Science.gov

Sample records for carbonate fuel cells

  1. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  2. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  3. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  4. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  5. Molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Smith, James L.

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  6. Molten carbonate fuel cell

    DOEpatents

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  7. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  9. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  10. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  11. Carbon fuel cells with carbon corrosion suppression

    DOEpatents

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  12. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, Richard C.

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  13. Molten carbonate fuel cell separator

    DOEpatents

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  14. Molten carbonate fuel cell matrices

    DOEpatents

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  15. Carbon-based Fuel Cell

    SciTech Connect

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  16. Clean energy from a carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  17. Cathode for molten carbonate fuel cell

    DOEpatents

    Kaun, Thomas D.; Mrazek, Franklin C.

    1990-01-01

    A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

  18. Electrolyte reservoir for carbonate fuel cells

    DOEpatents

    Iacovangelo, C.D.; Shores, D.A.

    1984-05-23

    An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  19. Electrolyte reservoir for carbonate fuel cells

    DOEpatents

    Iacovangelo, Charles D.; Shores, David A.

    1985-01-01

    An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  20. Progress in carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.

    1995-08-01

    Our objective is to increase both the life and power of the molten carbonate fuel cell (MCFC) by developing improved components and designs. Current activities are as follows: (1) Development of lithium ferrate (LiFeO{sub 2}) and lithium cobaltate (LiCoO{sub 2}) cathodes for extended MCFC life, particularly in pressurized operation, where the present cathode, NiO, provides insufficient life; (2) Development of distributed-manifold MCFC designs for increased volumetric power density and decreased temperature gradients (and, therefore, increased life); (3) Development of components and designs appropriate for high-power-density operation (>2 kW/m{sup 2} and >100 kW/m{sup 3} in an integrated MCFC system); and (4) Studies of pitting corrosion of the stainless-steel interconnects and aluminized seals now being employed in the MCFC (alternative components will also be studied). Each of these activities has the potential to reduce the MCFC system cost significantly. Progress in each activity will be presented during the poster session.

  1. Novel carbon-ion fuel cells

    SciTech Connect

    Cocks, F.H.; LaViers, H.

    1995-10-03

    This report details acitvities by the Duke University Department of Mechanical Engineering and Material Science on the Novel Carbon-Ion Fuel Cells for the Department of Energy Advanced Coal Research Program grant for the third quarter of 1995.

  2. Electrode for molten carbonate fuel cell

    DOEpatents

    Iacovangelo, Charles D.; Zarnoch, Kenneth P.

    1983-01-01

    A sintered porous electrode useful for a molten carbonate fuel cell is produced which is composed of a plurality of 5 wt. % to 95 wt. % nickel balance copper alloy encapsulated ceramic particles sintered together by the alloy.

  3. Carbonate fuel cells: Milliwatts to megawatts

    NASA Astrophysics Data System (ADS)

    Farooque, M.; Maru, H. C.

    The carbonate fuel cell power plant is an emerging high efficiency, ultra-clean power generator utilizing a variety of gaseous, liquid, and solid carbonaceous fuels for commercial and industrial applications. The primary mover of this generator is a carbonate fuel cell. The fuel cell uses alkali metal carbonate mixtures as electrolyte and operates at ∼650 °C. Corrosion of the cell hardware and stability of the ceramic components have been important design considerations in the early stages of development. The material and electrolyte choices are founded on extensive fundamental research carried out around the world in the 60s and early 70s. The cell components were developed in the late 1970s and early 1980s. The present day carbonate fuel cell construction employs commonly available stainless steels. The electrodes are based on nickel and well-established manufacturing processes. Manufacturing process development, scale-up, stack tests, and pilot system tests dominated throughout the 1990s. Commercial product development efforts began in late 1990s leading to prototype field tests beginning in the current decade leading to commercial customer applications. Cost reduction has been an integral part of the product effort. Cost-competitive product designs have evolved as a result. Approximately half a dozen teams around the world are pursuing carbonate fuel cell product development. The power plant development efforts to date have mainly focused on several hundred kW (submegawatt) to megawatt-class plants. Almost 40 submegawatt units have been operating at customer sites in the US, Europe, and Asia. Several of these units are operating on renewable bio-fuels. A 1 MW unit is operating on the digester gas from a municipal wastewater treatment plant in Seattle, Washington (US). Presently, there are a total of approximately 10 MW capacity carbonate fuel cell power plants installed around the world. Carbonate fuel cell products are also being developed to operate on

  4. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  5. Progress in carbonate fuel cells

    SciTech Connect

    Myles, K.M.; Krumpelt, M.; Roche, M.F.

    1995-12-31

    Our objective is to increase both the life and power of the molten carbonate fuel (MCFC) by developing improved components and designs. Current activities are as follows: (1)Development of LiFeO{sub 2} and LiCoO{sub 2} cathodes for extended MCFC life, particularly in pressurized operation, where the present cathode, NiO, provides insufficient life (2) Development of distributed-manifold MCFC designs for increased volumetric power density and decreased temperature gradients (and, therefore, increased life) (3) Development of components and designs appropriate for high-power density operation (>2 kW/m{sup 2}and >100 kW/m{sup 3}in an integrated MCFC system) (4)Studies of pitting corrosion of the stainless-steel interconnects and aluminized seals now being employed in the MCFC (alternative components will also be studied). Each of these activities has the potential to reduce the MCFC system cost significantly. Progress in each activity will be presented during the poster session.

  6. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  7. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  8. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  9. Sulfur tolerant molten carbonate fuel cell anode and process

    DOEpatents

    Remick, Robert J.

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  10. Performance model of molten carbonate fuel cell

    SciTech Connect

    Matsumoto, S.; Sasaki, A.; Urushibata, H.; Tanaka, T. )

    1990-06-01

    A performance model of a molten carbonate fuel cell (MCFC), that is an electrochemical energy conversion device for electric power generation, is discussed. The authors' purpose is to improve the presumptive ability of the MCFC model and to investigate the impact of MCFC characteristics in fuel cell system simulations. Basic data are obtained experimentally by single-cell tests. The authors pay special attention to the MCFC overall characteristics with respect to oxidant composition. A correlation formula based on the experimental data is derived as for the cell voltage, oxygen and carbon dioxide partial pressures. After three types of the MCFC system option are assumed, trade-off studies are made dependant on the performance models.

  11. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-01-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980s, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 refs., 8 figs.

  12. Molten carbonate fuel cell stack design options

    SciTech Connect

    Benjamin, T.G.; Petri, R.J.

    1986-03-01

    Significant strides in molten carbonate fuel cell (MCFC) life and performance have been made during the last 20 years. Results include single cell performance improvement from 10 watts/ft/sup 2/ to 120 watts/ft/sup 2/, testing of several sub-scale stacks, and significant reductions in cost. In the 1980's, attention has turned toward stack-related issues including component dimensional and structural stability, cathode dissolution, sulfur poisoning, hardware design, electrolyte management, carbon dioxide conservation, internal reforming, and systems considerations. This paper discusses MCFC stack hardware design options and present a brief introduction to MCFC technology. 4 references, 8 figures.

  13. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  14. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumplet, M.; Ackerman, J.P.; Cook, G.M.; Pierce, R.D.

    1984-02-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  15. Molten carbonate fuel cells for coal and natural gas fuels

    SciTech Connect

    Krumpelt, M.; Cook, G.M.; Pierce, R.D.; Ackerman, J.P.

    1984-01-01

    System designs of molten carbonate fuel cell power plants are described for central stations using coal and on-site generators operating on natural gas. Fuel-to-busbar efficiencies are near 50% in coal based systems with turbine bottoming and in simple gas based systems. Coal based systems with more advanced but not fully developed components, and more complex gas based systems approach 60% efficiency.

  16. Molten carbonate fuel cell research and development

    SciTech Connect

    Ong, E.T. )

    1991-02-01

    Successful molten carbonate fuel cell development required the resolution of four significant technical problems: (1) the molten carbonate fuel cell nickel anode had excessive creep, (2) the nickel oxide cathode exhibited an excessively high dissolution rate, (3) electrolyte matrices have been prone to cracking, and (4) a comprehensive definition of component development requirements for the MCFC stack was lacking. This program addressed all of these issues and others. As a result of a series of studies on materials and manufacturing processes, anode creep (shrinkage) has been reduced significantly with the development of oxide-dispersion-strengthened nickel aluminum anodes. By increasing the basicity of the carbonate electrolyte with alkaline-earth additives, nickel dissolution has been reduced by a factor of 2 to 4, thus increasing MCFC cell life. Successful techniques for the simple and low-cost tape casting of MCFC matrices and carbonate layers have been developed, and successful endurance tests have been run on new cell anodes, cathodes, and matrices. 2 refs., 51 figs., 7 tabs.

  17. Molten Carbonate Fuel Cell Product Design Improvement

    SciTech Connect

    1996-03-01

    This annual report provides results of Energy Research Corporation`s technical approach to performing the program `Molten Carbonate Fuel Cell (MCFC) Product Design Improvement` covered under the DOE-ERC Cooperative Agreement DE-FC21-95MC31184. This work is supported by DOE/METC and DOD/DARPA as well as ERC Team funds. The objective of the DOE-sponsored program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry for civilian applications. The overall objective of the DOD/DARPA initiative is to adapt the civilian 2 MW-Class fuel cell power plant for dual fuel DOD applications. This program is designed to advance the carbonate fuel cell technology from the power plant demonstration status to the commercial entry early production unit design stage. The specific objectives which will allow attainment of these overall program goals are: (1) Provide environmental information to support DOE evaluation with respect to the National Environmental Policy Act (NEPA), (2) Define market-responsive power plant requirements and specifications, (3) Establish design for multifuel, low-cost, modular, market-responsive power plant, (4) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (5) Acquire capabilities to support developmental testing of 0370 stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness of the power plant for commercial entry.

  18. Multiply manifolded molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.

    1994-08-01

    This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.

  19. Carbon and fluorinated carbon materials for fuel cells

    SciTech Connect

    Wheeler, D.; Luczak, F.; Fredley, R.; Cipollini, N.

    1998-07-01

    Carbon and fluorinated carbon materials are major constituents of phosphoric acid fuel cells and PEM fuel cells and the stability of these materials is critical for long life operation. Laboratory corrosion studies of separator plate materials were correlated with separator plate changes in commercial PAFC fuel cells. The addition of thin films of Teflon{trademark} to the separator plates extends the life of the separator plates to 60,000+ hours through the formation of a temporary hydrophobic barrier. ESCA studies show the loss of hydrophobicity with time of PAFC electrodes to be a result of delamination of the Teflon from the carbon and not corrosion of the Teflon by phosphoric acid. The projected life of PAFC power plants has been confirmed by commercial operation of power plants for over 40,000 hours.

