Science.gov

Sample records for carbon-13 nuclear spin

  1. Carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance investigation of the interactions between maleic anhydride grafted polypropylene and wood polymers.

    PubMed

    Rude, Erica; Laborie, Marie-Pierre G

    2008-05-01

    The chemical interactions between maleic anhydride grafted polypropylene (MAPP) and wood were studied with solid-state carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance ((13)C CPMAS NMR) spectroscopy. MAPP was synthesized with 100% (13)C enrichment at the C(1) and C(4) carbons to allow detection of the [1,4-(13)C(2)]MAPP functional groups and was melt blended with cellulose, lignin, and maple wood. In the cellulose/MAPP blend, changes in (13)C CPMAS NMR corrected signal intensities for the anhydride and dicarboxylic maleic acid functionalities suggested that esterification may have occurred predominantly from the more numerous diacid carbons. A single proton longitudinal relaxation in the rotating frame, (H)T(1rho), for the MAPP and the cellulose carbons in the blend suggested that they were spin coupled, i.e., homogeneous on a 10-200 Angstrom scale. Esterification was also suggested in the lignin/MAPP blend. Furthermore, the more significant changes in the intensities of the carbonyl signals and (H)T(1rho) values suggested that lignin may be more reactive to MAPP than cellulose. Finally, when maple was melt blended with MAPP, the same trends in the (13)C CP-MAS NMR spectra and (H)T(1rho) behavior were observed as when MAPP was blended with cellulose or lignin. This study therefore clarifies that during melt compounding of wood with MAPP, esterification occurs with wood polymers, preferentially with lignin. Understanding the interactions of MAPP with wood is of significance for the development of natural-fiber-reinforced thermoplastic composites. PMID:18498698

  2. In vivo Carbon-13 Nuclear Magnetic Resonance Studies of Mammals

    NASA Astrophysics Data System (ADS)

    Alger, J. R.; Sillerud, L. O.; Behar, K. L.; Gillies, R. J.; Shulman, R. G.; Gordon, R. E.; Shaw, D.; Hanley, P. E.

    1981-11-01

    Natural abundance carbon-13 nuclear magnetic resonances (NMR) from human arm and rat tissues have been observed in vivo. These signals arise primarily from triglycerides in fatty tissue. Carbon-13 NMR was also used to follow, in a living rat, the conversion of C-1--labeled glucose, which was introduced into the stomach, to C-1--labeled liver glycogen. The carbon-13 sensitivity and resolution obtained shows that natural abundance carbon-13 NMR will be valuable in the study of disorders in fat metabolism, and that experiments with substrates labeled with carbon-13 can be used to study carbohydrate metabolism in vivo.

  3. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance.

    PubMed

    Lorenz, Klaus; Preston, Caroline M

    2002-01-01

    Condensed tannins can be found in various parts of many plants. Unlike lignin there has been little study of their fate as they enter the soil organic matter pool and their influence on nutrient cycling, especially through their protein-binding properties. We extracted and characterized tannin-rich fractions from humus collected in 1998 from a black spruce [Picea mariana (Mill.) Britton et al.] forest in Canada where a previous study (1995) showed high levels (3.8% by weight) of condensed tannins. A reference tannin purified from black spruce needles was characterized by solution 13C nuclear magnetic resonance (NMR) as a pure procyanidin with mainly cis stereochemistry and an average chain length of four to five units. The colorimetric proanthocyanidin (PA) assay, standardized against the black spruce tannin, showed that both extracted humus fractions had higher tannin contents than the original humus (2.84% and 11.17% vs. 0.08%), and accounted for 32% of humus tannin content. Consistent with the results from the chemical assay, the aqueous fraction showed higher tannin signals in the 13C cross-polarization and magic-angle spinning (CPMAS) NMR spectrum than the emulsified one. As both tannin-rich humus fractions were depleted in N and high in structures derived from lignin and cutin, they did not have properties consistent with recaldtrant tannin-protein complexes proposed as a mechanism for N sequestration in humus. Further studies are needed to establish if tannin-protein structures in humus can be detected or isolated, or if tannins contribute to forest management problems observed in these ecosystems by binding to and slowing down the activity of soil enzymes. PMID:11931430

  4. The first observation of Carbon-13 spin noise spectra

    PubMed Central

    Schlagnitweit, Judith; Müller, Norbert

    2012-01-01

    We demonstrate the first 13C NMR spin noise spectra obtained without any pulse excitation by direct detection of the randomly fluctuating noise from samples in a cryogenically cooled probe. Noise power spectra were obtained from 13C enriched methanol and glycerol samples at 176 MHz without and with 1H decoupling, which increases the sensitivity without introducing radio frequency interference with the weak spin noise. The multiplet amplitude ratios in 1H coupled spectra indicate that, although pure spin noise prevails in these spectra, the influence of absorbed circuit noise is still significant at the high concentrations used. In accordance with the theory heteronuclear Overhauser enhancements are absent from the 1H-decoupled 13C spin noise spectra. PMID:23041799

  5. Carbon-13 and proton nuclear magnetic resonance spectroscopy of water-soluble porphyrins and metalloporphyrins.

    PubMed

    Goff, H M; Morgan, L O

    1978-07-01

    Carbon-13 and proton nuclear magnetic resonance (NMR) spectra have been recorded for porphyrins, zinc porphyrins, and iron(III) porphyrin complexes in aqueous media. Spectra of porphyrin-c and hemin-c confirm the structure with thioether linkages at positions alpha to the porphyrin ring. The pattern of NMR isotropic shifts has implications regarding electron transfer in cytochrome-c. Free-base porphyrin-c and meso-substituted porphyrins have been examined for pyrrole nitrogen-hydrogen tautomerism and possible aggregation in aqueous solution. Zinc porphyrin 13C NMR spectra were recorded in order to provide diamagnetic references for paramagnetic iron(III) derivatives. Low-spin iron(III) porphyrin-biscyano complexes in aqueous solution exhibit NMR isotropic shift patterns similar to those previously observed for related compounds in non-aqueous media. The first 13C NMR spectra are reported for mu-oxo-bridged iron(III) porphyrin dimers. A partially resolved spectrum of a high-spin iron(III) porphyrin has also been obtained. Patterns of 13C and proton isotropic shifts are compared, and unpaired spin delocalization mechanisms for 13C resonances are discussed in a qualitative manner. PMID:687673

  6. Natural abundance carbon-13 nuclear magnetic resonance studies of histone and DNA dynamics in nucleosome cores.

    PubMed

    Hilliard, P R; Smith, R M; Rill, R L

    1986-05-01

    Natural abundance carbon-13 nuclear magnetic resonance spectra (67.9 MHz) were obtained for native nucleosome cores: cores dissociated in 2 M NaCl and 2 M NaCl, 6 M urea; and cores degraded with DNase I plus proteinase K. Phosphorus-31 NMR spectra of native and dissociated cores and core length DNA were also obtained at 60.7 MHz. The 31P resonance and spin-lattice relaxation time (T1) of DNA were only slightly affected by packaging in nucleosome cores, in agreement with other reports, but 13C resonances of DNA were essentially unobservable. The loss of DNA spectral intensity suggests that rapid internal motions of DNA sugar carbons in protein-free DNA previously demonstrated by 13C NMR methods are partly restricted in nucleosomes. The 13C spectrum of native cores contains many narrow intense resonances assigned to lysine side chain and alpha-carbons, glycine alpha-carbons, alanine alpha- and beta- carbons, and arginine side chain carbons. Several weaker resonances were also assigned. The narrow line widths, short T1 values, and non-minimal nuclear Overhauser enhancements of these resonances, including alpha- and beta-carbons, show that some terminal chain segments of histones in nucleosomes are as mobile as small random coil polypeptides. The mobile segments include about 9% of all histone residues and 25% of all lysines, but only 10% of all arginines. The compositions of these segments indicate that mobile regions are located in amino- or carboxyl-terminal sequences of two or more histones. In addition, high mobility was observed for side chain carbons of 45-50% of all lysines (delta and epsilon carbons) and about 25% of all arginines (zeta carbon) in histones (including those in mobile segments), suggesting that basic residues in terminal histone sequences are not strongly involved in nucleosome structure and may instead help stabilize higher order chromatin structure. PMID:3700380

  7. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  8. Quantitative carbon-13 nuclear magnetic resonance spectroscopic study of mobile residues in bacteriorhodopsin

    SciTech Connect

    Bowers, J.L.; Oldfield, E.

    1988-07-12

    The authors have used quantitative carbon-13 nuclear magnetic resonance (NMR) spectroscopy to study the dynamic structure of the backbone of bacteriorhodopsin in the purple membrane of Halobacterium halobium R/sub 1/ and JW-3. NMR experiments were performed using an internal sucrose quantitation standard on purple membranes in which one of the following /sup 13/C'-labeled amino acids had been biosynthetically incorporated: glycine, isoleucine, lysine, phenylalanine, and valine. The results suggest that the C-terminus of the polypeptide chain backbone, and possibly one of the connecting loops, undergoes rapid, large angle fluctuations. The results are compared with previous NMR and fluorescence spectroscopic data obtained on bacteriorhodopsin.

  9. SUBSTITUENT EFFECTS AND ADDITIVITY IN THE CARBON-13 NUCLEAR MAGNETIC RESONANCE SPECTRA OF CHLORINATED NAPHTHALENES AND THEIR CHLORINATED NAPHTHOL METABOLITES

    EPA Science Inventory

    Carbon-13 and proton nuclear magnetic resonance spectra were obtained for 12 chlorinated naphthalenes and six chlorinated naphthols, some of which are metabolites of the naphthalenes. The validity of the use of additivity of chlorine and hydroxyl substituent effects to predict 13...

  10. High-pressure nuclear-magnetic-resonance study of carbon-13 relaxation in 2-ethylhexyl benzoate and 2-ethylhexyl cyclohexanecarboxylate

    NASA Astrophysics Data System (ADS)

    Adamy, S. T.; Grandinetti, P. J.; Masuda, Y.; Campbell, D.; Jonas, J.

    1991-03-01

    Natural abundance carbon-13 spin-lattice relaxation times and 13G-1H nuclear Overhauser enhancement (NOE) times of 2-ethyl hexylbenzoate (EHB) and 2-ethyl hexylcyclohexanecarboxylate (EHC) have been measured along isotherms of -20, 0, 20, 40, and 80 °C at pressures of 1-5000 bars using high-pressure, high-resolution NMR techniques. The ability to use pressure as an experimental variable has allowed us to study a wide range of molecular motions from extreme narrowing into the slow motional regime. In addition, the high-resolution capability even at high pressure permits the measurement of 13C and NOE for each individual carbon in the molecules studied. Relaxation in both molecules is successfully analyzed in terms of a model assuming a Cole-Davidson distribution of correlation times. The comparison of parameters used in the model demonstrates the increased flexibility of the EHC ring over the EHB ring and also shows how the presence of the flexible ring contributes to the increased over-all mobility of the EHC molecule. The analysis of molecular reorientations in terms of activation volumes also indicates that EHB motion is highly restricted at low temperature.

  11. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  12. Metal ion uptake from aqueous solution by olive stones: a carbon-13 solid-state nuclear magnetic resonance and potentiometric study.

    PubMed

    Nurchi, Valeria Marina; Floris, Costantino; Pinna, Rosalba; Fiol, Núria; Villaescusa, Isabel

    2007-10-01

    The use of biomasses that result from the agriculture and food industries in removing heavy metals from wastewaters is attracting increasing interest. We present a joined potentiometric and cross polarization magic angle spinning (CP-MAS) carbon-13 (13C) nuclear magnetic resonance (NMR) study on the interaction of olive stones with copper(II), nickel(II), and cadmium(II). The potentiometric measurements allow both to distinguish two kind of basic sites in the olive stones and to postulate the coordination models for the three studied metals. The NMR spectral analysis allows the attribution of the different signals to the components of the olive stone matrix. A comparison of CP-MAS 13C NMR spectra of the samples after metal treatment suggests a specific complexation between metal ions and hydroxyl groups on guaiacyl and syringyl moieties. PMID:17966704

  13. A carbon-13 and proton nuclear magnetic resonance study of some experimental referee broadened-specification /ERBS/ turbine fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Pugmire, R. J.

    1982-01-01

    Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.

  14. Determination of alkylbenzenesulfonate surfactants in groundwater using macroreticular resins and carbon-13 nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Willoughby, T.; Barber, L.B., Jr.; Thorn, K.A.

    1987-01-01

    Alkylbenzenesulfonate surfactants were determined in groundwater at concentrations as low as 0.3 mg/L. The method uses XAD-8 resin for concentration, followed by elution with methanol, separation of anionic and nonionic surfactants by anion exchange, quantitation by titration, and identification by 13C nuclear magnetic resonance spectrometry. Laboratory standards and field samples containing straight-chain and branched-chain alkylbenzenesulfonates, sodium dodecyl sulfate, and alkylbenzene ethoxylates were studied. The XAD-8 extraction of surfactants from groundwater was completed in the field, which simplified sample preservation and reduced the cost of transporting samples.

  15. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  16. Sensitive, quantitative carbon-13 NMR spectra by mechanical sample translation

    NASA Astrophysics Data System (ADS)

    Donovan, Kevin J.; Allen, Mary; Martin, Rachel W.; Shaka, A. J.

    2009-04-01

    Collecting a truly quantitative carbon-13 spectrum is a time-consuming chore. Very long relaxation delays, required between transients to allow the z-magnetization, M z, of the spin with the longestT1 to return to the equilibrium value, M0, must precede each transient. These long delays also reduce sensitivity, as fewer transients per unit time can be acquired. In addition, sometimes T1 is not known to within even a factor of two: a conservative guess for the relaxation delay then leads to very low sensitivity. We demonstrate a fresh method to bypass these problems and collect quantitative carbon-13 spectra by swapping the sample volume after each acquisition with a different portion where the magnetization is already equilibrated to M0. Loading larger sample volumes of 10-20 mL into an unusually long (1520 mm) 5 mm OD. NMR tube and vertically sliding the tube between acquisitions accomplishes the swap. The relaxation delay can then be skipped altogether. The spectra are thus both quantitative, and far more sensitive. We demonstrate the moving tube technique on two small molecules (thymol and butylhydroxytoluene) and show good carbon-13 quantification. The gain in sensitivity can be as much as 10-fold for slowly-relaxing 13C resonances. These experiments show that quantitative, sensitive carbon-13 spectra are possible whenever sufficient sample volumes are available. The method is applicable to any slow-relaxing nuclear spin species, such as 29Si, 15N and other low-γ nuclei.

  17. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  18. Determination of site-specific carbon isotope ratios at natural abundance by carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Caer, V; Trierweiler, M; Martin, G J; Martin, M L

    1991-10-15

    Site-specific natural isotope fractionation of hydrogen studied by deuterium NMR (SNIF-NMR) spectroscopy is a powerful source of information on hydrogen pathways occurring in biosyntheses in natural conditions. The potential of the carbon counterpart of this method has been investigated and compared. Three typical molecular species, ethanol, acetic acid, and vanillin, have been considered. Taking into account the requirements of quantitative 13C NMR, appropriate experimental procedures have been defined and the repeatability and reproducibility of the isotope ratio determinations have been checked in different conditions. It is shown that the carbon version of the SNIF-NMR method is capable of detecting small differences in the carbon-13 content of the ethyl fragment of ethanols from different botanical or synthetic origins. These results are in agreement with mass spectrometry determinations of the overall carbon isotope ratios. Deviations with respect to a statistical distribution of 13C have been detected in the case of acetic acid and vanillin. However, since the method is very sensitive to several kinds of systematic error, only a relative significance can be attached at present to the internal parameters directly accessible. Isotope dilution experiments have also been carried out in order to check the consistency of the results. In the present state of experimental accuracy, the 13C NMR method is of more limited potential than 2H SNIF-NMR spectroscopy. However it may provide complementary information. Moreover it is particularly efficient for detecting and quantifying adulterations that aim to mimic the overall carbon-13 content of a natural compound by adding a selectivity enriched species to a less expensive substrate from a different origin. PMID:1759714

  19. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  20. Electron spin decoherence in nuclear spin baths and dynamical decoupling

    SciTech Connect

    Zhao, N.; Yang, W.; Ho, S. W.; Hu, J. L.; Wan, J. T. K.; Liu, R. B.

    2011-12-23

    We introduce the quantum theory of the electron spin decoherence in a nuclear spin bath and the dynamical decoupling approach for protecting the electron spin coherence. These theories are applied to various solid-state systems, such as radical spins in molecular crystals and NV centers in diamond.

  1. High-spin nuclear spectroscopy

    SciTech Connect

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  2. Electron spin decoherence in silicon carbide nuclear spin bath

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping

    In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of 29Si (4.7 counter-intuitive result, is the suppression of heteronuclear-spin flip-flop process in finite magnetic field. Our results show that electron spin of defect centers in SiC are excellent candidates for solid state spin qubit in quantum information processing.

  3. Carbon-13 nuclear magnetic resonance analysis, lignin content and carbohydrate composition of humic substances from salt marsh estuaries

    NASA Astrophysics Data System (ADS)

    Alberts, James J.; Hatcher, Patrick G.; Price, Mary T.; Filip, Zdenek

    13C nuclear magnetic resonance spectroscopy, CuO oxidation products of lignin and hydrolyzable carbohydrates were measured for fulvic and humic acids extracted from living and dead Spartina alterniflora and salt marsh sediments. With these methods, there was little evidence for early diagenetic alteration of the humic materials. No trends consistent for fulvic and humic acids were observed for either hydrolyzable carbohydrates or lignin derived phenols, and chemical measurements of these fractions did not agree with spectral estimates. Humic acids appear to contain secondary amide linkages typical of proteins and peptides.

  4. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems.

    PubMed

    Urbina, J A; Moreno, B; Arnold, W; Taron, C H; Orlean, P; Oldfield, E

    1998-09-01

    We report a simple new nuclear magnetic resonance (NMR) spectroscopic method to investigate order and dynamics in phospholipids in which inter-proton pair order parameters are derived by using high resolution 13C cross-polarization/magic angle spinning (CP/MAS) NMR combined with 1H dipolar echo preparation. The resulting two-dimensional NMR spectra permit determination of the motionally averaged interpair second moment for protons attached to each resolved 13C site, from which the corresponding interpair order parameters can be deducted. A spin-lock mixing pulse before cross-polarization enables the detection of spin diffusion amongst the different regions of the lipid molecules. The method was applied to a variety of model membrane systems, including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/sterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sterol model membranes. The results agree well with previous studies using specifically deuterium labeled or predeuterated phospholipid molecules. It was also found that efficient spin diffusion takes place within the phospholipid acyl chains, and between the glycerol backbone and choline headgroup of these molecules. The experiment was also applied to biosynthetically 13C-labeled ergosterol incorporated into phosphatidylcholine bilayers. These results indicate highly restricted motions of both the sterol nucleus and the aliphatic side chain, and efficient spin exchange between these structurally dissimilar regions of the sterol molecule. Finally, studies were carried out in the lamellar liquid crystalline (L alpha) and inverted hexagonal (HII) phases of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). These results indicated that phosphatidylethanolamine lamellar phases are more ordered than the equivalent phases of phosphatidylcholines. In the HII (inverted hexagonal) phase, despite the increased translational freedom, there is highly constrained packing of the lipid molecules, particularly in

  5. Dressed qubits in nuclear spin baths

    SciTech Connect

    Wu Lianao

    2010-04-15

    We present a method to encode a dressed qubit into the product state of an electron spin localized in a quantum dot and its surrounding nuclear spins via a dressing transformation. In this scheme, the hyperfine coupling and a portion of a nuclear dipole-dipole interaction become logic gates, while they are the sources of decoherence in electron-spin qubit proposals. We discuss errors and corrections for the dressed qubits. Interestingly, the effective Hamiltonian of nuclear spins is equivalent to a pairing Hamiltonian, which provides the microscopic mechanism to protect dressed qubits against decoherence.

