Central

    Wang, Min; Su, Yongzhong; Yang, Xiao

    2014-01-01

    Knowledge of the distribution patterns of soil organic carbon (SOC) and factors that influence these patterns is crucial for understanding the carbon cycle. The objectives of this study were to determine the spatial distribution pattern of soil organic carbon density (SOCD) and the controlling factors in arid desert grasslands of northwest China. The above- and belowground biomass and SOCD in 260 soil profiles from 52 sites over 2.7×104 km2 were investigated. Combined with a satellite-based dataset of an enhanced vegetation index during 2011–2012 and climatic factors at different sites, the relationships between SOCD and biotic and abiotic factors were identified. The results indicated that the mean SOCD was 1.20 (SD:+/− 0.85), 1.73 (SD:+/− 1.20), and 2.69 (SD:+/− 1.91) kg m−2 at soil depths of 0–30 cm, 0–50 cm, and 0–100 cm, respectively, which was smaller than other estimates in temperate grassland, steppe, and desert-grassland ecosystems. The spatial distribution of SOCD gradually decreased from the southeast to the northwest, corresponding to the precipitation gradient. SOCD increased significantly with vegetation biomass, annual precipitation, soil moisture, clay and silt content, and decreased with mean annual temperature and sand content. The correlation between BGB and SOCD was closer than the correlation between AGB and SOCD. Variables could together explain about 69.8%, 74.4%, and 78.9% of total variation in SOCD at 0–30 cm, 0–50 cm, and 0–100 cm, respectively. In addition, we found that mean annual temperature is more important than other abiotic factors in determining SOCD in arid desert grasslands in our study area. The information obtained in this study provides a basis for accurately estimating SOC stocks and assessing carbon (C) sequestration potential in the desert grasslands of northwest China. PMID:24732375

  1. Thermally Altered Biomass (Black Carbon) in Soils: Formation, Analysis, Distribution, and Implications

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.

    2002-12-01

    Black Carbon (BC), formed during biomass burning, is a chemically heterogeneous, biologically refractory class of carbon compounds (1, 5). BC is purely terrestrial in origin and occurs ubiquitously in soils and terrestrial sediments and is coupled to a common marine fate via atmospheric and fluvial transport, potentially representing a significant reservoir of extremely slowly cycling carbon (1). However, because of its physicochemical heterogeneity and a lack of established analytical techniques, the geochemistry and quantitative importance of BC in the global carbon cycle remains largely undescribed. Existing methods rely on operational definitions with clear-cut but different boundaries inherently designed to analytically determine different parts of the BC continuum (1, 2, 3). In a set of German chernozemic soils, BC from biomass burning makes up 15 to 45 percent of the soil organic carbon (SOC), as determined via UV-high energy photooxidation combined with 13C NMR (4, 6). High resolution microscopy and spectroscopy unambiguously confirmed the presence of submicron BC particles with short-range variability in elemental composition, and two sometimes coexisting modifications, i. e. amorphous char-BC from pyrolized cellulose and graphitic soot-BC. BC, up to 3990 years older than bulk SOC, is 1160 to 5040 carbon-14 years old, indicating significant residence times of BC in soils. These results suggest three major implications: First, it seems that besides climate, vegetation and ioturbation, fire also plays an important role in the pedogenesis of Chernozems (4, 5). Second, BC can be a useful tracer for prehistoric human slash-and-burn activities, and thus represent a novel type of archaeological evidence (7). Third, the concept that BC from biomass burning is the source of the chemically stable aromatic components of soil organic matter, and point toward a different understanding of the large quantitative importance and longevity of BC in the terrestrial system (3

  2. On-farm assessment of tillage impact on the vertical distribution of soil organic carbon and structural soil properties in a semiarid region in Tunisia.

    PubMed

    Jemai, Imene; Ben Aissa, Nadhira; Ben Guirat, Saida; Ben-Hammouda, Moncef; Gallali, Tahar

    2012-12-30

    In semiarid areas, low and erratic rainfall, together with the intensive agricultural use of soils, has depleted soil organic carbon and degraded the soil's chemical, biological and physical fertility. To develop efficient soil-management practices for the rapid restoration of severely degraded soils, no-till, mulch-based cropping systems have been adopted. Thus, a study was conducted on a farm to evaluate the effect of a no-tillage system (NT) versus conventional tillage (CT) on the vertical (0-50 cm) distribution of soil organic carbon (SOC), bulk density (BD), total porosity (TP), structural instability (SI), stable aggregates and infiltration coefficient (Ks) in a clay loam soil under rain-fed conditions in a semiarid region of north-western Tunisia. CT consisting of moldboard plowing to a depth of 20 cm was used for continuous wheat production. NT by direct drilling under residue was used for 3 (NT3) and 7 (NT7) years in wheat/fava bean and wheat/sulla crop rotations, respectively. SOC was more significantly increased (p < 0.05) by NT3 and NT7 than by CT at respective depths of 0-10 and 0-20 cm, but a greater increase in the uppermost 10 cm of soil was observed in the NT7 field. NT3 management decreased BD and consequently increased TP at a depth of 0-10 cm. The same trend was observed for the NT7 treatment at a depth of 0-30 cm. Ks was not affected by the NT3 treatment but was improved at a depth of 0-30 cm by the NT7 treatment. Changes in BD, TP and Ks in the NT7 plot were significant only in the first 10 cm of the soil. Both NT3 and NT7 considerably reduced SI (p < 0.1) and enhanced stable aggregates (p < 0.05) across the soil profile. These differences were most pronounced under NT7 at a depth of 0-10 cm. The stratification ratio (SR) of the selected soil properties, except that of SI, showed significant differences between the CT and NT trials, indicating an improvement in soil quality. NT management in the farming systems of north-western Tunisia was

  3. Carbon and 14C distribution in tropical and subtropical agricultural soils

    NASA Astrophysics Data System (ADS)

    Prastowo, Erwin; Grootes, Pieter; Nadeau, Marie

    2016-04-01

    Paddy soil management affects, through the alternating anoxic and oxic conditions it creates, the transport and stabilisation of soil organic matter (SOM). Irrigation water may percolate more organic materials - dissolved (DOM) and colloidal - into the subsoil during anoxic conditions. Yet a developed ploughpan tends to prevent C from going deeper in the subsoil and partly decouple C distribution in top and sub soil. We investigate the influence of different soil type and environment. We observed the C and 14C distribution in paddy and non-paddy soil profiles in three different soil types from four different climatic regions of tropical Indonesia, and subtropical China. Locations were Sukabumi (Andosol, ca. 850 m a.s.l), Bogor (clayey Alisol, ca. 240 m a.s.l), and Ngawi (Vertisol, ca. 70 m a.s.l) in Jawa, Indonesia, and Cixi (Alisol(sandy), ca. 4 - 6 m a.s.l) in Zhejiang Province, China. We compared rice paddies with selected neighbouring non-paddy fields and employed AMS 14C as a tool to study C dynamics from bulk, alkali soluble-humic, and insoluble humin samples, and macrofossils (plant remains, charcoal). Our data suggest that vegetation type determines the quantity and quality of biomass introduced as litter and root material in top and subsoil, and thus contributes to the soil C content and profile, which fits the 14C signal distribution, as well as 13C in Ngawi with C4 sugar cane as upland crop. 14C concentrations for the mobile humic acid fraction were generally higher than for bulk samples from the same depth, except when recent plant and root debris led to high 14C levels in near-surface samples. The difference in sampling, - averaged layer for bulk sample and 1-cm layer thickness for point sample - shows gradients in C and 14C across the layers, which could be a reason for discrepancies between the two. High 14C concentrations - in Andosol Sukabumi up to 111 pMC - exceed the atmospheric 14CO2concentration in the sampling year in 2012 (˜ 103 pMC) and

  4. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.

    PubMed

    Clemente, Rafael; Bernal, M Pilar

    2006-08-01

    The effects of humic acids (HAs) extracted from two different organic materials on the distribution of heavy metals and on organic-C mineralisation in two contaminated soils were studied in incubation experiments. Humic acids isolated from a mature compost (HAC) and a commercial Spaghnum peat (HAP) were added to an acid soil (pH 3.4; 966 mg kg(-1) Zn and 9,229 mg kg(-1) Pb as main contaminants) and to a calcareous soil (pH 7.7; 2,602 mg kg(-1) Zn and 1,572 mg kg(-1) Pb as main contaminants) at a rate of 1.1g organic-C added per 100g soil. The mineralisation of organic-C was determined by the CO(2) released during the experiment. After 2, 8 and 28 weeks of incubation the heavy metals of the soils were fractionated by a sequential extraction procedure. After 28 weeks of incubation, the mineralisation of the organic-C added was rather low in the soils studied (<8% of TOC in the acid soil; <10% of TOC in the calcareous soil). Both humic acids caused significant Zn and Pb immobilisation (increased proportion of the residual fraction, extractable only with aqua regia) in the acid soil, while Cu and Fe were slightly mobilised (increased concentrations extractable with 0.1M CaCl(2) and/or 0.5M NaOH). In the calcareous soil there were lesser effects, and at the end of the experiment only the fraction mainly related to carbonates (EDTA-extractable) was significantly increased for Zn and decreased for Fe in the humic acids treated samples. However, HA-metal interactions provoked the flocculation of these substances, as suggested by the association of the humic acids with the sand fraction of the soil. These results indicate that humic acid-rich materials can be useful amendments for soil remediation involving stabilisation, although a concomitant slight mobilisation of Zn, Pb and Cu can be provoked in acid soils. PMID:16481023

  5. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice

    USGS Publications Warehouse

    Tan, Zhengxi; Lal, R.; Owens, L.; Izaurralde, R. C.

    2007-01-01

    Mass distributions of different soil organic carbon (SOC) fractions are influenced by land use and management. Concentrations of C and N in light- and heavy fractions of bulk soils and aggregates in 0–20 cm were determined to evaluate the role of aggregation in SOC sequestration under conventional tillage (CT), no-till (NT), and forest treatments. Light- and heavy fractions of SOC were separated using 1.85 g mL−1 sodium polytungstate solution. Soils under forest and NT preserved, respectively, 167% and 94% more light fraction than those under CT. The mass of light fraction decreased with an increase in soil depth, but significantly increased with an increase in aggregate size. C concentrations of light fraction in all aggregate classes were significantly higher under NT and forest than under CT. C concentrations in heavy fraction averaged 20, 10, and 8 g kg−1 under forest, NT, and CT, respectively. Of the total SOC pool, heavy fraction C accounted for 76% in CT soils and 63% in forest and NT soils. These data suggest that there is a greater protection of SOC by aggregates in the light fraction of minimally disturbed soils than that of disturbed soil, and the SOC loss following conversion from forest to agriculture is attributed to reduction in C concentrations in both heavy and light fractions. In contrast, the SOC gain upon conversion from CT to NT is primarily attributed to an increase in C concentration in the light fraction.

  6. Tillage and liming effects on aggregate distribution and associated carbon and nitrogen in acid soils of SW Spain

    NASA Astrophysics Data System (ADS)

    Gómez-Paccard, Clara; Zabaleta, Javier; Benito, Marta; León, Paloma; Mariscal-Sancho, Ignacio; Espejo, Rafael; Hontoria, Chiquinquirá

    2013-04-01

    Beneficial effects of conservation tillage are well known on a wide variety of environmental aspects. The lack of ploughing in no till systems conserves soil structure, enhances the accumulation of organic carbon in the surface layer and promotes the development of soil microorganisms. On the other hand, liming is a common practice in acid soils. Lime raises the pH, reduces Al toxicity enhancing root development, but controversial results have been found about the effects of liming on soil structure. Ultisols from SW of Spain present severe chemical constraints as poor nutrient availability and high Al contents in the exchange complex. On the other hand, traditional practices as conventional tillage led to a dramatic decrease on soil organic carbon and a degraded soil structure. No till plus liming might be recommendable to achieve a sustainable and productive agriculture in these particular soils, but little is known about the effect of these practices on soil structure when applied together. The aim of this study was to evaluate the effect of traditional tillage (TT) versus no tillage (NT), and liming versus no liming on aggregate size distribution and associated carbon and nitrogen. The study was conducted on a Plinthic Palexerult (Soil Survey Staff, 1999) in the Cañamero's Raña (SW Spain) under Mediterranean climate (mean annual temperature: 15.0° C; mean annual precipitation: 869 mm). The experimental design was a split-plot with four replications. The main factor was tillage (no till versus traditional till) while the second was the inclusion or not of Ca-amendment (sugar foam plus red gypsum). Samples were collected in 2011 after six years of treatment at a 0-5, 5-10 and 10-25 cm depths. The aggregate distribution was determined by wet sieving method to separate four aggregate size classes: (i) >2000 µm (large macroaggregates), (ii) 250-2000 µm (small macroaggregates), (iii) 53-250 µm (microaggregates), (iv) <53 µm (silt and clay fraction). Soil

  7. Different organic carbon status in soil and its influence on the distribution of 14C-labelled xenobiotics in soil fractions

    NASA Astrophysics Data System (ADS)

    Schnitzler, Frauke; Séquaris, Jean-Marie; Berns, Anne E.; Burauel, Peter

    2010-05-01

    Aggregate size fractionation in combination with chemical extraction was used to assess pesticide interactions with soil organic matter under different soil management practices [1]. In this study, surface area measurements (BET-N2) were established as a method to calculate the distribution of organic carbon (OC) and xenobiotics in clay and combined silt+sand fractions. It was shown that concentrations of OC associated with clay can be determined from linear relationships between OC and mineral specific surface area [2]. Two sets of experiments were conducted with undisturbed soil columns under field-like conditions. In the first set, maize straw was incorporated into the topsoil and after three months incubation the 14C-labelled xenobiotics benazolin or benzo[a]pyrene were applied. The second set was treated equally, but without maize addition. The calculated distribution coefficients Kd indicated a stronger sorption of benzo[a]pyrene than benazolin derivates. Furthermore, the binding capacity for the xenobiotics was higher in the clay than in the silt+sand fraction due to the relative high specific surface area in the clay fraction. Incorporation of maize straw led to a significant retention and decrease of mobility of the acidic benazolin. The hydrophobic benzo[a]pyrene was less affected by the addition of organic amendment and remained in the topsoil. [1] Schnitzler, F., Lavorenti, A., Berns, A.E., Drewes, N., Vereecken, H., Burauel, P., 2007. The influence of maize residues on the mobility and binding of benazolin: Investigating physically extracted soil fractions. Environmental Pollution 147, 4-13. [2] Séquaris, J.-M., Guisado, M., Moreno, C., Burauel, P., Narres, H.-D., Vereecken, H., 2010. Organic carbon fractions in an agricultural topsoil assessed by the determination of the soil mineral surface area. Journal of Plant Nutrition and Soil Science, in press

  8. Estimating spatial distribution of soil organic carbon for the Midwestern United States using historical database.

    PubMed

    Kumar, Sandeep

    2015-05-01

    Soil organic carbon (SOC) is the most important parameter influencing soil health, global climate change, crop productivity, and various ecosystem services. Therefore, estimating SOC at larger scales is important. The present study was conducted to estimate the SOC pool at regional scale using the historical database gathered by the National Soil Survey Staff. Specific objectives of the study were to upscale the SOC density (kg C m(-2)) and total SOC pool (PgC) across the Midwestern United States using the geographically weighted regression kriging (GWRK), and compare the results with those obtained from the geographically weighted regression (GWR) using the data for 3485 georeferenced profiles. Results from this study support the conclusion that the GWRK produced satisfactory predictions with lower root mean square error (5.60 kg m(-2)), mean estimation error (0.01 kg m(-2)) and mean absolute estimation error (4.30 kg m(-2)), and higher R(2) (0.58) and goodness-of-prediction statistic (G=0.59) values. The superiority of this approach is evident through a substantial increase in R(2) (0.45) compared to that for the global regression (R(2)=0.28). Croplands of the region store 16.8 Pg SOC followed by shrubs (5.85 Pg) and forests (4.45 Pg). Total SOC pool for the Midwestern region ranges from 31.5 to 31.6 Pg. This study illustrates that the GWRK approach explicitly addresses the spatial dependency and spatial non-stationarity issues for interpolating SOC density across the regional scale. PMID:25655697

  9. Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems

    PubMed Central

    Hoyle, Frances C.; O’Leary, Rebecca A.; Murphy, Daniel V.

    2016-01-01

    Few studies describe the primary drivers influencing soil organic carbon (SOC) stocks and the distribution of carbon (C) fractions in agricultural systems from semi-arid regions; yet these soils comprise one fifth of the global land area. Here we identified the primary drivers for changes in total SOC and associated particulate (POC), humus (HOC) and resistant (ROC) organic C fractions for 1347 sample points in the semi-arid agricultural region of Western Australia. Total SOC stock (0–0.3 m) varied from 4 to 209 t C ha−1 with 79% of variation explained by measured variables. The proportion of C in POC, HOC and ROC fractions averaged 28%, 45% and 27% respectively. Climate (43%) and land management practices (32%) had the largest relative influence on variation in total SOC. Carbon accumulation was constrained where average daily temperature was above 17.2 °C and annual rainfall below 450 mm, representing approximately 42% of the 197,300 km2 agricultural region. As such large proportions of this region are not suited to C sequestration strategies. For the remainder of the region a strong influence of management practices on SOC indicate opportunities for C sequestration strategies associated with incorporation of longer pasture phases and adequate fertilisation. PMID:27530805

  10. Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems.

    PubMed

    Hoyle, Frances C; O'Leary, Rebecca A; Murphy, Daniel V

    2016-01-01

    Few studies describe the primary drivers influencing soil organic carbon (SOC) stocks and the distribution of carbon (C) fractions in agricultural systems from semi-arid regions; yet these soils comprise one fifth of the global land area. Here we identified the primary drivers for changes in total SOC and associated particulate (POC), humus (HOC) and resistant (ROC) organic C fractions for 1347 sample points in the semi-arid agricultural region of Western Australia. Total SOC stock (0-0.3 m) varied from 4 to 209 t C ha(-1) with 79% of variation explained by measured variables. The proportion of C in POC, HOC and ROC fractions averaged 28%, 45% and 27% respectively. Climate (43%) and land management practices (32%) had the largest relative influence on variation in total SOC. Carbon accumulation was constrained where average daily temperature was above 17.2 °C and annual rainfall below 450 mm, representing approximately 42% of the 197,300 km(2) agricultural region. As such large proportions of this region are not suited to C sequestration strategies. For the remainder of the region a strong influence of management practices on SOC indicate opportunities for C sequestration strategies associated with incorporation of longer pasture phases and adequate fertilisation. PMID:27530805

  11. Ecological controls over global soil carbon storage

    SciTech Connect

    Schimel, D.S.

    1995-09-01

    Globally, soil carbon comprises about 2/3 of terrestrial carbon storage. Soil carbon is thus an important reservoir of carbon, but also influences the responses of ecosystems to change by controlling many aspects of nutrient cycling. While broad-scale patterns of soil carbon accumulation can be explained in terms of climatic and biome distributions, many ecological processes also influence the storage and turnover of carbon in soils. I will present a synthesis of information from field studies, model experiments and global data bases on factors controlling the turnover and storage of soil carbon. First, I will review a series of studies showing links between vegetation change (successional and invasions) and soil carbon. Then I will review model analyses of the sensitivity of soil carbon to climatic and ecological changes. Results show that soil carbon storage is broadly sensitive to climate but greatly influenced by the allocation of detritus between resistant (lignaceous and woody) and more labile forms, and that biotic changes that affect allocation, affect soil carbon substantially at regionally and perhaps global scales.

  12. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    PubMed

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (<0. 053 mm) were obtained by wet sieving method to measure the content of organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the

  13. STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES

    SciTech Connect

    Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

    2005-04-01

    Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

  14. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  15. Distribution Characteristic of Soil Organic Carbon Fraction in Different Types of Wetland in Hongze Lake of China

    PubMed Central

    Lu, Yan; Xu, Hongwen

    2014-01-01

    Soil organic carbon fractions included microbial biomass carbon (MBC), dissolved organic carbon (DOC), and labile organic carbon (LOC), which was investigated over a 0–20 cm depth profile in three types of wetland in Hongze Lake of China. Their ecoenvironmental effect and the relationships with soil organic carbon (SOC) were analyzed in present experiment. The results showed that both active and SOC contents were in order reduced by estuarine wetland, flood plain, and out-of-lake wetland. Pearson correlative analysis indicated that MBC and DOC were positively related to SOC. The lowest ratios of MBC and DOC to SOC in the estuarine wetland suggested that the turnover rate of microbial active carbon pool was fairly low in this kind of wetland. Our results showed that estuarine wetland had a strong carbon sink function, which played important role in reducing greenhouse gas emissions; besides, changes of water condition might affect the accumulation and decomposition of organic carbon in the wetland soils. PMID:24971377

  16. Deep Soil: Quantifying and Modeling Subsurface Carbon

    NASA Astrophysics Data System (ADS)

    James, J. N.; Devine, W.; Harrison, R. B.

    2014-12-01

    Some soil carbon datasets that are spatially rich, such as the USDA Forest Service Inventory and Analysis National Program dataset, sample soil to only 20 cm (8 inches), despite evidence that substantial stores of soil C can be found deeper in the soil profile. The maximum extent of tree rooting is typically many meters deep and provides: direct exchange with the soil solution; redistribution of water from deep horizons toward the surface during times of drought; resources for active microbial communities in deep soil around root channels; and direct carbon inputs through exudates and root turnover. This study examined soil carbon to a depth of 2.5 meters across 22 soils in Pacific Northwest Douglas-fir forests. Excavations at 20 additional sites took place in summer 2014, greatly expanding the spatial coverage and extent of the data set. Forest floor and mineral soil bulk density samples were collected at depths of 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 meters. Pool estimates from systematic sampling depths shallower than 1.5 m yielded significantly smaller estimates than the total soil stock to 2.5 meters (P<0.01). On average, only 5% of soil C was found in the litter layer, 35% was found below 0.5 meter, and 21% was found below 1.0 meter. Due to the difficulty of excavating and measuring deep soil carbon, a series of nonlinear mixed effect models were fit to the data to predict deep soil carbon stocks given sampling to 1.0 meter. A model using an inverse polynomial function predicted soil carbon to 2.5 meters with -5.6% mean error. The largest errors occurred in Andisols with non-crystalline minerals, which can adsorb large quantities of carbon on mineral surfaces and preserve it from decomposition. An accurate spatial dataset of soil depth to bedrock would be extremely useful to constrain models of the vertical distribution of soil carbon. Efforts to represent carbon in spatial models would benefit from considering the vertical distribution of carbon in soil. Sampling

  17. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles

    NASA Astrophysics Data System (ADS)

    Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris

    2005-03-01

    Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.

  18. Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Palmer, J.A.; Bettis, E. Arthur, III; Jacobson, P.; Schultz, R.C.; Isenhart, T.M.

    2009-01-01

    Subsurface lithology plays an important role in many riparian zone processes, but few studies have examined how sediment nutrient concentrations vary with depth. In this study, we evaluated concentrations of nutrients (N, C and P) with depth in a riparian zone of the glaciated Midwest. A total of 146 sediment samples were collected from 24 cores that extended to a maximum depth of 3.6??m at eight sites in the riparian zone of Walnut Creek. Subsurface deposits were predominantly silt loam, becoming coarser and more variable with depth. Nitrogen and carbon content ranged from < 0.01 to 0.42% and < 0.01 to 7.08%, respectively, and exhibited a strong trend of decreasing nutrient content with depth. In contrast, P concentrations averaged 574??mg/kg and did not vary systematically. Systematic variations in texture and nutrient content with depth largely corresponded to stratigraphic differentiation among the Camp Creek, Roberts Creek and Gunder members of the regionally recognized Holocene-age DeForest Formation. Variations in subsurface nutrient content were not found to be significantly related to present land cover, but land cover may have influenced nutrient content at the time of original sediment accumulation. Subsurface lithology and stratigraphy should be considered an important component in riparian zone studies where nutrient losses to streams via streambank erosion or groundwater discharge are assessed. ?? 2009 Elsevier B.V. All rights reserved.

  19. [Storages and distributed patterns of soil organic carbon and total nitrogen during the succession of artificial sand-binding vegetation in arid desert ecosystem].

    PubMed

    Jia, Xiao-Hong; Li, Xin-Rong; Zhou, Yu-Yan; Li, Yuan-Shou

    2012-03-01

    Soil carbon pool acts as the largest one of carbon pools in the terrestrial ecosystem. The storages and distributed patterns of soil organic carbon (SOC) and total nitrogen (TN) evaluated accurately are helpful to predict the feedback between the terrestrial ecosystem and climate changes. Based on the data about bulk density, content of SOC and TN at 0-100 cm soil profile, the density of SOC and TN at the temporal (chronosequence of artificial vegetation) and spatial (vertical) distributed patterns have been estimated. The results indicated that storages of SOC and TN at 0-100 cm depth increased with the chronosequence of artificial vegetation. The storages of SOC and TN showed the same tendency with the succession time of artificial vegetation. Storages of SOC and TN significantly increased at the early stage of banding sand by artificially vegetation (< 16 a), then piled up at the mid-stage (16-25 a), and markedly increased at the late stage (> 25 a). The variation of storages mainly occurred in the 0-20 cm depth. The storages decreased with the soil vertical depth. At the early stage of banding sand, increase in storage included every depth (0-100 cm). Whereas, at the later stage, increase in storage at 0-20 cm depth was main, and increase in the 20-100 cm was inconspicuous. The accumulation of storage at the shallow soil depth was more notability with the succession of artificial vegetation. The distributed pattern of storage in SOC and TN has been confirmed in arid desert regions below 200 mm annual precipitation. This was beneficial to understand the carbon cycle and to predict the feedback relationship between desert ecosystem and climate changes. PMID:22624391

  20. Amount, determining factors and spatial distribution of soil organic carbon storage in the Dano catchment (Southwest Burkina-Faso)

    NASA Astrophysics Data System (ADS)

    Hounkpatin, O.; Op de Hipt, F.; Bossa, A. Y.; Welp, G.; Amelung, W.

    2015-12-01

    The ability to project and to mitigate the impacts of climate change is closely related to the evaluation of soil organic carbon (SOC) content and stock across different types of land use and soil groups. Therefore, this study aimed at estimating the surface and subsoil organic carbon stocks in different land use systems and across various soil groups. A further aim was to assess the spatial variability of SOC content and stocks and how this is controlled by climate and site properties. The Random Forest (RF) modelling was used and compared to Ordinary Kriging interpolation (OK) for the topsoil SOC and stock. About 70 soil profiles were described along 16 transects with 197 samples collected from different horizons up to 1 m depth where possible. In addition, 1205 samples were collected within an intensive auger grid mapping. Mid-infrared spectroscopy and partial least-squares analysis were used as a fast and low-cost technique to handle the large amount of samples for the SOC estimation. The natural/semi natural vegetation recorded the highest SOC stock in the topsoil (28.6 t C ha-1) as compared to the cropland (25.5 t C ha-1). Over 1 m depth, Gleysols (87.4 t C ha-1) stored the highest amount of SOC stock followed by the Cambisols (76. t C ha-1) and the Plinthosols (73.1 t C ha-1) while the lowest were found in the Lixisols (57.8 t C ha-1). For the topsoil, the RF model revealed soil properties such as cation exchange capacity (CEC) and stone content as main factors affecting SOC content variability while CEC and bulk density were the major drivers for the subsoil. The carbon stock variability was mainly affected by the CEC and the reference soil group in the topsoil while horizon thickness and bulk density constituted the main factors for the subsoil. The geostatistical evaluation proved that the SOC content in the Dano catchment has a moderate spatial autocorrelation while the carbon stock was strongly spatially dependent. The RF gave a better prediction for

  1. Vertical distribution of soil organic carbon originated from a prior peatland in Greece and impacts on the landscape, after conversion to arable land

    NASA Astrophysics Data System (ADS)

    Kayrotis, Theodore; Charoulis, A.; Vavoulidou, E.; Tziouvalekas, M.

    2010-05-01

    The vertical distribution and the status of soil organic carbon (Corg.) in 66 surface and subsurface soil samples were investigated. These soils originated mainly from organic deposits of Philippoi (northern Greece) have been classified as Histosols and belong to the suborder of Saprists. The present study consisted of an area of 10,371 ha where about 90% of the soils are organic. The main crops are maize (Zea mays L.), sugar beets (Beta vulgaris L.), tobacco (Nicotiana tabacum L.), cotton (Gossypium hirsutum L.), tomatoes (Lycopersicon esculentum Mill.), and wheat (Triticum aestivum L.).The surface horizons consist mainly of well-humified organic materials mixed with mineral soil particles. Usually, they have moderate or insufficient drainage regime and conditions become favorable for microbial growth. Microbes decompose and transform the soil organic compounds into mineral forms, which are then available as nutrients for the crop. The organic matter was derived primarily from Cyperaceae (Cladium mariscus, various Carex species, etc.) and from decomposed residues of arable crops. The dominant features of these soils are the high content of organic matter and the obvious stratification of soil horizons. In contrast, most arable soils in Greece are characterized by low organic matter content. The stratification differentiates the physical and chemical properties and the groundwater table even during dry summers lies at depths,150 cm beneath surface. The Corg. content was high and varied greatly among the examined samples. In the surface layers ranged between 3.57 and 336.50 g kg2 (mean 199.26 g kg2) and between 22.10 and 401.10 g kg2 in the subsurface horizons (mean 258.89 g kg2). It can be argued that surface layers are drier and part of soil organic matter was seriously affected by the process of oxidation. At drier sites, soil subsidence was appeared as a consequence of soil organic matter oxidation. Increased contents were found in the northern part of the

  2. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs. PMID:26978705

  3. Global distribution of soil organic carbon - Part 2: Certainty of changes related to land use and climate

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Don, A.; van der Molen, M. K.; Freibauer, A.

    2015-04-01

    Global biosphere models vary greatly in their projections of future changes of global soil organic carbon (SOC) stocks and aggregated global SOC masses in response to climate change. We estimated the certainty (likelihood) and quantity of increases and decreases on a half-degree grid. We assessed the effect of changes in controlling factors, including net primary productivity (NPP), litter quality, soil acidity, water saturation, depth of permafrost, land use, temperature, and aridity associated with probabilities (Bayesian network) on an embedded, temporally discrete, three-pool decomposition model. In principle, controlling factors were discretized into classes, where each class was associated with a probability and linked to an output variable. This creates a network of links that are ultimately linked to a set of equations for carbon (C) input and output to and from soil C pools. The probability-weighted results show that, globally, climate effects on NPP had the strongest impact on SOC stocks and the certainty of change after 75 years. Actual land use had the greatest effect locally because the assumed certainty of land use change per unit area was small. The probability-weighted contribution of climate to decomposition was greatest in the humid tropics because of greater absolute effects on decomposition fractions at higher temperatures. In contrast, climate effects on decomposition fractions were small in cold regions. Differences in decomposition rates between contemporary and future climate were greatest in arid subtropical regions because of projected strong increases in precipitation. Warming in boreal and arctic regions increased NPP, balancing or outweighing potential losses from thawing of permafrost. Across contrasting NPP scenarios, tropical mountain forests were identified as hotspots of future highly certain C losses. Global soil C mass will increase by 1% with a certainty of 75% if NPP increases due to carbon dioxide fertilization. At a certainty

  4. Rapid High Spatial Resolution Chemical Characterization of Soil Structure to Illuminate Nutrient Distribution Mechanisms Related to Carbon Cycling Using Laser Ablation Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Alexander, M. L. L.; Newburn, M. K.

    2015-12-01

    of the temporal and spatial distribution of chemical species, illuminating carbon dynamics in soil and the rhizosphere and their role in the global carbon cycle.

  5. A Reactive Transport Model for the Distribution and Age of Carbon in Soils and Sediments Through Direct Simulation of the Stable and Radiogenic Isotopologues

    NASA Astrophysics Data System (ADS)

    Druhan, J. L.; Lawrence, C. R.

    2015-12-01

    We present a reactive transport (RT) approach to link hydrologic transport, geochemical transformations and microbial activity influencing the magnitude and residence time of different carbon pools under variably saturated conditions. This model explicitly simulates the simultaneous transport, transformation, fractionation and decay of the three isotopes of carbon (12C, 13C and 14C) through a mechanistic framework. This is demonstrated with a modification of the CrunchTope multi-component RT software to extend the isotope-specific versions of both microbially-mediated and transition state theory (TST) rate laws to accommodate a three-isotope system. In addition both aqueous and solid phase decay of 14C are tracked, yielding in an implicit means of accounting for the 13C/12C correction in normalized radiocarbon ages. The capacity of this approach to quantify the storage and flux of carbon through subsurface compartments is demonstrated using two examples distinguished by timescale. The first considers a simplified flow path in which an influent containing labile organic carbon is distributed by biogenic reduction and mineralization into a suite of reaction products. The residence time of these pools and their characteristic stable isotope ratios are tracked through a variety of transient processes occurring at short timescales (e.g. months). These include a change in fluid flow rate, a limitation of ammonium supporting anabolic growth and an influx of oxygenated fluid. The second example considers the distribution of carbon over the timescale of soil development (e.g., millennia), using a dataset of stable isotope ratios and radiocarbon ages of organic and inorganic carbon present in both dissolved and solid phases from a soil chronosequence near Santa Cruz, CA. The results of these model simulations suggest the promise of this tool for improving our understanding of coupling between hydrologic transport and biogeochemical reactions in soils.

  6. Abundance, Distribution and Cycling of Organic Carbon and Nitrogen in University Valley (McMurdo Dry Valleys of Antarctica) Permafrost Soils with Differing Ground Thermal and Moisture Conditions: Analogue to C-N Cycle on Mars

    NASA Astrophysics Data System (ADS)

    Faucher, B. F.; Lacelle, D. L.; Davila, A. D.; Pollard, W. P.; McKay, C. P. M.

    2016-05-01

    High elevation McMurdo Dry Valleys of Antarctica are key Mars analogue sites. Our investigation focuses on the link between ground ice origin, distribution and cycling of organic carbon and nitrogen in University Valley, and its soil habitability.

  7. Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence

    SciTech Connect

    Hornibrook, E.R.C.; Longstaffe, F.J.; Fyfe, W.S.

    1997-02-01

    The identity and distribution of substrates that support CH{sub 4} production in wetlands is poorly known at present. Organic compounds are the primary methanogenic precursor at all depths within anoxic wetland soils; however, the distribution of microbial processes by which these compounds are ultimately converted to CH{sub 4} is uncertain. Based on stable isotope measurements of CH{sub 4} and {Sigma}CO{sub 2} extracted from soil porewaters in two temperate zone wetlands, we present evidence that a systematic spatial distribution of microbial methanogenic pathways can exist in certain anoxic, organic-rich soils. CH{sub 4} production by the acetate fermentation pathway is favored in the shallow subsurface. while methanogenesis from the reduction of CO{sub 2} with H{sub 2} becomes more predominant in older, less reactive peat at depth. This distribution can account for many of the reported CH{sub 4} emission characteristics of wetlands, in particular, their sensitivity to changes in primary productivity, temperature, and hydrology. These factors play an important role in controlling the short-term supply of labile substrates to fermentive methanogens in the shallow subsurface where the most intense CH{sub 4} production occurs. Predominance of the CO{sub 2}-reduction pathway at depth may help to explain reports of CH{sub 4} with a semifossil age in lower peat layers. 60 refs., 7 figs., 1 tab.

  8. Litter quality and pH are strong drivers of carbon turnover and distribution in alpine grassland soils

    NASA Astrophysics Data System (ADS)

    Budge, K.; Leifeld, J.; Hiltbrunner, E.; Fuhrer, J.

    2010-08-01

    Alpine soils are expected to contain large amounts of labile carbon (C) which may become a further source of atmospheric CO2 as a of global warming. However, there is little data available on these soils, and understanding of the influence of environmental factors on soil organic matter (SOM) turnover is limited. We extracted 30 cm deep cores from five grassland sites along a small elevation gradient from 2285 to 2653 m above sea level (a.s.l.) in the central Swiss Alps. Our aim was to determine the quantity, degree of stabilization and mean residence time (MRT) of SOM in relation to site factors such as temperature, soil pH, vegetation, and organic matter (OM) structure. Soil fractions obtained by size and density fractionation revealed a high proportion of labile particulate organic matter C (POM C %) mostly in the uppermost soil layers. POM C in the top 20 cm across the gradient ranged from 39.6-57.6% in comparison to 7.2-29.6% reported in previous studies for lower elevation soils (810-1960 m a.s.l.). At the highest elevation, MRTs measured by means of radiocarbon dating and turnover modelling, increased between fractions of growing stability from 90 years in free POM (fPOM) to 534 years in the mineral-associated fraction (mOM). Depending on elevation and pH, plant community data indicated considerable variation in the quantity and quality of litter input, and these patterns could be reflected in the dynamics of soil C. 13C NMR data confirmed the direct relationship of OM composition to MRT. While temperature is likely to be a major cause for the slow turnover rate observed, other factors such as litter quality and soil pH, as well as the combination of all factors, play an important role in causing small-scale variability of SOM turnover. Ignoring this interplay of controlling factors may impair the performance of models to project SOM responses to environmental change.