  20. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste

  1. Stabilized matrix for molten carbonate fuel cell

    SciTech Connect

    Nirasawa, Hitoshi; Kawachi, Takanori; Ogawa, Takashi; Hori, Michio; Tomimatsu, Norihiro; Nakagawa, Kazuaki; Ohzu, Hideyuki; Yamazaki, Yohtaro

    1996-12-31

    For commercialization of molten carbonate fuel cell (MCFC) power plants, the most important factors are MCFC performance and life. The performance and life of an MCFC depend on the electrolyte loss and gas crossover due to the matrix degradation, such as LiAlO{sub 2} particle growth during cell operation and the matrix cracking at the initial heat-up stage. In order to suppress the matrix degradation, the authors fabricated a stabilized matrix with {alpha}-LiAlO{sub 2} as the electrolyte support material and with long {alpha}-Al{sub 2}O{sub 3} fibers as the reinforcement. They assembled the cell with the stabilized matrix. The performance of the cell is stable for 7,000 hours. They consider that the matrix degradation, such as the particle growth during cell operation and matrix cracking, has not occurred in this cell.

  2. Development of internal reforming carbonate fuel cell stack technology

    SciTech Connect

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  3. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  4. Electrolyte paste for molten carbonate fuel cells

    DOEpatents

    Bregoli, Lawrance J.; Pearson, Mark L.

    1995-01-01

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  5. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect

    Unknown

    2000-01-01

    The FCE PDI program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement, and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build and field test a modular prototype power plant to demonstrate readiness for commercial entry.

  6. Alternative cathodes for molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Lanagan, M.; Roche, M.F.; Krumpelt, M.

    1996-02-01

    Argonne National Laboratory (ANL) is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC). The present cathode, lithiated nickel oxide, tends to transport to the anode of the MCFC, where it is deposited as metallic nickel. The rate of transport increases with increasing CO{sub 2} pressure. This increase is due to an increased solubility of nickel oxide (NiO) in the molten carbonate electrolyte. An alternative cathode is lithium cobaltate (LiCoO{sub 2})-Solid solutions of LiCoO{sub 2} in LiFeO{sub 2} show promise for long-lived cathode materials. We have found that small additions of LiCoO{sub 2} to LiFeO{sub 2} markedly decrease the resistivity of the cathode material. Cells containing the LiCoO{sub 2}-LiFeO{sub 2} cathodes have stable performance for more than 2100 h of operation and display lower cobalt migration.

  7. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  8. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  9. Cathode side hardware for carbonate fuel cells

    DOEpatents

    Xu, Gengfu; Yuh, Chao-Yi

    2011-04-05

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.

  10. Carbon support oxidation in PEM fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Maass, S.; Finsterwalder, F.; Frank, G.; Hartmann, R.; Merten, C.

    Oxidation of the cathode carbon catalyst support in polymer electrolyte fuel cells (PEMFC) has been examined. For this purpose platinum supported electrodes and pure carbon electrodes were fabricated and tested in membrane-electrode-assemblies (MEAs) in air and nitrogen atmosphere. The in situ experiments account for the fuel cell environment characterized by the presence of a solid electrolyte and water in the gas and liquid phases. Cell potential transients occurring during automotive fuel cell operation were simulated by dynamic measurements. Corrosion rates were calculated from CO 2 and CO concentrations in the cathode exhaust measured by non-dispersive infrared spectroscopy (NDIR). Results from these potentiodynamic measurements indicate that different potential regimes relevant for carbon oxidation can be distinguished. Carbon corrosion rates were found to be higher under dynamic operation and to strongly depend on electrode history. These characteristics make it difficult to predict corrosion rates accurately in an automotive drive cycle.

  11. Processing of carbon composite paper as electrode for fuel cell

    NASA Astrophysics Data System (ADS)

    Mathur, R. B.; Maheshwari, Priyanka H.; Dhami, T. L.; Sharma, R. K.; Sharma, C. P.

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material.

  12. Method of making molten carbonate fuel cell ceramic matrix tape

    DOEpatents

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  13. Pitting corrosion of aluminized seals in molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.

    1994-08-01

    The objective of this research is to gain a better understanding of the corrosion of the aluminized type 316 stainless steel employed in the seal areas of the molten carbonate fuel cell. The seals are formed between the aluminized Type 316 SS surface and the electrolyte (generally a mixture of molten alkali carbonates and lithium aluminate).

  14. Oxygen electrode reaction in molten carbonate fuel cells

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  15. Non-segregating electrolytes for molten carbonate fuel cells

    SciTech Connect

    Kaun, T.D.; Bloom, I.D.; Krumpelt, M.

    1997-09-01

    Argonne National Laboratory is developing molten carbonate electrolyte compositions which have minimal segregation in the individual fuel cell and cell stack under an electric field. The approach is to characterize Li-Na carbonate mixtures in terms of their segregation properties in an electric field and, if necessary, to modify the observed segregation by adding Ba and Ca carbonates. Both non-segregating properties and MCFC test-cell performance show improvement as the lithium content is modified, up or down, from a baseline of 52/48 Li/Na. Results of gasket strip (20 V) screening studies, as well as those from cell tests, will be discussed.

  16. Cathode preparation method for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Sim, James W.; Kucera, Eugenia H.

    1988-01-01

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  17. Molten carbonate fuel cell product design improvement

    SciTech Connect

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  18. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  19. All ceramic structure for molten carbonate fuel cell

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1992-01-01

    An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

  20. An Innovative Carbonate Fuel Cell Matrix, Abstract #188

    SciTech Connect

    Hilmi, Abdelkader; Surendranath, Arun; Yuh, Chao-Yi

    2015-05-28

    The electrolyte matrix in direct carbonate fuel cell (DFC) is a microporous ceramic structure sandwiched between the electrodes to isolate the fuel from the oxidant, store electrolyte and facilitate ionic transport. FCE has advanced DFC electrolyte matrix over the years and demonstrated that the matrix meets the requirements for greater than 5 year life based on accelerated tests and field stack operations. However, development of advanced designs and materials that can further increase the performance and extend cell life will enable accelerated MCFC deployment. This paper will report the progress on the development of an unique and innovative matrix design that offers numerous benefits to the carbonate fuel cell performance and durability. In addition, this paper will also review parameters that affect matrix material stability and approaches to extend cell life.

  1. Carbon monoxide poisoning of proton-exchange membrane fuel cells

    SciTech Connect

    Rodrigues, A.; Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.

    1997-12-31

    The platinum-alloy catalyst used in proton-exchange membrane (PEM) fuel cell anodes is highly susceptible to carbon monoxide (CO) poisoning. CO reduces the catalyst activity by blocking active catalyst sites normally available for hydrogen chemisorption and dissociation. The reaction kinetics at the anode catalyst surface can be used to estimate the decrease in cell voltage due to various levels of CO contamination in the inlet fuel streams on PEM fuel cell performance have been reviewed and analyzed in an attempt to further understand the electrochemical properties of the CO adsorption process. A fuel cell performance model of bipolar, Nafion 117 PEM fuel cell stack has been developed which predicts equilibrium cell output voltage as a function of current density and partial pressure of CO. The model contains both empirical and mechanistic parameters and evolved from a steady-state electrochemical model for a PEM fuel cell fed with a CO-free anode gas. Reaction kinetics and equilibrium surface coverage have been incorporated into the electrochemical model to predict the decrease in fuel cell performance at equilibrium. The effects of CO were studied at various concentrations of CO in hydrogen as the anode feed gas. Literature data were used to develop the model parameters and the resulting model is used to compare the model-predicted voltages, with and without CO, to data found in the literature.

  2. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    PubMed

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li(+)Cl(-)), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li(+)Cl(-) catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  3. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  4. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  5. Carbonate fuel cell system with integrated carbon dioxide/thermal management

    SciTech Connect

    Paetsch, L.

    1995-08-01

    The objective of the present work is to define the stack design and system requirements for a commercial-scale carbonate fuel cell with an integrated carbon dioxide management system. Significant simplification and cost reduction of the system is achieved by direct transfer of the fuel exhaust to the oxidant inlet of the fuel cell, thereby eliminating the anode exhaust converter and high temperature piping utilized in conventional system designs.

  6. Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell

    SciTech Connect

    Cherepy, N J; Fiet, K J; Krueger, R; Jankowski, A F; Cooper, J F

    2004-01-28

    Anodes of elemental carbon may be discharged in a galvanic cell using a molten carbonate electrolyte, a nickel-foam anode-current collector, and a porous nickel air cathode to achieve power densities of 40-100 mW/cm{sup 2}. We report cell and anode polarization, surface area, primary particle size and a crystallization index for nine particulate carbon samples derived from fuel oil, methane, coal, charred biological material and petroleum coke. At 800 C, current densities of 50-125 mA/cm{sup 2} were measured at a representative cell voltage of 0.8 V. Power densities for cells with two carbon-anode materials were found to be nearly the same on scales of 2.8- and 60 cm{sup 2} active area. Constant current operation of a small cell was accompanied by constant voltage during multiple tests of 10-30 hour duration. Cell voltage fell off after the carbon inventory was consumed. Three different cathode structures are compared, indicating that an LLNL fabricated porous nickel electrode with <10 {micro}m pores provides improved rates compared with nickel foam with 100-300 {micro}m pores. Petroleum coke containing substantial sulfur and ash discharges at a slightly lower rate than purified petroleum coke. The sulfur leads to degradation of the anode current collector over time. A conceptual model for electrochemical reactivity of carbon is presented which indicates the importance of (1) bulk lattice disorder, which continually provides surface reactive sites during anodic dissolution and (2) electrical conductivity, which lowers the ohmic component of anode polarization.

  7. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-07-01

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  8. Oxygen electrode in molten carbonate fuel cells

    SciTech Connect

    Dave, B.B.; White, R.E. . Dept. of Chemical Engineering); Srinivasan, S; Appleby, A.J. . Center for Electrochemical Systems and Hydrogen Research)

    1990-01-01

    During this quarter, impedance data were analyzed for oxygen reduction process in molten carbonate electrolyte and a manuscript, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt: Effects of Partial Pressure of Carbon Dioxide and Temperature,'' was prepared which will be submitted to Journal of the Electrochemical Society for publication. 31 refs., 10 figs., 5 tabs.

  9. Research and development issues for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  10. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power

  11. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  12. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  13. Carbon dioxide separation from high temperature fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano

    High temperature fuel cell technologies, solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs), are considered for their potential application to carbon dioxide emission control. Both technologies feature electrochemical oxidisation of natural gas reformed fuels, avoiding the mixture of air and fuel flows and dilution with nitrogen and oxygen of the oxidised products; a preliminary analysis shows how the different mechanism of ion transport attributes each technology a specific advantage for the application to CO 2 separation. The paper then compares in the first part the most promising cycle configurations based on high efficiency integrated SOFC/gas turbine "hybrid" cycles, where CO 2 is separated with absorption systems or with the eventual adoption of a second SOFC module acting as an "afterburner". The second part of the paper discusses how a MCFC plant could be "retrofitted" to a conventional fossil-fuel power station, giving the possibility of draining the majority of CO 2 from the stack exhaust while keeping the overall cycle electrical efficiency approximately unchanged.