  6. Nuclear spin noise in NMR revisited

    NASA Astrophysics Data System (ADS)

    Ferrand, Guillaume; Huber, Gaspard; Luong, Michel; Desvaux, Hervé

    2015-09-01

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  7. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  8. A Short Set of Carbon 13-NMR Correlation Tables.

    ERIC Educational Resources Information Center

    Brown, D. W.

    1985-01-01

    Presents a short set of carbon-13 nuclear magnetic resonance (NMR) tables. These tables not only serve pedagogic purposes but also allow students to do calculations rapidly and with acceptable accuracy for a wide variety of compounds. (JN)

  9. Molecular determinants for drug-receptor interactions. 8. Anisotropic and internal motions in morphine, nalorphine, oxymorphone, naloxone and naltrexone in aqueous solution by carbon-13 NMR spin-lattice relaxation times

    NASA Astrophysics Data System (ADS)

    Grassi, Antonio; Perly, Bruno; Pappalardo, Giuseppe C.

    1989-02-01

    Carbon-13 NMR spin-lattice relaxation times ( T1) were measured for morphine, oxymorphone, nalorphine, naloxone and naltrexone as hydrochloride salts in 2H 2O solution. The data refer to the molecules in the N-equatorial configuration. The experimental T1 values were interpreted using a model of anisotropic reorientation of a rigid body with superimposed internal motions of the flexible N-methyl, N-methyl-allyl and N-methyl-cyclopropyl fragments. The calculated internal motional rates were found to markedly decrease on passing from agonists to mixed (nalorphine) and pure (naloxone, naltrexone) antagonists. For these latter the observed trend of the internal flexibility about NC and CC bonds of the N-substituents is discussed in terms of a correlation with their relative antagonistic potencies. In fact, such an evidence of decreasing internal conformational dynamics in the order nalorphine, naloxone, naltrexone, appeared interestingly in line with the "two-state" model of opiate receptor operation mode proposed by Snyder.

  10. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled Electron Spin

    SciTech Connect

    Taminiau, T.H.; Wagenaar, J.J.T.; van der Sar, T.; Jelezko, F.; Dobrovitski, Viatcheslav V.; Hanson, R.

    2012-09-28

    We experimentally isolate, characterize, and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multipulse sequences on the electron spin that resonantly amplify the interaction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.

  11. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  12. Nuclear spin relaxation of polycrystalline 129 xenon

    NASA Astrophysics Data System (ADS)

    Samuelson, Gary Lee, Jr.

    Through spin exchange optical pumping, it is possible to achieve upwards of 30% nuclear spin polarization in 129Xe with an NMR signal enhancement of some 5 orders of magnitude over typical thermal signals. Hyperpolarized 129Xe has thus found application in several leading-edge technologies. At 1 T and 4.2 K, the characteristic relaxation time of enriched polycrystalline 129Xe (86% 129Xe, 0.1% 131Xe) is well over 200 hrs, sufficient for long-term storage and transport. Longitudinal nuclear spin relaxation of 129Xe at more convenient fields from 1 to 200 G is studied in detail. Significant structure in relaxation times vs. magnetic field is seen; the most prominent new finding being a sharp local long-time T 1 maximum of 1000 mins at ≈3 G. Such structure has not been observed in previous measurements of natural Xe. Below temperatures of 10 K, relaxation can be attributed to cross relaxation with 131Xe, mediated by spin diffusion. Measurements of 129Xe relaxation as a function of magnetic field, temperature and Xe isotopic content are reported and compared with expected theoretical behaviors. It is seen that the characteristic nuclear spin relaxation of enriched 129Xe at 4.2 K is nonexponential at these low fields. For fields between 10 G and 200 G, these nonexponential relaxation curves can be fit well with a specific spin diffusion model. Below 10 G no such fit is possible and thus quantum mechanical details of the coupling between 129Xe, 131Xe and the bulk lattice are considered. These findings support the hypothesis that cross relaxation with 131Xe is indeed a dominant actor in the nuclear spin relaxation of polycrystalline 129 Xe at such low fields and low temperatures.

  13. Nuclear moment of inertia and spin distribution of nuclear levels

    SciTech Connect

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-12-15

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region.

  14. Nuclear spin effects in optical lattice clocks

    SciTech Connect

    Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun

    2007-08-15

    We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.

  15. Feedback control of nuclear spin bath for a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Pang, Hongliang; Gong, Zhirui; Yao, Wang

    2014-03-01

    In a semiconductor quantum dot, the nuclear spin bath plays an important role as the ultimate environment of an electron or hole spin at low temperature. Through dynamic nuclear spin polarization driven by an oscillating electric field, we show that feedback controls can be implemented on the nuclear spin bath of a single hole spin. The feedback controls utilize the anisotropic hyperfine interaction between the hole spin and the nuclear spins. The negative feedback can suppress the statistical fluctuations of the nuclear hyperfine field and lead to longer coherence time of the hole spin. Positive feedback can possibly lead to cat like state of nuclear spin bath. The efficiency of the controls schemes is investigated under different parameters and control strategies. The work is supported by the Croucher Foundation under the Croucher Innovation Award, and the Research Grant Council of Hong Kong (HKU706309P, HKU8/CRF/11G).

  16. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance.

    PubMed

    Lopes, Thiago I B; Ribeiro, Marilene D M M; Ming, Chiu C; Grimaldi, Renato; Gonçalves, Lireny A G; Marsaioli, Anita J

    2016-12-01

    The nutritional and organoleptic attributes of oils can proceed via interesterification of oils blends catalyzed by enzymes or chemicals. Enzymatic interesterification processes are preferred due the regiospecific outcome. Traditionally, monitoring of distribution of fatty acids (FA) in glycerol backbone is performed by enzymatic and chromatographic methods that are time-consuming, involving a series of chemical manipulations employing large volumes of organic solvents. Alternatively, carbon-13 nuclear magnetic resonance ((13)C NMR) is a fast and reliable technique that could be applied to determine the saturated and unsaturated FA distribution of the triacylglycerols (TAGs) present in high oleic sunflower oil (SO) and fully hydrogenated high oleic sunflower oil (HSO) blends and their interesterification products. The enzymatic interesterification was conducted employing the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM), the results show that the process was not completely regiospecific at sn-1,3 positions, due to the spontaneous acyl migration from position sn-2 to sn-1,3. PMID:27374579

  17. The physical state of osmoregulatory solutes in unicellular algae. A natural-abundance carbon-13 nuclear-magnetic-resonance relaxation study.

    PubMed Central

    Norton, R S; MacKay, M A; Borowitzka, L J

    1982-01-01

    Natural-abundance 13C n.m.r. spin-lattice relaxation-time measurements have been carried out on intact cells of the unicellular blue--green alga Synechococcus sp. and the unicellular green alga Dunaliella salina, with the aim of characterizing the environments of the organic osmoregulatory solutes in these salt-tolerant organisms. In Synechococcus sp., all of the major organic osmoregulatory solute, 2-O-alpha-D-glucopyranosylglycerol, is visible in spectra of intact cells. Its rotational motion in the cell is slower by a factor of approx. 2.4 than in aqueous solution, but the molecule is still freely mobile and therefore able to contribute to the osmotic balance. In D. salina, only about 60% of the osmoregulatory solute glycerol is visible in spectra of intact cells. The rotational mobility of this observable fraction is approximately half that found in aqueous solution, but the data also indicate that there is a significant concentration of some paramagnetic species in D. salina which contributes to the overall spin-lattice relaxation of the glycerol carbon atoms. The non-observable fraction, which must correspond to glycerol molecules that have very broad 13C resonances and that are in slow exchange with bulk glycerol, has not been properly characterized as yet, but may represent glycerol in the chloroplast. The implications of these findings in relation to the physical state of the cytoplasm and the mechanism of osmoregulation in these cells are discussed. PMID:6807296

  18. Control of electron spin decoherence caused by electron nuclear spin dynamics in a quantum dot

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao; Yao, Wang; Sham, L. J.

    2007-07-01

    Control of electron spin decoherence in contact with a mesoscopic bath of many interacting nuclear spins in an InAs quantum dot is studied by solving the coupled quantum dynamics. The nuclear spin bath, because of its bifurcated evolution predicated on the electron spin up or down state, measures the which-state information of the electron spin and hence diminishes its coherence. The many-body dynamics of the nuclear spin bath is solved with a pair-correlation approximation. In the relevant timescale, nuclear pair-wise flip flops, as elementary excitations in the mesoscopic bath, can be mapped into the precession of non-interacting pseudo-spins. Such mapping provides a geometrical picture for understanding the decoherence and for devising control schemes. A close examination of nuclear bath dynamics reveals a wealth of phenomena and new possibilities of controlling the electron spin decoherence. For example, when the electron spin is flipped by a π-pulse at τ, its coherence will partially recover at \\sqrt{2}\\tau as a consequence of quantum disentanglement from the mesoscopic bath. In contrast to the re-focusing of inhomogeneously broadened phases by conventional spin-echoes, the disentanglement is realized through shepherding quantum evolution of the bath state via control of the quantum object. A concatenated construction of pulse sequences can eliminate the decoherence with arbitrary accuracy, with the nuclear nuclear spin interaction strength acting as the controlling small parameter.

  19. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond.

    PubMed

    Zhao, Nan; Hu, Jian-Liang; Ho, Sai-Wah; Wan, Jones T K; Liu, R B

    2011-04-01

    The detection of single nuclear spins is an important goal in magnetic resonance spectroscopy. Optically detected magnetic resonance can detect single nuclear spins that are strongly coupled to an electron spin, but the detection of distant nuclear spins that are only weakly coupled to the electron spin has not been considered feasible. Here, using the nitrogen-vacancy centre in diamond as a model system, we numerically demonstrate that it is possible to detect two or more distant nuclear spins that are weakly coupled to a centre electron spin if these nuclear spins are strongly bonded to each other in a cluster. This cluster will stand out from other nuclear spins by virtue of characteristic oscillations imprinted onto the electron spin decoherence profile, which become pronounced under dynamical decoupling control. Under many-pulse dynamical decoupling, the centre electron spin coherence can be used to measure nuclear magnetic resonances of single molecules. This atomic-scale magnetometry should improve the performance of magnetic resonance spectroscopy for applications in chemical, biological, medical and materials research, and could also have applications in solid-state quantum computing. PMID:21358646

  20. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  1. Dynamic nuclear polarization of carbonyl and methyl 13C spins in acetate using trityl OX063

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Lumata, Lloyd

    2015-03-01

    Hyperpolarization via dissolution dynamic nuclear polarization (DNP) is a physics technique that amplifies the magnetic resonance signals by several thousand-fold for biomedical NMR spectroscopy and imaging (MRI). Herein we have investigated the effect of carbon-13 isotopic location on the DNP of acetate (one of the biomolecules commonly used for hyperpolarization) at 3.35 T and 1.4 K using a narrow ESR linewidth free radical trityl OX063. We have found that the carbonyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl group, beneficial in the liquid-state, did not produce an improvement in the polarization level at cryogenic conditions. Concurrently, the solid-state nuclear relaxation of these samples correlate with the polarization levels achieved. These results suggest that the location of the 13C isotopic labeling in acetate has a direct impact on the solid-state polarization achieved and is mainly governed by the nuclear relaxation leakage factor.

  2. Feedback control of nuclear spin bath of a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Pang, Hongliang; Gong, Zhirui; Yao, Wang

    2015-01-01

    For a III-V semiconductor quantum dot charged with a single hole, we investigate the feedback control of the nuclear spin bath through dynamical nuclear spin polarization. The scheme utilizes the hole-nuclear flip-flop by their anisotropic hyperfine interaction, where the flip direction of the nuclear spin can be conditioned on the sign of the overall hyperfine field through initialization processes that do not involve explicit measurement. We show that a negative feedback can be implemented to suppress the statistical fluctuations of the nuclear hyperfine field for enhancing the coherence time of the hole spin qubit. Positive feedback can prepare the nuclear spin ensemble into states where the nuclear hyperfine field distribution has two well separated peaks, realizing a quantum heat bath that cannot be described by a single effective temperature.

  3. Nuclear spin selection rules for reactive collision systems by the spin-modification probability method.

    PubMed

    Park, Kisam; Light, John C

    2007-12-14

    The spin-modification probability (SMP) method, which provides fundamental and detailed quantitative information on the nuclear spin selection rules, is discussed more systematically and generalized for reactive collision systems involving more than one configuration of reactant and product molecules, explicitly taking account of the conservation of the overall nuclear spin symmetry as well as the conservation of the total nuclear spin angular momentum, under the assumption of no nuclear hyperfine interaction. The values of SMP once calculated can be used for any system of identical nuclei of any spin as long as the system has the corresponding nuclear spin symmetry. The values of SMP calculated for simple systems can also be used for more complex systems containing several kinds of identical nuclei or various isotopomers. The generalized formulation of statistical scattering theory which can easily represent various rearrangement mechanisms is also presented. PMID:18081384

  4. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  5. Nuclear magnetometry studies of spin dynamics in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Watanabe, S.; Hirayama, Y.

    2014-12-01

    We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.

  6. Spin Modes in Nuclei and Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-01

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in 12C and 14C and an anomalous M1 transition in 17C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by Δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  7. Spin Modes in Nuclei and Nuclear Forces

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-06

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  8. Optically induced dynamic nuclear spin polarisation in diamond

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  9. Room temperature hyperpolarization of nuclear spins in bulk

    PubMed Central

    Tateishi, Kenichiro; Negoro, Makoto; Nishida, Shinsuke; Kagawa, Akinori; Morita, Yasushi; Kitagawa, Masahiro

    2014-01-01

    Dynamic nuclear polarization (DNP), a means of transferring spin polarization from electrons to nuclei, can enhance the nuclear spin polarization (hence the NMR sensitivity) in bulk materials at most 660 times for 1H spins, using electron spins in thermal equilibrium as polarizing agents. By using electron spins in photo-excited triplet states instead, DNP can overcome the above limit. We demonstrate a 1H spin polarization of 34%, which gives an enhancement factor of 250,000 in 0.40 T, while maintaining a bulk sample (∼0.6 mg, ∼0.7 × 0.7 × 1 mm3) containing >1019 1H spins at room temperature. Room temperature hyperpolarization achieved with DNP using photo-excited triplet electrons has potentials to be applied to a wide range of fields, including NMR spectroscopy and MRI as well as fundamental physics. PMID:24821773

  10. Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Rudolph, J.; Wassner, T. A.; Eickhoff, M.; Hägele, D.

    2016-04-01

    We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction, and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.

  11. Enhancement of electron spin coherence by optical preparation of nuclear spins.

    PubMed

    Stepanenko, Dimitrije; Burkard, Guido; Giedke, Geza; Imamoglu, Atac

    2006-04-01

    We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros. PMID:16712008

  12. The production of lipids alternately labelled with carbon-13.

    PubMed

    Boyle-Roden, Elizabeth; German, J B; Wood, B J B

    2003-07-01

    Chlorella cells were shown to have similar fatty acid profiles when grown photoautotrophically or if grown photoheterotrophically with ethanoate (acetate) as carbon source. When supplied with ethanoate labelled with carbon-13 in the methyl group, the alga incorporated it into fatty acids with retention of the sequence of labelling on alternate carbon atoms, thus providing a convenient method for synthesising lipids in a form useful for nuclear magnetic resonance (NMR) studies of lipids in situ in membranes. Marine algae used in fish farming may have higher levels of very highly unsaturated fatty acids; proposals for producing these compounds labelled with carbon-13 are, therefore, presented, based on using centrally labelled glycerol. The scope for producing other substances labelled in a form suitable for NMR studies, such as carotenoids, is discussed. PMID:12919810

  13. Long-lived nuclear spin states far from magnetic equivalence.

    PubMed

    Stevanato, Gabriele; Roy, Soumya Singha; Hill-Cousins, Joe; Kuprov, Ilya; Brown, Lynda J; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H

    2015-02-28

    Clusters of coupled nuclear spins may form long-lived nuclear spin states, which interact weakly with the environment, compared to ordinary nuclear magnetization. All experimental demonstrations of long-lived states have so far involved spin systems which are close to the condition of magnetic equivalence, in which the network of spin-spin couplings is conserved under all pair exchanges of symmetry-related nuclei. We show that the four-spin system of trans-[2,3-(13)C2]-but-2-enedioate exhibits a long-lived nuclear spin state, even though this spin system is very far from magnetic equivalence. The 4-spin long-lived state is accessed by slightly asymmetric chemical substitutions of the centrosymmetric molecular core. The long-lived state is a consequence of the locally centrosymmetric molecular geometry for the trans isomer, and is absent for the cis isomer. A general group theoretical description of long-lived states is presented. It is shown that the symmetries of coherent and incoherent interactions are both important for the existence of long-lived states. PMID:25633837

  14. Decoupling a hole spin qubit from the nuclear spins.

    PubMed

    Prechtel, Jonathan H; Kuhlmann, Andreas V; Houel, Julien; Ludwig, Arne; Valentin, Sascha R; Wieck, Andreas D; Warburton, Richard J

    2016-09-01

    A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform. PMID:27454044

  15. Anisotropic nuclear-spin diffusion in double quantum wells

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kume, W.; Watanabe, S.; Akiba, K.; Nagase, K.; Hirayama, Y.

    2015-03-01

    Nuclear spin diffusion in double quantum wells (QWs) is examined by using dynamic nuclear polarization (DNP) at a Landau level filling factor ν =2 /3 spin phase transition (SPT). The longitudinal resistance increases during the DNP of one of the two QW (the "polarization QW") by means of a large applied current and starts to decrease just after the termination of the DNP. On the other hand, the longitudinal resistance of the other QW (the "detection QW") continuously increases for approximately 2 h after the termination of the DNP of the polarization QW. It is therefore concluded that the nuclear spins diffuse from the polarization QW to the detection QW. The time evolution of the longitudinal resistance of the polarization QW is explained mainly by the nuclear spin diffusion in the in-plane direction. In contrast, that of the detection QW manifests much slower nuclear diffusion in the perpendicular direction through the AlGaAs barrier.

  16. Quantum dot spin coherence governed by a strained nuclear environment.

    PubMed

    Stockill, R; Le Gall, C; Matthiesen, C; Huthmacher, L; Clarke, E; Hugues, M; Atatüre, M

    2016-01-01

    The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin-photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. PMID:27615704

  17. Nuclear Spin Conversion in CH4: A Multichannel Relaxation Mechanism.

    PubMed

    Cacciani, Patrice; Cosléou, Jean; Khelkhal, Mohamed; Čermák, Peter; Puzzarini, Cristina

    2016-01-21

    Experiments on nuclear spin interconversion of ortho, para, and meta nuclear spin isomers of the methane molecule have been undertaken in gas phase and cryomatrices. Only the latter environment has led to the observation of the nuclear spin conversion. In this study, a quantitative explanation is given for the first time by considering the coupling of three relaxation paths: meta ⇔ para, meta ⇔ ortho, and ortho ⇔ para. The global evolution of the three populations of spin isomers is thus described by two characteristic times, which have been calculated using the best values of the energy levels for the vibrational ground state, of the intramolecular magnetic interactions, and of the collisional relaxation rates, and for different pressure and temperature conditions. Such calculations also provide an indication for the proper choice of reliable scenarios for experimental separation of the spin isomers of methane. PMID:26681482

  18. Single-shot readout of a single nuclear spin.

    PubMed

    Neumann, Philipp; Beck, Johannes; Steiner, Matthias; Rempp, Florian; Fedder, Helmut; Hemmer, Philip R; Wrachtrup, Jörg; Jelezko, Fedor

    2010-07-30

    Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin's behavior. We demonstrated single-shot, projective measurement of a single nuclear spin in diamond using a quantum nondemolition measurement scheme, which allows real-time observation of an individual nuclear spin's state in a room-temperature solid. Such an ideal measurement is crucial for realization of, for example, quantum error correction protocols in a quantum register. PMID:20595582

  19. Spin-mediated consciousness theory: possible roles of neural membrane nuclear spin ensembles and paramagnetic oxygen.

