Science.gov

Sample records for carbon steel immersed

  1. Ultrahigh carbon steels, Damascus steels, and superplasticity

    SciTech Connect

    Sherby, O.D.; Wadsworth, J.

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  2. History of ultrahigh carbon steels

    SciTech Connect

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  3. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.

    PubMed

    Javed, M A; Neil, W C; Stoddart, P R; Wade, S A

    2016-01-01

    The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons. PMID:26785935

  4. Improving both bond strength and corrosion resistance of steel rebar in concrete by water immersion or sand blasting of rebar

    SciTech Connect

    Hou, J.; Fu, X.; Chung, D.D.L.

    1997-05-01

    Water immersion (2 days) and sand blasting were similarly effective for treating steel rebars for the purpose of improvement steel-concrete bond strength and corrosion resistance of steel in concrete. The increase in bond strength is due to surface roughening in the case of sand blasting and the presence of a surface layer in the case of water immersion. The increase in corrosion resistance is due to the surface uniformity rendered by either treatment.

  5. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    SciTech Connect

    Maendl, S.; Rauschenbach, B.

    2003-08-26

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 deg. C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry)

  6. Quantitative evaluation of material degradation of thermally aged duplex stainless steels using chemical immersion test

    NASA Astrophysics Data System (ADS)

    Yi, Y. S.; Shoji, T.

    1996-12-01

    In order to develop a non-destructive evaluation technique for detection of thermal aging embrittlement of duplex stainless steels, corrosion tests on unaged and aged specimens of cast duplex stainless steels were performed in 5 wt% HCl solution. After the immersion test, the dissolution rate of specimens was obtained by a dissolved depth measurement with an AFM. In the measurements of dissolved depths, a replica technique was used for easier handling and also for a possible field application of the AFM analysis method. Changes in corrosion properties by aging measured in terms of the dissolved depth after the immersion were compared with the changes in mechanical properties by aging embrittlement. The changes in corrosion properties of unaged and aged specimen were analyzed in relation to the microstructural change by thermal aging. Based upon insights on the immersion test results and the comparison of the changes in corrosion properties and mechanical properties, a possible non-destructive detection and evaluation technique for thermal aging embrittlement by spinodal decomposition is proposed.

  7. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  8. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  9. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  10. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  11. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  12. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  13. Special steel production on common carbon steel production line

    NASA Astrophysics Data System (ADS)

    Pi, Huachun; Han, Jingtao; Hu, Haiping; Bian, Ruisheng; Kang, Jianjun; Xu, Manlin

    2004-06-01

    The equipment and technology of small bar tandem rolling line of Shijiazhuang Iron & Steel Co. in China has reached the 90's international advanced level in the 20th century, but products on the line are mostly of common carbon steel. Currently there are few steel plants in China to produce 45 steel bars for cold drawing, which is a kind of shortage product. Development of 45 steel for cold drawing has a wide market outlook in China. In this paper, continuous cooling transformation (CCT) curve of 45 steel for cold drawing used for rolling was set out first. According to the CCT curve, we determined some key temperature points such as Ac3 temperature and Ac1 temperature during the cooling procedure and discussed the precipitation microstructure at different cooling rate. Then by studying thermal treatment process of 45 steel bars for cold drawing, the influence of cooling time on microstructure was analyzed and the optimum cooling speed has been found. All results concluded from the above studies are the basis of regulating controlled cooling process of 45 steel bars for cold drawing. Finally, the feasible production process of 45 steel bars for cold drawing on common carbon steel production line combined with the field condition was recommended.

  14. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  15. Ultrahigh Ductility, High-Carbon Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-07-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  16. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel.

    PubMed

    Javed, M A; Stoddart, P R; McArthur, S L; Wade, S A

    2013-09-01

    Metallurgical features have been shown to play an important role in the attachment of microorganisms to metal surfaces. In the present study, the influence of the microstructure of as-received (AR) and heat-treated (HT) 1010 carbon steel on the initial attachment of bacteria was investigated. Heat treatment was carried out with the aim of increasing the grain size of the carbon steel coupons. Mirror-polished carbon steel coupons were immersed in a minimal medium inoculated with Escherichia coli (ATCC 25922) to investigate the early (15, 30 and 60 min) and relatively longer-term (4 h) stages of bacterial attachment. The results showed preferential colonisation of bacteria on the grain boundaries of the steel coupons. The bacterial attachment to AR steel coupons was relatively uniform compared to the HT steel coupons where an increased number of localised aggregates of bacteria were found. Quantitative analysis showed that the ratio of the total number of isolated (i.e., single) bacteria to the number of bacteria in aggregates was significantly higher on the AR coupons than the HT coupons. Longer-term immersion studies showed production of extracellular polymeric substances by the bacteria and corrosion at the grain boundaries on both types of steel coupon tested. PMID:23906317

  17. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  18. Study of the plasma immersion implantation of titanium in stainless steel

    NASA Astrophysics Data System (ADS)

    Nikitenkov, N. N.; Sutygina, A. N.; Shulepov, I. A.; Sivin, D. O.; Kashkarov, E. B.

    2015-04-01

    The results of the study of the pulsed plasma-immersion ion implantation of titanium in steel Cr18Ni10Ti depending on the time (dose) implantation are presented. It is shown that the change of the element and the phase composition of the surface layers and their microscopic characteristics and mechanical properties (hardness, wear resistance) depending on the implantation time is not monotonic, but follows to a certain rule. The possibility of interpretation of the obtained results in the thermal spike concept of the generation on the surface by the stable (magic) clusters is discussed. This concept follows logically from the recent studies on the plasma arc composition and from a polyatomic clusters-surface interaction.

  19. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  20. Plasma immersion ion implantation of nitrogen into H13 steel under moderate temperatures

    NASA Astrophysics Data System (ADS)

    Ueda, M.; Leandro, C.; Reuther, H.; Lepienski, C. M.

    2005-10-01

    Ion implantation of nitrogen into samples of tempered and quenched H13 steel was carried out by plasma immersion technique. A glow discharge plasma of nitrogen species was the ion source and the negative high voltage pulser provided 10-12 kV, 60 μs duration and 1.0-2.0 kHz frequency, flat voltage pulses. The temperatures of the samples remained between 300 and 450 °C, sustained solely by the ion bombardment. In some of the discharges, we used a N2 + H2 gas mixture with 1:1 ratio. PIII treatments as long as 3, 6, 9 and up to 12 h were carried out to achieve as thickest treated layer as possible, and we were able to reach over 20 μm treated layers, as a result of ion implantation and thermal (and possibly radiation enhanced) diffusion. The nitrogen depth profiles were obtained by GDOS (Glow Discharge Optical Spectroscopy) and the exact composition profiles by AES (Auger Electron Spectroscopy). The hardness of the treated surface was increased by more than 250%, reaching 18.8 GPa. No white layer was seen in this case. A hardness profile was obtained which corroborated a deep hardened layer, confirming the high efficacy of the moderate temperature PIII treatment of steels.

  1. Phenomena Discovered During Immersion of Steel Parts into Liquid Quenchants (Overview)

    NASA Astrophysics Data System (ADS)

    Kobasko, Nikolai I.

    2014-12-01

    In the paper, new phenomena are discussed which were discovered during investigation of the intensive quenching processes. It is shown that in many cases film boiling is prevented completely during quenching of steel parts in cold liquids, especially in water salt solutions. In this case, the part surface temperature drops almost immediately to the liquid boiling point at the beginning of the quench and then maintains at this level for a relatively long time, i.e., the so-called self-regulated thermal process is established. A simple equation for determining the duration of the self-regulated thermal process is proposed. Thermal waves are generated during an immersion of steel parts into a cold liquid and after the self-regulated thermal process is completed. The thermal waves move in opposite direction from where the cooling process starts. The self-regulated thermal process was used to develop an original intensive quenching technology (IQ-2 process). It can be a basis for developing other new technologies such as an austempering and a martempering in cold liquids under pressure. Discovered effects of thermal waves can be used for determining a duration of the self-regulated thermal process and for reconstructing an existing theory on the double electrical layer. Practical examples of calculations of the duration of the self-regulated thermal process are provided in the paper.

  2. Phenomena Discovered During Immersion of Steel Parts into Liquid Quenchants (Overview)

    NASA Astrophysics Data System (ADS)

    Kobasko, Nikolai I.

    2014-09-01

    In the paper, new phenomena are discussed which were discovered during investigation of the intensive quenching processes. It is shown that in many cases film boiling is prevented completely during quenching of steel parts in cold liquids, especially in water salt solutions. In this case, the part surface temperature drops almost immediately to the liquid boiling point at the beginning of the quench and then maintains at this level for a relatively long time, i.e., the so-called self-regulated thermal process is established. A simple equation for determining the duration of the self-regulated thermal process is proposed. Thermal waves are generated during an immersion of steel parts into a cold liquid and after the self-regulated thermal process is completed. The thermal waves move in opposite direction from where the cooling process starts. The self-regulated thermal process was used to develop an original intensive quenching technology (IQ-2 process). It can be a basis for developing other new technologies such as an austempering and a martempering in cold liquids under pressure. Discovered effects of thermal waves can be used for determining a duration of the self-regulated thermal process and for reconstructing an existing theory on the double electrical layer. Practical examples of calculations of the duration of the self-regulated thermal process are provided in the paper.

  3. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Yang, P.; Kwok, S. C. H.; Chu, P. K.; Leng, Y. X.; Chen, J. Y.; Wang, J.; Huang, N.

    2003-05-01

    Diamond-like-carbon has attracted much attention recently as a potential biomaterial in blood contacting biomedical devices. However, previous reports in this area have not adequately addressed the biocompatibility and acceptability of the materials in blood contacting applications. In this study, hydrogenated amorphous carbon (a-C:H) films were fabricated on silicon wafers (1 0 0) using plasma immersion ion implantation-deposition. A series of a-C:H films with different structures and chemical bonds were fabricated under different substrate voltages. The results indicate that film graphitization is promoted at higher substrate bias. The film deposited at a lower substrate bias of -75 V possesses better blood compatibility than the films at higher bias and stainless steel. Our results suggest two possible paths to improve the blood compatibility, suppression of the endogenic clotting system and reduction of platelet activation.

  4. Evaluation of doped polyaniline as a carbon steel protective coating using electrochemical impedance spectroscopy

    SciTech Connect

    Calle, L.M.; MacDowell, L.G. III

    1997-12-01

    Electrochemical Impedance Spectroscopy (EIS) was used to evaluate the performance of two doped polyanilines, PAN, in the emeraldine base form, EB, as protective coatings for carbon steel under immersion in 3.55% NaCl. Coatings A and B consisted of EB doped with tetracyanoethylene (TCNE) and with p-toluenesulfonic acid (PTSA) respectively. The equivalent circuit R{sub e}(C{sub c}[R{sub c}(QR{sub 1})]) provided a satisfactory fit for the EIS data.

  5. A method for predicting service life of zinc rich primers on carbon steel

    NASA Technical Reports Server (NTRS)

    Hoppesch, C. W.

    1986-01-01

    The service life of zinc rich primers on carbon steel can be estimated by immersing a primer coated glass slide into an aqueous copper sulfate solution and measuring the amount of zinc that reacts with the copper in 15 minutes. This zinc availability test was used to evaluate eleven primers currently available for which marine beach exposure data was available from previous programs. Results were evaluated and a correlation between zinc availability and ASTM rust grade was shown.

  6. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  7. Tests Of Protective Coats For Carbon Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III

    1995-01-01

    Report describes laboratory and field tests of candidate paints (primers, tie coats, and topcoats) for use in protecting carbon-steel structures against corrosion in seaside environment at Kennedy Space Center. Coating materials selected because of utility in preventing corrosion, also on basis of legal requirements, imposed in several urban areas, for reduction of volatile organic contents.

  8. Superhydrophobic conductive carbon nanotube coatings for steel.

    PubMed

    Sethi, Sunny; Dhinojwala, Ali

    2009-04-21

    We report the synthesis of superhydrophobic coatings for steel using carbon nanotube (CNT)-mesh structures. The CNT coating maintains its structural integrity and superhydrophobicity even after exposure to extreme thermal stresses and has excellent thermal and electrical properties. The coating can also be reinforced by optimally impregnating the CNT-mesh structure with cross-linked polymers without significantly compromising on superhydrophobicity and electrical conductivity. These superhydrophobic conductive coatings on steel, which is an important structural material, open up possibilities for many new applications in the areas of heat transfer, solar panels, transport of fluids, nonwetting and nonfouling surfaces, temperature resilient coatings, composites, water-walking robots, and naval applications. PMID:19281157

  9. Microbially induced corrosion of carbon steel in deep groundwater environment.

    PubMed

    Rajala, Pauliina; Carpén, Leena; Vepsäläinen, Mikko; Raulio, Mari; Sohlberg, Elina; Bomberg, Malin

    2015-01-01

    The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland) for periods of 3 and 8 months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel. PMID:26257707

  10. Microbially induced corrosion of carbon steel in deep groundwater environment

    PubMed Central

    Rajala, Pauliina; Carpén, Leena; Vepsäläinen, Mikko; Raulio, Mari; Sohlberg, Elina; Bomberg, Malin

    2015-01-01

    The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland) for periods of 3 and 8 months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel. PMID:26257707

  11. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  12. Ultrahigh carbon steel for automotive applications

    SciTech Connect

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.

    1995-12-04

    Ultrahigh carbon steels (UHCSs), which contain 1--2.1% carbon, have remarkable structural properties for automotive application when processed to achieve fine ferrite grains with fine spheroidized carbides. When processed for high room temperature ductility, UHCS can have good tensile ductility but significantly higher strength than current automotive high strength steels. The material can also be made superplastic at intermediate temperatures and exhibits excellent die fill capability. Furthermore, they can be made hard with high compression ductility. In wire form it is projected that UHCS can exhibit extremely high strengths (5,000 MPa) for tire cord applications. Examples of structural components that have been formed from fine-grained spheroidized UHCSs are illustrated.

  13. Repair welding on nitrided carbon steel pipe

    SciTech Connect

    Baumert, K.L.

    1994-12-31

    A carbon steel pipe containing primarily ammonia at 750--850 F developed a nitrided case 15--20 mils (0.4--0.5mm) deep. This did not affect the performance of the pipe during operation, however, repair welding was not possible because of cracking. A laboratory procedure was developed wherein nitrided pipe could be successfully welded. The technique consisted of stress relieving the pipe before welding. No post weld stress relief was necessary to effect a sound weld.

  14. Friction stir processing on carbon steel

    SciTech Connect

    Tarasov, Sergei Yu.; Melnikov, Alexander G.; Rubtsov, Valery E.

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.

  15. Passivation of carbon steel through mercury implantation

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.; Robinson, R. S.

    1981-01-01

    An experiment, in which carbon steel samples were implanted with mercury ions from a broad beam ion source and their corrosion characteristics in air were evaluated, is described. Mercury doses of a few mA min/square cm at energies of a few hundred electron volts are shown to effect significant improvements in the corrosion resistance of the treated surfaces. In a warm moist environment the onset of rusting was extended from 15 min. for an untreated sample to approximately 30 hrs. for one implanted at a dose of 33 mA min/square cm with 1000 eV mercury ions.

  16. Test Of Protective Coatings On Carbon Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis

    1993-01-01

    Report describes results of tests in which carbon-steel panels coated with one-or two-component solvent-based inorganic zinc primers and top-coated with inorganic topcoat or any of various organic topcoats, placed on outdoor racks at beach at Kennedy Space Center for 5 years. From time to time, slurry of Al(2)O(3) in 10-percent HCI solution applied to some of panels to simulate corrosive effect of effluent from solid-fuel rocket booster engines. Panels coated with inorganic topcoat performed much better than organic-topcoated panels.

  17. Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl

    NASA Astrophysics Data System (ADS)

    Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat

    2015-09-01

    Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.

  18. High Performance Nanocatalysts Supported on Micro/Nano Carbon Structures Using Ethanol Immersion Pretreatment for Micro DMFCs

    NASA Astrophysics Data System (ADS)

    Lin, Liang-You; Wu, Yi-Shiuan; Chang, Chaun; Tseng, Fan-Gang

    2013-12-01

    In this paper, highly dense platinum (Pt) nanocatalysts were successfully deposited on the hydrophilically-treated nano/micro carbon supports with an ethanol (EtOH) immersion pretreatment and an acidic treatment for the performance improvement of methanol oxidation reaction (MOR). In order to thoroughly immerse the three-dimensional, interwoven structures of the carbon cloth fibers with a 6 M sulfuric acid surface modification, which increasing more oxygen-containing functional groups on the surfaces of the carbon supports, the EtOH immersion pretreatment of the carbon supports was utilized prior to the sulfuric acid treatment. Subsequently, Pt catalysts were reduced on the modified carbon supports by a homemade open-loop reduction system (OLRS) [1] For comparisons, carbon cloth (CC) and carbon nanotube on CC (CNT/CC) supports were employed with and without EtOH immersion pretreatments before Pt catalyst reduction. In the cyclic voltammetry (CV) curves, the electrosorption charges of hydrogen ion (QH) and the peak current density (IP) of the fabricated Pt/CC and Pt/CNT/CC electrodes with the EtOH immersion pretreatments can efficiently be enhanced due to more active Pt sites for electrocatalytic reactions.