  14. Electrochemical Characterization of Carbon Nanotubes for Fuel Cell MEA's

    NASA Technical Reports Server (NTRS)

    Panagaris, Jael; Loyselle, Patricia

    2004-01-01

    Single-walled and multi-walled carbon nanotubes from different sources have been evaluated before and after sonication to identify structural differences and evaluate electrochemical performance. Raman spectral analysis and cyclic voltammetry in situ with QCM were the principle means of evaluating the tubes. The raman data indicates that sonication in toluene modifies the structural properties of the nanotubes. Sonication also affects the electrochemical performance of single-walled nanotubes and the multi-walled tubes differently. The characterization of different types of carbon nanotubes leads up to identifying a potential candidate for incorporating carbon nanotubes for fuel cell MEA structures.

  15. Current status of two molten carbonate fuel cell installations

    SciTech Connect

    Andrews, T.M.; Robertson, T.A.

    1996-03-01

    Bechtel Corporation and Stewart and Stevenson Service, Inc. are currently designing and building two 250-kW net molten carbonate fuel cell (MCFC) demonstration plants. Both plants employ MCFC stacks produced by M-C Power Corporation using internally manifolded heat exchange (IMHEX{reg_sign}) stacks. M-C Power provides the overall project management.Bechtel is responsible for the overall system design, integration, and procurement of major BOP (balance of plant) equipment. Stewart and Stevenson is responsible for the engineering and fabrication of a BOP skid for both plants. This paper gives a brief description of the two fuel cell plants and the current status of each plant.

  16. Strategic planning for molten carbonate fuel cell development and commercialization

    SciTech Connect

    Williams, M.C.; Mayfield, M.J.

    1993-01-01

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  17. Strategic planning for molten carbonate fuel cell development and commercialization

    SciTech Connect

    Williams, M.C.; Mayfield, M.J.

    1993-03-01

    The molten carbonate fuel cell (MCFC), a high-temperature fuel cell, is a promising energy conversion product for generating electricity. Natural gas availability appears to play a key role in MCFC commercialization; natural gas MCFC and Integrated gasification MCFC (IGMCFC) are emerging power generation options that are responsive to requirements of Clean Air Act amendments and to guidance in National Energy Strategy. Goal of DOE IGMCFC program is to demonstrate the commercial readiness of this technology by the year 2010. DOE MCFC development objectives and planned activities are outlined.

  18. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOEpatents

    Johnsen, Richard; Yuh, Chao-Yi; Farooque, Mohammad

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  19. LCA of a molten carbonate fuel cell system

    NASA Astrophysics Data System (ADS)

    Lunghi, Piero; Bove, Roberto; Desideri, Umberto

    Fuel cells are recognized by all the scientific community to be ultra low emission energy conversion systems, because the pollutants associated with their operation are very low in concentration, compared to traditional energy systems. On the other hand, fuel cells are mainly fed with hydrogen, a chemical component that is not available as a pure component, but it must be extracted from other compounds. This practice involves energy consumption and emissions related to extraction of fuel, hydrogen conversion, transportation and clean up. In order to evaluate the environmental impact related to the energy production by the use of a fuel cell it is imperative to consider all the processes related to the fuel cell operation, and not only the FC operation itself. Life-cycle assessment (LCA) is a unique approach for evaluating the environmental impact related to the whole life of the system, i.e. considering all the processes associated to the system itself, including construction and decommissioning. In the present study a molten carbonate fuel cell (MCFC) system for electric energy production is considered and the related life-cycle environmental impact is considered. Finally a comparison between traditional energy conversion systems and the MCFC systems is conducted, in order to evaluate which are the advantages and the disadvantages that each supposed scenario can lead to.

  20. Critical issues and future prospects for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Joon, K.

    The molten carbonate fuel cell (MCFC) has several potential advantages over low-temperature fuel cells by virtue of its operating temperature of 650°C. This temperature allows the reforming of, for examples, methane from natural gas in the fuel cell stack itself, resulting in reduced systems cost and increased efficiency. In addition, high temperature waste heat is available for industrial processes or bottoming cycles. Furthermore, CO, which is produced in almost all fossil fuel conversion processes, can be used as fuel instead of acting as a poison as in other types of fuel cell. Drawbacks of MCFCs are the high corrosivity of the electrolyte at the operating temperature and the need for a continuous supply of CO 2 to the cathode. Research into and development of MCFCs actually started in 1950 by Ketelaar and Broers when they investigated an earlier idea of Davtyan. Since then, a lot of progress has been made with respect to understanding the cell mechanisms, improving the materials, the performance, the manufacturing techniques and up-scaling. This resulted a few years ago in proof-of-principle tests at the 100 kWe level. At present, the MCFC is the first demonstration phase with full-scale systems at the 250 kWe to 2 MWe level, marking the transition from fundamental and applied R&D to product development or from a technology push to a market pull situation. This paper reviews the most important remaining as well as expected new issues to be resolved.

  1. Determination of optimum electrolyte composition for molten carbonate fuel cells

    SciTech Connect

    Yuh, C.Y.; Pigeaud, A.

    1987-01-01

    The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have state-of-the-art cell voltage and lifetime.

  2. Carbonate fuel cell system with thermally integrated gasification

    DOEpatents

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  3. Industry support for molten carbonate fuel cell commercialization

    SciTech Connect

    Nimmons, J.T.

    1996-12-31

    The Alliance to Commercialize Carbonate Technology (ACCT) is a working alliance of utilities and industry, created to help bring molten carbonate fuel cell (MCFC) technology into commercial markets by the year 2000. Its principal focus is the IMHEX{reg_sign} MCFC power plant under development by the team of M-C Power Corporation, the Institute of Gas Technology, The Bechtel Corporation, and Stewart & Stevenson Services, Inc. (the {open_quotes}Development Team{close_quotes}), although many ACCT members are also interested in other fuel cell technologies. This paper will describe ACCT`s background, mission, approach and activities, as well as opportunities for those interested to join in ACCT`s ongoing work toward MCFC commercialization.

  4. Molten carbonate fuel cell with high power density

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.; Geyer, H.; Johnson, S.

    1994-08-01

    The objective of this research is a doubling of the current density of the molten carbonate fuel cell (MCFC) from the present value of 1600A/m{sup 2} to 3200 A/m{sup 2} and a similar increase in the volumetric power density. This project is linked to other projects concerning MCFCs (one on the multiply manifolded MCFCs, the other on lithium ferrate and lithium cobaltate cathodes for MCFCs).

  5. Development of large scale internal reforming molten carbonate fuel cell

    SciTech Connect

    Sasaki, A.; Shinoki, T.; Matsumura, M.

    1996-12-31

    Internal Reforming (IR) is a prominent scheme for Molten Carbonate Fuel Cell (MCFC) power generating systems in order to get high efficiency i.e. 55-60% as based on the Higher Heating Value (HHV) and compact configuration. The Advanced Internal Reforming (AIR) technology has been developed based on two types of the IR-MCFC technology i.e. Direct Internal Reforming (DIR) and Indirect Internal Reforming (DIR).

  6. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  7. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  8. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, Chao M.; Yuh, Chao-Yi

    1999-01-01

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  9. Recent Advances in Carbon Nanotube-Based Enzymatic Fuel Cells

    PubMed Central

    Cosnier, Serge; Holzinger, Michael; Le Goff, Alan

    2014-01-01

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O2, H2O2) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications. PMID:25386555

  10. Recent advances in carbon nanotube-based enzymatic fuel cells.

    PubMed

    Cosnier, Serge; Holzinger, Michael; Le Goff, Alan

    2014-01-01

    This review summarizes recent trends in the field of enzymatic fuel cells. Thanks to the high specificity of enzymes, biofuel cells can generate electrical energy by oxidation of a targeted fuel (sugars, alcohols, or hydrogen) at the anode and reduction of oxidants (O2, H2O2) at the cathode in complex media. The combination of carbon nanotubes (CNT), enzymes and redox mediators was widely exploited to develop biofuel cells since the electrons involved in the bio-electrocatalytic processes can be efficiently transferred from or to an external circuit. Original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are reported as well as biomedical applications. PMID:25386555

  11. Molten carbonate fuel cells: A high temperature fuel cell on the edge to commercialization

    NASA Astrophysics Data System (ADS)

    Bischoff, Manfred

    The Molten Carbonate Fuel Cell (MCFC) technology has been developed in USA, Japan, Korea and Europe for many years. What has started about 30 years ago as an interesting laboratory object has now matured to a potential alternative to conventional power generation systems. Especially the combined heat and power (CHP) generation is an area, where MCFC power plants can be applied with great advantage, due to the high efficiencies which can be achieved. It was demonstrated by several manufacturers that in the sub-MW region MCFC power plants can reach electrical efficiencies of 47%. By making use of the heat generated by the system, total efficiencies of more than 80% can be achieved. The present paper will discuss some aspects of the development work going on with a focus on the role of the molten carbonate contained in the cells. An outlook will be given for the future prospects of this young technology in a changing energy market.

  12. Wetting properties of molten carbonate fuel cell electrode materials

    SciTech Connect

    Fisher, J.M.; Bennett, P.S.; Pignon, J.F. ); Makkus, R.C.; Weewer, R.; Hemmes, K. )

    1990-05-01

    Molten carbonate fuel cells (MCFC) are of interest for their potentially highly efficient conversion of chemical energy into electrical energy. This paper discusses how the wetting properties of electrode materials by molten carbonate have a high relevance for the performance of the porous electrodes. When internal reforming of the fuel gas at the anode is performed, the wetting properties also influence the efficiency of the reforming process. Distribution of the electrolyte in an MCFC stack is mainly determined by the wetting properties of the porous MCFC materials, such as electrodes and tile in contact with the electrolyte. The quality of the wet seal areas of the separator plates in an MCFC stack to prevent gas leakage also depends on the wetting properties.

  13. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    SciTech Connect

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-05-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  14. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    SciTech Connect

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-01-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  15. Molten carbonate fuel cells (MCFC): Structure and operation

    SciTech Connect

    1996-03-01

    The main components of an individual cell are the anode, the cathode, and the molten carbonate electrolyte. Electrode materials are usually porous nickel alloys for reducing atmospheres (anode) and nickel oxide for oxidizing atmospheres (cathode). The electrolyte, typically a combination of molten, alkali (Li, K, Na) carbonates, is contained within a porous ceramic matrix, commonly made of lithium aluminate (LiAlO{sub 2}). The molten carbonate electrolyte, sandwiched between the anode and cathode, partially fills these porous electrodes. Electrochemical reactions take place at a three-phase interface formed by the electrolyte, the electrodes, and the gas streams. Carbonate ions are formed at an oxidant/electrolyte interface in the cathode and are transported through the electrolyte to a fuel/electrolyte interface in the anode. There, the carbonate ions react with the fuel, releasing electrons into the anode. The electrons then travel through an external circuit and through the load, suffering a voltage drop. Finally, the circuit is completed as the electrons return to the cathode. The paper gives data on MCFC efficiency and NO{sub x} emissions compared with engines and turbines.

