Science.gov

Sample records for carbon-carbon bond forming

  1. Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions.

    PubMed

    Miao, Yufeng; Rahimi, Mehran; Geertsema, Edzard M; Poelarends, Gerrit J

    2015-04-01

    Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic synthesis purposes. As such, enzymes have been identified with promiscuous catalytic activity for, one or more, eminent types of carbon-carbon bond-forming reactions like aldol couplings, Michael(-type) additions, Mannich reactions, Henry reactions, and Knoevenagel condensations. This review focuses on enzymes that promiscuously catalyze these reaction types and exhibit high enantioselectivities (in case chiral products are obtained). PMID:25598537

  2. Carbon-carbon bond-forming reactions of α-thioaryl carbonyl compounds for the synthesis of complex heterocyclic molecules.

    PubMed

    Biggs-Houck, James E; Davis, Rebecca L; Wei, Jingqiang; Mercado, Brandon Q; Olmstead, Marilyn M; Tantillo, Dean J; Shaw, Jared T

    2012-01-01

    Strategies for the formation of carbon-carbon bonds from the α-thioaryl carbonyl products of substituted lactams are described. Although direct functionalization is possible, a two step process of oxidation and magnesium-sulfoxide exchange has proven optimal. The oxidation step results in the formation of two diastereomers that exhibit markedly different levels of stability toward elimination, which is rationalized on the basis of quantum mechanical calculations and X-ray crystallography. Treatment of the sulfoxide with i-PrMgCl results in the formation of a magnesium enolate that will undergo an intramolecular Michael addition reaction to form two new stereogenic centers. The relationship between the substitution patterns of the sulfoxide substrate and the efficiency of the magnesium exchange reaction are also described. PMID:22023077

  3. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  4. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  5. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  6. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  7. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  8. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  9. Adsorption-induced scission of carbon carbon bonds

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei S.; Sun, Frank C.; Randall, Adrian; Shirvanyants, David; Rubinstein, Michael; Lee, Hyung-Il; Matyjaszewski, Krzysztof

    2006-03-01

    Covalent carbon-carbon bonds are hard to break. Their strength is evident in the hardness of diamonds and tensile strength of polymeric fibres; on the single-molecule level, it manifests itself in the need for forces of several nanonewtons to extend and mechanically rupture one bond. Such forces have been generated using extensional flow, ultrasonic irradiation, receding meniscus and by directly stretching a single molecule with nanoprobes. Here we show that simple adsorption of brush-like macromolecules with long side chains on a substrate can induce not only conformational deformations, but also spontaneous rupture of covalent bonds in the macromolecular backbone. We attribute this behaviour to the fact that the attractive interaction between the side chains and the substrate is maximized by the spreading of the side chains, which in turn induces tension along the polymer backbone. Provided the side-chain densities and substrate interaction are sufficiently high, the tension generated will be strong enough to rupture covalent carbon-carbon bonds. We expect similar adsorption-induced backbone scission to occur for all macromolecules with highly branched architectures, such as brushes and dendrimers. This behaviour needs to be considered when designing surface-targeted macromolecules of this type-either to avoid undesired degradation, or to ensure rupture at predetermined macromolecular sites.

  10. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOEpatents

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  11. Catalytic asymmetric carbon-carbon bond formation via allylic alkylations with organolithium compounds

    NASA Astrophysics Data System (ADS)

    Pérez, Manuel; Fañanás-Mastral, Martín; Bos, Pieter H.; Rudolph, Alena; Harutyunyan, Syuzanna R.; Feringa, Ben L.

    2011-05-01

    Carbon-carbon bond formation is the basis for the biogenesis of nature's essential molecules. Consequently, it lies at the heart of the chemical sciences. Chiral catalysts have been developed for asymmetric C-C bond formation to yield single enantiomers from several organometallic reagents. Remarkably, for extremely reactive organolithium compounds, which are among the most broadly used reagents in chemical synthesis, a general catalytic methodology for enantioselective C-C formation has proven elusive, until now. Here, we report a copper-based chiral catalytic system that allows carbon-carbon bond formation via allylic alkylation with alkyllithium reagents, with extremely high enantioselectivities and able to tolerate several functional groups. We have found that both the solvent used and the structure of the active chiral catalyst are the most critical factors in achieving successful asymmetric catalysis with alkyllithium reagents. The active form of the chiral catalyst has been identified through spectroscopic studies as a diphosphine copper monoalkyl species.

  12. Intramolecular σ-bond metathesis between carbon-carbon and silicon-silicon bonds.

    PubMed

    Ishida, Naoki; Ikemoto, Wataru; Murakami, Masahiro

    2012-06-15

    An intramolecular σ-bond metathesis between carbon-carbon and silicon-silicon bonds took place on treatment of a disilane tethered to a cyclobutanone with a palladium(0) catalyst, furnishing a silaindane skeleton as well as an acylsilane functionality at once. PMID:22651103

  13. N-Methylphthalimide-substituted benzimidazolium salts and PEPPSI Pd-NHC complexes: synthesis, characterization and catalytic activity in carbon-carbon bond-forming reactions.

    PubMed

    Akkoç, Senem; Gök, Yetkin; İlhan, İlhan Özer; Kayser, Veysel

    2016-01-01

    A series of novel benzimidazolium salts (1-4) and their pyridine enhanced precatalyst preparation stabilization and initiation (PEPPSI) themed palladium N-heterocyclic carbene complexes [PdCl2(NHC)(Py)] (5-8), where NHC = 1-(N-methylphthalimide)-3-alkylbenzimidazolin-2-ylidene and Py = 3-chloropyridine, were synthesized and characterized by means of (1)H and (13)C{(1)H} NMR, UV-vis (for 5-8), ESI-FTICR-MS (for 2, 4, 6-8) and FTIR spectroscopic methods and elemental analysis. The synthesized compounds were tested in Suzuki-Miyaura cross-coupling (for 1-8) and arylation (for 5-8) reactions. As catalysts, they demonstrated a highly efficient route for the formation of asymmetric biaryl compounds even though they were used in very low loading. For example, all compounds displayed good catalytic activity for the C-C bond formation of 4-tert-butylphenylboronic acid with 4-chlorotoluene. PMID:26877810

  14. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    NASA Astrophysics Data System (ADS)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.

  15. Micro-oxidation treatment to improve bonding strength of Sr and Na co-substituted hydroxyapatite coatings for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Yulei; Liu, Shoujie; Guo, Qian; Li, Shaoxian

    2016-08-01

    To improve the bonding strength of Sr and Na co-substituted hydroxyapatite (SNH) coatings for carbon/carbon composites, carbon/carbon composites are surface modified by micro-oxidation treatment. The micro-oxidation treatment could generate large number of pores containing oxygenic functional groups on the surface of carbon/carbon composites. SNH is nucleated on the inwall of the pores and form a flaky shape coating with 10-50 nm in thickness and 200-900 nm in width. The bonding strength between SNH coating and carbon/carbon composites increases from 4.27 ± 0.26 MPa to 10.57 ± 0.38 MPa after the micro-oxidation treatment. The promotion of bonding strength is mainly attributed to the pinning effect caused by the pores and chemical bonding generated by the oxygenic functional groups.

  16. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  17. Oxidative addition of carbon-carbon bonds to gold.

    PubMed

    Joost, Maximilian; Estévez, Laura; Miqueu, Karinne; Amgoune, Abderrahmane; Bourissou, Didier

    2015-04-20

    The oxidative addition of strained CC bonds (biphenylene, benzocyclobutenone) to DPCb (diphosphino-carborane) gold(I) complexes is reported. The resulting cationic organogold(III) complexes have been isolated and fully characterized. Experimental conditions can be adjusted to obtain selectively acyl gold(III) complexes resulting from oxidative addition of either the C(aryl)C(O) or C(alkyl)C(O) bond of benzocyclobutenone. DFT calculations provide mechanistic insight into this unprecedented transformation. PMID:25727203

  18. Stable alkanes containing very long carbon-carbon bonds.

    PubMed

    Fokin, Andrey A; Chernish, Lesya V; Gunchenko, Pavel A; Tikhonchuk, Evgeniya Yu; Hausmann, Heike; Serafin, Michael; Dahl, Jeremy E P; Carlson, Robert M K; Schreiner, Peter R

    2012-08-22

    The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 Å in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces. PMID:22835264

  19. Molecular Mechanics (MM4) Studies on Unusually Long Carbon-Carbon Bond Distances in Hydrocarbons.

    PubMed

    Allinger, Norman L; Lii, Jenn-Huei; Schaefer, Henry F

    2016-06-14

    The carbon-carbon single bond is of central importance in organic chemistry. When the molecular mechanics MM4 force field was developed beginning in the early 1990s, C-C bond lengths were not known very reliably for many important molecules, and bond lengths greater than 1.6 Å were quite poorly known experimentally. Quantum-mechanically computed values could not yet be obtained with useful accuracy in a general way. This paper examines structures now available from experiment and quantum-mechanical computations and extends the fit of the MM4 methodology to include new bond distances as long as 1.71 Å. PMID:27164310

  20. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  1. Selective carbon-carbon bond cleavage for the stereoselective synthesis of acyclic systems.

    PubMed

    Marek, Ilan; Masarwa, Ahmad; Delaye, Pierre-Olivier; Leibeling, Markus

    2015-01-01

    Most of the efforts of organic chemists have been directed to the development of creative strategies to build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. In this Review, we show an alternative approach where challenging molecular skeletons could be prepared through selective cleavage of carbon-carbon bonds. We demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo-, and even enantioselective preparation of adducts despite the fact that C-C single bonds are among the least reactive functional groups. The development of such strategies may have an impact on synthesis design and can ultimately lead to new selective and efficient processes for the utilization of simple hydrocarbons. PMID:25266824

  2. Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon-Carbon Bond Formation upon Dimethyl Ether Activation on Alumina.

    PubMed

    Comas-Vives, Aleix; Valla, Maxence; Copéret, Christophe; Sautet, Philippe

    2015-09-23

    The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon-carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily activate dimethyl ether to yield CH4, alkenes, and surface formate species according to spectroscopic studies combined with a computational approach. The carbon-carbon forming step as well as the formation of methane and surface formate involves a transient oxonium ion intermediate, generated by a hydrogen transfer between surface methoxy species and coordinated methanol on adjacent Al sites. These results indicate that extra framework Al centers in acidic zeolites, which are associated with alumina, can play a key role in the formation of the first carbon-carbon bond, the initiation step of the industrial MTO process. PMID:27162986

  3. Catalytic hydrogenolysis of an aryl-aryl carbon-carbon bond with a rhodium complex

    SciTech Connect

    Perthuisot, C.; Jones, W.D. )

    1994-04-20

    Recent publications have brought renewed interest to the quest for homogeneous catalytic activation of carbon-carbon bonds. However, except for a few reports of biphenylene cleavage, the mechanism and scope of aryl-aryl C-C bond activation remains relatively uninvestigated. In the hope of overcoming the obstacle of weak M-C bonds, we used a rhodium system that should provide a thermodynamically favored C-C cleaved complex by making strong metal-aryl bonds. Reaction of (C[sub 5]Me[sub 5])Rh(PMe[sub 3])(Ph)(H) (1) with 1.5 equiv of biphenylene in cyclohexane-d[sub 12] at 65[degree]C resulted in the quantitative formation of (CC[sub 5]Me[sub 5])Rh(PMe[sub 3]) (biphenylenyl(H)) (2), along with a small amount of a red complex. The cleavage of the well-hidden carbon-carbon bond of biphenylene described relies both on a strained four-membered ring and on the formation of a stable pentametallacycle. The results show that C-H activation and [eta][sup 2] coordination are probably involved in the process leading to C-C bond cleavage, and valuable information can be obtained from studies of this system. 21 refs., 1 fig.

  4. Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT.

    PubMed

    Grant, Job L; Mitchell, Megan E; Makris, Thomas Michael

    2016-09-01

    OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe(4+)-oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C-H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe(4+)-OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon-carbon scission reaction catalyzed by OleT. PMID:27555591

  5. Formation Mechanism of the First Carbon-Carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons.

    PubMed

    Liu, Yue; Müller, Sebastian; Berger, Daniel; Jelic, Jelena; Reuter, Karsten; Tonigold, Markus; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2016-05-01

    The elementary reactions leading to the formation of the first carbon-carbon bond during early stages of the zeolite-catalyzed methanol conversion into hydrocarbons were identified by combining kinetics, spectroscopy, and DFT calculations. The first intermediates containing a C-C bond are acetic acid and methyl acetate, which are formed through carbonylation of methanol or dimethyl ether even in presence of water. A series of acid-catalyzed reactions including acetylation, decarboxylation, aldol condensation, and cracking convert those intermediates into a mixture of surface bounded hydrocarbons, the hydrocarbon pool, as well as into the first olefin leaving the catalyst. This carbonylation based mechanism has an energy barrier of 80 kJ mol(-1) for the formation of the first C-C bond, in line with a broad range of experiments, and significantly lower than the barriers associated with earlier proposed mechanisms. PMID:27037603

  6. Carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride

    NASA Astrophysics Data System (ADS)

    Hu, Shaowei; Shima, Takanori; Hou, Zhaomin

    2014-08-01

    The cleavage of carbon-carbon (C-C) bonds by transition metals is of great interest, especially as this transformation can be used to produce fuels and other industrially important chemicals from natural resources such as petroleum and biomass. Carbon-carbon bonds are quite stable and are consequently unreactive under many reaction conditions. In the industrial naphtha hydrocracking process, the aromatic carbon skeleton of benzene can be transformed to methylcyclopentane and acyclic saturated hydrocarbons through C-C bond cleavage and rearrangement on the surfaces of solid catalysts. However, these chemical transformations usually require high temperatures and are fairly non-selective. Microorganisms can degrade aromatic compounds under ambient conditions, but the mechanistic details are not known and are difficult to mimic. Several transition metal complexes have been reported to cleave C-C bonds in a selective fashion in special circumstances, such as relief of ring strain, formation of an aromatic system, chelation-assisted cyclometallation and β-carbon elimination. However, the cleavage of benzene by a transition metal complex has not been reported. Here we report the C-C bond cleavage and rearrangement of benzene by a trinuclear titanium polyhydride complex. The benzene ring is transformed sequentially to a methylcyclopentenyl and a 2-methylpentenyl species through the cleavage of the aromatic carbon skeleton at the multi-titanium sites. Our results suggest that multinuclear titanium hydrides could serve as a unique platform for the activation of aromatic molecules, and may facilitate the design of new catalysts for the transformation of inactive aromatics.

  7. Carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride.

    PubMed

    Hu, Shaowei; Shima, Takanori; Hou, Zhaomin

    2014-08-28

    The cleavage of carbon-carbon (C-C) bonds by transition metals is of great interest, especially as this transformation can be used to produce fuels and other industrially important chemicals from natural resources such as petroleum and biomass. Carbon-carbon bonds are quite stable and are consequently unreactive under many reaction conditions. In the industrial naphtha hydrocracking process, the aromatic carbon skeleton of benzene can be transformed to methylcyclopentane and acyclic saturated hydrocarbons through C-C bond cleavage and rearrangement on the surfaces of solid catalysts. However, these chemical transformations usually require high temperatures and are fairly non-selective. Microorganisms can degrade aromatic compounds under ambient conditions, but the mechanistic details are not known and are difficult to mimic. Several transition metal complexes have been reported to cleave C-C bonds in a selective fashion in special circumstances, such as relief of ring strain, formation of an aromatic system, chelation-assisted cyclometallation and β-carbon elimination. However, the cleavage of benzene by a transition metal complex has not been reported. Here we report the C-C bond cleavage and rearrangement of benzene by a trinuclear titanium polyhydride complex. The benzene ring is transformed sequentially to a methylcyclopentenyl and a 2-methylpentenyl species through the cleavage of the aromatic carbon skeleton at the multi-titanium sites. Our results suggest that multinuclear titanium hydrides could serve as a unique platform for the activation of aromatic molecules, and may facilitate the design of new catalysts for the transformation of inactive aromatics. PMID:25164752

  8. Base-Promoted Tandem Reaction Involving Insertion into Carbon-Carbon σ-Bonds: Synthesis of Xanthone and Chromone Derivatives.