  9. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2013-12-01

    , activity and species diversity of soil biota, management of soil fertility and application of Ca-bearing amendments (e.g., lime, single and triple super phosphate, manure), and adoption of conservation-effective measures which trap alluvial and aeolian sediments. Even the low rate of formation of secondary carbonates at 2-5 kg C/ha/yr has implications to aggregation, and microbiological and regolith properties. The isotropic composition of secondary carbonates is a useful tool for reconstructing paleoecological conditions. Researchable priorities include: 1) assessment of the depth distribution of CO2 concentration in soil air and its spatial and temporal variation in relation to tillage systems, crop residue management, fertilizer and manuring, irrigation, cover cropping, agroforestry, etc., 2) understanding the effects of micro and meso-climate (e.g., rainfall, evapotranspiration, air and soil temperatures) on CO2 concentration in soil air, 3) determination of the relation between soil profile characteristics (texture, structure, horizonation, hydrology) and secondary carbonates at present and under paleoecological conditions, 4) establishing the relationship between SOC and SIC pools, 5) determination of the impacts of deforestation, biomass burning, wild fires, drought, inundation, etc., on SIC dynamics, and 6) evaluating the effects of secondary carbonates on soil aggregation and water retention.

  10. Global distribution of soil organic carbon, based on the Harmonized World Soil Database - Part 2: Certainty of changes related to land-use and climate

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Don, A.; van der Molen, M. K.; Freibauer, A.

    2014-09-01

    Global biosphere models vary greatly in their projections of future changes of global soil organic carbon (SOC) stocks and aggregated global SOC masses in response to climate change. We estimated the certainty (likelihood) and quantity of increases and decreases on a half-degree grid. We assessed the effect of changes in controlling factors, including net primary productivity (NPP), litter quality, soil acidity, water-saturation, depth of permafrost, land use, temperature, and aridity, in a temporally implicit model that uses categorized driver variables associated by probabilities (Bayesian Network). The probability-weighted results show that, globally, climate effects on NPP had the strongest impact on SOC stocks and the certainty of change after 75 years. Actual land use had the greatest effect locally because the assumed certainty of land use change per unit area was small. The probability-weighted contribution of climate to decomposition was greatest in the humid tropics because of greater absolute effects on decomposition fractions at higher temperatures. In contrast, climate effects on decomposition fractions were small in cold regions. Differences in decomposition rates between contemporary and future climate were greatest in arid subtropical regions because of projected strong increases in precipitation. Warming in boreal and arctic regions increased NPP, balancing or outweighing potential losses from thawing of permafrost. Across contrasting NPP scenarios tropical mountain forests were identified as hotspots of future highly certain C losses. Global soil C mass will increase by 1% with a certainty of 75% if NPP increases due to carbon-dioxide fertilization. At a certainty level of 75%, soil C mass will not change if CO2-induced increase of NPP is limited by nutrients.

  11. Global Distribution of Pyrogenic Carbon

    NASA Astrophysics Data System (ADS)

    Reisser, Moritz; Abiven, Samuel; Schmidt, Michael W. I.

    2016-04-01

    Pyrogenic Carbon (PyC) is ubiquitous in the environment and represents presumably one of the most stable compounds of the total organic carbon. Due to its persistence in the soil, it might play an important role in the global carbon cycle. In order to model future CO2 emissions from soils it is thus crucial to know where and how much of PyC exists on a global scale. Yet, only rough estimates for global PyC stocks in soils could be made, and even less is known about the distribution across ecosystems. Therefore we propose here literature analysis of data on PyC concentrations and stocks worldwide. We extracted PyC values in soils from the literature (n = 600) and analysed the percentage of PyC in the soil organic carbon (SOC) as a function of climate (temperature, precipitation), soil parameters (pH, clay content), fire characteristics (fire frequency and fire regime) and land use. Overall, the average contribution of PyC to SOC was 13 %, ranging from 0.1 % up to 60 %. We observed that the PyC content was significantly higher with high clay content, higher pH, and in cultivated land as compared to forest and grassland. We did not observe any relationships between fire activity, frequency or intensity and PyC % at a global scale. When the fire regime was monitored on site (only 12 % of the data we collected), we observed higher PyC concentrations with higher fire frequencies. We hypothesise that the resolution of global fire datasets is neither temporally nor spatially high enough to explain the very local fire history of the soil samples. Data points were not homogeneously distributed on the globe, but rather aggregated in places like Central Europe, the Russian Steppe or North America. Therefore, a global interpolation is not directly possible. We modelled PyC concentrations, based on the five most significant parameters, which were clay content, pH, mean annual temperature and precipitation as well as land use. We then predicted worldwide PyC using global datasets

  12. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  13. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation

    SciTech Connect

    Gerard Cornelissen; Oerjan Gustafsson; Thomas D. Bucheli; Michiel T. O. Jonker; Albert A. Koelmans; Paul C. M. van Noort

    2005-09-15

    Evidence is accumulating that sorption of organic chemicals to soils and sediments can be described by 'dual-mode sorption': absorption in amorphous organic matter (AOM) and adsorption to carbonaceous materials such as black carbon (BC), coal, and kerogen, collectively termed 'carbonaceous geosorbents' (CG). Median BC contents as a fraction of total organic carbon are 9% for sediments (number of sediments, n {approx} 300) and 4% for soils (n = 90). Adsorption of organic compounds to CG is nonlinear and generally exceeds absorption in AOM by a factor of 10-100. Sorption to CG is particularly extensive for organic compounds that can attain a more planar molecular configuration. The CG adsorption domain probably consists of surface sites and nanopores. In this review it is shown that nonlinear sorption to CG can completely dominate total sorption at low aqueous concentrations ({lt}10{sup -6} of maximum solid solubility). Therefore, the presence of CG can explain (i) sorption to soils and sediments being up to 2 orders of magnitude higher than expected on the basis of sorption to AOM only (i.e., 'AOM equilibrium partitioning'), (ii) low and variable biota to sediment accumulation factors, and (iii) limited potential for microbial degradation. On the basis of these consequences of sorption to CG, it is advocated that the use of generic organic carbon-water distribution coefficients in the risk assessment of organic compounds is not warranted and that bioremediation endpoints could be evaluated on the basis of freely dissolved concentrations instead of total concentrations in sediment/soil. The study was funded by the European Union (the ABACUS project). 186 refs., 5 figs., 3 tabs.

  14. Lunar soil grain size distribution

    NASA Technical Reports Server (NTRS)

    Carrier, W. D., III

    1973-01-01

    A comprehensive review has been made of the currently available data for lunar grain size distributions. It has been concluded that there is little or no statistical difference among the large majority of the soil samples from the Apollo 11, 12, 14, and 15 missions. The grain size distribution for these soils has reached a steady state in which the comminution processes are balanced by the aggregation processes. The median particle size for the steady-state soil is 40 to 130 microns. The predictions of lunar grain size distributions based on the Surveyor television photographs have been found to be quantitatively in error and qualitatively misleading.

  15. Carbon cycling and gas exchange in soils

    SciTech Connect

    Trumbore, S.E.

    1989-01-01

    This thesis summaries three independent projects, each of which describes a method which can be used to study the role of soils in regulating the atmospheric concentrations of CO{sub 2} and other trace gases. The first chapter uses the distribution of natural and bomb produced radiocarbon in fractionated soil organic matter to quantify the turnover of carbon in soils. A comparison of {sup 137}Cs and {sup 14}C in the modern soil profiles indicates that carbon is transported vertically in the soil as dissolved organic material. The remainder of the work reported is concerned with the use of inert trace gases to explore the physical factors which control the seasonal to diel variability in the fluxes of CO{sub 2} and other trace gases from soils. Chapter 2 introduces a method for measuring soil gas exchange rates in situ using sulfur hexafluoride as a purposeful tracer. The measurement method uses standard flux box technology, and includes simultaneous determination of the fluxes and soil atmosphere concentrations of CO{sub 2} and CH{sub 4}. In Chapter 3, the natural tracer {sup 222}Rn is used as an inert analog for exchange both in the soils and forest canopy of the Amazon rain forest.

  16. Elevated atmospheric carbon dioxide increases soil carbon

    SciTech Connect

    Norby, Richard J; Jastrow, Julie D; Miller, Michael R; Matamala, Roser; Boutton, Thomas W; Rice, Charles W; Owensby, Clenton E

    2005-01-01

    In a study funded by the U.S. Department of Energy's Office of Science, researchers from Argonne and Oak Ridge National Laboratories and Kansas State and Texas A&M Universities evaluated the collective results of earlier studies by using a statistical procedure called meta-analysis. They found that on average elevated CO2 increased soil carbon by 5.6 percent over a two to nine year period. They also measured comparable increases in soil carbon for Tennessee deciduous forest and Kansas grassland after five to eight years of experimental exposure to elevated CO2.

  17. Soil carbon determination by thermogravimetrics

    PubMed Central

    Pallasser, Robert; McBratney, Alex B.

    2013-01-01

    Determination of soil constituents and structure has a vital role in agriculture generally. Methods for the determination of soil carbon have in particular gained greater currency in recent times because of the potential that soils offer in providing offsets for greenhouse gas (CO2-equivalent) emissions. Ideally, soil carbon which can also be quite diverse in its makeup and origin, should be measureable by readily accessible, affordable and reliable means. Loss-on-ignition is still a widely used method being suitably simple and available but may have limitations for soil C monitoring. How can these limitations be better defined and understood where such a method is required to detect relatively small changes during soil-C building? Thermogravimetric (TGA) instrumentation to measure carbonaceous components has become more interesting because of its potential to separate carbon and other components using very precise and variable heating programs. TGA related studies were undertaken to assist our understanding in the quantification of soil carbon when using methods such as loss-on-ignition. Combining instrumentation so that mass changes can be monitored by mass spectrometer ion currents has elucidated otherwise hidden features of thermal methods enabling the interpretation and evaluation of mass-loss patterns. Soil thermogravimetric work has indicated that loss-on-ignition methods are best constrained to temperatures from 200 to 430 °C for reliable determination for soil organic carbon especially where clay content is higher. In the absence of C-specific detection where mass only changes are relied upon, exceeding this temperature incurs increasing contributions from inorganic sources adding to mass losses with diminishing contributions related to organic matter. The smaller amounts of probably more recalcitrant organic matter released at the higher temperatures may represent mineral associated material and/or simply more refractory forms. PMID:23638398

  18. Distribution, Sources, and Association of Polycyclic Aromatic Hydrocarbons, Black Carbon, and Total Organic Carbon in Size-Segregated Soil Samples Along a Background–Urban–Rural Transect

    PubMed Central

    Ray, Sharmila; Khillare, Pandit Sudan; Kim, Ki-Hyun; Brown, Richard J.C.

    2012-01-01

    Abstract Soil samples were collected over a year-long period along a background–urban–rural transect in Delhi, India for the analysis of polycyclic aromatic hydrocarbons (PAHs), black carbon (BC), and total organic carbon (TOC) in five grain size fractions, x, in μm of 0≤x<53 (I), 53≤x<250 (II), 250≤x<500 (III), 500≤x<2000 (IV), and their sum (total: T). Maximum concentrations of PAH, BC, and TOC were observed in the smallest fraction (I) comprising silt and clay, irrespective of site or season. Results of the molecular diagnostic ratios and principal component analysis (PCA) identified coal, wood, biomass burning, and vehicular emissions as major sources of PAHs at all the three sites, while BC/TOC ratios pointed toward biomass combustion as the chief source of carbonaceous species. This work presents the first such rural-urban transect study considering PAH, BC, and TOC in soil. PMID:23133309

  19. Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791

  20. True Value of Carbon in Agricultural Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon (CO2) in the soil plays a critical role in the development of a stable soil aggregate and contributes to the formation of soil particles that are resistant to the destructive forces from wind and water. The dynamics of carbon in the soil are complex because the amount of carbon is affected b...

  1. Australian climate-carbon cycle feedback reduced by soil black carbon

    NASA Astrophysics Data System (ADS)

    Lehmann, Johannes; Skjemstad, Jan; Sohi, Saran; Carter, John; Barson, Michele; Falloon, Pete; Coleman, Kevin; Woodbury, Peter; Krull, Evelyn

    2008-12-01

    Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together. Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils, creating a positive feedback. Current models of global climate change that recognize this soil carbon feedback are inaccurate if a larger fraction of soil organic carbon than postulated has a very slow decomposition rate. Here we show that by including realistic stocks of black carbon in prediction models, carbon dioxide emissions are reduced by 18.3 and 24.4% in two Australian savannah regions in response to a warming of 3∘C over 100 years. This reduction in temperature sensitivity, and thus the magnitude of the positive feedback, results from the long mean residence time of black carbon, which we estimate to be approximately 1,300 and 2,600 years, respectively. The inclusion of black carbon in climate models is likely to require spatially explicit information about its distribution, given that the black carbon content of soils ranged from 0 to 82% of soil organic carbon in a continental-scale analysis of Australia. We conclude that accurate information about the distribution of black carbon in soils is important for projections of future climate change.

  2. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-01-01

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon. PMID:25848862

  3. Carbon Sequestration in Forest Soils

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2006-05-01

    Carbon (C) sequestration in soils and forests is an important strategy of reducing the net increase in atmospheric CO2 concentration by fossil fuel combustion, deforestation, biomass burning, soil cultivation and accelerated erosion. Further, the so-called "missing or fugitive CO2" is also probably being absorbed in a terrestrial sink. Three of the 15 strategies proposed to stabilize atmospheric CO2 concentrations by 2054, with each one to sequester 1 Pg Cyr-1, include: (i) biofuel plantations for bioethanol production, (ii) reforestation, afforestation and establishment of new plantations, and (iii) conversion of plow tillage to no-till farming. Enhancing soil organic carbon (SOC) pool is an important component in each of these three options, but especially so in conversion of degraded/marginal agricultural soils to short rotation woody perennials, and establishment of plantations for biofuel, fiber and timber production. Depending upon the prior SOC loss because of the historic land used and management-induced soil degradation, the rate of soil C sequestration in forest soils may be 0 to 3 Mg C ha-1 yr-1. Tropical forest ecosystems cover 1.8 billion hectares and have a SOC sequestration potential of 200 to 500 Tg C yr-1 over 59 years. However, increasing production of forest biomass may not always increase the SOC pool. Factors limiting the rate of SOC sequestration include C: N ratio, soil availability of N and other essential nutrients, concentration of recalcitrant macro-molecules (e.g., lignin, suberin), soil properties (e.g., clay content and mineralogy, aggregation), soil drainage, and climate (mean annual precipitation and temperature). The SOC pool can be enhanced by adopting recommended methods of forest harvesting and site preparation to minimize the "Covington effect," improving soil drainage, alleviating soil compaction, growing species with a high NPP, and improving soil fertility including the availability of micro-nutrients. Soil fertility

  4. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...

  5. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  6. Revealing spatial distribution of soil organic carbon contents and stocks of a disturbed bog relict by in-situ NIR and apparent EC mapping

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.

    2013-04-01

    Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the

  7. Hyperspectral Mapping of Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid methods of measuring soil carbon such as near-infrared (NIR) spectroscopy have gained interest but problems of accurate and precise measurement still persist resulting from the high spatial variability. Tillage and airborne-based spectral sensors can provide means to capture the spatial distr...

  8. SOIL CARBON SEQUESTRATION/MARKETS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasslands in the conterminous United States include about 212 of which about ~48 million hectares (Mha) of pasture and 164 Mha of rangeland. Rates of soil organic carbon (SOC) sequestration can range from none to approaching 1 metric ton (mt) SOC/year. Climate and management influence potential i...

  9. Soil Carbon Sequestration/Markets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasslands in the conterminous United States include about 212 of which about ~48 million hectares (Mha) of pasture and 164 Mha of rangeland. Rates of soil organic carbon (SOC) sequestration can range from none to approaching 1 metric ton (mt) SOC/year. Climate and management influence potential i...

  10. Biogeochemistry: Soil carbon in a beer can

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2015-10-01

    Decomposition of soil organic matter could be an important positive feedback to climate change. Geochemical properties of soils can help determine what fraction of soil carbon may be protected from climate-induced decomposition.

  11. [Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau].

    PubMed

    Wei, Xiao-Rong; Shao, Ming-An; Gao, Jian-Lun

    2008-10-01

    Understanding the distribution of organic carbon fractions in soils and their relationships with environmental factors are very important for appraising soil organic carbon status and assessing carbon cycling in the Loess Plateau. In this research, through field investigation and laboratory analysis, we studied the relationships between soil organic carbon and environmental factors in a gully watershed of the Loess Plateau. The environmental factors are landforms, land use conditions and soil types. The results showed that total soil organic carbon presented less variance, while high labile organic carbon presented greater variance. The variation coefficients of them are 34% and 43%, respectively, indicating that the variability of organic carbon in soils increased with the increasing of their activities. Total soil organic carbon, labile organic carbon, middle and high labile organic carbon were highly interrelated and presented similar distribution trend with environmental factors. Among different landforms, land uses, and soil types, the highest contents of organic carbon in different fractions were observed in plateau land, forest and farm lands, and black loessial soils, while the lowest contents of them were observed in gully bottom, grass land, and rubified soils, respectively. The relationships between organic carbon and environmental factors indicate that environmental factors not only directly influence the distribution of soil organic carbon, but also indirectly influence them through affecting the relationships among organic carbon fractions. The relationship between total organic carbon and labile organic carbon responses rapidly to environmental factors, while that between middle labile organic carbon and high labile organic carbon responses slowly to environmental factors. PMID:19143389

  12. Carbon distribution profiles in lunar fines

    NASA Technical Reports Server (NTRS)

    Hart, R. K.

    1977-01-01

    Radial distribution profiles of elemental carbon in lunar soils consisting of particles in the size range of 50 to 150 microns were investigated. Initial experiments on specimen preparation and the analysis of prepared specimens by Auger electron spectrometry (AES) and scanning electron microscopy (SEM) are described. Results from splits of samples 61501,84 and 64421,11, which were mounted various ways in several specimen holders, are presented. A low carbon content was observed in AES spectra from soil particles that were subjected to sputter-ion cleaning with 960eV argon ions for periods of time up to a total exposure for one hour. This ion charge was sufficient to remove approximately 70 nm of material from the surface. All of the physically adsorbed carbon (as well as water vapor, etc.) would normally be removed in the first few minutes, leaving only carbon in the specimen, and metal support structure, to be detected thereafter.

  13. Measuring Carbon Sequestration in Pasture Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of croplands to pasture can greatly increase sequestration of carbon in soil organic matter, removing carbon dioxide from the atmosphere and helping to reduce the impacts of climate change. The measurement of soil carbon, and its limitations, could impact future carbon credit programs. ...

  14. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  15. Accessibility, searchability, transparency and engagement of soil carbon data: The International Soil Carbon Network

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Hugelius, Gustaf; Koven, Charlie; Sulman, Ben; O'Donnell, Jon; He, Yujie

    2016-04-01

    correlated with bulk density and porosity of the rock/sediment matrix. Thus C storage is most stable at depth, yet is susceptible to changes in tillage, rooting depths, and erosion/sedimentation. Fourth, current ESMs likely overestimate the turnover time of soil organic carbon and subsequently overestimate soil carbon sequestration, thus datasets combined with other soil properties will help constrain the ESM predictions. Last, analysis of soil horizon and carbon data showed that soils with a history of tillage had significantly lower carbon concentrations in both near-surface and deep layers, and that the effect persisted even in reforested areas. In addition to the opportunities for empirical science using a large database, the database has great promise for evaluation of biogeochemical and earth system models. The preservation of individual soil core measurements avoids issues with spatial averaging while facilitating evaluation of advanced model processes such as depth distributions of soil carbon, land use impacts, and spatial heterogeneity.

  16. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon (C) pools store about one-third of the total terrestrial organic carbon. Deep soil C pools (below 1 m) are thought to be stable due to their low biodegradability, but little is known about soil microbial processes and carbon dynamics below the soil surface, or how global change might aff...

  17. [Spatial distribution patterns of soil organic carbon under Elacagnus angustifolia--Achnatherum splendens community in an arid area of Northwest China].

    PubMed

    Chi, Ting; Xu, Chi; Liu, Mao-Song; Zhang, Ming-Juan; Yang, Xue-Jiao

    2013-10-01

    An investigation was conducted to study the relationships of soil organic carbon (SOC) content with root biomass and soil moisture content as well as the accumulation mechanisms of SOC under the Elacagnus angustifolia-Achnatherum splenden community in Ningxia Hui Autonomous Region of Northwest China. The results showed that the SOC content decreased gradually with increasing soil depth, and changed gently in both horizontal and vertical directions. The correlations of the SOC content and its affecting factors varied with soil depth. In 0-30 cm layer, the SOC content was significantly negatively correlated with soil moisture content; in 60-150 cm layer, the SOC content was significantly positively correlated with soil moisture content and root biomass. Partial regression analysis indicated that the root biomass density in 0-30 cm soil layer contributed significantly to the variance of SOC content. In 60-150 cm layer, the SOC content was mainly affected by root system and soil moisture content; in 30-60 cm layer, no significant correlations were observed between the SOC content and the root biomass and soil moisture content. There was an obvious difference in the accumulation mechanism of SOC in different soil layers and at different locations of E. angustifolia--A. splendens community. PMID:24483063

  18. Ectomycorrhizal fungi slow soil carbon cycling.

    PubMed

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. PMID:27335203

  19. Ecological value of soil carbon management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of soil carbon is critical to the climate change debate, as well as to the long-term productivity and ecosystem resilience of the biosphere. Soil organic carbon is a key ecosystem property that indicates inherent productivity of land, controls soil biological functioning and diversity, r...

  20. Evolution of black carbon properties in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black carbon deposited in soil from natural or deliberate wildfires and engineered black carbon products (biochar) intentionally added to soil are known to have significant effects on soil biogeochemical processes and in many cases to influence the yield and quality of crops and to enhance the abili...

  1. The carbon distribution among the functional groups of humic acids isolated by sequential alkaline extraction from gray forest soil

    NASA Astrophysics Data System (ADS)

    Kholodov, V. A.; Konstantinov, A. I.; Perminova, I. V.

    2009-11-01

    Preparations of humic acids (HAs) were isolated from a gray forest soil by sequential alkaline extraction. From a sample of 500 g, HA preparations of 2.24, 0.23, and 0.20 g were obtained from the first, second, and third alkaline extracts, respectively. The structure of the preparations was determined by 13C NMR spectroscopy. At each next extraction step, the portion of aliphatic fragments in the HA preparations increased and the content of aromatic structures decreased. The conclusion was drawn that a single extraction is sufficient for obtaining a representative HA sample.

  2. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  3. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...

  4. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...

  5. Seasonal variation in soil organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic carbon in soil is most often measured at a single point in time, under the assumption that the major pools of organic carbon change so slowly that variation over weeks or months will be insignificant. The validity of this assumption has implications for accurate comparison of soil carbon bet...

  6. Distribution and significance of carbon compounds on the moon.

    NASA Technical Reports Server (NTRS)

    Chang, S.; Kvenvolden, K. A.

    1972-01-01

    Exploration of available information concerning carbon on the moon, following review of what is known about carbon on the earth, and consideration of the results of studies of meteorites, which have provided the first direct clues about extraterrestrial carbon. Carbon and carbon isotope composition data taken from Apollo 11 samples are tabulated. Carbon compounds produced by pyrolysis, extracted with benzene-methanol, extracted with water, and freed by acid treatment are discussed. Carbon and carbon compounds in lunar rocks and soils appear to be distributed heterogeneously.

  7. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  8. Soil Carbon Fractionation under Perennial Forage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop management practices can improve soil quality. Forage type and N-sources might also affect soil organic matter, especially soil carbon fractionation. The objective of this study is to evaluate the impact of legume inter-planting and compost application on soil C pools under a perennial grass mi...

  9. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  10. [Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil].

    PubMed

    An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong

    2016-01-15

    Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and < 0.25 mm soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture. PMID:27078970

  11. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. PMID:25918852

  12. Soil carbon stock and soil characteristics at Tasik Chini Forest Reserve, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Aqlili Riana, R.; Sahibin A., R.

    2015-09-01

    This study was carried out to determine soil carbon stock and soil characteristic at Tasik Chini Forest Reserve (TCFR), Pahang. A total of 10 (20 m x 25 m) permanent sampling plot was selected randomly within the area of TCFR. Soil samples were taken from all subplots using dutch auger based on soil depth of 0-20cm, 20-40cm, 40-60cm. Soil parameters determined were size distribution, soil water content, bulk density, organic matter, organic carbon content, pH and electrical conductivity. All parameters were determined following their respective standard methods. Results obtained showed that the soil in TCFR was dominated by clay texture (40%), followed by sandy clay loam (30%), loam (20%). Silty clay, clay loam and sandy loam constitutes about 10% of the soil texture. Range of mean percentage of organic matter and bulk density are from 2.42±0.06% to 11.64±0.39% and 1.01 to 1.04 (gcm-ł), respectively. Soil pH are relatively very acidic and mean of electrical conductivity is low. Soil carbon content ranged from 0.83±0.03 to 1.87±0.41%. All soil parameter showed a decreasing trend with depth except electrical conductivity. ANOVA test of mean percentage of organic matter, soil water content, soil pH and electrical conductivity showed a significant difference between plot (p<0.05). However there are no significant difference of mean bulk density between plots (p>0.05). There are no significant difference in mean percentage of soil water content, organic matter and bulk density between three different depth (p>0.05). There were a significant difference on percentage of soil carbon organic between plots and depth. The mean of soil organic carbon stock in soil to a depth of 60 cm calculated was 35.50 t/ha.

  13. Quantifying Carbon Bioavailability in Northeast Siberian Soils

    NASA Astrophysics Data System (ADS)

    Heslop, J.; Chandra, S.; Sobczak, W. V.; Spektor, V.; Davydova, A.; Holmes, R. M.; Bulygina, E. B.; Schade, J. D.; Frey, K. E.; Bunn, A. G.; Walter Anthony, K.; Zimov, S. A.; Zimov, N.

    2010-12-01

    Soils in Northeast Siberia, particularly carbon-rich yedoma (Pleistocene permafrost) soils, have the potential to release large amounts of carbon dioxide and methane due to permafrost thaw and thermokarst activity. In order to quantify the amount of carbon release potential in these soils, it is important to understand carbon bioavailability for microbial consumption in the permafrost. In this study we measured amounts of bioavailable soil carbon across five locations in the Kolyma River Basin, NE Siberia. At each location, we sampled four horizons (top active layer, bottom active layer, Holocene optimum permafrost, and Pleistocene permafrost) and conducted soil extracts for each sample. Filtered and unfiltered extracts were used in biological oxygen demand experiments to determine the dissolved and particulate bioavailable carbon potential for consumption in the soil. Concentrations of bioavailable carbon were 102-608 mg C/kg dry soil for filtered extracts and 115-703 mg C/kg dry soil for unfiltered extracts. Concentrations of carbon respired per gram of dry soil were roughly equal for both the DOC and POC extracts (P<0.001), suggesting that bioavailable soil carbon is predominately in the dissolved form or the presence of an additional unknown limitation preventing organisms from utilizing carbon in the particulate form. Concentrations of bioavailable carbon were similar across the different sampling locations but differed among horizons. The top active layer (102-703 mg C/kg dry soil), Holocene optimum permafrost (193-481 mg C/kg dry soil), and Pleistocene permafrost (151-589 mg C/kg dry soil) horizons had the highest amounts of bioavailable carbon, and the bottom active layer (115-179 mg C/kg dry soil) horizon had the lowest amounts. For comparison, ice wedges had bioavailable carbon concentrations of 23.0 mg C/L and yedoma runoff from Duvyanni Yar had concentrations of 306 mg C/L. Pleistocene permafrost soils had similar concentrations of bioavailable carbon

  14. Sensitivity of Soil Carbon Stock Estimates in Alaska to Soil Taxonomic Level

    NASA Astrophysics Data System (ADS)

    Bliss, N. B.; Maursetter, J.

    2006-12-01

    Soil carbon stock estimates will help calibrate models of soil carbon change, including fluxes of carbon between the land and the atmosphere. Warming in Alaska in the last several decades has been more rapid than global averages, and is leading to a variety of ecological changes. In particular, increased respiration of soil carbon may lead to a positive feedback for climate change by releasing carbon dioxide and methane from the land to the atmosphere. Better estimates of carbon stocks are needed to more accurately model fluxes of greenhouse gases between the land and the atmosphere. New estimates of the stocks of soil organic carbon in Alaska were made by linking spatial and field data developed by the U.S. Department of Agriculture Natural Resources Conservation Service. The spatial data are from the State Soil Geographic (STATSGO) database, and the field data are from the Soil Characterization Database, also known as the pedon database. Many more sampled pedons are available now than when the original STATSGO data were compiled. Analysis of the STATSGO data alone, as distributed in 1994, provides a soil carbon stock estimate for Alaska of less than 20 petagrams. The new estimates range from 35 to 50 petagrams of soil organic carbon for Alaska, depending on the choice of methods for linking the spatial and pedon data. The higher estimates are based on linking at more generalized taxonomic levels such as soil order or suborder. The lower estimates are based on linking at more detailed soil taxonomic levels, and are likely more precise for the areas that match, but have larger areas with no match between the pedon and spatial databases. The carbon estimates are summarized by soil taxonomic unit, by regions with similar geomorphic processes, by elevation, and by land cover type.

  15. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  16. Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration

    SciTech Connect

    Garten Jr, Charles T; Ashwood, Tom L

    2002-12-01

    The objective of this research was to understand how land cover and topography act, independently or together, as determinants of soil carbon and nitrogen storage over a complex terrain. Such information could help to direct land management for the purpose of carbon sequestration. Soils were sampled under different land covers and at different topographic positions on the mostly forested 14,000 ha Oak Ridge Reservation in Tennessee, USA. Most of the soil carbon stock, to a 40-cm soil depth, was found to reside in the surface 20 cm of mineral soil. Surface soil carbon and nitrogen stocks were partitioned into particulate ({ge}53 {micro}m) and mineral-associated organic matter (<53 {micro}m). Generally, soils under pasture had greater nitrogen availability, greater carbon and nitrogen stocks, and lower C:N ratios than soils under transitional vegetation and forests. The effects of topography were usually secondary to those of land cover. Because of greater soil carbon stocks, and greater allocation of soil carbon to mineral-associated organic matter (a long-term pool), we conclude that soil carbon sequestration, but not necessarily total ecosystem carbon storage, is greater under pastures than under forests. The implications of landscape-level variation in soil carbon and nitrogen for carbon sequestration are discussed at several different levels: (1) nitrogen limitations to soil carbon storage; (2) controls on soil carbon turnover as a result of litter chemistry and soil carbon partitioning; (3) residual effects of past land use history; and (4) statistical limitations to the quantification of soil carbon stocks.

  17. Impacts of soil organic carbon on soil physical behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management-induced changes in soil organic carbon (SOC) concentration can affect soil physical behavior. Specifically, removal of crop residues as biofuel may thus adversely affect soil attributes by reducing SOC concentration as crop residues are the main source of SOC. Implications of crop residue...

  18. Redistribution of soil and soil organic carbon on agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budgets for agricultural systems especially for landscapes where water, tillage, and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion r...

  19. Stuffing Carbon Away: Mechanisms of Carbon Sequestration in Soils

    SciTech Connect

    Reimer, P J; Masiello, C A; Southon, J R; Trumbore, S E; Harden, J W; White, A F; Chadwick, O A; Torn, M S

    2003-01-24

    Soils offer the potential to sequester large quantities of carbon from the atmosphere for decades to millennia and so may ameliorate the anthropogenic influence of fossil fuel release. However changes in climate can drastically affect the soil's ability to store carbon through changes mineralogy on time scales of human interest. It is essential to understand the major controls on soil carbon dynamics before we attempt to manage sequestration to control atmospheric CO{sub 2} buildup. Models of the terrestrial carbon cycle often use clay content to parameterize soil carbon turnover. Evidence from volcanic soils suggests that soil mineralogy is a major control on a soil's ability to store carbon, because different types of minerals have widely varying abilities to physically and chemically isolate soil organic matter from decomposition, however volcanic soils represent only a small percentage of the earth's soils. The relationship between precipitation and soil carbon storage is also complex and poorly constrained. Significantly, precipitation changes predicted as a result of atmospheric CO{sub 2} doubling include increased rainfall throughout California. We utilized {sup 14}C, {delta}{sup 13}C, and the total organic carbon, iron, and aluminum contents to address the question of the importance of mineralogy and climate on carbon storage in soils formed on a globally representative parent material. The California coastal terraces, formed over the last 500 thousand years as a result of tectonic uplift and sea level change, provide a natural laboratory to examine the effect of mineralogy and climate on carbon storage. We have focused on two terraces sequences, one near Eureka and one near Santa Cruz. Within each set of terraces only soil mineral development varies; all other variables are constant (rainfall, plant systems, and soil parent material, and land management). Annual precipitation at Eureka is twice that at Santa Cruz, allowing us to examine its role in the

  20. Soil carbon cycling in pasture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon accumulation in soil under pastures occurs to various degrees depending upon management and length of time. This presentation describes research results on soil carbon sequestration under pastures from the southeastern USA to help inform the scientific basis for development of a protocol to ...

  1. Fact Sheet: Soil Carbon Sequestration in Pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sequestration of carbon as soil organic matter is one way to remove carbon dioxide from the atmosphere and lower the potential for global climate change. Cultivation typically caused the loss of 20 to 50% the native soil organic matter. Establishing pasture on former croplands is expected to a...

  2. Soil organic components distribution in a podzol and the possible relations with the biological soil activities

    NASA Astrophysics Data System (ADS)

    Alvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Curcio, Elena; Cools, Nathalie; Lozano-Garcia, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2016-04-01

    This research reports the preliminary results of a study based on the SOC (Soil Organic Carbon) fractionation in a pine forest soil (Pinus nigra). Hyperskeletic Albic Podzol soil (P113005, World Reference Base, 2014), described by the following sequence O-Ah-E-Bh-Bs-Cg, was investigated at Zoniën, Belgium. Total (TOC) and extractable (TEC) soil contents were determined by Italian official method of soil analysis. Different soil C fractions were also determined: Humic Acid Carbon (HAC) and Fulvic Acid Carbon (FAC). Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. Along the mineral soil profile, therefore, were also tested some enzymatic activities, such as cellulase, xylanase, laccase and peroxidase, involved in the degradation of the main organic substance components, and dehydrogenase activity, like soil microbial biomass index. The results shows a differential TEC fractions distribution in the soil profile along three fronts of progress: (i) An E leaching horizon of TEC; Bh horizon (humic) of humic acids preferential accumulation, morphologically and analytically recognizable, in which humic are more insoluble that fulvic acids, and predominate over the latter; (ii) horizon Bs (spodic) in which fulvic acids are more soluble that humic acid, and predominate in their turn. All enzyme activities appear to be highest in the most superficial part of the mineral profile and decrease towards the deeper layers with different patterns. It is known that the enzymes production in a soil profile reflects the organic substrates availability, which in turn influences the density and the composition of the microbial population. The deeper soil horizons contain microbial communities adapted and specialized to their environment and, therefore, different from those present on the surface The results suggest that the fractionation technique of TEC is appropriate to interpret the podsolisation phenomenon that is the preferential distribution of

  3. How to Enhance Soil Organic Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing crop yields and reducing soil erosion can enhance soil organic carbon (SOC) sequestration. The influence of management practices on crop residue C and N inputs to the soil, SOC sequestration, and NO3-N leaching potential under irrigated, continuous crop production in northern Texas was e...

  4. Grass roots of soil carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils rooted with perennial grasses have high organic matter content, and therefore, can contribute to an agricultural future with high soil quality; a condition that can help to mitigate greenhouse gas emissions through soil carbon sequestration and improve a multitude of other ecosystem responses,...

  5. Biomass Crop Production: Benefits for Soil Quality and Carbon Sequestration

    SciTech Connect

    Bandaranayake, W.; Bock, B.R.; Houston, A.; Joslin, J.D.; Pettry, D.E.; Schoenholtz, S.; Thornton, F.C.; Tolbert, V.R.; Tyler, D.

    1999-08-29

    Research at three locations in the southeastern US is quantifying changes in soil quality and soil carbon storage that occur during production of biomass crops compared with row crops. After three growing seasons, soil quality improved and soil carbon storage increased on plots planted to cottonwood, sycamore, sweetgum with a cover crop, switchgrass, and no-till corn. For tree crops, sequestered belowground carbon was found mainly in stumps and large roots. At the TN site, the coarse woody organic matter storage belowground was 1.3 Mg ha{sup {minus}1}yr{sup {minus}1}, of which 79% was stumps and large roots and 21% fine roots. Switchgrass at the AL site also stored considerable carbon belowground as coarse roots. Most of the carbon storage occurred mainly in the upper 30 cw although coarse roots were found to depths of greater than 60 cm. Biomass crops contributed to improvements in soil physical quality as well as increasing belowground carbon sequestration. The distribution and extent of carbon sequestration depends on the growth characteristics and age of the individual biomass crop species. Time and increasing crop maturity will determine the potential of these biomass crops to significantly contribute to the overall national goal of increasing carbon sequestration and reducing greenhouse gas emissions.