  16. MODELING AND DESIGN FOR A DIRECT CARBON FUEL CELL WITH ENTRAINED FUEL AND OXIDIZER

    SciTech Connect

    Alan A. Kornhauser; Ritesh Agarwal

    2005-04-01

    The novel molten carbonate fuel cell design described in this report uses porous bed electrodes. Molten carbonate, with carbon fuel particles and oxidizer entrained, is circulated through the electrodes. Carbon may be reacted directly, without gasification, in a molten carbonate fuel cell. The cathode reaction is 2CO{sub 2} + O{sub 2} 4e{sup -} {yields} 2CO{sub 3}{sup =}, while the anode reaction can be either C + 2CO{sub 3}{sup =} {yields} 3CO{sub 2} + 4e{sup -} or 2C + CO{sub 3}{sup =} {yields} 3CO + 2e{sup -}. The direct carbon fuel cell has an advantage over fuel cells using coal-derived synthesis gas in that it provides better overall efficiency and reduces equipment requirements. Also, the liquid electrolyte provides a means for transporting the solid carbon. The porous bed cell makes use of this carbon transport ability of the molten salt electrolyte. A one-dimensional model has been developed for predicting the performance of this cell. For the cathode, dependent variables are superficial O{sub 2} and CO{sub 2} fluxes in the gas phase, superficial O{sub 2} and CO{sub 2} fluxes in the liquid phase, superficial current density through the electrolyte, and electrolyte potential. The variables are related by correlations, from the literature, for gas-liquid mass transfer, liquid-solid mass transfer, cathode current density, electrode overpotential, and resistivity of a liquid with entrained gas. For the anode, dependent variables are superficial CO{sub 2} flux in the gas phase, superficial CO{sub 2} flux in the liquid phase, superficial C flux, superficial current density through the electrolyte, and electrolyte potential. The same types of correlations relate the variables as in the cathode, with the addition of a correlation for resistivity of a fluidized bed. CO production is not considered, and axial dispersion is neglected. The model shows behavior typical of porous bed electrodes used in electrochemical processes. Efficiency is comparable to that of

  17. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance.

    PubMed

    Tursun, Hairti; Liu, Rui; Li, Jing; Abro, Rashid; Wang, Xiaohui; Gao, Yanmei; Li, Yuan

    2016-01-01

    To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency. PMID:26858695

  18. Carbon Material Optimized Biocathode for Improving Microbial Fuel Cell Performance

    PubMed Central

    Tursun, Hairti; Liu, Rui; Li, Jing; Abro, Rashid; Wang, Xiaohui; Gao, Yanmei; Li, Yuan

    2016-01-01

    To improve the performance of microbial fuel cells (MFCs), the biocathode electrode material of double-chamber was optimized. Alongside the basic carbon fiber brush, three carbon materials namely graphite granules, activated carbon granules (ACG) and activated carbon powder, were added to the cathode-chambers to improve power generation. The result shows that the addition of carbon materials increased the amount of available electroactive microbes on the electrode surface and thus promote oxygen reduction rate, which improved the generation performance of the MFCs. The Output current (external resistance = 1000 Ω) greatly increased after addition of the three carbon materials and maximum power densities in current stable phase increased by 47.4, 166.1, and 33.5%, respectively. Additionally, coulombic efficiencies of the MFC increased by 16.3, 64.3, and 20.1%, respectively. These results show that MFC when optimized with ACG show better power generation, higher chemical oxygen demands removal rate and coulombic efficiency. PMID:26858695

  19. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  20. Electrode reaction mechanisms in molten carbonate fuel cells

    SciTech Connect

    Selman, J.R.; Nishina, T.; Lin, Y.P.; Yeager, E.B.; Tryk, D.A.

    1989-07-01

    This report describes the results of a joint research effort at Illinois Institute of Technology (IIT) and Case Western Reserve University (CWRU) to elucidate the reaction mechanism of oxygen reduction at the cathode of the molten carbonate fuel cell (MCFC). This research project was aimed at developing novel experimental approaches to the chemistry and electrode kinetics of oxygen reduction under MCFC conditions, and improving our fundamental understanding of the reaction mechanism as it applies to the MCFC. IIT's contribution was focused on developing and using rotating electrodes with well-defined mass-transfer properties, to characterize the electrode kinetics of oxygen reduction in molten carbonate. CWRU's contribution was focused on developing and using micro-electrodes for the same purpose, and also on developing spectroscopic cells and carrying out various types of spectroscopic measurements to characterize the oxygen species in molten carbonate under MCFC conditions. This report is divided into two main parts. Part 1 provides the technical background of the questions concerning oxygen reduction in molten carbonate as they apply to the MCFC system. The methodological approach and the objectives of the research are also presented. The second part describes the development of the rotating electrodes, micro-electrodes and spectroscopic cells and the results of measurements, as well as the interpretation of the data. Conclusions of this project, including some recommendations for further research, are also given in this part. 111 refs., 69 figs., 7 tabs.

  1. Molten carbonate fuel cell (MCFC) porous electrode and kinetic studies

    SciTech Connect

    Selman, J.R. )

    1992-10-01

    This report sumarizes a research project undertaken to improve the performance and understand the limitations of porous electrodes for molten carbonate fuel cells (MCFCs). Using a novel MCFC rotating-disk'' electrode, the electrode kinetic and mass transfer properties of commonly used electrode materials were determined, and a practical performance model for MCFC electrodes was developed. The report also outlines a general strategy for designing a high-performance MCFC electrode, assesses the current understanding of porous electrode operation, and discusses some of the unresolved questions of the field. An appendix gives a complete list of the many theses, journal articles, and symposium contributions based on this research.

  2. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOEpatents

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  3. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    NASA Astrophysics Data System (ADS)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  4. Development of electrolyte plate for molten carbonate fuel cell

    SciTech Connect

    Shoji, C.; Matsuo, T.; Suzuki, A.; Yamamasu, Y.

    1998-07-01

    It is important for the commercialization of molten carbonate fuel cell (MCFC) to improve the endurance and the reliability of the electrolyte plate. The electrolyte-loss in the electrolyte plate increases the cell resistance and deteriorates the cell voltage. The formulation of cracks in the electrolyte plate causes a gas cross leakage between the fuel gas and the oxidizer gas. The pore structure of electrolyte plate must be stable and fine to support liquid electrolyte under MCFC operation. It is necessary to prevent the formation of cracks in electrolyte plate during thermal cycling. The authors have improved the stability of electrolyte plate using advanced LiAlO{sub 2} powder and improved the durability of electrolyte plate for thermal cycling by the addition of the ceramic fiber. The initial cell voltage using electrolyte plate with advanced LiAlO{sub 2} powder was 820 mV at current density 150mA/cm{sup 2} and the decay rate of cell voltage was under 0.5%/1,000h for 8,800h. According to the post analyses, the pore structure of the electrolyte plate did not change. The stability of advanced LiAlO{sub 2} powder was confirmed. It was proved that the electrolyte plate reinforced with ceramic fiber is effective for thermal cycling.

  5. Carbon nanotube modification of microbial fuel cell electrodes.

    PubMed

    Yazdi, Alireza Ahmadian; D'Angelo, Lorenzo; Omer, Nada; Windiasti, Gracia; Lu, Xiaonan; Xu, Jie

    2016-11-15

    The use of carbon nanotubes (CNTs) for energy harvesting devices is preferable due to their unique mechanical, thermal, and electrical properties. On the other hand, microbial fuel cells (MFCs) are promising devices to recover carbon-neutral energy from the organic matters, and have been hindered with major setbacks towards commercialization. Nanoengineered CNT-based materials show remarkable electrochemical properties, and therefore have provided routes towards highly effective modification of MFC compartments to ultimately reach the theoretical limits of biomass energy recovery, low-cost power production, and thus the commercialization of MFCs. Moreover, these CNT-based composites offer significant flexibility in the design of MFCs that enable their use for a broad spectrum of applications ranging from scaled-up power generation to medically related devices. This article reviews the recent advances in the modification of MFCs using CNTs and CNT-based composites, and the extent to which each modification route impacts MFC power and current generation. PMID:27213269

  6. Overview of molten carbonate fuel cell technology development

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1993-11-01

    The molten carbonate fuel cell (MCFC) has been identified as a promising energy conversion product for development and commercialization. Overall DOE MCFC program goal is to develop and commercialize low-cost, simple fuel cell systems. Objective of the MCFC program is to develop and demonstrate MCFC power plant systems. Significant progress has already been made in developing the MCFC technology in the US. Manufacturing and test facility development and testing by the MCFC developers has also been significant. Product improvement issues that need to be resolved to vector the MCFC technology from its current status to a multi-fuel, integrated, simple, low-cost, modular, market-responsive power plant product. MCFC`s must undergo continuing product refinement to ensure that durability and cost reduction through modularization and stack manufacturing scale-up occurs. MCFC developers need to continue to be responsive to end-users in potential markets. MCFC`s appear to have a place in a decentralized power industry future. Natural gas availability appears to play a key role in MCFC commercialization.

  7. Molten carbonate fuel cell power plant systems studies

    SciTech Connect

    Johnson, W.H.

    1990-06-01

    The goal of the DOE and IFC Molten Carbonate Fuel Cell (MCFC) Program is to develop a MCFC technology base capable of providing clean electrical energy at competitive cost when integrated with coal gasification systems. To be successful, a coal-fueled MCFC system must provide cost of electricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long range electric generating systems. The strategy for the study was to initially evaluate the status of non-fuel cell systems to establish the basis for a competitive CG/MCFC power plant and the corresponding MCFC subsystem goals. Secondly, an iterative and comparative analysis of potential CG/MCFC systems was conducted. This analysis included a detailed examination of MCFC integration with gasifier technology in which the technical basis for MCFC compatibility with a broad range of gasifiers was established. Lastly, a detailed conceptual design was prepared for the most desirable CG/MCFC system. The design established the potential of the CG/MCFC power plant to meet the goals and provide a competitive cost of electricity at very high efficiency and significantly reduced emissions. The design also provided focus for the technical issues still outstanding and required for commercialization of the CG/MCFC technology. 27 figs., 23 tabs.