    PubMed

    Hu, Huping; Wu, Maoxin

    2004-01-01

    A novel theory of consciousness is proposed in this paper. We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. That is, spin is the "mind-pixel". The unity of mind is achieved by entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we theorize that human brain works as follows: through action potential modulated nuclear spin interactions and paramagnetic O2/NO driven activations, the nuclear spins inside neural membranes and proteins form various entangled quantum states some of which survive decoherence through quantum Zeno effects or in decoherence-free subspaces and then collapse contextually via irreversible and non-computable means producing consciousness and, in turn, the collective spin dynamics associated with said collapses have effects through spin chemistry on classical neural activities thus influencing the neural networks of the brain. Our proposal calls for extension of associative encoding of neural memories to the dynamical structures of neural membranes and proteins. Thus, according our theory, the nuclear spin ensembles are the "mind-screen" with nuclear spins as its pixels, the neural membranes and proteins are the mind-screen and memory matrices, and the biologically available paramagnetic species such as O2 and NO are pixel-activating agents. Together, they form the neural substrates of consciousness. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies. Further, experimental realizations of intra-/inter-molecular nuclear spin coherence and entanglement, macroscopic entanglement of spin ensembles and NMR quantum computation, all in room temperatures, strongly suggest the possibility of a spin

  20. Polarization of nuclear spins by a cold nanoscale resonator

    SciTech Connect

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-12-15

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  1. Nuclear magnetic resonance spectroscopy with single spin sensitivity.

    PubMed

    Müller, C; Kong, X; Cai, J-M; Melentijević, K; Stacey, A; Markham, M; Twitchen, D; Isoya, J; Pezzagna, S; Meijer, J; Du, J F; Plenio, M B; Naydenov, B; McGuinness, L P; Jelezko, F

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen-vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four (29)Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  2. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  3. Nuclear moments of inertia at high spins

    SciTech Connect

    Deleplanque, M.A.

    1983-12-01

    Nuclei with highest angular momentum are discussed. The production of high spin states, and the basic ideas associated with high spin physics are reviewed. Recent developments from continuum ..gamma..-ray studies are presented: the measurement of different average moments of inertia gives new information on the interplay between collective and single particle aspects at high spins. Finally, the exciting possibility of resolving the continuum spectra with new detector systems is examined. 8 references.

  4. Robust dynamical decoupling sequences for individual-nuclear-spin addressing

    NASA Astrophysics Data System (ADS)

    Casanova, J.; Wang, Z.-Y.; Haase, J. F.; Plenio, M. B.

    2015-10-01

    We propose the use of non-equally-spaced decoupling pulses for high-resolution selective addressing of nuclear spins by a quantum sensor. The analytical model of the basic operating principle is supplemented by detailed numerical studies that demonstrate the high degree of selectivity and the robustness against static and dynamic control-field errors of this scheme. We exemplify our protocol with a nitrogen-vacancy-center-based sensor to demonstrate that it enables the identification of individual nuclear spins that form part of a large spin ensemble.

  5. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    SciTech Connect

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.

  6. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    DOE PAGESBeta

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less

  7. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    PubMed Central

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-01-01

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems. PMID:26497777

  8. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  9. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    SciTech Connect

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  10. Nuclear-spin observation of noise spectra in semiconductors

    NASA Astrophysics Data System (ADS)

    Sasaki, Susumu; Yuge, Tatsuro; Nishimori, Masashi; Kawanago, Takashi; Hirayama, Yoshiro

    2013-12-01

    We propose a systematic method of obtaining the spectra of noises that cause the decoherence of spins in solids. Based on this method, we experimentally show that this method can be applied to nuclear spins in semiconductors. We clarify that the spectral intensity must be derived from the long-time tail of the multiple-echo decay. To obtain higher-frequency noise, the inversion-pulse interval must be as short as possible, which required us to employ the alternating-phase Carr-Purcell sequence instead of the widely used Carr-Purcell Meiboom-Gill. For 75As nuclear spin in variously-doped GaAs, we observed a Lorentzian spectrum, instead of the commonly observed 1/f spectrum. This indicates that the nuclear spins are indeed in a coherently-controlled state.

  11. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  12. Vanishing current hysteresis under competing nuclear spin pumping processes in a quadruplet spin-blockaded double quantum dot

    SciTech Connect

    Amaha, S.; Hatano, T.; Tarucha, S.; Gupta, J. A.; Austing, D. G.

    2015-04-27

    We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.

  13. Spin constraints on nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Robledo, L. M.; Bernard, R. N.; Bertsch, G. F.

    2014-02-01

    The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parametrization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill suited to satisfy the spin constraint. In particular, the Gogny parametrization of the three-body interaction has the spin dependence opposite to that required by the observed spectra. The two-body part has a correct sign, but in combination the rule is violated as often as not. We conclude that a new functional form is needed for the effective three-body interaction that can take into better account the different spin-isospin channels of the interaction.

  14. Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was

  15. Staggered-spin contribution to nuclear spin-lattice relaxation in two-leg antiferromagnetic spin-12 ladders

    NASA Astrophysics Data System (ADS)

    Ivanov, D. A.; Lee, Patrick A.

    1999-02-01

    We study the nuclear spin-lattice relaxation rate 1/T1 in the two-leg antiferromagnetic spin-1/2 Heisenberg ladder. More specifically, we consider the contribution to 1/T1 from the processes with momentum transfer (π,π). In the limit of weak coupling between the two chains, this contribution is of activation type with gap 2Δ at low temperatures (Δ is the spin gap), but crosses over to a slowly decaying temperature dependence at the crossover temperature T~Δ. This crossover possibly explains the recent high-temperature NMR results on ladder-containing cuprates by Imai et al.

  16. Nuclear spin conversion of methane in solid parahydrogen.

    PubMed

    Miyamoto, Yuki; Fushitani, Mizuho; Ando, Daisuke; Momose, Takamasa

    2008-03-21

    The nuclear spin conversion of CH(4) and CD(4) isolated in solid parahydrogen was investigated by high resolution Fourier transform infrared spectroscopy. From the analysis of the temporal changes of rovibrational absorption spectra, the nuclear spin conversion rates associated with the rotational relaxation from the J=1 state to the J=0 state for both species were determined at temperatures between 1 and 6 K. The conversion rate of CD(4) was found to be 2-100 times faster than that of CH(4) in this temperature range. The faster conversion in CD(4) is attributed to the quadrupole interaction of D atoms in CD(4), while the conversion in CH(4) takes place mainly through the nuclear spin-nuclear spin interaction. The conversion rates depend on crystal temperature strongly above 3.5 K for CH(4) and above 2 K for CD(4), while the rates were almost constant below these temperatures. The temperature dependence indicates that the one-phonon process is dominant at low temperatures, while two-phonon processes become important at higher temperatures as a cause of the nuclear spin conversion. PMID:18361586

  17. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-01

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  18. Combustion resistance of the 129Xe hyperpolarized nuclear spin state.

    PubMed

    Stupic, Karl F; Six, Joseph S; Olsen, Michael D; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-01-01

    Using a methane-xenon mixture for spin exchange optical pumping, MRI of combustion was enabled. The (129)Xe hyperpolarized nuclear spin state was found to sufficiently survive the complete passage through the harsh environment of the reaction zone. A velocity profile (V(z)(z)) of a flame was recorded to demonstrate the feasibility of MRI velocimetry of transport processes in combustors. PMID:23165418

  19. Quantum and classical correlations in electron-nuclear spin echo

    SciTech Connect

    Zobov, V. E.

    2014-11-15

    The quantum properties of dynamic correlations in a system of an electron spin surrounded by nuclear spins under the conditions of free induction decay and electron spin echo have been studied. Analytical results for the time evolution of mutual information, classical part of correlations, and quantum part characterized by quantum discord have been obtained within the central-spin model in the high-temperature approximation. The same formulas describe discord in both free induction decay and spin echo although the time and magnetic field dependences are different because of difference in the parameters entering into the formulas. Changes in discord in the presence of the nuclear polarization β{sub I} in addition to the electron polarization β{sub S} have been calculated. It has been shown that the method of reduction of the density matrix to a two-spin electron-nuclear system provides a qualitatively correct description of pair correlations playing the main role at β{sub S} ≈ β{sub I} and small times. At large times, such correlations decay and multispin correlations ensuring nonzero mutual information and zero quantum discord become dominant.

  20. Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin

    NASA Astrophysics Data System (ADS)

    Stanley, M. J.; Matthiesen, C.; Hansom, J.; Le Gall, C.; Schulte, C. H. H.; Clarke, E.; Atatüre, M.

    2014-11-01

    The ability to discriminate between simultaneously occurring noise sources in the local environment of semiconductor InGaAs quantum dots, such as electric and magnetic field fluctuations, is key to understanding their respective dynamics and their effect on quantum dot coherence properties. We present a discriminatory approach to all-optical sensing based on two-color resonance fluorescence of a quantum dot charged with a single electron. Our measurements show that local magnetic field fluctuations due to nuclear spins in the absence of an external magnetic field are described by two correlation times, both in the microsecond regime. The nuclear spin bath dynamics show a strong dependence on the strength of resonant probing, with correlation times increasing by a factor of 4 as the optical transition is saturated. We interpret the behavior as motional averaging of both the Knight field of the resident electron spin and the hyperfine-mediated nuclear spin-spin interaction due to optically induced electron spin flips.

  1. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle

  2. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  3. Imaging mesoscopic nuclear spin noise with a diamond magnetometer

    NASA Astrophysics Data System (ADS)

    Meriles, Carlos A.; Jiang, Liang; Goldstein, Garry; Hodges, Jonathan S.; Maze, Jeronimo; Lukin, Mikhail D.; Cappellaro, Paola

    2010-09-01

    Magnetic resonance imaging can characterize and discriminate among tissues using their diverse physical and biochemical properties. Unfortunately, submicrometer screening of biological specimens is presently not possible, mainly due to lack of detection sensitivity. Here we analyze the use of a nitrogen-vacancy center in diamond as a magnetic sensor for nanoscale nuclear spin imaging and spectroscopy. We examine the ability of such a sensor to probe the fluctuations of the "classical" dipolar field due to a large number of neighboring nuclear spins in a densely protonated sample. We identify detection protocols that appropriately take into account the quantum character of the sensor and find a signal-to-noise ratio compatible with realistic experimental parameters. Through various example calculations we illustrate different kinds of image contrast. In particular, we show how to exploit the comparatively long nuclear spin correlation times to reconstruct a local, high-resolution sample spectrum.

  4. Optical Polarization of Nuclear Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Falk, Abram L.; Klimov, Paul V.; Ivády, Viktor; Szász, Krisztián; Christle, David J.; Koehl, William F.; Gali, Ádám; Awschalom, David D.

    2015-06-01

    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4 H - and 6 H -SiC. The 9 9 % ±1 % degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 μ K . By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

  5. High-spin nuclear structure data on the Internet

    SciTech Connect

    Singh, B. |

    1997-12-31

    The study of nuclear structure at fast nuclear rotations, using fusion-evaporation reactions, started in the early sixties but since the experimental observation of superdeformation about a decade ago it has become one of the most pursued research topics in nuclear physics. Large gamma-ray detector arrays GAMMASPHERE, EUROGAM, and GASP were developed during the last few years and these continue to produce a wealth of new, information about the properties of nuclei at high spins, including superdeformation. It is considered vital to compile, evaluate and systematize published data on many thousands of levels and gamma rays and associated nuclear bands obtained in such studies and make these available to the research community in conveniently retrievable and modern formats. This talk will describe the numerical, bibliographic and other high-spin related databases that are already accessible via INTERNET. Present limitations and ways to improve the current status and display of such databases will also be discussed.

  6. Experiments with Exotic Spin-Oriented Nuclear Beams and Examples of Nuclear Moment Measurements

    NASA Astrophysics Data System (ADS)

    Balabanski, D. L.; Neyens, G.; Borremans, D.; Coulier, N.; Daugas, J. M.; Teughels, S.; Georgiev, G.; Lewitowicz, M.; de Oliveira Santos, F.; Penionzhkevich, Yu. E.

    2002-04-01

    An overview of a series of recent experiments aimed at the determination of the moments of exotic nuclei is presented. The spin-orientation: spin-alignment and spin-polarization of the nuclear ensemble, which is produced in fragmentation reactions, is of utmost importance for these studies. The discussion emphasizes on the open problems related to the production and the preservation of the orientation during the experiments. Pros and contras for experiments at both, intermediate and high energies are considered. Examples from nuclear moment measurements, which were performed using the LISE-III spectrometer at GANIL, are provided. The spin-alignment and the spin-polarization of the nuclear ensemble were studied by the β-LMR, β-NMR and TDPAD experimental techniques. The experimental results are discussed in the framework of the kinematical model of the fragmentation reaction.

  7. Multistability and spin diffusion enhanced lifetimes in dynamic nuclear polarization in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Forster, F.; Mühlbacher, M.; Schuh, D.; Wegscheider, W.; Giedke, G.; Ludwig, S.

    2015-12-01

    The control of nuclear spins in quantum dots is essential to explore their many-body dynamics and exploit their prospects for quantum information processing. We present a unique combination of dynamic nuclear spin polarization and electric-dipole-induced spin resonance in an electrostatically defined double quantum dot (DQD) exposed to the strongly inhomogeneous field of two on-chip nanomagnets. Our experiments provide direct and unrivaled access to the nuclear spin polarization distribution and allow us to establish and characterize multiple fixed points. Further, we demonstrate polarization of the DQD environment by nuclear spin diffusion which significantly stabilizes the nuclear spins inside the DQD.

  8. Dependence of nuclear spin singlet lifetimes on RF spin-locking power

    NASA Astrophysics Data System (ADS)

    DeVience, Stephen J.; Walsworth, Ronald L.; Rosen, Matthew S.

    2012-05-01

    We measure the lifetime of long-lived nuclear spin singlet states as a function of the strength of the RF spin-locking field and present a simple theoretical model that agrees well with our measurements, including the low-RF-power regime. We also measure the lifetime of a long-lived coherence between singlet and triplet states that does not require a spin-locking field for preservation. Our results indicate that for many molecules, singlet states can be created using weak RF spin-locking fields: more than two orders of magnitude lower RF power than in previous studies. Our findings suggest that for many endogenous biomolecules, singlets and related states with enhanced lifetimes might be achievable in vivo with safe levels of RF power.

  9. Nuclear moments of inertia at high spin

    SciTech Connect

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in ..gamma..-..gamma.. correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum ..gamma..-ray spectra of rotational nuclei up to high frequencies. The evolution of ..gamma..-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei.

  10. Search for an Atomic EDM with Optical-Coupling Nuclear Spin Oscillator

    SciTech Connect

    Asahi, K.; Uchida, M.; Inoue, T.; Hatakeyama, N.; Yoshimi, A.

    2007-06-13

    We have constructed a nuclear spin oscillator of a new type, that employs a feedback scheme based on an optical spin detection and suceeding spin control by a transverse field application. This spin oscillator parallels the conventional spin maser in many points, but exhibits advantages and requirements that are different from those with the spin maser. By means of the optical-coupling nuclear spin oscillator, an experimental setup to search for an electric dipole moment (EDM) in a spin 1/2 diamagnetic atom 129Xe is being developed.

  11. Decoherence-protected nuclear spin quantum register in diamond

    NASA Astrophysics Data System (ADS)

    Dobrovitski, Viatcheslav; Kuo, Wan Jung; Hanson, Ronald; Taminiau, Tim H.

    2013-03-01

    We analyze the decoherence-protected operation of a quantum register based on the nuclear spins surrounding a nitrogen-vacancy (NV) center in diamond. Combination of the decoherence protection with the quantum gates is achieved by applying the decoupling pulses to the NV center's electronic spin in resonance with the motion of one of the nuclear spins. In this way, many weakly coupled (tens of kHz) nuclei located far from the NV center can be combined in a quantum register. We study the limits, set by realistic experimental parameters, on the size of such a register and on the duration of the quantum gates needed for its operation. We also consider the ways of accelerating the quantum gate operation, and integration of the decoherence-protected gates with the decoupling of the nuclear spins themselves. We conclude that creation of such registers is feasible with current experimental capabilities. Work at the Ames Laboratory was supported by the Department of Energy - Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  12. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time.

    PubMed

    Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G

    2016-08-12

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations. PMID:27563998

  13. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  14. Fast Room-Temperature Phase Gate on a Single Nuclear Spin in Diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, S.; Brundage, T. O.; Petta, J. R.

    2015-03-01

    Nuclear spins support long lived quantum coherence due to weak coupling to the environment, but are difficult to rapidly control using nuclear magnetic resonance as a result of the small nuclear magnetic moment. We demonstrate a fast ~ 500 ns nuclear spin phase gate on a 14N nuclear spin qubit intrinsic to a nitrogen-vacancy center in high purity diamond. This phase gate is achieved by utilizing electron-nuclear hyperfine interaction. By driving off-resonant Rabi oscillations on the electronic spin, we can generate an arbitrary phase gate on the nuclear spin. We also demonstrate that repeated applications of π-phase gates can bang-bang decouple the nuclear spin from the environment, locking the spin state for up to 140 μs. Research was supported by the Sloan and Packard Foundations, the National Science Foundation through Awards DMR-0819860 and DMR-0846341, and the Army Research Office through PECASE Award W911NF-08-1-0189.

  15. Dynamics of nuclear spin polarization induced and detected by coherently precessing electron spins in fluorine-doped ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Kirstein, E.; Greilich, A.; Zhukov, E. A.; Kazimierczuk, T.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2016-02-01

    We study the dynamics of optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer via time-resolved Kerr rotation. The nuclear polarization in the vicinity of a fluorine donor is induced by interaction with coherently precessing electron spins in a magnetic field applied in the Voigt geometry. It is detected by nuclei-induced changes in the electron spin coherence signal. This all-optical technique allows us to measure the longitudinal spin relaxation time T1 of the 77Se isotope in a magnetic field range from 10 to 130 mT under illumination. We combine the optical technique with radio frequency methods to address the coherent spin dynamics of the nuclei and measure Rabi oscillations, Ramsey fringes, and the nuclear spin echo. The inhomogeneous spin dephasing time T2* and the spin coherence time T2 of the 77Se isotope are measured. While the T1 time is on the order of several milliseconds, the T2 time is several hundred microseconds. The experimentally determined condition T1≫T2 verifies the validity of the classical model of nuclear spin cooling for describing the optically induced nuclear spin polarization.

  16. Nuclear-spin-lattice relaxation in rhenium metal

    SciTech Connect

    Dimitropoulos, C.; Bucher, J.P.; Borsa, F.; Corti, M.