  6. Comparing global soil models to soil carbon profile databases

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Harden, J. W.; He, Y.; Lawrence, D. M.; Nave, L. E.; O'Donnell, J. A.; Treat, C.; Sulman, B. N.; Kane, E. S.

    2015-12-01

    As global soil models begin to consider the dynamics of carbon below the surface layers, it is crucial to assess the realism of these models. We focus on the vertical profiles of soil C predicted across multiple biomes form the Community Land Model (CLM4.5), using different values for a parameter that controls the rate of decomposition at depth versus at the surface, and compare these to observationally-derived diagnostics derived from the International Soil Carbon Database (ISCN) to assess the realism of model predictions of carbon depthattenuation, and the ability of observations to provide a constraint on rates of decomposition at depth.

  7. Carbosoil, a land evaluation model for soil carbon accounting

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, M.; Muñoz-Rojas, M.; Pino, R.; Jordan, A.; Zavala, L. M.; De la Rosa, D.

    2012-04-01

    The belowground carbon content is particularly difficult to quantify and most of the time is assumed to be a fixed fraction or ignored for lack of better information. In this respect, this research presents a land evaluation tool, Carbosoil, for predicting soil carbon accounting where this data are scarce or not available, as a new component of MicroLEIS DSS. The pilot study area was a Mediterranean region (Andalusia, Southern Spain) during 1956-2007. Input data were obtained from different data sources and include 1689 soil profiles from Andalusia (S Spain). Previously, detailed studies of changes in LU and vegetation carbon stocks, and soil organic carbon (SOC) dynamic were carried out. Previous results showed the influence of LU, climate (mean temperature and rainfall) and soil variables related with SOC dynamics. For instance, SCS decreased in Cambisols and Regosols by 80% when LU changed from forest to heterogeneous agricultural areas. Taking this into account, the input variables considered were LU, site (elevation, slope, erosion, type-of-drainage, and soil-depth), climate (mean winter/summer temperature and annual precipitation), and soil (pH, nitrates, CEC, sand/clay content, bulk density and field capacity). The available data set was randomly split into two parts: training-set (75%), and validation-set (25%). The model was built by using multiple linear regression. The regression coefficient (R2) obtained in the calibration and validation of Carbosoil was >0.9 for the considered soil sections (0-25, 25-50, and 50-75 cm). The validation showed the high accuracy of the model and its capacity to discriminate carbon distribution regarding different climate, LU and soil management scenarios. Carbosoil model together with the methodologies and information generated in this work will be a useful basis to accurately quantify and understanding the distribution of soil carbon account helpful for decision makers.

  8. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements.

    PubMed

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2016-07-01

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight percent in ~10cm layer for any carbon depth profile is demonstrated using Monte-Carlo simulation (Geant4). Comparison of INS and dry combustion measurements confirms this conclusion. Thus, INS measurements give the value of this soil carbon parameter. PMID:27124122

  9. Can Earthworm "mix up" Soil Carbon Budgets in Temperate Forests Under Elevated Carbon Dioxide?

    NASA Astrophysics Data System (ADS)

    Sánchez-de León, Y.; González-Meler, M.; Sturchio, N. C.; Wise, D. H.; Norby, R. J.

    2008-12-01

    The effects of global change on earthworms and their associated feedbacks on soil and ecosystem processes have been largely overlooked. We studied how the responses of a temperate deciduous forest to elevated carbon dioxide atmospheric concentrations (e[CO2]) influence earthworms and the soil processes affected by them. Our objectives were to: i) identify soil layers of active soil mixing under e[CO2] and current carbon dioxide atmospheric concentrations (c[CO2]) using fallout cesium (137Cs), ii) study how e[CO2] affects earthworm populations, iii) understand the relationship between soil mixing and earthworms at our study site, and iv) identify the implications of earthworm-mediated soil mixing for the carbon budget of a temperate forest. To study soil mixing, we measured vertical 137Cs activity in soil cores (0-24 cm depth) collected in replicated e[CO2] and c[CO2] sweetgum (Liquidambar styraciflua) plots (n = 2) in a Free Air CO2 Enrichment (FACE) ecosystem experiment at Oak Ridge National Laboratory. We measured earthworm density and fresh weight in the plots in areas adjacent to where soil cores were taken. Preliminary results on the vertical distribution of 137Cs in the c[CO2] treatments showed that higher 137Cs activity was located from 8-16 cm depth and no 137Cs activity was measured below 20 cm. In contrast, in the e[CO2] treatment, peak 137Cs activity was slightly deeper (10-18 cm), and 137Cs activity was still measured below 22 cm. Mean earthworm density was higher in e[CO2] than c[CO2] treatments (168 m-2 and 87 m-2, respectively; p = 0.046); earthworm fresh weights, however, did not differ significantly between treatments (32 g m-2 and 18 g m-2, respectively; p = 0.182). The 137Cs vertical distribution suggest that soil mixing occurs deeper in e[CO2] than in c[CO2] treatments, which is consistent with higher earthworm densities in e[CO2] than in c[CO2] treatments. Mixing deeper low carbon content soil with shallower high carbon soil may result in a

  10. Soil carbon stocks in Sarawak, Malaysia.

    PubMed

    Padmanabhan, E; Eswaran, H; Reich, P F

    2013-11-01

    The relationship between greenhouse gas emission and climate change has led to research to identify and manage the natural sources and sinks of the gases. CO2, CH4, and N2O have an anthropic source and of these CO2 is the least effective in trapping long wave radiation. Soil carbon sequestration can best be described as a process of removing carbon dioxide from the atmosphere and relocating into soils in a form that is not readily released back into the atmosphere. The purpose of this study is to estimate carbon stocks available under current conditions in Sarawak, Malaysia. SOC estimates are made for a standard depth of 100 cm unless the soil by definition is less than this depth, as in the case of lithic subgroups. Among the mineral soils, Inceptisols tend to generally have the highest carbon contents (about 25 kg m(-2) m(-1)), while Oxisols and Ultisols rate second (about 10-15 kg m(-2) m(-1)). The Oxisols store a good amount of carbon because of an appreciable time-frame to sequester carbon and possibly lower decomposition rates for the organic carbon that is found at 1m depths. Wet soils such as peatlands tend to store significant amounts of carbon. The highest values estimated for such soils are about 114 kg m(-2) m(-1). Such appreciable amounts can also be found in the Aquepts. In conclusion, it is pertinent to recognize that degradation of the carbon pool, just like desertification, is a real process and that this irreversible process must be addressed immediately. Therefore, appropriate soil management practices should be instituted to sequester large masses of soil carbon on an annual basis. This knowledge can be used effectively to formulate strategies to prevent forest fires and clearing: two processes that can quickly release sequestered carbon to the atmosphere in an almost irreversible manner. PMID:23541401

  11. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees

    PubMed Central

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L. Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620

  12. Hyperspectral analysis of soil nitrogen, carbon, carbonate, and organic matter using regression trees.

    PubMed

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R(2) 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R(2) 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R(2) 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R(2) 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620

  13. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. PMID:22959898

  14. Soil carbon changes for bioenergy crops.

    SciTech Connect

    Andress, D.

    2004-04-22

    Bioenergy crops, which displace fossil fuels when used to produce ethanol, biobased products, and/or electricity, have the potential to further reduce atmospheric carbon levels by building up soil carbon levels, especially when planted on lands where these levels have been reduced by intensive tillage. The purpose of this study is to improve the characterization of the soil carbon (C) sequestration for bioenergy crops (switchgrass, poplars, and willows) in the Greenhouse gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Wang 1999) by using the latest results reported in the literature and by Oak Ridge National Laboratory (ORNL). Because soil carbon sequestration for bioenergy crops can play a significant role in reducing greenhouse gas (GHG) emissions for cellulosic ethanol, it is important to periodically update the estimates of soil carbon sequestration from bioenergy crops as new and better data become available. We used the three-step process described below to conduct our study.

  15. Testing Carbon Sequestration in Soil Through the Addition of Gypsum

    NASA Astrophysics Data System (ADS)

    Han, Y.; Tokunaga, T. K.; Wan, J.; Conrad, M. E.; Salve, R.

    2011-12-01

    In order to help control adverse effects of increased atmospheric concentrations of CO2, effective methods for fixing carbon need to be developed. Given the large C inventories and fluxes associated with soils, it is important to identify cost- and energy-effective means for increasing long-term C retention within soil profiles. This study investigates the alternative strategy of increasing carbon retention in soils through accelerating calcite (CaCO3) precipitation and promoting soil organic carbon (SOC) complexation on mineral surfaces. With the addition of calcium ion to soils with pH > 8 often found in arid and semi-arid regions, the slow process of calcite precipitation may be accelerated. Calcium also promotes SOC binding onto mineral surfaces, diminishing leaching of SOC. Addition of flue gas desulfurization gypsum (FGDG) represents an inexpensive source of calcium to natural, slightly alkaline soil surfaces which might promote the fixation of CO2 as calcite and decrease leaching losses of organic carbon. To test this hypothesis, we prepared laboratory soil columns (7.5 cm in diameter and 85 cm in height) with and without calcium sulfate-amended layers. The distribution of carbon in the columns was monitored in gaseous, aqueous and solid phases over a period of several months to test the effect of adding calcium ions. In some columns, a relatively high fraction of 13C-labeled bicarbonate was injected to differentiate the newly precipitated calcite from the initial calcite present in the soil. The potential for more distinct calcite precipitation within the soil root zone will be investigated in vegetated soil columns. Through obtaining C mass balances in soil profiles, this study is quantifying the efficiency of gypsum amendments for mitigating C losses to the atmosphere.

  16. Soil Organic Carbon Mapping by Geostatistics in Europe Scale

    NASA Astrophysics Data System (ADS)

    Aksoy, E.; Panagos, P.; Montanarella, L.

    2013-12-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because SOC is an important soil component that plays key roles in the functions of both natural ecosystems and agricultural systems. The SOC content varies from place to place and it is strongly related with climate variables (temperature and rainfall), terrain features, soil texture, parent material, vegetation, land-use types, and human management (management and degradation) at different spatial scales. Geostatistical techniques allow for the prediction of soil properties using soil information and environmental covariates. In this study, assessment of SOC distribution has been predicted with Regression-Kriging method in Europe scale. In this prediction, combination of the soil samples which were collected from the LUCAS (European Land Use/Cover Area frame statistical Survey) & BioSoil Projects, with local soil data which were collected from six different CZOs in Europe and ten spatial predictors (slope, aspect, elevation, CTI, CORINE land-cover classification, parent material, texture, WRB soil classification, annual average temperature and precipitation) were used. Significant correlation between the covariates and the organic carbon dependent variable was found. Moreover, investigating the contribution of local dataset in watershed scale into regional dataset in European scale was an important challenge.

  17. Factors and processes governing the C-14 content of carbonate in desert soils

    NASA Technical Reports Server (NTRS)

    Amundson, Ronald; Wang, Yang; Chadwick, Oliver; Trumbore, Susan; Mcfadden, Leslie; Mcdonald, Eric; Wells, Steven; Deniro, Michael

    1994-01-01

    A model is presented describing the factors and processes which determine the measured C-14 ages of soil calcium carbonate. Pedogenic carbonate forms in isotopic equilium with soil CO2. Carbon dioxide in soils is a mixture of CO2 derived from two biological sources: respiration by living plant roots and respiration of microorganisms decomposing soil humus. The relative proportion of these two CO2 sources can greatly affect the initial C-14 content of pedogenic carbonate: the greater the contribution of humus-derived CO2, the greater the initial C-14 age of the carbonate mineral. For any given mixture of CO2 sources, the steady-state (14)CO2 distribution vs. soil depth can be described by a production/diffusion model. As a soil ages, the C-14 age of soil humus increases, as does the steady-state C-14 age of soil CO2 and the initial C-14 age of any pedogenic carbonate which forms. The mean C-14 age of a complete pedogenic carbonate coating or nodule will underestimate the true age of the soil carbonate. This discrepancy increases the older a soil becomes. Partial removal of outer (and younger) carbonate coatings greatly improves the relationship between measured C-14 age and true age. Although the production/diffusion model qualitatively explains the C-14 age of pedogenic carbonate vs. soil depth in many soils, other factors, such as climate change, may contribute to the observed trends, particularily in soils older than the Holocene.

  18. Correlation of cadmium distribution coefficients to soil characteristics.

    PubMed

    Holm, Peter E; Rootzén, Helle; Borggaard, Ole K; Møberg, Jens Peter; Christensen, Thomas H

    2003-01-01

    Cadmium (Cd) distribution between the soil solid phase and the soil solution is a key issue in assessing the environmental effect of Cd in the terrestrial environmental. Previous studies have shown that many individual minerals and other components found in soils can bind Cd, but most studies on whole soil samples have shown that pH is the main parameter controlling the distribution. To identify further the components that are important for Cd binding in soil we measured Cd distribution coefficients (Kd) at two fixed pH values and at low Cd loadings for 49 soils sampled in Denmark. The Kd values for Cd ranged from 5 to 3000 L kg(-1). The soils were described pedologically and characterized in detail (22 parameters) including determination of contents of the various minerals in the clay fraction. Correlating parameters were grouped and step-wise regression analysis revealed that the organic carbon content was a significant variable at both pH values. Cation exchange capacity (CEC) and gibbsite were important at the low pH (5.3) while iron oxides also were important at the high pH (6.7). None of the other clay minerals present in the soils (illite, smectite, kaolinite, hydroxy interlayered clay minerals [HIM], chlorite, quartz, microcline, plagioclase) were significant in explaining the Cd distribution coefficient. PMID:12549552

  19. Soil carbon sequestration estimated with the soil conditioning index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid and reliable assessments of the potential of different agricultural management systems to sequester soil organic carbon are needed to promote conservation and help mitigate greenhouse gas emissions. The soil conditioning index (SCI) is a relatively simple model to parameterize and is currentl...

  20. Soil carbon changes influenced by soil management and calculation method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing bulk density ('b). This study evaluates the temporal changes in SOC caused by two factors: (i) changing SOC concentrati...

  1. Soil Organic Carbon Stocks in Depositional Landscapes of Bavaria

    NASA Astrophysics Data System (ADS)

    Kriegs, Stefanie; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2016-04-01

    Erosion leads to redistribution and accumulation of soil organic matter (SOM) within agricultural landscapes. These fluvic and colluvic deposits are characterized by a highly diverse vertical structure and can contain high amounts of soil organic carbon (SOC) over the whole soil profile. Depositional landscapes are therefore not only productive sites for agricultural use but also influence carbon dynamics which is of great interest with regard on the recent climate change debate. The aim of our study is to elucidate the spatial distribution of organic carbon stocks, as well as its depth function and the role of these landscapes as a reservoir for SOM. Therefore we compare two representative depositional landscapes in Bavaria composed of different parent materials (carbonate vs. granitic). We hypothesize that the soils associated with different depositional processes (fluvial vs. colluvial) differ in SOC contents and stocks, also because of different hydromorphic regimes in fluvic versus colluvic soil profiles. Sampling sites are located in the Alpine Foreland (quaternary moraines with carbonatic parent material) and the foothills of the Bavarian Forest (Granite with Loess) with the main soil types Fluvisols, Gleysols and Luvisols. At both sites we sampled twelve soil profiles up to 150 cm depth, six in the floodplain and six along a vertical slope transect. We took undisturbed soil samples from each horizon and analyzed them for bulk density, total Carbon (OC and IC) and total Nitrogen (N) concentrations. This approach allows to calculate total OC contents and OC stocks and to investigate vertical and horizontal distribution of OC stocks. It will also reveal differences in OC stocks due to the location of the soil profile in fluvic or colluvic deposition scenarios.

  2. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanuel, W.R.; Olson, J.S.

    1984-05-01

    A compilation of soil carbon and nitrogen storage data for more than 3500 soil profiles from under natural vegetation or relatively undisturbed sites is presented in this report. A summary table of the carbon and nitrogen storage in a pedon of surface cubic meter for each soil profile, as well as location, elevation, climate, parent material, and vegetation information, are presented. The data were used to determine average carbon and nitrogen storage on land surfaces of the world. Calculations were also made of storage related to climatic classifications, ecosystem clasifications, and latitudinal increments from the equator to 75/sup 0/. Carbon (kg.m/sup -3/) varies from 2 in hot dry climates, through 10 in many cold dry or seasonally moist (warm or hot) climates, to more than 30 in wet alpine or subpolar climates. Nitrogen storage, an order of magnitude smaller than carbon storage in soils, shows broad parallels but exceeds 1600 g.m/sup -3/ for subtropical/tropical premontane or lower montane soils, as well as alpine or subpolar wet soils. Such limiting conditions, defined by a balance of income and loss rates for mature soil profiles, also explain much of the variation among major ecosystem complexes whose soils are partly disturbed, incompletely recovered, or imperfectly known regarding their maturity and stability. Classifying profiles into Holdridge life zones and using appropriate life zone areas, we estimate 1309 x 10/sup 15/ g carbon and 92 x 10/sup 15/ g nitrogen in the world's soils. Alternatively, using average organic carbon and nitrogen densities from one degree latitude bands multiplied by the earth's surface area in the respective bands, we arrive at 1728 x 10/sup 15/ g of carbon and 117 x 10/sup 15/ g of nitrogen. Inadequacies that lead to the disparate estimates are discussed. 123 references, 5 figures, 7 tables.

  3. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  4. [Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system].

    PubMed

    Liu, Wei; Lü, Hao-Hao; Chen, Ying-Xu; Wu, Wei-Xiang

    2008-03-01

    As a main life element, carbon plays important role in the matter cycling in soil-plant system. Stable carbon isotope 13C has been widely used in the study of carbon cycling in soil-plant system, due to its safe, no pollution, and easy to be handled. Through the analysis of both natural and labeled 13C organic matter in soil-plant system, a better understanding of the mechanisms of photosynthesis, the distribution of photosynthates in plant-soil system, the fate of plant litter, and the source of new carbon in soil could be achieved. In this paper, the applications of stable carbon isotope technique in the researches of photosynthesis, reconstruction of paleoclimate, turnover of soil organic matter, and interactions between plants and rhizosphere microorganisms were briefly summarized, and the perspectives of the application of stable carbon isotope technique were also discussed, based on the issues existed in current researches. PMID:18533543

  5. Carbon Management Response curves: estimates of temporal soil carbon dynamics.

    PubMed

    West, Tristram O; Marland, Gregg; King, Anthony W; Post, Wilfred M; Jain, Atul K; Andrasko, Kenneth

    2004-04-01

    Measurement of the change in soil carbon that accompanies a change in land use (e.g., forest to agriculture) or management (e.g., conventional tillage to no-till) can be complex and expensive, may require reference plots, and is subject to the variability of statistical sampling and short-term variability in weather. In this paper, we develop Carbon Management Response (CMR) curves that could be used as an alternative to in situ measurements. The CMR curves developed here are based on quantitative reviews of existing global analyses and field observations of changes in soil carbon. The curves show mean annual rates of soil carbon change, estimated time to maximum rates of change, and estimated time to a new soil carbon steady state following the initial change in management. We illustrate how CMR curves could be used in a carbon accounting framework while effectively addressing a number of potential policy issues commonly associated with carbon accounting. We find that CMR curves provide a transparent means to account for changes in soil carbon accumulation and loss rates over time, and also provide empirical relationships that might be used in the development or validation of ecological or Earth systems models. PMID:15453404

  6. Soil Inorganic Carbon Formation: Can Parent Material Overcome Climate?

    NASA Astrophysics Data System (ADS)

    Stanbery, C.; Will, R. M.; Seyfried, M. S.; Benner, S. G.; Flores, A. N.; Guilinger, J.; Lohse, K. A.; Good, A.; Black, C.; Pierce, J. L.

    2014-12-01

    Soil carbon is the third largest carbon reservoir and is composed of both organic and inorganic constituents. However, the storage and flux of soil carbon within the global carbon cycle are not fully understood. While organic carbon is often the focus of research, the factors controlling the formation and dissolution of soil inorganic carbon (SIC) are complex. Climate is largely accepted as the primary control on SIC, but the effects of soil parent material are less clear. We hypothesize that effects of parent material are significant and that SIC accumulation will be greater in soils formed from basalts than granites due to the finer textured soils and more abundant calcium and magnesium cations. This research is being conducted in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho. The watershed is an ideal location because it has a range of gradients in precipitation (250 mm to 1200 mm), ecology (sagebrush steppe to juniper), and parent materials (a wide array of igneous and sedimentary rock types) over a relatively small area. Approximately 20 soil profiles will be excavated throughout the watershed and will capture the effects of differing precipitation amounts and parent material on soil characteristics. Several samples at each site will be collected for analysis of SIC content and grain size distribution using a pressure calcimeter and hydrometers, respectively. Initial field data suggests that soils formed over basalts have a higher concentration of SIC than those on granitic material. If precipitation is the only control on SIC, we would expect to see comparable amounts in soils formed on both rock types within the same precipitation zone. However, field observations suggest that for all but the driest sites, soils formed over granite had no SIC detected while basalt soils with comparable precipitation had measurable amounts of SIC. Grain size distribution appears to be a large control on SIC as the sandier, granitic soils promote

  7. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon

  8. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed. PMID:20879549

  9. Soil carbon sequestration: Quantifying this ecosystem service

    EPA Science Inventory

    Soils have a crucial role in supplying many goods and services that society depends upon on a daily basis. These include food and fiber production, water cleansing and supply, nutrient cycling, waste isolation and degradation. Soils also provide a significant amount of carbon s...

  10. Environmental Controls of Soil Organic Carbon in Soils Across Amazonia

    NASA Astrophysics Data System (ADS)

    Quesada, Carlos Alberto; Paz, Claudia; Phillips, Oliver; Nonato Araujo Filho, Raimundo; Lloyd, Jon

    2015-04-01

    Amazonian forests store and cycle a significant amount of carbon on its soils and vegetation. Yet, Amazonian forests are now subject to strong environmental pressure from both land use and climate change. Some of the more dramatic model projections for the future of the Amazon predict a major change in precipitation followed by savanization of most currently forested areas, resulting in major carbon losses to the atmosphere. However, how soil carbon stocks will respond to climatic and land use changes depend largely on how soil carbon is stabilized. Amazonian soils are highly diverse, being very variable in their weathering levels and chemical and physical properties, and thus it is important to consider how the different soils of the Basin stabilize and store soil organic carbon (SOC). The wide variation in soil weathering levels present in Amazonia, suggests that soil groups with contrasting pedogenetic development should differ in their predominant mechanism of SOC stabilization. In this study we investigated the edaphic, mineralogical and climatic controls of SOC concentration in 147 pristine forest soils across nine different countries in Amazonia, encompassing 14 different WRB soil groups. Soil samples were collected in 1 ha permanent plots used for forest dynamics studies as part of the RAINFOR project. Only 0-30 cm deep averages are reported here. Soil samples were analyzed for carbon and nitrogen and for their chemical (exchangeable bases, phosphorus, pH) and physical properties, (particle size, bulk density) and mineralogy through standard selective dissolution techniques (Fe and Al oxides) and by semi-quantitative X-Ray diffraction. In Addition, selected soils from each soil group had SOC fractionated by physical and chemical techniques. Our results indicate that different stabilization mechanisms are responsible for SOC stabilization in Amazonian soils with contrasting pedogenetic level. Ferralsols and Acrisols were found to have uniform mineralogy

  11. Investigation of soil carbon sequestration processes in a temperate deciduous forest using soil respiration experiments

    NASA Astrophysics Data System (ADS)

    Schütze, Claudia; Marañón-Jiménez, Sara; Zöphel, Hendrik; Gimper, Sebastian; Dienstbach, Laura; Garcia Quirós, Inmaculada; Cuntz, Matthias; Rebmann, Corinna

    2016-04-01

    Considering the carbon cycles of terrestrial ecosystems, soils represent a major long-term carbon storage pool. However, the storage capacity depends on several impact parameters based on biotic factors (e.g. vegetation activity, microbial activity, nutrient availability, interactions between vegetation and microbial activity) and abiotic driving factors (e.g. soil moisture, soil temperature, soil composition). Especially, increases in vegetation and microbial activity can lead to raised soil carbon release detectable as higher soil respiration rates. Within the frame of the ICOS project, several soil respiration experiments are under consideration at the temperate deciduous forest site "Hohes Holz" (Central Germany). These experiments started in May 2014. Soil respiration data acquisition was carried out using 8 automatic continuous chambers (LI-COR) and 60 different plots for bi-weekly survey chamber measurements in order to clarify the controlling factors for soil CO2 emissions such as litter availability, above- and belowground vegetation, and activation of microbial activity with temperature, soil moisture and root occurrence. Hence, several treatments (trenched, non-trenched, litter supply) were investigated on different plots within the research area. The data analysis of the 20-month observation period reveals preliminary results of the study. Obviously, significant differences between the trenched and the non-trenched plots concerning the CO2 emissions occurred. Increased soil carbon releases are supposed to be associated to the activation of microbial mineralization of soil organic matter by root inputs. Furthermore, depending on the amount of litter supply, different levels of activation were observed. The data of the continuous chamber measurements with a temporal resolution of one hour sampling interval can be used to show the dependence on above described biogeochemical processes due to abiotic controlling factors. Especially, soil moisture as a

  12. Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.

    PubMed

    Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R

    2015-07-21

    Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas. PMID:26114917

  13. Understanding on Soil Inorganic Carbon Transformation in North China

    NASA Astrophysics Data System (ADS)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    Soil total carbon balance in long-term fertilization field experiments in North China Plain. Four long-term fertilization experiments (20-30 years) were investigated on SOC in 40 cm, calcium carbonate and active carbonate (AC) in 180 or 100 cm soil profile, δ13C values of SOC and δ13C and δ18O values of carbonate in soil profile, particle distribution of SOC and SIC in main soil layers, and ratios of pedogenic carbonate (PC) in SIC and C3-SOC in SOC. The most important conclusion is that fertilization of more than 20 years can produce detectable impact on pool size, profile distribution, ratio of active component and PC of SIC, which make it clear that SIC pool must be considered in the proper evaluation of the response of soil carbon balance to human activities in arid and semi-arid region. Land use impact on soil total carbon pool in Inner Mongolia. With the data of the second survey of soils in Inner Mongolia and the 58 soil profile data from Wu-lan-cha-bu-meng and Xi-lin-hao-te, combining with the 13C and 18O techniques, SIC density and stock in Inner Mongolia is estimated. The main conclusion is that soils in inner Mongolia have the same level of SOC and SIC, with the density in 100cm pedons of 8.97 kg•m-2 and 8.61 kg•m-2, respectively. Meanwhile, the significantly positive relationship between SOC and SIC in A layer indicates co-sequestration of SOC and SIC exist. Evaluation of the methods for measuring CA enzyme activity in soil. In laboratory, method in literature to measure CA activity in soil sample was repeated, and found it was not valid indeed. The failure could not attribute to the disturbance of common ions like NO3-, SO42-, Ca2+, and Mg2+. The adsorption of CA to soil material was testified as the main reason for that failure. A series of extractants were tested but no one can extract the adsorbed CA and be used in measuring CA activity in soil sample. Carbonate transformation in field with straw returned and biochar added. In 2009, a field

  14. Nitrate distribution in Mojave Desert soils

    SciTech Connect

    Hunter, R.B.; Romney, E.M.; Wallace, A.

    1982-07-01

    Extensive sampling shows high variability in nitrate concentration within profiles of Mojave Desert soils. This high variability greatly complicates studies of desert soil N and its ecological role. Patterns in nitrate distribution suggest effects of litter decomposition under shrubs, surface leaching in bare areas, and plant uptake in the root zone. Two mechanisms proposed to explain high concentrations found at seemingly random depths are concentration at drying fronts and distribution along water potential gradients.

  15. ESTABLISHING A SOIL CARBON BASELINE FOR CARBON ACCOUNTING THE FORESTED SOILS OF THE UNITED STATES

    EPA Science Inventory

    Soils are an important global reservoir of organic carbon (C). It has been estimated that at 1500 Pg world soils hold approximately three times the amount of C held in vegetation and two times that in the atmosphere. Soils provide a relatively stable reservoir for C. With the int...

  16. Carbon sequestration potential of coastal wetland soils of Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Fuentes-Romero, Elisabeth; García-Calderón, Norma Eugenia; Ikkonen, Elena; García-Varela, Kl

    2014-05-01

    Tropical coastal wetlands, including rainforests and mangrove ecosystems play an increasingly important ecological and economic role in the tropical coastal area of the State of Veracruz /Mexico. However, soil processes in these environments, especially C-turnover rates are largely unknown until today. Therefore, we investigated CO2 and CH4 emissions together with gains and losses of organic C in the soils of two different coastal ecosystems in the "Natural Protected Area Cienaga del Fuerte (NPACF)" near Tecolutla, in the State of Veracruz. The research areas were an artificially introduced grassland (IG) and a wetland rainforest (WRF). The gas emissions from the soil surfaces were measured by a static chamber array, the soil organic C was analysed in soil profiles distributed in the two areas, humic substances were characterized and C budget was calculated. The soils in both areas acted as carbon sinks, but the soils of the WRF sequestered more C than those of the IG, which showed a higher gas emission rate and produced more dissolved organic carbon. The gas emission measurements during the dry and the rainy seasons allowed for estimating the possible influence of global warming on gas fluxes from the soils of the two different ecological systems, which show in the WRF a quite complex spatial emission pattern during the rainy season in contrast to a more continuous emission pattern in the IG plots

  17. Carbon and carbon-14 in lunar soil 14163

    SciTech Connect

    Fireman, E.L.; Stoenner, R.W.

    1981-01-01

    Carbon is removed from the surface of lunar soil 14163 size fractions by combustions at 500 and 1000/sup 0/C in an oxygen stream and the carbon contents and the carbon-14 activities are measured. The carbon contents are inversely correlated with grain size. A measured carbon content of 198 ppM for bulk 14163, obtained by combining the size fraction results, is modified to 109 +- 12 ppM by a carbon contamination correction. This value is in accord with a previous determination, 110 ppM, for bulk 14163. The small (< 53 ..mu..) grains of 14163 had more combusted carbon-14 activity, 31.2 +- 2.5 dpm /kg, than the large (> 53 ..mu..) grains, 11.2 +- 2.0 dpm/kg. The combusted carbon and carbon-14 are attributed mainly to solar-wind implantation. Melt extractions of carbon-14 from the combusted soil samples gave essentially identical activities, 21.0 +- 1.5 and 19.2 +- 2.0 dpm/kg for the small and large grains, and are attributed to cosmic-ray spallation-produced carbon-14.

  18. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    USGS Publications Warehouse

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions

  19. Non-Destructive Carbon Measurement in Soil over Large Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon in soil plays a critical role in soil quality and productivity. Changes in soil management practices, as for example switching from conventional till (CT) to no till (NT), precision agriculture, carbon sequestration, and soil carbon stocks required in modeling global warming necessitate exten...

  20. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation

    NASA Astrophysics Data System (ADS)

    Ma, Wenming; Li, Zhongwu; Ding, Keyi; Huang, Jinquan; Nie, Xiaodong; Zeng, Guangming; Wang, Shuguang; Liu, Guiping

    2014-12-01

    Water erosion governs soil carbon reserves and distribution across the watershed or ecosystem. The dynamics of dissolved organic carbon (DOC) under water erosion in red agricultural soil is not clear. To determine the effect of tillage management and water erosion on vertical and lateral transportation of soil organic carbon (SOC) and DOC production under distinct rainfall intensities in the hilly red soil region of southern China, a chisel tillage plot with low rainfall intensity (CT-L) and two no-tillage plots with high (NT-H) and low rainfall intensity (NT-L) studies were conducted. Soil samples were collected from 0-5, 5-10, 10-20, and 20-40 cm soil layers from triplicate soil blocks pre- and post-rainfall for determining concentration of SOC and DOC. Runoff samples were collected at every 6 min for determining concentration of DOC and sediments during rainfall simulations on runoff plots (2 m × 5 m) with various intensities. No fertilizer was applied in any plots. Results clearly show that runoff volumes, sediments and SOC entrained with sediment, and laterally mobilized DOC were significantly larger on NT-H compared to other plots, coinciding with changes in rainfall intensity; and the extent of roughness of the plot surface (CT vs. NT) was the variation in runoff DOC concentration. During the simulated rainfall events, DOC exports average 0.76, 0.64, and 0.27 g C m- 2 h- 1; SOC exports average 3.52, 1.08, and 0.07 g m- 2 h- 1 in the NT-H, NT-L, and CT-L soils, respectively. The maximum export of DOC was obtained under a high intensity rainfall plot, which lagged behind maximum runoff volumes, sediments, and SOC losses with sediment. Export of DOC was proportional to SOC content of soil loss. The least DOC losses in surface runoff and SOC losses with sediment were observed in CT-L plots. Vertical DOC mobilization achieved its maximum with low intensity rainfall under CT treatment. The DOC did not accumulate at the soil surface and was distributed mainly in

  1. Linking soil bacterial biodiversity and soil carbon stability.

    PubMed

    Mau, Rebecca L; Liu, Cindy M; Aziz, Maliha; Schwartz, Egbert; Dijkstra, Paul; Marks, Jane C; Price, Lance B; Keim, Paul; Hungate, Bruce A

    2015-06-01

    Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability. PMID:25350158

  2. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration. PMID:25216023

  3. Soil Carbon and Nitrogen Cycle Modeling

    NASA Astrophysics Data System (ADS)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  4. Variable carbon contents of lunar soil 74220

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Moore, C. B.

    1973-01-01

    Total carbon, sulfur, and inorganic gas release studies have been carried out on an additional split of orange soil 74220. The total carbon content was found to be 4 plus or minus 3 ppm C for this sample as compared to an earlier reported value of 100 plus or minus 10 ppm C. Gas release studies on the two splits of 74220 indicate that the carbon may be present as a surface condensate on the sample showing the higher carbon content. The 'surface condensate' evolves CO2 upon heating to temperatures below 400 C.

  5. Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale

    NASA Astrophysics Data System (ADS)

    Averill, C.; Barry, B. K.; Hawkes, C.

    2015-12-01

    Soil carbon storage and decay is regulated by the activity of free-living decomposer microbes, which can be limited by nitrogen availability. Many plants associate with symbiotic ectomycorrhizal fungi on their roots, which produce nitrogen-degrading enzymes and may be able to compete with free-living decomposers for soil organic nitrogen. By doing so, ectomycorrhizal fungi may able to induce nitrogen limitation and reduce activity of free-living microbial decomposition by mining soil organic nitrogen. The implication is that ectomycorrhizal-dominated systems should have increased soil carbon storage relative to non-ectomycorrhizal systems, which has been confirmed at a global scale. To investigate these effects, we analyzed 364 globally distributed observations of soil fungal communities using 454 sequencing of the ITS region, along with soil C and N concentrations, climate and chemical data. We assigned operational taxonomic units using the QIIME pipeline and UNITE fungal database and assigned fungal reads as ectomycorrhizal or non-mycorrhizal based on current taxonomic knowledge. We tested for associations between ectomycorrhizal abundance, climate, and soil carbon and nitrogen. Sites with greater soil carbon had quantitatively more ectomycorrhizal fungi within the soil microbial community based on fungal sequence abundance, after accounting for soil nitrogen availability. This is consistent with our hypothesis that ectomycorrhizal fungi induce nitrogen-limitation of free-living decomposers and thereby increase soil carbon storage. The strength of the mycorrhizal effect increased non-linearly with ectomycorrhizal abundance: the greater the abundance, the greater the effect size. Mean annual temperature, potential evapotranspiration, soil moisture and soil pH were also significant predictors in the final AIC selected model. This analysis suggests that molecular data on soil microbial communities can be used to make quantitative biogeochemical predictions. The

  6. Pedogenetic processes and carbon budgets in soils of Queretaro, Mexico

    NASA Astrophysics Data System (ADS)

    García Calderón, Norma Eugenia; Fuentes Romero, Elizabeth; Hernandez Silva, Gilberto

    2014-05-01

    Pedogenetic processes have been investigated in two different physiographic regions of the state of Querétaro in order to assess the carbon budget of soils, looking into the gains and losses of organic and inorganic carbon: In the mountain region of the natural reserve Sierra Gorda (SG) with soils developed on cretaceous argillites and shales under sub-humid temperate to semi-arid conditions, and in the Transmexican Volcanic Belt (TMVB) with soils developed on acid and intermediate igneous rocks under humid temperate climate in the highlands and semi-arid and subhumid subtropical conditions in the lowlands. The analyses of soil organic carbon (SOC) and soil inorganic carbon (SIC) of the SG region, including additional physical, chemical and mineralogical investigations were based on 103 topsoils in an area of 170 km2. The analyses in the TMVB region were based on the profiles of a soil toposequence from high mountainous positions down to the plains of the lowlands. The results show a SOC accumulation from temperate to semi-arid forest environments, based on processes of humification and clay formation including the influence of exchangeable Ca and the quantity and quality of clay minerals. The turnover rates of SOC and SIC depended largely on the rock parent materials, especially the presence of carbonate rocks. Moreover, we found that the SOC content and distribution was clearly depending on land use, decreasing from forests to agricultural land, such as pasture and cropping areas and were lowest under mining sites. The highest SIC pools were found in accumulation horizons of soils under semi-arid conditions. On all investigated sites SOC decreased the mobility of cations and especially that of heavy metals, such as As, Hg, Sb, Pb, and Cd.