  8. A Direct Carbon Fuel Cell with a Molten Antimony Anode

    SciTech Connect

    Jayakumar, Abhimanyu; Kungas, Rainer; Roy, Sounak; Javadekar, Ashay; Buttrey, Douglas J.; Vohs, John M.; Gorte, Raymond J.

    2011-01-01

    The direct utilization of carbonaceous fuels is examined in a solid oxide fuel cell (SOFC) with a molten Sb anode at 973 K. It is demonstrated that the anode operates by oxidation of metallic Sb at the electrolyte interface, with the resulting Sb₂O₃ being reduced by the fuel in a separate step. Although the Nernst Potential for the Sb-Sb₂O₃ mixture is only 0.75 V, the electrode resistance associated with molten Sb is very low, approximately 0.06 Ωcm², so that power densities greater than 350 mW cm⁻² were achieved with an electrolyte-supported cell made from Sc-stabilized zirconia (ScSZ). Temperature programmed reaction measurements of Sb₂O₃ with sugar char, rice starch, carbon black, and graphite showed that the Sb₂O₃ is readily reduced by a range of carbonaceous solids at typical SOFC operating conditions. Finally, stable operation with a power density of 300 mW cm⁻² at a potential of 0.5 V is demonstrated for operation on sugar char.

  9. Model of cathode reaction resistance in molten carbonate fuel cells

    SciTech Connect

    Morita, H.; Mugikura, Y.; Izaki, Y.; Watanabe, T.; Abe, T.

    1998-05-01

    A model of the performance of a molten carbonate fuel cell (MCFC) is required to estimate the efficiency of an MCFC power plant or to simulate the internal state of a stack. The model should provide an accurate representation of the performance under various operating conditions. However, the performance estimated by previous models has been found to deviate from the measured performance under low oxygen and carbon dioxide cathode partial pressures. To solve this problem, the authors carried out a systematic analysis of the performance of several bench-scale cells operated under various cathode gas conditions and investigated a model of cathode polarization according to the oxygen reduction mechanism in molten carbonate. As a result, it has been clarified that the behavior of cathode polarization under various conditions is described well by the dependence of mixed diffusion of superoxide ion O{sub 2}{sup {minus}} and CO{sub 2} in the melt on the assumed partial pressures at each total operating pressure.

  10. Carbon nanotube dispersed conductive network for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Yamanaka, K.; Ogikubo, H.; Akasaka, H.; Ohtake, N.

    2014-08-01

    Microbial fuel cells (MFCs) are promising devices for capturing biomass energy. Although they have recently attracted considerable attention, their power densities are too low for practical use. Increasing their electrode surface area is a key factor for improving the performance of MFC. Carbon nanotubes (CNTs), which have excellent electrical conductivity and extremely high specific surface area, are promising materials for electrodes. However, CNTs are insoluble in aqueous solution because of their strong intertube van der Waals interactions, which make practical use of CNTs difficult. In this study, we revealed that CNTs have a strong interaction with Saccharomyces cerevisiae cells. CNTs attach to the cells and are dispersed in a mixture of water and S. cerevisiae, forming a three-dimensional CNT conductive network. Compared with a conventional two-dimensional electrode, such as carbon paper, the three-dimensional conductive network has a much larger surface area. By applying this conductive network to MFCs as an anode electrode, power density is increased to 176 μW/cm2, which is approximately 25-fold higher than that in the case without CNTs addition. Maximum current density is also increased to approximately 8-fold higher. These results suggest that three-dimensional CNT conductive network contributes to improve the performance of MFC by increasing surface area.

  11. Fuel cells: A handbook

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.; McLarnon, F. R.; Cairns, E. J.

    1988-05-01

    The purpose of this handbook is to present information describing fuel cells that is helpful to scientists, engineers, and technical managers who are not experienced in this technology, as well as to provide an update on the current technical status of the various types of fuel cells. Following the introduction, contents of this handbook are: fuel cell performance variables; phosphoric acid fuel cell; molten carbonate fuel cell; solid oxide fuel cell; alternative fuel cell technologies; fuel cell systems; and concluding remarks.

  12. New applications of carbon nanostructures in microbial fuel cells (MFC)

    NASA Astrophysics Data System (ADS)

    Kaca, W.; Żarnowiec, P.; Keczkowska, Justyna; Suchańska, M.; Czerwosz, E.; Kozłowski, M.

    2014-11-01

    In the studies presented we proposed a new application for nanocomposite carbon films (C-Pd). These films were evaluated as an anode material for Microbial Fuel Cells (MFCs) used for electrical current generation. The results of characterization of C-Pd films composed of carbon and palladium nanograins were obtained using the Physical Vapor Deposition (PVD) method. The film obtained by this method exhibits a multiphase structure composed of fullerene nanograins, amorphous carbon and palladium nanocrystals. Raman Spectroscopy (RS) and scanning electron microscopy (SEM) are used to characterize the chemical composition, morphology and topography of these films. We observed, for MFC with C-Pd anode, the highest electrochemical activity and maximal voltage density - 458 mV (20,8 mV/cm2) for Proteus mirabilis, 426 mV (19,4 mV/cm2) for Pseudomonas aeruginosa and 652 mV (29,6 mV/cm2) for sewage bacteria as the microbial catalyst.

  13. Research issues in molten carbonate fuel cells: Pressurization

    SciTech Connect

    Williams, M.C.; George, T.J.

    1992-05-01

    The issue of pressurization is a complex and controversial one involving many engineering design variables. There are among the molten carbonate fuel cell (MCFC) developers and researchers differences in the relative perceived importance of these variables in the MCFC power plant systems determined to be of interest. These variables significantly affect MCFC system economics and commercial viability. While developing at pressure at this time may not be necessary to commercialize the MCFC, there are potential benefits of operating MCFC`s at pressure. In this paper, the authors identify the advantages and disadvantages of operating the MCFC at pressure. Potential problems are discussed. The large and small power plant system implications of operating at pressure are qualified. Some recommendations are made. The overall goal of this paper is to create interest and motivate research in the area. (VC)

  14. Research issues in molten carbonate fuel cells: Pressurization

    SciTech Connect

    Williams, M.C.; George, T.J.

    1992-01-01

    The issue of pressurization is a complex and controversial one involving many engineering design variables. There are among the molten carbonate fuel cell (MCFC) developers and researchers differences in the relative perceived importance of these variables in the MCFC power plant systems determined to be of interest. These variables significantly affect MCFC system economics and commercial viability. While developing at pressure at this time may not be necessary to commercialize the MCFC, there are potential benefits of operating MCFC's at pressure. In this paper, the authors identify the advantages and disadvantages of operating the MCFC at pressure. Potential problems are discussed. The large and small power plant system implications of operating at pressure are qualified. Some recommendations are made. The overall goal of this paper is to create interest and motivate research in the area. (VC)

  15. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    SciTech Connect

    Lanagan, M.T.; Bloom, I.; Kaun, T.D.

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at {approximately}650{degrees}C. To be economically viable for stationary power generation, molten carbonate fuel cells must have lifetimes of more than 25,000 h while exhibiting superior cell performance. In the present technology, lithiated NiO is used as the cathode. Over the lifetime of the cell, however, N{sup 2+} ions tend to transport to the anode, where they are reduced to metallic Ni. With increased CO{sub 2} partial pressure, the transport of Ni increases because of the increased solubility of NiO in the carbonate electrolyte. Although this process is slow in MCFCs operated at 1 atm and a low CO{sub 2} partial pressure (about 0.1 atm), transport of nickel to the anode may be excessive at a higher pressure (e.g., 3 atm) and a high CO{sub 2} partial pressure (e.g., about 0.3 arm). This transport is expected to lead eventually to poor MCFC performance and/or short circuiting. Several alternative cathode compositions have been explored to reduce cathode solubility in the molten salt electrolyte. For example, LiCoO{sub 2} has been studied extensively as a potential cathode material. The LiCoO{sub 2} cathode has a low resistivity, about 10-cm, and can be used as a direct substitute for NiO. Argonne is developing advanced cathodes based on lithium ferrate (LiFeO{sub 2}), which is attractive because of its very low solubility in the molten (Li,K){sub 2}CO{sub 3} electrolyte. Because of its high resistivity (about 3000-cm), however, LiFeO{sub 2} cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. We determined the effect of cation substitution on the resistivity and deformation of LiFeO{sub 2}. The substituents were chosen because their respective oxides as well as LiFeO{sub 2} crystallize with the rock-salt structure.

  16. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    SciTech Connect

    Kevin Peavey; Norm Bessette

    2007-09-30

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  17. Molten Carbonate Fuel Cell (MCFC) product development test

    NASA Astrophysics Data System (ADS)

    1995-02-01

    M-C Power Corporation will design, fabricate, install, test, and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric (SDG&E) relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: inverter, reformer, desulfurization vessels, hot gas recycle blower, heat recovery steam generator, and recycle gas cooler. SDG&E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  18. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    NASA Astrophysics Data System (ADS)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  19. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    NASA Astrophysics Data System (ADS)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  20. Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems

    SciTech Connect

    Roberts, R.A.; Brouwer, J.; Liese, E.A.; Gemmen, R.S.

    2006-04-01

    Hybrid fuel cell/gas turbine systems provide an efficient means of producing electricity from fossil fuels with ultra low emissions. However, there are many significant challenges involved in integrating the fuel cell with the gas turbine and other components of this type of system. The fuel cell and the gas turbine must maintain efficient operation and electricity production while protecting equipment during perturbations that may occur when the system is connected to the utility grid or in stand-alone mode. This paper presents recent dynamic simulation results from two laboratories focused on developing tools to aid in the design and dynamic analyses of hybrid fuel cell systems. The simulation results present the response of a carbonate fuel cell/gas turbine, or molten carbonate fuel cell/gas turbine, (MCFC/GT) hybrid system to a load demand perturbation. Initial results suggest that creative control strategies will be needed to ensure a flexible system with wide turndown and robust dynamic operation.

  1. The influence of carbon dioxide on PEM fuel cell anodes

    NASA Astrophysics Data System (ADS)

    de Bruijn, F. A.; Papageorgopoulos, D. C.; Sitters, E. F.; Janssen, G. J. M.

    The influence of CO 2 on the performance of PEM fuel cells was investigated by means of fuel cell experiments and cyclic voltammetry. Depending on the composition and microstructure of the fuel cell anode, the effect varies from small to significant. Adsorbed hydrogen plays a dominant role in the formation of CO-like species via the reverse water-gas shift reaction. Platinum sites which are not utilized in the electrochemical oxidation of hydrogen are thought to catalyze this reverse-shift reaction. Alloying with ruthenium suppresses the reverse-shift reaction.

  2. Pack aluminization of nickel anode for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Chun, H. S.; Park, G. P.; Lim, J. H.; Kim, K.; Lee, J. K.; Moon, K. H.; Youn, J. H.