    PubMed

    Cheng, Xingcan; Zhou, Yuanyuan; Zhang, Fangfang; Zhu, Kai; Liu, Yuanyuan; Li, Yanzhong

    2016-08-26

    Tandem reactions using base-promoted processes have been developed for the synthesis of xanthone and chromone derivatives. The first examples of base-promoted insertion reactions of isolated carbon-carbon triple bonds into carbon-carbon σ-bonds have been reported. Using these approaches, polycyclic structures can be prepared. This reaction has the potential to become a general synthetic protocol for the preparation of multi-substituted xanthones and chromones due to the abundance of easily accessible starting materials possessing diverse substituent groups. PMID:27460875

  9. The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon-carbon bond formation via electrogenerated N-acyliminium ions.

    PubMed

    Jones, Alan M; Banks, Craig E

    2014-01-01

    N-acyliminium ions are useful reactive synthetic intermediates in a variety of important carbon-carbon bond forming and cyclisation strategies in organic chemistry. The advent of an electrochemical anodic oxidation of unfunctionalised amides, more commonly known as the Shono oxidation, has provided a complementary route to the C-H activation of low reactivity intermediates. In this article, containing over 100 references, we highlight the development of the Shono-type oxidations from the original direct electrolysis methods, to the use of electroauxiliaries before arriving at indirect electrolysis methodologies. We also highlight new technologies and techniques applied to this area of electrosynthesis. We conclude with the use of this electrosynthetic approach to challenging syntheses of natural products and other complex structures for biological evaluation discussing recent technological developments in electroorganic techniques and future directions. PMID:25670975

  10. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.

    PubMed

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon-carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  11. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    NASA Astrophysics Data System (ADS)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  12. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    PubMed

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. PMID:27359344

  13. Merging photoredox catalysis with Lewis acid catalysis: activation of carbon-carbon triple bonds.

    PubMed

    Jin, Ruiwen; Chen, Yiyong; Liu, Wangsheng; Xu, Dawen; Li, Yawei; Ding, Aishun; Guo, Hao

    2016-08-01

    Here, we demonstrate that merging photoredox catalysis with Lewis acid catalysis provides a fundamentally new activation mode of C-C triple bonds, to achieve the bond-forming reaction of alkynes with weak nucleophiles. Using a synergistic merger of Eosin Y and Cu(OTf)2, a highly efficient cyclization reaction of arene-ynes was developed. PMID:27432542

  14. Catalytic carbon-carbon bond activation and functionalization by nickel complexes

    SciTech Connect

    Edelback, B.L.; Lachicotte, R.J.; Jones, W.D.

    1999-09-27

    The nickel alkyne complexes (dippe)Ni(PhC{triple{underscore}bond}CPh), 2, (dippe) Ni(MeO{sub 2}CC{triple{underscore}bond}CCO{sub 2}Me), 3, (dippe)Ni(CH{sub 3}OCH{sub 2}C{triple{underscore}bond}CCH{sub 2}OCH{sub 3}), 4, and (dippe)Ni(CF{sub 3}C{triple{underscore}bond}CCF{sub 3}), 5, were synthesized (dippe = bis(diisopropylphosphino)ethane) and characterized by {sup 1}H, {sup 31}P, and {sup 13}C{l{underscore}brace}{sup 1}H{r{underscore}brace} NMR spectroscopy. Complexes 1, 2, and 3 were characterized by X-ray crystallography. The thermolysis of complex 1 or 2 (120 C) in the presence of excess biphenylene and excess alkyne results in very slow catalytic formation of the corresponding 9,10-disubstituted phenanthrene. However, addition of {approximately}6 mol % O{sub 2} (based on the metal complex) to the reaction mixture results in an acceleration in catalysis at lower temperatures ({approximately}70--80 C). The thermolysis of complexes 3 or 4 with excess biphenylene and excess alkyne leads to the alkyne cyclotrimerization product as the major organic species formed in the reaction. Fluorenone was catalytically produced by heating (dippe)Ni(CO){sub 2}, biphenylene, and CO. Catalytic insertion of 2,6-xylylisocyanide into the strained C-C bond of biphenylene was also achieved by heating (dippe)Ni(2,6-xylylisocyanide){sub 2}, excess biphenylene, and 2,6-xylylisocyanide. Mechanistic schemes are proposed for these reactions.

  15. Anion Effects in Oxidative Aliphatic Carbon-Carbon Bond Cleavage Reactions of Cu(II) Chlorodiketonate Complexes.

    PubMed

    Saraf, Sushma L; Miłaczewska, Anna; Borowski, Tomasz; James, Christopher D; Tierney, David L; Popova, Marina; Arif, Atta M; Berreau, Lisa M

    2016-07-18

    Aliphatic oxidative carbon-carbon bond cleavage reactions involving Cu(II) catalysts and O2 as the terminal oxidant are of significant current interest. However, little is currently known regarding how the nature of the Cu(II) catalyst, including the anions present, influence the reaction with O2. In previous work, we found that exposure of the Cu(II) chlorodiketonate complex [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1) to O2 results in oxidative aliphatic carbon-carbon bond cleavage within the diketonate unit, leading to the formation of benzoic acid, benzoic anhydride, benzil, and 1,3-diphenylpropanedione as organic products. Kinetic studies of this reaction revealed a slow induction phase followed by a rapid decay of the absorption features of 1. Notably, the induction phase is not present when the reaction is performed in the presence of a catalytic amount of chloride anion. In the studies presented herein, a combination of spectroscopic (UV-vis, EPR) and density functional theory (DFT) methods have been used to examine the chloride and benzoate ion binding properties of 1 under anaerobic conditions. These studies provide evidence that each anion coordinates in an axial position of the Cu(II) center. DFT studies reveal that the presence of the anion in the Cu(II) coordination sphere decreases the barrier for O2 activation and the formation of a Cu(II)-peroxo species. Notably, the chloride anion more effectively lowers the barrier associated with O-O bond cleavage. Thus, the nature of the anion plays an important role in determining the rate of reaction of the diketonate complex with O2. The same type of anion effects were observed in the O2 reactivity of the simple Cu(II)-bipyridine complex [(bpy)Cu(PhC(O)C(Cl)C(O)Ph)ClO4] (3). PMID:27377103

  16. Breaking and Making of Carbon-Carbon Bonds by Lanthanides and Third-Row Transition Metals.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-02-24

    Carbon-atom extrusion from the ipso-position of a halobenzene ring (C6 H5 X; X=F, Cl, Br, I) and its coupling with a methylene ligand to produce acetylene is not confined to [LaCH2 ](+) ; also, the third-row transition-metal complexes [MCH2 ](+) , M=Hf, Ta, W, Re, and Os, bring about this unusual transformation. However, substrates with substituents X=CN, NO2 , OCH3 , and CF3 are either not reactive at all or give rise to different products when reacted with [LaCH2 ](+) . In the thermal gas-phase processes of atomic Ln(+) with C7 H7 Cl substrates, only those lanthanides with a promotion energy small enough to attain a 4f(n) 5d(1) 6s(1) configuration are reactive and form both [LnCl](+) and [LnC5 H5 Cl](+) . Branching ratios and the reaction efficiencies of the various processes seem to correlate with molecular properties, like the bond-dissociation energies of the C-X or M(+) -X bonds or the promotion energies of lanthanides. PMID:26875940

  17. Synthesis, photophysical and thin-film self-assembly properties of novel fluorescent molecules with carbon-carbon triple bonds

    NASA Astrophysics Data System (ADS)

    Niu, Qingfen; Sun, Hongjian; Li, Xiaoyan

    2014-12-01

    Three novel fluorescent molecules with carbon-carbon triple bonds 2TBEA, 2TBDA and TEPEB are successfully designed and synthesized. Their thermal, photophysical, electrochemical, electronic and thin-film self-assembly properties were characterized. Three dyes showed typical photoluminescence (PL) emission behaviors, the PL intensities firstly increased and then decreased with gradually decreasing concentration. The appealing fluorescence properties indicated that three dyes could be used as good fluorescent materials. Additionally, the thin-film self-assembly behaviors of three dyes were also investigated. The microstructures of their optical microscopy (OM) images exhibited high flexibility. Furthermore, SEM and AFM surface morphology of these self-assembly nanostructures revealed that three well-defined long-range order of rod-like and tube-like self-assembly systems exhibited interesting morphology properties. Therefore, three compounds may be of great interest for the development of organic thin-film materials.

  18. Metal Nanoparticles Catalyzed Selective Carbon-Carbon Bond Activation in the Liquid Phase.

    PubMed

    Ye, Rong; Yuan, Bing; Zhao, Jie; Ralston, Walter T; Wu, Chung-Yeh; Unel Barin, Ebru; Toste, F Dean; Somorjai, Gabor A

    2016-07-13

    Understanding the C-C bond activation mechanism is essential for developing the selective production of hydrocarbons in the petroleum industry and for selective polymer decomposition. In this work, ring-opening reactions of cyclopropane derivatives under hydrogen catalyzed by metal nanoparticles (NPs) in the liquid phase were studied. 40-atom rhodium (Rh) NPs, encapsulated by dendrimer molecules and supported in mesoporous silica, catalyzed the ring opening of cyclopropylbenzene at room temperature under hydrogen in benzene, and the turnover frequency (TOF) was higher than other metals or the Rh homogeneous catalyst counterparts. Comparison of reactants with various substitution groups showed that electron donation on the three-membered ring boosted the TOF of ring opening. The linear products formed with 100% selectivity for ring opening of all reactants catalyzed by the Rh NP. Surface Rh(0) acted as the active site in the NP. The capping agent played an important role in the ring-opening reaction kinetics. Larger particle size tended to show higher TOF and smaller reaction activation energy for Rh NPs encapsulated in either dendrimer or poly(vinylpyrrolidone). The generation/size of dendrimer and surface group also affected the reaction rate and activation energy. PMID:27322570

  19. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    PubMed

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives. PMID:25355907

  20. Conversion of levulinate into succinate through catalytic oxidative carbon-carbon bond cleavage with dioxygen.

    PubMed

    Liu, Junxia; Du, Zhongtian; Lu, Tianliang; Xu, Jie

    2013-12-01

    Grand Cleft Oxo: Levulinate, available from biomass, is oxidized into succinate through manganese(III)-catalyzed selective cleavage of CC bonds with molecular oxygen. In addition to levulinate, a wide range of aliphatic methyl ketones also undergo oxidative CC bond cleavage at the carbonyl group. This procedure offers a route to valuable dicarboxylic acids from biomass resources by nonfermentive approaches. PMID:23922234

  1. An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis

    SciTech Connect

    Cicchillo, Robert M; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T; Li, Gongyong; Nair, Satish K; van derDonk, Wilfred A; Metcalf, William W

    2010-01-12

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp{sup 3})-C(sp{sup 3}) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.

  2. An Unusual Carbon-Carbon Bond Cleavage Reaction During Phosphinothricin Biosynthesis

    PubMed Central

    Cicchillo, Robert M.; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T.; Li, Gongyong; Nair, Satish K.; van der Donk, Wilfred A.; Metcalf, William W.

    2010-01-01

    Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture1. One such compound, phosphinothricin tripeptide (PTT), contains the unusual amino acid phosphinothricin (PT) attached to two alanine residues (Fig. 1). Synthetic PT (glufosinate) is a component of two top-selling herbicides (Basta® and Liberty®), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during PTT biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP) (Fig. 1)2. Reported here are the in vitro reconstitution of this unprecedented C(sp3)-C(sp3) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-heme iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalyzed by the 2-His-1-carboxylate mononuclear non-heme iron family of enzymes. PMID:19516340

  3. Iridium-Catalyzed Intramolecular Methoxy C-H Addition to Carbon-Carbon Triple Bonds: Direct Synthesis of 3-Substituted Benzofurans from o-Methoxyphenylalkynes.

    PubMed

    Torigoe, Takeru; Ohmura, Toshimichi; Suginome, Michinori

    2016-07-18

    Catalytic hydroalkylation of an alkyne with methyl ether was accomplished. Intramolecular addition of the C-H bond of a methoxy group in 1-methoxy-2-(arylethynyl)benzenes across a carbon-carbon triple bond took place efficiently either in toluene at 110 °C or in p-xylene at 135 °C in the presence of an iridium catalyst. The initial 5-exo cyclization products underwent double-bond migration during the reaction to give 3-(arylmethyl)benzofurans in high yields. PMID:27168516

  4. Intermolecular carbon-carbon, nitrogen-nitrogen and oxygen-oxygen non-covalent bonding in dipolar molecules.

    PubMed

    Remya, Karunakaran; Suresh, Cherumuttathu H

    2015-07-28

    Clear evidence for the existence of intermolecular carbon-carbon (C···C), nitrogen-nitrogen (N···N) and oxygen-oxygen (O···O) interactions between atoms in similar chemical environments in homogeneous dimers of organic dipolar molecules has been obtained from molecular orbital (MO), natural bond orbital (NBO) and atoms-in-molecule (AIM) electron density analyses at the M06L/6-311++G(d,p) level of density functional theory (DFT). These X···X type interactions are mainly the result of local polarization effects, causing segregation of electron-rich and electron-deficient regions in the X atoms, leading to complementary electrostatic interactions. NBO analysis provides evidence of charge transfer between the two X atoms. Even in symmetrical molecules such as acetylene, induced dipoles in the dimer create C···C bonding interactions. The strength of this type of interaction increases with increase in the dipole moment of the molecule. Energy decomposition analysis (EDA) shows that the electrostatic component of the interaction energy (Eint) is very high, up to 95.86%. The C···C interactions between similar carbon atoms are located for several crystal structures obtained from the literature. In addition, MO, AIM and electrostatic potential analyses support interactions between similar oxygen (O···O) and nitrogen (N···N) atoms in a variety of molecular dimers. Good prediction of Eint is achieved in terms of the total gain in electron density at non-covalently interacting intermolecular bonds (∑ρ) and the monomer dipole moment (μ). A rigorously tested QSAR equation has been derived to predict Eint for all dimer systems: Eint (kcal mol(-1)) = -138.395∑ρ(au) - 0.551μ (Debye). This equation suggests that the polarization-induced bonding interaction between atoms in a similar chemical environment could well be a general chemical phenomenon. The results have been further validated by different density functional methods and also by G3MP2 method

  5. Elucidation of an Iterative Process of Carbon-Carbon Bond Formation of Prebiotic Significance

    NASA Astrophysics Data System (ADS)

    Loison, Aurélie; Dubant, Stéphane; Adam, Pierre; Albrecht, Pierre

    2010-12-01

    Laboratory experiments carried out under plausible prebiotic conditions (under conditions that might have occurred at primitive deep-sea hydrothermal vents) in water and involving constituents that occur in the vicinity of submarine hydrothermal vents (e.g., CO, H2S, NiS) have disclosed an iterative Ni-catalyzed pathway of C-C bond formation. This pathway leads from CO to various organic molecules that comprise, notably, thiols, alkylmono- and disulfides, carboxylic acids, and related thioesters containing up to four carbon atoms. Furthermore, similar experiments with organic compounds containing various functionalities, such as thiols, carboxylic acids, thioesters, and alcohols, gave clues to the mechanisms of this novel synthetic process in which reduced metal species, in particular Ni(0), appear to be the key catalysts. Moreover, the formation of aldehydes (and ketones) as labile intermediates via a hydroformylation-related process proved to be at the core of the chain elongation process. Since this process can potentially lead to organic compounds with any chain length, it could have played a significant role in the prebiotic formation of lipidic amphiphilic molecules such as fatty acids, potential precursors of membrane constituents.