  7. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    PubMed

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices. PMID:22007474

  8. Measuring and modeling continuous quality distributions of soil organic matter

    NASA Astrophysics Data System (ADS)

    Bruun, S.; Gren, G. I. Ã.; Christensen, B. T.; Jensen, L. S.

    2010-01-01

    An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution approaches the underlying continuum. Continuous distributions lead to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods will have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help generate the interest needed to accommodate this.

  9. Measuring and modelling continuous quality distributions of soil organic matter

    NASA Astrophysics Data System (ADS)

    Bruun, S.; Gren, G. I.; Christensen, B. T.; Jensen, L. S.

    2009-09-01

    An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution is approaching the underlying continuum. Continuous distributions leads to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help spawning the interest needed to accommodate this.

  10. Urban Tree Effects on Soil Organic Carbon

    PubMed Central

    Edmondson, Jill L.; O'Sullivan, Odhran S.; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J.; Leake, Jonathan R.

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  11. Urban tree effects on soil organic carbon.

    PubMed

    Edmondson, Jill L; O'Sullivan, Odhran S; Inger, Richard; Potter, Jonathan; McHugh, Nicola; Gaston, Kevin J; Leake, Jonathan R

    2014-01-01

    Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC) and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth) compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered. PMID:25003872

  12. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Tian, Q.

    2014-12-01

    sensitive to nutrient addition, and carbon mineralization in this layer is likely limited by carbon availability. Thus, any changes in environment conditions (global warming, nitrogen deposition, precipitation pattern change etc.) that affect the distribution of fresh carbon in soil profiles could then stimulate the release of deep soil carbon.

  13. Microbes residing in young organic rich Alaskan soils contain older carbon than those residing in old mineral high Arctic soils

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Slater, G. F.; Onstott, T. C.; Whyte, L.; Townsend-Small, A.

    2013-12-01

    Arctic soils range from very organic rich to low carbon and mineral-dominated soils. At present, we do not yet fully understand if all carbon in the Arctic is equally vulnerable to mineralization in a warmer climate. Many studies have demonstrated that ancient carbon is respired when permafrost has thawed, yet our understanding of the active layer and permafrost carbon dynamics is still emerging. In an effort to remedy this disconnect between our knowledge of surface fluxes and below ground processes, we used radiocarbon to examine the microbial carbon dynamics in soil cores from organic rich soils near Barrow, Alaska and mineral soils from the Canadian high Arctic. Specifically, we compared the microbial community using lipid biomarkers, the inputs of carbon using n-alkanes and measured the 14C of both the bulk organic carbon and of the microbial lipids. In theory, the microbial lipids (phospholipid fatty acids, PLFA) represent the viable microbial community, as these lipids are hydrolyzed quickly after cell death. Variations in the PLFA distributions suggested that different microbial communities inhabit organic rich Alaskan soils and those of the Canadian high Arctic. When the PLFA concentrations were converted to cellular concentration, they were within the same order of magnitude (1 to 5 x 108 cells/g dry soil) with slightly higher cell concentrations in the organic rich Alaskan soils. When these cellular concentrations were normalized to the organic carbon content, the Canadian high Arctic soils contained a greater proportion of microbes. Although bulk organic carbon 14C of Alaskan soils indicated more recent carbon inputs into the soil than the Canadian high Arctic soils, the 14C of the PLFA revealed the opposite. For corresponding depth horizons, microbes in Alaskan soils were consuming carbon 1000 to 1500 years older than those in the Canadian high Arctic. Differences between the 14C content of bulk organic carbon and the microbial lipids were much smaller

  14. Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Lorenz, K.

    2015-12-01

    Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.

  15. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  16. Agglutinates and carbon accumulation in Apollo 17 lunar soils

    NASA Technical Reports Server (NTRS)

    Basu, A.; Meinschein, W. G.

    1976-01-01

    A critical review of maturity with respect to the abundance of implanted solar wind elements (SWE) in lunar soils indicates: (1) that the Rosiwal Principle has limited applicability in determining implantation of SWE in lunar soils, and (2) that despite a depletion of SWE in agglutinitic glass, agglutinates are enriched in SWE due to the presence of buried surfaces of numerous clasts within agglutinates. A statistical analysis of published data of several Apollo 17 soils indicates that the abundance of carbon and, by analogy, the abundance of other SWE are correlatable with the agglutinate content and the mean grain size of lunar soils. Microscopic examination of more than 5000 grains of agglutinates in polished thin sections reveals a wide range of variability in the mineralogy, grain size distribution, degree of recycling, etc., of the clast population in agglutinates. This indicates that the volume-correlated SWE content of agglutinates may vary and need not be constant.

  17. Biotic versus geomorphic control of landscape soil carbon accumulation

    NASA Astrophysics Data System (ADS)

    Van Hemelryck, Hendrik; Govers, Gerard; Van Oost, Kristof

    2013-04-01

    Soil organic matter (SOM) is the largest terrestrial pool of carbon. In order to assess the impact of increasing human-induced land use changes and future climate on this huge reservoir, it is important to understand the complex process of carbon cycling at different temporal and spatial scales. A key challenge in this effort is the correct representation in global assessments and models of those processes that vary strongly over small scales and are strongly affected by the spatial distribution of carbon stocks (both horizontally and vertically) within the landscape. Many studies have shown that spatial variation of SOC storage at the landscape scale is related to topography as a result of either the redistribution of soil or spatial variation in biological C fluxes (input and decomposition). The objective of this study, is to assess the relative importance of biotic versus geomorphic controls in determining SOC patterns and their potential interactions. Therefore the relationships between topography on the one hand and SOC and carbon isotopes on the other hand, were quantified along an erosional gradient. For this purpose, a grassland area and two agricultural fields with a different management regime (conventional tillage, reduced tillage) were selected. All field sites have a similar topography but are characterized by different rates of soil redistribution, related to management regime. Our results show clearly that for temperate climate regions without moisture/nutrient deficit, soil redistribution is the main driver for spatial variations in SOC, dwarfing any biological effects. From the results, the impact of soil redistribution on carbon dynamics by the continued maintenance of a disequilibrium between carbon in-and output at different landscape positions is reconstructed and we discuss the implications for C sequestration processes.

  18. Impact of bioenergy production on carbon storage and soil functions

    NASA Astrophysics Data System (ADS)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  19. Carbon stabilization mechanisms in soils in the Andes

    NASA Astrophysics Data System (ADS)

    Jansen, Boris; Cammeraat, Erik

    2015-04-01

    The volcanic ash soils of the Andes contain very large stocks of soil organic matter (SOM) per unit area. Consequently, they constitute significant potential sources or sinks of the greenhouse gas CO2. Climate and/or land use change potentially have a strong effect on these large SOM stocks. To clarify the role of chemical and physical stabilisation mechanisms in volcanic ash soils in the montane tropics, we investigated carbon stocks and stabilization mechanisms in the top- and subsoil along an altitudinal transect in the Ecuadorian Andes. The transect encompassed a sequence of paleosols under forest and grassland (páramo), including a site where vegetation cover changed in the last century. We applied selective extraction techniques, performed X-ray diffraction analyses of the clay fraction and estimated pore size distributions at various depths in the top- and subsoil along the transect. In addition, from several soils the molecular composition of SOM was further characterized with depth in the current soil as well as the entire first and the top of the second paleosol using GC/MS analyses of extractable lipids and Pyrolysis-GC/MS analyses of bulk organic matter. Our results show that organic carbon stocks in the mineral soil under forest a páramo vegetation were roughly twice as large as global averages for volcanic ash soils, regardless of whether the first 30cm, 100cm or 200cm were considered. We found the carbon stabilization mechanisms involved to be: i) direct stabilization of SOM in organo-metallic (Al-OM) complexes; ii) indirect protection of SOM through low soil pH and toxic levels of Al; and iii) physical protection of SOM due to a very high microporosity of the soil (Tonneijck et al., 2010; Jansen et al. 2011). When examining the organic carbon at a molecular level, interestingly we found extensive degradation of lignin in the topsoil while extractable lipids were preferentially preserved in the subsoil (Nierop and Jansen, 2009). Both vegetation

  20. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe

    PubMed Central

    Aksoy, Ece

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas

  1. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural

  2. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha‑1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  3. Soil organic carbon mining versus priming - controls of soil organic carbon stocks along a management gradient

    NASA Astrophysics Data System (ADS)

    Blanes, M. Carmen; Reinsch, Sabine; Glanville, Helen C.; Jones, Davey L.; Carreira, José A.; Pastrana, David N.; Emmett, Bridget A.

    2015-04-01

    Soil carbon (C), nitrogen (N) and phosphorous (P) are assumed to be connected stoichiometrically and C:N(:P) ratios are frequently used to interpret the soils nutrient status. However, plants are capable of initiating the supply of nutrients by releasing rhizodeposits into the soil, thereby stimulating soil organic matter decomposition mediated by the rhizosphere microbial community. To test the relative importance of the two mechanisms across a fertility gradient in the UK we carried out a laboratory experiment. Intact soil cores from two depths (0-15 cm and 85-100 cm) were incubated and C, N and P were added in all possible combinations resulting in a total of 216 soil cores. Soil respiration was measured (1 h incubation, 10 oC) nine times over a 2 week period. Preliminary results indicate that all soils were C limited at the surface as measured as increased soil CO2 efflux. N additions increased soil respiration only marginally, whereas C+N stimulated microbial activity on the surface, and was even more pronounced in the deeper soil layer. Belowground responses to C+P were small and even smaller for N+P but similar for both soil depths. Our results indicate nutrient controls on soil organic matter turnover differ not only across a management/fertility gradient but also vertically down the soil profile.

  4. In-situ soil carbon analysis using inelastic neutron scattering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  5. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K. M.

    2012-12-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for biospheric modeling. The UNASM combines state-of-the-art U.S. STATSGO and Soil Landscape of Canada (SLCs) databases, and for areas not covered by these datasets is filled with the Harmonized World Soil Database (HWSD). The UNASM contains seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, with the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon mass between the UNASM and HWSD, but the UNASM overall provides more detailed and higher-confidence information particularly in Alaska and central Canada. The estimate of the total soil organic carbon mass in the upper 100 cm soil profile based on the UNASM is 328.21Pg, of which 63.4% is from forest and 22.8% is from shrubland and grassland. This UNASM will help to provide more reliable estimates for the effects of global climate change and land use management on the terrestrial carbon cycle.

  6. Green Carbon, Black Carbon, White Carbon: Simultaneous Differentiation Between Soil Organic Matter, Pyrogenic Carbon and Carbonates Using Thermal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Plante, A. F.; Peltre, C.; Chan, J.; Baumgartl, T.; Erskine, P.; Apesteguía, M.; Virto, I.

    2014-12-01

    Quantification of soil carbon stocks and fluxes continues to be an important endeavor in assessments of soil quality, and more broadly in assessments of ecosystem functioning. The quantification of soil carbon in alkaline, carbonate-containing soils, such as those found in Mediterranean areas, is complicated by the need to differentiate between organic carbon (OC) and inorganic carbon (IC), which continues to present methodological challenges. Acidification is frequently used to eliminate carbonates prior to soil OC quantification, but when performed in the liquid phase, can promote the dissolution and loss of a portion of the OC. Acid fumigation (AF) is increasingly preferred for carbonate removal, but its effectiveness is difficult to assess using conventional elemental and isotopic analyses. The two-step approach is time, labor and cost intensive, and generates additional uncertainties from the calculations. Quantification of the actively cycling pool of soil organic C (SOC) in many soils is further complicated by the potential presence of more recalcitrant/stable forms such as pyrogenic or black carbon (BC) derived from incomplete combustion of vegetation, or even geogenic carbon such as coal. The wide spectrum of materials currently considered BC makes its quantification challenging. The chemical method using benzene polycarboxylic acids (BPCAs) as markers of condensed aromatic structures indicative of pyrogenic C is highly time, labor and cost intensive, and can generate artifacts. Several research groups are now developing method for the simultaneous identification and quantification of these various forms of soil carbon using thermal analysis techniques such as thermogravimetry, differential scanning calorimetry and evolved gas analysis. The objective of this presentation is to provide a general overview and specific examples of the current progress and technical challenges in this evolving methodology.

  7. Soil management and carbon calculation methods influence changes in soil carbon estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing in bulk density. In two study sites, we investigated the effect of different management practices on SOC changes calcul...

  8. Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils

    NASA Astrophysics Data System (ADS)

    Sedy, Katrin; Freudenschuss, Alexandra; Zethner, Gehard; Spiegel, Heide; Franko, Uwe; Gründling, Ralf; Xaver Hölzl, Franz; Preinstorfer, Claudia; Haslmayr, Hans Peter; Formayer, Herbert

    2014-05-01

    Austrian Carbon Calculator (ACC) - modelling soil carbon dynamics in Austrian soils. The project funded by the Klima- und Energiefonds, Austrian Climate Research Programme, 4th call Authors: Katrin Sedy, Alexandra Freudenschuss, Gerhard Zethner (Environment Agency Austria), Heide Spiegel (Austrian Agency for Health and Food Safety), Uwe Franko, Ralf Gründling (Helmholtz Centre for Environmental Research) Climate change will affect plant productivity due to weather extremes. However, adverse effects could be diminished and satisfying production levels may be maintained with proper soil conditions. To sustain and optimize the potential of agricultural land for plant productivity it will be necessary to focus on preserving and increasing soil organic carbon (SOC). Carbon sequestration in agricultural soils is strongly influenced by management practice. The present management is affected by management practices that tend to speed up carbon loss. Crop rotation, soil cultivation and the management of crop residues are very important measures to influence carbon dynamics and soil fertility. For the future it will be crucial to focus on practical measures to optimize SOC and to improve soil structure. To predict SOC turnover the existing humus balance model the application of the "Carbon Candy Balance" was verified by results from Austrian long term field experiments and field data of selected farms. Thus the main aim of the project is to generate a carbon balancing tool box that can be applied in different agricultural production regions to assess humus dynamics due to agricultural management practices. The toolbox will allow the selection of specific regional input parameters for calculating the C-balance at field level. However farmers or other interested user can also apply their own field data to receive the result of C-dynamics under certain management practises within the next 100 years. At regional level the impact of predefined changes in agricultural management

  9. The Unified North American Soil Map and its implication on the soil organic carbon stock in North America

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.

    2012-10-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.

  10. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    SciTech Connect

    Liu, Shishi; Wei, Yaxing; Post, Wilfred M; Cook, Robert B; Schaefer, Kevin; Thornton, Michele M

    2013-01-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.

  11. Regional Scale Characterization of Soil Carbon Fractions with Pedometrics

    NASA Astrophysics Data System (ADS)

    Keskin, H.; Grunwald, S.; Myers, D. B.; Harris, W. G.

    2015-12-01

    Regional scale characterization of the spatial distribution of soil carbon (C) fractions can facilitate a better understanding of the lability and recalcitrance of C across diverse land uses, soils, and climatic gradients. While C lability is associated with decomposition and transport processes in soils in, the stable portion of soil C persists in soil for decades to millennia. To better understand storage, flux and processes of soil C from across the soil-landscape continuum, we upscaled different fractions of soil C. Recalcitrant carbon (RC), hydrolysable carbon (HC) and total carbon (TC) were derived from the topsoil (0-20 cm) at 1,014 georeferenced sites in Florida (~150 000 km2). These were identified using a random-stratified sampling design with landuse-soil suborders strata. The Boruta method was employed for identifying all-relevant variables from the available 327 soil-environmental variables in order to develop the most parsimonious model for TC, RC and HC. We compared eight methods: Classification and Regression Tree (CaRT), Bagged Regression Tree (BaRT), Boosted Regression Tree (BoRT), Random Forest (RF), Support Vector Machine (SVM), Partial Least Square Regression (PLSR), Regression Kriging (RK), and Ordinary Kriging (OK). The accuracy of each method was assessed from 304 randomly chosen samples that were used for validation. Overall, 36, 20 and 25 variables stood out as all-relevant to TC, RC and HC, respectively. We predicted TC with a mean of 4.89 kg m-2 and standard error of 3.71 kg m-2. The prediction performance based on the ratio of prediction error to inter-quartile range in order of accuracy for TC was as follows: RF>BoRT>BaRT>SVM>PLSR>RK>CART>OK; however, BoRT outperformed RF for RC and HC, and the remaining order was identical for RC and HC. The best models, explained 71.6, 73.2, and 32.9 % of the total variation for TC, RC and HC, respectively. No residual spatial autocorrelation was left among the evaluated models. This indicates that

  12. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    NASA Astrophysics Data System (ADS)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  13. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    NASA Astrophysics Data System (ADS)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  14. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles.

    PubMed

    Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric

    2015-11-01

    The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. PMID:26119088

  15. Mechanisms of soil carbon storage in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Temperton, V. M.; Gleixner, G.

    2007-10-01

    We investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m-2 and 263 g C m-2 to 20 cm depth, while 71 g C m-2 and 393 g C m-2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons.

  16. [Responses of forest soil carbon pool and carbon cycle to the changes of carbon input].

    PubMed

    Wang, Qing-kui

    2011-04-01

    Litters and plant roots are the main sources of forest soil organic carbon (C). This paper summarized the effects of the changes in C input on the forest soil C pool and C cycle, and analyzed the effects of these changes on the total soil C, microbial biomass C, dissoluble organic C, and soil respiration. Different forests in different regions had inconsistent responses to C input change, and the effects of litter removal or addition and of root exclusion or not differed with tree species and regions. Current researches mainly focused on soil respiration and C pool fractions, and scarce were about the effects of C input change on the changes of soil carbon structure and stability as well as the response mechanisms of soil organisms especially soil fauna, which should be strengthened in the future. PMID:21774335

  17. Comparison between soil and biomass carbon in adjacent hardwood and red pine forests

    SciTech Connect

    Perala, D.A.; Rollinger, J.L.; Wilson, D.M.

    1995-06-01

    The distribution of carbon in soil and biomass was studied across Minnesota, Wisconsin, and Michigan, USA, in 40 pole-sized red pine (Pinus resinosa Ait.) plantations paired with adjacent hardwood stands. Pine and hardwood stands shared a common boundary and soil. Hardwood stands were mixed species, naturally regenerated second growth following logging. Carbon in total, standing crop averaged the same in both hardwood and red pine forest types, although the hardwoods averaged 14 years older than red pine. Coarse woody debris, shrubs, and herbs contained little carbon. Only the forest floor carbon pool was significantly different between forest types. Forest floor had a greater mass beneath red pine than hardwoods. There was no difference in total ecosystem carbon between red pine and hardwood stands. Total mineral soil aggregated across the depth profile contained the same total amount of carbon in both pine and hardwood stands; however, the carbon was found in different vertical patterns. Amounts of carbon in the upper levels of soil (0--4 cm) were higher under hardwoods, and amounts were higher under red pine at the 8--16 cm and 16--32 cm soil depths. Where July air temperatures were relatively cool, red pine stored carbon more efficiently both in the forest floor and deep in the soil. Red pine also sequestered more carbon in mineral soil with increasing April--September precipitation.

  18. Soil carbon storage controlled by interactions between geochemistry and climate

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-10-01

    Soils are an important site of carbon storage. Climate is generally regarded as one of the primary controls over soil organic carbon, but there is still uncertainty about the direction and magnitude of carbon responses to climate change. Here we show that geochemistry, too, is an important controlling factor for soil carbon storage. We measured a range of soil and climate variables at 24 sites along a 4,000-km-long north-south transect of natural grassland and shrubland in Chile and the Antarctic Peninsula, which spans a broad range of climatic and geochemical conditions. We find that soils with high carbon content are characterized by substantial adsorption of carbon compounds onto mineral soil and low rates of respiration per unit of soil carbon; and vice versa for soils with low carbon content. Precipitation and temperature were only secondary predictors for carbon storage, respiration, residence time and stabilization mechanisms. Correlations between climatic variables and carbon variables decreased significantly after removing relationships with geochemical predictors. We conclude that the interactions of climatic and geochemical factors control soil organic carbon storage and turnover, and must be considered for robust prediction of current and future soil carbon storage.

  19. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer

    Gu, Baohua; Yang, Ziming

    2015-03-30

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  20. Existing Soil Carbon Models Do Not Apply to Forested Wetlands.

    SciTech Connect

    Trettin, C C; Song, B; Jurgensen, M F; Li, C

    2001-09-14

    Evaluation of 12 widely used soil carbon models to determine applicability to wetland ecosystems. For any land area that includes wetlands, none of the individual models would produce reasonable simulations based on soil processes. Study presents a wetland soil carbon model framework based on desired attributes, the DNDC model and components of the CENTURY and WMEM models. Proposed synthesis would be appropriate when considering soil carbon dynamics at multiple spatial scales and where the land area considered includes both wetland and upland ecosystems.

  1. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-07-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety.

  2. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability

    PubMed Central

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2–3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  3. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability.

    PubMed

    Wang, Cheng; Li, Wei; Yang, Zhongfang; Chen, Yang; Shao, Wenjing; Ji, Junfeng

    2015-01-01

    It is well known that carbonates inhibit heavy metals transferring from soil to plants, yet the mechanism is poorly understood. Based on the Yangtze River delta area, we investigated bioaccumulation of Ni and Cd in winter wheat as affected by the presence of carbonates in soil. This study aimed to determine the mechanism through which soil carbonates restrict transport and plant uptake of heavy metals in the wheat cropping system. The results indicate that soil carbonates critically influenced heavy metal transfer from soil to plants and presented a tipping point. Wheat grains harvested from carbonates-depleted (due to severe leaching) soils showed Ni and Cd concentrations 2-3 times higher than those of the wheat grains from carbonates-containing soils. Correspondingly, the incidence of Ni or Cd contamination in the wheat grain samples increased by about three times. With the carbonate concentration >1% in soil, uptake and bioaccumulation of Ni and Cd by winter wheat was independent with the soil pH and carbonate content. The findings suggest that soil carbonates play a critical role in heavy metal transfer from soil to plants, implying that monitoring soil carbonate may be necessary in addition to soil pH for the evaluating soil quality and food safety. PMID:26227091

  4. Separation of root respiration from total soil respiration using carbon-13 labelling during free-air carbon dioxide enrichment (FACE)

    SciTech Connect

    Andrews, J.A.; Harrison, K.G.; Matamala, R.; Schlesinger, W.H.

    1999-10-01

    Soil respiration constitutes a major component of the global carbon cycle and is likely to be altered by climate change. However, there is an incomplete understanding of the extent to which various processes contribute to total soil respiration, especially the contributions of root and rhizosphere respiration. Here, using a stable carbon isotope tracer, the authors separate the relative contributions of root and soil heterotrophic respiration to total soil respiration in situ. The Free-Air Carbon dioxide Enrichment (FACE) facility in the Duke University Forest (NC) fumigates plots of an undisturbed loblolly pine (Pinus taeda L.) forest with CO{sub 2} that is strongly depleted in {sup 13}C. This labeled CO{sub 2} is found in the soil pore space through live root and mycorrhizal respiration and soil heterotroph respiration of labile root exudates. By measuring the depletion of {sup 13}CO{sub 2} in the soil system, the authors found that the rhizosphere contribution to soil CO{sub 2} reflected the distribution of fine roots in the soil and that late in the growing season roots contributed 55% of total soil respiration at the surface. This estimate may represent an upper limit on the contribution of roots to soil respiration because high atmospheric CO{sub 2} often increases in root density and/or root activity in the soil.

  5. [Effects of different fertilizer application on soil active organic carbon].

    PubMed

    Zhang, Rui; Zhang, Gui-Long; Ji, Yan-Yan; Li, Gang; Chang, Hong; Yang, Dian-Lin

    2013-01-01

    The variation characteristics of the content and components of soil active organic carbon under different fertilizer application were investigated in samples of calcareous fluvo-aquic soil from a field experiment growing winter wheat and summer maize in rotation in the North China Plain. The results showed that RF (recommended fertilization), CF (conventional fertilization) and NPK (mineral fertilizer alone) significantly increased the content of soil dissolved organic carbon and easily oxidized organic carbon by 24.92-38.63 mg x kg(-1) and 0.94-0.58 mg x kg(-1) respectively compared to CK (unfertilized control). The soil dissolved organic carbon content under OM (organic manure) increased greater than those under NPK and single fertilization, soil easily oxidized organic carbon content under OM and NPK increased greater than that under single chemical fertilization. OM and NPK showed no significant role in promoting the soil microbial biomass carbon, but combined application of OM and NPK significantly increased the soil microbial biomass carbon content by 36.06% and 20.69%, respectively. Soil easily oxidized organic carbon, dissolved organic carbon and microbial biomass carbon accounted for 8.41% - 14.83%, 0.47% - 0.70% and 0.89% - 1.20% of the total organic carbon (TOC), respectively. According to the results, the fertilizer application significantly increased the proportion of soil dissolved organic carbon and easily oxidized organic carbon, but there was no significant difference in the increasing extent of dissolved organic carbon. The RF and CF increased the proportion of soil easily oxidized organic carbon greater than OM or NPK, and significantly increased the proportion of microbial biomass carbon. OM or RF had no significant effect on the proportion of microbial biomass carbon. Therefore, in the field experiment, appropriate application of organic manure and chemical fertilizers played an important role for the increase of soil active organic carbon

  6. Soil type modifies response of soil carbon pools to an atmospheric CO2 gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Literature suggests that as atmospheric CO2 rises, soil carbon will cycle more rapidly as plants input greater amounts of labile carbon into the soil. This labile carbon may stimulate the decomposition of more slowly-cycling soil organic matter through microbial priming. We test these hypotheses i...

  7. Evaluating soil carbon in global climate models: benchmarking, future projections, and model drivers

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Randerson, J. T.; Post, W. M.; Allison, S. D.

    2012-12-01

    The carbon cycle plays a critical role in how the climate responds to anthropogenic carbon dioxide. To evaluate how well Earth system models (ESMs) from the Climate Model Intercomparison Project (CMIP5) represent the carbon cycle, we examined predictions of current soil carbon stocks from the historical simulation. We compared the soil and litter carbon pools from 17 ESMs with data on soil carbon stocks from the Harmonized World Soil Database (HWSD). We also examined soil carbon predictions for 2100 from 16 ESMs from the rcp85 (highest radiative forcing) simulation to investigate the effects of climate change on soil carbon stocks. In both analyses, we used a reduced complexity model to separate the effects of variation in model drivers from the effects of model parameters on soil carbon predictions. Drivers included NPP, soil temperature, and soil moisture, and the reduced complexity model represented one pool of soil carbon as a function of these drivers. The ESMs predicted global soil carbon totals of 500 to 2980 Pg-C, compared to 1260 Pg-C in the HWSD. This 5-fold variation in predicted soil stocks was a consequence of a 3.4-fold variation in NPP inputs and 3.8-fold variability in mean global turnover times. None of the ESMs correlated well with the global distribution of soil carbon in the HWSD (Pearson's correlation <0.40, RMSE 9-22 kg m-2). On a biome level there was a broad range of agreement between the ESMs and the HWSD. Some models predicted HWSD biome totals well (R2=0.91) while others did not (R2=0.23). All of the ESM terrestrial decomposition models are structurally similar with outputs that were well described by a reduced complexity model that included NPP and soil temperature (R2 of 0.73-0.93). However, MPI-ESM-LR outputs showed only a moderate fit to this model (R2=0.51), and CanESM2 outputs were better described by a reduced model that included soil moisture (R2=0.74), We also found a broad range in soil carbon responses to climate change

  8. Gravimetric Determination of Inorganic Carbon in Calcareous Soils Using the Carbonate-Meter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic carbon affects many important physical, chemical and microbiological soil properties. In calcareous soils, the inorganic carbon has to be measured and subtracted from the total carbon to obtain organic carbon. Our objective was to develop a gravimetric technique to quantify inorganic carbon ...

  9. Cost effective tools for soil organic carbon monitoring

    NASA Astrophysics Data System (ADS)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  10. The Unified North American Soil Map and its implication on the soil organic carbon stock in North America

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.

    2013-05-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data will provide a resource for use in terrestrial ecosystem modeling both for input of soil characteristics and for benchmarking model output.

  11. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.

    2014-12-01

    The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.

  12. Carbon and nitrogen dynamics in a soil profile: Model development

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, Jordi; Brovelli, Alessandro; Barry, D. Andrew

    2010-05-01

    In order to meet demands for crops, pasture and firewood, the rate of land use change from forested to agricultural uses has steadily increased over several decades, resulting in an increased release of nutrients towards groundwater and surface water bodies. In parallel, the degradation of riparian zones has diminished their capacity to provide critical ecosystem functions, such as the ability to control and buffer nutrient cycles. In recent years, however, the key environmental importance of natural, healthy ecosystems has been progressively recognized and restoration of degraded lands towards their former natural state has become an area of active research worldwide. Land use changes and restoration practices are known to affect both soil nutrient dynamics and their transport to neighbouring areas. To this end, in order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. Microbiological transformations of the soil organic matter, including decomposition and nutrient turnover are controlled to a large extent by soil water content, influenced in turn by climatic and environmental conditions such as precipitation and evapotranspiration. The work presented here is part of the Swiss RECORD project (http://www.cces.ethz.ch/projects/nature/Record), a large collaborative research effort undertaken to monitor the changes in ecosystem functioning in riparian areas undergoing restoration. In this context we have developed a numerical model to simulate carbon and nitrogen transport and turnover in a one-dimensional variably saturated soil profile. The model is based on the zero-dimensional mechanistic batch model of Porporato et al. (Adv. Water Res., 26: 45-58, 2003), but extends its capabilities to simulate (i) the transport of the mobile components towards deeper horizons, and (ii) the vertical evolution of the profile and the subsequent distribution of the organic matter. The soil is divided in four

  13. Molecular DYNAmics of Soil Organic carbon (DYNAMOS ): a project focusing on soils and carbon through data and modeling

    NASA Astrophysics Data System (ADS)

    Mendez-Millan, Mercedes

    2010-05-01

    Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and describe molecule behaviours (i.e.)carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical

  14. Molecular DYNAmics of Soil Organic carbon (DYNAMOS *): a project focusing on soils and carbon through data and modeling

    NASA Astrophysics Data System (ADS)

    Hatté, C.; Balesdent, J.; Derenne, S.; Derrien, D.; Dignac, M.; Egasse, C.; Ezat, U.; Gauthier, C.; Mendez-Millan, M.; Nguyen Tu, T.; Rumpel, C.; Sicre, M.; Zeller, B.

    2009-12-01

    Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and described molecules will be carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical

  15. Carbon sequestration in two alpine soils on the Tibetan Plateau.

    PubMed

    Tian, Yu-Qiang; Xu, Xing-Liang; Song, Ming-Hua; Zhou, Cai-Ping; Gao, Qiong; Ouyang, Hua

    2009-09-01

    Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon-14 radioactive label provided by thermonuclear weapon tests (known as bomb-(14)C). Soil organic matter was physically separated into light and heavy fractions. The concentration spike of bomb-(14)C occurred at a soil depth of 4 cm in both the forest soil and the alpine meadow soil. Based on the depth of the bomb-(14)C spike, the carbon sequestration rate was determined to be 38.5 g C/m(2) per year for the forest soil and 27.1 g C/m(2) per year for the alpine meadow soil. Considering that more than 60% of soil organic carbon (SOC) is stored in the heavy fraction and the large area of alpine forests and meadows on the Tibetan Plateau, these alpine ecosystems might partially contribute to "the missing carbon sink". PMID:19723249

  16. Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems.

    PubMed

    Luo, Zhongkui; Wang, Enli; Smith, Chris

    2015-10-01

    The amount of fresh carbon input into soil is experiencing substantial changes under global change. It is unclear what will be the consequences of such input changes on native soil carbon decomposition across ecosystems. By synthesizing data from 143 experimental comparisons, we show that, on average, fresh carbon input stimulates soil carbon decomposition by 14%. The response was lower in forest soils (1%) compared with soils from other ecosystems (> 24%), and higher following inputs of plant residue-like substrates (31%) compared to root exudate-like substrates (9%). The responses decrease with the baseline soil carbon decomposition rate under no additional carbon input, but increase with the fresh carbon input rate. The rates of these changes vary significantly across ecosystems and with the carbon substrates being added. These findings can be applied to provide robust estimates of soil carbon balance across ecosystems under changing aboveground and belowground inputs as consequence of climate and land management changes. PMID:26649400

  17. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall

  18. Soil erosion and the global carbon budget.

    PubMed

    Lal, R

    2003-07-01

    Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of

  19. Monitoring soil organic carbon in croplands using imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; van Wesemael, B.

    2009-04-01

    Conventional soil sampling techniques are often too expensive and time consuming to meet the amount of quantitative data required in soil monitoring or modelling studies. The emergence of portable and flexible spectrometer operating in the visible and near infrared range of the electro-magnetic spectrum could provide the large amount of spatial data needed. To this regard, the ability of airborne imaging spectroscopy to cover large surfaces in a single flight campaign and study the spatial distribution of soil properties with a high spatial resolution represents an opportunity for improving the monitoring of soils. The potential of quantitative spectral analysis has been repeatedly demonstrated in soil science either in the laboratory or with remote sensors. However, imaging spectroscopy for soil applications has been generally applied over small areas or homogeneous soil types and surface conditions. Here, five hyperspectral images acquired with the AHS-160 sensor were analysed to predict Soil Organic Carbon (SOC) in an area (350 km2) in Luxembourg characterized by different soil types and a large variation in SOC contents. Reflectance data were related to surface SOC contents of bare cropland by means of 3 different multivariate calibration techniques: Partial Least Square Regression (PLSR), Penalized-spline Signal Regression (PSR) and Least Square Support Vector Machine (LS-SVM). The stability of the methods across different agropedological zones, soil types or soil surface conditions were tested by comparing their performance under different combinations of calibration/validation sets (global and local calibrations). A lack of fit at high SOC content was observed under global calibrations, yielding a relatively high Root Mean Square Error in the Predictions (RMSEP) of 4.7-6.2 g C kg-1. PSR showed a greater ability to handle noisy spectral features, resulting in more robust calibrations than PLSR. Local calibrations based on soil types and agro

  20. Boreal forest soil erosion and soil-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.

    2013-12-01

    Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod

  1. Multivariate distributions of soil hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Pachepsky, Yakov; Huisman, Johan Alexander; Martinez, Gonzalo; Bogena, Heye; Vereecken, Harry

    2014-05-01

    Statistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic properties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation. Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parameters for textural classes are most often used in the parameter field generation. Presence of strong correlations can substantially influence the parameter generation results. The objective of this work was to review and evaluate available data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different approaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generate VGM parameters for a large number of soil compositions within a textural class, and then computes parameter correlations for each of the textural classes. The second approach computes the VGM parameter correlations directly from parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivity data for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedotransfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to develop correlations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US Southern Plains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the second approach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences were encountered between parameter correlations obtained with different approaches and different databases for the same textural classes. The first of the two approaches resulted in generally higher values of correlation coefficients between VGM parameters. However, results of the first approach application depend

  2. Associations between soil carbon and ecological landscape drivers at escalating spatial scales in Florida, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spatial distribution of soil carbon (C) is controlled by ecological landscape processes that evolve over a range of spatial scales. Soil C patterns derive from a number of interacting ecological processes, some of which more dominant than others, depending on the landscape conditions. The spatia...

  3. Pursuing robust agro-ecosystem functioning through effective soil organic carbon management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter is a key indicator of many ecosystem functions, particularly in agricultural systems. With carbon as its majority constituent (~58%), the quantity of soil organic C is a key variable relating production and environmental responses. However, it is argued that depth distribution ...

  4. Spatial heterogeneity of forest soil carbon and nitrogen controls nitrogen transformations and trace gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale spatial heterogeneity of soil nitrogen (N) and carbon (C) pools and net transformation processes in forested ecosystems are not well understood. Two forests in central Oregon (Black Butte and Santiam Pass) were used to test the hypothesis that spatial distribution of soil nutrients cont...