    1994-04-01

    The aluminum pack cementation (pack aluminization) process on a porous nickel anode for molten carbonate fuel cells has been studied to improve anode creep resistance. The porous nickel substrates used in this study were fabricated by doctor blade equipment followed by sintering (850 C). Packs surrounding the Ni anode were made by mixing Al2O3 powder, Al powder, and NaCl as activator. The pack aluminization was performed at 700 to 850 C for 0.5-5.0 h. After pack aluminization, the principal Ni-Al intermetallic compounds detected were Ni3Al at 700 C, NiAl at 750 C and Ni3Al2 at 800 C. The aluminum content in the aluminized Ni anode was proportional to the square root of pack aluminizing time. With increasing the Al content in the anode, the creep of the anode decreased. It was nearly constant (2.0%) when the Al content was above 5.0%. Although the exchange current density (24 mA/sq cm) for the aluminized (2.5 wt.%) Ni anode was somewhat lower than that of the pure Ni anode (40 mA/sq cm), the performance of a single cell using an aluminized Ni anode was similar to that of the one with pure Ni anode.

  3. Effect of fuel utilization on the carbon monoxide poisoning dynamics of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Pérez, Luis C.; Koski, Pauli; Ihonen, Jari; Sousa, José M.; Mendes, Adélio

    2014-07-01

    The effect of fuel utilization on the poisoning dynamics by carbon monoxide (CO) is studied for future automotive conditions of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Three fuel utilizations are used, 70%, 40% and 25%. CO is fed in a constant concentration mode of 1 ppm and in a constant molar flow rate mode (CO concentrations between 0.18 and 0.57 ppm). The concentrations are estimated on a dry gas basis. The CO concentration of the anode exhaust gas is analyzed using gas chromatography. CO is detected in the anode exhaust gas almost immediately after it is added to the inlet gas. Moreover, the CO concentration of the anode exhaust gas increases with the fuel utilization for both CO feed modes. It is demonstrated that the lower the fuel utilization, the higher the molar flow rate of CO at the anode outlet at early stages of the CO poisoning. These results suggest that the effect of CO in PEMFC systems with anode gas recirculation is determined by the dynamics of its accumulation in the recirculation loop. Consequently, accurate quantification of impurities limits in current fuel specification (ISO 14687-2:2012) should be determined using anode gas recirculation.

  4. NAS Miramar Molten Carbonate Fuel Cell demonstration status

    SciTech Connect

    Scroppo, J.A.

    1996-12-31

    Part of M-C Power`s Technology Development Program, this MCFC power plant is designed to supply 250 kW of electricity to Naval Air Station (NAS) Miramar. It also cogenerates steam for the district heating system. The power plant is a fully integrated unit incorporating an advanced design fuel cell based on years of laboratory tests and a prior field test. This demonstration incorporates many innovative features, one of which is the plate type reformer which processes the natural gas fuel for use in the fuel cell. M-C Power Corp. has completed the design, fabrication, and conditioning of a 250-cell fuel cell stack, which was shipped to the site where it will be installed, tested, and evaluated as a 250 kW Proof-of-Concept MCFC Power Plant. (Originally going to Kaiser Permanente`s Sand Diego Medical Center, it was relocated to Miramar.)

  5. Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells

    SciTech Connect

    Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

    2005-11-01

    Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The

  6. Assessment of commercial prospects of molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Dicks, Andrew; Siddle, Angie

    The commercial prospects of molten carbonate fuel cells have been evaluated. Market applications, and the commercial criteria that the MCFC will need to satisfy for these applications, were identified through interviews with leading MCFC developers. Strengths, weaknesses, opportunities and threats (SWOT) analyses were carried out to critically evaluate the prospects for commercialisation. There are many competing technologies, but it is anticipated that MCFCs can make significant penetration into markets where their attributes, such as quality of power, low emissions and availability, give them a leading position in comparison with, for example, engine and turbine-based power generation systems. Analysis suggests that choosing the size for MCFC plant is more important than the target market sector/niche. Opportunities will exist in many market sectors, though the commercial market would be easier to penetrate initially. Developers are optimistic about the commercial prospects for the MCFC. Most believe that early commercial MCFC plants may start to appear in the first decade of the next century, the earliest date suggested for initial market entry being 2002.

  7. Stirling based fuel cell hybrid systems: An alternative for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Chacartegui, R.; Torres, M.; Sánchez, T.

    This paper presents a new design for high temperature fuel cell and bottoming thermal engine hybrid systems. Now, instead of the commonly used gas turbine engine, an externally fired - Stirling - piston engine is used, showing outstanding performance when compared to previous designs. Firstly, a comparison between three thermal cycles potentially usable for recovering waste heat from the cell is presented, concluding the interest of the Stirling engine against other solutions used in the past. Secondly, the interest shown in the previous section is confirmed when the complete hybrid system is analyzed. Advantages are not only related to pure thermal and electrochemical parameters like specific power or overall efficiency. Additionally, further benefits can be obtained from the atmospheric operation of the fuel cell and the possibility to disconnect the bottoming engine from the cell to operate the latter on stand alone mode. This analysis includes on design and off design operation.

  8. Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, Arunachala M.; Munukutla, Lakshmi

    Gas diffusion layers (GDL) for proton exchange membrane fuel cell have been developed using a partially ordered graphitized nano-carbon chain (Pureblack ® carbon) and carbon nano-fibers. The GDL samples' characteristics such as, surface morphology, surface energy, bubble-point pressure and pore size distribution were characterized using electron microscope, inverse gas chromatograph, gas permeability and mercury porosimetry, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/air at ambient pressure, 70 °C and 100% RH. The GDLs with combination of vapor grown carbon nano-fibers with Pureblack carbon showed significant improvement in mechanical robustness as well as fuel cell performance. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology showing the reinforcement with nano-fibers and the surface homogeneity without any cracks.

  9. Humidifier for fuel cell using high conductivity carbon foam

    DOEpatents

    Klett, James W.; Stinton, David P.

    2006-12-12

    A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.

  10. Anodes for glucose fuel cells made of carbonized nanofibers with embedded carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prilutsky, Sabina; Cohen, Yachin; Zussman, Eyal; Makarov, Vadim; Bubis, Eugenia; Schechner, Pinchas

    2010-03-01

    Electrodes made of carbonized polyacrylonitryle nanofibers, with and without embedded multiwall carbon nanotubes (MWCNT) were fabricated by the electrospinning (ES) process and evaluated as anodes in a glucose fuel cell (FC). The effect of several processing and structural characteristics, such as the presence of MWCNTs, polymer concentration in the ES solution and silver electroless plating, on FC performance were measured The carbon electrodes were successful as anodes showing significant activity even without additional silver catalyst, with noticeable improvement by incorporation of MWCNTs. The orientation of graphitic layers along the fiber axis and the coherence of layer packing were shown to be important for enhanced electrode activity. The maximal values of open circuit voltage (OCV) and peak of power density (PPD) of unmetallized electrodes, 0.4 V and 30 μW/cm^2, were found for composite carbon nanofiber electrode. Electroless silver metallization leads to enhanced performance. Maximal values of OCV and PPD of silvered electrodes were measured to be about 0.9 V and 400 μW/cm^2. Thus, carbonized nanofibers with embedded MWCNTs may form a good basis for glucose FC anodes, but better metallization and cell-configuration allowing proper mixing are required.

  11. Molten Carbonate Fuel Cell (MCFC) Product Development Test. Second annual report

    SciTech Connect

    Not Available

    1994-12-15

    This is the second annual report covering progress made under DOE cooperative agreement DE-FC21-92MC29237, Molten Carbonate Fuel Cell Product Development Test. The project is for the design, construction, and testing of a 2MW carbonate fuel cell power plant in the City of Santa Clara, California. The report is divided into sections which describe the progress in various program activities, and provides an overview of the program, including the project objectives, site location, and schedule.

  12. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect

    Steinfield, G.; Sanderson, R.

    1998-02-01

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  13. Natural-gas-fueled molten carbonate fuel cell power plant development

    SciTech Connect

    Reiser, C.A. )

    1990-12-01

    The high temperature molten carbonate fuel cell (MCFC) operating on natural gas fuel offers an exceptional opportunity for providing economically competitive, high efficiency, low emissions power generators for utilities and industrial and commercial cogenerators. The primary goal of this project is to establish a path to develop competitive natural gas fueled MCFC products with goals of less than $1000 per kW and 6000 Btu/kWhr heat rate (based on higher heating value). A coal fueled MCFC system study funded by DOE under contract AC21-MC23270 was used as a basis to define natural gas fuel products with a high degree of commonality with the coal gas systems. In this way, the natural gas systems could be derived from the DOE coal-fueled system with a minimum of non-recurring cost. The effort was carried out in three technical tasks. Task 1, Conceptual System Design Studies -- provides a conceptual design definition of a multimegawatt power plant system adapted from DOE coal-gas/natural gas design data and provides a preliminary design definition of a truck and/or rail transportable, megawatt scale power plant derived from a DOE coal-gas/natural gas power unit; Task 2, Integrated System Test Design -- provides a preliminary design of a kW-scale integrated system to resolve critical component and system integration issues specific to the natural gas products defined in Task 1; and Task 3, Critical Element Evaluation -- provides the analytical and experimental assessments of the critical non-stack components identified in Tasks 1 and 2. 32 figs., 22 tabs.

  14. Intermediate-sized natural gas fueled carbonate fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Sudhoff, Frederick A.; Fleming, Donald K.

    1994-04-01

    This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.

  15. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  16. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  17. Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  18. Simulated coal-gas-fueled molten carbonate fuel cell development program

    SciTech Connect

    Johnson, W.H.

    1992-07-01

    In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

  19. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  20. Electrically conductive LCP-carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Willert-Porada, M.

    Lightweight polymer-carbon composites with high specific electrical conductivity at a carbon content below 40 vol.% were developed. The electrical and mechanical properties and the hydrogen permeability of carbon fiber and particle reinforced liquid crystalline polymers were examined. Vectra ® A 950, SIGRAFIL ® carbon fibers and Vulcan ® XC 72 R carbon black were employed. The composites are found to have sufficient mechanical properties and a hydrogen permeability low enough to be utilised as bipolar plate material in fuel cell applications. The density of the new composite is 20% lower than the density of commercial bipolar plates made from carbon reinforced polymeric composite materials, due to the lower carbon content. The current density at 0.5 V in an operating fuel cell is only 20% lower compared to commercial materials with more than 80 vol.% carbon content and meets the requirements for bipolar plate application.

  1. Novel carbon-ion fuel cells. Quarterly technical report, April--June 1996

    SciTech Connect

    Cocks, F.H.