  19. Stress Corrosion Cracking of Carbon Steel Weldments

    SciTech Connect

    POH-SANG, LAM

    2005-01-13

    An experiment was conducted to investigate the role of weld residual stress on stress corrosion cracking in welded carbon steel plates prototypic to those used for nuclear waste storage tanks. Carbon steel specimen plates were butt-joined with Gas Metal Arc Welding technique. Initial cracks (seed cracks) were machined across the weld and in the heat affected zone. These specimen plates were then submerged in a simulated high level radioactive waste chemistry environment. Stress corrosion cracking occurred in the as-welded plate but not in the stress-relieved duplicate. A detailed finite element analysis to simulate exactly the welding process was carried out, and the resulting temperature history was used to calculate the residual stress distribution in the plate for characterizing the observed stress corrosion cracking. It was shown that the cracking can be predicted for the through-thickness cracks perpendicular to the weld by comparing the experimental KISCC to the calculated stress intensity factors due to the welding residual stress. The predicted crack lengths agree reasonably well with the test data. The final crack lengths appear to be dependent on the details of welding and the sequence of machining the seed cracks, consistent with the prediction.

  20. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.

    PubMed

    Poon, R W Y; Yeung, K W K; Liu, X Y; Chu, P K; Chung, C Y; Lu, W W; Cheung, K M C; Chan, D

    2005-05-01

    Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological properties of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Our tribological tests show that the treated surfaces are mechanically more superior and cytotoxicity tests reveal that both sets of plasma-treated samples favor adhesion and proliferation of osteoblasts. PMID:15585228

  1. Diamond turning of steel in a carbon-saturated atmosphere

    SciTech Connect

    Casstevens, J.M.

    1982-06-02

    The wear of diamond tools when machining steels under carbon dioxide and methane gases is investigated. It is shown that diamond tool wear on steels appears to be significantly reduced due to the effects of the methane gas atmosphere. Applicable literature is reviewed and an explanation for the effectiveness of a gas rich in carbon is given. A description of the experimental apparatus and procedure is given along with results of experiments with two types of steel.

  2. The electro-structural behaviour of yarn-like carbon nanotube fibres immersed in organic liquids

    NASA Astrophysics Data System (ADS)

    Terrones, Jeronimo; Windle, Alan H.; Elliott, James A.

    2014-10-01

    Yarn-like carbon nanotube (CNT) fibres are a hierarchically-structured material with a variety of promising applications such as high performance composites, sensors and actuators, smart textiles, and energy storage and transmission. However, in order to fully realize these possibilities, a more detailed understanding of their interactions with the environment is required. In this work, we describe a simplified representation of the hierarchical structure of the fibres from which several mathematical models are constructed to explain electro-structural interactions of fibres with organic liquids. A balance between the elastic and surface energies of the CNT bundle network in different media allows the determination of the maximum lengths that open junctions can sustain before collapsing to minimize the surface energy. This characteristic length correlates well with the increase of fibre resistance upon immersion in organic liquids. We also study the effect of charge accumulation in open interbundle junctions and derive expressions to describe experimental data on the non-ohmic electrical behaviour of fibres immersed in polar liquids. Our analyses suggest that the non-ohmic behaviour is caused by progressively shorter junctions collapsing as the voltage is increased. Since our models are not based on any property unique to carbon nanotubes, they should also be useful to describe other hierarchical structures.

  3. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages

    PubMed Central

    Haghgou, Hamid R.; Haghgoo, Roza; Asdollah, Fatemah Molla

    2016-01-01

    Objectives: The consumption of carbonated beverages is one of the etiological factors that cause dental erosion. The purpose of this research was to compare changes in the microhardness of permanent and primary teeth after immersion in two types of carbonated beverages. Materials and Methods: This investigation was done on 30 healthy permanent molars and 30 healthy primary canines. Each group of primary and permanent teeth was subdivided into three groups of 10 teeth. The teeth was immersed in 40 ml of each of the three beverages for 5 min. One subgroup was immersed in water (as a control). The next was immersed in Lemon Delster and the last subgroup was immersed in Coca-Cola. The microhardness of enamel was measured using the Vickers method before and after immersion. Finally, the data was analyzed by paired t-test, one-way analysis of variance, and t-test. Results: Microhardness reduction in the primary teeth was significant in both the Lemon Delster and Coca-Cola groups (P < 0.05). This reduction was also statistically significant in the permanent teeth (P < 0.05). A comparison of the enamel changes in the primary teeth with permanent teeth after immersion in both beverages showed a greater microhardness reduction in the primary teeth in both the experimental groups. Conclusions: Coca-Cola and Lemon Delster caused a significant reduction of microhardness in tooth enamel. This reduction was greater in primary teeth than in permanent teeth, and was also greater after immersion in Coca-Cola than after immersion in Lemon Delster. PMID:27583223

  4. On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hokkanen, Matti J.; Lautala, Saara; Shao, Dongkai; Turpeinen, Tuomas; Koivistoinen, Juha; Ahlskog, Markus

    2016-07-01

    Arc-discharge synthesized multiwalled carbon nanotubes (AD-MWNT) have been proven to be of high quality, but their use is very limited due to difficulties in obtaining them in a clean and undamaged form. Here, we present a simple method that purifies raw AD-MWNT material in laboratory scale without damage, and that in principle can be scaled up. The method consists of depositing raw AD-MWNT material on a flat substrate and immersing the substrate slowly in water, whereby the surface tension force of the liquid-substrate contact line selectively sweeps away the larger amorphous carbon debris and leaves relatively clean MWNTs on the substrate. We demonstrate the utility of the method by preparing clean individual MWNTs for measurement of their Raman spectra. The spectra exhibit the characteristics of high-quality tubes free from contaminants. We also show how one concomitantly with the purification process can obtain large numbers of clean suspended MWNTs.

  5. Effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Huang, Liang-liang; Meng, Hui-min; Liang, Li-kang; Li, Sen; Shi, Jin-hui

    2015-10-01

    LaMgAl11O19 thermal barrier coatings (TBCs) were applied to carbon steels with a NiCoCrAlY bond coat by plasma spraying. The effects of heat treatment on the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs were investigated in 3.5wt% NaCl solution using polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results show that a large number of cracks are found in the LaMgAl11O19 TBCs after the samples are heat-treated, including some through-thickness cracks. The corrosion forms of the as-sprayed and heat-treated TBCs are uniform corrosion and pitting corrosion, respectively. The as-sprayed TBCs exhibit three EIS time constants after being immersed for less than 7 d, and then a new time constant appears because of steel substrate corrosion. When the immersion time is increased to 56 d, a Warburg impedance ( W) component appears in the EIS data. The EIS data for the heat-treated TBCs exhibit only two time constants after the samples are immersed for less than 14 d, and a new time constant appears when the immersion time is increased further. The heat treatment reduces the corrosion resistance of carbon steel coated with LaMgAl11O19 TBCs. The corrosion products are primarily γ-FeOOH and Fe3O4.

  6. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    SciTech Connect

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  7. Solid-state joining of ultrahigh carbon steels

    SciTech Connect

    Sunwoo, A.J.

    1993-04-22

    A joining study of these steels was initiated to determine the feasibility of using ultrahigh carbon steels in structural applications. The high carbon content (1.5 wt%) in these steels and the desire to maintain the superplastic microstructure limit the use of conventional arc-welding processes. We chose two solid-state joining processes: diffusion bonding and inertia friction welding. Preliminary results show that sound bonds can be obtained with tensile properties nearly equal to those of the base metal. Of three UHC steels bonded by both inertia-friction welding and diffusion- bonding processes, the one with the lowest aluminum content had the best overall properties. Diffusion bonding with a nickel interlayer showed the most promising results for the UHC steel containing 1.6 wt% aluminum. The properties of inertia-friction-welded steels can be improved by a post-weld heat treatment.

  8. Corrosion Behavior of Medium Carbon Steel in Simulated Concentrated Yucca Mountain Waters

    SciTech Connect

    Yilmaz, A; Chandra, D; Rebak, R B

    2004-04-09

    Medium carbon steel (MCS) is the candidate material for rock bolts to reinforce the borehole liners and emplacement drifts of the proposed Yucca Mountain (YM) high-level nuclear waste repository. Corrosion performance of this structural steel -AISI 1040- was investigated by techniques such as linear polarization, electrochemical impedance spectroscopy (EIS), and laboratory immersion tests in lab simulated concentrated YM ground waters. Corrosion rates of the steel were determined for the temperatures in the range from 25 C to 85 C, for the ionic concentrations of 1 time (1x), 10 times (10x), and hundred times (100x) ground waters. The MCS corroded uniformly at the penetration rates of 35-200 {micro}m/year in the de-aerated YM waters, and 200-1000 {micro}m/year in the aerated waters. Increasing temperatures in the de-aerated waters increased the corrosion rates of the steel. However, increasing ionic concentrations influenced the corrosion rates only slightly. In the aerated 1x and 10x waters, increasing temperatures increased the rates of MCS significantly. Inhibitive precipitates, which formed in the aerated 100x waters at higher temperatures (65 C and up) decreased the corrosion rates to the values that obtained for the de-aerated YM aqueous environments. The steel suffered pitting corrosion in the both de-aerated and aerated hot YM environments after anodic polarization.

  9. 6. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR NAIL PLATE BEING LOADED ON THE CRADLE USED DURING THE PICKLING PROCESS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  10. 5. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, HIGH CARBON HOT ROLLED SHEET STEEL FOR NAIL PLATE BEING REMOVED FROM THE CRADLE USED DURING THE PICKLING PROCESS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  11. Tests Of Materials For Repair Coating Of Carbon Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III

    1995-01-01

    Report describes tests of paints (primers and topcoats) for use in recoating rusted carbon steel for protection against further corrosion. Paints selected for evaluation all designated by manufacturers as suitable for application over tightly adhering rust.

  12. The corrosion of carbon steel in rock microcosms containing native Yucca Mountain microorganisms

    SciTech Connect

    Castro, P.R.; Amy, P.S.; Crossen, H.V.; Jones, D.A.; Southam, G.; Donald, R.; Ringelberg, D.B.

    1998-12-31

    Microorganisms implicated in microbially-influenced corrosion were isolated from the deep subsurface at Yucca Mountain, and include iron-oxidizing (FeOx), sulfate-reducing (SRB), and exopolysaccharide (EPS)-producing bacterial species. Various combinations of these microorganisms were inoculated into a test system composed of a 1020 carbon steel coupon immersed in a mixture of sterile rock and soft R2A agar prepared with simulated groundwater. A 1% KC1 bridge was used to connect the test system to a calomel reference electrode. A platinum counter electrode was used to apply a potential and the corrosion rate was measured by polarization resistance. Prior studies at ambient and elevated (50 C) temperatures demonstrated that these microorganisms were capable of corroding carbon steel. The current research investigated whether the presence of a rock surface enhanced the ability of the test microorganisms to survive elevated temperature and corrode carbon steel. Uninoculated electrochemical cells were prepared to monitor abiotic corrosion. Initial and weekly corrosion rates were obtained for the duration of the experiment. Upon completion of the experiment, the test system was dismantled and the coupons prepared for phospholipid fatty acid and microscopic analyses, to assess microbial biomass and biofilm formation, respectively. Increased biomass and higher corrosion rates were observed in the rock/agar microcosms.

  13. Mesa corrosion attack in carbon steel and 0.5% chromium steel

    SciTech Connect

    Nyborg, R.; Dugstad, A.

    1998-12-31

    Local breakdown of protective corrosion films may result in rapid local attack or mesa corrosion attack during CO{sub 2} corrosion of carbon steel. The factors affecting formation and local breakdown of protective corrosion films were studied in a series of flow loop experiments performed at 40--80 C with pH 5.8, 1.8 bar CO{sub 2} partial pressure, high iron content in the water and flow rates 0.1--7 m/s. Carbon steels with or without chromium and nickel additions up to 1% were tested. Addition of 0.5% chromium in the steel was found to reduce the tendency for severe mesa attack in carbon steels during CO{sub 2} corrosion significantly. Deep mesa attack did not occur in steels with 0.5--1% Cr in experiments at 80 C and pH 5.8. Protective corrosion films reform more easily in the chromium containing steels, making localized attack less dangerous in chromium containing steels than in unalloyed carbon steels.

  14. Voltage dependence of cluster size in carbon films using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    McKenzie, D. R.; Tarrant, R. N.; Bilek, M. M. M.; Pearce, G.; Marks, N. A.; McCulloch, D. G.; Lim, S. H. N.

    2003-05-01

    Carbon films were prepared using a cathodic arc with plasma immersion ion implantation (PIII). Using Raman spectroscopy to determine cluster size, a comparison is made between cluster sizes at high voltage and a low duty cycle of pulses with the cluster sizes produced at low voltage and a higher duty cycle. We find that for ion implantation in the range 2-20 kV, the cluster size depends more on implantation energy ( E) than implantation frequency ( f), unlike stress relief, which we have previously shown [M.M.M. Bilek, et al., IEEE Trans. in Plasma Sci., Proceedings 20th ISDEIV 1-5 July 2002, Tours, France, Cat. No. 02CH37331, IEEE, Piscataway, NJ, USA, p. 95] to be dependent on the product Ef. These differences are interpreted in terms of a model in which the ion impacts create thermal spikes.

  15. Surface alloying of carbon tool steels using laser heating

    NASA Astrophysics Data System (ADS)

    Chudina, O. V.; Brezhnev, A. A.

    2015-12-01

    The problems of surface hardening of high-carbon steels by alloying using laser radiation are considered. The effect of the laser treatment parameters on the thickness, the structure, the phase composition, the microhardness, and the residual stresses of the surface layer is studied, and the influence of alloying elements on the strength of the surface layer in carbon steels and their wear resistance is investigated.

  16. Instant-off potential and polarization decay techniques for evaluation of an immersed steel structure

    SciTech Connect

    Hock, V.F.; Van Blaricum, V.L.; Houtz, W.A.; Setliff, L.F.

    1994-12-31

    Several devices and techniques for evaluating the condition of a coated and cathodically protected steel lock gate were tested in the field. Polarization decay and polarization resistance (E log I) measurements were conducted on the gates to determine the feasibility of using these techniques for in situ evaluation of the coating condition. In addition, two commercially available devices for measuring instant-off potentials were used to evaluate the cathodic protection system. Potentials obtained using these instruments were compared with the readings obtained using a recording oscilloscope and a digital multimeter. Results will be presented and discussed.

  17. Iron cycling at corroding carbon steel surfaces.

    PubMed

    Lee, Jason S; McBeth, Joyce M; Ray, Richard I; Little, Brenda J; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  18. Carbonated aqueous media for quench heat treatment of steels

    NASA Astrophysics Data System (ADS)

    Nayak, U. Vignesh; Rao, K. M. Pranesh; Pai, M. Ashwin; Prabhu, K. Narayan

    2016-07-01

    Distilled water and polyalkylene glycol (PAG)-based aqueous quenchants of 5 and 10 vol.% with and without carbonation were prepared and used as heat transfer media during immersion quenching. Cooling curves were recorded during quenching of an inconel 600 cylindrical probe instrumented with multiple thermocouples. It was observed that the vapor stage duration was prolonged and the wetting front ascended uniformly for quenching with carbonated media. The cooling data were analyzed by determining the critical cooling parameters and by estimating the spatially dependent probe/quenchant interfacial heat flux transients. The study showed significantly reduced values of heat transfer rate for carbonated quenchants compared to quenchants without carbonation. Further, the reduction was more pronounced in the case of PAG-based carbonated quenchants than carbonated distilled water. The results also showed the dependence of heat transfer characteristics of the carbonated media on polymer concentration. The effect of quench uniformity on the microstructure of the material was assessed.

  19. Comparison of carbon fiber and stainless steel root canal posts.

    PubMed

    Purton, D G; Payne, J A

    1996-02-01

    This in vitro study compared physical properties of root canal posts made of carbon fiber-reinforced epoxy resin with those of stainless steel posts. Three-point bending tests were used to derive the transverse modulus of elasticity of the posts. Resin composite cores on the posts were subjected to tensile forces to test the bonds between the cores and posts. Carbon fiber posts appeared to have adequate rigidity for their designed purpose. The bond strength of the resin composite cores to the carbon fiber posts was significantly less than that to the stainless steel posts. PMID:9063218

  20. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Wang, Yishan; Zuo, Yu; Zhao, Xuhui; Zha, Shanshan

    2016-08-01

    The corrosion inhibition of calcium lignosulfonate (CLS) for Q235 carbon steel in saturated Ca(OH)2 + 0.1 mol/L NaCl solution was studied by means of weight loss, polarization, fluorescence microscopy (FM), scanning electron microscopy/energy dispersive spectrometry (SEM/EDS), microscopic infrared spectral imaging (M-IR) and X-ray photoelectron spectroscopy (XPS). For the steel in simulated concrete pore solution (pH 12.6), an increase of Eb value and a decrease of icorr value occurred with different concentrations of CLS. The optimal content of CLS was 0.001 mol/L at which the inhibition rate was 98.86% and the Eb value increased to 719 mV after 10 h of immersion. In mortar solution and in reinforced concrete environment, CLS also showed good inhibition for steel. The preferential adsorption of CLS around pits was detected by M-IR. The result illustrates that at the early stage the adsorption of CLS was heterogeneous and CLS may have a competitive adsorption with chloride ions at the active sites, which would be beneficial for decreasing the susceptibility of pitting corrosion. After the pre-filming time, an intact adsorption CLS film formed on carbon steel surface. The adsorption between CLS and calcium presented as Casbnd Osbnd S bonds. The adsorption of CLS on carbon steel surface occurred probably by both physisorption and chemisorption.