  5. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    superficial velocity of the supercritical carbon dioxide; therefore, the mass transfer resistance can be reduced increasing such velocity. In this work, higher values of superficial velocity were investigated. The experimental apparatus includes a pump, an extraction vessel, an adjustable restrictor and a trap to collect the extracted substance. Liquid carbon dioxide coming from a cylinder with a dip-tube is cooled by a cryostatic bath and then it is compressed by a pneumatic drive pump (the max- imum available pressure is 69 MPa). Subsequently, the pressurised current flows into 1 a heating coil and then into the extraction vessel, which is contained in a stove; the outlet flow is depressurised in an adjustable restrictor and the extracted substance is collected in a trap by dissolution into a solvent. The extracted naphthalene quantity was obtained by weighting the solvent and measuring the naphthalene concentration with a gas chromatograph. The soil sample is a sandy soil geologically representative of the North of Italy that was sampled and physically and chemically characterized: particle-size distribution analysis, diffractometric analysis, Cation Exchange Capac- ity, Total Organic Carbon, iron content and manganese content in order to evaluate the potential sorption degree. The soil was artificially polluted by means of a naphta- lene and methylene chloride solution. The experimental work consists in a number of naphthalene extractions from the spiked soil, that were carried out at different operat- ing conditions, temperature, pressure and flow rate by means of supercritical carbon dioxide evaluating the corresponding recovery efficiencies. The results obtained were analysed and compared in order to determine which parameters influence the system. [1] G. A. Montero, T.D. Giorgio, and K. B. Schnelle, Jr..Removal of Hazardous ,1994, Contaminants form Soils by Supercritical Fluid Extraction. Innovations in Supercriti- cal Fluids. ACS Symposium Series, 608, 280-197. 2

  6. Carbon Dynamics in Vegetation and Soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chambers, Jeffrey Q.; Camargo, Plinio; Martinelli, Luiz; Santos, Joaquim

    2005-01-01

    The overall goals of CD-08 team in Phase I were to quantify the contributions of different components of the carbon cycle to overall ecosystem carbon balance in Amazonian tropical forests and to undertake process studies at a number of sites along the eastern LBA transect to understand how and why these fluxes vary with site, season, and year. We divided this work into a number of specific tasks: (1) determining the average rate (and variability) of tree growth over the past 3 decades; (2) determining age demographics of tree populations, using radiocarbon to determine tree age; (3) assessing the rate of production and decomposition of dead wood debris; (4) determining turnover rates for organic matter in soils and the mean age of C respired from soil using radiocarbon measurements; and (5) comparing our results with models and constructing models to predict the potential of tropical forests to function as sources or sinks of C. This report summarizes the considerable progress made towards our original goals, which have led to increased understanding of the potential for central Amazon forests to act as sources or sinks of carbon with altered productivity. The overall picture of tropical forest C dynamics emerging from our Phase I studies suggests that the fraction of gross primary production allocated to growth in these forests is only 25-30%, as opposed to the 50% assumed by many ecosystem models. Consequent slow tree growth rates mean greater mean tree age for a given diameter, as reflected in our measurements and models of tree age. Radiocarbon measurements in leaf and root litter suggest that carbon stays in living tree biomass for several years up to a decade before being added to soils, where decomposition is rapid. The time lags predicted from 14C, when coupled with climate variation on similar time scales, can lead to significant interannual variation in net ecosystem C exchange.

  7. Benchmarking the inelastic neutron scattering soil carbon method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  8. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    PubMed

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink. PMID:25903408

  9. Microbial carbon recycling: an underestimated process controlling soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-07-01

    The mean residence times (MRT) of different compound classes of soil organic matter (SOM) do not match their inherent recalcitrance to decomposition. One reason for this is the stabilisation within the soil matrix, but recycling, i.e. the reuse of "old" organic material to form new biomass may also play a role as it uncouples the residence times of organic matter from the lifetime of discrete molecules in soil. We analysed soil sugar dynamics in a natural 30 years old labelling experiment after a~wheat-maize vegetation change to determine the extent of recycling and stabilisation in plant and microbial derived sugars: while plant derived sugars are only affected by stabilisation processes, microbial sugars may be subject to both, stabilisation and recycling. To disentangle the dynamics of soil sugars, we separated different density fractions (free particulate organic matter (fPOM), light occluded particulate organic matter (≤1.6 g cm-3; oPOM1.6), dense occluded particulate organic matter (≤2 g cm-3; oPOM2) and mineral-associated organic matter (>2 g cm-3; Mineral)) of a~silty loam under long term wheat and maize cultivation. The isotopic signature of sugars was measured by high pressure liquid chromatography coupled to isotope ratio mass spectrometry (HPLC/IRMS), after hydrolysis with 4 M Trifluoroacetic acid (TFA). While apparent mean residence times (MRT) of sugars were comparable to total organic carbon in the bulk soil and mineral fraction, the apparent MRT of sugars in the oPOM fractions were considerably lower than those of the total carbon of these fractions. This indicates that oPOM formation was fuelled by microbial activity feeding on new plant input. In the bulk soil, mean residence times of the mainly plant derived xylose (xyl) were significantly lower than those of mainly microbial derived sugars like galactose (gal), rhamnose (rha), fucose (fuc), indicating that recycling of organic matter is an important factor regulating organic matter dynamics

  10. Microbial activity promotes carbon storage in temperate soils

    NASA Astrophysics Data System (ADS)

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos; Gleixner, Gerd

    2014-05-01

    Soils are one of the most important carbon sink and sources. Soils contain up to 3/4 of all terrestrial carbon. Beside physical aspects of soil properties (e.g. soil moisture and texture) plants play an important role in carbon sequestration. The positive effect of plant diversity on carbon storage is already known, though the underlying mechanisms remain still unclear. In the frame of the Jena Experiment, a long term biodiversity experiment, we are able to identify these processes. Nine years after an land use change from an arable field to managed grassland the mean soil carbon concentrations increased towards the concentrations of permanent meadows. The increase was positively linked to a plant diversity gradient. High diverse plant communities produce more biomass, which in turn results in higher amounts of litter inputs. The plant litter is transferred to the soil organic matter by the soil microbial community. However, higher plant diversity also causes changes in micro-climatic condition. For instance, more diverse plant communities have a more dense vegetation structure, which reduced the evaporation of soils surface and thus, increases soil moisture in the top layer. Higher inputs and higher soil moisture lead to an enlarged respiration of the soil microbial community. Most interestingly, the carbon storage in the Jena Experiment was much more related to microbial respiration than to plant root inputs. Moreover, using radiocarbon, we found a significant younger carbon age in soils of more diverse plant communities than in soils of lower diversity, indicating that more fresh carbon is integrated into the carbon pool. Putting these findings together, we could show, that the positive link between plant diversity and carbon storage is due to a higher microbial decomposition of plant litter, pointing out that carbon storage in soils is a function of the microbial community.

  11. Effect of activated carbon on microbial bioavailability of phenanthrene in soils

    SciTech Connect

    Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J.

    2009-11-15

    Bioavailability is a governing factor that controls the rate of biological degradation of hydrophobic organic contaminants in soil. Among the solid phases that can adsorb hydrophobic organic contaminants in soil, black carbon (BC) exerts a particularly significant effect on phase distribution. However, knowledge on the effect of BC on the microbial availability of polycyclic aromatic hydrocarbons in soil is still limited. In the present study, the effect of a coal-derived activated carbon on the bioavailability of phenanthrene (PHE) during its degradation by Mycobacterium vanbaalenii PYR-1 was measured in three soils. The freely dissolved concentration of PHE was concurrently determined in soil solutions using disposable polydimethylsiloxane fibers. The results showed that PHE mineralization was significantly inhibited after addition of activated carbon in all test soils. After 216 h, only 5.20, 5.83, and 6.85% of PHE was degraded in the 0.5% BC-amended soils initially containing organic carbon at 0.23, 2.1, and 7.1%, respectively. Significant correlation was found between PHE degradability and freely dissolved concentration, suggesting that BC affected PHE bioavailability by decreasing chemical activity. The effect of activated carbon in the amended soils was attributed to its enhancement of soil surface areas and pore volumes. Results from the present study clearly highlighted the importance of BC for influencing the microbial availability of polycyclic aromatic hydrocarbons in soils.

  12. Soil Organic Carbon Dynamics under Conservation Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic carbon (SOC) is a key element in the valuation of natural resources and the evaluation of how management affects soil quality and ecosystem services derived from soil. This paper describes a summary of some recent research aimed at understanding how SOC contributes to (a) various soil ...

  13. Aggregate formation and soil carbon sequestration by earthworms at the ORNL FACE experiment

    NASA Astrophysics Data System (ADS)

    Sanchez-de Leon, Y.; Gonzalez-Meler, M. A.; Lugo-Perez, J.; Wise, D. H.; Jastrow, J. D.

    2012-12-01

    Earthworms have an important role in soil carbon sequestration, but their contribution to carbon sequestration in soils exposed to elevated atmospheric CO2 concentrations has been largely overlooked. Previous studies at the Oak Ridge National Laboratory Free Air CO2 Experiment (ORNL FACE) site showed that the formation of soil aggregates is a key mechanism for soil carbon sequestration. We did a microcosm experiment to quantify earthworm-mediated aggregate formation and compare between two earthworm species with different feeding habits (endogeic vs. epi-edogeic). In addition, we wanted to identify the carbon source (soil, leaf litter or root litter) within aggregates formed by earthworms. We used 13C-depleted soil and 15N-enriched sweetgum (Liquidambar styraciflua) leaf and root litter collected from the ORNL FACE site to assess soil aggregate formation of the native, endogeic earthworm Diplocardia sp. and European, epi-endogeic earthworm Lumbricus rubellus. Both earthworm species are present at the ORNL FACE site. We crushed, sieved (< 250 μm) soil and prepared four treatments: (I) soil only; (II) soil and plant material; (III) soil, plant material and Diplocardia sp.; (IV) soil, plant material and L. rubellus. All treatments were at 30% water content and temperature was maintained at 20°C. The incubation period lasted 26 days. We measured aggregate size distribution, total aggregate carbon content and 13C and 15N to elucidate aggregate carbon source. Newly formed soil macroaggregates (> 250 μm) were higher in treatments with earthworms (III and IV) than in treatments without earthworms (I and II) (p = 0.02). Within macroaggregates, most of the carbon was soil-derived. Leaf and root-derived carbon was found in treatment IV only. Our results suggest that earthworms at the ORNL FACE site directly contribute to the formation of soil aggregates, thus contributing to soil carbon sequestration. Carbon source within macroaggregates correspond with earthworm feeding

  14. Transient Dissolved Organic Carbon Through Soils

    NASA Astrophysics Data System (ADS)

    Mei, Y.; Hornberger, G. M.; Kaplan, L. A.; Newbold, J. D.; Aufdenkampe, A. K.; Tsang, Y.

    2009-12-01

    Dissolved organic carbon (DOC) is an important constituent of soil solution that plays a role in many chemical and biological processes in soils; it is also an important energy source for bacteria in the soil ecosystem. Hydrology has a significant control on the transport and fate of dissolved organic carbon in the soil but mechanisms that affect said transport are not well understood. In particular, dynamic information on DOC transport through forest soils on short time scales (one or two precipitation event) is lacking at present. DOC is a very complex mix of organic compounds. A key to quantifying DOC dynamics is to establish useful approximations for behavior of this complex mixture. Biodegradable dissolved organic carbon (BDOC) is an important part of DOC. It is reported that between 12 and 44% of DOC released from the forest floor can be decomposed in solutions by indigenous microbes. In our study, we considered how DOC, BDOC, and flow interact in soil columns. In-situ soil cores with two different lengths were installed under a mixed deciduous canopy. The effects of artificial rain on DOC and BDOC transport were examined by dripping nano pure water amended with bromide on the top of soil cores and sampling the water collected at the bottom of the cores for DOC and BDOC. We used plug-flow biofilm reactors to measure the BDOC concentration. It is likely that reduced rates of decomposition in dry soils will cause microbial products of DOC to accumulate; hence DOC concentration should be high at the first flush of rain and decline as the event proceeds. The experimental results show the expected pattern, that is, the first samples we collected always had the highest DOC and BDOC concentrations. The concentrations tend to decline through the simulated precipitation event. Application of a second “storm” forty minutes after the cessation of the first application of water resulted in effluent DOC concentration increasing a small amount initially and then

  15. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    PubMed Central

    Stietiya, Mohammed Hashem; Duqqah, Mohammad; Udeigwe, Theophilus; Zubi, Ruba; Ammari, Tarek

    2014-01-01

    Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO) amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1) soil was higher than Wadi Dhuleil (WD1) soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective. PMID:24723833

  16. Adding Clays to Sandy Soils to Increase Carbon Storage

    NASA Astrophysics Data System (ADS)

    Harper, R. J.; Sochacki, S. J.

    2011-12-01

    Soil carbon storage is often related to clay content and mineralogy. For example, in a dryland farming area (300 mm/year annual rainfall) of Western Australia, carbon storage increased systematically with increasing clay content. Carbon storage in the surface 0.1 m was 42.5 Mg CO2-e/ha in soils with 1.7% clay compared to 99.1 Mg CO2-e/ha for soils with 9.1% clay. Similar results are evident in other data-sets, with carbon storage being related to site water balance, clay content and soil chemical fertility. We thus investigated whether soil carbon storage could be manipulated in sandy soils by adding clay. Clays are often added to farmed sandy soils to overcome water repellency and to reduce nutrient losses by leaching, but are not considered as a carbon management tool. The combined effects can improve plant productivity and thus carbon inputs to soil carbon pools. Bauxite processing residue (10% clay) had been applied in 1982 to sandy soils at different rates in an area with 760 mm/year annual rainfall. Application of 25 Mg clay/ha resulted in an increase in soil carbon content of 47.7 Mg CO2-e/ha. Soils were sampled to a depth of 0.3 m, with most (65%) of the increase being in the surface 0.1 m. Globally, there are large areas of sandy soils occurring across several soil taxonomic orders. In this presentation we describe the implications of clay amendments for increasing the carbon storage in such soils, and suggest areas of further investigation.

  17. Stability of Biomass-derived Black Carbon in Soils

    SciTech Connect

    Liang, Biqing; Lehmann, Johannes C.; Solomon, Dawit; Sohi, Saran; Thies, Janice E.; Skjemstad, Jan O.; Luizao, Flavio J.; Engelhard, Mark H.; Neves, Eduaro G.; Wirick, Sue

    2008-12-15

    Black carbon (BC) may play an important role in the global C budget, due to its potential to act as a significant removal (sink) of atmospheric CO2. In order to fully evaluate the influence of BC on the global C cycle, a sound understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P<0.05) CO2 evolution over 532 days compared to that in the corresponding adjacent soils with low BC contents. No significant (P>0.05) differences of CO2 respiration were observed between Anthrosols with contrasting ages of BC and soil textures. Molecular forms of core regions of micrometer-sized BC particles quantified by synchrotron-based near-edge x-ray fine structure (NEXAFS) spectroscopy coupled to scanning x-ray transmission microscopy (STXM) remained similar regardless of their ages (600 to 8,700 years) and closely resembled the spectral characteristics of fresh BC. Deconvolution of NEXAFS spectra revealed greater oxidation on the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, C distribution between free, intra-aggregate and organo-mineral pools was significantly different between soils with high and low BC contents, suggesting some degree of physical stabilization, and BC-rich Anthrosols had higher proportions (72-90%) of C in the organo-mineral fraction than BC-poor adjacent soils (2-70%).

  18. Total organic carbon in aggregates as a soil recovery indicator

    NASA Astrophysics Data System (ADS)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  19. Nutrients and defoliation increase soil carbon inputs in grassland.

    PubMed

    Ziter, Carly; MacDougall, Andrew S

    2013-01-01

    Given the regulatory impact of resources and consumers on plant production, decomposition, and soil carbon sequestration, anthropogenic changes to nutrient inputs and grazing have likely transformed how grasslands process atmospheric CO2. The direction and magnitude of these changes, however, remain unclear in this system, whose soils contain -20% of the world's carbon pool. Nutrients stimulate production but can also increase tissue palatability and decomposition. Grazing variously affects tissue quality and quantity, decreasing, standing biomass, but potentially increasing leaf nutrient concentrations, root production, or investment in tissue defenses that slow litter decay. Here, we quantified individual and interactive impacts of nutrient addition and simulated grazing (mowing) on above- and belowground production, tissue quality, and soil carbon inputs in a western North American grassland with globally distributed agronomic species. Given that nutrients and grazing are often connected with increased root production and higher foliar tissue quality, we hypothesized that these treatments would combine to reduce inputs of recalcitrant-rich litter critical for C storage. This hypothesis was unsupported. Nutrients and defoliation combined to significantly increase belowground production but did not affect root tissue quality. There were no significant interactions between nutrients and defoliation for any measured response. Three years of nutrient addition increased root and shoot biomass by 37% and 23%, respectively, and had no impact on decomposition, resulting in a -15% increase in soil organic matter and soil carbon. Defoliation triggered a significant burst of short-lived lignin-rich roots, presumably a compensatory response to foliar loss, which increased root litter inputs by 33%. The majority of root and shoot responses were positively correlated, with aboveground biomass a reasonable proxy for whole plant responses. The exceptions were decomposition, with

  20. Distribution regularities lead and cadmium in soils of northern landscapes

    NASA Astrophysics Data System (ADS)

    Lodygin, Evgeny; Beznosikov, Vasily

    2013-04-01

    The background concentrations of lead and cadmium in soils of the southern part of the Komi Republic have been studied. It is found that the content of lead and cadmium in the soils of accumulative landscapes (depressions, floodplains) is generally higher than that in the soils of eluvial (interfluves) landscapes. Background (unpolluted) soils of the southern districts (Syktyvdinsk, Kortkeross, Sysola, Koigorod, and Priluzskii) of the Komi Republic were studied; their total area reaches 58 100 km2. Acid-soluble forms of metals (Pb, Cd) were determined according to a metrologically tested method with the use of an atomic emission spectrometer with inductively coupled argon plasma (Spectro Ciros, Germany). The lead concentrations in the A0A1 horizon of the studied soils vary from 6.5 to 40.0 mg/kg. The maximum lead concentrations exceed the minimum lead concentration by six times. Sandy soils have a considerably lower content of lead in comparison with loamy soils. The lead content in the profiles of loamy soils is higher than that in the parent material. Relatively low lead concentrations are typical of the podzols with a coarse texture and a high mobility of lead. The lead content in the soils is weakly correlated with the carbon content (r = 0.55), and the clay (<0.001 mm) content (r = 0.48). Cadmium occurs in nature in very low concentrations, as a rule as an admixture in zinc, lead-zinc, and lead-copper-zinc ore deposits. The dispersion of this element in the environment is due to industrial emissions. The uppermost (0-5 cm) soil horizons are enriched with cadmium under the impact of biological factors, and its concentrations in the humus horizons reaches 0.19-0.50 mg/kg in the southern part of the Komi Republic. Accumulative landscapes have maximum cadmium concentrations; eluvial landscapes are depleted of cadmium due to its removal with solid and liquid runoff. The distribution of cadmium in the soil profiles is relatively even with an insignificant maximum in

  1. Elevated carbon dioxide does not offset loss of soil carbon from a corn-soybean agroecosystem.

    SciTech Connect

    Moran, K. K.; Jastrow, J. D.; Biosciences Division

    2010-04-01

    The potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO{sub 2}] - is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO{sub 2} enrichment technology was used to investigate the effects of elevated [CO{sub 2}] on SOM pools in a conservation tilled corn-soybean rotation. After 5 and 6 y of CO{sub 2} enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO{sub 2} treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO{sub 2} treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO{sub 2}-stimulated photosynthesis. Soil carbon from microaggregate-protected and unprotected fractions decreased in a conservation tilled corn-soybean rotation despite increases in primary production from exposure to atmospheric CO{sub 2} enrichment.

  2. Soil-profile distribution of organic C and N at the end of 6 years of tillage and grazing management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stocks of soil organic carbon (SOC) and total soil nitrogen (TSN) are key determinants for evaluating agricultural management practices to address climate change, environmental quality, and soil productivity issues. We determined SOC, TSN, and particulate organic C and N depth distributions and cum...

  3. The sorption of organic matter in soils as affected by the nature of soil carbon

    SciTech Connect

    Kaiser, K.; Haumaier, L.; Zech, W.

    2000-04-01

    Recent studies have shown that soil organic carbon (OC) may either hinder or favor the sorption of dissolved organic matter (DOM) in soils. The concept was that the nature of soil OC determines these contrasting findings. To test this hypothesis, the authors compared the DOM sorption in soils with OC derived from biomass decomposition with that in soils with OC more likely derived from biomass decomposition with that in soils with OC more likely derived from charred materials (black carbon). All the mineral soil samples in the study were from Spodosols, and the DOM was from an aqueous extract of a more forest floor layer. Sorption was determined in batch experiments. The sorption in soils that contain large amounts of black carbon was, in general, less than the sorption in soils with decomposition-derived OC. When the DOM sorption parameters of the soils were correlated to the OC content, the black carbon soils showed a positive effect of the OC content on the DOM sorption. In the soils lacking the features of black carbon residues, the DOM sorption was negatively influenced by OC. These results lead them to assume that the nature of soil OC is a soil property that needs to be considered in the DOM sorption of soils, especially when soils have large amounts of highly aromatic OC.

  4. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.

    PubMed

    Lin, Junjie; Zhu, Biao; Cheng, Weixin

    2015-12-01

    The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue using two decadally (13) C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally cycling SOC (>23 years in one soil and >55 years in the other soil) was significantly greater than that for faster-cycling SOC (<23 or 55 years) or for the entire SOC stock. Moreover, decadally cycling SOC contributed substantially (35-59%) to the total CO2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21st century and beyond. PMID:26301625

  5. Legacy effects of grassland management on soil carbon to depth.

    PubMed

    Ward, Susan E; Smart, Simon M; Quirk, Helen; Tallowin, Jerry R B; Mortimer, Simon R; Shiel, Robert S; Wilby, Andrew; Bardgett, Richard D

    2016-08-01

    The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management. PMID:26854892

  6. Using Pyrolysis Molecular Beam Mass Spectrometry to Characterize Soil Organic Carbon in Native Prairie Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to characterize soil organic carbon (SOC) with pyrolysis molecular beam mass spectrometry (py-MBMS) and then to determine correlations between the mass spectra and associated soil characterization data. Both soil carbon chemistry and the organic forms in which SOC is...

  7. Geographic distribution of Vertisols and Vertic soils in Russia: diversity of soils and landscapes

    NASA Astrophysics Data System (ADS)

    Khitrov, Nikolay; Chizhikova, Nataliya; Rogovneva, Ludmila

    2013-04-01

    There is a little information about geographic distribution of Vertisols and Vertic soils in Russia. Large areas of these soils (known in Russia as slitozems) are described in the Northen Caucasus Region (Bistritzkaya, Tyuryukanov, 1971; Khitrov, 2003). Swelling clay alluvial soils with microrelief gilgai were studied within the Volga-Akhtuba floodplain (Kozlovskyi, Kornblum, 1972). These and some other regions with slitozems in Russia are between latitudes 45 N and 48 N. For the north from latitude 48 N these soils have not been noted until 2006. Recently a lot of new areas of Vertisols and Vertic soils were identified in the Central Chernozemic Region of Russia (Khitrov, 2012) and in the Middle and the Lower Volga Region between latitudes 48 N and 54 N on the basis of soil studies along routes and on key plots. The portion of these soils in the soil cover patterns varies from 0,5 to 15-30%. Some areas of Vertisols and/or Vertic soils are up to 40-200 ha and more. With that their portion in the soil cover of the entire landscape is much less than 1%. All the delineated areas of vertic soils are confined to the outcrops of swelling clay sediments of different origins (marine, lacustrine, glacial, colluvial and alluvial materials) and ages (Jurassic, Cretaceous, Paleogene, Neogene, Quaternary). Mineral composition of clay fraction consists of smectites, irregular stratified illite-smectite, chlorite-smectite, hydromicas, chlorite and kaolinite in different proportions. Vertisols and Vertic soils may be found in different landscape positions that provides contrast water regime of soil including alternate periods of intense wetting and drying. The landscape positions are: (1) the step-like interfluvial surfaces and/or different concave slopes with swelling clay outcrops; (2) the deep closed depressions within vast flat watersheds; (3) the bottoms of wide hollows on interfluvial slopes; (4) different geomorphic positions in hydromorphic solonetzic complexes; (5) the

  8. Altered soil microbial community at elevated CO2 leads to loss of soil carbon

    PubMed Central

    Carney, Karen M.; Hungate, Bruce A.; Drake, Bert G.; Megonigal, J. Patrick

    2007-01-01

    Increased carbon storage in ecosystems due to elevated CO2 may help stabilize atmospheric CO2 concentrations and slow global warming. Many field studies have found that elevated CO2 leads to higher carbon assimilation by plants, and others suggest that this can lead to higher carbon storage in soils, the largest and most stable terrestrial carbon pool. Here we show that 6 years of experimental CO2 doubling reduced soil carbon in a scrub-oak ecosystem despite higher plant growth, offsetting ≈52% of the additional carbon that had accumulated at elevated CO2 in aboveground and coarse root biomass. The decline in soil carbon was driven by changes in soil microbial composition and activity. Soils exposed to elevated CO2 had higher relative abundances of fungi and higher activities of a soil carbon-degrading enzyme, which led to more rapid rates of soil organic matter degradation than soils exposed to ambient CO2. The isotopic composition of microbial fatty acids confirmed that elevated CO2 increased microbial utilization of soil organic matter. These results show how elevated CO2, by altering soil microbial communities, can cause a potential carbon sink to become a carbon source. PMID:17360374

  9. Mineralizable soil organic carbon dynamics in corn-soybean rotations in glaciated derived landscapes of northern Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concerns about climate change have increased interest in understanding differences in soil carbon pools and availability. The objective of this study was to assess the spatial distribution and stability of soil carbon (SC) as controlled by slope position, in glaciated northern Indiana. We colle...

  10. Digital mapping of soil organic carbon contents and stocks in Denmark.

    PubMed

    Adhikari, Kabindra; Hartemink, Alfred E; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B; Greve, Mogens H

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0-5, 5-15, 15-30, 30-60 and 60-100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg(-1) was reported for 0-5 cm soil, whereas there was on average 2.2 g SOC kg(-1) at 60-100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg(-1) was found at 60-100 cm soil depth. Average SOC stock for 0-30 cm was 72 t ha(-1) and in the top 1 m there was 120 t SOC ha(-1). In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories. PMID:25137066

  11. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark

    PubMed Central

    Adhikari, Kabindra; Hartemink, Alfred E.; Minasny, Budiman; Bou Kheir, Rania; Greve, Mette B.; Greve, Mogens H.

    2014-01-01

    Estimation of carbon contents and stocks are important for carbon sequestration, greenhouse gas emissions and national carbon balance inventories. For Denmark, we modeled the vertical distribution of soil organic carbon (SOC) and bulk density, and mapped its spatial distribution at five standard soil depth intervals (0−5, 5−15, 15−30, 30−60 and 60−100 cm) using 18 environmental variables as predictors. SOC distribution was influenced by precipitation, land use, soil type, wetland, elevation, wetness index, and multi-resolution index of valley bottom flatness. The highest average SOC content of 20 g kg−1 was reported for 0−5 cm soil, whereas there was on average 2.2 g SOC kg−1 at 60−100 cm depth. For SOC and bulk density prediction precision decreased with soil depth, and a standard error of 2.8 g kg−1 was found at 60−100 cm soil depth. Average SOC stock for 0−30 cm was 72 t ha−1 and in the top 1 m there was 120 t SOC ha−1. In total, the soils stored approximately 570 Tg C within the top 1 m. The soils under agriculture had the highest amount of carbon (444 Tg) followed by forest and semi-natural vegetation that contributed 11% of the total SOC stock. More than 60% of the total SOC stock was present in Podzols and Luvisols. Compared to previous estimates, our approach is more reliable as we adopted a robust quantification technique and mapped the spatial distribution of SOC stock and prediction uncertainty. The estimation was validated using common statistical indices and the data and high-resolution maps could be used for future soil carbon assessment and inventories. PMID:25137066

  12. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.

    PubMed

    Cui, Hongbiao; Ma, Kaiqiang; Fan, Yuchao; Peng, Xinhua; Mao, Jingdong; Zhou, Dongmei; Zhang, Zhongbin; Zhou, Jing

    2016-06-01

    Only a few studies have been reported on the stability and heavy metal distribution of soil aggregates after soil treatments to reduce the availability of heavy metals. In this study, apatite (22.3 t ha(-1)), lime (4.45 t ha(-1)), and charcoal (66.8 t ha(-1)) were applied to a heavy metal-contaminated soil for 4 years. The stability and heavy metal distribution of soil aggregates were investigated by dry and wet sieving. No significant change in the dry mean weight diameter was observed in any treatments. Compared with the control, three-amendment treatments significantly increased the wet mean weight diameter, but only charcoal treatment significantly increased the wet aggregate stability. The soil treatments increased the content of soil organic carbon, and the fraction 0.25-2 mm contained the highest content of soil organic carbon. Amendments' application slightly increased soil total Cu and Cd, but decreased the concentrations of CaCl2 -extractable Cu and Cd except for the fraction <0.053 mm. The fractions >2 and 0.25-2 mm contained the highest concentrations of CaCl2-extractable Cu and Cd, accounted for about 74.5-86.8 % of CaCl2-extractable Cu and Cd in soil. The results indicated that amendments' application increased the wet soil aggregate stability and decreased the available Cu and Cd. The distribution of available heavy metals in wet soil aggregates was not controlled by soil aggregate stability, but possibly by soil organic carbon. PMID:26893180

  13. Distribution, efficacy, and off-tarp emissions of carbonated fumigants in low permeability film tarped field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research in Florida indicated that carbonated fumigants can distribute more quickly and uniformly through soil which suggests that soil-borne disease control could be improved compared to conventional nitrogen pressurized fumigants. Tarping fields with totally impermeable film (TIF) may fur...

  14. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  15. Biochar for soil fertility and natural carbon sequestration

    USGS Publications Warehouse

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  16. Linking soil functions to carbon fluxes and stocks

    NASA Astrophysics Data System (ADS)

    Olesen, Jørgen E.

    2014-05-01

    Farming practices causing declining returns and inputs of carbon (C) to soils pose threats to sustainable soil functioning by reducing availability of organic matter for soil microbial activities and by affecting soil structure, and soil C stocks that contribute to regulating greenhouse gas emissions. Declines in soil C also affect availability and storage capacity of a range of essential plant nutrients thus affecting needs for external inputs. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by agricultural activity with intensive cultivation in arable and mixed farming system contributing to several soil threats. About 45% of European soils are estimated to have low SOM content, principally in southern Europe, but also in areas of France, UK and Germany. The European SOC stocks follow a clear north to south gradient with cooler temperatures favouring higher stocks. However, SOC stocks strongly depend on soil and land management, and there is thus a potential to both increase and lose SOC, although the potential to increase SOC strongly depends on incentives and structures for implementing improved management. Understanding the role of soil C may be better conceptualised by using a soil C flow and stocks concept to assess the impact of C management on crop productivity, soil organic C stocks and other ecosystem services. This concept distinguishes C flows and stocks, which may be hypothesized to have distinctly different effects on biological, chemical and physical soil functions. By separating the roles of carbon flows from the role of carbon stocks, it may become possible to better identify critical levels not only of soil carbon stocks, but also critical levels of carbon inputs, which directly relate to needs for crop and soil management measures. Such critical soil carbon stocks may be linked to soil mineralogy through complexed organic carbon on clay and silt surfaces. Critical levels of soil carbon

  17. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  18. Managing uncertainty in soil carbon feedbacks to climate change

    NASA Astrophysics Data System (ADS)

    Bradford, Mark A.; Wieder, William R.; Bonan, Gordon B.; Fierer, Noah; Raymond, Peter A.; Crowther, Thomas W.

    2016-08-01

    Planetary warming may be exacerbated if it accelerates loss of soil carbon to the atmosphere. This carbon-cycle-climate feedback is included in climate projections. Yet, despite ancillary data supporting a positive feedback, there is limited evidence for soil carbon loss under warming. The low confidence engendered in feedback projections is reduced further by the common representation in models of an outdated knowledge of soil carbon turnover. 'Model-knowledge integration' -- representing in models an advanced understanding of soil carbon stabilization -- is the first step to build confidence. This will inform experiments that further increase confidence by resolving competing mechanisms that most influence projected soil-carbon stocks. Improving feedback projections is an imperative for establishing greenhouse gas emission targets that limit climate change.

  19. [Spatial distribution patterns of soil nutrients and microbes in seasonal wet meadow in Zha-long wetland].

    PubMed

    Ma, Ling; Ding, Xin-hua; Gu, Wei; Ma, Wei

    2011-07-01

    This paper studied the spatial distribution patterns of soil nutrients and biological characteristics and related major affecting factors in seasonal wet meadow in Zhalong wetland. In the meadow, the soil nutrients, microbial communities, and microbial biomass carbon and nitrogen showed an obvious vertical distribution, but the soil enzyme activities had a complicated spatial distribution due to the effects of multi factors. Stepwise linear regression analysis showed that soil microbial biomass carbon and nitrogen had significant positive correlations with soil beta-glucosidase, urease, and phosphatase activities (P<0.05), soil organic carbon had significant correlations with soil actinomycetes and soil catalase activity (P<0.05), soil available K, total N, alkali-hydrolyzable N, and C/N ratio were significantly correlated with soil bacteria (P<0.05), actinomycetes (P<0.05), beta-glucosidase activity (P<0.05), and microbial biomass nitrogen (P<0.05) , respectively, whereas soil total P and pH had no significant correlations with soil microbial activity (P>0.05). Two models, one for soil nutrients evaluation and another for soil microbiological prediction, were constructed by principal component analysis. PMID:22007446

  20. [Effects of revegetation on organic carbon storage in deep soils in hilly Loess Plateau region of Northwest China].

    PubMed

    Zhang, Jin; Xu, Ming-Xiang; Wang, Zheng; Ma, Xin-Xin; Qiu, Yu-Jie

    2012-10-01

    Taking the Robinia pseudoacacia woodlands, Caragana korshinskii shrublands, and abandoned croplands with different years of revegetation in the hilly Loess Plateau region of Northwest China as test objects, this paper studied the profile distribution and accumulation dynamics of organic carbon storage in deep soil (100-400 cm), with those in 0-100 cm soil profile as the control. In 0-100 cm soil profile, the organic carbon storage decreased significantly with the increase of soil depth; while in deep soil, the organic carbon storage had a slight fluctuation. The total organic carbon storage in 100-400 cm soil profile was considerably high, accounting for approximately 60% of that in 0-400 cm soil profile. The organic carbon storage in 80-100 cm soil layer had a significant linear correlation with that in 100-200 and 200-400 cm soil layers, and among the organic carbon storages in the five layers in 0-100 cm soil profile, the organic carbon storage in 80-100 cm soil layer had the strongest correlation with that in 100-400 cm soil profile, being able to be used to estimate the organic carbon storage in deep soil in this region. The organic carbon storage in 0-20 cm soil layer in the three types of revegetation lands was significantly higher than that in slope croplands, but the organic carbon storage in deep soil had no significant difference among the land use types. The organic carbon storage in deep soil increased with the increasing years of revegetation. In R. pseudoacacia woodlands and C. korshinskii shrub lands, the average increasing rate of the organic carbon storage in 100-400 cm soil layer was 0.14 and 0.19 t x hm(-2) x a(-1), respectively, which was comparable to that in the 0-100 cm soil layer in C. korshinskii shrublands. It was suggested that in the estimation of the soil carbon sequestration effect of revegetation in hilly Loess Plateau region, the organic carbon accumulation in deep soil should be taken into consideration. Otherwise, the effect of

  1. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  2. Comparison of methods to evaluate soil and crop management-induced soil carbon changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of previous research evaluated soil organic carbon (SOC) mass using SOC concentration and soil bulk density ('b) associated with a fixed-depth (FD) without considering the soil thickness or soil mass. The objectives of this study are (i) to compare between the changes in SOC calculated...

  3. Turnover of soil carbon pools following addition of switchgrass-derived biochar to four soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amendment of soils with biochar may improve plant growth and sequester carbon, especially in marginal soils not suitable for the majority of commodity production. While biochar can persist in soils, it is not clear whether its persistence is affected by soil type. Moreover, we know little of how...

  4. Aggregate size distribution of the soil loss

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka; Józsa, Sándor; Szalai, Zoltán; Centeri, Csaba

    2016-04-01

    In agricultural areas the soil erosion and soil loss estimation is vital information in long-term planning. During the initial period of the erosion a part of the soil particles and aggregates get transportable and nutrients and organic matter could be transported due to the effect of water or wind. This preliminary phase was studied with laboratory-scale rainfall simulator. Developed surface crust and aggregate size composition of the runoff was examined in six different slope-roughness-moisture content combination of a Cambisol and a Regosol. The ratio of micro- and macro aggregates in the runoff indicate the stability of the aggregates and determine the transport capacity of the runoff. Both soil samples were taken from field where the water erosion is a potential hazard. During the experiment the whole amount of runoff and sediment was collected through sieve series to a bucket to separate the micro- and macro aggregates. In case of both samples the micro aggregates dominate in the runoff and the runoff rates are similar. Although the runoff of the Regosol - with dominant >1000μm macro aggregate content - contained almost nothing but <50μm sized micro aggregates. Meanwhile the runoff of the Cambisol - with more balanced micro and macro aggregate content - contained dominantly 50-250μm sized micro aggregates and in some case remarkable ratio 250-1000μm sized macro aggregates. This difference occurred because the samples are resistant against drop erosion differently. In case of both sample the selectivity of the erosion and substance matrix redistribution manifested in mineral crusts in the surface where the quartz deposited in place while the lighter organic matter transported with the sediment. The detachment of the aggregates and the redistribution of the particles highly effect on the aggregate composition of the runoff which is connected with the quality of the soil loss. So while the estimation of soil loss quantity is more or less is easy, measuring

  5. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    SciTech Connect

    Garten Jr, Charles T

    2009-01-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO{sub 2} concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  6. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    NASA Astrophysics Data System (ADS)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  7. Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.