    1989-04-01

    Nuclear-spin-lattice relaxation measurements are presented for /sup 187/Re in Re metal as a function of temperature. The relaxation transition probabilities were extracted from the nuclear magnetization recovery curves both in high magnetic field (H/sub 0/ = 8 T) nuclear-magnetic-resonance experiments and in nuclear-quadrupole-resonance (H/sub 0/ = 0) experiments. It is found that the dominant relaxation mechanisms is due to magnetic rather then quadrupolar hyperfine interaction with W/sub M/ = 1.32 T. The data are analyzed in terms of the electronic structure of Re metal. The analysis confirms that Re is a ''weakly enhanced'' transition metal with a nuclear relaxation rate dominated by the s-contact hyperfine interaction.

  17. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  18. Fast Nuclear Spin Relaxation in Hyperpolarized Solid 129Xe

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.

    2002-04-01

    We report extensive new measurements of the longitudinal relaxation time T1 of 129Xe nuclear spins in solid xenon. For temperatures T<120 K and magnetic fields B>0.05 T, we found T1 on the order of hours, in good agreement with previous measurements and with the predicted phonon-scattering limit for the spin-rotation interaction. For T>120 K, our new data show that T1 can be much shorter than the phonon scattering limit. For B = 0.06 T, a field often used to accumulate hyperpolarized xenon, T1 is ~6 s near the Xe melting point Tm = 161.4 K. From T = 50 K to Tm, the new data are in excellent agreement with the theoretical prediction that the relaxation is due to (i) modulation of the spin-rotation interaction by phonons, and (ii) modulation of the dipole-dipole interaction by vacancy diffusion.

  19. Storing entanglement of nuclear spins via Uhrig dynamical decoupling

    SciTech Connect

    Roy, Soumya Singha; Mahesh, T. S.; Agarwal, G. S.

    2011-06-15

    Stroboscopic spin flips have already been shown to prolong the coherence times of quantum systems under noisy environments. Uhrig's dynamical decoupling scheme provides an optimal sequence for a quantum system interacting with a dephasing bath. Several experimental demonstrations have already verified the efficiency of such dynamical decoupling schemes in preserving single-qubit coherences. In this work we describe the experimental study of Uhrig's dynamical decoupling in preserving two-qubit entangled states using an ensemble of spin-1/2 nuclear pairs in solution state. We find that the performance of odd-order Uhrig sequences in preserving entanglement is superior to both even-order Uhrig sequences and periodic spin-flip sequences. We also find that there exists an optimal order of the Uhrig sequence in which a singlet state can be stored at high correlation for about 30 seconds.

  20. Anisotropic nuclear spin relaxation in single-crystal xenon

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Babich, D.; Happer, W.

    2002-04-01

    We extend the theory of longitudinal spin relaxation of 129Xe nuclei in frozen xenon to the case of single-crystal samples, where the relaxation rate depends on the direction of the applied magnetic field with respect to the crystalline axes. For sufficiently large magnetic fields, the relaxation is dominated by spin-flip Raman scattering of lattice phonons. Two closely related interactions couple the lattice phonons to the spins of 129Xe nuclei: the nuclear spin-rotation interaction between nearest-neighbor atoms, which leads to an isotropic, field-independent relaxation rate, and the paramagnetic antishielding of the externally applied field at the site of 129Xe nuclei by the electrons of neighboring Xe atoms. The latter interaction, also known as the chemical shift anisotropy (CSA) interaction, leads to an anisotropic relaxation rate proportional to the square of the applied field. This mechanism dominates spin relaxation at fields of the order of the Debye field BD=kBTD/μB=82 T.

  1. Molecular properties in the Tamm-Dancoff approximation: indirect nuclear spin-spin coupling constants

    NASA Astrophysics Data System (ADS)

    Cheng, Chi Y.; Ryley, Matthew S.; Peach, Michael J. G.; Tozer, David J.; Helgaker, Trygve; Teale, Andrew M.

    2015-07-01

    The Tamm-Dancoff approximation (TDA) can be applied to the computation of excitation energies using time-dependent Hartree-Fock (TD-HF) and time-dependent density-functional theory (TD-DFT). In addition to simplifying the resulting response equations, the TDA has been shown to significantly improve the calculation of triplet excitation energies in these theories, largely overcoming issues associated with triplet instabilities of the underlying reference wave functions. Here, we examine the application of the TDA to the calculation of another response property involving triplet perturbations, namely the indirect nuclear spin-spin coupling constant. Particular attention is paid to the accuracy of the triplet spin-dipole and Fermi-contact components. The application of the TDA in HF calculations leads to vastly improved results. For DFT calculations, the TDA delivers improved stability with respect to geometrical variations but does not deliver higher accuracy close to equilibrium geometries. These observations are rationalised in terms of the ground- and excited-state potential energy surfaces and, in particular, the severity of the triplet instabilities associated with each method. A notable feature of the DFT results within the TDA is their similarity across a wide range of different functionals. The uniformity of the TDA results suggests that some conventional evaluations may exploit error cancellations between approximations in the functional forms and those arising from triplet instabilities. The importance of an accurate treatment of correlation for evaluating spin-spin coupling constants is highlighted by this comparison.

  2. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses

    NASA Astrophysics Data System (ADS)

    Munsch, Mathieu; Wüst, Gunter; Kuhlmann, Andreas V.; Xue, Fei; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Poggio, Martino; Warburton, Richard J.

    2014-09-01

    The nuclear spins in nanostructured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resource while suppressing the noise. NMR techniques are challenging: the group III and V isotopes have large spins with widely different gyromagnetic ratios; in strained material there are large atom-dependent quadrupole shifts; and nanoscale NMR is hard to detect. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radiofrequency pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back and forth a hundred times. We demonstrate that chirped NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributions for all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nanoscale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems.

  3. Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. S.; Flisinski, K.; Gerlovin, I. Ya.; Ignatiev, I. V.; Kavokin, K. V.; Verbin, S. Yu.; Yakovlev, D. R.; Reuter, D.; Wieck, A. D.; Bayer, M.

    2013-06-01

    The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As/GaAs quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically modified when changing this control field, as observed earlier in bulk semiconductors and quantum wells. However, the standard nuclear spin cooling theory, operating with the mean nuclear magnetic field (Overhauser field), fails to describe the experimental Hanle curves in a certain range of control fields. This controversy is resolved by taking into account the nuclear spin fluctuations owed to the finite number of nuclei in the quantum dot. We propose a model considering cooling of the nuclear spin system by electron spins experiencing fast vector precession in the random Overhauser fields of nuclear spin fluctuations. The model allows us to accurately describe the measured Hanle curves and to evaluate the parameters of the electron-nuclear spin system of the studied quantum dots.

  4. 129Xe EDM Search Experiment Using Active Nuclear Spin Maser

    NASA Astrophysics Data System (ADS)

    Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Suzuki, Takahiro; Shirai, Hazuki; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher P.; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    An active nuclear spin maser, which enables a precision measurement of spin precession frequency, is employed in the experimental search for permanent electric dipole moment (EDM) in the diamagnetic atom 129Xe. In order to eliminate systematic errors which limit the sensitivity of the experiment to an EDM, the following tactics are adopted: (i) 3He comagnetometry for the cancellation of long-term drifts in the external magnetic fields and (ii) double-cell geometry for the mitigation of frequency shifts due to interaction of 129Xe spin with polarized Rb atoms. In the present work, the design for the double-cell has been changed and a magnetic shield-coil system to provide a highly homogeneous magnetic field has been newly introduced. Thanks to increased polarization and longer 3He spin relaxation time, the dual-species maser of 129Xe and 3He in a double-cell geometry operated successfully. Our experiment is now at the stage of assembling these separate technical elements in order to start the measurement of 129Xe EDM in the 10-28 ecm region.

  5. Coherent control of a single ²⁹Si nuclear spin qubit.

    PubMed

    Pla, Jarryd J; Mohiyaddin, Fahd A; Tan, Kuan Y; Dehollain, Juan P; Rahman, Rajib; Klimeck, Gerhard; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2014-12-12

    Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV semiconductor materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This Letter presents the first experimental detection and manipulation of a single ²⁹Si nuclear spin. The quantum nondemolition single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of T₂=6.3(7)  ms—in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the ²⁹Si atom under investigation. These results demonstrate that single ²⁹Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer. PMID:25541792

  6. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495

  7. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  8. Solid effect in magic angle spinning dynamic nuclear polarization

    PubMed Central

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-01-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\omega _0 ^{ - 2}\\end{equation*} \\end{document}ω0−2 field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements

  9. Solid effect in magic angle spinning dynamic nuclear polarization.

    PubMed

    Corzilius, Björn; Smith, Albert A; Griffin, Robert G

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω(0)(-2) field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ε = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of (1)H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear (1)H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect. PMID:22894339

  10. Voltage-induced conversion of helical to uniform nuclear spin polarization in a quantum wire

    NASA Astrophysics Data System (ADS)

    Kornich, Viktoriia; Stano, Peter; Zyuzin, Alexander A.; Loss, Daniel

    2015-05-01

    We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on nonequilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.

  11. Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM

    SciTech Connect

    Yoshimi, A.; Asahi, K.; Inoue, T.; Uchida, M.; Hatakeyama, N.; Tsuchiya, M.; Kagami, S.

    2009-08-04

    A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.

  12. Pulsed nuclear pumping and spin diffusion in a single charged quantum dot.

    PubMed

    Ladd, Thaddeus D; Press, David; De Greve, Kristiaan; McMahon, Peter L; Friess, Benedikt; Schneider, Christian; Kamp, Martin; Höfling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa

    2010-09-01

    We report the observation of a feedback process between the nuclear spins in a single charged quantum dot under coherently pulsed optical excitation and its trion transition. The optical pulse sequence intersperses resonant narrow-band pumping for spin initialization with off-resonant ultrafast pulses for coherent electron-spin rotation. A hysteretic sawtooth pattern in the free-induction decay of the single electron spin is observed; a mathematical model indicates a competition between optical nuclear pumping and nuclear spin-diffusion. This effect allows dynamic tuning of the electron Larmor frequency to a value determined by the pulse timing, potentially allowing more complex coherent control operations. PMID:20867546

  13. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal

  14. Dynamics of entanglement of two electron spins interacting with nuclear spin baths in quantum dots

    NASA Astrophysics Data System (ADS)

    Bragar, Igor; Cywiński, Łukasz

    2015-04-01

    We study the dynamics of entanglement of two electron spins in two quantum dots, in which each electron is interacting with its nuclear spin environment. Focusing on the case of uncoupled dots, and starting from either Bell or Werner states of two qubits, we calculate the decay of entanglement due to the hyperfine interaction with the nuclei. We mostly focus on the regime of magnetic fields in which the bath-induced electron spin flips play a role, for example, their presence leads to the appearance of entanglement sudden death at finite time for two qubits initialized in a Bell state. For these fields, the intrabath dipolar interactions and spatial inhomogeneity of hyperfine couplings are irrelevant on the time scale of coherence (and entanglement) decay, and most of the presented calculations are performed using the uniform-coupling approximation to the exact hyperfine Hamiltonian. We provide a comprehensive overview of entanglement decay in this regime, considering both free evolution of the qubits, and an echo protocol with simultaneous application of π pulses to the two spins. All the currently relevant for experiments bath states are considered: the thermal state, narrowed states (characterized by diminished uncertainty of one of the components of the Overhauser field) of two uncorrelated baths, and a correlated narrowed state with a well-defined value of the z component of the Overhauser field interdot gradient. While we mostly use concurrence to quantify the amount of entanglement in a mixed state of the two electron spins, we also show that their entanglement dynamics can be reconstructed from measurements of the currently relevant for experiments entanglement witnesses and the fidelity of quantum teleportation, performed using a partially disentangled state as a resource.

  15. Hyperfine-enhanced gyromagnetic ratio of a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Sangtawesin, S.; McLellan, C. A.; Myers, B. A.; Bleszynski Jayich, A. C.; Awschalom, D. D.; Petta, J. R.

    2016-08-01

    The nuclear spin gyromagnetic ratio can be enhanced by hyperfine coupling to the electronic spin. Here we show wide tunability of this enhancement on a 15N nuclear spin intrinsic to a single nitrogen-vacancy center in diamond. We perform control of the nuclear spin near the ground state level anti-crossing (GSLAC), where the enhancement of the gyromagnetic ratio from the ground state hyperfine coupling is maximized. We demonstrate a two order of magnitude enhancement of the effective nuclear gyromagnetic ratio compared to the value obtained at 500 G, a typical operating field that is suitable for nuclear spin polarization. Finally, we show that with strong enhancements, the nuclear spin ultimately suffers dephasing from the inhomogeneous broadening of the NMR transition frequency at the GSLAC.

  16. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.

    2015-02-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.

  17. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    PubMed

    Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  18. Electron-Nuclear Spin Dynamics in a Mesoscopic Solid-State Quantum Computer

    SciTech Connect

    Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Nagaev, K.E.

    1998-12-07

    We numerically simulate the process of nuclear spin measurement in Kane's quantum computer. For this purpose, we model the quantum dynamics of two coupled nuclear spins located on {sup 31}P donors implanted in Si. We estimate the minimum time of measurement necessary for the reliable transfer of quantum information from the nuclear spin subsystem to the electronic one and the probability of error for typical values of external noise.

  19. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect

    Mamone, Salvatore Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  20. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Mamone, Salvatore; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Lei, Xuegong; Li, Yongjun; Denning, Mark; Carravetta, Marina; Goh, Kelvin; Horsewill, Anthony J.; Whitby, Richard J.; Levitt, Malcolm H.

    2014-05-01

    The water-endofullerene H2O@C60 provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H2O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H2O molecules is catalysed by 13C nuclei present in the cages.

  1. NMR response of nuclear-spin helix in quantum wires with hyperfine and spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Stano, Peter; Loss, Daniel

    2014-11-01

    We calculate the nuclear magnetic resonance (NMR) response of a quantum wire where at low temperature a self-sustained electron-nuclear spin order is created. Our model includes the electron mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange, electron spin-orbit interactions, nuclear dipolar interactions, and the static and oscillating NMR fields, all of which play an essential role. The paramagnet to helimagnet transition in the nuclear system is reflected in an unusual response: it absorbs at a frequency given by the internal RKKY exchange field, rather than the external static field, whereas the latter leads to a splitting of the resonance peak.

  2. Self-Polarization and Dynamical Cooling of Nuclear Spins in Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Rudner, M. S.; Levitov, L. S.

    2007-07-01

    The spin-blockade regime of double quantum dots features coupled dynamics of electron and nuclear spins resulting from the hyperfine interaction. We explain observed nuclear self-polarization via a mechanism based on feedback of the Overhauser shift on electron energy levels, and propose to use the instability toward self-polarization as a vehicle for controlling the nuclear spin distribution. In the dynamics induced by a properly chosen time-dependent magnetic field, nuclear spin fluctuations can be suppressed significantly below the thermal level.

  3. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  4. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Nichol, John M.; Harvey, Shannon P.; Shulman, Michael D.; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I.; Halperin, Bertrand I.; Yacoby, Amir

    2015-07-01

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  5. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-01-01

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems. PMID:26184854

  6. Dynamical decoupling design for identifying weakly coupled nuclear spins in a bath

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Wrachtrup, Jörg; Liu, Ren-Bao

    2014-09-01

    Identifying weakly coupled nuclear spins around single electron spins is a key step toward implementing quantum information processing using coupled electron-nuclei spin systems or sensing like single-spin nuclear magnetic resonance detection using diamond defect spins. Dynamical decoupling control of the center electron spin with periodic pulse sequences [e.g., the Carre-Purcell-Meiboom-Gill (CPMG) sequence] has been successfully used to identify single nuclear spins and to resolve structure of nuclear spin clusters. Here, we design a type of pulse sequence by replacing the repetition unit (a single π pulse) of the CPMG sequence with a group of nonuniformly spaced π pulses. Using the nitrogen-vacancy center system in diamond, we theoretically demonstrate that the designed pulse sequence improves the resolution of nuclear spin noise spectroscopy, and more information about the surrounding nuclear spins is extracted. The principle of dynamical decoupling design proposed in this paper is useful in many systems (e.g., defect spin qubit in solids, trapped ion, and superconducting qubit) for high-resolution noise spectroscopy.

  7. Nuclear Spin Orientation Dependence of Magnetoconductance: A New Method for Measuring the Spin of Charged Excitations in the QHE

    SciTech Connect

    Bowers, C.R.; Reno, J.L.; Simmons, J.A.; Vitkalov, S.A.

    1998-12-01

    A new method for measuring the spin of the electrically charged ground state excitations m the Q$j~j quantum Hall effect ia proposed and demonstmted for the tirst time in GaAs/AIGaAs nndtiquantum wells. The method is &sed on the nuclear spin orientation dependence of" the 2D dc conductivity y in the quantum Hall regime due to the nuclear hyperfine interaction. As a demonstration of this method the spin of the electrically charged excitations of the ground state is determined at filling factor v = 1.

  8. Characterization of hyperfine interaction between an NV electron spin and a first-shell 13C nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Rao, K. Rama Koteswara; Suter, Dieter

    2016-08-01

    The nitrogen-vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the 13C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.

  9. Quantum information processing with electronic and nuclear spins in semiconductors

    NASA Astrophysics Data System (ADS)

    Klimov, Paul Victor

    Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.

  10. Quantum limit for nuclear spin polarization in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Hildmann, Julia; Kavousanaki, Eleftheria; Burkard, Guido; Ribeiro, Hugo

    2014-05-01

    A recent experiment [E. A. Chekhovich et al., Phys. Rev. Lett. 104, 066804 (2010), 10.1103/PhysRevLett.104.066804] has demonstrated that high nuclear spin polarization can be achieved in self-assembled quantum dots by exploiting an optically forbidden transition between a heavy hole and a trion state. However, a fully polarized state is not achieved as expected from a classical rate equation. Here, we theoretically investigate this problem with the help of a quantum master equation and we demonstrate that a fully polarized state cannot be achieved due to formation of a nuclear dark state. Moreover, we show that the maximal degree of polarization depends on structural properties of the quantum dot.

  11. Nuclear spin decoherence of neutral 31P donors in silicon: Effect of environmental 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Petersen, Evan S.; Tyryshkin, A. M.; Morton, J. J. L.; Abe, E.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Lyon, S. A.

    2016-04-01

    Spectral diffusion arising from 29Si nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on 31P nuclear spin coherence is measured as a function of 29Si concentration using X -band pulsed electron nuclear double resonance. The 31P nuclear spin echo decays show that decoherence is controlled by 29Si flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% 29Si to 3 s in crystals containing 1% 29Si. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors "protects" the donor nuclear spins by suppressing 29Si flip-flops within a "frozen core," as a result of the detuning of the 29Si spins caused by their hyperfine coupling to the electron spin.

  12. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  13. Carbon-13 Labeling Used to Probe Cure and Degradation Reactions of High- Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher

    1998-01-01

    High-temperature, crosslinked polyimides are typically insoluble, intractible materials. Consequently, in these systems it has been difficult to follow high-temperature curing or long-term degradation reactions on a molecular level. Selective labeling of the polymers with carbon-13, coupled with solid nuclear magnetic resonance spectrometry (NMR), enables these reactions to be followed. We successfully employed this technique to provide insight into both curing and degradation reactions of PMR-15, a polymer matrix resin used extensively in aircraft engine applications.

  14. Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization.