  1. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  2. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  3. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  4. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  5. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  6. Laser ignition of bulk 1018 carbon steel in pure oxygen

    NASA Technical Reports Server (NTRS)

    Nguyen, K.; Branch, M. C.

    1986-01-01

    Experiments were undertaken to study the ignition characteristics of bulk 1018 carbon steel in a pure oxygen environment. Cylindrical 1018 carbon steel specimens 5 mm in diameter and 5 mm high were ignited by a focused CW CO2 laser beam in a cool, static, pure oxygen environment at oxygen pressures ranging from 0.103 to 6.895 MPa. A two-color pyrometer was designed and used to measure the ignition temperatures of the specimens. The temperature history of a spot approximately 0.5 mm in diameter located at the center of the specimen top surface was recorded with a maximum time resolution of 25 microsec, and with an accuracy of a few percent. Ignition temperature of bulk 1018 carbon steel was identified from the temperature history curve with the aid of the light intensity curve. Results show that 1018 carbon steel specimens ignite at temperatures between 1388 and 1450 K, which are below the melting range of the alloy (1662-1685 K). The ignition temperature of 1018 carbon steel is mildly dependent on oxygen pressure over the range of oxygen pressure investigated in this study.

  7. ASM Specialty Handbook{reg_sign}: Carbon and alloy steels

    SciTech Connect

    Davis, J.R.

    1995-12-31

    Carbon and alloy steels are the workhorse of structural materials in modern engineering because of their very reasonable costs coupled with their many and varied properties that allow their use in such a large array of applications. it`s very easy to take steel for granted and forget how much it`s relied upon in critical uses such as cars, bridges, buildings, landing gear assemblies, and more. There are in-depth reviews on formability weldability, machineability, and hardenability of the various steel grades. One can also discover how adding certain alloys can significantly improve steel processing. The strength and toughness section has been greatly expanded with more coverage than ever before of corrosion fatigue. One has access to extensive reports detailing which steels are more susceptible to environmental damage such as stress-corrosion and hydrogen embrittlement. Temperature effects relating to mechanical properties and corrosion are also discussed.

  8. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  9. Increasing corrosion resistance of carbon steels by surface laser cladding

    NASA Astrophysics Data System (ADS)

    Polsky, V. I.; Yakushin, V. L.; Dzhumaev, P. S.; Petrovsky, V. N.; Safonov, D. V.

    2016-04-01

    This paper presents results of investigation of the microstructure, elemental composition and corrosion resistance of the samples of low-alloy steel widely used in the engineering, after the application of laser cladding. The level of corrosion damage and the corrosion mechanism of cladded steel samples were established. The corrosion rate and installed discharge observed at the total destruction of cladding were obtained. The regularities of structure formation in the application of different powder compositions were obtained. The optimal powder composition that prevents corrosion of samples of low-carbon low-alloy steel was established.

  10. Immersion Deposition of Metal Films on Silicon and Germanium Substrates in Supercritical Carbon Dioxide

    SciTech Connect

    Ye, Xiang-Rong; Wai, Chien M.; Zhang, Daqing; Kranov, Yanko; Mcilroy, David; Lin, Yuehe; Engelhard, Mark H.

    2003-01-29

    A low temperature carbon dioxide based on immersion deposition technology (SFID) has been developed for producing palladium, copper, silver, and other metal films on silicon-based substrates in supercritical CO2. The reaction is initiated by oxidation of elemental silicon to SiF4 or H2SiF6 by HF with the release of electrons that cause the reduction of metal ions in an organometallic precursor to the metallic form on silicon surface in CO2. Only the substrate surfaces are coated with metals using this method. Based on surface analysis of the films and spectroscopic analysis of the reaction products, the mechanism of metal film deposition is discussed. The metal films (Pd, Cu, and Ag) formed on silicon surfaces by the SFID method exhibit good coverage, smooth and dense texture, high purity and a metallic behavior. Similarly, metal films can also be deposited onto geranium substrates using SFID. The gas-like properties and the high pressure of the supercritical fluids, combined with the low reaction temperature, make this SFID method potentially useful for depositing thin metal films in small features, which are difficult to accomplish by conventional CVD methods.

  11. Initial Atmospheric Corrosion of Carbon Steel in Industrial Environment

    NASA Astrophysics Data System (ADS)

    Han, Wei; Pan, Chen; Wang, Zhenyao; Yu, Guocai

    2015-02-01

    The initial corrosion behavior of carbon steel subjected to Shenyang industrial atmosphere has been investigated by weight-loss measurement, scanning electron microscopy observation, x-ray diffraction, auger electron spectroscopy, and electron probe microanalysis. The experimental results reveal that the corrosion kinetics of the initial corrosion of carbon steel in industrial atmosphere follows empirical equation D = At n , and there is a corrosion rate transition from corrosion acceleration to deceleration; the corrosion products are composed of γ-FeOOH, α-FeOOH, Fe3O4, as well as FeS which is related to the existence of sulfate-reducing bacteria in the rust layers. The effect of dust particles on the corrosion evolution of carbon steel has also been discussed.

  12. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  13. Corrosion Behavior of Carbon Steel with Hmta Inhibitor in Pickling Process

    NASA Astrophysics Data System (ADS)

    Liu, D.; Huang, L. P.

    In this investigation, attempts have been made to study the inhibitive effect of hexamethylenetetramine (HMTA) on carbon steel in 10% HCl (mass%) by weight loss, potentiodynamic polarization, EIS, and AFM. Results indicate that inhibition efficiency (IE) of HMTA increases with the increase in pickling immersion time from 10 to 60 min, and IE also increases with the increase in temperature. At higher temperatures (80°C), the IE values are higher and almost independent of pickling time. HMTA can be adsorbed on the surface of metal and reduce the corrosion rate of metal. HMTA is a kind of mixed inhibitor and can retard both the anodic dissolution and cathodic hydrogen evolution reactions independently. IE increases with the concentration of HMTA. Electrochemistry measurement shows that adsorption follows the Langmuir isotherm and the value of free energies of adsorption (ΔGads) is < 0, so the adsorption process can occur automatically. AFM analyses show HMTA can affect the surface roughness and protect metal.

  14. Residual stress measurements in carbon steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Min, N.

    1986-01-01

    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  15. Volatile corrosion inhibitor film formation on carbon steel surface and its inhibition effect on the atmospheric corrosion of carbon steel

    NASA Astrophysics Data System (ADS)

    Zhang, Da-quan; An, Zhong-xun; Pan, Qing-yi; Gao, Li-xin; Zhou, Guo-ding

    2006-11-01

    A novel volatile corrosion inhibitor (VCI), bis-piperidiniummethyl-urea (BPMU), was developed for temporary protection of carbon steel. Its vapor corrosion inhibition property was evaluated under simulated operational conditions. Electrochemical impedance spectroscopy was applied to study the inhibition effect of BPMU on the corrosion of carbon steel with a thin stimulated atmospheric corrosion water layers. Adsorption of BPMU on carbon steel surfaces was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results indicate that BPMU can form a protective film on the metal surface, which protects the metal against further corrosion. The structure of the protective film was suggested as one BPMU molecule chelated with one Fe atom to form a complex with two hexa-rings.

  16. 78 FR 21105 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ..., available in Antidumping Duty Order: Circular Welded Carbon Steel Pipes and Tubes from Thailand, 51 FR 8341... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Preliminary... conducting an administrative review of the antidumping duty order on circular welded carbon steel pipes...

  17. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.

    PubMed

    Cote, Claudia; Rosas, Omar; Sztyler, Magdalena; Doma, Jemimah; Beech, Iwona; Basseguy, Régine

    2014-06-01

    Present in all environments, microorganisms develop biofilms adjacent to the metallic structures creating corrosion conditions which may cause production failures that are of great economic impact to the industry. The most common practice in the oil and gas industry to annihilate these biofilms is the mechanical cleaning known as "pigging". In the present work, microorganisms from the "pigging" operation debris are tested biologically and electrochemically to analyse their effect on the corrosion of carbon steel. Results in the presence of bacteria display the formation of black corrosion products allegedly FeS and a sudden increase (more than 400mV) of the corrosion potential of electrode immersed in artificial seawater or in field water (produced water mixed with aquifer seawater). Impedance tests provided information about the mechanisms of the interface carbon steel/bacteria depending on the medium used: mass transfer limitation in artificial seawater was observed whereas that in field water was only charge transfer phenomenon. Denaturing Gradient Gel Electrophoresis (DGGE) results proved that bacterial diversity decreased when cultivating the debris in the media used and suggested that the bacteria involved in the whole set of results are mainly sulphate reducing bacteria (SRB) and some other bacteria that make part of the taxonomic order Clostridiales. PMID:24355513

  18. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  19. Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron

    SciTech Connect

    Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

    2012-10-11

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

  20. Corrosion behavior of carbon steels under tuff repository environmental conditions

    SciTech Connect

    McCright, R.D.; Weiss, H.

    1984-10-01

    Carbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 100{sup 0}C. Tests were conducted in air-sparged J-13 water to attain more oxidizing conditions representative of irradiated aqueous environments. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded. 4 references, 4 tables.

  1. Carbon distribution in bainitic steel subjected to deformation

    SciTech Connect

    Ivanov, Yu. F.; Nikitina, E. N. Gromov, V. E.

    2015-10-27

    Analysis of the formation and evolution of carbide phase in medium carbon steel with a bainitic structure during compressive deformation was performed by means of transmission electron diffraction microscopy. Qualitative transformations in carbide phase medium size particles, their density and volume concentration depended on the degree of deformation.

  2. Investigate the magnetic behaviour of thermal treated carbon steel

    NASA Astrophysics Data System (ADS)

    Kanelopoulos, N. P.

    2016-03-01

    The present paper investigates the utilization of the magnetic hysteresis loops and Barkhausen Noise for the non-destructive characterization of annealed and quenched carbon steels samples. The resulting magnetic properties were further evaluated by examining the microstructure of the samples by using scanning electron microscopy.

  3. Nondestructive evaluation of residual stress in low-carbon steel

    NASA Technical Reports Server (NTRS)

    Salama, K.

    1984-01-01

    The effects of the preferred orientation on the temperature dependence of ultrasonic velocity in low carbon steels are investigated. The sensitivity of the acousto-elastic constant to changes in microstructure is assessed as well as the possibility of determining some mechanical properties of a material by measuring the acousto-elastic constant.

  4. Friction and wear characteristics of carbon steels in vacuum

    NASA Technical Reports Server (NTRS)

    Verkin, B. I.; Lyubarskiy, I. M.; Udovenko, V. F.; Guslyakov, A. A.

    1974-01-01

    The nature of carbon steel friction and wear under vacuum conditions is described within the framework of general friction and wear theory. Friction is considered a dynamic process and wear is considered to be the result of a continuous sequence of transitions of the friction surface material from one state into another.

  5. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  6. Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Bright, Mark A.; Liu, Xingbo; Barbero, Ever

    2007-11-01

    Corrosion tests of 1015 low-carbon steel and two stainless steels (410 and 316L) were conducted in a pure zinc bath (99.98 wt pct Zn) in order to better understand the reaction mechanisms that occur during the degradation of submerged hardware at industrial general (batch) galvanizing operations. Through this testing, it was found that, in general, 316L stainless steel showed the best dissolution resistance among these three alloys, while 1015 carbon steel provided a lower solubility than 410 stainless steel. Investigating the failure mechanisms, both metallurgical composition and lattice structure played important roles in the molten metal corrosion behaviors of these alloys. High contents of nickel combined with the influence of chromium improved the resistance to molten zinc corrosion. Moreover, a face-centered-cubic (fcc) structure was more corrosion resistant than body-centered-cubic (bcc) possibly due to the compactness of the atomic structure. Analogously, the body-centered-tetragonal (bct) martensite lattice structure possessed enhanced susceptibility to zinc corrosion as a result of the greater atomic spacing and high strain energy. Finally, an increased bath temperature played an important role in molten metal corrosion by accelerating the dissolution process and changing the nature of intermetallic layers.

  7. Morphological and microstructural studies on aluminizing coating of carbon steel

    SciTech Connect

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  8. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-07-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  9. Gas phase hydrogen permeation in alpha titanium and carbon steels

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.

    1980-01-01

    Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.

  10. MECHANISTIC UNDERSTANDING OF CAUSTIC CRACKING OF CARBON STEELS

    SciTech Connect

    Garcia-Diaz, B.; Roy, A.

    2009-10-19

    Liquid waste generated by the PUREX process for separation of nuclear materials is concentrated and stored in Type IV single-shell carbon steel tanks at the Savannah River Site (SRS). The Type IV tanks for this waste do not have cooling coils and have not undergone heat treatment to stress-relieve the tanks. After the waste is concentrated by evaporation, it becomes very alkaline and can cause stress corrosion cracking (SCC) and pitting corrosion of the tank materials. SRS has experienced leakage from non-stress-relieved waste tanks constructed of A285 carbon steel and pitting of A212 carbon steel tanks in the vapor space. An investigation of tank materials has been undertaken at SRS to develop a basic understanding of caustic SCC of A285 and A212 grade carbon steels exposed to aqueous solutions, primarily containing sodium hydroxide (NaOH), sodium nitrate (NaNO{sub 3}), and sodium nitrite (NaNO{sub 2}) at temperatures relevant to the operating conditions of both the F and H area plants. This report presents the results of this corrosion testing program. Electrochemical tests were designed using unstressed coupons in a simulated tank environment. The purpose of this testing was to determine the corrosion susceptibility of the tank materials as a function of chemical concentration, pH, and temperature. A285 and A516 (simulates A212 carbon steel) coupons were used to investigate differences in the corrosion of these carbon steels. Electrochemical testing included measurement of the corrosion potential and polarization resistance as well as cyclic potentiodynamic polarization (CPP) testing of coupons. From the CPP experiments, corrosion characteristics were determined including: corrosion potential (E{sub corr}), pitting or breakdown potential (E{sub pit}), and repassivation potential (E{sub prot}). CPP results showed no indications of localized corrosion, such as pitting, and all samples showed the formation of a stable passive layer as evidenced by the positive

  11. Modeling the diffusion effects through the iron carbonate layer in the carbon dioxide corrosion of carbon steel

    SciTech Connect

    Rajappa, S.; Zhang, R.; Gopal, M.

    1998-12-31

    A mechanistic model was developed for predicting carbon dioxide corrosion rates of carbon steel pipes in multiphase flow conditions. The model incorporates the chemistry, thermodynamics of carbon dioxide dissolution, multiphase mass transfer, electrochemical kinetics on the metal surface and the presence of a corrosion product film. The predicted corrosion rates show good agreement with the experimental results.

  12. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    SciTech Connect

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D&D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D&D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 {mu}m and the other at about 10 {mu}m. The average Mass Median Aerodynamic Diameters (MMAD`s) for these tests are 0.36 {+-}0.08 {mu}m for stainless steel, 0.48 {+-}0.17{mu}m for aluminum and 0.52{+-}0.12 {mu}m for carbon steel.

  13. Laser beam hardening of cast carbon steels, plain cast irons, and high-speed steels

    NASA Astrophysics Data System (ADS)

    Bylica, Andrzej; Adamiak, Stanislaw; Bochnowski, Wojciech; Dziedzic, Andrzej

    2000-11-01

    The examinations of the structure, hardness and abrasion resistance of surface layer of Fe-C alloys having the contents of carbon up to 4% and high-speed steel: 6-5-2, 4- 4-2-5+C after laser hardening are presented in the paper. They are compared with the properties obtained after conventional hardening. Laser of impulse operation - YAG:Nd and of continuous operation - CO2 were used. Analysis of structure was carried out based on metallographic and fractographic examinations as well as on X-ray properties, parameters of laser and conventional heat treatment of steels were defined.

  14. Microstructural Evolution During Friction Surfacing of Austenitic Stainless Steel AISI 304 on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Khalid Rafi, H.; Kishore Babu, N.; Phanikumar, G.; Prasad Rao, K.

    2013-01-01

    Austenitic stainless steel AISI 304 coating was deposited over low carbon steel substrate by means of friction surfacing and the microstructural evolution was studied. The microstructural characterization of the coating was carried out by optical microscopy (OM), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). The coating exhibited refined grains (average size of 5 μm) as compared to the coarse grains (average size of 40 μm) in as-received consumable rod. The results from the microstructural characterization studies show that discontinuous dynamic recrystallization (DDRX) is the responsible mechanism for grain evolution as a consequence of severe plastic deformation.

  15. Modeling the Electrical Contact Resistance at Steel-Carbon Interfaces

    NASA Astrophysics Data System (ADS)

    Brimmo, Ayoola T.; Hassan, Mohamed I.

    2016-01-01

    In the aluminum smelting industry, electrical contact resistance at the stub-carbon (steel-carbon) interface has been recurrently reported to be of magnitudes that legitimately necessitate concern. Mitigating this via finite element modeling has been the focus of a number of investigations, with the pressure- and temperature-dependent contact resistance relation frequently cited as a factor that limits the accuracy of such models. In this study, pressure- and temperature-dependent relations are derived from the most extensively cited works that have experimentally characterized the electrical contact resistance at these contacts. These relations are applied in a validated thermo-electro-mechanical finite element model used to estimate the voltage drop across a steel-carbon laboratory setup. By comparing the models' estimate of the contact electrical resistance with experimental measurements, we deduce the applicability of the different relations over a range of temperatures. The ultimate goal of this study is to apply mathematical modeling in providing pressure- and temperature-dependent relations that best describe the steel-carbon electrical contact resistance and identify the best fit relation at specific thermodynamic conditions.