    PubMed

    Sipos, Péter; Németh, Tibor; Mohai, Ilona

    2005-02-01

    Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger. PMID:15688125

  8. [Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region].

    PubMed

    Tang, Guoyon; Huang, Daoyou; Tong, Chengli; Zhang, Wenju; Xiao, Heai; Su, Yirong; Wu, Jinshui

    2006-03-01

    In this paper, 535 soil samples (0 to approximately 20 cm) were taken from the woodland, orchard, upland, and paddy field in the hilly red soil region of south China, and the quantitative characteristics of soil organic carbon (SOC) and soil microbial biomass carbon (SMB-C) were studied. The results showed that SOC content was the highest (16.0 g x kg(-1)) in paddy field and the lowest (8.4 g x kg(-1)) in woodland, while SMB-C content was the highest in paddy field (830 mg x kg(-1)) and the lowest in orchard (200 mg x kg(-1)). There was a highly significant positive correlation (P < 0.01) between the contents of SOC and SMB-C in the four land-use types. It was suggested that the changes of SMB-C content could sensitively indicate the dynamics of SOC. The transition from woodland to orchard or cultivated land in hilly red soil region would not decrease the SOC content. PMID:16724737

  9. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    NASA Astrophysics Data System (ADS)

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations.

  10. Accelerated soil carbon turnover under tree plantations limits soil carbon storage.

    PubMed

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation's canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  11. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    PubMed Central

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  12. Estimating and mapping of soil carbon stock using satellite data

    NASA Astrophysics Data System (ADS)

    Hongo, C.; Tamura, E.; Aijima, K.; Niwa, K.

    2014-12-01

    Recently, the carbon capture and storage has been attracting attention as a method for the mitigation of the global warming in agricultural sphere. In Japan, since its topography is complicated, precision monitoring and investigation has a limit. So, utilization of the remote sensing is expected as a precise and effective investigation method. Previous research in Japan, Sekiya et al. (2010) estimated the soil carbon stock from soil surface down to 100 cm depth in Hokkaido. However, the estimated values may not reflect current situation, because in this research relatively old soil survey data from the 1960's to the 1970's were used to estimate the soil carbon stock. Under this background, we developed an estimation method using satellite data to evaluate the soil carbon stocks in the agricultural field covering wide area to be used as the fundamental data. Result of our study suggests that there is a significant correlation between the amount of soil carbon and the reflectance value from visible to near-infrared wavelength region. This is the reason that the color of the soil becomes dark and electromagnetic wave absorbency from visible to near-infrared wavelength increases corresponding with increment of the soil carbon content. Especially, a high negative correlation is found between the reflectance value of red wavelength and the soil carbon stock in the SPOT satellite data of 2013.

  13. Isotopic studies of Yucca Mountain soil fluids and carbonate pedogenesis

    SciTech Connect

    McConnaughey, T.A.; Whelan, J.F.; Wickland, K.P.; Moscati, R.J.

    1994-12-31

    Secondary carbonates occurring within the soils, faults, and subsurface fractures of Yucca Mountain contain some of the best available records of paleoclimate and palehydrology for the potential radioactive waste repository site. This article discusses conceptual and analytical advances being made with regard to the interpretation of stable isotope data from pedogenic carbonates, specifically related to the {sup 13}C content of soil CO{sub 2}, CaCO{sub 3}, precipitation mechanisms, and isotopic fractionations between parent fluids and precipitating carbonates. The {sup 13}C content of soil carbon dioxide from Yucca Mountain and vicinity shows most of the usual patterns expected in such contexts: Decreasing {sup 13}C content with depth decreasing {sup 13}C with altitude and reduced {sup 13}C during spring. These patterns exist within the domain of a noisy data set; soil and vegetational heterogeneities, weather, and other factors apparently contribute to isotopic variability in the system. Several soil calcification mechanisms appear to be important, involving characteristic physical and chemical environments and isotopic fractionations. When CO{sub 2} loss from thin soil solutions is an important driving factor, carbonates may contain excess heavy isotopes, compared to equilibrium precipitation with soil fluids. When root calcification serves as a proton generator for plant absorption of soil nutrients, heavy isotope deficiencies are likely. Successive cycles of dissolution and reprecipitation mix and redistribute pedogenic carbonates, and tend to isotopically homogenize and equilibrate pedogenic carbonates with soil fluids.

  14. The uncertainty of modeled soil carbon stock change for Finland

    NASA Astrophysics Data System (ADS)

    Lehtonen, Aleksi; Heikkinen, Juha

    2013-04-01

    Countries should report soil carbon stock changes of forests for Kyoto Protocol. Under Kyoto Protocol one can omit reporting of a carbon pool by verifying that the pool is not a source of carbon, which is especially tempting for the soil pool. However, verifying that soils of a nation are not a source of carbon in given year seems to be nearly impossible. The Yasso07 model was parametrized against various decomposition data using MCMC method. Soil carbon change in Finland between 1972 and 2011 were simulated with Yasso07 model using litter input data derived from the National Forest Inventory (NFI) and fellings time series. The uncertainties of biomass models, litter turnoverrates, NFI sampling and Yasso07 model were propagated with Monte Carlo simulations. Due to biomass estimation methods, uncertainties of various litter input sources (e.g. living trees, natural mortality and fellings) correlate strongly between each other. We show how original covariance matrices can be analytically combined and the amount of simulated components reduce greatly. While doing simulations we found that proper handling correlations may be even more essential than accurate estimates of standard errors. As a preliminary results, from the analysis we found that both Southern- and Northern Finland were soil carbon sinks, coefficient of variations (CV) varying 10%-25% when model was driven with long term constant weather data. When we applied annual weather data, soils were both sinks and sources of carbon and CVs varied from 10%-90%. This implies that the success of soil carbon sink verification depends on the weather data applied with models. Due to this fact IPCC should provide clear guidance for the weather data applied with soil carbon models and also for soil carbon sink verification. In the UNFCCC reporting carbon sinks of forest biomass have been typically averaged for five years - similar period for soil model weather data would be logical.

  15. Infrared sensors to map soil carbon in agricultural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid methods of measuring soil carbon such as near-infrared (NIR) and mid-infrared (MIR) diffuse reflectance spectroscopy have gained interest but problems of accurate and precise measurement still persist resulting from the high spatial variability of soil carbon within agricultural landscapes. T...

  16. Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau

    PubMed Central

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation. PMID:23468904

  17. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil.

    PubMed

    Shrestha, Raj K; Lal, Rattan

    2006-08-01

    Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption of recommended management practices (RMPs). The objectives of this paper are to (1) synthesize available information on carbon dioxide (CO2) emissions from coal mining and combustion activities, (2) understand mechanisms of SOC sequestration and its protection, (3) identify factors affecting C sequestration potential in RMSs, (4) review available methods for the estimation of ecosystem C budget (ECB), and (5) identify knowledge gaps to enhance C sink capacity of RMS ecosystems and prioritize research issues. The drastic perturbations of soil by mining activities can accentuate CO2 emission through mineralization, erosion, leaching, changes in soil moisture and temperature regimes, and reduction in biomass returned to the soil. The reclamation of drastically disturbed soils leads to improvement in soil quality and development of soil pedogenic processes accruing the benefit of SOC sequestration and additional income from trading SOC credits. The SOC sequestration potential in RMS depends on amount of biomass production and return to soil, and mechanisms of C protection. The rate of SOC sequestration ranges from 0.1 to 3.1 Mg ha(-1) yr(-1) and 0.7 to 4 Mg ha(-1) yr(-1) in grass and forest RMS ecosystem, respectively. Proper land restoration alone could off-set 16 Tg CO2 in the U.S. annually. However, the factors affecting C sequestration and protection in RMS leading to increase in microbial activity, nutrient availability, soil aggregation, C build up, and soil profile development must be better understood in order to formulate guidelines for development of an

  18. Forest soil carbon is threatened by intensive biomass harvesting

    NASA Astrophysics Data System (ADS)

    Achat, David L.; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-01

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers’ decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  19. Forest soil carbon is threatened by intensive biomass harvesting

    PubMed Central

    Achat, David L.; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-01-01

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers’ decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142–497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils. PMID:26530409

  20. Forest soil carbon is threatened by intensive biomass harvesting.

    PubMed

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-01-01

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils. PMID:26530409

  1. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  2. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  3. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  4. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  5. Does North Appalachian Agriculture Contribute to Soil Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems are important for world ecosystems. They can be managed to moderate CO2 emissions. World soils can be both a sink and source of atmospheric CO2, but it is a slow process. Data from long-term soil management experiments are needed to assess soil carbon (C) sink capacity through a...

  6. CRADA Carbon Sequestration in Soils and Commercial Products

    SciTech Connect

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  7. Plant soil interactions alter carbon cycling in an upland grassland soil

    PubMed Central

    Thomson, Bruce C.; Ostle, Nick J.; McNamara, Niall P.; Oakley, Simon; Whiteley, Andrew S.; Bailey, Mark J.; Griffiths, Robert I.

    2013-01-01

    Soil carbon (C) storage is dependent upon the complex dynamics of fresh and native organic matter cycling, which are regulated by plant and soil-microbial activities. A fundamental challenge exists to link microbial biodiversity with plant-soil C cycling processes to elucidate the underlying mechanisms regulating soil carbon. To address this, we contrasted vegetated grassland soils with bare soils, which had been plant-free for 3 years, using stable isotope (13C) labeled substrate assays and molecular analyses of bacterial communities. Vegetated soils had higher C and N contents, biomass, and substrate-specific respiration rates. Conversely, following substrate addition unlabeled, native soil C cycling was accelerated in bare soil and retarded in vegetated soil; indicative of differential priming effects. Functional differences were reflected in bacterial biodiversity with Alphaproteobacteria and Acidobacteria dominating vegetated and bare soils, respectively. Significant isotopic enrichment of soil RNA was found after substrate addition and rates varied according to substrate type. However, assimilation was independent of plant presence which, in contrast to large differences in 13CO2 respiration rates, indicated greater substrate C use efficiency in bare, Acidobacteria-dominated soils. Stable isotope probing (SIP) revealed most community members had utilized substrates with little evidence for competitive outgrowth of sub-populations. Our findings support theories on how plant-mediated soil resource availability affects the turnover of different pools of soil carbon, and we further identify a potential role of soil microbial biodiversity. Specifically we conclude that emerging theories on the life histories of dominant soil taxa can be invoked to explain changes in soil carbon cycling linked to resource availability, and that there is a strong case for considering microbial biodiversity in future studies investigating the turnover of different pools of soil

  8. Heavy Metal Pollution Enhances Soil Respiration and Reduces Carbon Storage in a Chinese Paddy Soil

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Li, Zhipeng; Liu, Yongzhuo; Smith, Pete; Crowley, David; Zheng, Jufeng

    2010-05-01

    China's paddy soils are crucial both for food security through high cereal productivity, and for climate mitigation through high soil carbon storage. These functions are increasingly threatened by widespread heavy metal pollution, resulting from rapid industrial development. Heavy metal-polluted soils generally have a reduced microbial biomass and reduced soil respiration, as well as reduced functional diversity through changes in microbial community structure. Here we show that heavy metal pollution enhances soil respiration and CO2 efflux from a Chinese rice paddy soil, and leads to a soil organic carbon (SOC) loss, which is correlated with a decline in the fungal-to-bacterial ratio of the reduced soil microbial community. The pollution-induced SOC loss could offset 70% of the yearly SOC increase from China's paddy soils. Thus, heavy metal pollution impacts long term productivity and the potential for C sequestration in China's paddy soils.

  9. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland.

    PubMed

    Gruba, Piotr; Socha, Jarosław; Błońska, Ewa; Lasota, Jarosław

    2015-07-15

    In this study we investigated the effect of fine (ϕ<0.05mm) fraction, i.e., silt+clay (FF) content in soils, site moisture, metal (Al and Fe) of soil organic matter (SOM) and forest species composition on the spatial distribution of carbon (C) pools in forest soils at the landscape scale. We established 275 plots in regular 200×200m grid in a forested area of 14.4km(2). Fieldwork included soil sampling of the organic horizon, mineral topsoil and subsoil down to 40cm deep. We analysed the vertical and horizontal distribution of soil organic carbon (SOC) stocks, as well as the quantity of physically separated fractions including the free light (fLF), occluded light (oLF) and mineral associated fractions (MAF) in the mineral topsoil (A, AE) horizons. Distribution of C in soils was predominantly affected by the variation in the FF content. In soils richer in the FF more SOC was accumulated in mineral horizons and less in the organic horizons. Accumulation of SOC in mineral soil was also positively affected by the degree of saturation of SOM with Al and Fe. The increasing share of beech influenced the distribution of C stock in soil profiles by reducing the depth of O horizon and increasing C stored in mineral soil. The content of FF was positively correlated with the content of C in MAF and fLF fractions. The content of oLF and MAF fractions was also positively influenced by a higher degree of metal saturation, particularly Al. Our results confirmed that Al plays an important role in the stabilization of SOM inside aggregates (CoLF) and as in CMAF fractions. We also found a significant, positive effect of beech on the CfLF and fir on the CoLF content. PMID:25829288

  10. Controls of soil carbon stock development – comparison of Swedish forest soil carbon inventory measurements and two process based models

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Ortiz, Carina; Stendahl, Johan; Hashimoto, Shoji; Dahlgren, Jonas; Lehtonen, Aleksi

    2015-04-01

    The key question in greenhouse gas research, whether the soils continue to sequester carbon under the conditions of climate change, is mainly evaluated by process based modelling. However, the models based on key processes of carbon cycle ignore more complex environmental effects for the sake of simplicity. In our study, based on extensive measurements of Swedish forest soil carbon inventory, we used the recursive partitioning and boosted regression trees methods to identify the governing controls of soil carbon stocks, and for these controls we compared the carbon stocks of measurements with carbon estimates of Yasso07 and CENTURY state of art models. The models were strongly vegetation and weather driven, whereas the soil carbon stocks of measurements were controlled mainly by the soil factors (e.g. cation exchange capacity, C/N ratio). Contrary to our expectation, the more complex CENTURY, which indirectly accounted for the exchangeable cations by incorporating the clay content into the model structure, still heavily depended on the amount of litter input and generally performed worse, than simpler Yasso07, that ignored the soil properties. When estimating the carbon stock for the specific soil type management, the soil properties should be considered while keeping the plant-weather related processes and parameters in their calibrated optimum.

  11. Biofuel intercropping effects on soil carbon and microbial activity.

    PubMed

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  12. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  13. Factors Controlling Carbon Metabolism and Humification in Different Soil Agroecosystems

    PubMed Central

    Doni, S.; Macci, C.; Peruzzi, E.; Ceccanti, B.; Masciandaro, G.

    2014-01-01

    The aim of this study was to describe the processes that control humic carbon sequestration in soil. Three experimental sites differing in terms of management system and climate were selected: (i) Abanilla-Spain, soil treated with municipal solid wastes in Mediterranean semiarid climate; (ii) Puch-Germany, soil under intensive tillage and conventional agriculture in continental climate; and (iii) Alberese-Italy, soil under organic and conventional agriculture in Mediterranean subarid climate. The chemical-structural and biochemical soil properties at the initial sampling time and one year later were evaluated. The soils under organic (Alberese, soil cultivated with Triticum durum Desf.) and nonintensive management practices (Puch, soil cultivated with Triticum aestivum L. and Avena sativa L.) showed higher enzymatically active humic carbon, total organic carbon, humification index (B/E3s), and metabolic potential (dehydrogenase activity/water soluble carbon) if compared with conventional agriculture and plough-based tillage, respectively. In Abanilla, the application of municipal solid wastes stimulated the specific β-glucosidase activity (extracellular β-glucosidase activity/extractable humic carbon) and promoted the increase of humic substances with respect to untreated soil. The evolution of the chemical and biochemical status of the soils along a climatic gradient suggested that the adoption of certain management practices could be very promising in increasing SOC sequestration potential. PMID:25614887

  14. Weathering controls on mechanisms of carbon storage in grassland soils

    USGS Publications Warehouse

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  15. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  16. Soil moisture influence on the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Guo, S. L.; Zhao, M.; Du, L. L.; Li, R. J.; Jiang, J. S.; Wang, R.; Li, N. N.

    2015-06-01

    Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q10) determines how strong the feedback from global warming may be on the atmospheric CO2 concentration; thus, understanding the factors influencing the interannual variation in Q10 is important for accurately estimating local soil carbon cycle. In situ SOC mineralization rate was measured using an automated CO2 flux system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35°12' N, 107°40' E) in Changwu, Shaanxi, China from 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m-2 yr-1, with a mean of 253 g C m-2 yr-1 and a coefficient of variation (CV) of 13%, annual Q10 ranged from 1.48 to 1.94, with a mean of 1.70 and a CV of 10%, and annual soil moisture content ranged from 38.6 to 50.7% soil water-filled pore space (WFPS), with a mean of 43.8% WFPS and a CV of 11%, which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a quadratic correlation with annual mean soil moisture content. In conclusion, understanding of the relationships between interannual variation in Q10, soil moisture, and precipitation are important to accurately estimate the local carbon cycle, especially under the changing climate.

  17. Coupling soil Carbon Fluxes, Soil Microbes, and High-Resolution Carbon Profiling in Permafrost Transitions

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Stegen, J.; Bond-Lamberty, B. P.; Tfaily, M. M.; Huang, M.; Liu, Y.

    2015-12-01

    Microbial communities play a central role in the functioning of natural ecosystems by heavily influencing biogeochemical cycles. Understanding how shifts in the environment are tied to shifts in biogeochemical rates via changes in microbial communities is particularly relevant in high latitude terrestrial systems underlain by permafrost due to vast carbon stocks currently stored within thawing permafrost. There is limited understanding, however, of the interplay among soil-atmosphere CO2 fluxes, microbial communities, and SOM chemical composition. To address this knowledge gap, we leverage the distinct spatial transitions in permafrost-affected soils at the Caribou Poker Creek Research Watershed, a 104 km2 boreal watershed ~50 km north of Fairbanks, AK. We integrate a variety of data to gain new knowledge of the factors that govern observed patterns in the rates of soil CO2 fluxes associated with permafrost to non-permafrost transition zones. We show that nonlinearities in fluxes are influenced by depth to permafrost, tree stand structure, and soil C composition. Further, using 16S sequencing methods we explore microbial community assembly processes and their connection to CO2 flux across spatial scales, and suggest a path to more mechanistically link microbes to large-scale biogeochemical cycles. Lastly, we use the Community Land Model (CLM) to compare Earth System Model predictions of soil C cycling with empirical measurements. Deviations between CLM predictions and field observations of CO2 flux and soil C stocks will provide insight for how the model may be improved through inclusion of additional biotic (e.g., microbial community composition) and abiotic (e.g., organic carbon composition) features, which will be critical to improve the predictive power of climate models in permafrost-affected regions.

  18. Landscape scale estimation of soil carbon stock using 3D modelling.

    PubMed

    Veronesi, F; Corstanje, R; Mayr, T

    2014-07-15

    Soil C is the largest pool of carbon in the terrestrial biosphere, and yet the processes of C accumulation, transformation and loss are poorly accounted for. This, in part, is due to the fact that soil C is not uniformly distributed through the soil depth profile and most current landscape level predictions of C do not adequately account the vertical distribution of soil C. In this study, we apply a method based on simple soil specific depth functions to map the soil C stock in three-dimensions at landscape scale. We used soil C and bulk density data from the Soil Survey for England and Wales to map an area in the West Midlands region of approximately 13,948 km(2). We applied a method which describes the variation through the soil profile and interpolates this across the landscape using well established soil drivers such as relief, land cover and geology. The results indicate that this mapping method can effectively reproduce the observed variation in the soil profiles samples. The mapping results were validated using cross validation and an independent validation. The cross-validation resulted in an R(2) of 36% for soil C and 44% for BULKD. These results are generally in line with previous validated studies. In addition, an independent validation was undertaken, comparing the predictions against the National Soil Inventory (NSI) dataset. The majority of the residuals of this validation are between ± 5% of soil C. This indicates high level of accuracy in replicating topsoil values. In addition, the results were compared to a previous study estimating the carbon stock of the UK. We discuss the implications of our results within the context of soil C loss factors such as erosion and the impact on regional C process models. PMID:24636454

  19. Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts

    PubMed Central

    Gao, Guang-Lei; Ding, Guo-Dong; Wu, Bin; Zhang, Yu-Qing; Qin, Shu-Gao; Zhao, Yuan-Yuan; Bao, Yan-Feng; Liu, Yun-Dong; Wan, Li; Deng, Ji-Feng

    2014-01-01

    Background Biological soil crusts are common components of desert ecosystem; they cover ground surface and interact with topsoil that contribute to desertification control and degraded land restoration in arid and semiarid regions. Methodology/Principal Findings To distinguish the changes in topsoil affected by biological soil crusts, we compared topsoil properties across three types of successional biological soil crusts (algae, lichens, and mosses crust), as well as the referenced sandland in the Mu Us Desert, Northern China. Relationships between fractal dimensions of soil particle size distribution and selected soil properties were discussed as well. The results indicated that biological soil crusts had significant positive effects on soil physical structure (P<0.05); and soil organic carbon and nutrients showed an upward trend across the successional stages of biological soil crusts. Fractal dimensions ranged from 2.1477 to 2.3032, and significantly linear correlated with selected soil properties (R2 = 0.494∼0.955, P<0.01). Conclusions/Significance Biological soil crusts cause an important increase in soil fertility, and are beneficial to sand fixation, although the process is rather slow. Fractal dimension proves to be a sensitive and useful index for quantifying changes in soil properties that additionally implies desertification. This study will be essential to provide a firm basis for future policy-making on optimal solutions regarding desertification control and assessment, as well as degraded ecosystem restoration in arid and semiarid regions. PMID:24516668

  20. [Effects of Chinese fir litter on soil organic carbon decomposition and microbial biomass carbon].

    PubMed

    Wang, Xiao-Feng; Wang, Si-Long; Zhang, Wei-Dong

    2013-09-01

    By using 13C stable isotope tracer technique, this paper studied the effects of Chinese fir litter addition on the soil organic carbon (SOC) decomposition, microbial biomass carbon, and dissolved organic carbon in 0-5 cm and 40-45 cm layers. The decomposition rate of SOC in 40-45 cm layer was significantly lower than that in 0-5 cm layer, but the priming effect induced by the Chinese fir litter addition showed an opposite trend. The Chinese fir litter addition increased the soil total microbial biomass carbon and the microbial biomass carbon derived from native soil significantly, but had less effects on the soil dissolved organic carbon. Turning over the subsoil to the surface of the woodland could accelerate the soil carbon loss in Chinese fir plantation due to the priming effect induced by the litters. PMID:24417093

  1. A global predictive model of carbon in mangrove soils

    NASA Astrophysics Data System (ADS)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  2. Organic carbon stocks and sequestration rates of forest soils in Germany.

    PubMed

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  3. Mineral protection of soil carbon counteracted by root exudates

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Bougoure, Jeremy J.; Nico, Peter S.; Pett-Ridge, Jennifer; Weber, Peter K.; Kleber, Markus

    2015-06-01

    Multiple lines of existing evidence suggest that climate change enhances root exudation of organic compounds into soils. Recent experimental studies show that increased exudate inputs may cause a net loss of soil carbon. This stimulation of microbial carbon mineralization (`priming’) is commonly rationalized by the assumption that exudates provide a readily bioavailable supply of energy for the decomposition of native soil carbon (co-metabolism). Here we show that an alternate mechanism can cause carbon loss of equal or greater magnitude. We find that a common root exudate, oxalic acid, promotes carbon loss by liberating organic compounds from protective associations with minerals. By enhancing microbial access to previously mineral-protected compounds, this indirect mechanism accelerated carbon loss more than simply increasing the supply of energetically more favourable substrates. Our results provide insights into the coupled biotic-abiotic mechanisms underlying the `priming’ phenomenon and challenge the assumption that mineral-associated carbon is protected from microbial cycling over millennial timescales.

  4. [Spatial heterogeneity of soil organic carbon and nutrients in low mountain area of Changbai Mountains].

    PubMed

    Liu, Ling; Wang, Hai-Yan; Dai, Wei; Yang, Xiao-Iuan; Li, Xu

    2014-09-01

    Soil samples were collected in Jincang Forest Farm, Wangqing Forestry Bureau to study spatial distribution of soil organic carbon (SOC) and nutrients. Geostatistics was used to predict their spatial distribution in the study area, and the prediction results were interpolated using regression-kriging and ordinary kriging. Multiple linear regression was used to study the relationship between SOC and spatial factors. The results showed the SOC density (SOCD) at 0-60 cm was (16.14 ± 4.58) kg · m(-2). Soil organic carbon decreased significantly with the soil depth. With the increasing soil depth, total N, total P, total K, available P and readily available K concentrations decreased. Stepwise regression analysis showed that SOC had good correlation with elevation and cosine of aspect, with the determination coefficient of 0.34 and 0.39, respectively (P < 0.01). Soil organic carbon at 0-20 cm and 0-60 cm soil layers conformed to Gaussian model and exponential model. Compared with ordinary kriging, the prediction accuracy was improved by 18%-58% using regression-kriging. Regression-kriging interpolation was also applied to study spatial heterogeneity of soil total N. PMID:25757293

  5. The Interactions between Biogeophysical and Biogeochemical Processes and their Feedbacks on Permafrost Soil Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; El Masri, B.; Barman, R.; Shu, S.; Song, Y.

    2014-12-01

    One of the major challenges in more detailed Earth system models (ESMs) is the treatment of the biophysical and biogeochemical processes and feedbacks and their impact on soil organic carbon in the Northern high latitudes (NHL). We use a land surface model, the Integrated Science Assessment Model (ISAM) to investigate the effects of feedbacks between the biogeochemical and biogeophysical processes on the model estimated soil organic carbon (SOC) for the NHL permafrost region. We not only focus on recent model improvements in the biogeophysical processes that are deemed important for the high latitude soils/snow; such as deep soil column, modulation of soil thermal and hydrological properties, wind compaction of snow, and depth hoar formation; on permafrost SOC; but also biogeochemical processes; such as dynamic phenology and root distribution, litter carbon decomposition rates and nitrogen amount remaining; on soil biogeochemistry. We select multiple sites to evaluate the model. We then carried out several model simulations to study the effects of feedbacks between biogeochemical and biogeophysical processes on SOC. Our model analysis shows that including the biogeophysical processes alone could increase modeled NHL permafrost carbon by about 30% compared to measurements. Accounting for the biogeochmical processes further improve the NHL soil carbon.

  6. Controls on Soil Respiration in a High Elevation Alpine System and the Implications For Soil Carbon Storage in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Schliemann, S. A.

    2015-12-01

    The alpine ecosystem is a dynamic network of heterogeneous soil and vegetation patches. Microsite characteristics are controlled by site geomorphology, underlying bedrock, and landscape position. These microsite characteristics create a complex mosaic of soil moisture and temperature regimes across the landscape. To investigate the relative influences of soil moisture and soil temperature on soil respiration in these varied microsites, 12 study sites were established in June of 2015 in Rocky Mountain National Park, Colorado. Sites were distributed across 3 plots with distinct vegetation and soil regimes: 1) Conifer forest at the upper limit of the tree line 2) Tundra characterized by shallow soil and minimal vegetation consisting of herbs and lichen 3) Tundra characterized by organic-rich, deep soil and abundant vegetation consisting of grasses and sedges. Soil respiration, soil temperature, and soil moisture were measured weekly throughout the snow-free period of 2015. Soil moisture was negatively correlated with soil respiration and soil temperature was positively correlated with soil respiration across the study sites (p <0.001). Soil respiration rates were significantly different from one another in all plots and were highest in the forest plot (maximum 9.6 μmol/ m2/sec) and much lower in the two tundra plots (< 4.5 μmol/ m2/sec) (p < 0.001). These data suggest that as the alpine climate warms, an increase in soil temperature and a longer snow-free period may result in an overall increase in the rate of soil respiration, which could alter the soil carbon pool. In addition, as temperatures rise, the tree line may migrate to a higher elevation. The results of this study suggest that with such a movement, the soil respiration rate will also increase. However the net change in soil organic matter in the newly established forest would not only depend on the soil respiration rate, but on the overall capacity of the new forest soil to retain carbon, especially

  7. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    PubMed

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content. PMID:26408119

  8. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  9. Inverse Method for Estimating the Spatial Variability of Soil Particle Size Distribution from Observed Soil Moisture

    SciTech Connect

    Pan, Feifei; Peters-lidard, Christa D.; King, Anthony Wayne

    2010-11-01

    Soil particle size distribution (PSD) (i.e., clay, silt, sand, and rock contents) information is one of critical factors for understanding water cycle since it affects almost all of water cycle processes, e.g., drainage, runoff, soil moisture, evaporation, and evapotranspiration. With information about soil PSD, we can estimate almost all soil hydraulic properties (e.g., saturated soil moisture, field capacity, wilting point, residual soil moisture, saturated hydraulic conductivity, pore-size distribution index, and bubbling capillary pressure) based on published empirical relationships. Therefore, a regional or global soil PSD database is essential for studying water cycle regionally or globally. At the present stage, three soil geographic databases are commonly used, i.e., the Soil Survey Geographic database, the State Soil Geographic database, and the National Soil Geographic database. Those soil data are map unit based and associated with great uncertainty. Ground soil surveys are a way to reduce this uncertainty. However, ground surveys are time consuming and labor intensive. In this study, an inverse method for estimating mean and standard deviation of soil PSD from observed soil moisture is proposed and applied to Throughfall Displacement Experiment sites in Walker Branch Watershed in eastern Tennessee. This method is based on the relationship between spatial mean and standard deviation of soil moisture. The results indicate that the suggested method is feasible and has potential for retrieving soil PSD information globally from remotely sensed soil moisture data.

  10. Role of carbonates in soil organic matter stabilization in agricultural Mediterranean soils

    NASA Astrophysics Data System (ADS)

    Apesteguía, Marcos; Virto, Iñigo; Plante, Alain

    2016-04-01

    Carbonated soils are present in many semiarid areas, where lithogenic and secondary carbonates are important constituents of the soil mineral matrix. The presence of CaCO3 in calcareous soils has been described as an organic matter stabilization agent mainly due to chemical stabilization mechanisms. In two recent studies in the north of Spain the importance of CaCO3 on soil physical characteristics was highlighted, as they were observed to be acting as macroaggregates stabilization agents. A third study was carried out on the same experimental site, with the hypothesis that the observed differences in aggregation may favor organic matter stabilization in carbonate-containing soils. With that aim we studied the soil physical characteristics (water retention and porosity) and the bioavailability of soil organic matter (SOM) in the two contrasting soils in that site, one Typic Calcixerept (CALC) and one Calcic Haploxerept (DECALC). Bioavailability was evaluated trough the measurement of mineralization rates in a 30 days soil incubations. Intact and disaggregated samples were incubated to evaluate the effect of physical protection on SOM bioavailability in whole soil and macroaggregates 2-5 mm samples. Therefore, four fractions of each soil were studied: intact whole soil < 5 mm (I-WS), disaggregated whole soil (D-WS), intact macroaggregates 2-5 mm (I-Magg), and disaggregated macroaggregates (D-Magg). Soil organic carbon content was greater in CALC and had smaller mineralization rates during incubation, indicating a smaller organic matter bioavailability for microbial decomposition. However, the greater increment of mineralization observed in DECALC after disaggregation, together with the scarce differences observed in physical characteristics among both soils, indicate that physical protection was not responsible of greater SOM stability in CALC soil. New hypotheses are needed to explain the observed better protection of organic matter in carbonate-rich Mediterranean

  11. Inclusion of soil carbon lateral movement alters terrestrial carbon budget in China

    PubMed Central

    Zhang, Haicheng; Liu, Shuguang; Yuan, Wenping; Dong, Wenjie; Ye, Aizhong; Xie, Xianhong; Chen, Yang; Liu, Dan; Cai, Wenwen; Mao, Yuna

    2014-01-01

    The lateral movement of soil carbon has a profound effect on the carbon budget of terrestrial ecosystems; however, it has never been quantified in China, which is one of the strongest soil erosion areas in the world. In this study, we estimated that the overall soil erosion in China varies from 11.27 to 18.17 Pg yr−1 from 1982 to 2011, accounting for 7–21% of total soil erosion globally. Soil erosion induces a substantial lateral redistribution of soil organic carbon ranging from 0.64 to 1.04 Pg C yr−1. The erosion-induced carbon flux ranges from a 0.19 Pg C yr−1 carbon source to a 0.24 Pg C yr−1 carbon sink in the terrestrial ecosystem, which is potentially comparable in magnitude to previously estimated total carbon budget of China (0.19 to 0.26 Pg yr−1). Our results showed that the lateral movement of soil carbon strongly alters the carbon budget in China, and highlighted the urgent need to integrate the processes of soil erosion into the regional or global carbon cycle estimates. PMID:25430970

  12. Windthrows increase soil carbon stocks in a Central Amazon forest

    NASA Astrophysics Data System (ADS)

    dos Santos, L. T.; Magnabosco Marra, D.; Trumbore, S.; Camargo, P. B.; Chambers, J. Q.; Negrón-Juárez, R. I.; Lima, A. J. N.; Ribeiro, G. H. P. M.; dos Santos, J.; Higuchi, N.

    2015-12-01

    Windthrows change forest structure and species composition in Central Amazon forests. However, the effects of widespread tree mortality associated with wind-disturbances on soil properties have not yet been described. In this study, we investigated short-term effects (seven years after disturbance) of a windthrow event on soil carbon stocks and concentrations in a Central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 ± 4.18 Mg ha-1, mean ± standard error) was marginally higher (p = 0.009) than that from undisturbed plots (47.7 ± 6.95 Mg ha-1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.08 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 ± 0.12 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r = 0.575 and p = 0.019) and with tree mortality intensity (r = 0.493 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. Higher nutrient availability in soils from large canopy gaps created by wind disturbance may increase vegetation resilience and favor forest recovery.

  13. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resolving uncertainty in the carbon cycle is paramount to refining climate predictions. Soil organic carbon (SOC) is a major component of terrestrial C pools, and accuracy of SOC estimates are only as good as the measurements and assumptions used to obtain them. Dryland soils account for a substanti...

  14. Soil moisture effects on the carbon isotopic composition of soil respiration

    EPA Science Inventory

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  15. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    PubMed

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  16. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  17. Plant-soil interactions and soil carbon dynamics under climate extremes

    NASA Astrophysics Data System (ADS)

    Bahn, Michael

    2016-04-01

    Climate extremes have been suggested to increase significantly in intensity and frequency in the coming decades, and may influence ecosystem processes and the carbon cycle more profoundly than gradual climate warming. While there is a growing understanding of plant-soil interactions in extreme environments and from lab experiments, we still know very little about how such interactions affect soil carbon dynamics in real-world ecosystems exposed to climate extremes. In this talk I will give a brief overview of the topic and will present evidence from in-situ experiments on plant-soil interactions and their consequences for soil carbon dynamics under severe drought.

  18. Molecular profiling of permafrost soil organic carbon composition and degradation

    NASA Astrophysics Data System (ADS)

    Gu, B.; Mann, B.

    2014-12-01

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon (C) cycling, though the dynamics of these transformations remain unclear at the molecular level. This study reports the application of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to profile molecular components of Arctic SOM collected from the surface water and the mineral horizon of a low-centered polygon soil at Barrow Environmental Observatory (BEO), Barrow, Alaska. Soil samples were subjected to anaerobic warming experiments for a period of 40 days, and the SOM was extracted before and after the incubation to determine the components of organic C that were degraded over the course of the study. A CHO index based on molecular composition data was utilized to codify SOM components according to their observed degradation potential. Carbohydrate- and lignin-like compounds in the water-soluble fraction (WSF) demonstrated a high degradation potential, while structures with similar stoichiometries in the base-soluble fraction (BSF) were not readily degraded. The WSF of SOM also shifted to a wider range of measured molecular masses including an increased prevalence of larger compounds, while the size distribution of compounds in the BSF changed little over the same period. Additionally, the molecular profiling data indicated an apparently ordered incorporation of organic nitrogen in the BSF immobilized as primary and secondary amines, possibly as components of N-heterocycles, which may provide insight into nitrogen immobilization or mobilization processes in SOM. Our study represents an important step forward for studying Arctic SOM with improved understanding of the molecular properties of soil organic C and the ability to represent SOM in climate models that will predict the impact of climate change on soil C and nutrient cycling.

  19. [Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest].