    PubMed

    Mentink-Vigier, Frédéric; Paul, Subhradip; Lee, Daniel; Feintuch, Akiva; Hediger, Sabine; Vega, Shimon; De Paëpe, Gaël

    2015-09-14

    Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals. PMID:26235749

  15. Long-range photon-mediated gate scheme between nuclear spin qubits in diamond

    NASA Astrophysics Data System (ADS)

    Auer, Adrian; Burkard, Guido

    2016-01-01

    Defect centers in diamond are exceptional solid-state quantum systems that can have exceedingly long electron and nuclear spin coherence times. So far, single-qubit gates for the nitrogen nuclear spin, a two-qubit gate with a nitrogen-vacancy (NV) center electron spin, and entanglement between nearby nitrogen nuclear spins have been demonstrated. Here, we develop a scheme to implement a universal two-qubit gate between two distant nitrogen nuclear spins. Virtual excitation of an NV center that is embedded in an optical cavity can scatter a laser photon into the cavity mode; we show that this process depends on the nuclear spin state of the nitrogen atom. If two NV centers are simultaneously coupled to a common cavity mode and individually excited, virtual cavity photon exchange can mediate an effective interaction between the nuclear spin qubits, conditioned on the spin state of both nuclei, which implements a universal controlled-Z gate. We predict operation times below 10 μ s , which is four orders of magnitude faster than the decoherence time of nuclear spin qubits in diamond.

  16. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions.

    PubMed

    Dréau, A; Spinicelli, P; Maze, J R; Roch, J-F; Jacques, V

    2013-02-01

    We use the electronic spin of a single nitrogen-vacancy defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of (13)C isotopes, we first demonstrate high fidelity initialization and single-shot readout of an individual (13)C nuclear spin. By including the intrinsic (14)N nuclear spin of the nitrogen-vacancy defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature. PMID:23432227

  17. Robust Quantum-Network Memory Using Decoherence-Protected Subspaces of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Kalb, Norbert; Blok, Machiel S.; van Bemmelen, Koen J. M.; Taminiau, Tim H.; Hanson, Ronald; Twitchen, Daniel J.; Markham, Matthew

    2016-04-01

    The realization of a network of quantum registers is an outstanding challenge in quantum science and technology. We experimentally investigate a network node that consists of a single nitrogen-vacancy center electronic spin hyperfine coupled to nearby nuclear spins. We demonstrate individual control and readout of five nuclear spin qubits within one node. We then characterize the storage of quantum superpositions in individual nuclear spins under repeated application of a probabilistic optical internode entangling protocol. We find that the storage fidelity is limited by dephasing during the electronic spin reset after failed attempts. By encoding quantum states into a decoherence-protected subspace of two nuclear spins, we show that quantum coherence can be maintained for over 1000 repetitions of the remote entangling protocol. These results and insights pave the way towards remote entanglement purification and the realization of a quantum repeater using nitrogen-vacancy center quantum-network nodes.

  18. Optical pump-probe measurements of local nuclear spin coherence in semiconductor quantum wells.

    PubMed

    Sanada, H; Kondo, Y; Matsuzaka, S; Morita, K; Hu, C Y; Ohno, Y; Ohno, H

    2006-02-17

    We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction. PMID:16606048

  19. Coherent manipulation of an NV center and one carbon nuclear spin

    SciTech Connect

    Scharfenberger, Burkhard; Nemoto, Kae; Munro, William J.

    2014-12-04

    We study a three-qubit system formed by the NV center’s electronic and nuclear spin plus an adjacent spin 1/2 carbon {sup 13}C. Specifically, we propose a manipulation scheme utilizing the hyperfine coupling of the effective S=1 degree of freedom of the vacancy electrons to the two adjacent nuclear spins to achieve accurate coherent control of all three qubits.

  20. Nuclear Spin Dependent Parity Violation in Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Altuntas, Emine; Cahn, Sidney; Demille, David; Kozlov, Mikhail

    2016-05-01

    Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138 Ba19 F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137 Ba19 F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.

  1. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing. PMID:23598342

  2. A 3D-printed high power nuclear spin polarizer.

    PubMed

    Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; LaPierre, Cristen D; Koehnemann, Edward; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-01-29

    Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of (129)Xe and (1)H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of "off-the-shelf" components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity (129)Xe polarization values in a 0.5 L optical pumping cell, including ∼74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the (129)Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10(-2) min(-1)] and in-cell (129)Xe spin-lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for (129)Xe and Rb (PRb ∼ 96%). Hyperpolarization-enhanced (129)Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919

  3. All-electrical control of a singlet-triplet qubit coupled to a single nuclear spin

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Harvey-Collard, Patrick; Baczewski, Andrew; Gamble, John; Rudolph, Martin; Nielsen, Erik; Muller, Richard; Carroll, Malcolm

    Donor nuclear spins in isotopically purified silicon have very long coherence times, suggesting that they may form high-quality quantum memories. We propose that coupling these nuclear spins to few-electron quantum dots could enable nuclear spin readout and two-qubit operations of the joint quantum dot and nuclear spin system without the need for electron spin resonance. As a step towards this goal, our group recently demonstrated coherent singlet/triplet electron spin rotations induced by the hyperfine interaction between electronic spin degrees of freedom and a single nuclear spin in isotopically purified silicon. In this talk, I will discuss the feasibility of universal all-electrical control of such a singlet/triplet electron spin qubit and explore the decoherence mechanisms that we expect to dominate. Finally, I will examine the relative merits of AC and pulsed DC gating schemes. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04- 94AL85000.

  4. Antiferromagnetic nuclear spin helix and topological superconductivity in 13C nanotubes

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2015-12-01

    We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction arising from the hyperfine coupling between localized nuclear spins and conduction electrons in interacting 13C carbon nanotubes. Using the Luttinger liquid formalism, we show that the RKKY interaction is sublattice dependent, consistent with the spin susceptibility calculation in noninteracting carbon nanotubes, and it leads to an antiferromagnetic nuclear spin helix in finite-size systems. The transition temperature reaches up to tens of mK, due to a strong boost by a positive feedback through the Overhauser field from ordered nuclear spins. Similar to GaAs nanowires, the formation of the helical nuclear spin order gaps out half of the conduction electrons, and is therefore observable as a reduction of conductance by a factor of 2 in a transport experiment. The nuclear spin helix leads to a density wave combining spin and charge degrees of freedom in the electron subsystem, resulting in synthetic spin-orbit interaction, which induces nontrivial topological phases. As a result, topological superconductivity with Majorana fermion bound states can be realized in the system in the presence of proximity-induced superconductivity without the need of fine tuning the chemical potential. We present the phase diagram as a function of system parameters, including the pairing gaps, the gap due to the nuclear spin helix, and the Zeeman field perpendicular to the helical plane.

  5. Spin-dependent modes in nuclei and nuclear forces

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Otsuka, Takaharu; Honma, Michio

    2012-10-01

    Spin-dependent modes in nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain spin properties of both stable and exotic nuclei. Gamow-Teller (GT) strengths in Ni isotopes, especially in 56Ni, are found to be well described by pf-shell Hamiltonian GXPF1J, which leads to a remarkable improvement in the evaluation of electron capture rates in stellar environmnets. GT strength in 40Ar obtained with VMU (monopole-based universal interaction) is found to be consistent with the experimental strength, and neutrino capture reaction cross sections for solar neutrinos from 8B are found to be enhanced compared with previous calculations. The repulsive monopole corrections to the microscopic two-body interactions in isospin T=1 channel are important for the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies of exotic calcium isotopes as well as on the closed-shell nature of 48Ca and M1 transition in 48Ca are demonstrated.

  6. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  7. Stable three-axis nuclear-spin gyroscope in diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, Ashok; Cappellaro, Paola

    2012-12-01

    Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a choice between long-time stability and high sensitivity in a miniaturized system. Here, we introduce a quantum sensor that overcomes these limitations by providing a sensitive and stable three-axis gyroscope in the solid state. We achieve high sensitivity by exploiting the long coherence time of the 14N nuclear spin associated with the nitrogen-vacancy center in diamond, combined with the efficient polarization and measurement of its electronic spin. Although the gyroscope is based on a simple Ramsey interferometry scheme, we use coherent control of the quantum sensor to improve its coherence time and robustness against long-time drifts. Such a sensor can achieve a sensitivity of η˜0.5(mdegs-1)/Hzmm3 while offering enhanced stability in a small footprint. In addition, we exploit the four axes of delocalization of the nitrogen-vacancy center to measure not only the rate of rotation, but also its direction, thus obtaining a compact three-axis gyroscope.

  8. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.

    2015-01-01

    Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  9. Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Onur, A. R.; de Jong, J. P.; O'Shea, D.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.

    2016-04-01

    We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear-spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear-spin polarization, the central spin problem, and control of spin coherence.

  10. Influence of spin polarizability on liquid gas phase transition in the nuclear matter

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.; Bigdeli, M.; Bordbar, G. H.

    2015-10-01

    In this paper, we investigate the liquid gas phase transition for the spin polarized nuclear matter. Applying the lowest order constrained variational (LOCV) method, and using two microscopic potentials, AV18 and UV14+TNI, we calculate the free energy, equation of state (EOS), order parameter, entropy, heat capacity and compressibility to derive the critical properties of spin polarized nuclear matter. Our results indicate that for the spin polarized nuclear matter, the second-order phase transition takes place at lower temperatures with respect to the unpolarized one. It is also shown that the critical temperature of our spin polarized nuclear matter with a specific value of spin polarization parameter is in good agreement with the experimental result.

  11. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    SciTech Connect

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-12-15

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR.

  12. Influence of nuclear spin on chemical reactions: Magnetic isotope and magnetic field effects (A Review)

    PubMed Central

    Turro, Nicholas J.

    1983-01-01

    The course of chemical reactions involving radical pairs may depend on occurrence and orientation of nuclear spins in the pairs. The influence of nuclear spins is maximized when the radical pairs are confined to a space that serves as a cage that allows a certain degree of independent diffusional and rotational motion of the partners of the pair but that also encourages reencounters of the partners within a period which allows the nuclear spins to operate on the odd electron spins of the pair. Under the proper conditions, the nuclear spins can induce intersystem crossing between triplet and singlet states of radical pairs. It is shown that this dependence of intersystem crossing on nuclear spin leads to a magnetic isotope effect on the chemistry of radical pairs which provides a means of separating isotopes on the basis of nuclear spins rather than nuclear masses and also leads to a magnetic field effect on the chemistry of radical pairs which provides a means of influencing the course of polymerization by the application of weak magnetic fields. PMID:16593273

  13. Qubit Control Limited by Spin-Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex.

    PubMed

    Zadrozny, Joseph M; Freedman, Danna E

    2015-12-21

    High-spin transition metal complexes are of interest as candidates for quantum information processing owing to the tunability of the pairs of MS levels for use as quantum bits (qubits). Thus, the design of high-spin systems that afford qubits with stable superposition states is of primary importance. Nuclear spins are a potent instigator of superposition instability; thus, we probed the Ph4P(+) salt of the nuclear spin-free complex [Fe(C5O5)3](3-) (1) to see if long-lived superpositions were possible in such a system. Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic measurements reveal a strong EPR transition at X-band that can be utilized as a qubit. However, at 5 K the coherent lifetime, T2, for this resonance is 721(3) ns and decreases rapidly with increasing temperature. Simultaneously, the spin-lattice relaxation time is extremely short, 11.33(1) μs, at 5 K, and also rapidly decreases with increasing temperature. The coincidence of these two temperature-dependent data sets suggests that T2 in 1 is strongly limited by the short T1. Importantly, these results highlight the need for new design parameters in pursuit of high-spin species with appreciable coherence times. PMID:26650962

  14. A 3D-Printed High Power Nuclear Spin Polarizer

    PubMed Central

    Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; LaPierre, Cristen D.; Koehnemann, Edward; Barlow, Michael J.; Rosen, Matthew S.; Goodson, Boyd M.; Chekmenev, Eduard Y.

    2015-01-01

    Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of 129Xe and 1H nuclear spins), (ii) <0.3 nm narrowed 200 W laser source, (iii) in situ high-resolution near-IR spectroscopy, (iv) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of “off-the-shelf” components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity 129Xe polarization values in a 0.5 L optical pumping cell, including ~74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the 129Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10−2 min−1] and in-cell 129Xe spin−lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for 129Xe and Rb (PRb ~ 96%). Hyperpolarization-enhanced 129Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919

  15. Projective measurement of a single nuclear spin qubit by using two-mode cavity QED.

    PubMed

    Eto, Yujiro; Noguchi, Atsushi; Zhang, Peng; Ueda, Masahito; Kozuma, Mikio

    2011-04-22

    We report the implementation of projective measurement on a single 1/2 nuclear spin of the (171)Yb atom by measuring the polarization of cavity-enhanced fluorescence. To obtain cavity-enhanced fluorescence having a nuclear-spin-dependent polarization, we construct a two-mode cavity QED system, in which two cyclic transitions are independently coupled to each of the orthogonally polarized cavity modes, by manipulating the energy level of (171)Yb. This system can associate the nuclear spin degrees of freedom with the polarization of photons, which will facilitate the development of hybrid quantum systems. PMID:21599343

  16. Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Wang, Hong-Ling; Yan, Run-Ying

    2016-08-01

    We explore an efficient scheme for transferring quantum state between an optomechanical cavity and nuclear spins of nitrogen-vacancy centers in diamond, where quantum information can be efficiently stored (retrieved) into (from) the nuclear spin ensemble assisted by a mechanical resonator in a dispersive regime. Our scheme works for a broad range of cavity frequencies and might have potential applications in employing the nuclear spin ensemble as a memory in quantum information processing. The feasibility of our protocol is analyzed using currently available parameters.

  17. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    NASA Astrophysics Data System (ADS)

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-07-01

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  18. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    SciTech Connect

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-07-28

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF{sub 6} sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  19. Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Wang, Hong-Ling; Yan, Run-Ying

    2016-05-01

    We explore an efficient scheme for transferring quantum state between an optomechanical cavity and nuclear spins of nitrogen-vacancy centers in diamond, where quantum information can be efficiently stored (retrieved) into (from) the nuclear spin ensemble assisted by a mechanical resonator in a dispersive regime. Our scheme works for a broad range of cavity frequencies and might have potential applications in employing the nuclear spin ensemble as a memory in quantum information processing. The feasibility of our protocol is analyzed using currently available parameters.

  20. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE PAGESBeta

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  1. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    SciTech Connect

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.

  2. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    PubMed Central

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; Shin, Chang S.; Page, Ralph H.; Avalos, Claudia E.; Wang, Hai-Jing; Pines, Alexander

    2015-01-01

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ∼170,000 over thermal equilibrium. The signal of the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. Hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions. PMID:26639147

  3. Decoupling a spin qubit from high-frequency Larmor dynamics of a GaAs nuclear spin bath

    NASA Astrophysics Data System (ADS)

    Malinowski, Filip K.; Martins, Frederico; Nissen, Peter D.; Rudner, Mark S.; Marcus, Charles M.; Kuemmeth, Ferdinand; Barnes, Edwin; Fallahi, Saeed; Gardner, Geoffrey C.; Manfra, Michael J.

    We present a technique of decoupling a spin qubit in a GaAs/AlGaAs heterostructure from low- and high-frequency noise arising from hyperfine interaction of electrons with nuclear spins. We use Carr-Purcell-Meiboom-Gill sequences in which we synchronize the repetition rate of π pulses to difference Larmor frequencies of 69Ga, 71Ga and 75As nuclei. This decouples the qubit both from low-frequency noise due to diffusion of nuclear spins and from noise at selected high frequencies, allowing us to apply more than a thousand π pulses in a sequence. We demonstrate a coherence time of a singlet-triplet qubit of 0.87 ms, i.e. five orders of magnitude longer than the inhomogeneous dephasing time intrinsic to GaAs. Support through IARPA-MQCO, Army Research Office, LPS-MPO-CMTC, the Villum Foundation and the Danish National Research Foundation is acknowledged.

  4. Optimal Dense Coding and Swap Operation Between Two Coupled Electronic Spins: Effects of Nuclear Field and Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhang, Guo-Feng

    2016-08-01

    The effects of nuclear field and spin-orbit interaction on dense coding and swap operation are studied in detail for both the antiferromagnetic (AFM) and ferromagnetic (FM) coupling cases. The conditions for a valid dense coding and under which swap operation is feasible are given.

  5. Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Yu; Haase, Jan F.; Casanova, Jorge; Plenio, Martin B.

    2016-05-01

    We propose a method to measure the hyperfine vectors between a nitrogen-vacancy (NV) center and an environment of interacting nuclear spins. Our protocol enables the generation of tunable electron-nuclear coupling Hamiltonians while suppressing unwanted internuclear interactions. In this manner, each nucleus can be addressed and controlled individually, thereby permitting the reconstruction of the individual hyperfine vectors. With this ability the three-dimensional (3D) structure of spin ensembles and spins in biomolecules can be identified without the necessity of varying the direction of applied magnetic fields. We demonstrate examples including the complete reconstruction of an interacting spin cluster in diamond and 3D imaging of all the nuclear spins in a biomolecule.

  6. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  7. Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering

    NASA Astrophysics Data System (ADS)

    Félix, Gautier; Mikolasek, Mirko; Peng, Haonan; Nicolazzi, William; Molnár, Gábor; Chumakov, Aleksandr I.; Salmon, Lionel; Bousseksou, Azzedine

    2015-01-01

    We used nuclear inelastic scattering (NIS) to investigate the lattice dynamics in [Fe(pyrazine)(Ni(CN)4)] spin crossover nanoparticles. The vibrational density of states of iron was extracted from the NIS data, which allowed to determine characteristic thermodynamical and lattice dynamical parameters as well as their spin-state dependence. The optical part of the NIS spectra compares well with the Raman scattering data reflecting the expansion/contraction of the coordination octahedron during the spin transition. From the acoustic part, we extracted the sound velocity in the low-spin (vLS=2073 ±31 m s-1) and high-spin (vHS=1942 ±23 m s-1) states of the particles. The spin-state dependence of this parameter is of primary interest to rationalize the spin-transition behavior in solids as well as its dynamics and finite size effects.

  8. Macroscopic nuclear spin diffusion constants of rotating polycrystalline solids from first-principles simulation

    NASA Astrophysics Data System (ADS)

    Halse, Meghan E.; Zagdoun, Alexandre; Dumez, Jean-Nicolas; Emsley, Lyndon

    2015-05-01

    A method for quantitatively calculating nuclear spin diffusion constants directly from crystal structures is introduced. This approach uses the first-principles low-order correlations in Liouville space (LCL) method to simulate spin diffusion in a box, starting from atomic geometry and including both magic-angle spinning (MAS) and powder averaging. The LCL simulations are fit to the 3D diffusion equation to extract quantitative nuclear spin diffusion constants. We demonstrate this method for the case of 1H spin diffusion in ice and L-histidine, obtaining diffusion constants that are consistent with literature values for 1H spin diffusion in polymers and that follow the expected trends with respect to magic-angle spinning rate and the density of nuclear spins. In addition, we show that this method can be used to model 13C spin diffusion in diamond and therefore has the potential to provide insight into applications such as the transport of polarization in non-protonated systems.

  9. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  10. The determination of the in situ structure by nuclear spin contrast variation

    SciTech Connect

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  11. Microscopic control of 29Si nuclear spins near phosphorus donors in silicon

    NASA Astrophysics Data System (ADS)

    Järvinen, J.; Zvezdov, D.; Ahokas, J.; Sheludyakov, S.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Gwak, M.; Lee, SangGap; Lee, Soonchil; Vlasenko, L.