  16. Leaching modelling of slurry-phase carbonated steel slag.

    PubMed

    Costa, G; Polettini, A; Pomi, R; Stramazzo, A

    2016-01-25

    In the present work the influence of accelerated mineral carbonation on the leaching behaviour of basic oxygen furnace steel slag was investigated. The environmental behaviour of the material as evaluated through the release of major elements and toxic metals under varying pH conditions was the main focus of the study. Geochemical modelling of the eluates was used to derive a theoretical description of the underlying leaching phenomena for the carbonated material as compared to the original slag. Among the investigated elements, Ca and Si were most appreciably affected by carbonation. A very clear effect of carbonation on leaching was observed for silicate phases, and lower-Ca/Si-ratio minerals were found to control leaching in carbonated slag eluates as compared to the corresponding untreated slag sample as a result of Ca depletion from the residual slag particles. Clear evidence was also gained of solubility control for Ca, Mg and Mn by a number of carbonate minerals, indicating a significant involvement of the original slag constituents in the carbonation process. The release of toxic metals (Zn, V, Cr, Mo) was found to be variously affected by carbonation, owing to different mechanisms including pH changes, dissolution/precipitation of carbonates as well as sorption onto reactive mineral surfaces. The leaching test results were used to derive further considerations on the expected metal release levels on the basis of specific assumptions on the relevant pH domains for the untreated and carbonated slag. PMID:26489916

  17. 75 FR 16439 - Certain Welded Carbon Steel Standard Pipe From Turkey: Preliminary Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Steel Pipe and Tube Products from Turkey, 51 FR 7984 (March 7, 1986). On March 2, 2009, the Department... products covered by this order are certain welded carbon steel pipe and tube with an outside diameter of 0... Administrative Review: Certain Welded Carbon Steel Standard Pipe from Turkey, 72 FR 62837, 62838 (November...

  18. Interrelation of Steel Composition, Hardening Route, and Tempering Response of Medium Carbon Low-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Hussein, Abdel-Hamid A.; Abdu, Mahmoud T.; El-Banna, El-Sayed M.; Soliman, Saied E.; Tash, Mahmoud M.

    2016-04-01

    Four medium carbon and low-alloy steels were hardened through oil and forced air cooling. Tempering was then performed in the temperature range 250-600 °C. The martensite content increased with an increased hardenability and/or the rate of cooling. Tempering at T > M s caused a gradual decline in both hardness and strength and an improvement in the Charpy V-notch impact toughness. The low-alloy steels underwent tempered martensite embrittlement (as a result of the formation of carbides at the martensite interlaths and prior austenite grain boundaries) and enhancement of phosphorus segregation (particularly in the presence of Ni). Higher hardenability steels were found to be better hardened via the more recent forced air quenching rather than the conventional oil quenching. In this work, a modest, novel attempt is presented to empirically correlate the impact toughness with the hardness measurements to enable future prediction of impact toughness from hardness measurements.

  19. POLYTETRAFLUOROETHYLENE-RICH POLYPHENLENESULFIDE BLEND TOP COATINGS FOR MITIGATING CORROSION OF CARBON STEEL IN 300 DEGREE CELCIUS BRINE.

    SciTech Connect

    SUGAMA, T.; JUNG, D.

    2006-06-01

    We evaluated usefulness of a coating system consisting of an underlying polyphenylenesulfide (PPS) layer and top polytetrafluoroethylene (PTFE)-blended PPS layer as low friction, water repellent, anti-corrosion barrier film for carbon steel steam separators in geothermal power plants. The experiments were designed to obtain information on kinetic coefficient of friction, surface free energy, hydrothermal oxidation, alteration of molecular structure, thermal stability, and corrosion protection of the coating after immersing the coated carbon steel coupons for up to 35 days in CO{sub 2}-laden brine at 300 C. The superficial layer of the assembled coating was occupied by PTFE self-segregated from PPS during the melt-flowing process of this blend polymer; it conferred an outstanding slipperiness and water repellent properties because of its low friction and surface free energy. However, PTFE underwent hydrothermal oxidation in hot brine, transforming its molecular structure into an alkylated polyfluorocarboxylate salt complex linked to Na. Although such molecular transformation increased the friction and surface free energy, and also impaired the thermal stability of PTFE, the top PTFE-rich PPS layer significantly contributed to preventing the permeation of moisture and corrosive electrolytes through the coating film, so mitigating the corrosion of carbon steel.

  20. A new nanoscale metastable iron phase in carbon steels.

    PubMed

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  1. A new nanoscale metastable iron phase in carbon steels

    PubMed Central

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  2. Fatigue crack retardation of low carbon steel in saltwater

    SciTech Connect

    Kokaji, K.; Ando, Z.; Kojima, T.

    1984-01-01

    The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was examined using a low carbon steel, which has a considerably lower static strength than high strength steel used in previous report. Experiments were carried out under sinusoidally varying loads at a load ratio of O and a frequency of 10 Hz, and the effects of saltwater were evaluated by comparing with the result in air and result on high strength steel. A single tensile overload was found to cause delayed retardation, just as it did in air. The overload affected zone size was not affected by saltwater and showed the same value in both environments. This observed trend differed from the result on high strength steel in which the overload affected zone size was larger in 3 percent saltwater than in air, and thus it was found that the effect of saltwater on retardation behavior was different even in the similar steels. Retardation cycles were smaller in 3 percent saltwater than in air. Since the overload affected zone size was not affected by saltwater, the decrease in retardation cycles was attributed to the higher rates of fatigue crack propagation in 3 percent saltwater. Thinner specimen showed stronger retardation than thicker one. The behavior at midthickness of thicker specimen showed delayed retardation as well as the result in air. Moreover, the crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept.

  3. Fouling of carbon steel heat exchanger caused by iron bacteria

    SciTech Connect

    Starosvetsky, J.; Armon, R.; Starosvetsky, D. ); Groysman, A.

    1999-01-01

    A carbon steel heat exchanger installed in a reverse osmosis unit failed after 1 1/2 years from start-up as a result of tubes, lids, tube sheets, and connection pipes clogging from rust deposits. Chemical analysis of cooling water and scraped precipitates, as well laboratory screening of the deposits for bacteria, revealed that activity of iron-oxidizing bacteria present in cooling water could lead to heat exchanger blockage.

  4. Methods for the Identification of Aircraft Tubing of Plain Carbon Steel and Chromium-Molybdenum Steel

    NASA Technical Reports Server (NTRS)

    Mutchler, W H; Buzzard, R W

    1930-01-01

    The survey of the possibilities for distinguishing between plain carbon and chromium-molybdenum steel tubing included the Herbert pendulum hardness, magnetic, sparks, and chemical tests. The Herbert pendulum test has the disadvantages of all hardness tests in being limited to factory use and being applicable only to scale-free, normalized material. The small difference in the range of hardness values between plain carbon and chromium-molybdenum steels is likewise a disadvantage. The Rockwell hardness test, at present used in the industry for this purpose, is much more reliable. It may be concluded on the basis of the experiments performed that of all methods surveyed, spark testing appears to be, at present, the most suitable for factory use from the standpoint of speed, accuracy, nondestructiveness and reliability. It is also applicable for field use.

  5. Electrochemical Evaluation of Corrosion on Borided and Non-borided Steels Immersed in 1 M HCl Solution

    NASA Astrophysics Data System (ADS)

    Mejía-Caballero, I.; Martínez-Trinidad, J.; Palomar-Pardavé, M.; Romero-Romo, M.; Herrera-Hernández, H.; Herrera-Soria, O.; Campos Silva, I.

    2014-08-01

    In this study the corrosion resistances of AISI 1018 and AISI 304 borided and non-borided steels were estimated using polarization resistance and electrochemical impedance spectroscopy (EIS) techniques. Boriding of the steel samples was conducted using the powder-pack method at 1223 K with 6 h of exposure. Structural examinations of the surfaces of the borided steels showed the presence of a Fe2B layer with isolated FeB teeth on the AISI 1018 steel, whereas a compact layer of FeB/Fe2B was formed on the AISI 304 steel. Polarization resistance and EIS of the borided and non-borided steels surfaces were performed in a corrosive solution of 1 M HCl. The EIS data were analyzed during 43 days of exposure to the acid solution. Impedance curves obtained during this period for the borided and non-borided steels were modeled using equivalent electrical circuits. The results of both electrochemical techniques indicated that boride layers formed at the steel surfaces effectively protect the samples from the corrosive effects of HCl. The main corrosion processes observed on the boride layers were pitting and crevice corrosion.

  6. Susceptibility of carbon steel to stress corrosion cracking in sodium hydroxide

    SciTech Connect

    Ziomek-Moroz, Margaret; Flis, J.

    2005-01-01

    Stress corrosion cracking susceptibility of carbon steel and decarburized steel was studied in 8.5 M sodium hydroxide at 100 ?C. Potentiodynamic experiments were performed to determine the potential values to be applied in slow strain rate(ssr) experiments. Optical and scanning electron microscopy were used to investigate the surfaces of corroded samples. Severe intergranular stress corrosion cracking was observed on the carbon steel samples in comparison to the decarburized steel samples.

  7. 78 FR 49255 - Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... International Trade Administration Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Partial... certain circular welded carbon steel pipes and tubes from Taiwan. The period of review (POR) is May 1... initiation of an antidumping duty administrative review of the order on certain circular welded carbon...

  8. Nonlinear Rayleigh waves to detect initial damage leading to stress corrosion cracking in carbon steel

    NASA Astrophysics Data System (ADS)

    Matlack, K. H.; Kim, J.-Y..; Jacobs, L. J.; Qu, J.; Singh, P. M.

    2012-05-01

    This research experimentally investigates second harmonic generation of Rayleigh waves propagating through carbon steel samples damaged in a stress corrosion environment. Damage from stress corrosion cracking is of major concern in nuclear reactor tubes and in gas and fuel transport pipelines. For example, certain types of stress corrosion cracking (SCC) account for more failures in steam generator tubes than most other damage mechanisms, yet these cracks do not initiate until late in the structure's life. Thus, there is a need to be able to measure the damage state prior to crack initiation, and it has been shown that the acoustic nonlinearity parameter - the parameter associated with second harmonic generation - is sensitive to microstructural evolution. In this work, samples are immersed in a sodium carbonate-bicarbonate solution, which typically forms in the soil surrounding buried pipelines affected by SCC, and held at yield stress for 5-15 days to the onset of stress corrosion cracking. Measurements of second harmonic generation with Rayleigh waves are taken intermittently to relate cumulative damage prior to macroscopic cracking to nonlinear wave propagation. Experimental results showing changes in second harmonic generation due to stress corrosion damage are presented.

  9. Accelerated carbonation of steel slags in a landfill cover construction

    SciTech Connect

    Diener, S.; Andreas, L.; Herrmann, I.; Ecke, H.; Lagerkvist, A.

    2010-01-15

    Steel slags from high-alloyed tool steel production were used in a full scale cover construction of a municipal solid waste (MSW) landfill. In order to study the long-term stability of the steel slags within the final cover, a laboratory experiment was performed. The effect on the ageing process, due to i.e. carbonation, exerted by five different factors resembling both the material characteristics and the environmental conditions is investigated. Leaching behaviour, acid neutralization capacity and mineralogy (evaluated by means of X-ray diffraction, XRD, and thermogravimetry/differential thermal analysis, TG/DTA) are tested after different periods of ageing under different conditions. Samples aged for 3 and 10 months were evaluated in this paper. Multivariate data analysis was used for data evaluation. The results indicate that among the investigated factors, ageing time and carbon dioxide content of the atmosphere were able to exert the most relevant effect. However, further investigations are required in order to clarify the role of the temperature.

  10. Characterization of Bainitic Microstrucutres in Low Carbon Hsla Steels

    NASA Astrophysics Data System (ADS)

    Kang, Ju Seok; Park, Chan Gyung

    The austenite phase of low carbon steels can be transformed to various bainitic microstructures such as granular bainite, acicular ferrite and bainitic ferrite during continuous cooling process. In the present study site-specific transmission electron microscope (TEM) specimens were prepared by using focused ion beam (FIB) to identify the bainitic microstructure in low carbon high strength low alloy (HSLA) steels clearly. Granular bainite was composed of fine subgrains and 2nd phase constituents like M/A or pearlite located at grain and/or subgrain boundaries. Acicular ferrite was identified as an aggregate of randomly orientated needle-shaped grains. The high angle relations among acicular ferrite grains were thought to be caused by intra-granular nucleation, which could be occur under the high cooling rate condition. Bainitic ferrite revealed uniform and parallel lath structure within the packet. In some case, however, the parallel lathes showed high angle relations due to packet overlapping during grow of bainitic ferrite, resulting in high toughness properties in bainitic ferrite based steels.

  11. Boriding of high carbon high chromium cold work tool steel

    NASA Astrophysics Data System (ADS)

    Muhammad, W.

    2014-06-01

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.

  12. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  13. MECHANICAL TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect

    Duncan, A

    2006-05-11

    The methods and interim results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. The scope is carbon steels commonly used for natural gas pipelines in the United States that are candidates for hydrogen service in the hydrogen economy. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in 1500 psig hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test program will continue with tests to quantify the fracture behavior in terms of J-R curves for these materials at air and hydrogen pressure conditions.

  14. Identification of steel bars immersed in reinforced concrete based on experimental results of eddy current testing and artificial neural network analysis

    NASA Astrophysics Data System (ADS)

    de Alcantara, Naasson

    2013-03-01

    This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover.

  15. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    PubMed

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  16. Effect of rust on the wettability of steel by water

    SciTech Connect

    Lu, W.; Chung, D.D.L.

    1998-04-01

    Rust, as formed on steel by immersion of low-carbon steel in water, was found to improve the wettability of steel by water. The advancing contact angle decreased from 87{degree} to 32{degree}, and the receding contact angle decreased from 81{degree} to 29{degree}. Cleansing of steel by acetone also helped improve the wettability, but the advancing angle only decreased from 87{degree} to 73{degree}, and the receding angle only decreased from 81{degree} to 41{degree}.

  17. Inhibition Effect of Dodecylamine on Carbon Steel Corrosion in Hydrochloric Acid Solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyu; Huang, Ling; Qiu, Yubing; Guo, Xingpeng

    2012-12-01

    Dodecylamine spontaneously adsorbs on carbon steel via its polar group (-NH2) in hydrochloric acid solution. Furthermore, it forms a monolayer film on carbon steel surface. The inhibition mechanism of dodecylamine for carbon steel is geometric blocking effect. The adsorption of dodecylamine on carbon steel surface follows Arrhenius equation. The adsorption slightly increases activated energy, but greatly reduces pre-exponential factor value. Atomic force microscopy force curves indicate that at the area without adsorbed dodecylamine, no obvious adhere force occurs. At the area with adsorbed dodecylamine, however, an average 1.3 nN adhere force is observed.

  18. Mill Scale Corrosion and Prevention in Carbon Steel Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Roy, Himadri

    2015-10-01

    The cause of material degradation of an ASTM A-124 grade carbon steel tube belonging to a heat exchanger has been investigated. Visual examination, followed by an in-depth microstructural characterization using optical microscopy, energy dispersive X-ray, and scanning electron microscopy, was carried out for understanding the primary cause of material degradation. Based on the results of an extensive examination as well as the background information provided on the heat exchanger, it was determined that the steel tubes were predominantly damaged by the mechanism of crevice corrosion facilitated by the presence of mill scale. It is concluded that the heat exchanger tubes were not properly investigated for defects after their fabrication. Based on the situation, the proper cleaning method was selected for preventing further corrosion in the system. A chemical cleaning process was designed using acid pickling along with an inhibitor and a surfactant.

  19. A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks.

    PubMed

    Vilatela, Juan J; Rabanal, M E; Cervantes-Sodi, Felipe; García-Ruiz, Máximo; Jiménez-Rodríguez, José A; Reiband, Gerd; Terrones, Mauricio

    2015-04-01

    We demonstrate a spray pyrolysis method to grow carbon nanotubes (CNTs) with high degree of crystallinity, aspect ratio and degree of alignment on a variety of different substrates, such as conventional steel, carbon fibres (CF) and ceramics. The process consists in the chemical vapour deposition of both a thin SiO2 layer and CNTs that subsequently grow on this thin layer. After CNT growth, increases in specific surface by factors of 1000 and 30 for the steel and CF samples, respectively, are observed. CNTs growth on ceramic surfaces results in a surface resistance of 37.5 Ohm/sq. When using conventional steel as a rector tube, we observed CNTs growth rates of 0.6 g/min. Details of nanotube morphology and the growth mechanism are discussed. Since the method discussed here is highly versatile, it opens up a wide variety of applications in which specific substrates could be used in combination with CNTs. PMID:26353505

  20. Friction stir processing on high carbon steel U12

    SciTech Connect

    Tarasov, S. Yu. Rubtsov, V. E.; Melnikov, A. G.

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  1. Effects of carbon dioxide plasma immersion ion implantation on the electrochemical properties of AZ31 magnesium alloy in physiological environment

    NASA Astrophysics Data System (ADS)

    Xu, Ruizhen; Yang, Xiongbo; Zhang, Xuming; Wang, Mei; Li, Penghui; Zhao, Ying; Wu, Guosong; Chu, Paul K.