  6. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.

    PubMed

    Orozco, Lina M; Renz, Michael; Corma, Avelino

    2016-09-01

    Aldehydes possess relatively high chemical energy, which is the driving force for disproportionation reactions such as Cannizzaro and Tishchenko reactions. Generally, this energy is wasted if aldehydes are transformed into carboxylic acids with a sacrificial oxidant. Here, we describe a cascade reaction in which the surplus energy of the transformation is liberated as molecular hydrogen for the oxidation of heptanal to heptanoic acid by water, and the carboxylic acid is transformed into potentially industrially relevant symmetrical ketones by ketonic decarboxylation. The cascade reaction is catalyzed by monoclinic zirconium oxide (m-ZrO2 ). The reaction mechanism has been studied through cross-coupling experiments between different aldehydes and acids, and the final symmetrical ketones are formed by a reaction pathway that involves the previously formed carboxylic acids. Isotopic studies indicate that the carboxylic acid can be formed by a hydride shift from the adsorbed aldehyde on the metal oxide surface in the absence of noble metals. PMID:27539722

  7. Oxidatively Triggered Carbon-Carbon Bond Formation in Ene-amide Complexes.

    PubMed

    Jacobs, Brian P; Wolczanski, Peter T; Lobkovsky, Emil B

    2016-05-01

    Ene-amides have been explored as ligands and substrates for oxidative coupling. Treatment of CrCl2, Cl2Fe(PMe3)2, and Cl2Copy4 with 2 equiv of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li afforded pseudosquare planar {η(3)-C,C,N-(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Cr (1-Cr, 78%), trigonal {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Fe(PMe3) (2-Fe, 80%), and tetrahedral {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Co(py)2 (3-Co, 91%) in very good yields. The addition of CrCl3 to 1-Cr, and FeCl3 to 2-Fe, afforded oxidatively triggered C-C bond formation as rac-2,2'-di(2,6-(i)Pr2C6H3N═)2dicyclohexane (EA2) was produced in modest yields. Various lithium ene-amides were similarly coupled, and the mechanism was assessed via stoichiometric reactions. Some ferrous compounds (e.g., 2-Fe, FeCl2) were shown to catalyze C-arylation of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li with PhBr, but the reaction was variable. Structural characterizations of 1-Cr, 2-Fe, and 3-Co are reported. PMID:27064509

  8. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  9. Theoretical study on carbon-carbon short contact of ∼2.3 Å: intermediate state between nonbonding and σ-covalent bonding.

    PubMed

    Hatakeyama, Makoto; Ogata, Koji; Ishida, Toshimasa; Kitamura, Kunihiro; Nakamura, Shinichiro

    2015-01-29

    An unusual intermolecular carbon-carbon short contact, observed previously in the crystal structure of the copper complex of pyridoxal-5-phosphate- pyridoxamine-5-phospate Schiff base, was investigated from a standpoint of quantum chemistry by DFT calculations with plane wave basis sets. The DFT-optimized structure qualitatively reproduced the short contact (2.6-2.8 Å) of the intermolecular carbon-carbon pairs for the dimer of the copper complexes in the unit cell, compared to that (∼2.3 Å) of the X-ray diffraction data. By the occupied and unoccupied orbitals, the dimer showed the in-phase and out-of-phase interactions along the direction of the intermolecular distance. The dimer of the copper complexes was confirmed as the stable intermediate between nonbonding and σ-covalent bonding by the electronic energy curve along the distance of the monomers. PMID:25559884

  10. Velocity Map Imaging Study of Ion-Radical Chemistry: Charge Transfer and Carbon-Carbon Bond Formation in the Reactions of Allyl Radicals with C(.).

    PubMed

    Pei, Linsen; Farrar, James M

    2016-08-11

    We present an experimental and computational study of the dynamics of collisions of ground state carbon cations with allyl radicals, C3H5, at a collision energy of 2.2 eV. Charge transfer to produce the allyl cation, C3H5(+), is exoergic by 3.08 eV and proceeds via energy resonance such that the electron transfer occurs without a significant change in nuclear velocities. The products have sufficient energy to undergo the dissociation process C3H5(+) → C3H4(+) + H. Approximately 80% of the reaction products are ascribed to charge transfer, with ∼40% of those products decaying via loss of a hydrogen atom. We also observe products arising from the formation of new carbon-carbon bonds. The experimental velocity space flux distributions for the four-carbon products are symmetric about the centroid of the reactants, providing direct evidence that the products are mediated by formation of a C4H5(+) complex living at least a few rotational periods. The primary four-carbon reaction products are formed by elimination of molecular hydrogen from the C4H5(+) complex. More than 75% of the nascent C4H3(+) products decay by C-H bond cleavage to yield a C4H2(+) species. Quantum chemical calculations at the MP2/6-311+g(d,p) level of theory support the formation of a nonplanar cyclic C4H5(+) adduct that is produced when the p-orbital containing the unpaired electron on C(+) overlaps with the unpaired spin density on the terminal carbon atoms in allyl. Product formation then occurs by 1,2-elimination of molecular hydrogen from the cyclic intermediate to form a planar cyclic C4H3(+) product. The large rearrangement in geometry as the C4H3(+) products are formed is consistent with high vibrational excitation in that product and supports the observation that the majority of those products decay to form the C4H2(+) species. PMID:27434380

  11. Tandem Bond-Forming Reactions of 1-Alkynyl Ethers.

    PubMed

    Minehan, Thomas G

    2016-06-21

    Electron-rich alkynes, such as ynamines, ynamides, and ynol ethers, are functional groups that possess significant potential in organic chemistry for the formation of carbon-carbon bonds. While the synthetic utility of ynamides has recently been expanded considerably, 1-alkynyl ethers, which possess many of the reactivity features of ynamides, have traditionally been far less investigated because of concerns about their stability. Like ynamides, ynol ethers are relatively unhindered to approach by functional groups present in the same or different molecules because of their linear geometry, and they can potentially form up to four new bonds in a single transformation. Ynol ethers also possess unique reactivity features that make them complementary to ynamides. Research over the past decade has shown that ynol ethers formed in situ from stable precursors engage in a variety of useful carbon-carbon bond-forming processes. Upon formation at -78 °C, allyl alkynyl ethers undergo a rapid [3,3]-sigmatropic rearrangement to form allyl ketene intermediates, which may be trapped with alcohol or amine nucleophiles to form γ,δ-unsaturated carboxylic acid derivatives. The process is stereospecific, takes place in minutes at cryogenic temperatures, and affords products containing (quaternary) stereogenic carbon atoms. Trapping of the intermediate allyl ketene with carbonyl compounds, epoxides, or oxetanes instead leads to complex α-functionalized β-, γ-, or δ-lactones, respectively. [3,3]-Sigmatropic rearrangement of benzyl alkynyl ethers also takes place at temperatures ranging from -78 to 60 °C to afford substituted 2-indanones via intramolecular carbocyclization of the ketene intermediate. tert-Butyl alkynyl ethers containing pendant di- and trisubstituted alkenes and enol ethers are stable to chromatographic isolation and undergo a retro-ene/[2 + 2] cycloaddition reaction upon mild thermolysis (90 °C) to afford cis-fused cyclobutanones and donor

  12. Concurrent Formation of Carbon-Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction.

    PubMed

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C-H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C-C bond formation via C-H transformation and production of functionalized graphene. PMID:27181191

  13. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  14. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    SciTech Connect

    Hanson, Susan K; Gordon, John C; Thorn, David L; Scott, Brian L; Baker, R Tom

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  15. Carbon-hydrogen vs. carbon-carbon bond cleavage of 1,2-diarylethane radical cations in acetonitrile-water

    SciTech Connect

    Camaioni, D.M.; Franz, J.A.

    1984-05-04

    Radical cations of 1,2-diarylethanes and 1-phenyl-2-arylethanes (Ar = phenyl, p-tolyl, p-anisyl) were generated in acidic 70% acetonitrile-water by Cu/sup 2 +/-catalyzed peroxydisulfate oxidation. The radical cations fragment mainly by loss of benzylic protons (C-H cleavage) rather than by alkyl C-C bond cleavage. The 1,2-diarylethanol products undergo further selective oxidation to aryl aldehydes and arylmethanols via rapid equilibration of diarylethane and diarylethanol radical cations. The radical cation of 2,3-dimethyl-2,3-diphenylbutane fragments efficiently by C-C cleavage, forming cumyl radical and cumyl cation. Oxidations of bibenzyl-bicumyl mixtures show selective oxidation of bicumyl dependent on total substrate concentration, providing evidence of equilibrating radical cations and showing that bicumyl fragments faster than bibenzyl loses protons. The effects of reaction conditions and substrate structure on reactivity are discussed.

  16. A new approach to carbon-carbon bond formation: Development of aerobic Pd-catalyzed reductive coupling reactions of organometallic reagents and styrenes

    PubMed Central

    Gligorich, Keith M.; Iwai, Yasumasa; Cummings, Sarah A.; Sigman, Matthew S.

    2009-01-01

    Alkenes are attractive starting materials for organic synthesis and the development of new selective functionalization reactions are desired. Previously, our laboratory discovered a unique Pd-catalyzed hydroalkoxylation reaction of styrenes containing a phenol. Based upon deuterium labeling experiments, a mechanism involving an aerobic alcohol oxidation coupled to alkene functionalization was proposed. These results inspired the development of a new Pd-catalyzed reductive coupling reaction of alkenes and organometallic reagents that generates a new carbon-carbon bond. Optimization of the conditions for the coupling of both organostannanes and organoboronic esters is described and the initial scope of the transformation is presented. Additionally, several mechanistic experiments are outlined and support the rationale for the development of the reaction based upon coupling alcohol oxidation to alkene functionalization. PMID:20161306

  17. Joining Carbon-Carbon Composites and High-Temperature Materials with High Energy Electron Beams

    NASA Technical Reports Server (NTRS)

    Goodman, Daniel; Singler, Robert

    1998-01-01

    1. Program goals addressed during this period. Experimental work was directed at formation of a low-stress bond between carbon- carbon and aluminum, with the objective of minimizing the heating of the aluminum substrate, thereby minimizing stresses resulting from the coefficient of thermal expansion (CTE) difference between the aluminum and carbon-carbon. A second objective was to form a bond between carbon-carbon and aluminum with good thermal conductivity for electronic thermal management (SEM-E) application. 2. Substrates and joining materials selected during this period. Carbon-Carbon Composite (CCC) to Aluminum. CCC (Cu coated) to Aluminum. Soldering compounds based on Sn/Pb and Sn/Ag/Cu/Bi compositions. 3. Soldering experiments performed. Conventional techniques. High Energy Electron Beam (HEEB) process.

  18. Rhodium(i)-catalysed skeletal reorganisation of benzofused spiro[3.3]heptanes via consecutive carbon-carbon bond cleavage.

    PubMed

    Matsuda, Takanori; Yuihara, Itaru; Kondo, Kazuki

    2016-08-01

    Skeletal reorganisation of benzofused spiro[3.3]heptanes has been achieved using rhodium(i) catalysts. The reaction of benzofused 2-(2-pyridylmethylene)spiro[3.3]heptanes proceeds via sequential C-C bond oxidative addition and β-carbon elimination. On the other hand, benzofused spiro[3.3]heptan-2-ols undergo two consecutive β-carbon elimination processes. In both cases, substituted naphthalenes are obtained. PMID:27357097

  19. Cyanoalkylation: Alkylnitriles in Catalytic C-C Bond-Forming Reactions.

    PubMed

    López, Rosa; Palomo, Claudio

    2015-11-01

    Alkylnitriles are one of the most ubiquitous nitrogen-containing chemicals and are widely employed in reactions which result in nitrile-group conversion into other functionalities. Nevertheless, their use as carbon pronucleophiles in carbon-carbon bond-forming reactions has been hampered by difficulties associated mainly with the catalytic generation of active species, that is, α-cyano carbanions or metalated nitriles. Recent investigations have addressed this challenge and have resulted in different modes of alkylnitrile activation. This review illustrates these findings, which have set the foundation for the development of practical and conceptually new catalytic, direct cyanoalkylation methodologies. PMID:26387483

  20. Lanthanide-Catalyzed Reversible Alkynyl Exchange by Carbon-Carbon Single-Bond Cleavage Assisted by a Secondary Amino Group.

    PubMed

    Shao, Yinlin; Zhang, Fangjun; Zhang, Jie; Zhou, Xigeng

    2016-09-12

    Lanthanide-catalyzed alkynyl exchange through C-C single-bond cleavage assisted by a secondary amino group is reported. A lanthanide amido complex is proposed as a key intermediate, which undergoes unprecedented reversible β-alkynyl elimination followed by alkynyl exchange and imine reinsertion. The in situ homo- and cross-dimerization of the liberated alkyne can serve as an additional driving force to shift the metathesis equilibrium to completion. This reaction is formally complementary to conventional alkyne metathesis and allows the selective transformation of internal propargylamines into those bearing different substituents on the alkyne terminus in moderate to excellent yields under operationally simple reaction conditions. PMID:27510403

  1. Carbon-hydrogen and carbon-carbon bond activation of cyclopropane by a hydridotris(pyrazolyl)borate rhodium complex

    SciTech Connect

    Wick, D.D.; Northcutt, T.O.; Lachicotte, R.J.; Jones, W.D.

    1998-09-28

    Generation of the 16-electron fragment {l_brace}[HB(3,5-dimethylpyrazolyl){sub 3}]Rh(CNCH{sub 2}CMe{sub 3}){r_brace} (Tp{prime}RhL) in the presence of cyclopropane results in C-H activation of the hydrocarbon. The cyclopropyl hydride complex rearranges in benzene solvent to the metallacyclobutane complex Tp{prime}Rh(CNCH{sub 2}CMe{sub 3})(CH{sub 2}CH{sub 2}CH{sub 2}). Thermolysis of the rhodacyclobutane complex produces an {eta}{sup 2}-propylene complex. The related complex Tp{prime}Rh(CN-2,6-xylyl)(C{sub 2}H{sub 4}) has been structurally characterized and displays {eta}{sup 3}-Tp{prime} coordination, both in the solid state and in solution. Thermolysis of the rhodacyclobutane complex in the presence of neopentyl isocyanide leads to insertion of isocyanide into both Rh-C bonds of the metallacycle. Cyclobutane undergoes C-H but not C-C bond cleavage.

  2. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  3. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  4. Linear heterocyclic aromatic fluorescence compounds having various donor-acceptor spacers prepared by the combination of carbon-carbon bond and carbon-nitrogen bond cross-coupling reactions.