    2015-09-01

    We demonstrate an efficient control of 29Si nuclear spins for specific lattice sites near 31P donors in silicon at temperatures below 1 K and in a high magnetic field of 4.6 T. Excitation of the forbidden electron-nuclear transitions leads to a pattern of well-resolved holes and peaks in the electron spin resonance (ESR) lines of 31P . The pattern originates from dynamic polarization (DNP) of the 29Si nuclear spins near the donors via the solid effect. DNP of 29Si is demonstrated also with the Overhauser effect where the allowed ESR transitions are excited. In this case mostly the remote 29Si nuclei having weak interaction with the donors are polarized, which results in a single hole and a sharp peak pair in the ESR spectrum. Our work shows that the solid effect can be used for initialization of 29Si nuclear spin qubits near the donors.

  12. Investigation of ultrafast nuclear spin polarization induced by short laser pulses.

    PubMed

    Nakajima, Takashi

    2007-07-13

    We theoretically investigate the dynamics of nuclear spin induced by short laser pulses and show that ultrafast nuclear spin polarization can take place. Combined use of the hyperfine interaction together with the static electric field is the key for that. Specifically we apply the idea to unstable isotopes, (27)Mg and (37)Ca, with nuclear spin of 1/2 and 3/2, respectively, and show that 88% and 62% of nuclear spin polarization can be achieved within a few to tens of ns, which is 2-3 orders of magnitude shorter than the time needed for any known optical methods. Because of its ultrafast nature, our scheme would be very effective not only for stable nuclei but also unstable nuclei with a lifetime as short as mus. PMID:17678226

  13. Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer

    NASA Technical Reports Server (NTRS)

    Romalis, Michael; Komack, Tom; Ghost, Rajat

    2008-01-01

    An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.

  14. Theory of box-model hyperfine couplings and transport signatures of long-range nuclear-spin coherence in a quantum-dot spin valve

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano; Coish, W. A.

    2015-06-01

    We have theoretically analyzed coherent nuclear-spin dynamics induced by electron transport through a quantum-dot spin valve. The hyperfine interaction between electron and nuclear spins in a quantum dot allows for the transfer of angular momentum from spin-polarized electrons injected from ferromagnetic or half-metal leads to the nuclear spin system under a finite voltage bias. Accounting for a local nuclear-spin dephasing process prevents the system from becoming stuck in collective dark states, allowing a large nuclear polarization to be built up in the long-time limit. After reaching a steady state, reversing the voltage bias induces a transient current response as the nuclear polarization is reversed. Long-range nuclear-spin coherence leads to a strong enhancement of spin-flip transition rates (by an amount proportional to the number of nuclear spins) and is revealed by an intense current burst, analogous to superradiant light emission. The crossover to a regime with incoherent spin flips occurs on a relatively long-time scale, on the order of the single-nuclear-spin dephasing time, which can be much longer than the time scale for the superradiant current burst. This conclusion is confirmed through a general master equation. For the two limiting regimes (coherent/incoherent spin flips), the general master equation recovers our simpler treatment based on rate equations, but is also applicable at intermediate dephasing. Throughout this work, we assume uniform hyperfine couplings, which yield the strongest coherent enhancement. We propose realistic strategies, based on isotopic modulation and wave-function engineering in core-shell nanowires, to realize this analytically solvable "box-model" of hyperfine couplings.

  15. Knight shift and nuclear spin relaxation in Fe/n -GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Christie, K. D.; Geppert, C. C.; Patel, S. J.; Hu, Q. O.; Palmstrøm, C. J.; Crowell, P. A.

    2015-10-01

    We investigate the dynamically polarized nuclear spin system in Fe/n -GaAs heterostructures using the response of the electron-spin system to nuclear magnetic resonance (NMR) in lateral spin-valve devices. The hyperfine interaction is known to act more strongly on donor-bound electron states than on those in the conduction band. We provide a quantitative model of the temperature dependence of the occupation of donor sites. With this model we calculate the ratios of the hyperfine and quadrupolar nuclear relaxation rates of each isotope. For all temperatures measured, quadrupolar relaxation limits the spatial extent of nuclear spin polarization to within a Bohr radius of the donor sites and is directly responsible for the isotope dependence of the measured NMR signal amplitude. The hyperfine interaction is also responsible for the 2 kHz Knight shift of the nuclear resonance frequency that is measured as a function of the electron-spin accumulation. The Knight shift is shown to provide a measurement of the electron-spin polarization that agrees qualitatively with standard spin transport measurements.

  16. Optically Induced Nuclear Spin Polarization in the Quantum Hall Regime: The Effect of Electron Spin Polarization through Exciton and Trion Excitations

    NASA Astrophysics Data System (ADS)

    Akiba, K.; Kanasugi, S.; Yuge, T.; Nagase, K.; Hirayama, Y.

    2015-07-01

    We study nuclear spin polarization in the quantum Hall regime through the optically pumped electron spin polarization in the lowest Landau level. The nuclear spin polarization is measured as a nuclear magnetic field BN by means of the sensitive resistive detection. We find the dependence of BN on the filling factor nonmonotonic. The comprehensive measurements of BN with the help of the circularly polarized photoluminescence measurements indicate the participation of the photoexcited complexes, i.e., the exciton and trion (charged exciton), in nuclear spin polarization. On the basis of a novel estimation method of the equilibrium electron spin polarization, we analyze the experimental data and conclude that the filling factor dependence of BN is understood by the effect of electron spin polarization through excitons and trions.

  17. Optically Induced Nuclear Spin Polarization in the Quantum Hall Regime: The Effect of Electron Spin Polarization through Exciton and Trion Excitations.

    PubMed

    Akiba, K; Kanasugi, S; Yuge, T; Nagase, K; Hirayama, Y

    2015-07-10

    We study nuclear spin polarization in the quantum Hall regime through the optically pumped electron spin polarization in the lowest Landau level. The nuclear spin polarization is measured as a nuclear magnetic field B(N) by means of the sensitive resistive detection. We find the dependence of B(N) on the filling factor nonmonotonic. The comprehensive measurements of B(N) with the help of the circularly polarized photoluminescence measurements indicate the participation of the photoexcited complexes, i.e., the exciton and trion (charged exciton), in nuclear spin polarization. On the basis of a novel estimation method of the equilibrium electron spin polarization, we analyze the experimental data and conclude that the filling factor dependence of B(N) is understood by the effect of electron spin polarization through excitons and trions. PMID:26207494

  18. Multipulse operation and optical detection of nuclear spin coherence in a GaAs/AlGaAs quantum well.

    PubMed

    Kondo, Y; Ono, M; Matsuzaka, S; Morita, K; Sanada, H; Ohno, Y; Ohno, H

    2008-11-14

    We demonstrate manipulation of nuclear spin coherence in a GaAs/AlGaAs quantum well by optically detected nuclear magnetic resonance (NMR). A phase shift of the Larmor precession of photoexcited electron spins is detected to read out the hyperfine-coupled nuclear spin polarization. Multipulse NMR sequences are generated to control the population and examine the phase coherence in quadrupolar-split spin-3/2 75As nuclei. The phase coherence among the multilevel nuclear spin states is addressed by application of pulse sequences that are used in quantum gate operations. PMID:19113379

  19. Nuclear spin relaxation studies of the spin-rotation interaction of C-13 in CO in various buffer gases

    NASA Astrophysics Data System (ADS)

    Jameson, C. J.; Jameson, A. K.; Buchi, K.

    1986-07-01

    Nuclear spin-lattice relaxation times have been measured for C-13 in (C-13)(O-16) in pure CO gas and in CO in Ar, Kr, Xe, N2, O2, HCl, CH4, SF6 gases as a function of temperature. The experimental procedure is described, and typical data for C-13 in pure CO at several temperatures are shown along with the temperature dependence of C-13 in (C13)(O-16) in various gases. The relaxation is completely dominated by the spin-rotation mechanism, so that empirical values of the cross sections for the CO rotational angular momentum transfer are obtained as a function of temperature.

  20. Search for electric dipole moment in 129Xe atom using active nuclear spin maser

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Chikamori, M.; Ohtomo, Y.; Hikota, E.; Sakamoto, Y.; Suzuki, T.; Bidinosti, C. P.; Inoue, T.; Furukawa, T.; Yoshimi, A.; Suzuki, K.; Nanao, T.; Miyatake, H.; Tsuchiya, M.; Yoshida, N.; Shirai, H.; Ino, T.; Ueno, H.; Matsuo, Y.; Fukuyama, T.; Asahi, K.

    2014-03-01

    An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.

  1. Description of 158Er at Ultrahigh Spin in Nuclear Density Functional Theory

    SciTech Connect

    Afanasjev, A. V.; Nazarewicz, Witold

    2012-01-01

    Rotational bands in 158Er at ultrahigh spin have been studied in the framework of relativistic and nonrelativistic nuclear density-functional theories. Consistent results are obtained across the theoretical models used but some puzzles remain when confronted with experiment. Namely, the many-body configurations which provide good description of experimental transition quadrupole moments and dynamic moments of inertia require substantial increase of the spins of observed bands as compared with experimental estimates, which are still subject to large uncertainties. If, however, the theoretical spin assignments turned out to be correct, experimental band 1 in 158Er would be the highest spin structure ever observed.

  2. Classical nature of nuclear spin noise near clock transitions of Bi donors in silicon

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Wolfowicz, Gary; Li, Shu-Shen; Morton, John J. L.; Liu, Ren-Bao

    2015-10-01

    Whether a quantum bath can be approximated as classical Gaussian noise is a fundamental issue in central spin decoherence and also of practical importance in designing noise-resilient quantum control. Spin qubits based on bismuth donors in silicon have tunable interactions with nuclear spin baths and are first-order insensitive to magnetic noise at so-called clock transitions (CTs). This system is therefore ideal for studying the quantum/classical Gaussian nature of nuclear spin baths since the qubit-bath interaction strength determines the back-action on the baths and hence the adequacy of a Gaussian noise model. We develop a Gaussian noise model with noise correlations determined by quantum calculations and compare the classical noise approximation to the full quantum bath theory. We experimentally test our model through a dynamical decoupling sequence of up to 128 pulses, finding good agreement with simulations and measuring electron spin coherence times approaching 1 s—notably using natural silicon. Our theoretical and experimental study demonstrates that the noise from a nuclear spin bath is analogous to classical Gaussian noise if the back-action of the qubit on the bath is small compared to the internal bath dynamics, as is the case close to CTs. However, far from the CTs, the back-action of the central spin on the bath is such that the quantum model is required to accurately model spin decoherence.

  3. Nuclear magnetic resonance linewidth and spin diffusion in {sup 29}Si isotopically controlled silicon

    SciTech Connect

    Hayashi, Hiroshi; Itoh, Kohei M.; Vlasenko, Leonid S.

    2008-10-15

    A nuclear magnetic resonance (NMR) study was performed with n-type silicon single crystals containing {sup 29}Si isotope abundance f ranges from 1.2% to 99.2%. The nuclear spin diffusion coefficient D has been determined from the linewidth of significantly enhanced {sup 29}Si NMR signals utilizing a developed dynamic nuclear polarization (DNP) method. The {sup 29}Si NMR linewidth depends linearly on f, at least when f<10%, and approaches {proportional_to}f{sup 1/2} dependence when f>50%. The estimated {sup 29}Si nuclear spin diffusion time T{sub sd} between phosphorus atoms used for DNP is more than ten times shorter than the nuclear polarization time T{sub 1}{sup p} of {sup 29}Si nuclei around phosphorus. Therefore, the regime of 'rapid spin diffusion' is realized in the DNP experiments.

  4. Coupling and control in coherently driven and asymmetrically synchronized hybrid electron-nuclear spin system

    NASA Astrophysics Data System (ADS)

    Berec, V.

    2016-02-01

    We study the coupling and control adaptation of a hybrid electron-nuclear spin system using the laser mediated proton beam in MeV energy regime. The asymmetric control mechanism is based on exact optimization of both: the measure of exchange interaction and anisotropy of the hyperfine interaction induced in the resonance with optimal channeled protons (CP) superfocused field, allowing manipulation over arbitrary localized spatial centers while addressing only the electron spin. Using highly precise and coherent proton channeling regime we have obtained efficient pulse shaping separator technique aimed for spatio-temporal engineering of quantum states, introducing a method for control of nuclear spins, which are coupled via anisotropic hyperfine interactions in isolated electron spin manifold, without radio wave (RW) pulses. The presented method can be efficiently implemented in synchronized spin networks with the purpose to facilitate preservation and efficient transfer of experimentally observed quantum particle states, contributing to the overall background noise reduction.

  5. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  6. Dynamical magnetic and nuclear polarization in complex spin systems: semi-magnetic II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Abolfath, Ramin M.; Trojnar, Anna; Roostaei, Bahman; Brabec, Thomas; Hawrylak, Pawel

    2013-06-01

    Dynamical magnetic and nuclear polarization in complex spin systems is discussed on the example of transfer of spin from exciton to the central spin of magnetic impurity in a quantum dot in the presence of a finite number of nuclear spins. The exciton is described in terms of electron and heavy-hole spins interacting via exchange interaction with magnetic impurity, via hyperfine interaction with a finite number of nuclear spins and via dipole interaction with photons. The time evolution of the exciton, magnetic impurity and nuclear spins is calculated exactly between quantum jumps corresponding to exciton radiative recombination. The collapse of the wavefunction and the refilling of the quantum dot with a new spin-polarized exciton is shown to lead to the build up of magnetization of the magnetic impurity as well as nuclear spin polarization. The competition between electron spin transfer to magnetic impurity and to nuclear spins simultaneous with the creation of dark excitons is elucidated. The technique presented here opens up the possibility of studying optically induced dynamical magnetic and nuclear polarization in complex spin systems.

  7. Towards understanding global variability in ocean carbon-13

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Bopp, Laurent

    2008-03-01

    We include a prognostic parameterization of carbon-13 into a global ocean-biogeochemistry model to investigate the spatiotemporal variability in ocean carbon-13 between 1860 and 2000. Carbon-13 was included in all 10 existing carbon pools, with dynamic fractionations occurring during photosynthesis, gas exchange and carbonate chemistry. We find that ocean distributions of δ13CDIC at any point in time are controlled by the interplay between biological fractionation, gas exchange, and ocean mixing. In particular, the deep ocean δ13CDIC is sensitive (by > 0.5‰) to the degree of ocean ventilation. On interannual timescales, although the variability in δ13CDIC is a first order function of the atmospheric δ13CO2 and overall carbon flux, the spatial distributions are controlled by the degree to which surface waters are exposed to the atmosphere. The δ13CPOC is highly sensitive to the species of inorganic carbon assimilated during photosynthesis (by 10 to 17‰), as well as the intrinsic growth rate and in situ [CO2(aq)], suggesting that phytoplankton utilize both HCO3- and CO2(aq). The relationship between Δδ13CDIC and anthropogenic carbon (Cant) varies by ±70% regionally and circulation and biotic effects can influence estimates of Cant that are based on Δδ13CDIC.

  8. Nuclear spin resonance of (129)Xe doped with O(2).

    PubMed

    McNabb, J W; Balakishiyeva, D N; Honig, A

    2007-10-01

    Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization. PMID:17689279

  9. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center

    PubMed Central

    Wang, Ping; Liu, Bao; Yang, Wen

    2015-01-01

    Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962

  10. Testing for parity violation in nuclei using spin density matrices for nuclear density functionals

    NASA Astrophysics Data System (ADS)

    Barrett, B. R.; Giraud, B. G.

    2015-06-01

    The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a ‘hedgehog’ situation, which exists only if nuclear states contain some amount of parity violation. A toy model is given as an illustrative example.

  11. Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.

    2016-04-01

    We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.

  12. Nuclear spin-spin coupling anisotropy in the van der Waals-bonded 129Xe dimer.

    PubMed

    Jokisaari, Jukka; Vaara, Juha

    2013-07-21

    The spin-spin coupling constant, J, in the van der Waals-bonded (129)Xe-(129)Xe dimer cannot be determined experimentally because of the magnetic equivalence of the two nuclei. In contrast, the anisotropy of the coupling tensor, ΔJ, can be obtained from the so called effective dipole-dipole coupling determined in a solid state inclusion compound whose cages accommodate two xenon atoms. For the determination of the experimental ΔJ((129)Xe, (129)Xe) we exploited the data reported earlier in this journal. [D. H. Brouwer et al., Phys. Chem. Chem. Phys., 2007, 9, 1093.] The experimental value and the value obtained from relativistic first-principles computation are in perfect agreement. To the best of our knowledge this is the first investigation of spin-spin coupling anisotropy in a van der Waals-bonded system. PMID:23743998

  13. Structure determination of individual electron-nuclear spin complexes in a solid-state matrix

    NASA Astrophysics Data System (ADS)

    Laraoui, Abdelghani; Pagliero, Daniela; Meriles, Carlos

    2015-03-01

    A spin-based quantum computer will store and process information via ``spin complexes'' formed by a small number of interacting electronic and nuclear spins within a solid-state host. Unlike present electronic circuits, differences in the atomic composition and local geometry make each of these spin clusters distinct from the rest. Integration of these units into a working network thus builds on our ability to determine the cluster atomic structure, a problem we tackle herein with the aid of a magnetic resonance protocol. Using the nitrogen-vacancy (NV) center in diamond as a model system, we show analytically and numerically that the spatial coordinates of weakly coupled 13C spins can be determined by selectively transferring and retrieving spin polarization. The technique's spatial resolution can reach up to 0.1 nm, limited by the NV spin coherence lifetime. No external magnetic field gradient is required, which makes this imaging scheme applicable to NV-13C complexes buried deep inside the crystal host. Further, this approach can be adapted to nuclear spins other than 13C, and thus applied to the characterization of individual molecules anchored to the diamond surface.

  14. Spin-orbit interaction in relativistic nuclear structure models

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Mutschler, A.; Khan, E.; Vretenar, D.

    2016-08-01

    Relativistic self-consistent mean-field (SCMF) models naturally account for the coupling of the nucleon spin to its orbital motion, whereas nonrelativistic SCMF methods necessitate a phenomenological ansatz for the effective spin-orbit potential. Recent experimental studies aim to explore the isospin properties of the effective spin-orbit interaction in nuclei. SCMF models are very useful in the interpretation of the corresponding data; however, standard relativistic mean-field and nonrelativistic Hartree-Fock models use effective spin-orbit potentials with different isovector properties, mainly because exchange contributions are not treated explicitly in the former. The impact of exchange terms on the effective spin-orbit potential in relativistic mean-field models is analyzed, and it is shown that it leads to an isovector structure similar to the one used in standard nonrelativistic Hartree-Fock models. Data on the isospin dependence of spin-orbit splittings in spherical nuclei could be used to constrain the isovector-scalar channel of relativistic mean-field models. The reproduction of the empirical kink in the isotope shifts of even Pb nuclei by relativistic effective interactions points to the occurrence of pseudospin symmetry in the single-neutron spectra in these nuclei.

  15. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  16. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    NASA Astrophysics Data System (ADS)

    Mance, Deni; Gast, Peter; Huber, Martina; Baldus, Marc; Ivanov, Konstantin L.