    2013-12-01

    Plasma immersion ion implantation (PIII) is conducted to improve the intrinsically poor corrosion properties of biodegradable AZ31 magnesium alloy in the physiological environment. Carbon dioxide is implanted into the samples and X-ray photoelectron spectroscopy and scanning electron microscopy are used to characterize the materials. The corrosion properties are systematically studied by potentiodynamic polarization tests in two simulated physiological environments, namely simulated body fluids and cell culture medium. The plasma-implanted materials exhibit a lower initial corrosion rate. Being a gaseous ion PIII technique, conformal ion implantation into an object with a complex shape such as an orthopedic implant can be easily accomplished and CO2 PIII is a potential method to improve the biological properties of magnesium and its alloys in clinical applications.

  2. Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye

    2016-07-01

    This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.

  3. Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution

    SciTech Connect

    Pilkey, A.K.; Lambert, S.B.; Plumtree, A. . Dept. of Mechanical Engineering)

    1995-02-01

    An experimental system was developed to reproduce stress corrosion cracking (SCC) of API X-60 line pipe steels in highly alkaline (pH = 10) carbonate-bicarbonate (1 N sodium carbonate [Na[sub 2]CO[sub 3

  4. Kinetics of electrochemical boriding of low carbon steel

    NASA Astrophysics Data System (ADS)

    Kartal, G.; Eryilmaz, O. L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-05-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  5. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  6. Carbon distribution in the martensite structure of structural steel

    NASA Astrophysics Data System (ADS)

    Gundyrev, V. M.; Zel'dovich, V. I.; Schastlivtsev, V. M.

    2016-05-01

    The martensite structure of a hardened pseudosingle crystal of grade 37KhN3A medium-carbon structural steel (0.37 wt % C, 1.50 Cr, 3.0 Ni, 0.33 Mn) had the form of coarse packets with dimensions of to 1 cm in the cross section. Every packet was composed of six-orientation martensite crystals arising on one common austenite plane of type {111}. The position of three texture maximums was determined using an X-ray diffractometer for every orientation. In addition, the position of four maximums of retained austenite was found. The periods of martensite lattices and retained austenite as well as the carbon concentration in martensite lattices and near the boundaries are determined.

  7. AISI/DOE Technology Roadmap Program: Effects of Residuals in Carbon Steels

    SciTech Connect

    George E. Ruddle

    2002-11-25

    AN experimental study of the effects of residual elements in carbon steels was carried out to gain better understanding and control of the effects of residual elements emanating from recycled steel scrap. Two plain carbon steel grade compositions (one medium-carbon and one low-carbon), residual elements and levels, and four areas of study, were selected on the bases of a comprehensive literature survey and consultation with sponsor steel companies. The influence of residuals (Cu, Sn, Ni, P, Si, up to the levels studied here), on these laboratory produced hot rolled steels was studied in the areas of (a) hot ductility, (b) surface hot shortness, (c) scale formation and adherence, and (d) embrittlement and mechanical properties. This report summarizes the experimental procedures, results, discussion and conclusions of this study. The relevance of the study is also discussed in relation to steel processing and product properties and in relation to energy consumption and environmental compliance.

  8. 76 FR 55004 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... Carbon Steel Flat Products from Korea, 58 FR 44159 (August 19, 1993) (Orders on Certain Steel from Korea... clad on both sides with stainless steel in a 20%-60%-20% ratio. These HTSUS item numbers are provided... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic...

  9. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    NASA Astrophysics Data System (ADS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  10. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    SciTech Connect

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  11. Distribution of radionuclides during melting of carbon steel

    SciTech Connect

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  12. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Kosobrodova, E.; Kondyurin, A.; Chrzanowski, W.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2014-06-01

    At ion fluences higher than 5 · 1015 ions/cm2, plasma immersion ion implantation (PIII) of polycarbonate (PC) results in a formation of a carbonized surface layer. The thickness of this layer is close to the depth of ion penetration. A comparison of PIII treated, spin-coated PC films with pre-treatment thicknesses designed to match and exceed the carbonized layer thickness is employed to study the properties of the carbonised layer independently from the less modified underlying structure. At ion fluencies higher than 1016 ions/cm2, the thinner PC film is completely transformed into an amorphous carbon-like material with no traces of the initial PC structure. The thicker films, however, incorporated two layers: a top carbonised layer and a cross-linked layer below. Compared to the two-layered PC film, the completely carbonized layer was found to have a much higher concentration of Cdbnd O bonds and much lower concentration of O-H bonds after exposure to atmospheric oxygen. The refractive index of the thicker PC films PIII treated with high ion fluencies is close to the refractive index of diamond-like carbon. Anomalous dispersion of the refractive index of the thicker PC films is observed after formation of the carbonised layer. The refractive index of the thinner PC film has normal dispersion at all ion fluences. At ion fluences of 2 · 1016 ions/cm2, both PC films were found to have the same etching rate as polystyrene. Washing in dichloromethane had no effect on the carbonised layer but affected the underlying material in the case of the thicker PC films leading to a wrinkled structure up to ion fluences of 2 · 1016 ions/cm2. At this and higher fluence, areas of an ordered island-like structure were observed.

  13. Tensile failure behavior of plain carbon steels at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wray, P. J.

    1984-11-01

    The onset of tensile instability and the occurrence of fracture in plain carbon steels containing up to 1.89C has been examined in the temperature range 500 to 1300 °C and the strain-rate range 6 X lO-6 to 2 × 10-2 s-1. In the ferrite-plus-pearlite mixtures at temperatures below the eutectoid temperature, the work-hardening exponent decreases with increasing amount of pearlite, and there is a corresponding decrease in the Considére strain. However, the onset of necking is delayed to well beyond the Considére strain, and these mixtures are inherently ductile even at the eutectoid composition. In the austenite region, the general intrusion of dynamic recrystallization compctes with intergranular embrittlement at temperatures below about 1050 °C. The embrittlement is related to precipitation which takes place either during cooling (MnS) or at the deformation temperature [AIN, Nb (CN), etc.]. In hypereutectoid steels, the ductility of austenite-plus-cementite and pearlite-plus-cementite mixtures diminishes drastically with decreasing temperature and increasing amount of cementite. The areas of possible fracture modes are mapped in temperature-strain rate and temperature-carbon content space.

  14. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  15. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  16. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  17. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  18. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  19. 76 FR 45509 - Final Results of Antidumping Duty Changed Circumstances Review: Carbon and Certain Alloy Steel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Circumstances Review: Carbon and Certain Alloy Steel Wire Rod from Mexico, 75 FR 67685 (November 3, 2010... of the Antidumping Duty and Countervailing Duty Orders, and Intent To Revoke Orders in Part, 68 FR...: Carbon and Certain Alloy Steel Wire Rod From Mexico, 71 FR 27989 (May 15, 2006). Notification This...

  20. 77 FR 19623 - Certain Welded Carbon Steel Standard Pipe from Turkey: Preliminary Results of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Pipe and Tube Products from Turkey, 51 FR 7984 (March 7, 1986). \\2\\ See Antidumping or Countervailing... certain welded carbon steel pipe and tube with an outside diameter of 0.375 inch or more, but not over 16...: Certain Welded Carbon Steel Standard Pipe from Turkey, 72 FR 62837, 62838 (November 7, 2007) (Turkey...

  1. 75 FR 21658 - Carbon and Certain Alloy Steel Wire Rod From Trinidad and Tobago

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... amended, 67 FR 68036 (Nov. 8, 2002). In accordance with sections 201.16(c) and 207.3 of the Commission's... COMMISSION Carbon and Certain Alloy Steel Wire Rod From Trinidad and Tobago AGENCY: United States... in the antidumping duty Investigation No. 731-TA-961 concerning carbon and certain alloy steel...

  2. 77 FR 64468 - Circular Welded Carbon-Quality Steel Pipe From India: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ...; Countervailing Duties, 62 FR 27296, 27323 (May 19, 1997), and Circular Welded Carbon-Quality Steel Pipe From... Countervailing Duty Determination: Certain Hot-Rolled Carbon Steel Flat Products From Argentina, 66 FR 37007... Countervailing Duty Determination With Final Antidumping Duty Determination, 77 FR 19192 (March 30,...

  3. 78 FR 21107 - Circular Welded Carbon Steel Pipes and Tubes from Turkey: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes from Turkey: Preliminary Results... carbon steel pipes and tubes from Turkey (pipes and tubes from Turkey) for the period of review (POR) of..., of any wall thickness (pipe and tube) from Turkey. These products are currently provided for...

  4. 78 FR 34335 - Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... Steel Pipes and Tubes From Taiwan: Antidumping Duty Order, 49 FR 19369 (May 7, 1984). These cash deposit... International Trade Administration Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Preliminary... conducting an administrative review of the antidumping duty order on certain circular welded carbon...

  5. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, Low Alloy, Steel

    SciTech Connect

    Sherman, D. H.; Cross, Steven M; Kim, Sangho; Grandjean, F.; Long, G. J.; Miller, Michael K

    2007-01-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct non-iron metallic elements. Mossbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 C) than for SAE 4130 steel ({approx}300 C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 C) than for carbon steels (100 C to 200 C and 200 C to 350 C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite

  6. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel

    NASA Astrophysics Data System (ADS)

    Sherman, Donald H.; Cross, Steven M.; Kim, Sangho; Grandjean, Fernande; Long, Gary J.; Miller, Michael K.

    2007-08-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (˜300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in

  7. Heavy reflector experiments in the IPEN/MB-01 reactor: Stainless steel, carbon steel and nickel

    SciTech Connect

    Santos, Adimir dos; Andrade e Silva, Graciete Simoes de; Jerez, Rogerio; Liambos Mura, Luis Felipe; Fuga, Rinaldo

    2013-05-06

    New experiments devoted to the measurements of physical parameters of a light water core surrounded by a heavy reflector were performed in the IPEN/MB-01 research reactor facility. These experiments comprise three sets of heavy reflector (SS-304, Carbon Steel, and Nickel) in a form of laminates around 3 mm thick. Each set was introduced individually in the west face of the core of the IPEN/MB-01 reactor. The aim here is to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check for the SS-304 reflector experiment. The experimental results comprise critical control bank positions, temperatures and reactivities as a function of the number of the plates. Particularly to the case of Nickel, the experimental data are unique of its kind. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this nuclear data library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  8. 75 FR 60814 - Carbon Steel Butt-Weld Pipe Fittings From Brazil, China, Japan, Taiwan, and Thailand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Investigation No. F.R. cite 12/17/86 Carbon steel butt- 731-TA-308 51 FR 45152. weld pipe fittings/ Brazil. 12/17/86 Carbon steel butt- 731-TA-310 51 FR 45152. weld pipe fittings/ Taiwan. 2/10/87 Carbon steel butt- 731-TA-309 52 FR 4167. weld pipe fittings/ Japan. 7/6/92 Carbon steel butt- 731-TA-520 57...

  9. Influence of sputter rate and crystal orientation on the distribution of carbon in polycrystalline copper surfaces treated by plasma immersion ion implantation

    SciTech Connect

    Flege, S.; Kraft, G.; Bruder, E.; Ensinger, W.; Baba, K.; Hatada, R.

    2009-07-15

    The sputter rate influences the resulting thickness of the carbon containing layer within a surface that was treated by plasma immersion ion implantation. Choosing a polycrystalline substrate with rather large crystals and a material with an inherent high sputter rate, inhomogeneous distributions of carbon over the substrate area due to different thicknesses of the incorporated carbon can be detected. A correlation of three factors namely the carbon x-ray intensity in electron probe microanalysis, the thickness of the carbon layer, and the sputter rate in depth profiling measurements via secondary ion mass spectrometry can be shown. Essential for these factors is the crystal orientation that is visualized by mapping via electron backscatter diffraction. The differences in carbon content due to the orientation are most likely one of the reasons that the adhesion of diamond-like carbon films on copper does not improve with an interlayer of implanted carbon.

  10. 75 FR 1495 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Countervailing Duty Orders: Certain Hot-Rolled Carbon Steel Flat Products From India and Indonesia, 66 FR 60198... Investigation: Certain Hot-Rolled Carbon Steel Flat Products From India, 66 FR 49635 (September 28, 2001) (HRS...: Certain Hot-Rolled Carbon Steel Products from India, 66 FR 20240, 20249 (April 20, 2001)...

  11. 76 FR 78313 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... COMMISSION Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam... United Arab Emirates, and Vietnam of circular welded carbon- quality steel pipe, provided for in... material injury by reason of LTFV and subsidized imports of circular welded carbon-quality steel pipe...

  12. 75 FR 70723 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial... circular welded carbon steel pipes and tubes from Taiwan. The review covers two firms: Yieh Phui Enterprise... the antidumping duty order on circular welded carbon steel pipes and tubes from Taiwan covering...

  13. 77 FR 13093 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... administrative review of the countervailing duty (``CVD'') order on corrosion-resistant carbon steel flat... Review'' below. \\1\\ See Corrosion-Resistant Carbon Steel Flat Products from the Republic of...

  14. 75 FR 63439 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Extension of the Final Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... International Trade Administration Certain Welded Carbon Steel Standard Pipes and Tubes From India: Extension of... the administrative review of the antidumping duty order on certain welded carbon steel standard pipes and tubes from India. See Certain Welded Carbon Steel Standard Pipes and Tubes from India:...

  15. 75 FR 29519 - Certain Cut-to-Length Carbon Steel Plate from the People's Republic of China: Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... International Trade Administration Certain Cut-to-Length Carbon Steel Plate from the People's Republic of China... antidumping duty order on certain cut-to-length carbon steel plate (``CTL Plate'') from the People's Republic of China (``PRC''). See Suspension Agreement on Certain Cut- to-Length Carbon Steel Plate From...

  16. 77 FR 55807 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial... welded carbon steel pipes and tubes from Taiwan. The review covers four respondents. Based on a... welded carbon steel pipes and tubes from Taiwan covering the period May 1, 2011, through April 30,...

  17. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea... countervailing duty order on corrosion-resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through December 31, 2009. See Corrosion-Resistant Carbon Steel...

  18. 75 FR 73033 - Circular Welded Carbon Steel Pipes and Tubes from Thailand: Amended Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Carbon Steel Pipes and Tubes From Thailand: Final Determination of Sales at Less Than Fair Value, 51 FR... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes from Thailand: Amended Final... published in the Federal Register on October 20, 2010. See Circular Welded Carbon Steel Pipes and Tubes...

  19. 75 FR 28557 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of Time Limit for Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of Time... antidumping duty order on circular welded carbon steel pipes and tubes from Thailand. See Circular Welded Carbon Steel Pipes and Tubes from Thailand: Preliminary Results and Rescission, in Part, of...

  20. 76 FR 57020 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Notice of Partial... welded carbon steel pipes and tubes from Taiwan. The review covers eight firms. Based on a withdrawal of... initiation of an administrative review of the antidumping duty order on circular welded carbon steel...

  1. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... COMMISSION Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to...

  2. 76 FR 24462 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... International Trade Administration Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China... antidumping duty order on certain cut-to-length carbon steel plate (``CTL Plate'') from the People's Republic of China (``PRC''). See Suspension Agreement on Certain Cut- to-Length Carbon Steel Plate From...

  3. 78 FR 71563 - Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... International Trade Administration Certain Circular Welded Carbon Steel Pipes and Tubes From Taiwan: Final... administrative review of the antidumping duty order on certain circular welded carbon steel pipes and tubes from... Carbon Steel Pipes and Tubes From Taiwan: Preliminary Results of Antidumping Duty Administrative...

  4. 78 FR 73827 - Suspension Agreement on Certain Cut-to-Length Carbon Steel Plate From the Russian Federation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Certain Cut-to-Length Carbon Steel Plate from the Russian Federation, 68 FR 3859 (January 27, 2003... International Trade Administration Suspension Agreement on Certain Cut-to-Length Carbon Steel Plate From the... of an administrative review of the suspension agreement on certain cut-to-length carbon steel...

  5. Effects of Carbon and Nitrogen on the Microstructure and Mechanical Properties of Carbonitrided Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Taweejun, Nipon; Kanchanomai, Chaosuan

    2015-12-01

    Various carbonitriding processes have been applied to low-carbon steel. The carbon and nitrogen contents in the case of carbonitrided low-carbon steels have been evaluated, and their influences on microstructure, distortion, hardness, and strength have been investigated. The factor limiting the ferrite and pearlite formations with increasing nitrogen content was a mechanism that resulted in more retained austenite in the case of low-carbon steel treated using a high flow rate of ammonia. The high-nitrogen content and high amount of retained austenite in the case of carbonitrided low-carbon steel slightly reduced the hardness, case depth, and strength. However, the elongation was improved, and the distortion was reduced. In the case zones, fractures occurred along the grain boundaries, i.e., intergranular fractures, whereas the fracture surfaces in the core regions were typical ductile fractures, i.e., dimples were observed.

  6. A Sub-grid Model for an Array of Immersed Cylinders in Coarse-grid Multiphase Flow Simulations of a Carbon Capture Device

    SciTech Connect

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2012-12-01

    A post-combustion carbon-capture system utilizing a bubbling fluidized bed of sorbent particles is currently being developed as a part of the Carbon Capture and Simulation Initiative (CCSI) efforts. Adsorption of carbon dioxide (CO2) by these amine based sorbent particles is exothermic and arrays of immersed cylindrical heat transfer tubes are often utilized to maintain the lower temperatures favorable for CO2 capture. In multiphase computational fluid dynamics (CFD) simulations of the full-scale devices, which can be up to 10 m in size, approximately 103 cells are required in each dimension to accurately resolve the cylindrical tubes, which are only a few centimeters in diameter. Since the tubes cannot be resolved explicitly in CFD simulations, alternate methods to account for the influence of these immersed objects need to be developed.