    PubMed

    Hu, Bin; Fu, Shu-Jun; Xu, Feng; Tao, Tao; Zhu, Hao-Yu; Cao, Kou-Sen; Huang, Wei; You, Xiao-Zeng

    2011-06-01

    A family of novel linear 1,10-phenanthroline-based (A-D-A-D-A) and oligothiophene-based (A-D-D-D-(D)-A) heterocyclic aromatic fluorescence compounds having N-containing imidazole and pyridine tails with effective π-conjugated systems, prepared by the combination of carbon-carbon (C-C) bond and carbon-nitrogen (C-N) bond cross-coupling reactions, is described. They have molecular lengths of more than 2.30 nm in the cases of 4, 6, 9, and 26, various D-A spacers, and certain N-coordination sites (phen, imidazole, and pyridine). X-ray single-crystal structures of 13 compounds reveal a variety of trans and cis configurations with different dihedral angles between adjacent aromatic heterocycles. Synthetic, computational, and spectral studies have been made to reveal the differences between cross-coupling approaches on the C-C bond and C-N bond formation as well as band gaps and energy levels and optical and electrochemical properties for related compounds. The influences of introducing a β-methyl group to the thiophene ring on reaction activity, solubility, and conformation of related compounds have also been discussed. PMID:21513323

  5. Studies of reductive elimination reactions to form carbon-oxygen bonds from Pt(IV) complexes.

    PubMed

    Williams, B S; Goldberg, K I

    2001-03-21

    The platinum(IV) complexes fac-L(2)PtMe(3)(OR) (L(2) = bis(diphenylphosphino)ethane, o-bis(diphenylphosphino)benzene, R = carboxyl, aryl; L = PMe(3), R = aryl) undergo reductive elimination reactions to form carbon-oxygen bonds and/or carbon-carbon bonds. The carbon-oxygen reductive elimination reaction produces either methyl esters or methyl aryl ethers (anisoles) and L(2)PtMe(2), while the carbon-carbon reductive elimination reaction affords ethane and L(2)PtMe(OR). Choice of reaction conditions allows the selection of either type of coupling over the other. A detailed mechanistic study of the reductive elimination reactions supports dissociation of the OR(-) ligand as the initial step for the C-O bond formation reaction. This is followed by a nucleophilic attack of OR(-) upon a methyl group bound to the Pt(IV) cation to produce the products MeOR and L(2)PtMe(2). C-C reductive elimination proceeds from L(2)PtMe(3)(OR) by initial L (L = PMe(3)) or OR(-) (L(2) = dppe, dppbz) dissociation, followed by C-C coupling from the resulting five-coordinate intermediate. Our studies demonstrate that both C-C and C-O reductive elimination reactions from Pt(IV) are more facile in polar solvents, in the presence of Lewis acids, and for OR(-) groups that contain electron withdrawing substituents. PMID:11456927

  6. 45 CFR 1629.5 - Form of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... The basic types of bonds in general usage are: (a) An individual bond which covers a named individual in a stated penalty; (b) A name schedule bond which covers a number of named individuals in the... RECIPIENTS § 1629.5 Form of bonds. Any form of bond which may be described as individual, schedule or...

  7. 45 CFR 1629.5 - Form of bonds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Form of bonds. 1629.5 Section 1629.5 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION BONDING OF RECIPIENTS § 1629.5 Form of bonds. Any form of bond which may be described as individual, schedule or...

  8. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by an... 46 Shipping 8 2012-10-01 2012-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping... published by the U.S. Treasury Department. The form of bond required by the National Shipping Authority...

  9. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by an... 46 Shipping 8 2011-10-01 2011-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping... published by the U.S. Treasury Department. The form of bond required by the National Shipping Authority...

  10. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by an... 46 Shipping 8 2014-10-01 2014-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping... published by the U.S. Treasury Department. The form of bond required by the National Shipping Authority...

  11. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by an authorized surety appearing on the...

  12. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  13. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  14. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  15. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  16. 27 CFR 26.68 - Bond, Form 2898-Beer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bond, Form 2898-Beer. 26... Liquors and Articles in Puerto Rico Bonds § 26.68 Bond, Form 2898—Beer. Where a brewer intends to withdraw, for purpose of shipment to the United States, beer of Puerto Rican manufacture from bonded storage...

  17. 46 CFR Sec. 6 - Surety and form of bond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Surety and form of bond. Sec. 6 Section 6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 6 Surety and form of bond. Each bond provided for by this order shall be duly executed by an authorized surety appearing on the...

  18. 43 CFR 3134.1-1 - Form of bond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Form of bond. 3134.1-1 Section 3134.1-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Bonding: General § 3134.1-1 Form of bond. All bonds furnished by a lessee, operating rights...

  19. 43 CFR 3134.1-1 - Form of bond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Form of bond. 3134.1-1 Section 3134.1-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Bonding: General § 3134.1-1 Form of bond. All bonds furnished by a lessee, operating rights...

  20. 43 CFR 3134.1-1 - Form of bond.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Form of bond. 3134.1-1 Section 3134.1-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Bonding: General § 3134.1-1 Form of bond. All bonds furnished by a lessee, operating rights...

  1. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline).

    PubMed

    Kogan, Vladimir; Quintal, Miriam M; Neumann, Ronny

    2005-10-27

    [reaction: see text] [cis-Ru(II)(dmp)2(H2O)2]2+ (dmp = 2,9-dimethylphenanthroline) was found to be a selective oxidation catalyst using hydrogen peroxide as oxidant. Thus, primary alkenes were very efficiently oxidized via direct carbon-carbon bond cleavage to the corresponding aldehydes as an alternative to ozonolysis. Secondary alkenes were much less reactive, leading to regioselective oxidation of substrates such as 4-vinylcyclohexene and 7-methyl-1,6-octadiene at the terminal position. Primary allylic alcohols were chemoselectively oxidized to the corresponding allylic aldehydes, e.g., geraniol to citral. PMID:16235952

  2. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from...

  3. 27 CFR 28.64 - Bond, Form 2737.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bond, Form 2737. 28.64 Section 28.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Bonds and Consents of Surety § 28.64 Bond, Form...

  4. 27 CFR 26.67 - Bond, Form 2897-Wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond, Form 2897-Wine. 26... Liquors and Articles in Puerto Rico Bonds § 26.67 Bond, Form 2897—Wine. Where a proprietor intends to withdraw, for purpose of shipment to the United States, wine of Puerto Rican manufacture from...

  5. Crystal Structures of Two Bacterial 3-Hydroxy-3-methylglutaryl-CoA Lyases Suggest a Common Catalytic Mechanism among a Family of TIM Barrel Metalloenzymes Cleaving Carbon-Carbon Bonds

    SciTech Connect

    Forouhar,F.; Hussain, M.; Farid, R.; Benach, J.; Abashidze, M.; Edstrom, W.; Vorobiev, S.; Montelione, G.; Hunt, J.; et al.

    2006-01-01

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 {angstrom} resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name 'DRE-TIM metallolyases' for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis results and

  6. A double addition of Ln-H to a carbon-carbon triple bond and competitive oxidation of ytterbium(II) and hydrido centers.

    PubMed

    Basalov, Ivan V; Lyubov, Dmitry M; Fukin, Georgy K; Shavyrin, Andrei S; Trifonov, Alexander A

    2012-04-01

    Addition of two Ln-H bonds of an Yb(II) hydrido complex supported by bulky amidinate ligand to a C≡C bond lead to the formation of 1,2-dianionic bibenzyl fragment. Both Yb(II) and hydrido centers are oxidized under the reaction conditions. The resulting Yb(II)-η(6) -arene interaction is surprisingly robust: the arene cannot be replaced from the metal coordination sphere when treated with Lewis bases. PMID:22374856

  7. A Biomimetic Synthesis of Phaitanthrin E Involving a Fragmentation of sp(3) Carbon-Carbon Bond: Synthesis and Rearrangement of Phaitanthrin D to Phaitanthrin E.

    PubMed

    Vaidya, Sagar D; Argade, Narshinha P

    2015-12-18

    A biogenetic type total synthesis of alkaloids phaitanthrin D and phaitanthrin E has been described. The Csp(3)-Csp(3) bond cleavage with the release of several heteroatoms bearing unexpected leaving groups in intramolecular substitution reactions on an iminium double bond in the quinazolinones has been demonstrated using HMDS/ZnCl2 or NaHMDS. The mechanistic aspects have been supported by isolation and characterization of appropriate intermediates. PMID:26650567

  8. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    1999-01-01

    An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  9. 48 CFR 28.106-1 - Bonds and bond related forms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... portion of each form. (a) SF 24, Bid Bond (see 28.101). (b) SF 25, Performance Bond (see 28.102-1 and 28.106-3(b)). (c) SF 25-A, Payment Bond (see 28.102-1 and 28.106-3(b)). (d) SF 25-B, Continuation Sheet (for SF's 24, 25, and 25-A). (e) SF 28, Affidavit of Individual Surety (see 28.203). (f) SF 34,...

  10. Carbon-carbon cylinder block

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O. (Inventor)

    1998-01-01

    A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  11. Carbon-Carbon Radiator

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Carbon-Carbon (C-C) Radiator was a success and proved that the technology can work to reduce Spacecraft weight. C-C has a niche, especially for high temperatures. C-C still needs further development: reduction in fabrication time and cost - high conductivity "traditional" composites are more competitive, and CTE interface issues with heat pipes. Redundancy a good idea - we flew the spare panel. CSRP was a success -informal inter-agency partnership. Possible follow-on: C-C foam for low CTE mirrors/optical benches.

  12. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  13. 29 CFR 2580.412-10 - Individual or schedule or blanket form of bonds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Individual bond. Covers a named individual in a stated penalty. (b) Name schedule bond. Covers a number of... 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-10 Individual or schedule or blanket form of bonds. Section 13 provides that “any bond shall be in a form or of a type approved by...

  14. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  15. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  16. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-01

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride. PMID:26491957

  17. Mullite/Mo interfaces formed by Intrusion bonding

    SciTech Connect

    Bartolome, Jose F.; Diaz, Marcos; Moya, Jose S.; Saiz, Eduardo; Tomsia, Antoni P.

    2003-04-30

    The microstructure and strength of Mo/mullite interfaces formed by diffusion bonding at 1650 C has been analyzed. Interfacial metal-ceramic interlocking contributes to flexural strength of approx. 140 MPa as measured by 3 point bending. Saturation of mullite with MoO2 does not affect the interfacial strength.

  18. Disulfide-Bond-Forming Pathways in Gram-Positive Bacteria

    PubMed Central

    2015-01-01

    Disulfide bonds are important for the stability and function of many secreted proteins. In Gram-negative bacteria, these linkages are catalyzed by thiol-disulfide oxidoreductases (Dsb) in the periplasm. Protein oxidation has been well studied in these organisms, but it has not fully been explored in Gram-positive bacteria, which lack traditional periplasmic compartments. Recent bioinformatics analyses have suggested that the high-GC-content bacteria (i.e., actinobacteria) rely on disulfide-bond-forming pathways. In support of this, Dsb-like proteins have been identified in Mycobacterium tuberculosis, but their functions are not known. Actinomyces oris and Corynebacterium diphtheriae have recently emerged as models to study disulfide bond formation in actinobacteria. In both organisms, disulfide bonds are catalyzed by the membrane-bound oxidoreductase MdbA. Remarkably, unlike known Dsb proteins, MdbA is important for pathogenesis and growth, which makes it a potential target for new antibacterial drugs. This review will discuss disulfide-bond-forming pathways in bacteria, with a special focus on Gram-positive bacteria. PMID:26644434

  19. Response of carbon-carbon composites to challenging environments

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.; Ohlhorst, Craig W.; Barrett, David M.; Ransone, Philip O.; Sawyer, J. Wayne

    1988-01-01

    This paper presents results from material performance evaluations of oxidation-resistant carbon-carbon composites intended for multiuse aerospace applications, which cover the effects of the following environmental parameters: the oxidizing nature of the environments (including both high and low oxygen partial pressures), high temperatures, moisture, cyclic temperature service, and foreign-object impact. Results are presented for the carbon-carbon material currently in use as the thermal-protection-system material on Space Shuttle, as well as for newer and more advanced structural forms of carbon-carbon composites.

  20. Wafer bonded virtual substrate and method for forming the same

    NASA Technical Reports Server (NTRS)

    Atwater, Jr., Harry A. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcuberta i (Inventor)

    2007-01-01

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  1. Wafer bonded virtual substrate and method for forming the same

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M.; Morral, Anna Fontcuberta i

    2007-07-03

    A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.

  2. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  3. 27 CFR 26.75 - Form 1490, Notice of Termination of Bond.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of Termination of Bond. When the appropriate TTB officer is satisfied that any bond given under the provisions of this subpart may be terminated, he shall issue Form 1490, Notice of Termination of Bond,...

  4. 27 CFR 26.75 - Form 1490, Notice of Termination of Bond.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of Termination of Bond. When the appropriate TTB officer is satisfied that any bond given under the provisions of this subpart may be terminated, he shall issue Form 1490, Notice of Termination of Bond,...

  5. Leaching behavior of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.; Dorf, M.

    1996-04-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. We have developed a magnesium phosphate ceramic to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  6. 27 CFR 70.281 - Form of bond and security required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true Form of bond and security... Collection of Excise and Special (Occupational) Tax Bonds § 70.281 Form of bond and security required. (a) In general. Any person required to furnish a bond under the provisions of this part shall execute such...

  7. 27 CFR 70.281 - Form of bond and security required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2014-04-01 2014-04-01 false Form of bond and security... Collection of Excise and Special (Occupational) Tax Bonds § 70.281 Form of bond and security required. (a) In general. Any person required to furnish a bond under the provisions of this part shall execute such...

  8. 27 CFR 70.281 - Form of bond and security required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2013-04-01 2013-04-01 false Form of bond and security... Collection of Excise and Special (Occupational) Tax Bonds § 70.281 Form of bond and security required. (a) In general. Any person required to furnish a bond under the provisions of this part shall execute such...

  9. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Surety Bond A, Form MA-308. 308.528 Section 308.528... Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from MARAD's underwriting agent or...

  10. 12 CFR 563.190 - Bonds for directors, officers, employees, and agents; form of and amount of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Bonds for directors, officers, employees, and agents; form of and amount of bonds. 563.190 Section 563.190 Banks and Banking OFFICE OF THRIFT... provided by the insurance underwriter industry's standard forms, through the use of endorsements,...

  11. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Surety Bond B, Form MA-309. 308.529 Section 308.529... Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An Assured who elects to substitute a surety bond for a collateral deposit fund shall submit Form...

  12. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Surety Bond B, Form MA-309. 308.529 Section 308.529... Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An Assured who elects to substitute a surety bond for a collateral deposit fund shall submit Form...

  13. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Surety Bond B, Form MA-309. 308.529 Section 308.529... Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An Assured who elects to substitute a surety bond for a collateral deposit fund shall submit Form...

  14. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Surety Bond B, Form MA-309. 308.529 Section 308.529... Risk Cargo Insurance Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An Assured who elects to substitute a surety bond for a collateral deposit fund shall submit Form...

  15. 29 CFR 2580.412-10 - Individual or schedule or blanket form of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES Scope and Form of the Bond § 2580.412-10 Individual or schedule or blanket.... Bonding, to the extent required, of persons indirectly employed, or otherwise delegated, to...

  16. 48 CFR 28.106-1 - Bonds and bond related forms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Agreement for a Miller Act Performance Bond (see 28.202(a)(4)). (i) SF 274, Reinsurance Agreement for a Miller Act Payment Bond (see 28.202(a)(4)). (j) SF 275, Reinsurance Agreement in Favor of the...

  17. 48 CFR 28.106-1 - Bonds and bond related forms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Agreement for a Miller Act Performance Bond (see 28.202(a)(4)). (i) SF 274, Reinsurance Agreement for a Miller Act Payment Bond (see 28.202(a)(4)). (j) SF 275, Reinsurance Agreement in Favor of the...

  18. 48 CFR 28.106-1 - Bonds and bond related forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Agreement for a Miller Act Performance Bond (see 28.202(a)(4)). (i) SF 274, Reinsurance Agreement for a Miller Act Payment Bond (see 28.202(a)(4)). (j) SF 275, Reinsurance Agreement in Favor of the...

  19. 25 CFR 166.602 - What form of bonds will the BIA accept?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What form of bonds will the BIA accept? 166.602 Section 166.602 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Bonding and Insurance Requirements § 166.602 What form of bonds will the BIA accept? (a) We will...