    2015-06-01

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between "bulk" and "core" nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  17. Separation and conversion dynamics of nuclear-spin isomers of gaseous methanol

    PubMed Central

    Sun, Zhen-Dong; Ge, Meihua; Zheng, Yujun

    2015-01-01

    All symmetrical molecules with non-zero nuclear spin exist in nature as nuclear-spin isomers (NSIs). However, owing to the lack of experimental information, knowledge is rare about interconversions of NSIs of gaseous molecules with torsional symmetry. Here we report our separation and conversion observations on NSI-torsion-specific transition systems of gaseous methanol from a light-induced drift experiment involving partially spatial separation of the ortho and para isomers. We find that vibrationally excited molecules of the methanol spin isomer have a smaller collision cross-section than their ground-state counterparts. Interconversion of the enriched ortho isomer with the para isomer, which is generally considered improbable, has been quantitatively studied by sensitive detections of the spectral intensities. Rather counterintuitively, this reveals that the interconversion is inhibited with increasing pressure. Our results suggest that the spin conversion mechanism in methanol is via a quantum relaxation process with the quantum Zeno effect induced by molecular collisions. PMID:25880882

  18. Probing an NV Center's Nuclear Spin Environment with Coherent Population Trapping

    NASA Astrophysics Data System (ADS)

    Levonian, David; Goldman, Michael; Singh, Swati; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail

    2016-05-01

    Nitrogen-vacancy (NV) centers in diamond have emerged as a versatile atom-like system, finding diverse applications in metrology and quantum information science, but interaction between the NV center's electronic spin and its nuclear spin environment represent a major source of decoherence. We use optical techniques to monitor and control the nuclear bath surrounding an NV center. Specifically, we create an optical Λ-system using the | +/- 1 > components of the NV center's spin-triplet ground state. When the Zeeman splitting between the two states is equal to the two-photon detuning between the lasers, population is trapped in the resulting dark state. Measuring the rate at which the NV center escapes from the dark state therefore gives information on how spin bath dynamics change the effective magnetic field experienced by the NV center. By monitoring statistics of the emitted photons, we plan to probe non-equilibrium dynamics of the bath.

  19. Separation and conversion dynamics of nuclear-spin isomers of gaseous methanol

    NASA Astrophysics Data System (ADS)

    Sun, Zhen-Dong; Ge, Meihua; Zheng, Yujun

    2015-04-01

    All symmetrical molecules with non-zero nuclear spin exist in nature as nuclear-spin isomers (NSIs). However, owing to the lack of experimental information, knowledge is rare about interconversions of NSIs of gaseous molecules with torsional symmetry. Here we report our separation and conversion observations on NSI-torsion-specific transition systems of gaseous methanol from a light-induced drift experiment involving partially spatial separation of the ortho and para isomers. We find that vibrationally excited molecules of the methanol spin isomer have a smaller collision cross-section than their ground-state counterparts. Interconversion of the enriched ortho isomer with the para isomer, which is generally considered improbable, has been quantitatively studied by sensitive detections of the spectral intensities. Rather counterintuitively, this reveals that the interconversion is inhibited with increasing pressure. Our results suggest that the spin conversion mechanism in methanol is via a quantum relaxation process with the quantum Zeno effect induced by molecular collisions.

  20. Coherent manipulation of an ensemble of nuclear spins in diamond for high precision rotation sensing

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Saha, Kasturi; Ajoy, Ashok; Cappellaro, Paola

    2016-05-01

    Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a choice between long-time stability and high sensitivity in a miniaturized system. We are building a solid-state spin gyroscope associated with the Nitrogen-Vacancy (NV) centers in diamond take advantage of the efficient optical initialization and measurement offered by the NV electronic spin and the stability and long coherence time of the nuclear spin, which is preserved even at high defect density. In addition, we also investigate electro-magnetic noise monitoring and feedback schemes based on the coupling between the NV electronic and nuclear spin to achieve higher stability.

  1. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  2. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  3. Nuclear states and shapes at high spin. [Good review

    SciTech Connect

    Diamond, R.M.

    1980-08-01

    As angular momentum is added to a nucleus, the balance of forces acting upon it to determine its shape, moment of inertia, mode of rotation, and type of level structure may undergo a series of changes. At relatively low spins a deformed nucleus will rotate collectively, and one may see the effect of Coriolis antipairing in gradually increasing the moment of inertia. Around spin 12 to 16 h-bar there may be an abrupt change (backbending) when a pair of high-j nucleons unpairs and the nucleons align with the axis of rotation; this process allows the nucleus to slow its collective rotation. This process, the start of a sharing of angular momentum between single-particle motion and the collective rotation, gives a lower total energy and corresponds to a change toward triaxiality in the shape of the nucleus. At much higher spins discrete ..gamma..-ray transitions can no longer be observed. This is the regime of continuum spectra; all the information on these high-spin states (to 65 h-bar) is contained in these continuum cascades. Knowledge is accumulating on how to study these spectra, experimentally and theoretically, and new techniques offer promise of revealing a great deal of information about the shapes and properties of very high spin states. 71 references, 34 figures.

  4. Mechanism for nuclear and electron spin excitation by radio frequency current

    NASA Astrophysics Data System (ADS)

    Müllegger, Stefan; Rauls, Eva; Gerstmann, Uwe; Tebi, Stefano; Serrano, Giulia; Wiespointner-Baumgarthuber, Stefan; Schmidt, Wolf Gero; Koch, Reinhold

    2015-12-01

    Recent radio frequency scanning tunneling spectroscopy (rf-STS) experiments have demonstrated nuclear and electron spin excitations up to ±12 ℏ in a single molecular spin quantum dot (qudot). Despite the profound experimental evidence, the observed independence of the well-established dipole selection rules is not described by existing theory of magnetic resonance—pointing to a new excitation mechanism. Here we solve the puzzle of the underlying mechanism by discussing the relevant mechanistic steps. At the heart of the mechanism, periodic transient charging and electric polarization due to the rf-modulated tunneling process cause a periodic asymmetric deformation of the adsorbed qudot, enabling efficient spin transitions via spin-phonon-like coupling. The mechanism has general relevance for a broad variety of different spin qudots exhibiting internal mechanical degrees of freedom (organic molecules, doped semiconductor qudots, nanocrystals, etc.).

  5. Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.

    2016-07-01

    Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.

  6. Theoretical aspects of dynamic nuclear polarization in the solid state--spin temperature and thermal mixing.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2013-01-01

    Dynamic nuclear polarization is a method which allows for a dramatic increase of the NMR signals due to polarization transfer between electrons and their neighboring nuclei, via microwave irradiation. These experiments have become popular in recent years due to the ability to create hyper-polarized chemically and biologically relevant molecules, in frozen glass forming mixtures containing free radicals. Three mechanisms have been proposed for the polarization transfer between electrons and their surrounding nuclei in such non-conducting samples: the solid effect and cross effect mechanisms, which are based on quantum mechanics and relaxation on small spin systems, and thermal mixing, which originates from the thermodynamic macroscopic notion of spin temperature. We have recently introduced a spin model, which is based on the density matrix formalism and includes relaxation, and applied it to study the solid effect and cross effect mechanisms on small spin systems. In this publication we use the same model to describe the thermal mixing mechanism, and the creation of spin temperature. This is obtained without relying on the spin temperature formalism. Simulations of small model systems are used on systems with homogeneously and inhomogeneously broadened EPR lines. For the case of a homogeneously broadened line we show that the nuclear enhancement results from the thermal mixing and solid effect mechanisms, and that spin temperatures are created in the system. In the inhomogeneous case the enhancements are attributed to the solid effect and cross effect mechanisms, but not thermal mixing. PMID:23160533

  7. High-fidelity transfer and storage of photon states in a single nuclear spin

    NASA Astrophysics Data System (ADS)

    Yang, Sen; Wang, Ya; Rao, D. D. Bhaktavatsala; Hien Tran, Thai; Momenzadeh, Ali S.; Markham, M.; Twitchen, D. J.; Wang, Ping; Yang, Wen; Stöhr, Rainer; Neumann, Philipp; Kosaka, Hideo; Wrachtrup, Jörg

    2016-08-01

    Long-distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light and good memory capabilities, as well as processing qubits for the storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks. A necessary and highly demanding prerequisite for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here we demonstrate the high-fidelity (∼98%) coherent transfer of a photon polarization state to a single solid-state nuclear spin that has a coherence time of over 10 s. The storage process is achieved by coherently transferring the polarization state of a photon to an entangled electron–nuclear spin state of a nitrogen–vacancy centre in diamond. The nuclear spin-based optical quantum memory demonstrated here paves the way towards an absorption-based quantum repeater network.

  8. Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-07-01

    The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.

  9. Universal Long-Time Behavior of Nuclear Spin Decays in a Solid

    NASA Astrophysics Data System (ADS)

    Morgan, S. W.; Fine, B. V.; Saam, B.

    2008-08-01

    Magnetic resonance studies of nuclear spins in solids are exceptionally well suited to probe the limits of statistical physics. We report experimental results indicating that isolated macroscopic systems of interacting nuclear spins possess the following fundamental property: spin decays that start from different initial configurations quickly evolve towards the same long-time behavior. This long-time behavior is characterized by the shortest ballistic microscopic time scale of the system and therefore falls outside of the validity range for conventional approximations of statistical physics. We find that the nuclear free-induction decay and different solid echoes in hyperpolarized solid xenon all exhibit sinusoidally modulated exponential long-time behavior characterized by identical time constants. This universality was previously predicted on the basis of analogy with resonances in classical chaotic systems.

  10. Theory of nuclear magnetic resonance of higher spin nuclei. 3. A/sub 2/B/sub 2/ systems and many-spin basis sets

    SciTech Connect

    Siddall, T.H.

    1982-01-07

    A theory is developed for nuclear magnetic resonance spectra of A/sub 2/B/sub 2/ systems with nuclei of higher spin. It is assumed that all nuclei have the same spin value. Otherwise no arbitrary limit is set on the spin. Although the development is made for NMR it also has application to the magnetic properties of clusters of transition-metal ions.

  11. Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions

    NASA Astrophysics Data System (ADS)

    Cywiński, Łukasz; Witzel, Wayne M.; Das Sarma, S.

    2009-06-01

    We investigate decoherence due to pure dephasing of a localized spin qubit interacting with a nuclear spin bath. Although in the limit of a very large magnetic field the only decoherence mechanism is spectral diffusion due to dipolar flip-flops of nuclear spins, with decreasing field the hyperfine-mediated interactions between the nuclear spins become important. We take advantage of their long-range nature and resum the leading terms in an 1/N expansion of the decoherence time-evolution function ( N , being the number of nuclear spins interacting appreciably with the electron spin, is large). For the case of the thermal uncorrelated bath we show that our theory is applicable down to low magnetic fields ( ˜10mT for a large dot with N=106 ) allowing for comparison with recent experiments in GaAs quantum dot spin qubits. Within this approach we calculate the free induction decay and spin echo decoherence in GaAs and InGaAs as a function of the number of the nuclei in the bath (i.e., the quantum dot size) and the magnetic field. Our theory for free induction decay in a narrowed nuclear bath is shown to agree with the exact solution for decoherence due to hyperfine-mediated interaction which can be obtained when all the nuclei-electron coupling constants are identical. For the spin echo evolution we show that the dominant decoherence process at low fields is due to interactions between nuclei having significantly different Zeeman energies (i.e., nuclei of As and two isotopes of Ga in GaAs), and we compare our results with recent measurements of spin echo signal of a single spin confined in a GaAs quantum dot. For the same set of parameters we perform calculations of decoherence under various dynamical decoupling pulse sequences and predict the effect of these sequences in low- B regime in GaAs.

  12. Spin-exchange narrowing in a nuclear magnetic transverse oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Thrasher, Daniel; Bulatowicz, Michael; Walker, Thad

    2015-05-01

    We demonstrate spin exchange narrowing in synchronously pumped Xe NMR. The Xe NMR is driven by spin exchange with Rb atoms whose polarization is square-wave modulated at the Xe NMR frequency. On resonance, the nuclei precess in phase with the Rb polarization. Off resonance, however, the spin-exchange fields from the Rb cause the Xe to develop a static orthogonal spin component. This induces broadening in the NMR line while also dramatically suppressing the phase shift between the precessing Rb and Xe polarizations. We can compensate for this effect by adding an oscillating magnetic field oriented along the optical pumping axis and 180 degrees out of phase with the Rb polarization. This narrows the NMR line width to approximately the T1 limit, and nearly restores the usual relationship between detuning and phase shift. These results suggest the possibility of using the alkali field with appropriate magnetic field feedback along the bias field direction to narrow the NMR linewidth below the usual T1 limit. Support by the NSF and Northrop Grumman Co.

  13. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants. PMID:22938251

  14. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: The importance of level crossings

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2012-01-01

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T1e is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants. PMID:22938251

  15. Nuclear-Spin-Independent Short-Range Three-Body Physics in Ultracold Atoms

    SciTech Connect

    Gross, Noam; Shotan, Zav; Khaykovich, Lev; Kokkelmans, Servaas

    2010-09-03

    We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold {sup 7}Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross et al., Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.

  16. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point.

    PubMed

    Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y

    2009-12-11

    At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226

  17. Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-08-01

    We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.

  18. Controlling the Excited-State Dynamics of Nuclear Spin Isomers Using the Dynamic Stark Effect.

    PubMed

    Waldl, Maria; Oppel, Markus; González, Leticia

    2016-07-14

    Stark control of chemical reactions uses intense laser pulses to distort the potential energy surfaces of a molecule, thus opening new chemical pathways. We use the concept of Stark shifts to convert a local minimum into a local maximum of the potential energy surface, triggering constructive and destructive wave-packet interferences, which then induce different dynamics on nuclear spin isomers in the electronically excited state of a quinodimethane derivative. Model quantum-dynamical simulations on reduced dimensionality using optimized ultrashort laser pulses demonstrate a difference of the excited-state dynamics of two sets of nuclear spin isomers, which ultimately can be used to discriminate between these isomers. PMID:26840424

  19. p -shell carrier assisted dynamic nuclear spin polarization in single quantum dots at zero external magnetic field

    NASA Astrophysics Data System (ADS)

    Fong, C. F.; Ota, Y.; Harbord, E.; Iwamoto, S.; Arakawa, Y.

    2016-03-01

    Repeated injection of spin-polarized carriers in a quantum dot (QD) leads to the polarization of nuclear spins, a process known as dynamic nuclear spin polarization (DNP). Here, we report the observation of p-shell carrier assisted DNP in single QDs at zero external magnetic field. The nuclear field—measured by using the Overhauser shift of the singly charged exciton state of the QDs—continues to increase, even after the carrier population in the s-shell saturates. This is also accompanied by an abrupt increase in nuclear spin buildup time as p-shell emission overtakes that of the s shell. We attribute the observation to p-shell electrons strongly altering the nuclear spin dynamics in the QD, supported by numerical simulation results based on a rate equation model of coupling between electron and nuclear spin system. Dynamic nuclear spin polarization with p-shell carriers could open up avenues for further control to increase the degree of nuclear spin polarization in QDs.

  20. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  1. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291

  2. Nuclear Spin Relaxation Characteristic of Submonolayer He Films in Nanochannels

    NASA Astrophysics Data System (ADS)

    Matsushita, Taku; Kawai, Ryosuke; Kuze, Atsushi; Hieda, Mitsunori; Wada, Nobuo

    2014-04-01

    In order to obtain information on dynamics of helium films in the nondegenerate fluid region, we have performed a pulsed-NMR experiment at 3.29 MHz on He films adsorbed in straight 2.4 nm channels of FSM silicates down to 0.54 K. In general, the spin-lattice and spin-spin relaxation times and were explained in terms of the two-dimensional Bloembergen-Purcell-Pound model for dipolar relaxation. Temperature dependences of in submonolayer He films show a minimum, indicating that the dipolar-field correlation time is about s. The temperature of the minimum monotonically lowers with increasing coverage, suggesting that He adatoms become more mobile at higher coverages. The low-dimensional property of He adatoms is observed as the separation of and above where . On the other hand, several features specific to films in the nanochannel geometry were also found. Especially, the temperature dependence of becomes very small just below and shows a shoulder at lower temperatures. This anomaly has not been observed in He adsorbed in wider pores or on flat surfaces, so that it is considered to be characteristic of He films confined in narrow channels with a diameter of a few nm.

  3. NMR Investigation of Optical Polarization of Nuclear Spins in GaAs

    NASA Astrophysics Data System (ADS)

    Paravastu, Anant; Hayes, Sophia; Schwickert, Birgit; Reimer, Jeffrey; Dinh, Long; Balooch, Mehdi

    2003-03-01

    Light-induced nuclear spin alignments have been measured in GaAs as a function of photon energy, irradiation time, and sample temperature using NMR spectroscopy at 9.4 Tesla and 10 to 50 K. Significant optical enhancements were observed at a range of photon energies, starting just below the band gap and persisting through 100 meV above the gap. Irradiation above the band gap resulted in thermally activated NMR signal enhancements while sub band gap irradiation did not. Short and long irradiation time dependencies revealed insights into the nature of cross relaxation between electronic nuclear spins, contradicting mechanisms based on either localized electron-nuclear contact at defect sites or cross relaxation between nuclei and free electrons. We propose that the presence of a mobile or delocalized enabling electronic species characterized by a long electron-nuclear correlation time, such as an exciton, is necessary in any mechanism which explains the data.

  4. Role of dual nuclear baths on spin blockade leakage current bistabilities.

    PubMed

    Buddhiraju, Siddharth; Muralidharan, Bhaskaran

    2014-12-01

    Spin-blockaded electronic transport across a double quantum dot (DQD) system represents an important advancement in the area of spin-based quantum information. The basic mechanism underlying the blockade is the formation of a blocking triplet state. The bistability of the leakage current as a function of the applied magnetic field in this regime is believed to arise from the effect of nuclear Overhauser fields on spin-flip transitions between the blocking triplet and the conducting singlet states. The objective of this paper is to present the nuances of considering a two bath model on the experimentally observed current bistability by employing a self consistent simulation of the nuclear spin dynamics coupled with the electronic transport of the DQD set up. In doing so, we first discuss the important subtleties involved in the microscopic derivation of the hyperfine mediated spin flip rates. We then give insights as to how the differences between the two nuclear baths and the resulting difference Overhauser field affect the two-electron states of the DQD and their connection with the experimentally observed current hysteresis curve. PMID:25374371

  5. Coupled nuclear spin relaxation and internal rotations in magnesium fluosilicate hexahydrate.

    NASA Technical Reports Server (NTRS)

    Utton, D. B.; Tsang, T.

    1972-01-01

    Both proton and fluorine nuclear spin-lattice relaxations have been studied by the 180- to 90-deg pulse method in magnesium fluosilicate hexahydrate at 25 and 13 MHz over the temperature range from 170 to 350 K. Observed nonexponential behavior of the nuclear magnetic relaxation is explained by internal rotations of the doubly charged negative fluosilicate ions and doubly charged positive magnesium hexahydrate ions.

  6. Spin polarized asymmetric nuclear matter and neutron star matter within the lowest order constrained variational method

    SciTech Connect

    Bordbar, G. H.; Bigdeli, M.

    2008-01-15

    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV{sub 18}, Reid93, UV{sub 14}, and AV{sub 14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.

  7. Experimental search for EDM in diamagnetic atom 129Xe using active nuclear spin maser

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yuichi; Sato, Tomoya; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Funayama, Chikako; Hirao, Chika; Suzuki, Takahiro; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiko; Bidinosti, Christopher; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro

    2014-09-01

    A permanent electric dipole moment (EDM) which directly means T-violation attracts much attention, because an unknown CP-violating phase which is necessary to understand the present matter-dominated Universe is expected to be probed by EDM. The present study aims at measuring the EDM in the diamagnetic atom 129Xe to a size of 10-28 ecm, stepping into a domain below the present upper limit by one order of magnitude. In the present experiment, we employ an active nuclear spin maser which has characteristics of the optical detection of the spin precession and the artificial production of the feedback field to sustain the spin precession over a long measurement duration. For the magnetometry in the measurement, a comagnetometer using 3He is incorporated to the spin maser system. In this presentation, the current status of our experiment will be given.