  7. Solidification of stainless steel slag by accelerated carbonation.

    PubMed

    Johnson, D C; MacLeod, C L; Carey, P J; Hills, C D

    2003-06-01

    On exposure to carbon dioxide (CO2) at a pressure of 3 bars, compacts formed from pressed ground slag, and 12.5 weight percent water, were found to react with approximately 18% of their own weight of CO2. The reaction product formed was calcium carbonate causing the slag to self-cement. Unconfined compressive strengths of 9MPa were recorded in carbonated compacts whereas strengths of < 1 MPa were recorded in non-carbonated slag compacts. As molten stainless steel slag containing dicalcium silicate (C2S) cools it can undergo several phase transitions. The final transformation from the beta-polymorph to gamma-C2S is accompanied by a volume change that causes the slag to self-pulverise or 'dust'. As a consequence of this the fine grained portion of the slag contains more of this phase whilst the coarser particles of the slag contain more of the calcium magnesium silicates that contribute the bulk of the waste. The fine fraction (< 125 microm) of the slag when ground is found to react to the same extent as the ground bulk slag and produces compacts with equivalent strength. A coarser fraction (4-8 mm) when ground to a similar grading does not react as extensively and produces a weaker product. Additions of ordinary Portland cement (OPC) at 5 and 10 percent by weight did not alter the degree of reaction during carbonation of the bulk slag or ground fine fraction, however the strength of the 4-8 mm fraction was increased by this change. PMID:12868521

  8. An evaluation of carbon steel corrosion under stagnant seawater conditions.

    PubMed

    Lee, Jason S; Ray, Richard I; Lemieux, Edward J; Falster, Alexander U; Little, Brenda J

    2004-01-01

    Corrosion of 1020 carbon steel coupons in natural seawater over a 1-year period was more aggressive under strictly anaerobic stagnant conditions than under aerobic stagnant conditions as measured by weight loss and instantaneous corrosion rate (polarization resistance). Under oxygenated conditions, a two-tiered oxide layer of lepidocrocite/goethite formed. The inner layer was extremely tenacious and resistant to acid cleaning. Under anaerobic conditions, the corrosion product was initially a non-tenacious sulphur-rich corrosion product, mackinawite, with enmeshed bacteria. As more sulphide was produced the mackinawite was transformed to pyrrhotite. In both aerobic and anaerobic exposures, corrosion was more aggressive on horizontally oriented coupons compared to vertically oriented samples. PMID:15621645

  9. Corrosion behavior of stainless steel and nickel-base alloys in molten carbonate

    SciTech Connect

    Vossen, J.P.T.; Plomp, L.; Rietveld, G.; Wit, J.H.W. de

    1995-10-01

    The corrosion behavior of five commercially available alloys (AISI 316L, AISI 310S, Inconel 601, Thermax 4762, and Kanthal A1) in molten carbonate under reducing gas atmospheres was investigated with cyclic voltammetry and quasi-stationary polarization curve measurements. The reactions that proceed on these materials at distinct potentials could be deduced by comparison of the cyclic voltammograms and polarization curves with those of pure metals and model alloys. The shape of the polarization curves of all materials strongly depends on the preceding electrochemical treatment. A polarization curve recorded immediately after immersion of a sample resulted in a high anodic current. This implies that the passivation of the materials is poor. When a specimen was conditioned at {minus}1,060 mV for 10 h before recording the polarization curve, the anodic current diminished, which indicates passivation. This occurred for all materials except AISI 316L. A ranking of the corrosion properties was determined from polarization curves of samples that had been conditioned assuming the current densities to be representative. The resistance against corrosion of the alloys increases in the order: AISI 316Lcarbonate fuel cell (MCFC) anode potentials, this order may also apply for real MCFC operation conditions. The order determined from electrochemical experiments is in agreement with the results of exposure tests which are more time-consuming. This study confirms that the presence of large amounts of chromium and significant additions of aluminium have a beneficial effect on the corrosion resistance of stainless steel and nickel-base alloys.

  10. Effects of Inclusions in HSLA Carbon Steel on Pitting Corrosion in CaCl2

    SciTech Connect

    M. Ziomek-Moroz; S. Bullard; K. Rozman; J.J. Kruzic

    2011-12-05

    Susceptibility of high strength low alloy steel to localized corrosion was studied in 6.7 M CaCl{sub 2} for oil and natural gas drilling applications. Results of the immersion and electrochemical experiments showed that the steel is susceptible to pitting corrosion. Optical microscopy investigations of the polished samples revealed that 10% of the surface area was occupied by defects in the form of pits. The energy dispersive X-ray (EDX) and wavelength dispersive X-ray (WDX) chemical analyses revealed higher concentrations of Mn and S compared to the metal matrix in defected areas. These areas served as the sites for development of corrosion pits during both immersion and electrochemical experiments. The fatigue results of the corroded samples indicate that if the pit was the most significant defect, the fatigue crack initiated and propagated at this site.

  11. Effect of hydrodynamics and surface roughness on the electrochemical behaviour of carbon steel in CSG produced water

    NASA Astrophysics Data System (ADS)

    Eyu, Gaius Debi; Will, Geoffrey; Dekkers, Willem; MacLeod, Jennifer

    2015-12-01

    The influence of fluid flow, surface roughness and immersion time on the electrochemical behaviour of carbon steel in coal seam gas produced water under static and hydrodynamic conditions has been studied. The disc electrode surface morphology before and after the corrosion test was characterized using scanning electron microscopy (SEM). The corrosion product was examined using X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD).The results show that the anodic current density increased with increasing surface roughness and consequently a decrease in corrosion surface resistance. Under dynamic flow conditions, the corrosion rate increased with increasing rotating speed due to the high mass transfer coefficient and formation of non-protective akaganeite β-FeO(OH) and goethite α-FeO(OH) corrosion scale at the electrode surface. The corrosion rate was lowest at 0 rpm. The corrosion rate decreased in both static and dynamic conditions with increasing immersion time. The decrease in corrosion rate is attributed to the deposition of corrosion products on the electrode surface. SEM results revealed that the rougher surface exhibited a great tendency toward pitting corrosion.

  12. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    SciTech Connect

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  13. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    PubMed

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. PMID:25597686

  14. Analysis of the Parameters Influencing the Quench-Aging Behavior of Ultra-Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Massardier, V.; Merlin, J.

    2009-05-01

    The influence of the annealing temperature and of the grain size on the quench-aging behavior of ultra-low-carbon (ULC) steels was investigated by thermoelectric power measurements (TEPs) and mechanical testing. The TEP technique showed that the quench aging of ULC steels occurs in two distinct stages: (1) the segregation of carbon atoms to the grain boundaries and (2) the precipitation of iron carbides. It was suggested that the degree of grain boundary coverage by the carbon atoms resulting from the annealing or aging conditions influences the development of the yield point of ULC steels.

  15. Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing

    NASA Astrophysics Data System (ADS)

    He, Xiao-Ming; Hakovirta, M.; Peters, A. M.; Taylor, B.; Nastasi, M.

    2002-05-01

    Fluorine (F) and boron (B) co-doped diamond-like carbon (FB-DLC) films were prepared on different substrates by the plasma immersion ion processing (PIIP) technique. A pulse glow discharge plasma was used for the PIIP deposition and was produced at a pressure of 1.33 Pa from acetylene (C2H2), diborane (B2H6), and hexafluoroethane (C2F6) gas. Films of FB-DLC were deposited with different chemical compositions by varying the flow ratios of the C2H2, B2H6, and C2F6 source gases. The incorporation of B2H6 and C2F6 into PIIP deposited DLC resulted in the formation of F-C and B-C hybridized bonding structures. The levels of the F and B concentrations effected the chemical bonding and the physical properties as was evident from the changes observed in density, hardness, stress, friction coefficient, and contact angle of water on films. Compared to B-doped or F-doped DLC films, the F and B co-doping of DLC during PIIP deposition resulted in the formation of films that possessed a reduced hydrogen concentration and stress, while maintaining a high hardness, low friction coefficient, and high wetting contact angle.

  16. Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process

    NASA Astrophysics Data System (ADS)

    Wang, Min; Bao, Yan-ping; Yang, Quan; Zhao, Li-hua; Lin, Lu

    2015-12-01

    Low residual-free-oxygen before final de-oxidation was beneficial to improving the cleanness of ultra-low-carbon steel. For ultra-low-carbon steel production, the coordinated control of carbon and oxygen is a precondition for achieving low residual oxygen during the Ruhrstahl Heraeus (RH) decarburization process. In this work, we studied the coordinated control of carbon and oxygen for ultra-low-carbon steel during the basic oxygen furnace (BOF) endpoint and RH process using data statistics, multiple linear regressions, and thermodynamics computations. The results showed that the aluminum yield decreased linearly with increasing residual oxygen in liquid steel. When the mass ratio of free oxygen and carbon ([O]/[C]) in liquid steel before RH decarburization was maintained between 1.5 and 2.0 and the carbon range was from 0.030wt% to 0.040wt%, the residual oxygen after RH natural decarburization was low and easily controlled. To satisfy the requirement for RH decarburization, the carbon and free oxygen at the BOF endpoint should be controlled to be between 297 × 10-6 and 400 × 10-6 and between 574 × 10-6 and 775 × 10-6, respectively, with a temperature of 1695 to 1715°C and a furnace campaign of 1000 to 5000 heats.

  17. Corrosion resistance of 316L stainless steel with surface layer of Ni 2Al 3 or NiAl in molten carbonates

    NASA Astrophysics Data System (ADS)

    Moon, Youngjoon; Lee, Dokyol

    Double layers of nickel and aluminum are electroplated on a 316L stainless steel (316L SS) plate, which is routinely used as a separator in molten carbonate fuel cell (MCFC) stacks, and then heat-treated at 650 or 800 °C for 1 h. This results in the respective formation of a surface layer of Ni 2Al 3 or NiAl intermetallic compound, which are known to be highly corrosion-resistant in molten carbonate electrolyte. The corrosion behaviour of each plate in a molten electrolyte of (Li 0.62K 0.38) 2CO 3 or (Li 0.52Na 0.48) 2CO 3 is evaluated through immersion tests and polarisation measurements. The surface layer of Ni 2Al 3 or NiAl maintains good adhesion to the stainless steel substrate and no corrosion product is detected in any of the plates with a surface layer after immersion tests. Polarisation measurements reveal that, regardless of experimental conditions, the corrosion potentials of the plates with a surface layer shift to more positive values and the passive currents are lower than that for a bare SS plate. The corrosion rate of the NiAl surface layer is slightly lower than that of Ni 2Al 3.

  18. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    NASA Astrophysics Data System (ADS)

    Kouli, M.-E.; Giannakis, M.

    2016-03-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples.

  19. 75 FR 4779 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ...-Rolled Flat-Rolled Carbon-Quality Steel Products From Japan, 64 FR 24329 (May 6, 1999). In Nippon Steel... home-market sales database. See Stainless Steel Sheet and Strip in Coils from Taiwan: Preliminary... (August 5, 2008) (Coils from Taiwan), unchanged in Stainless Steel Sheet and Strip in Coils From...

  20. Fatigue of carbon and low-alloy steels in LWR environments

    SciTech Connect

    Chopra, O.K.; Michaud, W.F.; Shack, W.J.

    1993-10-01

    Fatigue tests have been conducted on A106-Gr B carbon steel and A533-Gr B low-alloy steel to evaluate the effects of an oxygenated-water environment on the fatigue life of these steels. For both steels, environmental effects are modest in PWR water at all strain rates. Fatigue data in oxygenated water confirm the strong dependence of fatigue life on dissolved oxygen (DO) and strain rate. The effect of strain rate on fatigue life saturates at some low value, e.g., between 0.0004 and 0.001%/s in oxygenated water with {approximately}0.8 ppm DO. The data suggest that the saturation value of strain rate may vary with DO and sulfur content of the steel. Although the cyclic stress-strain and cyclic-hardening behavior of carbon and low-alloy steels is distinctly different, the degradation of fatigue life of these two steels with comparable sulfur levels is similar. The carbon steel exhibits pronounced dynamic strain aging, whereas strain-aging effects are modest in the low-alloy steel. Environmental effects on nucleation of fatigue crack have also been investigated. The results suggest that the high-temperature oxygenated water has little or no effect on crack nucleation.

  1. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field

    PubMed Central

    Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2016-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  2. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    PubMed

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  3. 75 FR 36635 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... FR 9162 (March 1, 2010). On March 31, 2010, we received a timely request from Saha Thai Steel Pipe... Revocation in Part, 75 FR 22107 (April 27, 2010). Rescission of Antidumping Duty Administrative Review The... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Rescission...

  4. Origin of abnormal formation of pearlite in medium-carbon steel under nonequilibrium conditions of heating

    NASA Astrophysics Data System (ADS)

    Mirzaev, D. A.; Yakovleva, I. L.; Tereshchenko, N. A.; Urtsev, V. N.; Degtyarev, V. N.; Shmakov, A. V.

    2016-06-01

    The structure and kinetics of the formation of austenite in medium-carbon steel during shortterm heating above the temperature Ac 1 followed by accelerated cooling are analyzed. It has been shown that the abnormal formation of pearlite in steel results from the concentrational and structural inhomogeneity of austenite, as well as the presence of carbide particles in ferrite areas.

  5. 78 FR 40428 - Certain Hot-Rolled Carbon Steel Flat Products from India: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ..., 78 FR 6291 (January 30, 2013) (Initiation Notice). \\2\\ See id., 78 FR 6292. Nucor and U.S. Steel... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products from India: Rescission of... administrative review of the antidumping duty order on certain hot- rolled carbon steel flat products (hot...

  6. 78 FR 67334 - Suspension Agreement on Certain Cut-to-Length Carbon Steel Plate From Ukraine; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Carbon Steel Plate From Ukraine; Administrative Review, 78 FR 46570 (August 1, 2013) and accompanying...: Certain Cut-to-Length Carbon Steel Plate from Ukraine, 73 FR 57602 (October 3, 2008) (Agreement). On... covering Metinvest Holding LLC (Metinvest) and its affiliated companies Azovstal Iron & Steel...

  7. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... carbon steel flat products (CORE) from Korea. See Countervailing Duty Orders and Amendments of Final Affirmative Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of...

  8. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Countervailing Duty Determinations: Certain Steel Products from Korea, 58 FR 43752 (August 17, 1993). On... International Trade Administration Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products...

  9. An evaluation of hydrogen evolution from corrosion of carbon steel in low/intermediate level waste repositories

    SciTech Connect

    Matsuda, Fumio; Wada, Ryutaro; Fujiwara, Kazuo; Fujiwara, Ai

    1995-12-31

    As a sequence of studies to evaluate the quantity of gas evolution from low/intermediate level waste repositories, hydrogen gas evolution from corrosion of carbon steel in simulated repository environment was evaluated by laboratory experiments. The experimental results on the hydrogen gas evolution both in air purging condition simulated oxidizing environment and nitrogen purging condition simulated reducing environment, are summarized as follows: (1) hydrogen gas evolution enough to analyze quantitatively by gas chromatography (> 5 ppm) has been recognized under almost all test conditions except reducing equilibrium cement water; (2) effects of purging gas (air, nitrogen) on the hydrogen gas evolution and the corrosion rate calculated from weight loss were air purge > nitrogen purge, on the other hand, the contribution ratio of hydrogen evolution reaction in corrosion rate was nitrogen purge > air purge; (3) effects of test solution on the hydrogen evolution rate were as follows--air purge-equilibrium bentonite water {approx} equilibrium cement water > synthetic sea water, N{sub 2} purge-synthetic sea water > equilibrium bentonite water >> equilibrium cement water; (4) no distinct effect of crevice geometry of test specimen on hydrogen evolution rate was recognized, only under the reducing equilibrium cement water, however, the increase of hydrogen evolution was confirmed after the immersion of several hundred hours; (5) hydrogen evolution rates tended to decrease with testing time except in the reducing equilibrium cement water; (6) no distinct difference of hydrogen evolution rate between steels was observed.

  10. Effect of Carbon Reduction on the Toughness of 9CrWVTaN Steels

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Hu, Ping; Deng, Lifen; Wang, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-06-01

    Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.

  11. Immersive video

    NASA Astrophysics Data System (ADS)

    Moezzi, Saied; Katkere, Arun L.; Jain, Ramesh C.

    1996-03-01

    Interactive video and television viewers should have the power to control their viewing position. To make this a reality, we introduce the concept of Immersive Video, which employs computer vision and computer graphics technologies to provide remote users a sense of complete immersion when viewing an event. Immersive Video uses multiple videos of an event, captured from different perspectives, to generate a full 3D digital video of that event. That is accomplished by assimilating important information from each video stream into a comprehensive, dynamic, 3D model of the environment. Using this 3D digital video, interactive viewers can then move around the remote environment and observe the events taking place from any desired perspective. Our Immersive Video System currently provides interactive viewing and `walkthrus' of staged karate demonstrations, basketball games, dance performances, and typical campus scenes. In its full realization, Immersive Video will be a paradigm shift in visual communication which will revolutionize television and video media, and become an integral part of future telepresence and virtual reality systems.