    PubMed

    Huang, Zong-Sheng; Fu, Yu-Hong; Yu, Li-Fei

    2012-10-01

    By the method of taking space instead of time, an incubation test was conducted to study the characteristics of soil microbial biomass carbon and water soluble organic carbon in the process of natural restoration of Karst forest in Maolan Nature Reserve, Guizhou Province of Southwest China. The soil microbial biomass carbon content and soil basal respiration decreased with increasing soil depth but increased with the process of the natural restoration, soil microbial quotient increased with increasing soil depth and with the process of restoration, and soil water soluble organic carbon content decreased with increasing soil depth. In the process of the natural restoration, surface soil water soluble organic carbon content increased, while sublayer soil water soluble organic carbon content decreased after an initial increase. The ratio of soil water soluble organic carbon to total soil organic carbon increased with increasing soil depth but decreased with the process of restoration. Soil quality increased with the process of restoration. Also, the quality and quantity of soil organic carbon increased with the process of restoration, in which, soil microbial biomass carbon content had the greatest change, while soil water soluble organic carbon content had less change. PMID:23359931

  20. Soil carbon cycle of different saline and alkaline soils under cotton fields in Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Zhao, Chengyi; Stahr, Karl; Kuzyakov, Yakov

    2015-04-01

    Calcium carbonate is the most common form of carbon (C) in semiarid and arid soils. Depending on pH and salinity changes, soils can act as sink or source of atmospheric CO2 as well as contribute to C exchange between CO2 and CaCO3 leading to formation of pedogenic carbonates. However, the rates of these processes and the effects of environmental factors remains unknown. 14CO2 was used to assess carbonate recrystallization in 4 saline and alkaline soils (Aksu alkaline, Aksu saline, Yingbazar alkaline, Yingbazar saline) (EC = 0.32, 1.35, 1.72, 3.67 (1:20) mS cm-1, pH = 8.5, 8.2, 8.9, 7.9 respectively) and to trace the C exchange in the soils of the Tarim River basin depending on CO2 concentrations in soils (0.02%, 0.04%, 0.2%, 0.4% and 4%). 14C was traced in soil water and air as well as in carbonates. The highest 14C in 14CO2 (95% of the 14C input) was observed in Aksu alkaline soil and the highest 14C incorporation in CaCO3 (54%) was observed in Yingbazar saline soil. There were close negative linear relationships between initial CO2 concentrations (0.04%, 0.4% and 4%) and the 14C in Ca14CO3 and in 14CO2. The carbonate recrystallization rate increased with the CO2 concentration and were depended on the recrystalliztion period. The average carbonate recrystallization rate was highest at 4% CO2 concentration for Yingbazar saline soil (6.59×10-4 % per day) and the lowest at 0.04% CO2 concentration for Aksu alkaline soil (0.03×10-4 % per day). The carbonate recrystallization rate linearly increased with the soil EC and with 0.04% and 0.4% CO2 concentration , whereas the carbonate recrystallization rate decreased with pH. The highest CO2 concentration of 4% can 10 to 100 times shorten the full carbonate recrystallization of the remaining primary carbonates compared to lower CO2 concentrations 0.4% and 0.04% for complete (95%) recrystallization of soil carbonate. We conclude that microbial and root respiration affecting CO2 concentration in soil is the most important

  1. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect

    M.K. Shukla; R. Lal

    2004-10-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, water infiltration tests were performed on the soil surface in the experimental sites. Soil samples were analyzed for the soil carbon and nitrogen contents, texture, water stable aggregation, and mean weight and geometric mean diameter of aggregates. This report presents the results from two sites reclaimed during 1978 and managed under grass (Wilds) and forest (Cumberland) cover, respectively. The trees were planted in 1982 in the Cumberland site. The analyses of data on soil bulk density ({rho}{sub b}), SOC and total nitrogen (TN) concentrations and stocks were presented in the third quarter report. This report presents the data on infiltration rates, volume of transport and storage pores, available water capacity (AWC) of soil, particle size distribution, and soil inorganic carbon (SIC) and coal carbon contents. The SIC content ranged from 0.04 to 1.68% in Cumberland tree site and 0.01 to 0.65% in the Wilds. The coal content assumed to be the carbon content after oven drying the sample at 350 C varied between 0.04 and 3.18% for Cumberland and 0.06 and 3.49% for Wilds. The sand, silt and clay contents showed moderate to low variability (CV < 0.16) for 0-15 and 15-30 cm depths. The volume of transmission (VTP) and storage pores (VSP) also showed moderate to high variability (CV ranged from 0.22 to 0.39 for Wilds and 0.17 to 0.36 for Cumberland). The CV for SIC was high (0.7) in Cumberland whereas that for coal content was high (0.4) in the Wilds. The steady state infiltration rates (i{sub c}) also showed high variability

  2. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  3. A modelling approach to find stable and reliable soil organic carbon values for further regionalization.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Franko, Uwe

    2015-04-01

    Soil organic matter (SOM) and carbon (SOC) might be the most important components to describe soil fertility of agricultural used soils. It is sensitive to temporal and spatial changes due to varying weather conditions, uneven crops and soil management practices and still struggles with providing reliable delineation of spatial variability. Soil organic carbon, furthermore, is an essential initial parameter for dynamic modelling, understanding e.g. carbon and nitrogen processes. Alas it requires cost and time intensive field and laboratory work to attain and using this information. The objective of this study is to assess an approach that reduces efforts of laboratory and field analyses by using method to find stable initial soil organic carbon values for further soil process modelling and regionalization on field scale. The demand of strategies, technics and tools to improve reliable soil organic carbon high resolution maps and additionally reducing cost constraints is hence still facing an increasing attention of scientific research. Although, it is nowadays a widely used practice, combining effective sampling schemes with geophysical sensing techniques, to describe within-field variability of soil organic carbon, it is still challenging large uncertainties, even at field scale in both, science and agriculture. Therefore, an analytical and modelling approach might facilitate and improve this strategy on small and large field scale. This study will show a method, how to find reliable steady state values of soil organic carbon at particular points, using the approved soil process model CANDY (Franko et al. 1995). It is focusing on an iterative algorithm of adjusting the key driving components: soil physical properties, meteorological data and management information, for which we quantified the input and the losses of soil carbon (manure, crop residues, other organic inputs, decomposition, leaching). Furthermore, this approach can be combined with geophysical

  4. Evaluation of Methods for Measuring Soil Organic Carbon in West African Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased interest in implementing projects in the Sahel region of Africa for sequestration of atmospheric carbon dioxide in soil organic matter has intensified the need for methods that accurately measure soil C but are also suitable for use by often resource limited soil analysis laboratories in t...

  5. Soil carbon responses to past and future CO2 in three Texas prairie soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in soil carbon storage could affect and be affected by rising atmospheric CO2. However, it is unlikely that soils will respond uniformly, as some soils are more sensitive to changes in the amount and chemistry of plant tissue inputs while others are less sensitive because of mineralogical, ...

  6. International Soil Carbon Network (ISCN) Database v3-1

    DOE Data Explorer

    Nave, Luke [University of Michigan] (ORCID:0000000182588335); Johnson, Kris [USDA-Forest Service; van Ingen, Catharine [Microsoft Research; Agarwal, Deborah [Lawrence Berkeley National Laboratory] (ORCID:0000000150452396); Humphrey, Marty [University of Virginia; Beekwilder, Norman [University of Virginia

    2016-01-01

    The ISCN is an international scientific community devoted to the advancement of soil carbon research. The ISCN manages an open-access, community-driven soil carbon database. This is version 3-1 of the ISCN Database, released in December 2015. It gathers 38 separate dataset contributions, totalling 67,112 sites with data from 71,198 soil profiles and 431,324 soil layers. For more information about the ISCN, its scientific community and resources, data policies and partner networks visit: http://iscn.fluxdata.org/.

  7. Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica

    USGS Publications Warehouse

    Connell, L.; Redman, R.; Craig, S.; Rodriguez, R.

    2006-01-01

    The occurrence and distribution of culturable fungi in Taylor Valley, Antarctica was assessed in terms of soil habitat. Soil transects throughout the valley revealed differential habitat utilization between filamentous and non-filamentous (yeast and yeast-like) fungi. In addition, there were significant differences in species distribution patterns with respect to soil pH, moisture, distance from marine coastline, carbon, chlorophyll a, salinity, elevation and solar inputs. Filamentous fungal abundance is most closely associated with habitats having higher pH, and soil moistures. These close associations were not found with yeast and yeast-like fungi demonstrating that yeast and yeast-like fungi utilize a broader range of habitat. An intensive survey of the Victoria Land is necessary to gain a better understanding of their role in soil functioning and nutrient cycling processes. ?? 2006 Elsevier Ltd. All rights reserved.

  8. Carbon stocks of dead wood, litter, and soil in the forest sector in Japan estimated by the National Forest Soil Carbon Inventory

    NASA Astrophysics Data System (ADS)

    Nanko, Kazuki; Ugawa, Shin; Takahashi, Masamichi; Morisada, Kazuhito; Takeuchi, Manabu; Matuura, Yojiro; Yoshinaga, Shuichiro; Araki, Makoto; Tanaka, Nagaharu; Ikeda, Shigeto; Miura, Satoru; Ishizuka, Shigehiro; Kobayashi, Masahiro; Inagaki, Masahiro; Imaya, Akihiro; Hashimoto, Shoji; Kaneko, Shinji

    2013-04-01

    The carbon (C) stocks of dead wood, litter, and soil are the basic data for evaluating the C sink function in the forest sector in Japan. We estimated the C stocks of dead wood, litter, and soil at 0-30 cm in the forest sector in Japan and clarified the spatial distribution of those C stocks according to region units. Data were collected in 2438 survey plots in FY 2006-2010 by the National Forest Soil Carbon Inventory Project, which surveyed the C stocks of dead wood, litter, and soil at 0-30 cm throughout the forest sector in Japan. The C stock (mean ± sample standard deviation) of dead wood, litter, and soil at 0-30 cm was 0.42 ± 0.67, 0.49 ± 0.32, and 6.94 ± 3.25 kg m-2, respectively. The C stock of soil at 0-30 cm was slightly lower than previous study in Japan. The difference might be attributed to the difference of the sampling methodologies. The C stocks of the three pools were significantly different among regions. Although temperature influenced the tendency in the distribution of the C stocks among regions of dead wood and litter, the tendency was not unidirectional. On the other hand, the C stock of soil at 0-30 cm was higher in northern Japan and lower in southern Japan, although high C stock was observed in some regions in the volcanic region of southern Japan. Thus, we suggest that the soil C stock at 0-30 cm is regulated by macro scale factors such as temperature as well as by the distribution of volcanic ash soils. The part of this study is published in Ugawa et al. (2012, Bull. FFPRI. 11, 207-221).

  9. Vertical distribution of phosphorus in agricultural drainage ditch soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Mary...

  10. SeedChaser: Vertical soil tillage distribution model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the vertical distribution of surface residues, chemicals, or seeds following tillage operations is of paramount importance to a wide variety of soil research areas. This paper describes a 1-D empirical vertical soil tillage distribution model with 1-cm grid spacing (SeedChaser) that pre...

  11. LAND USE HISTORY, SOIL BIOLOGY, AND SOIL CARBON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use history contributes to patterns in soil biology and nutrient cycling. In California, a range of soil types support grasslands, each consisting of specific soil factors that influence the associated grassland and microbial communities. In Monterey County in the Central Coast region, several ...

  12. The influence of different soil management practices on auxin herbicide interactions with organic carbon in soil aggregate fractions

    NASA Astrophysics Data System (ADS)

    Schnitzler, Frauke; Haupt, Nadine; Burauel, Peter; Berns, Anne E.

    2010-05-01

    The influence of changing organic carbon contents in soils on the sorption and/or sequestration mechanisms of xenobiotics and their bioavailability are still not understood precisely. The present work discusses the turnover of a crop residue interacting with processes like mobilisation, binding and metabolism of an auxin herbicide in soil. The soil type was a haplic chernozem, available in three crop production regimes (low, normal and high) due to three types of fertilisation (none, mineral and mineral & organic) [1]. Two sets of experiments were conducted with undisturbed soil columns under field-like conditions. In the first set 14C-labelled maize straw was incorporated into the top soil and after three months incubation the herbicide benazolin was applied. In the second set the unlabelled maize straw was incorporated first, then 14C-labelled benazolin was added. Soil layers of 0-5 cm and 5-10 cm were fractionated in according to a soil aggregate fractionation procedure [2]. The content of organic carbon and the distribution of benazolin and its metabolites were detected in the gained soil fractions. In general, the specific organic carbon content and the specific 14C-activity of benazolin and its metabolites increased in the order from sand-sized though silt-sized to clay fraction due to increasing specific surface areas and sorption sites of the mineral particles. The highest sorption capacity of benazolin and its metabolites was detected in the soil layers of 0-5 cm with mineral fertilisation. In the 5-10 cm soil layers the binding capacity increased with increasing crop production. It was shown that more than half of the residual 14C-activity was not extractable. LC-MS/MS analysis of the extracts showed that the major components were benazolin and the relatively non-mobile thiazolin. The amount of benazolin in the extracts increased with increasing crop production, but decreased with increasing soil depth. These results indicate that maize straw amendment

  13. Assessing changes in carbon stocks of Scottish soils: lessons learnt

    NASA Astrophysics Data System (ADS)

    Lilly, A.; Chapman, S. J.

    2015-07-01

    Between 1978 and 1988, the soils at 721 locations throughout Scotland were sampled at intervals 10 km apart. They were described, characterised and samples were taken from each of the main horizons. Material not used for analysis was stored in the National Soils Archive. Between 2007 and 2009, 183 of these locations were re-visited (20 km intervals) and fresh samples taken to identify changes in nutrient status, pH and, in particular, soil carbon concentrations and stocks over the 19-31 year period. The archived soil samples from this time were re-analysed alongside those from the recent sampling to determine carbon concentrations. Near Infrared (NIR) spectroscopy was used to estimate their bulk density so that carbon stocks could be calculated as this was not measured at the original sampling. The results showed no statistically significant change in soil carbon stocks to 1 m depth for the main, broad land use types in Scotland apart from a small but significant increase (P=0.035) in soils under woodland. There was approximately 11.5% difference in carbon concentration between the reanalysed, archived soil and values originally obtained, but this was attributed to an artefact of differences in analytical methods. Between the two sampling periods, a decrease in carbon concentration of 2.4 g kg-1 was detected in cultivated soils. However, a significant increase in topsoil thickness of 2.9 cm (P=0.024) was sufficient to compensate for these changes in arable soils such that there was no detectable change in carbon stocks. The work shows the value of soil archives and of measuring horizon thickness.

  14. Simulation of soil organic carbon in different soil size fractions using 13Carbon measurement data

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Bellarby, J.; Chenu, C.; Foereid, B.; Wattenbach, M.; Zingore, S.; Smith, J.

    2009-04-01

    We simulate the soil organic carbon (SOC) dynamics at a chronoseqeunce site in France, using the Rothamsted Carbon model. The site exhibits a transition from C3 plants, dominated by pine forest, to a conventional C4 maize rotation. The different 13C signatures of the forest plants and maize are used to distinguish between the woodland derived carbon (C) and the maize derived C. The model is evaluated against total SOC and C derived from forest and maize, respectively. The SOC dynamics of the five SOC pools of the model, decomposable plant material (DPM), resistant plant material (RPM), biomass, humus and inert C, are also compared to the SOC dynamics measured in different soil size fractions. These fractions are > 50 μm (particulate organic matter), 2-50 μm (silt associated SOC) and <2 μm (clay associated SOC). Other authors had shown that the RPM pool of the model corresponds well to SOC measured in the soil size fraction > 50 μm and the sum of the other pools corresponds well to the SOC measured in the soil size fraction < 50 μm. Default model applications show that the model underestimates the fast drop in forest C stocks in the first 20 years after land-use change and overestimates the C accumulation of maize C. Several hypotheses were tested to evaluate the simulations. Input data and internal model parameter uncertainties had minor effects on the simulations results. Accounting for erosion and implementing a simple tillage routine did not improve the simulation fit to the data. We therefore hypothesize that a generic process that is not yet explicitly accounted for in the ROTHC model could explain the loss in soil C after land use change. Such a process could be the loss of the physical protection of soil organic matter as would be observed following cultivation of a previously uncultivated soil. Under native conditions a fraction of organic matter is protected in stable soil aggregates. These aggregates are physically disrupted by continuous and

  15. [Using 137Cs and 210Pb(ex) to trace the impact of soil erosion on soil organic carbon at a slope farmland in the black soil region].

    PubMed

    Fang, Hai-Yan; Sheng, Mei-Ling; Sun, Li-Ying; Cai, Qiang-Guo

    2013-07-01

    Soil cores were collected from a 28.5 hm2 slope farmland in the black soil region of Northeast China. Based on the sampled data of 137Cs, 210Pb(ex) and SOC, the potentials of applying 137Cs and 210Pb(ex) for assessing SOC redistribution were evaluated, aimed to approach the impact of soil erosion on soil organic carbon (SOC) in black soil region. At both planar and vertical directions, the 137Cs, 210Pb(ex) and SOC in the farmland had similar distribution patterns. Although there were large planar variations in the 137Cs and 210Pb(ex) areal activities and the SOC stock as affected by soil erosion and deposition, the 137Cs, 210Pb(ex) and SOC had similar changing trends over the landscape. Two depth distribution profiles were also used to study the relations of 137Cs and 210Pb(ex) with SOC. At eroded site, the radioactivities of 137Cs and 210Pb(ex) and the SOC mass fraction did not show large variations in 0-25 cm soil layer, but decreased sharply below 25 cm. For the deposition sample, the radioactivities of 137Cs and 210Pb(ex) in 0-100 cm soil increased firstly and then decreased. The SOC mass fraction also had similar depth distribution pattern in this soil layer. The 137Cs and 210Pb(ex) presented positive linear correlations with the SOC, indicating that 137Cs, 210Pb(ex) and SOC moved with the same physical mechanism in the farmland, and fallout 137Cs and 210Pb(ex) could be used to study spatio-temporal distribution characteristics of SOC in the black soil region under the condition of soil erosion. PMID:24175514

  16. Deep Soil Carbon: The Insight into Global Carbon Estimation and Deforestation Impacts

    NASA Astrophysics Data System (ADS)

    Sangmanee, Podjanee; Dell, Bernard; Harper, Richard; Henry, David

    2015-04-01

    World carbon stocks have been dramatically changed by deforestation. The current estimation of carbon loss is based on allometric techniques assisted with satellite imagery and the assumption that, 20% of the total biomass carbon stock is below ground. However, the monitoring of soil carbon is limited to 0.3 m despite many soils being much deeper than this. For example, direct measurement of soil carbon demonstrated the occurrence of two to five times more carbon stored in deep soils of south Western Australia (SWA) compared to what would normally be reported, although the land had been deforested for 80 years. This raises important questions about the dynamics of this deeper carbon and whether it will contribute to global climate change. This paper reports the form and variation of carbon in soil at three adjacent areas at three different depths (0-1, 11-12 and 18-19 m). Techniques were developed to quantitatively and qualitatively determine small concentrations of carbon in deep soils. There were marked differences in carbon compounds with depth. Near the surface these were macromolecular organic compounds derived from lignin, polysaccharides, proteins, terpenes, whereas at depth they were low molecular weight compounds, 13-docosenamide, 13-docosenoate, xanthone, benzophenone. The deeper compounds are likely derived from the roots of the previous forest whereas the surface soils are affected by current land use. The in situ decomposition of deep roots was revealed by the pyridine compound. The variation of compounds and location of carbon in clay could imply the state of decomposition. The result demonstrated that carbon is contained in deep soils and should be considered in global carbon accounting, particularly given ongoing deforestation on deep soils.

  17. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  18. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    SciTech Connect

    Xu, Xiaofeng; Thornton, Peter E; Post, Wilfred M

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  19. Biochar and biological carbon cycling in temperate soils

    NASA Astrophysics Data System (ADS)

    McCormack, S. A.; Vanbergen, A. J.; Bardgett, R. D.; Hopkins, D. W.; Ostle, N.

    2012-04-01

    Production of biochar, the recalcitrant residue formed by pyrolysis of plant matter, is suggested as a means of increasing storage of stable carbon (C) in the soil (1). Biochar has also been shown to act as a soil conditioner, increasing the productivity of certain crops by reducing nutrient leaching and improving soil water-holding capacity. However, the response of soil carbon pools to biochar addition is not yet well understood. Studies have shown that biochar has highly variable effects on microbial C cycling and thus on soil C storage (2,3,4). This discrepancy may be partially explained by the response of soil invertebrates, which occupy higher trophic levels and regulate microbial activity. This research aims to understand the role of soil invertebrates (i.e. Collembola and nematode worms) in biochar-mediated changes to soil C dynamics across a range of plant-soil communities. An open-air, pot-based mesocosm experiment was established in May, 2011 at the Centre for Ecology and Hydrology, Edinburgh. Three treatments were included in a fully-factorial design: biochar (presence [2 % w/w] or absence), soil type (arable sandy, arable sandy loam, grassland sandy loam), and vegetation type (Hordeum vulgare, Lolium perenne, unvegetated). Monitored parameters include: invertebrate and microbial species composition, soil C fluxes (CO2 and trace gas evolution, leachate C content, primary productivity and soil C content), and soil conditions (pH, moisture content and water-holding capacity). Preliminary results indicate that biochar-induced changes to soil invertebrate communities and processes are affected by pre-existing soil characteristics, and that soil texture in particular may be an important determinant of soil response to biochar addition. 1. Lehmann, 2007. A handful of carbon. Nature 447, 143-144. 2. Liang et al., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213. 3. Van Zwieten et al., 2010. Influence of

  20. [Estimation of soil organic carbon density and storage in Zhejiang Province of East China by using 1:50000 soil database].

    PubMed

    Zhi, Jun-Jun; Jing, Chang-Wei; Zhang, Cao; Wu, Jia-Ping; Ni, Zhi-Hua; Chen, Hong-Jin; Xu, Jin

    2013-03-01

    As an important component of the carbon pool of terrestrial ecosystem, soil carbon pool plays a key role in the studies of greenhouse effect and global change. By using a 1:50000 soil database, the organic carbon density in the 0-100 cm layer of 277 soil species in Zhejiang Province was estimated, and the soil organic carbon (SOC) density and storage in the whole Province as well as the spatial distribution of the SOC density and storage in the main soil types of the Province were analyzed. In the whole Province, the SOC density ranged from 5 kg.m-2 to 10 kg.m-2. Among the main soil types in the Province, humic mountain yellow soil had the highest SOC density (52.80 kg.m-2), whereas fluvio-sand ridge soil had the lowest one (1.82 kg.m-2). Red soil and paddy soil had the largest SOC storages, with the sum accounting for 63.8% of the total SOC storage in the Province. The total area of the soils in the Province was 100784.19 km2, the estimated SOC storage was 875. 42 x 10(6) t, and the estimated SOC density was averagely 8.69 kg.m-2. The analysis with the superposition digital elevation model showed that the SOC density presented an obvious variation trend with the changes of elevation, slope gradient, and aspect. PMID:23755481

  1. The interaction between biogeophysical and biogeochemical processes and their feedback on permafrost soil carbon stocks

    NASA Astrophysics Data System (ADS)

    ElMasri, B.; Barman, R.; Jain, A. K.

    2013-12-01

    Our current understanding of the full suite of processes and their responses to recent warming in terrestrial high-latitudes are far from complete. While continued research on development of more detailed Earth system models (ESMs) is essential to understand the interactions and feedbacks between vegetation, soils and climate change in the Northern high latitudes (NHL), one of the major challenges is the treatment of the biophysical and biogeochemical processes and feedback in the ESM and their impact on soil organic carbon. We used a land surface model, the Integrated Science Assessment Model (ISAM), which coupled carbon-nitrogen biogeochemical and energy and hydrology biogeophysical processes, to investigate the effects of feedbacks between the biogeochemical and biogeophysical processes on the model estimated soil organic carbon (SOC) for the NHL permafrost region. We not only focused on recent improvement in the ISAM biogeophysical processes that are deemed important for the high latitude soils/snow; such as deep soil column, modulation of soil thermal and hydrological properties, wind compaction of snow, and depth hoar formation; on permafrost SOC, but also biogeochemical processes; such as dynamic phenology and root distribution, litter carbon decomposition rates and nitrogen amount remaining; on soil biogeochemistry. We selected multiple sites representative of different high latitude biomes to calibrate and evaluate the model. We then carried out several ISAM model simulations to study the effects of feedbacks between biogeochemical and biogeophysical processes on SOC. Our model analysis shows that including the biogeophysical processes alone could increase modeled Northern high-latitude permafrost carbon by about 30% compared to measurements. Accounting for the biogeochmical processes further improve the NHL soil carbon. This study demonstrates that improvements in biogeophysical or biogeochemical processes alone does not help to improve the modeled SOC

  2. [Determination of carbon dioxide released from soil at different humidities].

    PubMed

    Imshenetskiĭ, A A; Murzakov, B G

    1978-01-01

    The detection of soil microorganisms by their evolution of carbon dioxide does not always correlate with the number of microorganisms and the rate of biochemical processes in soil. New microbial populations appear in the incubation chamber as the concentration of carbon dioxide increases; this results in an increase in the activity of such processes as photosynthesis, chemosynthesis and heterotrophic assimilation of carbon dioxide. Life detection on other planets by determining carbon dioxide evolved from the ground may lead to erroneous conclusions on the presence of microorganism in the ground. PMID:745559

  3. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    PubMed

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. PMID:26207816

  4. Relationship between carbon and nitrogen mineralization in a subtropical soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

  5. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  6. Carbon source quality and placement effects on soil organic carbon status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved management of agricultural soils has potential for sequestering carbon (C) and reducing the accumulation of atmospheric carbon dioxide. Development of management practices to increase C sequestration is dependent on improved understanding of soil processes influencing long-term storage of ...

  7. Integrating microbial diversity in soil carbon dynamic models parameters

    NASA Astrophysics Data System (ADS)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  8. Soil Phosphorus Stoichiometry Drives Carbon Turnover Along a Soil C Gradient Spanning Mineral and Organic Soils Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2014-12-01

    Soil carbon (C) cycling is linked to the availability of nutrients like nitrogen (N) and phosphorus (P). However, the role of soil P in influencing soil C turnover and accumulation is poorly understood, with most models focusing on C:N ratios based on the assumption that terrestrial ecosystems are N limited. To determine the effects of N and P availability on soil C turnover, we compared soil respiration over the course of a growing season in four adjacent rice fields with 5%, 10%, 20% and 25% soil C. In each of these fields, plots were established to test the effect of N additions on plant growth, using control and N addition treatments (80 kg N/ha urea). Although soil P was not manipulated in parallel, prior work has shown soil P concentrations decline markedly with increasing soil C content. Soil CO2 flux was monitored using static chambers at biweekly intervals during the growing season, along with porewater dissolved organic C and ammonium. Soils were collected at the end of the growing season, and tested for total C, N, and P, extractable N and P, pH, base cations and trace metals. Soil DNA was also extracted for 16S rRNA sequencing to profile microbial communities. Soil N additions significantly increased CO2 flux and soil C turnover (seasonal CO2 flux per unit soil C) in 5% and 10% C fields, but not in 20% or 25% C fields. Soil C content was closely related to soil N:P stoichiometry, with N:P ratios of ca. 12, 16, 24, and 56 respectively in the 5, 10, 20 and 25% C fields. Seasonal CO2 fluxes (per m2) were highest in 10% C soils. However, soil C turnover was inversely related to soil C concentrations, with the greatest C turnover at the lowest values of soil C. Soil C turnover showed stronger relationships with soil chemical parameters than seasonal CO2 fluxes alone, and the best predictors of soil C turnover were soil total and extractable N:P ratios, along with extractable P alone. Our results show that soil P availability and stoichiometry influence the

  9. Pasture Management Strategies for Sequestering Soil Carbon - Final Report

    SciTech Connect

    Franzluebbers, Alan J.

    2006-03-15

    Pasturelands account for 51 of the 212 Mha of privately held grazing land in the USA. Tall fescue is the most important cool-season perennial forage for many beef cattle producers in the humid region of the USA. A fungal endophyte, Neotyphodium coenophialum, infects the majority of tall fescue stands with a mutualistic association. Ergot alkaloids produced by the endophyte have negative impacts on cattle performance. However, there are indications that endophyte infection of tall fescue is a necessary component of productive and persistent pasture ecology. The objectives of this research were to characterize and quantify changes in soil organic carbon and associated soil properties under tall fescue pastures with and without endophyte infection of grass. Pastures with high endophyte infection had greater concentration of soil organic carbon, but lower concentration of biologically active soil carbon than pastures with low endophyte infection. A controlled experiment suggested that endophyte-infected leaf tissue may directly inhibit the activity of soil microorganisms. Carbon forms of soil organic matter were negatively affected and nitrogen forms were positively affected by endophyte addition to soil. The chemical compounds in endophyte-infected tall fescue (ergot alkaloids) that are responsible for animal health disorders were found in soil, suggesting that these chemicals might be persistent in the environment. Future research is needed to determine whether ergot alkaloids or some other chemicals are responsible for increases in soil organic matter. Scientists will be able to use this information to better understand the ecological impacts of animals grazing tall fescue, and possibly to identify and cultivate other similar associations for improving soil organic matter storage. Another experiment suggested that both dry matter production and soil microbial activity could be affected by the endophyte. Sampling of the cumulative effects of 20 years of tall fescue

  10. Remote Sensing to Support Monitoring of Soil Organic Carbon (Invited)

    NASA Astrophysics Data System (ADS)

    McNairn, H.; Pacheco, A.

    2009-12-01

    Soil organic carbon is fundamental to the sustainability of agricultural soils and soils play an important role in the global carbon balance. Estimating soil carbon levels and monitoring changes in these levels over time requires extensive data on climate, soil properties, land cover and land management. Remote sensing technologies are capable of providing some of the data needed in modeling soil organic carbon concentrations and in tracking changes in soil carbon. The characteristics of the vegetation cover influence the amount of organic matter in the soil and cultivation impacts the rate of organic matter decomposition. Consequently land management decisions, which include cropping and tillage practices, play a vital role in determining soil carbon levels. Agriculture and Agri-Food Canada (AAFC) has developed several methods to map land management practices from multispectral and Synthetic Aperture Radar (SAR) satellite sensors. These include identification of crops grown, estimation of crop residue cover left post-harvest and identification of tillage activities. Optical and SAR data are capable of identifying crop types to accuracies consistently above 85%. Knowledge of crop type also provides information needed to establish biomass levels and residue type, both of which influence the amounts and decomposition rates of organic matter. Scientists with AAFC have also extensively validated a method to estimate percent residue cover using spectral unmixing analysis applied to multispectral satellite data. Percentages for corn, soybean and small grain residues can be estimated to accuracies of 83%, 80% and 82%, respectively. Tillage activity influences residue decomposition and AAFC is investigating methods to identify tillage occurrence using advanced polarimetric SAR information. This presentation will provide an overview of methods and results from research ongoing at AAFC. The potential contribution of these remote sensing approaches to support wide area carbon

  11. Sorption properties of carbon-14 on Savannah River Plant soil

    SciTech Connect

    McIntyre, P.F.

    1988-10-18

    Batch experiments performed using {sup 14}C, Savannah River Plant (SRP) soil, and SRP burial ground groundwater indicate that the distribution coefficient, or K{sub d}, for {sup 14}C in the form of carbonates is typically 2 ml/g after 7 hours of equilibration and 55 ml/g after 72 hours. These results were obtained for samples containing {sup 14}C concentrations ranging from 4.2 nCi/ml up to 40.9 nCi/ml. For comparison the concentration of {sup 14}C in the sump leachate of the defense waste lysimeters 1 have ranged from 0.06 nCi/ml to 0.9 nCi/ml.

  12. Causes of variation in soil carbon predictions from CMIP5 Earth system models and comparison with observations

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E. O.; Randerson, J. T.; Post, W. M.; Hoffman, F. M.; Tarnocai, C.; Schuur, E. A. G.; Allison, S. D.

    2012-10-01

    Stocks of soil organic carbon represent a large component of the carbon cycle that may participate in climate change feedbacks, particularly on decadal and century scales. For Earth system models (ESMs), the ability to accurately represent the global distribution of existing soil carbon stocks is a prerequisite for predicting future carbon-climate feedbacks. We compared soil carbon predictions from 16 ESMs to empirical data from the Harmonized World Soil Database (HWSD) and Northern Circumpolar Soil Carbon Database (NCSCD). Model estimates of global soil carbon stocks ranged from 510 to 3050 Pg C, compared to an estimate of 890-1660 Pg C from the HWSD. Model predictions for the high latitudes fell between 60 and 800 Pg C, compared to 380-620 Pg C from the NCSCD and 290 Pg C from the HWSD. This 5.3-fold variation in global soil carbon across models compared to a 3.4-fold variation in net primary productivity (NPP) and a 3.8-fold variation in global soil carbon turnover times. The spatial distribution of soil carbon predicted by the ESMs was not well correlated with the HWSD (Pearson's correlations < 0.4, RMSE 9.4 to 22.8 kg C m-2), although model-data agreement generally improved at the biome scale. There was poor agreement between the HWSD and NCSCD datasets in northern latitudes (Pearson's correlation = 0.33), indicating uncertainty in empirical estimates of soil carbon. We found that a reduced complexity model dependent on NPP and soil temperature explained most of the spatial variation in soil carbon predicted by most ESMs (R2 values between 0.73 and 0.93). This result suggests that differences in soil carbon predictions between ESMs are driven primarily by differences in predicted NPP and the parameterization of soil carbon responses to NPP and temperature not by structural differences between the models. Future work should focus on accurately representing these driving variables and modifying model structure to include additional processes.

  13. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Organic Carbon (SOC) is an integral part of maintaining and measuring soil sustainability. This study was undertaken to document and better understand the relationships between two livestock-crop-forage systems and the sequestration of SOC with regards to soil sustainability and was conducted o...

  14. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China.

    PubMed

    Gao, Lihong; Shi, Yali; Li, Wenhui; Liu, Jiemin; Cai, Yaqi

    2015-08-01

    The recycling of reclaimed wastewater for irrigation and road cleaning is an important strategy to minimize water scarcity in megacities. However, little is known regarding the potential accumulation of antibiotics contained in reclaimed wastewater in urban soil. We investigated the occurrence and distribution of eight quinolones (QNs), nine sulfonamides (SAs), and five macrolides (MLs) antibiotics in urban surface soil in Beijing and Shanghai, China. QNs, especially norfloxacin (NOR), ofloxacin (OFL), and ciprofloxacin (CIP) were the predominant antibiotics in urban surface soil, and NOR revealed the highest average concentration of 94.6 μg kg(-1). The antibiotic concentrations in urban soil in our study were higher than those detected in agricultural soils after long-term wastewater irrigation and manure fertilization. The concentrations of antibiotics in Shanghai urban soil showed a significant negative correlation with soil pH and a positive correlation with total organic carbon (TOC), reflecting the effect of speciation and soil organic matter content on sorption and retention. In addition, antibiotic concentrations in the urban soil were positively correlated with heavy metal contents, likely due to their coexistence in reclaimed wastewater and the promoting effect of metals on the sorption of antibiotics. In several soil samples, NOR, OFL, CIP, enrofloxacin (ENR), and fleroxacin (FLE) showed higher concentrations than the trigger value of 100 μg kg(-1) in soil, indicating a potential risk for the environment. PMID:25804657

  15. The clumped isotope geothermometer in soil and paleosol carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47

  16. MCNP ESTIMATE OF THE SAMPLED VOLUME IN A NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS.

    SciTech Connect

    WIELOPOLSKI, L.; DIOSZEGI, I.; MITRA, S.

    2004-05-03

    Global warming, promoted by anthropogenic CO{sub 2} emission into the atmosphere, is partially mitigated by the photosynthesis processes of the terrestrial echo systems that act as atmospheric CO{sub 2} scrubbers and sequester carbon in soil. Switching from till to no till soils management practices in agriculture further augments this process. Carbon sequestration is also advanced by putting forward a carbon ''credit'' system whereby these can be traded between CO{sub 2} producers and sequesters. Implementation of carbon ''credit'' trade will be further promulgated by recent development of a non-destructive in situ carbon monitoring system based on inelastic neutron scattering (INS). Volumes and depth distributions defined by the 0.1, 1.0, 10, 50, and 90 percent neutron isofluxes, from a point source located at either 5 or 30 cm above the surface, were estimated using Monte Carlo calculations.

  17. Carbon and Nitrogen cycling in a permafrost soil profile

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.

    2015-12-01

    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  18. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates.

    PubMed

    Schmidt, Olaf; Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a (13)CO2-enriched atmosphere and quantified (13)C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly (13)C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more (13)C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic (13)CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies. PMID:26740559

  19. Black Carbon Increases Cation Exchange Capcity in Soils

    SciTech Connect

    Liang,B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; ONeill, B.; Skjemstad, J.; Thies, J.; Luizao, F.; et al.