  20. 26 CFR 301.7101-1 - Form of bond and security required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 15 (see 31 CFR part 225). (2) Other surety acceptable in discretion of district director. Unless... 26 Internal Revenue 18 2014-04-01 2014-04-01 false Form of bond and security required. 301.7101-1...) PROCEDURE AND ADMINISTRATION PROCEDURE AND ADMINISTRATION Bonds § 301.7101-1 Form of bond and...

  1. 26 CFR 301.7101-1 - Form of bond and security required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... 15 (see 31 CFR part 225). (2) Other surety acceptable in discretion of district director. Unless... 26 Internal Revenue 18 2012-04-01 2012-04-01 false Form of bond and security required. 301.7101-1...) PROCEDURE AND ADMINISTRATION PROCEDURE AND ADMINISTRATION Bonds § 301.7101-1 Form of bond and...

  2. 26 CFR 301.7101-1 - Form of bond and security required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... 15 (see 31 CFR part 225). (2) Other surety acceptable in discretion of district director. Unless... 26 Internal Revenue 18 2013-04-01 2013-04-01 false Form of bond and security required. 301.7101-1...) PROCEDURE AND ADMINISTRATION PROCEDURE AND ADMINISTRATION Bonds § 301.7101-1 Form of bond and...

  3. Lightweight Carbon-Carbon High-Temperature Space Radiator

    NASA Technical Reports Server (NTRS)

    Miller, W.O.; Shih, Wei

    2008-01-01

    A document summarizes the development of a carbon-carbon composite radiator for dissipating waste heat from a spacecraft nuclear reactor. The radiator is to be bonded to metal heat pipes and to operate in conjunction with them at a temperature approximately between 500 and 1,000 K. A goal of this development is to reduce the average areal mass density of a radiator to about 2 kg/m(exp 2) from the current value of approximately 10 kg/m(exp 2) characteristic of spacecraft radiators made largely of metals. Accomplishments thus far include: (1) bonding of metal tubes to carbon-carbon material by a carbonization process that includes heating to a temperature of 620 C; (2) verification of the thermal and mechanical integrity of the bonds through pressure-cycling, axial-shear, and bending tests; and (3) construction and testing of two prototype heat-pipe/carbon-carbon-radiator units having different radiator areas, numbers of heat pipes, and areal mass densities. On the basis of the results achieved thus far, it is estimated that optimization of design could yield an areal mass density of 2.2 kg/m (exp 2) close to the goal of 2 kg/m(exp 2).

  4. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  5. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  6. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  7. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  8. 30 CFR 800.12 - Form of the performance bond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 800.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS §...

  9. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Release of surety bond, Form MA-312. 308.532 Section 308.532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK..., Form MA-312. The Standard Form of Release of Surety bond, Form MA-312, may be obtained from...

  10. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Release of surety bond, Form MA-312. 308.532 Section 308.532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK..., Form MA-312. The Standard Form of Release of Surety bond, Form MA-312, may be obtained from...

  11. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Release of surety bond, Form MA-312. 308.532 Section 308.532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK..., Form MA-312. The Standard Form of Release of Surety bond, Form MA-312, may be obtained from...

  12. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Release of surety bond, Form MA-312. 308.532 Section 308.532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK..., Form MA-312. The Standard Form of Release of Surety bond, Form MA-312, may be obtained from...

  13. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Surety Bond A, Form MA-308. 308.528 Section 308.528... Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  14. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Surety Bond A, Form MA-308. 308.528 Section 308.528... Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  15. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Surety Bond A, Form MA-308. 308.528 Section 308.528... Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  16. 46 CFR 308.528 - Surety Bond A, Form MA-308.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.528 Surety Bond A, Form MA-308. The Standard Form of Surety Bond A, Form MA-308, which may be obtained from the American War Risk Agency...

  17. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  18. IC Engine Applications of Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Rivers, H. Kevin

    2000-01-01

    Many of the properties of carbon-carbon make it an ideal material for reciprocating materials of intermittent combustion (IC) engines. Recent diesel engine tests, shown herein, indicate that the thermal and mechanical properties of carbon-carbon are adequate for piston applications, However, reducing the manufacturing costs and providing long term oxidation protection are still issues that need to be addressed.

  19. HETERODIMERIZATION OF PROPYLENE AND VINYLARENES: FUNCTIONAL GROUP COMPATIBILITY IN A HIGHLY EFFICIENT NI-CATALYZED CARBON-CARBON BOND-FORMING REACTION. (R826120)

    EPA Science Inventory

    Abstract

    Unlike heterodimerization reactions of ethylene and vinylarenes, no such synthetically useful reactions using propylene are known. We find that propylene reacts with various vinylarenes in the presence of catalytic amounts of [(allyl)NiBr]2, triphen...

  20. Intramolecular coupling of eta/sup 2/-iminoacyl groups at group 4 metal centers: a kinetic study of the carbon-carbon double-bond-forming reaction

    SciTech Connect

    Durfee, L.D.; McMullen, A.K.; Rothwell, I.P.

    1988-03-02

    The series of bis(eta/sup 2/-iminoacyl) compounds of general formula M(OAr)/sub 2/(eta/sup 2/-R'NCR)/sub 2/ (M = Ti, Zr, Hf; OAr = 2,6-diisopropyl- and 2,6-di-tert-butylphenoxide; R = CH/sub 3/, CH/sub 2/Ph; R' = various substituted phenyls) undergo intramolecular coupling on thermolysis to produce the corresponding enediamide derivatives M(OAr)/sub 2/(R'NC(R) = C(R)NR'). A kinetic study of the reaction in hydrocarbon solvents has shown it to be first order. The reaction is metal dependent with the rate decreasing in the order Ti > Zr > Hf. The rate of the reaction is also dependent on the steric and electronic nature of the nitrogen substituent (R'). The use of the bulky aryl group 2,6-dimethylphenyl retards the reaction, while the use of various 3- and 4-substituted phenyls (3-F, 3-OMe, 4-OMe, 4-Cl, 4-NMe/sub 2/) shows the reaction to be accelerated by electron-withdrawing substituents. A sigma plot based on kinetic data obtained at 67/sup 0/C and 77/sup 0/C yielded rho values of 0.83 (R = 0.97) and 0.84 (R = 0.95), respectively. Both the steric and electronic dependence of the reactivity on the nitrogen substituents is discussed mechanistically and used to rationalize the much more facile intramolecular coupling observed for the related eta/sup 2/-acyl (eta/sup 2/-OCR) functionalities.

  1. 32 CFR Appendix E to Part 623 - Surety Bond (DA Form 4881-3-R)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Surety Bond (DA Form 4881-3-R) E Appendix E to Part 623 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY SUPPLIES AND EQUIPMENT LOAN OF ARMY MATERIEL Pt. 623, App. E Appendix E to Part 623—Surety Bond (DA Form...

  2. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  3. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group.

    PubMed

    Lim, Woon Ki; Rösgen, Jörg; Englander, S Walter

    2009-02-24

    The mechanism by which urea and guanidinium destabilize protein structure is controversial. We tested the possibility that these denaturants form hydrogen bonds with peptide groups by measuring their ability to block acid- and base-catalyzed peptide hydrogen exchange. The peptide hydrogen bonding found appears sufficient to explain the thermodynamic denaturing effect of urea. Results for guanidinium, however, are contrary to the expectation that it might H-bond. Evidently, urea and guanidinium, although structurally similar, denature proteins by different mechanisms. PMID:19196963

  4. Rigiflex, spontaneously wettable polymeric mold for forming reversibly bonded nanocapillaries.

    PubMed

    Kim, Pilnam; Suh, Kahp Y

    2007-04-10

    We present a novel ultraviolet (UV)-curable mold that enables the formation of reversibly bonded nanocapillaries (500-50 nm) on a gold or silicon substrate. A sheet-type ( approximately 50 microm) polyethylene diacrylate (PEG-DA) mold was used for its rigiflex nature; it provides rigidity high enough for maintaining nanostructures (elastic modulus >70 MPa) and also flexibility good enough for intimate contact over a large area aided by weak electrostatic forces (zeta potential approximately -113.55 mW). The electrostatic charge is generated on a rigiflex PEG-DA mold upon peeling from an original engraved silicon master by mechanical friction, thereby assisting the formation of spontaneous contact with the gold or silicon substrate. PMID:17343400

  5. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  6. Proposal of a new hydrogen-bonding form to maintain curdlan triple helix.

    PubMed

    Miyoshi, Kentaro; Uezu, Kazuya; Sakurai, Kazuo; Shinkai, Seiji

    2004-06-01

    Curdlan and other beta-1,3-D-glucans form right-handed triple helices, and it has been believed that the intermolecular H-bond is present at the center of the helix to maintain the structure. In this H-bond model, three secondary OH groups form an inequilateral hexagonal shape perpendicular to the helix axis. This hexagonal form seems to be characteristic for beta-1,3-D-glucans and is widely accepted. We carried out MOPAC and ab initio calculations for the curdlan helix, and we propose a new intermolecular H-bonding model. In our model, the H-bonds are formed between the O2-atoms on different x-y planes along the curdlan helix, hence the H-bonds are not perpendicular to the helix axis. The new H-bonds are connected along the helix, traversing three curdlan chains to make a left-handed helix. Therefore, the H-bonding array leads to a reverse helix of the main chain. According to our MOPAC calculation, this model is more stable than the previous one. We believe that the continuous H-bonding array is stabilized by cooperative phenomena in the polymeric system. PMID:17191891

  7. 27 CFR 70.281 - Form of bond and security required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... required. 70.281 Section 70.281 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Collection of Excise and Special (Occupational) Tax Bonds § 70.281 Form of bond and security required. (a) In... executed or secured as provided in paragraph (b)(1) of this section, it is: (i) Executed by a...

  8. 27 CFR 70.281 - Form of bond and security required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required. 70.281 Section 70.281 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Collection of Excise and Special (Occupational) Tax Bonds § 70.281 Form of bond and security required. (a) In... executed or secured as provided in paragraph (b)(1) of this section, it is: (i) Executed by a...

  9. 27 CFR 26.66 - Bond, TTB Form 5110.50-Distilled spirits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Distilled spirits. 26.66 Section 26.66 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Bonds § 26.66 Bond, TTB Form 5110.50—Distilled spirits. (a) General. If any person intends to ship to the United States, distilled spirits products...

  10. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    SciTech Connect

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  11. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    SciTech Connect

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  12. Carbon-carbon composites: Emerging materials for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.

    1989-01-01

    An emerging class of high temperature materials called carbon-carbon composites are being developed to help make advanced aerospace flight become a reality. Because of the high temperature strength and low density of carbon-carbon composites, aerospace engineers would like to use these materials in even more advanced applications. One application of considerable interest is as the structure of the aerospace vehicle itself rather than simply as a protective heat shield as on Space Shuttle. But suitable forms of these materials have yet to be developed. If this development can be successfully accomplished, advanced aerospace vehicles such as the National Aero-Space Plane (NASP) and other hypersonic vehicles will be closer to becoming a reality. A brief definition is given of C-C composites. Fabrication problems and oxidation protection concepts are examined. Applications of C-C composites in the Space Shuttle and in advanced hypersonic vehicles as well as other applications are briefly discussed.

  13. Effects of forming gas plasma treatment on low-temperature Cu–Cu direct bonding

    NASA Astrophysics Data System (ADS)

    Kim, Sungdong; Nam, Youngju; Eunkyung Kim, Sarah

    2016-06-01

    Low-temperature Cu–Cu direct bonding becomes of great importance as Cu is widely used as an interconnection material in the packaging industry. Preparing a clean surface is a key to successful Cu–Cu direct bonding. We investigated the effects of forming gas plasma treatment on the reduction of Cu oxide and Cu–Cu bonding temperature. As plasma input power and treatment time increased, Cu oxide could be effectively reduced, and this could be attributed to the enhanced chemical reaction between forming gas plasma and Cu oxide. When the bonding temperature was reduced from 415 to 300 °C, the bonding strength of the plasma-treated interface was increased from 1.8 to 5.55 J/m2 while that of the wet-treated interface was decreased.

  14. Determining the Carbon-Carbon Distance in an Organic Molecule with a Ruler

    ERIC Educational Resources Information Center

    Simoni, Jose A.; Tubino, Matthieu; Ricchi, Reinaldo Alberto, Jr.

    2004-01-01

    The procedure to estimate the carbon-carbon bond distance in the naphthalene molecule is described. The procedure is easily performed and can be done either at home or in the classroom, with the restriction that the mass of the naphthalene must be determined using an analytical or a precise balance.

  15. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  16. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  17. 31 CFR 351.83 - May Public Debt issue Series EE savings bonds only in book-entry form?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... savings bonds only in book-entry form? 351.83 Section 351.83 Money and Finance: Treasury Regulations... Debt issue Series EE savings bonds only in book-entry form? We reserve the right to issue bonds only in book-entry form....

  18. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.530 Letter requesting increase or decrease in amount of surety bond, Form MA-310. An endorsement increasing or decreasing the amount of the surety bond, Form MA-310, shall be transmitted to...

  19. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.530 Letter requesting increase or decrease in amount of surety bond, Form MA-310. An endorsement increasing or decreasing the amount of the surety bond, Form MA-310, shall be transmitted to...

  20. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.530 Letter requesting increase or decrease in amount of surety bond, Form MA-310. An endorsement increasing or decreasing the amount of the surety bond, Form MA-310, shall be transmitted to...

  1. 46 CFR 308.530 - Letter requesting increase or decrease in amount of surety bond, Form MA-310.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... surety bond, Form MA-310. 308.530 Section 308.530 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.530 Letter requesting increase or decrease in amount of surety bond, Form MA-310. An endorsement increasing or decreasing the amount of the surety bond, Form MA-310, shall be transmitted to...

  2. Fabrication of carbon-carbon heat pipes for space nuclear power applications

    NASA Astrophysics Data System (ADS)

    Rovang, Richard D.; Palamides, Thomas R.; Hunt, Maribeth E.

    Significant advancements have been made in the development of lightweight, high performance, carbon-carbon heat pipes for space nuclear power applications. The subject program has progressed through the concept definition and feasibility analysis stages to the current test article component fabrication and assembly phase. This concept utilizes a carbon-carbon tube with integrally woven fins as the primary structural element and radiative surface, Nb-1Zr liners to contain a potassium working fluid, and welded end caps and fill tubes. Various tests have been performed in the development of suitable liner bonding techniques and in the assessment of material stability.

  3. Fabrication of carbon-carbon heat pipes for space nuclear power applications

    NASA Technical Reports Server (NTRS)

    Rovang, Richard D.; Palamides, Thomas R.; Hunt, Maribeth E.

    1992-01-01

    Significant advancements have been made in the development of lightweight, high performance, carbon-carbon heat pipes for space nuclear power applications. The subject program has progressed through the concept definition and feasibility analysis stages to the current test article component fabrication and assembly phase. This concept utilizes a carbon-carbon tube with integrally woven fins as the primary structural element and radiative surface, Nb-1Zr liners to contain a potassium working fluid, and welded end caps and fill tubes. Various tests have been performed in the development of suitable liner bonding techniques and in the assessment of material stability.

  4. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 CFR part 515 and 520, and pursuant to section 19 of the 1984 Act, files this bond with the... available to pay any judgment or any settlement made pursuant to a claim under 46 CFR § 515.23(b) for... settlement made pursuant to a claim under 46 CFR § 515.23(b) for damages against the Principal arising...

  5. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 CFR part 515 and 520, and pursuant to section 19 of the 1984 Act, files this bond with the... available to pay any judgment or any settlement made pursuant to a claim under 46 CFR § 515.23(b) for... settlement made pursuant to a claim under 46 CFR § 515.23(b) for damages against the Principal arising...