  12. Detection and determination of solute carbon in grain interior to correlate with the overall carbon content and grain size in ultra-low-carbon steel.

    PubMed

    Dong, Jiling; He, Yinsheng; Lee, Chan-Gyu; Lee, Byungho; Yoon, Jeongbong; Shin, Keesam

    2013-08-01

    In this study, every effort was exerted to determine and accumulate data to correlate microstructural and compositional elements in ultra-low-carbon (ULC) steels to variation of carbon content (12-44 ppm), manganese (0.18-0.36%), and sulfur (0.0066-0.001%). Quantitative analysis of the ULC steel using optical microscope, scanning electron microscope, transmission electron microscope, and three-dimensional atom probe revealed the decrease of grain size and dislocation density with the increase of carbon contents and/or increase of the final delivery temperature. For a given carbon content, the grain interior carbon concentration increases as the grain size increases. PMID:23920177

  13. Optimization of fatigue damage indication in ferromagnetic low carbon steel

    NASA Astrophysics Data System (ADS)

    Tomáš, Ivan; Kovářík, Ondřej; Kadlecová, Jana; Vértesy, Gábor

    2015-09-01

    Fatigue damage was investigated by the method of magnetic adaptive testing (MAT), which is based on the systematic measurement and evaluation of minor magnetic hysteresis loops. A large number of magnetic measurements were performed on a single reference series of low carbon steel flat samples, which were fatigued by cyclic bending in an identical way, up to an increasing level of fatigue damage. The measurements of the magnetic properties of these samples were repeated under varied conditions, including speed of magnetization of the samples, sample temperature during the measurement, choice of the evaluated signal, frequency of the voltage sampling, and range of the applied amplitudes of the magnetizing field/current. Special attention was turned to the influence of the thickness of the non-ferromagnetic spacers positioned between the surface of the samples and the flat fronts of the attached magnetizing yokes. On one hand, the spacers decrease the values of the induced signal and its derivatives, but on the other hand they substantially increase the reproducibility of the measurement and positively influence the shapes of the resulting degradation curves. Optimum conditions for the magnetic measurement of the fatigue damage were searched, found, and recommended. The results indicate the reliable applicability of MAT to detect early stages of the material fatigue, and to predict its residual lifetime.

  14. Fracture assessment of Savannah River Reactor carbon steel piping

    SciTech Connect

    Mertz, G.E.; Stoner, K.J.; Caskey, G.R. ); Begley, J.A. )

    1991-01-01

    The Savannah River Site (SRS) production reactors have been in operation since the mid-1950's. One postulated failure mechanism for the reactor piping is brittle fracture of the original A285 and A53 carbon steel piping. Material testing of archival piping determined (1) the static and dynamic tensile properties; (2) Charpy impact toughness; and (3) the static and dynamic compact tension fracture toughness properties. The nil-ductility transition temperature (NDTT), determined by Charpy impact test, is above the minimum operating temperature for some of the piping materials. A fracture assessment was performed to demonstrate that potential flaws are stable under upset loading conditions and minimum operating temperatures. A review of potential degradation mechanisms and plant operating history identified weld defects as the most likely crack initiation site for brittle fracture. Piping weld defects, as characterized by radiographic and metallographic examination, and low fracture toughness material properties were postulated at high stress locations in the piping. Normal operating loads, upset loads, and residual stresses were assumed to act on the postulated flaws. Calculated allowable flaw lengths exceed the size of observed weld defects, indicating adequate margins of safety against brittle fracture. Thus, a detailed fracture assessment was able to demonstrate that the piping systems will not fail by brittle fracture, even though the NDTT for some of the piping is above the minimum system operating temperature.

  15. Metastable pitting of carbon steel under potentiostatic control

    SciTech Connect

    Cheng, Y.F.; Luo, J.L.

    1999-03-01

    The metastable pitting of A516-70 carbon steel was studied under potentiostatic control in solutions containing chloride ions. It was shown that there were different current fluctuation patterns and spectral slopes, that is, roll-off slopes, in passivity, general corrosion, and metastable pitting. Pits were often covered by a deposit which played an important role in the current fluctuation, with a quick current rise followed by a slow drop. There was a transitional potential (about 0 mV vs Ag/AgCl electrode) below which the metastable pitting initiation rate increased with the potential, because more sites would be activated. Above the transitional potential, the decay of the pitting occurrence rate with increased potential was due to the elimination of available pit sites. When the applied potential was between {minus}50 and 100 mV, pit growth kinetics was controlled by the potential drop through the deposit over the pit mouth. The potential dependence of repassivation time was mainly due to the effect of applied potential on the deposit over the pit mouth. There seemed to be good agreement between the calculated pit size and the measured values by optical microphotography. The assumption of hemispherical pit geometry was reasonable in calculating the pit radii.

  16. Acceptance criteria for corroded carbon steel piping containing weld defects

    SciTech Connect

    Mertz, G.E.; Lam, P.S.; Awadalla, N.G.

    1993-04-01

    Acceptance criteria for corroded low temperature, low pressure carbon steel piping containing weld defects is presented along with a typical application of these criteria. They are intended to preclude gross rupture or rapidly propagating failure due to uniform wall thinning, local wall thinning, pitting corrosion and weld defects. The minimum allowable uniform wail thickness is based on the code-of-record allowable stress and fracture criteria. Weld defects are postulated as potential sites for fracture initiation. CEGB/R6 failure assessment diagram is used as the fracture criteria to determine the minimum allowable wall thickness. Design of a large portion of the low temperature, low pressure piping is dominated by axial stresses. Existing local wall thinning acceptance criteria address high pressure piping where hoop stress dominates the design. The existing criteria is over conservative, in some cases, when used on low pressure piping. Local wall thinning criteria is developed to limit the axial stress on the locally thinned section, based on a reduced average thickness. Limits on pit density are also developed to provide acceptance criteria for pitted piping.

  17. Acceptance criteria for corroded carbon steel piping containing weld defects

    SciTech Connect

    Mertz, G.E.; Lam, P.S.; Awadalla, N.G.

    1993-01-01

    Acceptance criteria for corroded low temperature, low pressure carbon steel piping containing weld defects is presented along with a typical application of these criteria. They are intended to preclude gross rupture or rapidly propagating failure due to uniform wall thinning, local wall thinning, pitting corrosion and weld defects. The minimum allowable uniform wail thickness is based on the code-of-record allowable stress and fracture criteria. Weld defects are postulated as potential sites for fracture initiation. CEGB/R6 failure assessment diagram is used as the fracture criteria to determine the minimum allowable wall thickness. Design of a large portion of the low temperature, low pressure piping is dominated by axial stresses. Existing local wall thinning acceptance criteria address high pressure piping where hoop stress dominates the design. The existing criteria is over conservative, in some cases, when used on low pressure piping. Local wall thinning criteria is developed to limit the axial stress on the locally thinned section, based on a reduced average thickness. Limits on pit density are also developed to provide acceptance criteria for pitted piping.

  18. Effect of Intercritical Annealing Temperature on Phase Transformations in Medium Carbon Dual Phase Steels

    NASA Astrophysics Data System (ADS)

    Erişir, Ersoy; Bilir, Oğuz Gürkan

    2014-03-01

    This paper presents a study concerning phase transformations during quenching of a medium carbon dual phase steel using thermodynamic equilibrium calculations and dilatometry. Medium carbon steel was subjected to the intermediate quenching to produce a fine grained ferrite/martensite dual phase steel. 4 samples quenched after intercritical annealing at 725, 730, 740, and 750 °C. Martensite-start and bainite-start temperatures were calculated from dilatometric curves using plastodilotemeter. Experimental findings are supported by calculated phase diagrams and equilibrium phase compositions using ThermoCalc® and calculations from different empirical formulas. It is concluded that martensite-start temperature depend on chemical composition and grain size of austenite.

  19. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOEpatents

    Thomas, Gareth; Nakagawa, Alvin H.

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  20. Immersive CAD

    SciTech Connect

    Ames, A.L.

    1999-02-01

    This paper documents development of a capability for performing shape-changing editing operations on solid model representations in an immersive environment. The capability includes part- and assembly-level operations, with part modeling supporting topology-invariant and topology-changing modifications. A discussion of various design considerations in developing an immersive capability is included, along with discussion of a prototype implementation we have developed and explored. The project investigated approaches to providing both topology-invariant and topology-changing editing. A prototype environment was developed to test the approaches and determine the usefulness of immersive editing. The prototype showed exciting potential in redefining the CAD interface. It is fun to use. Editing is much faster and friendlier than traditional feature-based CAD software. The prototype algorithms did not reliably provide a sufficient frame rate for complex geometries, but has provided the necessary roadmap for development of a production capability.

  1. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  2. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    NASA Astrophysics Data System (ADS)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  3. 77 FR 56809 - Certain Small Diameter Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... Diameter Seamless Carbon and Alloy Steel Standard, Line and Pressure Pipe From Germany, 60 FR 39704 (August...\\ \\3\\ See Certain Small Diameter Seamless Carbon and Alloy Standard, Line, and Pressure Pipe From... International Trade Administration Certain Small Diameter Seamless Carbon and Alloy Steel Standard, Line,...

  4. Ion enhanced deposition by dual titanium and acetylene plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Zeng, Z. M.; Tian, X. B.; Chu, P. K.

    2003-01-01

    Plasma immersion ion implantation and deposition (PIII-D) offers a non-line-of-sight fabrication method for various types of thin films on steels to improve the surface properties. In this work, titanium films were first deposited on 9Cr18 (AISI440) stainless bearing steel by metal plasma immersion ion implantation and deposition (MePIII-D) using a titanium vacuum arc plasma source. Afterwards, carbon implantation and carbon film deposition were performed by acetylene (C2H2) plasma immersion ion implantation. Multiple-layered structures with superior properties were produced by conducting Ti MePIII-D + C2H2 PIII successively. The composition and structure of the films were investigated employing Auger electron spectroscopy and Raman spectroscopy. It is shown that the mixing for Ti and C atoms is much better when the target bias is higher during Ti MePIII-D. A top diamond-like carbon layer and a titanium oxycarbide layer are formed on the 9Cr18 steel surface. The wear test results indicate that this dual PIII-D method can significantly enhance the wear properties and decrease the surface friction coefficient of 9Cr18 steel.

  5. 77 FR 54926 - Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... FR 19711) and determined on July 6, 2012, that it would conduct an expedited review (77 FR 42763... COMMISSION Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany... U.S.C. 1675(c)), that revocation of the antidumping duty order on certain seamless carbon and...

  6. 75 FR 69125 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ..., and by publishing the notice in the Federal Register on May 11, 2010 (75 FR 26273). The hearing was... COMMISSION Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China Determination... States is threatened with material injury by reason of imports from China of certain seamless carbon...

  7. Research Concerning The Mechanical And Structural Properties Of Warm Rolled Construction Carbon Steels

    SciTech Connect

    Medrea, C.; Negrea, G.; Domsa, S.

    2007-04-07

    Construction carbon steels represent an important steel class due to the large quantity in which it is produced. Generally, these steels are delivered in as-rolled or normalized condition heaving a ferrite-pearlite microstructure. For a given chemical composition, the mechanical characteristics of this microstructure are largely influenced by the grain size. Rolling is the deformation process which is most widely used for grain size refinement. Situated in the intermediate temperature range, warm-rolling presents certain advantages as compared to classical hot- or cold-working processes.The paper presents a study on the microstructure and mechanical properties of Ck15 carbon steel samples warm-rolled. After deformation, the microstructure was investigated by light microscopy. Hardness measurements were made on the section parallel to the rolling direction. The mechanical properties of the steel after warm-rolling were assessed by tensile and impact tests. Additional information concerning the fracture behavior of warm-rolled samples was obtained by examining the fracture surface by scanning electron microscopy. The microstructure of the steel proved to have good mechanical properties. By considering the technologic and energy aspects, the paper shows that warm-rolling can lead to the improvement of mechanical properties of construction carbon steels.

  8. Installation of adhesively bonded composites to repair carbon steel structure.

    SciTech Connect

    Roach, Dennis Patrick; Dunn, Dennis P.; Rackow, Kirk A.

    2003-02-01

    In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the viability and durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, efforts are underway to adapt bonded composite repair technology to civil structures. This paper presents a study in the application of composite patches on large trucks and hydraulic shovels typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. It is believed that the use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, will help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel structure and accommodating large repairs on extremely thick structures. This paper will focus on the first phase of this study which evaluated the performance of different mechanical and chemical surface preparation techniques. The factors influencing the durability of composite patches in severe field environments will be discussed along with related laminate design and installation issues.

  9. Study of the carbon distribution in multi-phase steels using the NanoSIMS 50

    NASA Astrophysics Data System (ADS)

    Valle, N.; Drillet, J.; Bouaziz, O.; Migeon, H.-N.

    2006-07-01

    An advanced understanding of phase transformation mechanisms and of microstructure/properties relationships in steels requires to investigate the distribution of carbon. The improvement of mechanical properties of these materials led to develop finer microstructures. Thus, the mean size of the constituents (austenite/austenite islands and bainite laths) of the high strength steels is under the micron. The small size combined in some case with low concentration of carbon renders the analysis of these materials difficult. The NanoSIMS 50, which associates high spatial resolution and high sensitivity, seems to be a tool of choice to answer to this new analytical challenge. In this objective, we have explored the potentialities of such an instrument for the qualitative and quantitative study of carbon in multi-phase steels. In particular, a calibration curve was established from reference samples containing martensite and ferrite with a known carbon content.

  10. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  11. Microstructure and crack resistance of low carbon Cr-Ni and Cr-Ni-W steel after austempering

    NASA Astrophysics Data System (ADS)

    Avdjieva, Tatyana B.; Tsutsumanova, Gichka G.; Russev, Stoyan N.; Staevski, Konstantin G.

    2013-09-01

    The microstructure of the low carbon Cr-Ni steel after slow cooling from austenization temperature represents a mix of granulated bainite with islands from carbon-rich martensite and carbon-poor austenite. After quick cooling throwing in salt bath from austenization temperature the microstructure is lath bainite. However, in the same treatment conditions, the microstructure of the low carbon Cr-Ni-W steel is different — clusters consist from lath ferrite and retained austenite, disposed in the frame of parent's austenite grains. The cooling velocity has no effect upon the structure making. The impact toughness of the steel with tungsten content is bigger than the steel without tungsten.

  12. Interrupted and Isothermal Solidification Studies of Low and Medium Carbon Steels

    NASA Astrophysics Data System (ADS)

    Pottore, N. S.; Garcia, C. I.; Deardo, A. J.

    1991-08-01

    Low and medium carbon steels experience multiple phase transformations during solidification and subsequent cooling. The sequence, extent, and nature of the different transformations have a significant bearing on the microstructural evolution that occurs in the steel. The change in microstructure with temperature is very important, since it may influence the hot ductility of the steel during casting and/or rolling and the subsequent response of the material to thermoprocessing. The aim of this investigation was to gain a better understanding of the development of the as-cast structure in low and medium carbon steels. Of particular interest is the origin of the large austenite grains frequently associated with poor hot ductility. Interrupted and isothermal solidification experiments were therefore conducted to study the nonequilibrium and near-equilibrium structures which form at different stages of the freezing process. The results of the investigation established delta-ferrite as the primary solidifying phase in low carbon steels. Austenite forms as the secondary phase by nucleation at the solidification (delta-ferrite) boundaries. While excessive austenite grain coarsening is suppressed by the coexistence of the second phases delta-ferrite or liquid, this suppression occurs over only a limited temperature range, just below the peritectic temperature. Subsequent cooling leads to very large austenite grains, ranging up to 5 mm in diameter, in steels of low carbon content.

  13. Mathematical modeling and validation of the carburizing of low carbon steels

    NASA Astrophysics Data System (ADS)

    García Mariaca, A.; Cendales, E. D.; Chamarraví, O.

    2016-02-01

    This paper shows the mathematical modeling of heat and mass transfer in transient state of cylindrical bars of low carbon steel subjected to carburizing process. The model solution for the two phenomena was performed using a one-dimensional analysis in the radius direction, using the numerical method of finite differences; also a sensitivity analysis by varying the coefficient of convective heat transfer (h) is performed. The modeling results show that this carburization steel is strongly dependent on h. These results suggest that if it can increase the value of h in this kind of process could reduce the time of process for this heat treatment. Additionally, an experimental procedure was established by carburization of a steel AISI SAE 1010, which develops cementing solid phase and the specimen steel and micrographic hardness profiles obtained from samples of the specimen analysis was performed, to determine the penetration depth of the carbon and validate this result over the values obtained by the computer model.

  14. Modeling of mechanical behaviour of HSLA low carbon bainitic steel thermomechanically processed

    NASA Astrophysics Data System (ADS)

    Santos, D. B.; Rodrigues, P. C. M.; Cota, A. B.

    2003-10-01

    A comparative study of the microstructure characterization and mechanical properties was done in a HSLA low carbon (0.08%) bainitic steel containing boron, developed by industry as a bainitic steel grade APIX80. The steel was submitted to two different thermomechanical processes. In the first one, controlled rolling followed by accelerated cooling was applied in laboratory mill. In the second processing, specimens of the same steel were submitted to hot torsion testing. The influence of cooling conditions like start cooling temperature, cooling rates and finish cooling temperature on the microstructure and mechanical properties were investigated. The final microstructure obtained was a complex mixture of polygonal ferrite, perlite, bainite and martensite/retained austenite constituent. The use of multiple regression analysis allowed the establishment of quantitative relationships between the accelerated cooling variables and mechanical properties of the steel available from Vickers microhardness and tensile tests.