  8. Universal control and error correction in multi-qubit spin registers in diamond.

    PubMed

    Taminiau, T H; Cramer, J; van der Sar, T; Dobrovitski, V V; Hanson, R

    2014-03-01

    Quantum registers of nuclear spins coupled to electron spins of individual solid-state defects are a promising platform for quantum information processing. Pioneering experiments selected defects with favourably located nuclear spins with particularly strong hyperfine couplings. To progress towards large-scale applications, larger and deterministically available nuclear registers are highly desirable. Here, we realize universal control over multi-qubit spin registers by harnessing abundant weakly coupled nuclear spins. We use the electron spin of a nitrogen-vacancy centre in diamond to selectively initialize, control and read out carbon-13 spins in the surrounding spin bath and construct high-fidelity single- and two-qubit gates. We exploit these new capabilities to implement a three-qubit quantum-error-correction protocol and demonstrate the robustness of the encoded state against applied errors. These results transform weakly coupled nuclear spins from a source of decoherence into a reliable resource, paving the way towards extended quantum networks and surface-code quantum computing based on multi-qubit nodes. PMID:24487650

  9. Coherent transfer of nuclear spin polarization in field-cycling NMR experiments

    SciTech Connect

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin

    2013-12-28

    Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.

  10. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  11. Electric readout and storage concepts for electron and nuclear spin states in silicon

    NASA Astrophysics Data System (ADS)

    Boehme, Christoph

    2011-10-01

    A variety of concepts utilizing spins in semiconductors for information storage and processing have been proposed in recent years. One of these concepts [1] uses the phosphorous nucleus in crystalline silicon as a quantum bit, an approach which combines longest known spin coherence times and, therefore, spin storage times, with already existing, well developed and highly reliable, crystalline silicon nano-technology. Our research is focused on implementations of electric readout devices for electron- and nuclear-spins in silicon. I will review different experiments which show how donor electrons [2-4] and nuclear [5] spins of phosphorous atoms in crystalline silicon can be used as a electrically readable spin memories with long storage times for classical and quantum information and how nuclear spin qubits can be initialized [6].[4pt] [1] B. E. Kane, Nature 393, 133 (1998).[0pt] [2] A. R. Stegner, C. Boehme, H. Huebl, M. Stutzmann, K. Lips, M. S. Brandt, Nature Physics 2, 835 (2006). [0pt] [3] S.-Y. Paik, S.-Y. Lee, W. J. Baker, D. R. McCamey, and C. Boehme, Phys. Rev. B 81, 075214 (2010).[0pt] [4] G. W. Morley, D. R. McCamey, H. A. Seipel, L.-C. Brunel, J. van Tol, C. Boehme, Phys. Rev. Lett. 101, 207602 (2008).[0pt] [5] D. R. McCamey, J. van Tol, G. W. Morley, C. Boehme, Science 330, 1652 (2010).[0pt] [6] D. R. McCamey, J. van Tol, G. W. Morley, C. Boehme, Phys. Rev. Lett. 102, 027601 (2009).

  12. Rotational Excitation Spectroscopy with the Scanning Tunneling Microscope - Distinction of Nuclear Spin States

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2014-03-01

    The appeal of inelastic electron tunneling spectroscopy with the scanning tunneling microscope (STM) stems from its unmatched spatial resolution and the ability to measure the magnetic, electronic and vibrational properties of individual atoms and molecules. Rotational excitations of molecules could provide additional information of surface processes but have hitherto remained elusive. Here we demonstrate rotational excitation spectroscopy (RES) with the STM for hydrogen and its isotopes on graphene and hexagonal boron nitride. Since the Pauli principle imposes restrictions on the allowed rotational levels J for molecules with identical nuclei, a certain alignment of the nuclear spins entails a specific set of rotational levels. Conversely, measuring the rotational levels allows characterizing the molecular nuclear spin state. We measured excitation energies at 44 meV and 21 meV, corresponding to rotational transitions J = 0 --> 2 for hydrogen and deuterium. We thereby identify the nuclear spin isomers para-H2 and ortho-D2. For HD, we observe J = 0 --> 1 and J = 0 --> 2 transitions, as expected for heteronuclear diatomics. Our measurements demonstrate the potential of STM-RES in the study of nuclear spin states with unprecedented spatial resolution. We acknowledge funding from the Swiss National Science Foundation under Projects No. 140479 and No. 148891.

  13. Nuclear Spin Dependent Chemistry of the Trihydrogen Cation in Diffuse Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Crabtree, Kyle

    2015-05-01

    The trihydrogen cation, H3+,long thought to be the species responsible for initiating ion-molecule chemistry in the interstellar medium, was first observed in interstellar clouds twenty years ago. Since its detection, this cation has been used to infer temperatures, densities, cloud sizes, and the local cosmic ray ionization rate. However, in diffuse molecular clouds the excitation temperature of its two nuclear spin modifications, ortho (I = 3 / 2) and para-H3+(I = 1 / 2) is found to differ markedly from the cloud kinetic temperature inferred from the spin modifications of molecular hydrogen (H2) in the same environment. A steady state analysis of the chemical kinetics of ortho and para-H3+suggests that the interplay of thermalizing collisions with H2 and nuclear spin dependent dissociative recombination with electrons may result in a nonthermal excitation temperature. Each of these processes is complex. Collisions between H3+and H2 must obey selection rules based on conservation of nuclear spin angular momentum, and the allowed spin conversion reactions, which proceed through the fluxional (H5+)* intermediate, each have different statistical weights and energetic requirements. Meanwhile, theoretical and experimental studies of H3+electron recombination carried out over the past 40 years have yielded rates that span 4 orders of magnitude in range. We will present experimental measurements of the nuclear spin dependence of the reactions of H3+with H2 and with electrons, as well as astronomical observations of H3+in diffuse molecular clouds and time-dependent chemical modeling of these environments. Astrochemical models incorporating the latest experimental data still do not satisfactorily explain the observed excitation temperature in diffuse molecular clouds, and point to the need for state-selective measurements of the H3+electron recombination rate.

  14. An NMR and relativistic DFT investigation of one-bond nuclear spin-spin coupling in solid triphenyl group-14 chlorides.

    PubMed

    Willans, Mathew J; Demko, Bryan A; Wasylishen, Roderick E

    2006-06-21

    A solid-state nuclear magnetic resonance and zeroth-order regular approximation density functional theory, ZORA-DFT, study of one-bond nuclear spin-spin coupling between group-14 nuclei and quadrupolar 35/37Cl nuclei in triphenyl group-14 chlorides, Ph3XCl (X = C, Si, Ge, Sn and Pb), is presented. This represents the first combined experimental and theoretical systematic study of spin-spin coupling involving spin-pairs containing quadrupolar nuclei. Solid-state NMR spectra have been acquired for all compounds in which X has a spin-1/2 isotope--13C, 29Si, [117/119]Sn and 207Pb-at applied magnetic fields of 4.70, 7.05 and 11.75 T. From simulations of these spectra, values describing the indirect spin-spin coupling tensor-the isotropic indirect spin-spin coupling constant, 1J(X, 35/37Cl)iso and the anisotropy of the J tensor, Delta1J(X, 35/37Cl)--have been determined for all but the lead-chlorine spin-pair. To better compare the indirect spin-spin coupling parameters between spin-pairs, 1J(iso) and Delta1J values were converted to their reduced coupling constants, 1K(iso) and Delta1K. From experiment, the sign of 1K(iso) was found to be negative while the sign of Delta1K is positive for all spin-pairs investigated. The magnitude of both 1K(iso) and Delta1K was found to increase as one moves down group-14. Theoretical values of the magnitude and sign of 1K(iso) and Delta1K were obtained from ZORA-DFT calculations and are in agreement with the available experimental data. From the calculations, the Fermi-contact mechanism was determined to provide the largest contribution to 1K(iso) for all spin-pairs while spin-dipolar and paramagnetic spin-orbit mechanisms make significant contributions to the anisotropy of K. The inclusion of relativistic effects was found to influence K(Sn,Cl) and K(Pb,Cl). PMID:16763706

  15. Irreversible adiabatic decoherence of dipole-interacting nuclear-spin pairs coupled with a phonon bath

    NASA Astrophysics Data System (ADS)

    Domínguez, F. D.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2016-02-01

    We study the quantum adiabatic decoherence of a multispin array, coupled with an environment of harmonic phonons, in the framework of the theory of open quantum systems. We follow the basic formal guidelines of the well-known spin-boson model, since in this framework it is possible to derive the time dependence of the reduced density matrix in the adiabatic time scale, without resorting to coarse-graining procedures. However, instead of considering a set of uncoupled spins interacting individually with the boson field, the observed system in our model is a network of weakly interacting spin pairs; the bath corresponds to lattice phonons, and the system-environment interaction is generated by the variation of the dipole-dipole energy due to correlated shifts of the spin positions, produced by the phonons. We discuss the conditions that the model must meet in order to fit within the adiabatic regime. By identifying the coupling of the dipole-dipole spin interaction with the low-frequency acoustic modes as the source of decoherence, we calculate the decoherence function of the reduced spin density matrix in closed way, and estimate the decoherence rate of a typical element of the reduced density matrix in one- and three-dimensional models of the spin array. Using realistic values for the various parameters of the model we conclude that the dipole-phonon mechanism can be particularly efficient to degrade multispin coherences, when the number of active spins involved in a given coherence is high. The model provides insight into the microscopic irreversible spin dynamics involved in the buildup of quasiequilibrium states and in the coherence leakage during refocusing experiments in nuclear magnetic resonance of crystalline solids.

  16. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    SciTech Connect

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  17. Spin Noise Detection of Nuclear Hyperpolarization at 1.2 K

    PubMed Central

    Pöschko, Maria Theresia; Vuichoud, Basile; Milani, Jonas; Bornet, Aurélien; Bechmann, Matthias; Bodenhausen, Geoffrey; Jannin, Sami; Müller, Norbert

    2015-01-01

    We report proton spin noise spectra of a hyperpolarized solid sample of commonly used “DNP (dynamic nuclear polarization) juice” containing TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxide) and irradiated by a microwave field at a temperature of 1.2 K in a magnetic field of 6.7 T. The line shapes of the spin noise power spectra are sensitive to the variation of the microwave irradiation frequency and change from dip to bump, when the electron Larmor frequency is crossed, which is shown to be in good accordance with theory by simulations. Small but significant deviations from these predictions are observed, which can be related to spin noise and radiation damping phenomena that have been reported in thermally polarized systems. The non-linear dependence of the spin noise integral on nuclear polarization provides a means to monitor hyperpolarization semi-quantitatively without any perturbation of the spin system by radio frequency irradiation. PMID:26477605

  18. Spin Noise Detection of Nuclear Hyperpolarization at 1.2 K.

    PubMed

    Pöschko, Maria Theresia; Vuichoud, Basile; Milani, Jonas; Bornet, Aurélien; Bechmann, Matthias; Bodenhausen, Geoffrey; Jannin, Sami; Müller, Norbert

    2015-12-21

    We report proton spin noise spectra of a hyperpolarized solid sample of commonly used "DNP (dynamic nuclear polarization) juice" containing TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxide) and irradiated by a microwave field at a temperature of 1.2 K in a magnetic field of 6.7 T. The line shapes of the spin noise power spectra are sensitive to the variation of the microwave irradiation frequency and change from dip to bump, when the electron Larmor frequency is crossed, which is shown to be in good accordance with theory by simulations. Small but significant deviations from these predictions are observed, which can be related to spin noise and radiation damping phenomena that have been reported in thermally polarized systems. The non-linear dependence of the spin noise integral on nuclear polarization provides a means to monitor hyperpolarization semi-quantitatively without any perturbation of the spin system by radio frequency irradiation. PMID:26477605

  19. Nuclear orientation of radon isotopes by spin-exchange optical pumping

    SciTech Connect

    Kitano, M.; Calaprice, F.P.; Pitt, M.L.; Clayhold, J.; Happer, W.; Kadar-Kallen, M.; Musolf, M.; Ulm, G.; Wendt, K.; Chupp, T.

    1988-05-23

    This paper reports the first demonstration of nuclear orientation of radon atoms. The method employed was spin exchange with potassium atoms polarized by optical pumping. The radon isotopes were produced at the ISOLDE isotope separator of CERN. The nuclear alignment of /sup 209/Rn and /sup 223/Rn has been measured by observation of ..gamma..-ray anisotropies and the magnetic dipole moment for /sup 209/Rn has been measured by the nuclear-magnetic-resonance method to be chemically bond..mu..chemically bond = 0.838 81(39)..mu../sub N/.

  20. Observation of Optical Chemical Shift by Precision Nuclear Spin Optical Rotation Measurements and Calculations.

    PubMed

    Shi, Junhui; Ikäläinen, Suvi; Vaara, Juha; Romalis, Michael V

    2013-02-01

    Nuclear spin optical rotation (NSOR) is a recently developed technique for detection of nuclear magnetic resonance via rotation of light polarization, instead of the usual long-range magnetic fields. NSOR signals depend on hyperfine interactions with virtual optical excitations, giving new information about the nuclear chemical environment. We use a multipass optical cell to perform the first precision measurements of NSOR signals for a range of organic liquids and find clear distinction between proton signals for different compounds, in agreement with our earlier theoretical predictions. Detailed first-principles quantum mechanical NSOR calculations are found to be in agreement with the measurements. PMID:26281737

  1. Natural reference for nuclear high-spin states

    SciTech Connect

    Rowley, Neil; Ollier, James; Simpson, John

    2009-08-15

    We suggest two new representations of the data on rotational nuclei. The first is reference-free and the second arises from a natural reference related to the variable moment of inertia model parameters of the ground-state band of the system. As such, neither representation contains any free parameters. By defining a 'configuration spin' we show how a new ground-state band reference can be applied. Its use allows a complete description of the changes associated with the first, and higher, band crossings. We apply these new representations to discuss the nature of the first band crossing along even-even isotopic chains in the erbium and osmium isotopes and to odd-even nuclei in the vicinity of {sup 158}Er.

  2. Spin-orbit decomposition of ab initio nuclear wave functions

    NASA Astrophysics Data System (ADS)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  3. All-optical NMR in semiconductors provided by resonant cooling of nuclear spins interacting with electrons in the resonant spin amplification regime

    NASA Astrophysics Data System (ADS)

    Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Kavokin, K. V.; Yugova, I. A.; Yugov, O. A.; Suter, D.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Petrov, V. V.; Dolgikh, Yu. K.; Pawlis, A.; Bayer, M.

    2014-08-01

    Resonant cooling of different nuclear isotopes manifested in optically induced nuclear magnetic resonances (NMR) is observed in n-doped CdTe/(Cd,Mg)Te and ZnSe/(Zn,Mg)Se quantum wells and for donor-bound electrons in ZnSe:F and GaAs epilayers. By time-resolved Kerr rotation used in the regime of resonant spin amplification, we can expand the range of magnetic fields where the effect can be observed up to nuclear Larmor frequencies of 170 kHz. The mechanism of the resonant cooling of the nuclear spin system is analyzed theoretically. The developed approach allows us to model the resonant spin amplification signals with NMR features.

  4. Carbon-13 and proton magnetic resonance of mouse muscle.

    PubMed Central

    Fung, B M

    1977-01-01

    It is shown that roughly 4 mmol carbon atoms/g mouse muscle can give rise to a "high resolution" 13C NMR spectrum. From the 13C spectrum, it is estimated that the protons from mobile organic molecules or molecular segments amount to 6-8%of total nonrigid protons (organic plus water) in muscle. Their spin-spin relaxation times (T2) are of the order of 0.4-2 ms. At 37 degrees C, the proton spin-echo decay of mouse muscle changes rapidly with time after death, while that of mouse brain does not. PMID:890043

  5. Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid

    SciTech Connect

    Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan

    2013-04-11

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  6. Dephasing of two-spin qubits due to their charge and nuclear environments

    NASA Astrophysics Data System (ADS)

    Ramon, Guy

    2011-03-01

    We consider dephasing of qubits encoded in the singlet and unpolarized triplet states of pairs of spins localized in biased double quantum dots. The charge environment is modeled by both two-center charge traps in the insulator (where electrons tunnel between the two centers), and single charge traps located near the gate electrodes and QPCs (where electrons charge and empty the trap). The couplings of these trapped charges to the qubits are calculated by considering their charge distributions within a multipole expansion. It is demonstrated that the summation over these random telegraph processes in mesoscopic devices results in non-Markovian and non-Gaussian noise. For the nuclear environment we consider hyperfine-induced electron-spin dephasing in a nuclear spin bath with narrowed distribution. Nuclear state preparation using dynamical polarization cycles was experimentally achieved recently, and it is also essential to enable X -rotations for two-spin qubits. Our analysis is performed for both free induction and echo signals. The scaling of these dephasing mechanisms with the number of qubits is also discussed. Supported by Research Corporation.

  7. Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond

    NASA Astrophysics Data System (ADS)

    Ajoy, Ashok; Bissbort, Ulf; Liu, Yixiang; Marseglia, Luca; Saha, Kasturi; Cappellaro, Paola

    2015-05-01

    Recent developments in materials fabrication and coherent control have brought quantum magnetometers based on electronic spin defects in diamond close to single nuclear spin sensitivity. These quantum sensors have the potential to be a revolutionary tool in proteomics, thus helping drug discovery: They can overcome some of the challenges plaguing other experimental techniques (x-ray and NMR) and allow single protein reconstruction in their natural conditions. While the sensitivity of diamond-based magnetometers approaches the single nuclear spin level, the outstanding challenge is to resolve contributions arising from distinct nuclear spins in a dense sample and use the acquired signal to reconstruct their positions. This talk describes a strategy to boost the spatial resolution of NV-based magnetic resonance imaging, by combining the use of a quantum memory intrinsic to the NV system with Hamiltonian engineering by coherent quantum control. The proposed strategy promises to make diamond-based quantum sensors an invaluable technology for bioimaging, as they could achieve the reconstruction of biomolecules local structure without the need to crystallize them, to synthesize large ensembles or to alter their natural environment.

  8. Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex.

    PubMed

    Fataftah, Majed S; Zadrozny, Joseph M; Coste, Scott C; Graham, Michael J; Rogers, Dylan M; Freedman, Danna E

    2016-02-01

    The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. PMID:26739626

  9. Nuclear-spin diffusion in (NH4)2SnBr6

    NASA Astrophysics Data System (ADS)

    Punkkinen, M.; Ylinen, E. E.; Ingman, L. P.

    1982-10-01

    Nuclear-spin diffusion between the protons of the A and T species NH+4 ions in an (NH4)2SnBr6 single crystal is studied by the rf pulse sequence 90°-t1-90°180°-t2-90°. The shape of the induction signal after the third pulse approaches the equilibrium shape during the variable time t2 at a speed characterized by the spin-diffusion time constant TSD. TSD is longest for B-->0∥[111] and shortest for B-->0∥[100] below 30 K. It varies with temperature.

  10. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces.

    PubMed

    Wylie, Benjamin J; Dzikovski, Boris G; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H; McDermott, Ann E

    2015-04-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces. PMID:25828256