  6. 46 CFR Appendix A to Subpart C of... - Ocean Transportation Intermediary (OTI) Bond Form [Form 48

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 CFR part 515 and 520, and pursuant to section 19 of the 1984 Act, files this bond with the... available to pay any judgment or any settlement made pursuant to a claim under 46 CFR § 515.23(b) for... settlement made pursuant to a claim under 46 CFR § 515.23(b) for damages against the Principal arising...

  7. 46 CFR 308.529 - Surety Bond B, Form MA-309.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.529 Surety Bond B, Form MA-309. An..., which may be obtained form the American War Risk Agency or MARAD....

  8. Na-doped hydroxyapatite coating on carbon/carbon composites: Preparation, in vitro bioactivity and biocompatibility

    NASA Astrophysics Data System (ADS)

    Li, Hejun; Zhao, Xueni; Cao, Sheng; Li, Kezhi; Chen, Mengdi; Xu, Zhanwei; Lu, Jinhua; Zhang, Leilei

    2012-12-01

    Na-doped hydroxyapatite (Na-HA) coating was directly prepared onto carbon/carbon (C/C) composites using electrochemical deposition (ECD) and the mean thickness of the coating is approximately 10 ± 2 μm. The formed Na-HA crystals which are Ca-deficient, are rod-like with a hexagonal cross section. The Na/P molar ratios of the coating formed on C/C substrate is 0.097. During the deposition, the Na-HA crystals grow in both radial and longitudinal directions, and faster along the longitudinal direction. The pattern formation of crystal growth leads to dense coating which would help to increase the bonding strength of the coating. The average shear bonding strength of Na-HA coating on C/C is 5.55 ± 0.77 MPa. The in vitro bioactivity of the Na-HA coated C/C composites were investigated by soaking the samples in a simulated body fluid (SBF) for 14 days. The results indicate that the Na-HA coated C/C composites can rapidly induce bone-like apatite nucleation and growth on its surface in SBF. The in vitro cellular biocompatibility tests reveal that the Na-HA coating was better to improve the in vitro biocompatibility of C/C composites compared with hydroxyapatite (HA) coating. It was suggested that the Na-HA coating might be an effective method to improve the surface bioactivity and biocompatibility of C/C composites.

  9. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?

    PubMed

    Zhu, Weiduo; Zhao, Wen-Hui; Wang, Lu; Yin, Di; Jia, Min; Yang, Jinlong; Zeng, Xiao Cheng; Yuan, Lan-Feng

    2016-06-01

    The plethora of ice structures observed both in bulk and under nanoscale confinement reflects the extraordinary ability of water molecules to form diverse forms of hydrogen bonding networks. An ideal hydrogen bonding network of water should satisfy three requirements: (1) four hydrogen bonds connected with every water molecule, (2) nearly linear hydrogen bonds, and (3) tetrahedral configuration for the four hydrogen bonds around an O atom. However, under nanoscale confinement, some of the three requirements have to be unmet, and the selection of the specific requirement(s) leads to different types of hydrogen bonding structures. According to molecular dynamics (MD) simulations for water confined between two smooth hydrophobic walls, we obtain a phase diagram of three two-dimensional (2D) crystalline structures and a bilayer liquid. A new 2D bilayer ice is found and named the interlocked pentagonal bilayer ice (IPBI), because its side view comprises interlocked pentagonal channels. The basic motif in the top view of IPBI is a large hexagon composed of four small pentagons, resembling the top view of a previously reported "coffin" bilayer ice [Johnston, et al., J. Chem. Phys., 2010, 133, 154516]. First-principles optimizations suggest that both bilayer ices are stable. However, there are fundamental differences between the two bilayer structures due to the difference in the selection among the three requirements. The IPBI sacrifices the linearity of hydrogen bonds to retain locally tetrahedral configurations of the hydrogen bonds, whereas the coffin structure does the opposite. The tradeoff between the conditions of an ideal hydrogen bonding network can serve as a generic guidance to understand the rich phase behaviors of nanoconfined water. PMID:27063210

  10. 31 CFR 351.83 - May Public Debt issue Series EE savings bonds only in book-entry form?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false May Public Debt issue Series EE savings bonds only in book-entry form? 351.83 Section 351.83 Money and Finance: Treasury Regulations... Debt issue Series EE savings bonds only in book-entry form? We reserve the right to issue bonds only...

  11. 31 CFR 359.68 - May Public Debt issue Series I savings bonds only in book-entry form?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false May Public Debt issue Series I savings bonds only in book-entry form? 359.68 Section 359.68 Money and Finance: Treasury Regulations... Debt issue Series I savings bonds only in book-entry form? We reserve the right to issue bonds only...

  12. 31 CFR 359.68 - May Public Debt issue Series I savings bonds only in book-entry form?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false May Public Debt issue Series I savings bonds only in book-entry form? 359.68 Section 359.68 Money and Finance: Treasury Regulations Relating to... Series I savings bonds only in book-entry form? We reserve the right to issue bonds only in...

  13. Transparent Films from CO2 -Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing.

    PubMed

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter; Müller, Thomas E

    2016-04-25

    Transparent films were prepared by cross-linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2 , propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron-acceptor and electron-donor groups enables particularly facile UV- or redox-initiated free-radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  14. New NMR spectroscopic probe of the absolute stereoselectivity for metal-hydride and metal-alkyl additions to the carbon-carbon double bond. Demonstration with a single-component, isospecific Ziegler-Natta {alpha}-olefin polymerization catalyst

    SciTech Connect

    Gilchrist, J.H.; Bercaw, J.E.

    1996-12-04

    Optically active (98% ee) (R)-1,1,3,4,4,5,5,5-octadeutero-1-pentene (1) was prepared and used to evaluate the stereoselectivity of Y-H and Y-n-pentyl additions for the optically pure C{sub 2}-symmetric (R,S)-(BnBp)Y-R/(S,R)-(BnBp)Y-R and racemic ({+-})-(BnBp)Y-R isospecific polypropylene catalysts (BnBp = [(OC{sub 10}H{sub 6}C{sub 10}H{sub 6}O)Si(C{sub 5}H{sub 2}-2-SiMe{sub 3}-4-CMe{sub 3}){sub 2}]). Deuteration and deuterodimerization of 1 mediated by (R,S)-, (S,R)-, and ({+-})-(BnBp)Y-D provide alkanes whose {sup 1}H NMR spectra indicate the sense and magnitude of olefin facial selectivity for insertions into metal-hydride and metal-n-pentyl bonds. It is shown that useful information concerning the stereochemistry of olefin insertion can be deduced from the {sup 2}H NMR spectra of 1-pentene deuterodimers without the requirement of a stereochemically labeled pentene or a resolved catalyst. 26 refs., 4 figs.

  15. Size, Kinetics, and Free Energy of Clusters Formed by Ultraweak Carbohydrate-Carbohydrate Bonds.

    PubMed

    Witt, Hannes; Savić, Filip; Oelkers, Marieelen; Awan, Shahid I; Werz, Daniel B; Geil, Burkhard; Janshoff, Andreas

    2016-04-12

    Weak noncovalent intermolecular interactions play a pivotal role in many biological processes such as cell adhesion or immunology, where the overall binding strength is controlled through bond association and dissociation dynamics as well as the cooperative action of many parallel bonds. Among the various molecules participating in weak bonds, carbohydrate-carbohydrate interactions are probably the most ancient ones allowing individual cells to reversibly enter the multicellular state and to tell apart self and nonself cells. Here, we scrutinized the kinetics and thermodynamics of small homomeric Lewis X-Lewis X ensembles formed in the contact zone of a membrane-coated colloidal probe and a solid supported membrane ensuring minimal nonspecific background interactions. We used an atomic force microscope to measure force distance curves at Piconewton resolution, which allowed us to measure the force due to unbinding of the colloidal probe and the planar membrane as a function of contact time. Applying a contact model, we could estimate the free binding energy of the formed adhesion cluster as a function of dwell time and thereby determine the precise size of the contact zone, the number of participating bonds, and the intrinsic rates of association and dissociation in the presence of calcium ions. The unbinding energy per bond was found to be on the order of 1 kBT. Approximately 30 bonds were opened simultaneously at an off-rate of koff = 7 ± 0.2 s(-1). PMID:27074683

  16. Bond-forming reactions of small triply charged cations with neutral molecules.

    PubMed

    Fletcher, James D; Parkes, Michael A; Price, Stephen D

    2013-08-12

    Time-of-flight mass spectrometry reveals that atomic and small molecular triply charged cations exhibit extensive bond-forming chemistry, following gas-phase collisions with neutral molecules. These experiments show that at collision energies of a few eV, I(3+) reacts with a variety of small molecules to generate molecular monocations and molecular dications containing iodine. Xe(3+) and CS2(3+) react in a similar manner to I(3+), undergoing bond-forming reactions with neutrals. A simple model, involving relative product energetics and electrostatic interaction potentials, is used to account for the observed reactivity. PMID:23843367

  17. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  18. 9 CFR 201.27 - Underwriter; equivalent in lieu of bonds; standard forms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Underwriter; equivalent in lieu of bonds; standard forms. 201.27 Section 201.27 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS ADMINISTRATION (PACKERS AND STOCKYARDS PROGRAMS), DEPARTMENT OF AGRICULTURE REGULATIONS UNDER...

  19. 75 FR 55849 - Proposed Collection; Comment Request for Form 1097-BTC, Bond Tax Credit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... revenue law. Generally, tax returns and tax return information are confidential, as required by 26 U.S.C... Internal Revenue Service Proposed Collection; Comment Request for Form 1097-BTC, Bond Tax Credit AGENCY... continuing information collections, as required by the Paperwork Reduction Act of 1995, Public Law 104-13...

  20. Microstructural characterization of halite inclusions in a surrogate glass bonded ceramic waste form

    SciTech Connect

    Luo, J. S.; Zyryanov, V. N.; Ebert, W. L.

    2000-05-12

    A glass-bonded ceramic waste form is being developed to immobilize high-level chloride waste salts generated during the conditioning of spent sodium-bonded nuclear fuel for disposal. The waste salt is loaded into zeolite cavities, mixed with a borosilicate glass, and consolidated at 800--900 C by hot isostatic pressing. During this process, small amounts of halite are generated, whereas the zeolite converts to the mineral sodalite, which retains most of the waste salt. In this work, optical microscopy, scanning electron microscopy, and transmission electron microscopy2048e used to characterize the halite inclusions in the final waste form. The halite inclusions were detected within micron- to submicron-sized pores that form within the glass phase in the vicinity of the sodalite/glass interface. The chemical nature and distribution of the halite inclusions were determined. The particular microstructure of the halite inclusions has been related to the corrosion of the ceramic waste form.

  1. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  2. Investigation of thermochemistry associated with the carbon-carbon coupling reactions of furan and furfural using ab initio methods.

    PubMed

    Liu, Cong; Assary, Rajeev S; Curtiss, Larry A

    2014-06-26

    Upgrading furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan can be coupled with various C1 to C4 low molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (∼25 kcal/mol) are lower than the cellulose activation or decomposition reactions (∼50 kcal/mol). Cycloaddition of C5-C8 cyclo ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products, and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ∼20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons. PMID:24902118

  3. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  4. Mechanical behavior of carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Rozak, G. A.

    1984-01-01

    A general background, test plan, and some results of preliminary examinations of a carbon-carbon composite material are presented with emphasis on mechanical testing and inspection techniques. Experience with testing and evaluation was gained through tests of a low modulus carbon-carbon material, K-Karb C. The properties examined are the density - 1.55 g/cc; four point flexure strength in the warp - 137 MPa (19,800 psi) and the fill - 95.1 MPa (13,800 psi,) directions; and the warp interlaminar shear strength - 14.5 MPa (2100 psi). Radiographic evaluation revealed thickness variations and the thinner areas of the composite were scrapped. The ultrasonic C-scan showed attenuation variations, but these did not correspond to any of the physical and mechanical properties measured. Based on these initial tests and a survey of the literature, a plan has been devised to examine the effect of stress on the oxidation behavior, and the strength degradation of coated carbon-carbon composites. This plan will focus on static fatigue tests in the four point flexure mode in an elevated temperature, oxidizing environment.

  5. Joining of carbon-carbon composites by graphite formation

    SciTech Connect

    Dadras, P.; Mehrotra, G.M. . Mechanical and Materials Engineering Dept.)

    1994-06-01

    Joining of carbon-carbon (C-C) composites by graphite formation, using manganese, magnesium, and aluminum interlayers, has been investigated. The process involved the formation of a metal carbide by chemical reaction between the metal interlayer and the composite, followed by the decomposition of the carbide and evaporation of the metal at elevated temperatures. The maximum bonding temperature in these experiments was 2,200 C. Bonding of composite specimens occurred when manganese or a powder mixture of aluminum and graphite was used as interlayers. Attempts to join C-C pieces using a magnesium interlayer were unsuccessful. The double notch shear strengths of the joints produced using Mn interlayers were very low and ranged from 0.15 to 1.61 MPa at test temperatures of 1,200 and 1,400 C. The interlayer, after completion of the joining operation, consisted, in most cases, only of graphite. The joints produced with aluminum plus graphite interlayers were even weaker, with strength values of 0.11 MPa or less. The presence of aluminum could be detected in some of these joints, suggesting incomplete dissociation of Al[sub 4]C[sub 3] at the maximum bonding temperature of 2,150 C.

  6. Characterization and durability testing of a glass-bonded ceramic waste form.

    SciTech Connect

    Johnson, S. G.

    1998-05-18

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing.

  7. Arylpalladium Phosphonate Complexes as Reactive Intermediates in Phosphorus-Carbon Bond Forming Reactions

    SciTech Connect

    Kohler, Mark C.; Grimes, Thomas V.; Wang, Xiaoping; Cundari, Thomas R.; Stockland, Robert A. Jr.

    2009-01-01

    Phosphorus-carbon bond formation from discrete transition metal complexes have been investigated through a combination of synthetic, spectroscopic, crystallographic, and computational methods. Reactive intermediates of the type (diphosphine)Pd(aryl)(P(O)(OEt)(2)) have been prepared, characterized, and studied as possible intermediates in metal-mediated coupling reactions. Several of the reactive intermediates were characterized crystallographicaliy, and a discussion of the solid state structures is presented. In contrast to other carbon-heteroelement bond forming reactions, palladium complexes containing electron-donating substituents on the aromatic fragment exhibited faster rates of reductive elimination. Large bite angle diphosphine ligands induced rapid rates of elimination, while bipyridine and small bite angle diphosphine ligands resulted in much slower rates of elimination. An investigation of the effect of typical impurities on the elimination reaction was carried out. While excess diphosphine, pyridine, and acetonitrile had little effect on the observed rate, the addition of water slowed the phosphorus-carbon bond forming reaction. Coordination of water to the complex was observed spectroscopically and crystallographically. Computational studies were utilized to probe the reaction pathways for P-C bond formation via Pd catalysis.

  8. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, Rawle I.; Jung, Seunho; Mindock, Carol A.

    1998-01-01

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures.

  9. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, R.I.; Jung, S.; Mindock, C.A.

    1998-12-22

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures. 8 figs.

  10. Radiation damage of a glass-bonded zeolite waste form using ion irradiation.

    SciTech Connect

    Allen, T. R.; Storey, B. G.

    1997-12-05

    Glass-bonded zeolite is being considered as a candidate ceramic waste form for storing radioactive isotopes separated from spent nuclear fuel in the electrorefining process. To determine the stability of glass-bonded zeolite under irradiation, transmission electron microscope samples were irradiated using high energy helium, lead, and krypton. The major crystalline phase of the waste form, which retains alkaline and alkaline earth fission products, loses its long range order under both helium and krypton irradiation. The dose at which the long range crystalline structure is lost is about 0.4 dpa for helium and 0.1 dpa for krypton. Because the damage from lead is localized in such a small region of the sample, damage could not be recognized even at a peak damage of 50 dpa. Because the crystalline phase loses its long range structure due to irradiation, the effect on retention capacity needs to be further evaluated.