  15. Effect of recycling on residuals, processing, and properties of carbon and low-alloy steels

    NASA Astrophysics Data System (ADS)

    Stephenson, E. T.

    1983-02-01

    Because of the continuing increase in electric furnace steelmaking, which is a scrap-intensive process, and also in view of future new sources of scrap, such as municipal solid wastes, it is important to develop more knowledge about: (a) the effects of residual elements on steel, (b) processing strategies for producing high-residual steels, and (c) products in which residuals could be used to advantage. This review will first identify the important residual elements and the trends in their use and levels in steels. The effect of these elements on the processing phenomena and product properties of carbon and low-alloy steels will be discussed in detail. These phenomena and properties include hot shortness, scale adherence, room temperature tensile properties, impact resistance, and hardenability. Also discussed are examples of specific problems that residual elements present, both now and with emerging trends, for steel processing and applications, and the ways of using residuals to advantage.

  16. Effect of an upward magnetic field on nanosized sulfide precipitation in ultra-low carbon steel

    NASA Astrophysics Data System (ADS)

    Duan, Kang-jia; Zhang, Ling; Yuan, Xi-zhi; Han, Shan-shan; Liu, Yu; Huang, Qing-song

    2015-07-01

    An induction levitation melting (ILM) refining process is performed to remove most microsized inclusions in ultra-low carbon steel (UCS). Nanosized, spheroid shaped sulfide precipitates remain dispersed in the UCS. During the ILM process, the UCS is molten and is rotated under an upward magnetic field. With the addition of Ti additives, the spinning molten steel under the upward magnetic field ejects particles because of resultant centrifugal, floating, and magnetic forces. Magnetic force plays a key role in removing sub-micrometer-sized particles, composed of porous aluminum titanate enwrapping alumina nuclei. Consequently, sulfide precipitates with sizes less than 50 nm remain dispersed in the steel matrix. These findings open a path to the fabrication of clean steel or steel bearing only a nanosized strengthening phase.

  17. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.

    1995-01-01

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.

  18. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.

    1995-08-29

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.

  19. Assessing performance of painted carbon and weathering steels in an industrial atmosphere

    SciTech Connect

    Wang, J.H.; Shih, H.C.; Wei, F.I.

    1997-03-01

    Protective properties and electrochemical impedance characteristics of four painted steels were investigated after outdoor exposure for 6 years and laboratory-based immersion tests. Results were compared to evaluate performance of the two paint systems for different steel substrates. The silicate-type primer/epoxy-based micaceous iron oxide (MIO) paint/polyurethane topcoat system showed better performance than the epoxy-type primer/epoxy-based MIO paint/polyvinyl chloride (PVC) topcoat system. The former paint system showed better topcoat protection and more effective cathodic protection (CP) provided by the zinc-rich primer. Two forms of paint degradation, blistering and pore attack, were observed. Paint degradation was correlated with changes in paint resistance and the breakpoint frequency of impedance data. Based upon visual observation and changes in impedance characteristics, two impedance models were proposed to explain the paint degradation.

  20. 77 FR 2032 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... as stated in Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of Antidumping Duty Administrative Review, 73 FR 45708, 45714 (August 6, 2008), unchanged in Stainless Steel Sheet and... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate Products From the...

  1. Improvement of the corrosion behavior of low carbon steel by laser surface alloying

    NASA Astrophysics Data System (ADS)

    Abdolahi, B.; Shahverdi, H. R.; Torkamany, M. J.; Emami, M.

    2011-09-01

    In the present study, an integrated layer of iron aluminides of FeAl and Fe3Al was formed on the surface of a low carbon steel sheet by a two-step process. The first step was hot dipping of the steel in a molten aluminum pool and secondly laser surface processing using a pulsed Nd:YAG laser. The corrosion resistance of the coated specimens was evaluated by activation polarization and Tafel methods. The results show that laser processing of the aluminized steel leads to a considerable increase in its corrosion resistance compared to both uncoated and merely aluminized materials.

  2. Effects of LWR environments on fatigue life of carbon and low-alloy steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    SME Boiler and Pressure Vessel Code provides construction of nuclear power plant components. Figure I-90 Appendix I to Section III of the Code specifies fatigue design curves for structural materials. While effects of environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A 106-Gr B carbon steel and A533-Gr B low-alloy steel in water.

  3. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    SciTech Connect

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels.

  4. Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.

    PubMed

    Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L

    2016-07-01

    In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel. PMID:26997238

  5. Stages of austenitization of cold-worked low-carbon steel in intercritical temperature range

    NASA Astrophysics Data System (ADS)

    Panov, D. O.; Simonov, Y. N.; Spivak, L. V.; Smirnov, A. I.

    2015-08-01

    Austenization processes in 10Kh3G3MF low-carbon steel in the initially cold-worked state are investigated during its continuous heating in an intercritical temperature range. The austenization of this steel has three stages, which is shown by dilatometry, differential scanning calorimetry, and transmission electron microscopy. The thermokinetic diagram of the austenite formation in 10Kh3G3MF steel is constructed. Critical points A c1 and A c2 and temperature ranges of austenite formation at every stage of the α → γ transformation at heating rates of 0.6-400 K/s are determined.

  6. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  7. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  8. RBS and GAXRD contributions to yttrium implanted extra low carbon steel characterization

    SciTech Connect

    Caudron, E.; Buscail, H.; Jacob, Y.P.; Stroosnijder, M.F.

    1999-02-01

    Extra low carbon steel samples were yttrium implanted using an ion implantation method. Composition and structural studies were carried out before and after yttrium implantations by several analytical and structural techniques (Rutherford backscattering spectrometry, reflection high energy electron diffraction, scanning electron microscopy, X-ray diffraction, and glancing angle X-ray diffraction) to characterize the yttrium implantation effect on extra low carbon steel. The aim of this article is to show the contributions of Rutherford back-scattering spectrometry (RBS) and glancing angle X-ray diffraction (GAXRD) to the determination of yttrium depth profiles in the samples. The results obtained by these techniques are compared to those of the other analyses performed in this work to show the existing correlation between composition and structural studies. Their results allow a better understanding of the effect of yttrium implantation in extra low carbon steel before studying their corrosion resistance at high temperature.

  9. Investigation on Preferential Corrosion of Welded Carbon Steel Under Flowing Conditions by EIS

    NASA Astrophysics Data System (ADS)

    Alawadhi, K.; Aloraier, A. S.; Joshi, S.; Alsarraf, J.; Swilem, S.

    2013-08-01

    Carbon steels are used extensively in construction of oil and gas pipes but they exhibit poor corrosion-resistance properties because of internal corrosion. In this research, a rotating cylinder electrode apparatus was designed so that electrodes machined from the weld metal, heat-affected zone, and parent material of a welded X65 pipeline steel could be tested in high shear stress conditions using electromechanical impedance spectroscopy. The aim was to investigate the cause of the severe localized corrosion that sometimes occurs at welds in carbon steel pipelines carrying hydrocarbons and inhibited brine solutions saturated with carbon dioxide. It was concluded that the surface films play an important role in effective inhibition, and this inhibition is more effective on a clean surface rather than on a precorroded one.

  10. Insoluble surface carbon on steel sheet annealed in hydrogen-nitrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Biber, H. E.; Takacs, R. C.; Dickey, A. E.

    1983-09-01

    The way in which heating in hydrogen-nitrogen atmosphere affects the pyrolysis of the residual lubricant on cold-reduced steel sheet was studied to discover the factors responsible for the formation of carbonaceous films on the steel surface. These films, referred to as insoluble surface carbon, cannot be removed with the usual solvents or water-base cleaners and adversely affect the paintability of the steel. A surprising result was the observation that the full-hard steel surface has a significant amount of insoluble surface carbon; amounts in excess of 0.010 gm/m2 (1 mg/ft2) were observed. The origin of this “initial” insoluble carbon can be traced to the pickling operation after hot rolling. During annealing much of the residual rolling lubricant on the surface is driven off by evaporation, but concurrently insoluble pyrolysis products are formed. The amount of insoluble pyrolysis product formed is directly related to the amount of “initial” insoluble carbon on the surface before annealing. The results show that at some point during annealing the total amount of insoluble carbon on the surface is more than double the amount of “initial” insoluble carbon. These insoluble pyrolysis products can also be driven from the surface at higher temperatures than are required for evaporation of the oil. The results suggest that removal of the “initial” insoluble carbon prior to cold reduction might be very beneficial with respect to decreasing the amount of insoluble carbon on the surface of steel sheet after annealing.

  11. Effect of Alloying, Heat Treatment and Carbon Content on White Layer Formation in Machining of Steels

    SciTech Connect

    Han, Sangil; Melkote, Shreyes N; Riester, Laura

    2005-01-01

    This paper describes an experimental investigation of the effects of alloying, carbon content, and heat treatment on white layer formation in machining of steels. The investigation is carried out by machining steels that differ in alloying, heat treatment and carbon content, via orthogonal cutting tests performed with low cBN content tools. The depth of white layer and its hardness are measured for every case. Specifically, the thickness and hardness of white layer produced in cutting AISI 1045 and AISI 4340 annealed steels are compared to determine the effect of alloying on white layer formation. The effect of heat treatment on white layer formation and its hardness are investigated by machining annealed and hardened (53 HRC) AISI 4340 steels. The effect of carbon content on white layer formation is investigated by cutting hardened AISI 52100 and AISI 4340 steels of the same hardness (53 HRC). The results of the study show that alloying, heat treatment, and carbon content influence white layer formation and its hardness.

  12. Effect of Intercritical Heat Treatment on the Abrasive Wear Behaviour of Plain Carbon Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Manoj, M. K.; Pancholi, V.; Nath, S. K.

    Dual phase (DP) steels have been prepared from low carbon steel (0.14% C) at intercritical temperature 740°C and time is varied from 1 minute to 30 minutes followed by water quenching. These steels have been characterized by optical microscopy, FE-SEM, hardness measurements, tensile properties and electron backscattered diffraction (EBSD) studies. Tensile properties of a typical dual phase steel are found to be 805 MPa ultimate tensile strength with 18% total elongation. Martensite volume fraction of D P steel (determined by EBSD technique) prepared at 740°C for 6 minutes is found to be 10.2% and the grain size of ferrite and martensite found to be 14.39 micron and 1.05 microns respectively. Abrasive wear resistance of dual phase steels has been determined by pin on drum wear testing machine. DP steels have been found to be 25% more wear resistant than that of normalized steel. Short intercritical heating time followed by water quenching gives higher wear resistance by virtue of smaller and well dispersed martensite island in the matrix of ferrite.

  13. Multiaxial ratcheting of 20 carbon steel: Macroscopic experiments and microscopic observations

    SciTech Connect

    Dong, Yawei; Kang, Guozheng; Liu, Yujie; Jiang, Han

    2013-09-15

    The multiaxial ratcheting behaviors of polycrystalline 20 ordinary carbon steel were investigated at room temperature. The macroscopic experimental results showed that the studied multiaxial ratcheting depends greatly on the mean stress, stress amplitude and loading path. The axial ratcheting strain increased with the increase of applied mean stress and stress amplitude. Apparent additional hardening was observed in the non-proportionally multiaxial cyclic loading. The multiaxial ratcheting of 20 carbon steel was lower than the corresponding uniaxial one and varies with different loading paths. Dislocation patterns and their evolutions of the multiaxial ratcheting of different loading paths were then investigated using transmission electron microscopy. The obtained images showed that, with the increasing number of loading cycles, the dislocation patterns evolved from dislocation lines and networks to dislocation tangles, walls and cells. After certain cycles, sub-grains were formed because of the re-arrangement of dislocations in the walls of cells and inside the cells since the cross slip of dislocations can be easily activated for the 20 carbon steel, a kind of body-centered cubic metal. The dislocation evolution of the multiaxial ratcheting is much quicker than that of the uniaxial one. With the reference to the uniaxial one of 20 carbon steel, the macroscopic multiaxial ratcheting behaviors can be qualitatively correlated with the microscopic observation of the dislocation patterns and their evolution. - Highlights: • Multiaxial loading hardly changes the cyclic stable feature of 20 carbon steel. • Multiaxial ratcheting of 20 carbon steel depends greatly on the load path. • Dislocation patterns evolve quicker in the multiaxial case. • The stabilized dislocation pattern is sub-grain, rather than the dislocation cell. • Sub-grains formed after certain cycles make the stable ratcheting strain rate large.

  14. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    SciTech Connect

    Feng, Kai; Wang, Yibo; Li, Zhuguo; Chu, Paul K.

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  15. 75 FR 22555 - Certain Cut-to-Length Carbon-Quality Steel Plate from the Republic of Korea: Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Revocation in Part, 75 FR 15679, 15681 (March 30, 2010) (Initiation Notice). The two companies identified in... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate from the Republic of Korea... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate...

  16. 75 FR 29976 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Administrative Review, 75 FR 4779 (January 29, 2010). The review covers the period February 1, 2008, through... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy... antidumping duty order on certain cut-to-length carbon-quality steel plate products from Italy. See...

  17. 75 FR 59689 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Administrative Review, 73 FR 40295 (July 14, 2008) (Final Results), and accompanying Issues and Decision... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Court... administrative review of the countervailing duty order on certain hot-rolled carbon steel flat products...

  18. 78 FR 15703 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, the People's Republic of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ...'') Review, 77 FR 66439 (November 5, 2012). The Department received a notice of intent to participate from... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, the... the second sunset reviews of the antidumping duty orders on certain hot-rolled carbon steel...

  19. 77 FR 14341 - Certain Hot-Rolled Carbon Steel Flat Products From Taiwan: Notice of Rescission of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Antidumping and Countervailing Duty Administrative Reviews and Request for Revocation in Part, 76 FR 82268... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From Taiwan: Notice of... an administrative review of the antidumping duty order on certain hot-rolled carbon steel...

  20. 75 FR 55742 - Certain Hot-Rolled Carbon Steel Flat Products from India: Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... FR 4770 ] (January 29, 2010) (``Initiation Notice''). The current deadline for the preliminary... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products from India: Extension of Time... antidumping duty administrative review of certain hot- rolled carbon steel flat products from India for...

  1. 75 FR 18152 - Certain Hot-Rolled Carbon Steel Flat Products from India: Extension of Time Limit for Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...: Preliminary Results of Countervailing Duty Administrative Review, 75 FR 1496 (January 11, 2010). Therefore... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products from India: Extension of Time... countervailing duty order on certain hot- rolled carbon steel flat products from India covering the...

  2. 76 FR 48143 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ...: Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China, 66 FR 59561 (November... Review: Certain Hot-Rolled Carbon Steel Flat Products from the People's Republic of China, 72 FR 41710..., 74 FR 40165 (August 11, 2009), at n.1. \\2\\ See Initiation of Antidumping and Countervailing...

  3. 76 FR 77775 - Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ..., 75 FR 43448 (July 26, 2010) (Final Results), and accompanying Issues and Decision Memorandum. Tata... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final... administrative review of the countervailing duty order on certain ] hot-rolled carbon steel flat products...

  4. 75 FR 80455 - Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ..., 73 FR 40295 (July 14, 2008) (Final Results), and accompanying Issues and Decision Memorandum (``I&D... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India: Amended Final... administrative review of the countervailing duty order on certain hot-rolled carbon steel flat products...

  5. 78 FR 72863 - Circular Welded Carbon-Quality Steel Pipe From the People's Republic of China: Continuation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ...). \\3\\ See Circular Welded Carbon-Quality Steel Pipe From China, 78 FR 70069 (November 22, 2013). Scope... Carbon Quality Steel Pipe From the People's Republic of China, 73 FR 42547 (July 22, 2008). Continuation... reasonably foreseeable time.\\3\\ \\1\\ See Initiation of Five-Year (``Sunset'') Review, 78 FR 33063 (June...

  6. 78 FR 72863 - Circular Welded Carbon Quality Steel Pipe From the People's Republic of China: Continuation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ...'') Review, 78 FR 33063 (June 3, 2013). \\2\\ See Circular Welded Carbon Quality Steel Pipe From the People's... FR 60849 (October 2, 2013). \\3\\ See Circular Welded Carbon-Quality Steel Pipe from China, 78 FR 70069... Duty Determination and Notice of Countervailing Duty Order, 73 FR 42545 (July 22, 2008)....

  7. 76 FR 78615 - Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman, the United Arab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... International Trade Administration Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman... Republic of Vietnam (``Vietnam''). See Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate... Countervailing Duty Investigations, 76 FR 72173 (November 22, 2011). Currently, the preliminary...

  8. 77 FR 15718 - Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman, the United Arab...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... International Trade Administration Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman... Republic of Vietnam (Vietnam). See Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of... Investigations, 76 FR 72164 (November 22, 2011). The current deadline for the preliminary determinations of...

  9. 78 FR 33809 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... Administrative Reviews and Request for Revocation in Part, 77 FR 77017 (December 31, 2012) (``Initiation Notice... International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the... on seamless carbon and alloy steel standard, line, and pressure pipe from the People's Republic...

  10. 75 FR 68327 - Certain Welded Carbon Steel Standard Pipes and Tubes From India: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... and Requests for Revocation in Part, 75 FR 37759 (June 30, 2010). Based on various requests for review... International Trade Administration Certain Welded Carbon Steel Standard Pipes and Tubes From India: Rescission... certain welded carbon steel standard pipes and tubes from India. The period of review is May 1,...