    1996-11-01

    This report presents research to develop a new type of of fuel cell using a solid electrolyte that transports carbon ions. This new class of fuel cell would use solid C dissolved in molten metal (carbide) as a fuel reservoir and anode; thus expensive gas or liquid fuel would not be required. Thermodynamic efficiency of carbon-ion fuel cells is reviewed, as are electrolyte crystal structures (oxide and fluorite carbides). The sequence of laboratory research procedures for developing a solid C-ion electrolyte and to determine the ionic conductivity of C ions therein is outlined; results of the laboratory research to date are summarized, including XRD analysis of crystal structures and transition temperatures of carbides (La, Ce, Be, Al) and SIMS of carbon isotopes.

  2. Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells

    SciTech Connect

    Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.; Liu, Jun; Wang, Yong

    2012-05-01

    This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.

  3. Manufacturing method for tubular molten carbonate fuel cells and basic cell performance

    NASA Astrophysics Data System (ADS)

    Kawase, Makoto

    2015-07-01

    The combination of syngas from gasification and high-temperature fuel cells is a candidate for high-efficiency power generation systems. Reducing the production cost of fuel cells and gas-cleaning devices is an important issue for commercial application. This study focuses on molten carbonate fuel cells (MCFCs), which are relatively durable against poisoning by impurities in syngas. However, the development of MCFC systems has come to a halt in Japan because the production cost of MCFCs made them commercially infeasible. To reduce the production cost significantly, a tubular MCFC has been developed instead of the conventional planar type. The tubular MCFC requires neither a complex separator nor cell components with high dimensional accuracy. However, there have been no reports about tubular MCFCs because the electrolytes used for these MCFCs are liquid, which makes it difficult to fasten the fuel cell stack without a fastener. In this study, a fastening method is developed by using the self-shrinking effect of anodes during sintering. Using this technique, the tubular MCFC was successfully manufactured. The results of a power generation test for 1000 h show that the cell voltage was kept stable. Moreover, the cell performance was close to that of a conventional planar MCFC.

  4. Porous electrolyte retainer for molten carbonate fuel cell

    DOEpatents

    Singh, Raj N.; Dusek, Joseph T.

    1983-06-21

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H.sub.2 and CO opposite to oxidant gases such as O.sub.2 and CO.sub.2. The tile is prepared with a porosity of 55-65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  5. Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate

    DOEpatents

    Singh, R.N.; Dusek, J.T.

    1979-12-27

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  6. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  7. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  8. Effects of coal-derived trace species on the performance of molten carbonate fuel cells

    SciTech Connect

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  9. Molten carbonate fuel cell networks: Principles, analysis and performance

    SciTech Connect

    Wimer, J.G.; Williams, M.C.; Archer, D.H.; Osterle, J.F.

    1993-09-01

    Key to the concept of networking is multiple fuel cell stacks with regard to flow of reactant streams. In a fuel cell network, reactant streams are ducted so that they are fed and recycled through stacks in series. Stacks networked in series more closely approach a reversible process, which increases efficiency. Higher total reactant utilizations can be achieved by stacks networked in series. Placing stacks in series also allows reactant streams to be conditioned at different stages of utilization. Between stacks, heat can be consumed or removed, (methane injection, heat exchange) which improves thermal balance. Composition of streams can be adjusted between stacks by mixing exhaust streams or by injecting reactant streams. Computer simulations demonstrated that a combined cycle system with MCFC stacks networked in series is more efficient than an identical system with MCFC stacks in parallel.

  10. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    Healy, H. C.; Sanderson, R. A.; Wertheim, F. J.; Farris, P. F.; Mientek, A. P.; Maricle, D. L.; Briggs, T. A.; Preston, J. L., Jr.; Louis, G. A.; Abrams, M. L.

    1980-08-01

    During this quarter, effort was continued in all four major task areas: system studies to define the reference power plant design; cell and stack design, development and verification; preparation for fabrication and testing of the full-scale prototype stack; and developing the capability for operation of stacks on coal-derived gas. Preliminary module and cell stack design requirements were completed. Fuel processor characterization was completed. Design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping were defined. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication was made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated. Theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects.

  11. Carbon composites with metal nanoparticles for Alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  12. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  13. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Astrophysics Data System (ADS)

    1983-07-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  14. Study of integrated coal-gasifier molten carbonate fuel cell systems

    SciTech Connect

    Not Available

    1983-07-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  15. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  16. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. PMID:27203178

  17. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    SciTech Connect

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  18. Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990

    SciTech Connect

    Appleby, A.J.; White, R.E.

    1992-07-07

    Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

  19. Novel carbon-ion fuel cells. Quarterly technical report No. 10, January 1, 1996--March 31, 1996

    SciTech Connect

    Cocks, F.H.

    1996-08-01

    This report presents research to develop an entirely new, fundamentally different class of fuel cell using a solid electrolyte that transports carbon ions. This fuel cell would use solid carbon dissolved in molten metal as a fuel reservoir and anode; expensive gaseous or liquid fuel would not be required. A high temperature fuel cell based on a carbon ion membrane/electrolyte would operate in a way like yttria-doped zirconia solid oxide fuel cells; however, the fuel cell would transport the C ion from a fuel source to O{sub 2} in the atmosphere. Such fuel cells, operating above 1000 C, would produce an exhaust gas that could be fed directly into existing boilers, and could thus act as ``topping cycles`` to existing power plant steam cycles.

  20. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, C.A.; Maricle, D.L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  1. Electrolyte matrix in a molten carbonate fuel cell stack

    DOEpatents

    Reiser, Carl A.; Maricle, Donald L.

    1987-04-21

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

  2. An example of innovative application in fuel cell system development: CO 2 segregation using Molten Carbonate Fuel Cells

    NASA Astrophysics Data System (ADS)

    Lusardi, M.; Bosio, B.; Arato, E.

    CO 2 is one of the main causes of the greenhouse effect and serious attention is being given to CO 2 abatement at the moment. In this work, the feasibility of segregating CO 2 from the exhaust of a Gas Turbine using a Molten Carbonate Fuel Cell system is studied. In particular, different plant configurations are simulated using a commercial code integrated with proprietary MCFC Fortran blocks. The opportunity of an additional CO 2 separation stage downstream MCFC is also discussed. The results of the simulations are presented and the possibility of producing electrical energy and being able to respect Kyoto Protocol and IPCC environmental requirements is analysed.

  3. Novel Carbon-based Electrode Materials for Up-scaled Microfluidic Fuel Cells

    NASA Astrophysics Data System (ADS)

    Fuerth, Dillon Adam

    In this work, a MFC fabrication procedure including two non-conventional techniques (partial baking and cap-sealing) were employed for the development of an up-scaled microfluidic fuel cell (MFC). Novel carbon-based electrode materials were employed, including carbon foam, fibre, and cloth, the results from which were compared with traditionally-employed carbon paper. The utilization of carbon cloth led to 15% of the maximum power that resulted from carbon paper; however, carbon fibre led to a 24.6% higher power density than carbon paper (normalized by electrode volume). When normalized by projected electrode area, the utilization of carbon foams resulted in power densities up to 42.5% higher than that from carbon paper. The impact of catalyst loading on MFC performance was also investigated, with an increase from 10.9 to 48.3 mgPt cm-2 resulting in a 195% increase in power density.

  4. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  5. Creep resistant, metal-coated LiFeO.sub.2 anodes for molten carbonated fuel cells

    DOEpatents

    Khandkar, Ashok C.

    1994-01-01

    A porous, creep-resistant, metal-coated, LiFeO.sub.2 ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well.

  6. Creep resistant, metal-coated LiFeO[sub 2] anodes for molten carbonated fuel cells

    DOEpatents

    Khandkar, A.C.

    1994-08-23

    A porous, creep-resistant, metal-coated, LiFeO[sub 2] ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well. 11 figs.

  7. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. PMID:27076055

  8. Novel carbon-ion fuel cells. Quarterly technical report No. 9, October 1, 1995--December 31, 1995

    SciTech Connect

    Cocks, F.H.

    1995-12-31

    This report presents research to develop an entirely new, fundamentally different class of fuel cell using a solid electrolyte that transports carbon ions. This fuel cell would use solid carbon dissolved in molten metal as a fuel reservoir and anode; expensive gaseous or liquid fuel would not be required. Thermodynamic factors favor a carbon-ion fuel cell over other fuel cell designs: a combination of enthalpy, entropy, and Gibbs free energy makes the reaction of solid carbon and oxygen very efficient, and the entropy change allows this efficiency to slightly increase at high temperatures. The high temperature exhaust of the fuel cell would make it useful as a ``topping cycle``, to be followed by conventional steam turbine systems.

  9. Major design issues of molten carbonate fuel cell power generation unit

    SciTech Connect

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  10. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.

    An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m -2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m -2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth.

  11. Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Freni, S.; Maggio, G.; Cavallaro, S.

    The economy of the world energy sources is showing interest in the utilization of oxygenated products whose purpose is to improve the storage and the transfer of hydrogen as a non-polluting fuel with a high heat power density. An interesting field of utilization of these products is represented by the fuel cell systems for production of electricity. In this respect, the use of the water/ethanol mixture has been investigated as an alternative fuel for molten carbonate fuel cells. Some thermodynamic calculations have been carried out by a mathematical model to determine the energy and mass balances for a water/ethanol fuelled molten carbonate fuel cell. The thermodynamic efficiencies determined for this system have been correlated with the main operative parameters that give some interesting findings indicating encouraging aspects on the utilization of these systems to the production of electricity and heat. Lastly, attractive operative conditions have been determined and compared with that of a molten carbonate fuel cell with methane direct internal reforming.

  12. Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application

    NASA Astrophysics Data System (ADS)

    Bae, Seong Jun; Ahn, Yoonhan; Lee, Jekyoung; Lee, Jeong Ik

    2014-12-01

    Various supercritical carbon dioxide (S-CO2) cycles for a power conversion system of a Molten Carbonate Fuel Cell (MCFC) hybrid system are studied in this paper. Re-Compressing Brayton (RCB) cycle, Simple Recuperated Brayton (SRB) cycle and Simple Recuperated Transcritical (SRT) cycle layouts were selected as candidates for this study. In addition, a novel concept of S-CO2 cycle which combines Brayton cycle and Rankine cycle is proposed and intensively studied with other S-CO2 layouts. A parametric study is performed to optimize the total system to be compact and to achieve wider operating range. Performances of each S-CO2 cycle are compared in terms of the thermal efficiency, net electricity of the MCFC hybrid system and approximate total volumes of each S-CO2 cycle. As a result, performance and total physical size of S-CO2 cycle can be better understood for MCFC S-CO2 hybrid system and especially, newly suggested S-CO2 cycle shows some success.