  11. Effect of Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    NASA Astrophysics Data System (ADS)

    Takiguchi, Michihiro; Yoshida, Fusahito

    Using highly ductile acrylic adhesive, the present authors proposed a new technique of plastic bending of adhesively bonded sheet metals. In this process, the suppression of large transverse shear deformation occurring in the adhesive layer, which in some cases would induce the geometrical imperfection (so-called ‘gull-wing bend') and the delamination of the sheet, is one of the most important technical issues. In the present work, the effect of forming speed on bending deformation was investigated. From experimental observations in V-bending experiments of adhesively bonded aluminium sheets, as well as the corresponding numerical simulations which consider the viscoplasticity nature of the adhesive resin, it was found that the large shear deformation and ‘gull-wing bend' are successfully suppressed by high-speed forming since the deformation resistance of the adhesive resin becomes higher at a high strain rate.

  12. Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Johnson, Mark L.; Williams, Desiree D.

    2003-01-01

    A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .

  13. Analysis techniques for the prediction of springback in formed and bonded composite components

    NASA Technical Reports Server (NTRS)

    Gasick, Michael F.; Renieri, Gary D.

    1992-01-01

    Two finite element analysis codes are used to model the effects of cooling on the dimensional stability of formed and bonded composite parts. The two analysis routines, one h-version and one p-version, are compared for modeling time, analysis execution time, and exactness of solution as compared to actual test results. A recommended procedure for predicting temperature effects on composite parts is presented, based on the results of this study.

  14. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05). RESULTS The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength. PMID:25177469

  15. Fracture toughness measurements on a glass bonded sodalite high-level waste form.

    SciTech Connect

    DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T. P.

    1999-05-19

    The electrometallurgical treatment of metallic spent nuclear fuel produces two high-level waste streams; cladding hulls and chloride salt. Argonne National Laboratory is developing a glass bonded sodalite waste form to immobilize the salt waste stream. The waste form consists of 75 Vol.% crystalline sodalite (containing the salt) with 25 Vol.% of an ''intergranular'' glassy phase. Microindentation fracture toughness measurements were performed on representative samples of this material using a Vickers indenter. Palmqvist cracking was confirmed by post-indentation polishing of a test sample. Young's modulus was measured by an acoustic technique. Fracture toughness, microhardness, and Young's modulus values are reported, along with results from scanning electron microscopy studies.

  16. Method for Making a Carbon-Carbon Cylinder Block

    NASA Technical Reports Server (NTRS)

    Ransone, Phillip O. (Inventor)

    1997-01-01

    A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  17. Superhydrophobic amorphous carbon/carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Han, Z. J.; Tay, B. K.; Shakerzadeh, M.; Ostrikov, K.

    2009-06-01

    Superhydrophobic amorphous carbon/carbon nanotube nanocomposites are fabricated by plasma immersion ion implantation with carbon nanotube forests as a template. The microstructure of the fabricated nanocomposites shows arrays of carbon nanotubes capped with amorphous carbon nanoparticles. Contact angle measurements show that both advancing and receding angles close to 180° can be achieved on the nanocomposites. The fabrication here does not require patterning of carbon nanotubes or deposition of conformal coatings with low surface energy, which are usually involved in conventional approaches for superhydrophobic surfaces. The relationship between the observed superhydrophobicity and the unique microstructure of the nanocomposites is discussed.

  18. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    NASA Technical Reports Server (NTRS)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  19. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  20. Development of eclipsed and staggered forms in some hydrogen bonded complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Habibi, Mostafa; Hesabi, Nahid

    Intermolecular hydrogen bonding in X3CH···NH3 (X = H, F, Cl, and Br) complexes has been studied by B3LYP, B3PW91, MP2, MP3, MP4, and CCSD methods using 6-311++G(d,p) and AUG-cc-PVTZ basis sets. These complexes could exist in both eclipsed (EC) and staggered (ST) forms. The differences between binding energies of EC and ST forms are negligible and all EC and ST shapes correspond to minimum stationary states. The order of stabilities of them is in an agreement with the results of atoms in molecules (AIM) and natural bond orbital (NBO) analyses. On the basis of low differences between binding energies, ST forms are more stable than EC forms in all complexes with the exception of Br3CH···NH3, which behaves just opposite. Although the differences between binding energies are negligible, they are consistent with the results of AIM analysis.

  1. Microstructural characterization of halite inclusion in a glass-bonded ceramic waste form.

    SciTech Connect

    Luo, J. S.; Ebert, W. L.

    2000-12-14

    A glass-bonded ceramic waste form is being developed to immobilize radioactively contaminated chloride waste salts generated during the conditioning of spent sodium-bonded nuclear fuel for disposal. The waste salt is first mixed with zeolite A to occlude the salt into cavities in the zeolite structure. The salt-loaded zeolite is then mixed with a borosilicate glass and consolidated by hot isostatic pressing. During this process, the zeolite converts to the mineral sodalite, which retains most of the waste salt, and small amounts of halite are generated. Halite inclusions have been observed within micron- to submicron-sized pores that form within the glass phase in the vicinity of the sodalite/glass interface. These inclusions are important because they may contain small amounts of radionuclide contaminants (eg {sup 135}Cs and {sup 129}I),and may affect the corrosion behavior of the waste form. Optical microscopy, scanning electron microscopy, and transmission electron microscopy were used to characterize the chemical nature and distribution of halite inclusions in the waste form.

  2. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

    PubMed

    Deraedt, Christophe; Astruc, Didier

    2014-02-18

    Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl

  3. Corrosion behavior of a glass-bonded sodalite ceramic waste form and its constituents.

    SciTech Connect

    Lewis, M. A.; Ebert, W. L.; Morss, L.

    1999-06-18

    A ceramic waste form (CWF) of glass bonded sodalite is being developed as a waste form for the long-term immobilization of fission products and transuranic elements from the U.S. Department of Energy's activities on spent nuclear fuel conditioning. A durable waste form was prepared by hot isostatic pressing (HIP) a mixture of salt-loaded zeolite powders and glass frit. During HIP the zeolite is converted to sodalite, and the resultant CWF is been completed for durations of up to 182 days. Four dissolution modes were identified: dissolution of free salt, dissolution of the aluminosilicate matrix of sodalite and the accompanying dissolution of occluded salt, dissolution of the boroaluminosilicate matrix of the glass, and ion exchange. Synergies inherent to the CWF were identified by comparing the results of the tests with pure glass and sodalite with those of the composite CWF.

  4. Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria

    PubMed Central

    Landeta, Cristina; Blazyk, Jessica L.; Hatahet, Feras; Meehan, Brian M.; Eser, Markus; Myrick, Alissa; Bronstain, Ludmila; Minami, Shoko; Arnold, Holly; Ke, Na; Rubin, Eric J.; Furie, Barbara C.; Furie, Bruce; Beckwith, Jon; Dutton, Rachel; Boyd, Dana

    2015-01-01

    In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond. These proteins include numerous bacterial virulence factors. Thus, bacterial enzymes that promote disulfide bond formation represent targets for compounds inhibiting bacterial virulence. Here, we describe a novel target- and cell-based screening methodology for identifying compounds that inhibit the disulfide bond-forming enzymes E. coli DsbB (EcDsbB) or M. tuberculosis VKOR (MtbVKOR). MtbVKOR can replace EcDsbB although the two are not homologues. Initial screening of 51,487 compounds yielded six specifically inhibiting EcDsbB. These compounds share a structural motif and do not inhibit MtbVKOR. A medicinal chemistry approach led us to select related compounds some of which are much more effective DsbB inhibitors than those found in the screen. These compounds inhibit purified DsbB and prevent anaerobic E. coli growth. Furthermore, these compounds inhibit all but one of the DsbBs of nine other gram-negative pathogenic bacteria tested. PMID:25686372

  5. Effects of Temperature and Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    NASA Astrophysics Data System (ADS)

    Takiguchi, Michihiro; Yoshida, Tetsuya; Yoshida, Fusahito

    This paper deals with the temperature and rate-dependent elasto-viscoplasticity behaviour of a highly ductile acrylic adhesive and its effect on plastic bending of adhesively bonded sheet metals. Tensile lap shear tests of aluminium single-lap joints were performed at various temperature of 10-40°C at several tensile speeds. Based on the experimental results, a new constitutive model of temperature and rate-dependent elasto-viscoplasticity of the adhesive is presented. From V-bending experiments and the corresponding numerical simulation, it was found that the gull-wing bend is suppressed by high-speed forming at a lower temperature.

  6. tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon-Nitrogen Bond Forming Reactions.

    PubMed

    Ramirez Hernandez, Johana; Chemla, Fabrice; Ferreira, Franck; Jackowski, Olivier; Oble, Julie; Perez-Luna, Alejandro; Poli, Giovanni

    2016-01-01

    The use of tert-butanesulfinamides as nitrogen nucleophiles in carbon-nitrogen bond forming reactions is reviewed. This field has grown in the shadow of the general interest in N-tert-butanesulfinyl imines for asymmetric synthesis and occupies now an important place in its own right in the chemistry of the chiral amine reagent tert-butanesulfinamide. This article provides an overview of the area and emphasizes recent contributions wherein the tert-butanesulfinamides act as chiral auxiliaries or perform as nitrogen donors in metal-catalyzed amination reactions. PMID:26931222

  7. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  8. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  9. Effects of single bond-ion and single bond-diradical form on the stretching vibration of C=N bridging bond in 4,4'-disubstituted benzylidene anilines.

    PubMed

    Cao, Chao-Tun; Bi, Yakun; Cao, Chenzhong

    2016-06-15

    Fifty-seven samples of model compounds, 4,4'-disubstituted benzylidene anilines, p-X-ArCH=NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νC=N of the C=N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νC=N, that is there are mainly three modes in the stretching vibration of C=N bond: (I) polar double bond form C=N, (II) single bond-ion form C(+)-N(-) and (III) single bond-diradical form C-N. The contributions of the forms (I) and (II) to the change of νC=N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II). PMID:27043872

  10. Effects of single bond-ion and single bond-diradical form on the stretching vibration of Cdbnd N bridging bond in 4,4‧-disubstituted benzylidene anilines

    NASA Astrophysics Data System (ADS)

    Cao, Chao-Tun; Bi, Yakun; Cao, Chenzhong

    2016-06-01

    Fifty-seven samples of model compounds, 4,4‧-disubstituted benzylidene anilines, p-X-ArCH = NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νCdbnd N of the Cdbnd N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νCdbnd N, that is there are mainly three modes in the stretching vibration of Cdbnd N bond: (I) polar double bond form Cdbnd N, (II) single bond-ion form C+-N- and (III) single bond-diradical form Crad -Nrad . The contributions of the forms (I) and (II) to the change of νCdbnd N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II).

  11. Process of making carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor); Kowbel, Witold (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor)

    2000-01-01

    A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.

  12. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  13. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon---carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  14. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.

    1996-03-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  15. Randomly oriented carbon/carbon composite

    NASA Astrophysics Data System (ADS)

    Raunija, Thakur Sudesh Kumar; Babu, S.

    2013-06-01

    The main objective of this study is to develop an alternate, rapid and cost effective process for the fabrication of carbon/carbon (C/C) composite. Slurry moulding technique is adopted for the fabrication of C/C composite. Randomly oriented hybrid discrete carbon fiber (CF) reinforced and mesophase pitch (MP) derived matrix C/C composite is fabricated. Process parameters are optimized and repeatability is proved. The electrical conductivity of the composite fabricated through the developed process is found to be better than that fabricated through conventional processes. The other properties are also found to be competent. The randomly oriented C/C composite because of its mouldability is found suitable for various applications which require complex shapes.

  16. N-N Bond Forming Reductive Elimination via a Mixed-Valent Nickel(II)-Nickel(III) Intermediate.

    PubMed

    Diccianni, Justin B; Hu, Chunhua; Diao, Tianning

    2016-06-20

    Natural products containing N-N bonds exhibit important biological activity. Current methods for constructing N-N bonds have limited scope. An advanced understanding of the fundamental N-N bond formation/cleavage processes occurring at the transition-metal center would facilitate the development of catalytic reactions. Herein we present an N-N bond-forming reductive elimination, which proceeds via a mixed-valent Ni(II) -Ni(III) intermediate with a Ni-Ni bond order of zero. The discrete Ni(II) -Ni(III) oxidation states contrast with the cationic dimeric Ni analogue, in which both Ni centers are equivalent with an oxidation state of 2.5. The electronic structures of these mixed-valent complexes have implications for the fundamental understanding of metal-metal bonding interactions. PMID:27144682

  17. Transparent Films from CO2‐Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing

    PubMed Central

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter

    2016-01-01

    Abstract Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  18. 9 CFR 201.27 - Underwriter; equivalent in lieu of bonds; standard forms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... under said regulations. (b) Any packer, market agency, or dealer required to maintain a surety bond under these regulations may elect to maintain, in whole or partial substitution for such surety bond, a bond equivalent as provided below. The total amount of any such surety bond, equivalent, or...

  19. 46 CFR 308.531 - Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... amount of coverage, Form MA-311. 308.531 Section 308.531 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.531 Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311. The..., Form MA-311, may be obtained from MARAD's underwriting agent or MARAD....

  20. 46 CFR 308.531 - Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... amount of coverage, Form MA-311. 308.531 Section 308.531 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.531 Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311. The..., Form MA-311, may be obtained from the American War Risk Agency or MARAD....

  1. 46 CFR 308.531 - Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... amount of coverage, Form MA-311. 308.531 Section 308.531 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.531 Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311. The..., Form MA-311, may be obtained from the American War Risk Agency or MARAD....

  2. 46 CFR 308.531 - Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... amount of coverage, Form MA-311. 308.531 Section 308.531 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.531 Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311. The..., Form MA-311, may be obtained from the American War Risk Agency or MARAD....

  3. 46 CFR 308.531 - Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... amount of coverage, Form MA-311. 308.531 Section 308.531 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF... Insurance § 308.531 Endorsement of surety bond increasing or decreasing amount of coverage, Form MA-311. The..., Form MA-311, may be obtained from the American War Risk Agency or MARAD....

  4. Spf/db hollow core fan blade. [SuperPlastically Formed/Diffusion Bonded

    SciTech Connect

    Velicki, A.

    1993-08-31

    A hollow core rotor blade for a turbine engine, comprising: a generally airfoil-shaped outer structure comprised of a superplastically formed, diffusion bonded sheet material, the outer structure having a trailing edge and a leading edge and being comprised of a matrix structure, with generally longitudinally oriented composite fibers being embedded within the superplastically formed material to increase the bending stiffness of the blade, the leading edge having an outer surface; and a hollow core spacing enclosed by the outer structure; wherein the outer surface of the leading edge is formed from a single sheet of material and is therefore structurally continuous and seamless, thereby allowing the rotor blade to be relatively lightweight, efficient, and durable, wherein each surface layer is comprised of an antifretting material having sufficient strength to withstand stresses between the blade and rotor during engine operation and sufficient ductility for forming into the manufactured shape; and wherein the shim is disposed between the dovetail and the dovetail slot, such that a portion of the first surface layer of the shims contacts at least a portion of each side face of the dovetail, and such that a portion of the second surface layer of the shim contacts at least a portion of each side wall of the dovetail slot.

  5. Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms

    SciTech Connect

    O'Holleran, T. P.; DiSanto, T.; Johnson, S. G.; Goff, K. M.