    2006-01-01

    Black Carbon (BC) may significantly affect nutrient retention and play a key role in a wide range of biogeochemical processes in soils, especially for nutrient cycling. Anthrosols from the Brazilian Amazon (ages between 600 and 8700 yr BP) with high contents of biomass-derived BC had greater potential cation exchange capacity (CEC measured at pH 7) per unit organic C than adjacent soils with low BC contents. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy coupled with scanning transmission X-ray microscopy (STXM) techniques explained the source of the higher surface charge of BC compared with non-BC by mapping cross-sectional areas of BC particles with diameters of 10 to 50 {micro}m for C forms. The largest cross-sectional areas consisted of highly aromatic or only slightly oxidized organic C most likely originating from the BC itself with a characteristic peak at 286.1 eV, which could not be found in humic substance extracts, bacteria or fungi. Oxidation significantly increased from the core of BC particles to their surfaces as shown by the ratio of carboxyl-C/aromatic-C. Spotted and non-continuous distribution patterns of highly oxidized C functional groups with distinctly different chemical signatures on BC particle surfaces (peak shift at 286.1 eV to a higher energy of 286.7 eV) indicated that non-BC may be adsorbed on the surfaces of BC particles creating highly oxidized surface. As a consequence of both oxidation of the BC particles themselves and adsorption of organic matter to BC surfaces, the charge density (potential CEC per unit surface area) was greater in BC-rich Anthrosols than adjacent soils. Additionally, a high specific surface area was attributable to the presence of BC, which may contribute to the high CEC found in soils that are rich in BC.

  20. NITROGEN POOLS AND FLUXES IN GRASSLAND SOILS SEQUESTERING CARBON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon sequestration in agricultural, forest, and grassland soils has been promoted as a means by which substantial amounts of CO2 may be removed from the atmosphere, but few studies have evaluated the associated impacts on changes in soil N or net global warming potential (GWP). The purpose of this...

  1. BOREAS TGB-12 Soil Carbon Data over the NSA

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Harden, Jennifer; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. TGB-12 data sets include soil properties at tower and selected auxiliary sites in the BOREAS NSA and data on the seasonal variations in the radiocarbon content of CO2 in the soil atmosphere at NSA tower sites. The sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of C in areas of moss regrowth could be determined. These data are used to calculate the inventory of C and N in moss and mineral soil layers at NSA sites and to determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data). This data set includes physical parameters needed to determine carbon and nitrogen inventory in soils. The data were collected discontinuously from August 1993 to July 1996. The data are stored in tabular ASCII files.

  2. Organic farming enhances soil carbon and its benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing soil carbon through systematic agricultural practices provides an array of societal and farmer/producer benefits. Organic methods have been utilized for over 6000 years to conserve soil, water, energy, and biological resources. Many of the benefits of organic technologies identified in ...

  3. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  4. Biogeographic Distribution Patterns of Bacteria in Typical Chinese Forest Soils

    PubMed Central

    Xia, Zongwei; Bai, Edith; Wang, Qingkui; Gao, Decai; Zhou, Jidong; Jiang, Ping; Wu, Jiabing

    2016-01-01

    Microbes are widely distributed in soils and play a very important role in nutrient cycling and ecosystem services. To understand the biogeographic distribution of forest soil bacteria, we collected 115 soil samples in typical forest ecosystems across eastern China to investigate their bacterial community compositions using Illumina MiSeq high throughput sequencing based on 16S rRNA. We obtained 4,667,656 sequences totally and more than 70% of these sequences were classified into five dominant groups, i.e., Actinobacteria, Acidobacteria, Alphaproteobacteria, Verrucomicrobia, and Planctomycetes (relative abundance >5%). The bacterial diversity showed a parabola shape along latitude and the maximum diversity appeared at latitudes between 33.50°N and 40°N, an area characterized by warm-temperate zones and moderate temperature, neutral soil pH and high substrate availability (soil C and N) from dominant deciduous broad-leaved forests. Pairwise dissimilarity matrix in bacterial community composition showed that bacterial community structure had regional similarity and the latitude of 30°N could be used as the dividing line between southern and northern forest soils. Soil properties and climate conditions (MAT and MAP) greatly accounted for the differences in the soil bacterial structure. Among all soil parameters determined, soil pH predominantly affected the diversity and composition of the bacterial community, and soil pH = 5 probably could be used as a threshold below which soil bacterial diversity might decline and soil bacterial community structure might change significantly. Moreover, soil exchangeable cations, especially Ca2+ (ECa2+) and some other soil variables were also closely related to bacterial community structure. The selected environmental variables (21.11%) explained more of the bacterial community variation than geographic distance (15.88%), indicating that the edaphic properties and environmental factors played a more important role than geographic

  5. Biogeographic Distribution Patterns of Bacteria in Typical Chinese Forest Soils.

    PubMed

    Xia, Zongwei; Bai, Edith; Wang, Qingkui; Gao, Decai; Zhou, Jidong; Jiang, Ping; Wu, Jiabing

    2016-01-01

    Microbes are widely distributed in soils and play a very important role in nutrient cycling and ecosystem services. To understand the biogeographic distribution of forest soil bacteria, we collected 115 soil samples in typical forest ecosystems across eastern China to investigate their bacterial community compositions using Illumina MiSeq high throughput sequencing based on 16S rRNA. We obtained 4,667,656 sequences totally and more than 70% of these sequences were classified into five dominant groups, i.e., Actinobacteria, Acidobacteria, Alphaproteobacteria, Verrucomicrobia, and Planctomycetes (relative abundance >5%). The bacterial diversity showed a parabola shape along latitude and the maximum diversity appeared at latitudes between 33.50°N and 40°N, an area characterized by warm-temperate zones and moderate temperature, neutral soil pH and high substrate availability (soil C and N) from dominant deciduous broad-leaved forests. Pairwise dissimilarity matrix in bacterial community composition showed that bacterial community structure had regional similarity and the latitude of 30°N could be used as the dividing line between southern and northern forest soils. Soil properties and climate conditions (MAT and MAP) greatly accounted for the differences in the soil bacterial structure. Among all soil parameters determined, soil pH predominantly affected the diversity and composition of the bacterial community, and soil pH = 5 probably could be used as a threshold below which soil bacterial diversity might decline and soil bacterial community structure might change significantly. Moreover, soil exchangeable cations, especially Ca(2+) (ECa(2+)) and some other soil variables were also closely related to bacterial community structure. The selected environmental variables (21.11%) explained more of the bacterial community variation than geographic distance (15.88%), indicating that the edaphic properties and environmental factors played a more important role than

  6. Carbon dynamics in different soil types amended with pig slurry, pig manure and its biochar

    NASA Astrophysics Data System (ADS)

    Yanardag, Ibrahim H.; Zornoza, Raúl; Faz, Ángel; Büyükkiliç-Yanardaǧ, Asuman; Mermut, Ahmet R.

    2014-05-01

    Determining the structure and components of soil and soil organic matter is very important in terms of sustainable agriculture and forestry and greenhouse gases emissions. Organic management can increase labile C and N in the short-term, and total soil C and N in the long-term, but less is known about how management practices may affect soil organic C (SOC)quality and stability. Methods to improve the management of livestock slurries to reduce the environmental impact and carbon losses are gaining importance. There is a need to find the best wastes treatment which enhances soil fertility but also carbon sequestration, to mitigate the effects of global warming. The objective of this study was to assess the short-term changes in SOC pools, using raw pig slurry, the solid phase of pig slurry, and its biochar as amendment in different soil types (Regosol, Luvisol and Kastanozem). The three different amendments were applied at 5 g C kg-1 soil. An unamended soil for each type was used as control. Soils were incubated in triplicate for 60 days at 25ºC and at 55% of their water holding capacity. Samples were sampled to monitor the evolution of soil organic and inorganic carbon, recalcitrant carbon, soluble carbon, carbon mineralization, SOC thermal distribution (thermogravimetric analysis - differential scanning calorimetry - quadrupole mass spectrometry), and characterization of functional groups (Fourier transform infrared spectroscopy (FTIR)). Results showed that soils amended with raw pig slurry and the solid phase of the slurry showed higher values of soluble carbon, and higher carbon mineralization rates compared to biochar application, which showed values similar to controls. SOC increased at the end of incubation with biochar and the solid phase of the slurry applications in Kastanozem and Regosol. Thermogravimetric results showed an increased weight loss of the Regosol compared to Luvisol and Kastanozem, owing to the higher content of soil carbonates. Luvisol and

  7. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  8. Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition

    NASA Astrophysics Data System (ADS)

    Li, H.; Ziolkowski, L. A.

    2015-12-01

    Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.

  9. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition

    USGS Publications Warehouse

    Liu, S.; Bliss, N.; Sundquist, E.; Huntington, T.G.

    2003-01-01

    Soil erosion and deposition may play important roles in balancing the global atmospheric carbon budget through their impacts on the net exchange of carbon between terrestrial ecosystem and the atmosphere. Few models and studies have been designed to assess these impacts. In this study, we developed a general ecosystem model, Erosion-Deposition-Carbon-Model (EDCM), to dynamically simulate the influences of rainfall-induced soil erosion and deposition on soil organic carbon (SOC) dynamics in soil profiles. EDCM was applied to several landscape positions in the Nelson Farm watershed in Mississippi, including ridge top (without erosion or deposition), eroding hillslopes, and depositional sites that had been converted from native forests to croplands in 1870. Erosion reduced the SOC storage at the eroding sites and deposition increased the SOC storage at the depositional areas compared with the site without erosion or deposition. Results indicated that soils were consistently carbon sources to the atmosphere at all landscape positions from 1870 to 1950, with lowest source strength at the eroding sites (13 to 24 gC m-2 yr-1), intermediate at the ridge top (34 gC m-2 yr-1), and highest at the depositional sites (42 to 49 gC m-2 yr-1). During this period, erosion reduced carbon emissions via dynamically replacing surface soil with subsurface soil that had lower SOC contents (quantity change) and higher passive SOC fractions (quality change). Soils at all landscape positions became carbon sinks from 1950 to 1997 due to changes in management practices (e.g., intensification of fertilization and crop genetic improvement). The sink strengths were highest at the eroding sites (42 to 44 gC m-2 yr-1 , intermediate at the ridge top (35 gC m-2 yr-1), and lowest at the depositional sites (26 to 29 gC m-2 yr-1). During this period, erosion enhanced carbon uptake at the eroding sites by continuously taking away a fraction of SOC that can be replenished with enhanced plant residue

  10. [Characteristics of distribution and composition of organic carbon in Dongting Lake floodplain].

    PubMed

    Zhang, Wen-ju; Peng, Pei-qin; Tong, Cheng-li; Wang, Xiao-li; Wu, Jin-shui

    2005-05-01

    Distribution and composition of organic carbon (OC) at nine soil profiles of three types of wetlands in Dongting Lake floodplain were analyzed. Results show that the OC content at top layer (0-10 cm) in Carex spp-dominated floodplain was much higher (>40 g/kg) than that in Phragmites-dominated floodplain (20 +/- 2.8) g/kg and paddy soil (28 +/- 8.6) g/kg. The OC content decreased with increasing depth from 0 to 30 cm, while it was relatively stable (around 15 g/kg) at depths deeper than 30 cm in Carex spp-dominated and Phragmites-dominated floodplain. However, there was a substantial variability in OC content in paddy soil profiles. In terms of the composition of OC, at top layer (0-10 cm), light fraction carbon in Carex spp-dominated floodplain accounted for more than 20% of the total organic carbon, whereas more than 90% of total organic carbon were heavy fraction that were much more difficult to be decomposed in Phragmites-dominated floodplain and paddy soils. The ratio of light fraction to total organic carbon at the soil profiles was greatly affected by the origin of organic matter. Statistical analyses indicate that there were significant correlations between heavy fraction and total organic carbon, between bulk density and total organic carbon, and between OC and nitrogen in heavy fraction (p<0.01). PMID:16124470

  11. Quantification of spatial distribution and spread of bacteria in soil at microscale

    NASA Astrophysics Data System (ADS)

    Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe; Otten, Wilfred

    2015-04-01

    Soil bacteria play an essential role in functioning of ecosystems and maintaining of biogeochemical cycles. Soil is a complex heterogeneous environment comprising of highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of resident microbiota including bacteria and fungi. Bacteria occupy a very small portion of available pore space in soil which demonstrates that their spatial arrangement in soil has a huge impact on the contact to their target and on the way they interact to carry out their functions. Due to limitation of techniques, there is scant information on spatial distribution of indigenous or introduced bacteria at microhabitat scale. There is a need to understand the interaction between soil structure and microorganisms including fungi for ecosystem-level processes such as carbon sequestration and improving the predictive models for soil management. In this work, a combination of techniques was used including X-ray CT to characterize the soil structure and in-situ detection via fluorescence microscopy to visualize and quantify bacteria in soil thin sections. Pseudomonas fluorescens bacteria were introduced in sterilized soil of aggregate size 1-2 mm and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. A subset of samples was fixed with paraformaldehyde and subsequently impregnated with resin. DAPI and fluorescence in situ hybridization (FISH) were used to visualize bacteria in thin sections of soil cores by epifluorescence microscopy to enumerate spatial distribution of bacteria in soil. The pore geometry of soil was quantified after X-ray microtomography scanning. The distribution of bacteria introduced locally reduced significantly (P

  12. Windthrows increase soil carbon stocks in a central Amazon forest

    NASA Astrophysics Data System (ADS)

    dos Santos, Leandro T.; Magnabosco Marra, Daniel; Trumbore, Susan; de Camargo, Plínio B.; Negrón-Juárez, Robinson I.; Lima, Adriano J. N.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Higuchi, Niro

    2016-03-01

    Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 ± 8.2 Mg ha-1, mean ±95 % confidence interval) was marginally higher (p = 0.09) than that from undisturbed plots (47.7 ± 13.6 Mg ha-1). The soil organic carbon concentration in disturbed plots (2.0 ± 0.17 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 ± 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r2 = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity (r2 = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest regrowth and increase vegetation resilience.

  13. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    NASA Astrophysics Data System (ADS)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2016-01-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile. The results showed that the concentration of SOC in the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 in the bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  14. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe

    NASA Astrophysics Data System (ADS)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.

    2014-05-01

    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of

  15. [Correlation Among Soil Organic Carbon, Soil Inorganic Carbon and the Environmental Factors in a Typical Oasis in the Southern Edge of the Tarim Basin].

    PubMed

    Gong, Lu; Zhu, Mei-ling; Liu, Zeng-yuan; Zhang, Xue-ni; Xie, Li-na

    2016-04-15

    We analyzed the differentiation among the environmental factors and soil organic/inorganic carbon contents of irrigated desert soil, brown desert soil, saline soil and aeolian sandy soil by classical statistics methods, and studied the correlation between soil carbon contents and the environmental factor by redundancy analysis (RDA) in a typical oasis of Yutian in the southern edge of the Tarim Basin. The results showed that the average contents of soil organic carbon and soil inorganic carbon were 2.51 g · kg⁻¹ and 25.63 g · kg⁻¹ respectively. The soil organic carbon content of the irrigated desert soil was significantly higher than those of brown desert soil, saline soil and aeolian sandy soil, while the inorganic carbon content of aeolian sandy soil was significantly higher than those of other soil types. The soil moisture and nutrient content were the highest in the irrigated desert soil and the lowest in the aeolian sandy sail. All soil types had high degree of salinization except the irrigated desert soil. The RDA results showed that the impacts of environmental factors on soil carbon contents ranked in order of importance were total nitrogen > available phosphorus > soil moisture > ground water depth > available potassium > pH > total salt. The soil carbon contents correlated extremely significantly with total nitrogen, available phosphorus, soil moisture and ground water depth (P < 0.01), and it correlated significantly with available potassium and pH (P < 0.05). There was no significant correlation between soil carbon contents and other environmental factors (P > 0.05). PMID:27548977

  16. Dynamic replacement and loss of soil carbon on eroding cropland

    USGS Publications Warehouse

    Harden, J.W.; Sharpe, J.M.; Parton, W.J.; Ojima, D.S.; Fries, T.L.; Huntington, T.G.; Dabney, S.M.

    1999-01-01

    Links between erosion/sedimentation history and soil carbon cycling were examined in a highly erosive setting in Mississippi loess soils. We sampled soils on (relatively) undisturbed and cropped hillslopes and measured C, N, 14C, and CO2 flux to characterize carbon storage and dynamics and to parameterize Century and spreadsheet 14C models for different erosion and tillage histories. For this site, where 100 years of intensive cotton cropping were followed by fertilization and contour plowing, there was an initial and dramatic decline in soil carbon content from 1870 to 1950, followed by a dramatic increase in soil carbon. Soil erosion amplifies C loss and recovery: About 100% of the original, prehistoric soil carbon was likely lost over 127 years of intensive land use, but about 30% of that carbon was replaced after 1950. The eroded cropland was therefore a local sink for CO2 since the 1950s. However, a net CO2 sink requires a full accounting of eroded carbon, which in turn requires that decomposition rates in lower slopes or wetlands be reduced to about 20% of the upland value. As a result, erosion may induce unaccounted sinks or sources of CO2, depending on the fate of eroded carbon and its protection from decomposition. For erosion rates typical of the United States, the sink terms may be large enough (1 Gt yr-1, back-of-the-envelope) to warrant a careful accounting of site management, cropping, and fertilization histories, as well as burial rates, for a more meaningful global assessment.

  17. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  18. Will we allow soil carbon to feed our needs?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans need many things, but unbeknownst to many of us are the intricately critical influences that soil with high organic carbon has on our life support system. Curiously, the growing possibility of trading carbon in a global marketplace may actually help us better appreciate the enormous value of...

  19. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils br

  20. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils

    USGS Publications Warehouse

    Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the

  1. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    SciTech Connect

    Waldrop, Mark P.; Wickland, Kimberly P.; White III, R.; Berhe, Asmeret A.; Harden, Jennifer W.; Romanovsky, Vladimir E.

    2010-09-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5ºC were measured to calculate temperature response quotients (Q₁₀). The Q₁₀ was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q₁₀ values. CH₄ fluxes were correlated with methanogen abundance and the highest CH₄ production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region.

  2. Relationships among carbon inputs, arbuscular mycorrhizal fungi, and soil carbon storage in a monoculture corn ecosystem

    NASA Astrophysics Data System (ADS)

    Castellano, M. J.; Brown, K.; Hofmockel, K.

    2012-12-01

    Carbon inputs are positively associated with soil organic carbon storage. Soil organic carbon can be stored in relatively stable pools through: silt + clay association and aggregation. Current models predict that the proportion of new carbon inputs that can be stabilized by silt + clay and aggregates decreases in proportion to the amount of organic matter already present in the fraction. Accordingly, as the capacity to stabilize organic matter approaches zero (full capacity), the efficiency of organic matter stabilization decreases and a greater proportion of organic matter inputs is respired as CO2 or accumulate as litter or easily mineralizable particulate organic matter. The organic matter storage capacity of silt + clay particles is a function of soil texture and mineralogy whereas aggregate storage capacity is also affected by biological factors such as mycorrhizae abundance. We explored relationships among net primary production (carbon inputs), mycorrhizae, and soil organic matter storage in a long-term monoculture corn ecosystem. Replicated plots of corn were grown with one of five nitrogen fertilizer input rates (0-228 kg ha-1 h-y) to impart differences in net primary productivity. The fertilizer rates had no effect on soil C/N ratio. However, the fertilizer rate was positively associated with mycorrhizae abundance and soil carbon storage. Soil carbon storage increases were the result of an increase in soil aggregate-protected carbon only; silt + clay associated carbon did not differ with fertilizer rate. These results are inconsistent with models that predict aggregate and silt + clay pools reach capacity at similar rates. A positive correlation among soil carbon stored in aggregates and mycorrhizae helps to explain this result.

  3. Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar.

    PubMed

    Rombolà, Alessandro G; Meredith, Will; Snape, Colin E; Baronti, Silvia; Genesio, Lorenzo; Vaccari, Francesco Primo; Miglietta, Franco; Fabbri, Daniele

    2015-09-15

    The effect of biochar addition on the levels of black carbon (BC) and polcyclic aromatic hydrocarbons (PAHs) in a vineyard soil in central Italy was investigated within a two year period. Hydropyrolysis (HyPy) was used to determine the contents of BC (BCHyPy) in the amended and control soils, while the hydrocarbon composition of the semi-labile (non-BCHyPy) fraction released by HyPy was determined by gas chromatography-mass spectrometry, together with the solvent-extractable PAHs. The concentrations of these three polycyclic aromatic carbon reservoirs changed and impacted differently the soil organic carbon over the period of the trial. The addition of biochar (33 ton dry biochar ha(-1)) gave rise to a sharp increase in soil organic carbon, which could be accounted for by an increase in BCHyPy. Over time, the concentration of BCHyPy decreased significantly from 36 to 23 mg g(-1) and as a carbon percentage from 79% to 61%. No clear time trends were observed for the non-BCHyPy PAHs varying from 39 to 34 μg g(-1) in treated soils, not significantly different from control soils. However, the concentrations of extractable PAHs increased markedly in the amended soils and decreased with time from 153 to 78 ng g(-1) remaining always higher than those in untreated soil. The extent of the BCHyPy loss was more compatible with physical rather than chemical processes. PMID:26263378

  4. The Fate of Molecular Markers in Soils and Their Implications for Soil Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Wiesenberg, G. L.

    2014-12-01

    During the past decades molecular markers were discovered to be of diagnostic character for tracing the origin and fate of organic matter in soils. Molecular proxies themselves and their combination with compound-specific isotope analyses became powerful tools to distinguish between various biogenic and anthropogenic sources of organic matter and to trace carbon turnover at a molecular level. In the meantime various field and laboratory experiments provided deeper insight into soil organic matter dynamics at a molecular scale. We learnt from these experiments that carbon turnover at a molecular scale occurs in a similar time frame like for bulk soil organic matter and that selective preservation is not an issue for most coumpounds in active soils, but e.g. in fossil soils. Nevertheless, e.g. plant wax-derived alkanes and root-derived suberin markers point to a slower turnover of specific compounds. Recently, molecular markers enabled deciphering root-derived processes that occur in the rhizosphere of living and dead roots within the soil or even in the deep subsoil (up to several meters below the soil surface). Thus, the proposed carbon sequestration by roots in subsoils is not necessarily relevant in the long-term on a decadal or centennial scale. Although molecular markers were not determined to be valuable tools to sequester carbon in the soil, they strongly help elucidating processes relevant for cycling of bulk organic matter from the soil surface towards the deep subsoil.

  5. Soil Organic Carbon Change Monitored Over Large Areas

    SciTech Connect

    Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; Schumaker, Bonny L.; West, Tristram O.

    2010-11-23

    Soils account for the largest fraction of terrestrial carbon (C) and thus are critically important in determining global cycle dynamics. In North America, conversion of native prairies to agriculture over the past 150 years released 30- 50% of soil organic carbon (SOC) stores [Mann, 1986]. Improved agricultural practices could recover much of this SOC, storing it in biomass and soil and thereby sequestering billions of tons of atmospheric carbon dioxide (CO2). These practices involve increasing C inputs to soil (e.g., through crop rotation, higher biomass crops, and perennial crops) and decreasing losses (e.g., through reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007].

  6. Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana

    PubMed Central

    Thomas, Andrew D.

    2012-01-01

    Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands. PMID:23045706

  7. Soil Carbon Budget During Establishment of Short Rotation Woody Crops

    NASA Astrophysics Data System (ADS)

    Coleman, M. D.

    2003-12-01

    Carbon budgets were monitored following forest harvest and during re-establishment of short rotation woody crops. Soil CO2 efflux was monitored using infared gas analyzer methods, fine root production was estimated with minirhizotrons, above ground litter inputs were trapped, coarse root inputs were estimated with developed allometric relationships, and soil carbon pools were measured in loblolly pine and cottonwood plantations. Our carbon budget allows evaluation of errors, as well as quantifying pools and fluxes in developing stands during non-steady-state conditions. Soil CO2 efflux was larger than the combined inputs from aboveground litter fall and root production. Fine-root production increased during stand development; however, mortality was not yet equivalent to production, showing the belowground carbon budget was not yet in equilibrium and root carbon standing crop was accruing. Belowground production was greater in cottonwood than pine, but the level of pine soil CO2 efflux was equal to or greater than that of cottonwood, indicating heterotrophic respiration was higher for pine. Comparison of unaccounted efflux with soil organic carbon changes provides verification of loss or accrual.

  8. Synchrotron-based Infrared-microspectroscopy reveals the impact of land management on carbon storage in soil micro-aggregates

    NASA Astrophysics Data System (ADS)

    Hernandez-Soriano, Maria C.; Dalal, Ram C.; Menzies, Neal W.; Kopittke, Peter M.

    2015-04-01

    Carbon stabilization in soil microaggregates results from chemical and biological processes that are highly sensitive to changes in land use. Indeed, such processes govern soil capability to store carbon, this being essential for soil health and productivity and to regulate emissions of soil organic carbon (SOC) as CO2. The identification of carbon functionalities using traditional mid-infrared analysis can be linked to carbon metabolism in soil but differences associated to land use are generally limited. The spatial resolution of synchrotron-based Infrared-microspectroscopy allows mapping microaggregate-associated forms of SOC because it has 1000 times higher brightness than a conventional thermal globar source. These maps can contribute to better understand molecular organization of SOC, physical protection in the soil particles and co-localization of carbon sources with microbial processes. Spatially-resolved analyses of carbon distribution in micro-aggregates (<200 μm diameter) have been conducted using FTIR microspectroscopy (Infrared Microspectroscopy beamline, Australian Synchrotron). Two soil types (Ferralsol and Vertisol, World Reference Base 2014) were collected from undisturbed areas and from a location(s) immediately adjacent which has a long history of agricultural use (>20 years). Soils were gently screened (250 μm) to obtain intact microaggregates which were humidified and frozen at -20°C, and sectioned (200 μm thickness) using a diamond knife and a cryo-ultramicrotome. The sections were placed between CaF2 windows and the spectra were acquired in transmission mode. The maps obtained (5 µm step-size over ca. 150 × 150 µm) revealed carbon distribution in microaggregates from soils under contrasting land management, namely undisturbed and cropping land. Accumulation of aromatic and carboxylic functions on specific spots and marginal co-localization with clays was observed, which suggests processes other than organo-mineral associations being

  9. Distribution coefficient of selenium in Japanese agricultural soils.

    PubMed

    Nakamaru, Yasuo; Tagami, Keiko; Uchida, Shigeo

    2005-03-01

    In order to evaluate the selenium (Se) sorption level in Japanese soils, soil/soil solution distribution coefficients (K(d)s) were obtained for 58 agricultural soil samples (seven soil classification groups) using 75Se as a tracer. Although several chemical forms of Se are present in agricultural fields, selenite was used, because it is the major inorganic Se form in acid soils such as found in Japan. The Kd values obtained covered a wide range, from 12 to 1060l/kg, and their arithmetic mean was 315l/kg. Among the soil groups, Andosols had higher Kd values. The Kd values for all samples were highly correlated with soil active-aluminum (Al) and active-iron (Fe) contents. Thus, active-Al and active-Fe were considered to be the major adsorbents of Se. Then, a new sequential extraction procedure was applied to 12 soil samples in order to quantify the effect of soil components on Se adsorption. The sequential extraction results showed that 80-100% of the adsorbed Se was recovered as Al-bound Se and Fe-bound Se. The amount of Al-bound Se was the highest in the soils that showed high Kd values, though the relative contribution of Fe-bound Se tended to increase with decreasing Kd values. The high values of Kd seemed to be caused mainly by the adsorption of Se onto active-Al in Japanese soils. PMID:15686752

  10. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  11. Soil Carbon Change During Fifty Years of Old-Field Forest Development

    NASA Astrophysics Data System (ADS)

    Mobley, M. L.; Heine, P. R.; Billings, S. A.; Lajtha, K.; Kramer, M. G.; Richter, D. D.

    2010-12-01

    result of oxidation of old crop roots and organic matter as deep-rooted trees lowered the water table and promoted oxygen penetration into subsoils. This has been supported by data showing decreasing 14C age of soil carbon at 35-60cm even while the total carbon stock at that depth decreases. However, recent work by others has suggested losses of deep SOC with reforestation in other systems to be due to priming of deep SOC decomposition by deeper distributions of fresh carbon. The idea of priming of deep SOC decomposition by reforestation is new and unexpected. If real, this process could add more uncertainty to forest C sequestration efforts. A large fraction of forest C is stored belowground, with potential to be affected by priming, compared to what can be accrued in increased forest biomass. While the root decomposition and priming hypotheses are not mutually exclusive, the Calhoun soil archive combined with additional fractionation and analysis will allow us to compare the importance of these two phenomena in driving soil carbon change at the Calhoun Experimental Forest.

  12. Spatial distribution and temporal trends of farmland soil PBDEs: processes and crop rotation effects.

    PubMed

    Jiao, Xingchun; Tang, Qifeng; Chen, Shu; Deng, Yajia; Cao, Hongying; Wang, Guang; Yang, Yongliang

    2016-07-01

    The concentration and temporal trend of PBDEs in farmland soil during a circle of crop rotation period within an e-waste dismantling area of South China were investigated. The averaged current concentration of total PBDEs in the farmland soil was averaged 19.1 ± 20.7 ng/g dry weight, which was much lower than the PBDE level in roadside soil and in topsoil near e-waste dismantling sites. Spatial distribution of total PBDEs concentration in the study area showed higher level at the field near e-waste workshops and lower at the distanced farmland area. Soil organic carbon content was significantly correlated with concentration of BDE209 (r = 0.704, p < 0.01), but not related with the sum concentration of other PBDE compounds (r = 0.097, p > 0.1). During the whole crop rotation circle, the temporal concentration of PBDEs in the farmland soil was highest (25.3 ± 11.4 ng/g dry wt.) in April when early paddy had been transplanted for 1 or 2 weeks. When the crop rotated to autumn peanut in August and the land is turning dry, the PBDEs concentration in farmland soil reached the lowest level which was 8.1 ± 1.2 ng/g dry wt. The temporal trend of PBDEs in farmland soil was not consistent with that of atmospheric PBDEs and soil total organic carbon (TOC) content during the rotation cycle. It was concluded that the dynamics of PBDEs in the farmland soil is influenced by multiple, interacting factors, and not clearly related to neither the atmospheric deposition nor the organic carbon content of the soil, but possibly related to the micro-environmental conditions changed by crop rotation process. PMID:27005276

  13. Expansion of Juniperus virginiana L. in the Great Plains: Changes in soil organic carbon dynamics

    NASA Astrophysics Data System (ADS)

    Smith, Dixie L.; Johnson, Loretta C.

    2003-06-01

    Woody encroachment by Juniperus virginiana into Great Plains grasslands allowed us to answer: Does changing the type of plant input to soils alter soil organic carbon (SOC) distribution or soil carbon (C) storage? The answer is critical because woody encroachment may alter C cycling over millions of hectares in the Great Plains and Midwest. We predicted that (1) forest SOC would become concentrated in shallow soil layers compared to SOC distribution in grassland, (2) woody expansion would increase soil C storage, and (3) forest C would be apparent in the larger soil organic matter fractions. Using δ13C signatures of SOC, 1/5 of the C from 0 to 25 cm in juniper forest soils was derived from C3 juniper trees. Forest C3 input occurred primarily in shallow surface layers: Forest soils developed over former C4 prairie contained 42% C3-SOC from 0 to 2.5 cm depth, and decreased to 6% at 25 cm. Isotopic analysis of SOC size fractions revealed that at 0-2.5 cm, the forest soil fraction >212 μm was -25.7‰. The fraction <2 μm had a 13C isotope ratio of -17.0‰ at the same depth, reflecting the predominance of residual prairie C in the smallest fraction. In spite of fast dynamics of soil C turnover, there was no net change in SOC amounts over 40-60 years (cumulative mineral and organic SOC in forest, 8782 g C/m2 ± 810; in grassland, 7699 ± 1004). Thus as junipers expand into mesic areas of the Great Plains, juniper forests will provide little additional soil C storage.

  14. Soil nutrients influence spatial distributions of tropical tree species

    PubMed Central

    John, Robert; Dalling, James W.; Harms, Kyle E.; Yavitt, Joseph B.; Stallard, Robert F.; Mirabello, Matthew; Hubbell, Stephen P.; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757–1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<104 km2) and regional scales. At local scales (<1 km2), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant–soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36–51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant–soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. PMID:17215353

  15. SOIL PHOSPHOROUS SPATIAL DISTRIBUTION IN PASTURES RECEIVING POULTRY LITTER APPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmentally-based P management strategies could be improved by delineating management zones incorporating the effects of landscape position on soil morphology, hydrology, and soil P distribution. Three farm pasture sites in SW Missouri receiving long-term poultry litter applications were sampled...

  16. Microbial life in variably saturated soil aggregates - upscaling gaseous fluxes across distributed aggregate sizes in a soil profile

    NASA Astrophysics Data System (ADS)

    Or, D.; Ebrahimi, A.

    2015-12-01

    Recent studies revealed highly dynamic and rich behavior of microbial communities inhabiting soil aggregates. Modeling of these processes in three dimensional (unsaturated) pore networks provided insights into the unique conditions essential for coexistence of oxic and anoxic microsites that shape (and respond to) aerobic and anaerobic microbial communities. Soil hydration dynamics continuously alter the spatial extent of anoxic niches (hotspots) that flicker in time (hot moments) and support anaerobic microbial activity even in unsaturated and oxic soil profiles. We extend a model for individual-based microbial community growth in 3-D angular pore networks mimicking soil aggregates of different sizes placed in different ambient boundary conditions reflecting profiles of water, carbon, and oxygen in soil. An upscaling scheme was developed to account for aerobic and anaerobic activity within each aggregate class size and soil depth integrated over the aggregate size distribution in the soil for a range of hydration conditions. Results show that dynamic adjustments in microbial community composition affect CO2 and N2O production rates in good agreement with experimental data. The modeling approach addresses a long-standing challenge of linking hydration conditions to dynamic adjustments of microbial communities within "hotspots" with the emergence of "hot moments" reflecting high rates of denitrification and organic matter decomposition.

  17. Radiocarbon-based residence time estimates of soil organic carbon in a temperate forest: Case study for the density fractionation for Japanese volcanic ash soil

    NASA Astrophysics Data System (ADS)

    Kondo, Miyuki; Uchida, Masao; Shibata, Yasuyuki

    2010-04-01

    The world's soils store significantly more carbon than that is present in the atmosphere. To understand the distribution and dynamics of the soil organic carbon (SOC) reservoir and make a prediction about the response of the soil carbon pool to climate change, it is necessary to quantitatively constrain rate of soil carbon cycling. Following previous studies [24], we investigated the method for physically preparation of Japanese volcanic ash soil for the mean residence time (MRT) estimates in a cool-temperate deciduous forest in Japan, at one of Asia Flux monitoring sites. Sequentially isolated density fractions clearly differed in C contents and C/N ratios in soil surface (3-8 cm) and deep soil layer (38-43 cm). In soil surface layer, the light fractions (1.6-1.8, 1.6-1.8, 1.8-2.1 g cm -3) accounted for nearly 90% of SOC and their MRT ranged from 6 to 150 year. In deep layer, the 2.1-2.4 g cm -3 fraction accounted for more than 60% of SOC and its MRT was 3100 year. The lighter fractions (1.6-1.8, 1.8-2.1) comprised small portion of total SOC and were significantly slowly MRT (2038-2335 year), although it seems to consist of labile carbon.

  18. Environmental analyse of soil organic carbon stock changes in Slovakia

    NASA Astrophysics Data System (ADS)

    Koco, Š.; Barančíková, G.; Skalský, R.; Tarasovičová, Z.; Gutteková, M.; Halas, J.; Makovníková, J.; Novákova, M.

    2012-04-01

    The content and quality of soil organic matter is one of the basic soil parameters on which soil production functioning depends as well as it is active in non production soil functions like an ecological one especially. Morphologic segmentation of Slovakia has significant influence of structure in using agricultural soil in specific areas of our territory. Also social changes of early 90´s of 20´th century made their impact on change of using of agricultural soil (transformation from large farms to smaller ones, decreasing the number of livestock). This research is studying changes of development of soil organic carbon stock (SOC) in agricultural soil of Slovakia as results of climatic as well as social and political changes which influenced agricultury since last 40 years. The main goal of this research is an analysis of soil organic carbon stock since 1970 until now at specific agroclimatic regions of Slovakia and statistic analysis of relation between modelled data of SOC stock and soil quality index value. Changes of SOC stock were evaluated on the basis SOC content modeling using RothC-26.3 model. From modeling of SOC stock results the outcome is that in that time the soil organic carbon stock was growing until middle 90´s years of 20´th century with the highest value in 1994. Since that year until new millennium SOC stock is slightly decreasing. After 2000 has slightly increased SOC stock so far. According to soil management SOC stock development on arable land is similar to overall evolution. In case of grasslands after slight growth of SOC stock since 1990 the stock is in decline. This development is result of transformational changes after 1989 which were specific at decreasing amount of organic carbon input from organic manure at grassland areas especially. At warmer agroclimat