    2000-05-09

    Argonne National Laboratory has developed a glass-bonded sodalite waste form to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The waste form consists of 75 vol.% crystalline sodalite and 25 vol.% glass. Microindentation fracture toughness measurements were performed on this material and borosilicate glass from the Defense Waste Processing Facility using a Vickers indenter. Palmqvist cracking was confined for the glass-bonded sodalite waste form, while median-radial cracking occurred in the borosilicate glass. The elastic modulus was measured by an acoustic technique. Fracture toughness, microhardness, and elastic modulus values are reported for both waste forms.

  6. Cerium, uranium, and plutonium behavior in glass-bonded sodalite, a ceramic nuclear waste form.

    SciTech Connect

    Lewis, M. A.; Lexa, D.; Morss, L. R.; Richmann, M. K.

    1999-09-03

    Glass-bonded sodalite is being developed as a ceramic waste form (CWF) to immobilize radioactive fission products, actinides, and salt residues from electrometallurgical treatment of spent nuclear reactor fuel. The CWF consists of about 75 mass % sodalite, 25 mass % glass, and small amounts of other phases. This paper presents some results and interpretation of physical measurements to characterize the CWF structure, and dissolution tests to measure the release of matrix components and radionuclides from the waste form. Tests have been carried out with specimens of the CWF that contain rare earths at concentrations similar to those expected in the waste form. Parallel tests have been carried out on specimens that have uranium or plutonium as well as the rare earths at concentrations similar to those expected in the waste forms; in these specimens UCl{sub 3} forms UO{sub 2} and PuCl{sub 3} forms PuO{sub 2}. The normalized releases of rare earths in dissolution tests were found to be much lower than those of matrix elements (B, Si, Al, Na). When there is no uranium in the CWF, the release of cerium is two to ten times lower than the release of the other rare earths. The low release of cerium may be due to its tetravalent state in uranium-free CWF. However, when there is uranium in the CWF, the release of cerium is similar to that of the other rare earths. This trivalent behavior of cerium is attributed to charge transfer or covalent interactions among cerium, uranium, and oxygen in (U,Ce)O{sub 2}.

  7. Application of superplastically formed and diffusion bonded aluminum to a laminar flow control leading edge

    NASA Technical Reports Server (NTRS)

    Goodyear, M. D.

    1987-01-01

    NASA sponsored the Aircraft Energy Efficiency (ACEE) program in 1976 to develop technologies to improve fuel efficiency. Laminar flow control was one such technology. Two approaches for achieving laminar flow were designed and manufactured under NASA sponsored programs: the perforated skin concept used at McDonnell Douglas and the slotted design used at Lockheed-Georgia. Both achieved laminar flow, with the slotted design to a lesser degree (JetStar flight test program). The latter design had several fabrication problems concerning springback and adhesive flow clogging the air flow passages. The Lockheed-Georgia Company accomplishments is documented in designing and fabricating a small section of a leading edge article addressing a simpler fabrication method to overcome the previous program's manufacturing problems, i.e., design and fabrication using advanced technologies such as diffusion bonding of aluminum, which has not been used on aerospace structures to date, and the superplastic forming of aluminum.

  8. Microstructure and Mechanical Properties of Reaction-Formed Joints in Reaction Bonded Silicon Carbide Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.

  9. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    NASA Astrophysics Data System (ADS)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  10. A Comprehensive Analysis in Terms of Molecule-Intrinsic Quasi-Atomic Orbitals. IV. Bond Breaking and Bond Forming along the Dissociative Reaction Path of Dioxetane.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The quantitative analysis of molecular density matrices in terms of oriented quasi-atomic orbitals (QUAOs) is shown to yield detailed conceptual insight into the dissociation of dioxetane on the basis of ab initio wave functions. The QUAOs persist and can be followed throughout the reaction path. The kinetic bond orders and the orbital populations of the QUAOs quantitatively reveal the changes of the bonding interactions along the reaction path. At the transition state the OO bond is broken, and the molecule becomes a biradical. After the transition state the reaction path bifurcates. The minimum energy path gently descends from the transition state via a valley-ridge inflection point to a second saddle point, from which two new minimum energy paths lead to two equivalent formaldehyde dimers. The CC bond breaks, and the π-bonds of the formaldehyde fragments form in close vicinity of the second saddle point. The changes of the interactions in this region are elucidated by the analysis of the rearrangements of the QUAOs. PMID:26371996

  11. Tensile Strength of Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Hatta, Hiroshi; Aoi, Tatsuji; Kawahara, Itaru; Kogo, Yasuo; Shiota, Ichiro

    In order to identify ruling mechanisms of tensile fracture of Carbon/Carbon composites (C/Cs), tensile tests were carried out for various C/Cs as functions of the density, heat treatment temperature, and interfacial strength between fiber and matrix. Three processing routes of preformed yarn, resin char, and HIP processes were adopted to densify C/Cs. These C/Cs were finally heat-treated at temperatures from 2273K to 3300K. The interfacial strength between fiber and matrix was varied by the selection of processing routes. As a result, two ruling failure mechanisms were identified. At density lower than 1.6g/cm3, the tensile fracture was controlled by stress transfer capability from the matrix to reinforcing fibers. However, at higher density than 1.6g/cm3, tensile strength was primarily governed by the interfacial strength between the matrix and fibers. Thus the latter mechanism is nearly same as ceramic matrix composites.

  12. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    PubMed Central

    Jouffroy, Matthieu; Gramage-Doria, Rafael; Sémeril, David; Oberhauser, Werner; Toupet, Loïc

    2014-01-01

    Summary The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine) complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2. PMID:25383109

  13. Nitric oxide in star-forming regions: further evidence for interstellar N-O bonds.

    PubMed

    Ziurys, L M; McGonagle, D; Minh, Y; Irvine, W M

    1991-06-01

    Nitric oxide has been newly detected towards several star-forming clouds, including Orion-KL, Sgr B2(N), W33A, W51M, and DR21(OH) via its J = 3/2 --> 1/2 transitions near 150 GHz, using the FCRAO 14 m telescope. Both lambda-doubling components of NO were observed towards all sources. Column densities derived for nitric oxide in these clouds are N approximately 10(15)-10(16) cm-2, corresponding to fractional abundances of f approximately 0.5-1.0 x 10(-8), relative to H2. Towards Orion-KL, the NO line profile suggests that the species arises primarily from hot, dense gas. Nitric oxide may arise from warm material toward the other clouds as well. Nitric oxide in star-forming regions could be synthesized by high-temperature reactions, although the observed abundances do not disagree with values predicted from low-temperature, ion-molecule chemistry by more than one order of magnitude. The abundance of NO, unlike other simple interstellar nitrogen compounds, does appear to be reproduced by chemical models, at least to a good approximation. Regardless of the nature of formation of NO, it appears to be a common constituent of warm, dense molecular clouds. N-O bonds may therefore be more prevalent than previously thought. PMID:11538086

  14. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction. PMID:25640045

  15. Effect of Test Specimen Shape and Size on Interlaminar Tensile Properties of Advanced Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.

    2015-01-01

    The interlaminar tensile strength of 1000-tow T-300 fiber ACC-6 carbon-carbon composites was measured using the method of bonding the coupons to adherends at room temperature. The size, 0.70 to 1.963 inches maximum width or radius, and shape, round or square, of the test coupons were varied to determine if the test method was sensitive to these variables. Sixteen total variations were investigated and the results modeled.

  16. Fragment Couplings via CO2 Extrusion–Recombination: Expansion of a Classic Bond-Forming Strategy via Metallaphotoredox

    PubMed Central

    Le, Chi “Chip”; MacMillan, David W. C.

    2015-01-01

    In this study we demonstrate that molecular fragments, which can be readily coupled via a simple, in situ RO—C=OR bond-forming reaction, can subsequently undergo metal insertion–decarboxylation–recombination to generate Csp2–Csp3 bonds when subjected to metallaphotoredox catalysis. In this embodiment the conversion of a wide variety of mixed anhydrides (formed in situ from carboxylic acids and acyl chlorides) to fragment-coupled ketones is accomplished in good to high yield. A three-step synthesis of the medicinal agent edivoxetine is also described using this new decarboxylation–recombination protocol. PMID:26333771

  17. Polarizable hydrogen-bonded systems formed between 5,5'-dibromo-2,2'-biphenol and triethylamine

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Grzegorz; Bartl, Franz; Brzezinski, Bogumil

    2002-03-01

    We studied 1:1 and 1:2 complexes of triethylamine (TEA) with 5,5'-dibromo-2,2'-biphenol (DBBPh) in chloroform and acetonitrile solution using FT-IR and 1H NMR spectroscopy, and for comparison, the tetrabutylammonium 5,5'-dibromo-2,2'-biphenolate salt. In chloroform the 1:1 and 1:2 complexes are very stable and exist as hydrogen-bonded chains. In acetonitrile the 1:1 complexes are also stable, whereas the 1:2 complexes dissociate yielding protonated TEA and cyclic dimers of 5,5'-dibromo-2,2'-biphenol. The formation of cyclic dimers is favored in the case of the complex formed between tetrabutylammonium 5,5'-dibromo-2,2'-biphenolate and 5,5'-dibromo-2,2'-biphenol. All hydrogen bonds and hydrogen-bonded systems in the complexes studied show great proton polarizabity, since the protons may undergo fast fluctuations within these bonds.

  18. Microsolvation of anions by molecules forming CH··X- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Nepal, Binod; Scheiner, Steve

    2015-12-01

    Various anions were surrounded by n molecules of CF3H, which was used as a prototype CH donor solvent, and the structures and energies studied by M06-2X calculations with a 6-31+G∗∗ basis set. Anions considered included the halides F-, Cl-, Br- and I-, as well as those with multiple proton acceptor sites: CN-, NO3-, HCOO-, CH3COO-, HSO4-, H2PO4-, and anions with higher charges SO42-, HPO42- and PO43-. Well structured cages were formed and the average H-bond energy decreases steadily as the number of surrounding solvent molecules rises, even when n exceeds 6 and the CF3H molecules begin to interact with one another rather than with the central anion. Total binding energies are very nearly proportional to the magnitude of the negative charge on the anion. The free energy of complexation becomes more negative for larger n initially, but then reaches a minimum and begins to rise for larger values of n.

  19. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  20. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  1. Oxidation Microstructure Studies of Reinforced Carbon/Carbon

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Curry, Donald M.

    2006-01-01

    Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 C deg) and arc-jet exposures (1538 C deg) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 C deg exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 C deg. However samples oxidized at 900, 1100, and 1300 C deg show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 C deg show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through matrix cracks, creating denuded fibers on the edges of the cracks. Even at 1538 C deg, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing in preference to the bulk fiber and matrix.

  2. Resistivity of Carbon-Carbon Composites Halved

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2004-01-01

    Carbon-carbon composites have become the material of choice for applications requiring strength and stiffness at very high temperatures (above 2000 C). These composites comprise carbon or graphite fibers embedded in a carbonized or graphitized matrix. In some applications, such as shielding sensitive electronics in very high temperature environments, the performance of these materials would be improved by lowering their electrical resistivity. One method to lower the resistivity of the composites is to lower the resistivity of the graphite fibers, and a proven method to accomplish that is intercalation. Intercalation is the insertion of guest atoms or molecules into a host lattice. In this study the host fibers were highly graphitic pitch-based graphite fibers, or vapor-grown carbon fibers (VGCF), and the intercalate was bromine. Intercalation compounds of graphite are generally thought of as being only metastable, but it has been shown that the residual bromine graphite fiber intercalation compound is remarkably stable, resisting decomposition even at temperatures at least as high as 1000 C. The focus of this work was to fabricate composite preforms, determine whether the fibers they were made from were still intercalated with bromine after processing, and determine the effect on composite resistivity. It was not expected that the resistivity would be lowered as dramatically as with graphite polymer composites because the matrix itself would be much more conductive, but it was hoped that the gains would be substantial enough to warrant its use in high-performance applications. In a collaborative effort supporting a Space Act Agreement between the NASA Glenn Research Center and Applied Sciences, Inc. (Cedarville, OH), laminar preforms were fabricated with pristine and bromine-intercalated pitch-based fibers (P100 and P100-Br) and VGCF (Pyro I and Pyro I-Br). The green preforms were carbonized at 1000 C and then heat treated to 3000 C. To determine whether the

  3. Self-Protecting Bactericidal Titanium Alloy Surface Formed by Covalent Bonding of Daptomycin Bisphosphonates

    PubMed Central

    Chen, Chang-Po; Wickstrom, Eric

    2010-01-01

    Infections are a devastating complication of titanium alloy orthopedic implants. Current therapy includes antibiotic-impregnated bone cement, and antibiotic-containing coatings. We hypothesized that daptomycin, a Gram-positive peptide antibiotic, could prevent bacterial colonization on titanium alloy surfaces if covalently bonded via a flexible, hydrophilic spacer. We designed and synthesized a series of daptomycin conjugates for bonding to the surface of 1.0 cm2 Ti6Al4V foils through bisphosphonate groups, reaching a maximum yield of 180 pmol /cm2. Daptomycin-bonded foils killed 53±5% of a high challenge dose of 3×105 cfu Staphylococcus aureus ATCC 29213. PMID:20949909

  4. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  5. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  6. Iterative reactions of transient boronic acids enable sequential C-C bond formation

    NASA Astrophysics Data System (ADS)

    Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.

    2016-04-01

    The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.

  7. Oxidation of Carbon/Carbon through Coating Cracks

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Roth, d. J.; Rauser, R. W.; Cawley, J. D.; Curry, D. M.

    2008-01-01

    Reinforced carbon/carbon (RCC) is used to protect the wing leading edge and nose cap of the Space Shuttle Orbiter on re-entry. It is composed of a lay-up of carbon/carbon fabric protected by a SiC conversion coating. Due to the thermal expansion mismatch of the carbon/carbon and the SiC, the SiC cracks on cool-down from the processing temperature. The cracks act as pathways for oxidation of the carbon/carbon. A model for the diffusion controlled oxidation of carbon/carbon through machined slots and cracks is developed and compared to laboratory experiments. A symmetric cylindrical oxidation cavity develops under the slots, confirming diffusion control. Comparison of cross sectional dimensions as a function of oxidation time shows good agreement with the model. A second set of oxidation experiments was done with samples with only the natural craze cracks, using weight loss as an index of oxidation. The agreement of these rates with the model is quite reasonab

  8. [Study on implant material of carbon/carbon composites].

    PubMed

    Wang, Guohui; Yu, Shu; Zhu, Shaihong; Liu, Yong; Miu, Yunliang; Huang, Boyun

    2010-12-01

    This study was aimed to evaluate the biocompatibility and mechanical property of carbon/carbon composites. At first, carbon/carbon composites were prepared by chemical vapor deposition, and the mechanical property of carbon/carbon composites was tested. The biocompatibility of carbon/carbon composites was evaluated by cytotoxicity test, sensitization test, micronucleus test and implantation test. Mechanical property test showed such carbon/carbon composites are of good compression property and tension property. Cytotoxicity test showed that the leaching liquor of samples has no effect on the growth and proliferation of L-929 cells. The medullary micronucleus frequency of mouse was 2.3 per thousand +/- 0.7 per thousand in experiment group. The sensitization test showed that the skin of the subjects of experiment group had slight erythema and edema, which was 0.188 +/- 0.40 according to Magnusson and Kligman classification. Implantation test revealed that there was slight inflammation around the tissue after the implantation of sample. At 12 weeks, scanning electron microscopy and histopathological exam indicated that the samples of experiment group were of good histocompatibility; and in comparison with control group, there was no significant differences (P > 0.05). So these kinds of samples have good biocompatibility, mechanical property and prospects of clinical application. PMID:21374980

  9. 46 CFR 308.532 - Release of surety bond, Form MA-312.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....532 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Ii-Open Policy War Risk Cargo Insurance § 308.532 Release of surety bond... American War Risk Agency or MARAD....

  10. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.