  13. Synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Bo; Xiong, Shi-Chang; Guan, Yu-Jiang; Zhu, Xue-Qiang

    2016-03-01

    The aim of this work was to study the synthesization of SnO2-modified carbon nanotubes and their application in microbial fuel cell. With the chemical vapor deposition technique, carbon nanotubes growing in situ on a carbon felt are obtained. A SnO2 sol was applied to the carbon felt to prepare a SnO2-modified carbon nanotubes. X-ray diffraction and energy-dispersive X-ray analysis confirmed that SnO2 existed in the prepared samples. Using the prepared samples as anode electrodes, flexible graphite as cathode, and glucose solution as substrate in microbial fuel cell, the effects of the temperature, substrate concentration, and electrodes on removal rates for chemical oxygen demand and the performance of microbial fuel cell have been analyzed. With substrate concentration of 1500 mg L-1, the microbial fuel cell had an optimal output voltage of 563 mV and a removal rate of 78 % for chemical oxygen demand at 311 K. The composite electrodes are stable and reusable.

  14. Carbon-based composite electrocatalysts for low temperature fuel cells

    SciTech Connect

    Popov, Branko N.; Lee, Jog-Won; Subramanian, Nalini P.; Kumaraguru, Swaminatha P.; Colon-Mercado, Hector R.; Nallathambi, Vijayadurga; Li, Xuguang; Wu, Gang

    2009-12-08

    A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.

  15. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-01-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  16. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-06-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  17. Thermal decomposition of alkane hydrocarbons inside a porous Ni anode for fuel supply of direct carbon fuel cell: Effects of morphology and crystallinity of carbon

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Yi, Hakgyu; Jalalabadi, Tahereh; Lee, Donggeun

    2015-10-01

    This study improved the physical contact between anode and fuel in a direct carbon fuel cell (DCFC) by directly generating carbon in a porous Ni anode through thermal decomposition of three kinds of hydrocarbons (CH4, C2H6, C3H8). From electron microscope observations of the carbon particles generated from each hydrocarbon, carbon spheres (CS), carbon nanotubes (CNT) and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering analysis was performed to determine the crystallinity of the carbon samples. As a result, the carbon samples (CS, CNT, and CNF) produced from CH4, C2H6 and C3H8 were found to be less crystalline and more flexible with increasing the carbon number. DCFC performance was measured at 700 °C for the anode fueled with the same mass of the carbon sample. It was found that the 1-dimensional CNT and CNF were more active to produce 148% and 210% times higher power density than the CS. The difference was partly attributed to the finding that the less-crystalline CNT and CNF had much lower charge transfer resistances than the CS. A lifetime test found that the CNT and CNF, which are capable of transporting electrons for much longer periods, maintained the power density much longer, as compared to the CS which can lose their point contacts between the particles shortly at high current density.

  18. Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte

    NASA Astrophysics Data System (ADS)

    Morita, H.; Komoda, M.; Mugikura, Y.; Izaki, Y.; Watanabe, T.; Masuda, Y.; Matsuyama, T.

    Several years ago, Li/Na carbonate (Li 2CO 3/Na 2CO 3) was developed as the electrolyte of molten carbonate fuel cells (MCFCs) in place of the usual Li/K carbonate (Li 2CO 3/K 2CO 3) to the advantage of a higher ionic conductivity and lower rate of cathode NiO dissolution. To estimate the potential of Li/Na carbonate as the MCFC electrolyte, the dependence of the cell performance on the operating conditions and the behavior during long-term performance was investigated in several bench-scale cell operations. The obtained data on the performance of Li/Na cells was analyzed to estimate the impact of voltage losses by using a performance model and discussed in comparison with the data of conventional Li/K cell performance.

  19. Performance of an internal reforming molten carbonate fuel cell supplied with ethanol/water mixture

    SciTech Connect

    Freni, S.; Maggio, G.; Barone, F.

    1996-12-31

    The state of an on the field of molten carbonate fuel cell (MCFC) systems covers many technological aspects related to the use of these systems for the production of electricity. In this respect, extensive research efforts have been made to develop a technology using the methane based on the steam reforming process, and different configurations have been analyzed and their performance determined for several operative cell conditions. However, the operative temperature (T-923 K) of the MCFC. that allows the direct conversion of hydrocarbons or alcohols into H{sub 2} and CO, promotes researches in the field of alternative fuels, more easily transported and reformed compared to methane. In this paper are described the most indicative results obtained by a study that considers the use of water/ethanol mixture as an attractive alternative to the methane for a molten carbonate fuel cell.

  20. Performance effects of coal-derived contaminants on the carbonate fuel cell

    SciTech Connect

    Pigeaud, A. ); Wilemski, G. )

    1993-01-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980's when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH[sub 3], H[sub 2]S [COS], HCl, AsH[sub 3][As[sub 2](v)], Zn(v), Pb(v), Cd(v), H[sub 2] Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  1. Performance effects of coal-derived contaminants on the carbonate fuel cell

    SciTech Connect

    Pigeaud, A.; Wilemski, G.

    1993-05-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980`s when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH{sub 3}, H{sub 2}S [COS], HCl, AsH{sub 3}[As{sub 2}(v)], Zn(v), Pb(v), Cd(v), H{sub 2} Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  2. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect

    Steinfeld, G.; Sanderson, R.

    1998-02-01

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  3. SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS

    SciTech Connect

    J.M. Calo

    2004-12-01

    This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence times on anode surfaces, and can be

  4. Wetting characteristics and performance of molten carbonate fuel cell electrode

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Gi

    For the wetting studies of the molten carbonates, the meniscus height due to polarization was experimentally measured in the oxidant and reducing atmospheres and its dependence on polarization, gas environment, electrolyte melt composition and temperature was thoroughly investigated. A stochastic electrode structure was introduced to simulate the MCFC porous electrodes. In building the structure, the porosity was employed for the assignment of particles and the fixed-volume capillary equilibrium concept was adopted for the distribution of electrolyte. The wetting properties determined from the experiment were used for the capillary equilibrium approach. By virtue of the structure, the porous electrode was visualized and the (cumulative) pore size distribution was estimated. The electrolyte fill level within the porous electrode was predicted and polarization effect on electrolyte distribution was examined. The stochastic structure model was combined with an agglomerate-type porous electrode performance model. The agglomerates were defined by combining the particle, electrolyte, and pore cells in the structure according to well-defined rules and the structure-dependent model parameters were determined. Using the agglomerate model, a performance of porous MCFC electrode was predicted with the solution technique based on the finite element method.

  5. Non-segregating electrolytes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Kaun, T.; Lanagan, M.

    1996-08-01

    Current MCFCs use a Li/K carbonate mixture; the segregation increases the K concentration near the cathode, leading to increase cathode solubility and performance decline. ANL is developing molten carbonates that have minimal segregation; the approach is using Li-Na carbonates. In screening tests, fully developed potential distributions were obtained for 4 Li/Na compositions, and performance data were used to compare these.

  6. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  7. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  8. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    SciTech Connect

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation

  9. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.

  10. Simulation of process for electrical energy production based on molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    De Simon, G.; Parodi, F.; Fermeglia, M.; Taccani, R.

    A global molten carbonate fuel cells (MCFC) power plant steady-state simulation is presented. A performance fuel cell numerical model is developed and integrated as a custom block in Aspen plus™for the whole process simulation. The burner/reformer compact unit is built assembling existing Aspen plus™internal blocks. A simulation is obtained with the preliminary input specification to get to the base case and a sensitivity analysis is conducted, in order to find the process parameters whose change improves the global efficiency.

  11. The U.S. molten carbonate fuel-cell development and commercialization effort

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1995-03-01

    The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the US, including the role of the US Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. The authors describe major fundamental stack research issues, as well as MCFC power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

  12. The U.S. molten carbonate fuel-cell development and commercialization effort

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1994-09-01

    The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the U.S., including the role of the U.S. Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. They describe major fundamental stack research issues, as well as MCF power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

  13. Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell

    DOEpatents

    Swarr, T.E.; Wnuck, W.G.

    1986-01-29

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  14. Internal reforming for natural gas fueled molten carbonate fuel cells. Final report 1 May 80-30 Jun 81

    SciTech Connect

    Baker, B.; Burns, D.; Lee, C.; Maru, H.; Patel, P.

    1981-12-01

    A natural gas fueled molten carbonate fuel cell (MCFC) is an attractive system for efficient electricity generation. The system yields maximum efficiency while operating on internal reforming mode. Among the various configurations evaluated for internal reforming MCFC, direct internal reforming appears to be most promising. Compared to the conventional baseline external reformer system, it can save as much as 20% natural gas at reduced capital and operating costs. The feasibility of internal reforming in MCFC has been verified through laboratory-scale (10 sq cm) cell tests followed by a successful scale-up to bench-scale (300 sq cm) cell. Bench-scale cells have been operated with direct methane feed up to 2000 hours. The results of system analysis and experimental work show that a successful development of the internal reforming MCFC will result in significant savings of natural gas and a cost effective electricity generation.

  15. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  16. Pressure losses at dividing and combining junctions in a molten carbonate fuel cell stack

    NASA Astrophysics Data System (ADS)

    Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio

    The pressure losses at manifold junctions in a molten carbonate fuel cell (MCFC) stack depend on the stacking positions of the cells and the flow rate in the manifold. These pressure losses affect the uniformity of gas flow rate in each stacked cell and consequently also affect the cell performance. In this study, the pressure losses at dividing and combining junctions in a plate heat-exchanger type MCFC stack were examined by numerical analysis. A stack consisting of 100 cells was assumed, and the junction pressure losses at various stacking positions of cells were calculated under various flow rate conditions ranging from the minimum possible flow rate (80% utilization of fuel gas) to the maximum possible flow rate (10% utilization of oxidant gas). The results were arranged according to the equations for loss coefficients, and were compared with the experimental results of previous studies.

  17. Composite anodes for improved performance of a direct carbon fuel cell

    NASA Astrophysics Data System (ADS)

    Giddey, S.; Kulkarni, A.; Munnings, C.; Badwal, S. P. S.

    2015-06-01

    Direct carbon fuel cell (DCFC) technology has the potential to double the electric efficiency and halve the CO2 emissions compared with conventional coal fired power plants. The anode performance, long term stability and cell scalability, in addition to fuel feed mechanism, are the major issues for the development of this technology. In this study, lanthanum strontium cobalt ferrite (LSCF) - silver composite anode was evaluated in a scalable version of the DCFC tubular cell in a bed of carbon powder. Ag was added to increase lateral conductivity of the anode and reduce ohmic losses. The cell was operated for 100 h during which it was twice thermally cycled. The performance degradation was studied by employing electrochemical and structural characterisation techniques. The composite anode, in comparison to LSCF anode, produced a 60% improvement in the power density. The sources of performance degradation of the cell were found to be the partial decomposition of the perovskite phase and anode microstructure changes as revealed by XRD and SEM analysis in addition to the loss of carbon contact to the anode resulting from the continuous carbon consumption in the cell.

  18. Bipolar fuel cell

    DOEpatents

    McElroy, James F.

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  19. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  20. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  1. Cycle Analysis of Micro Gas Turbine-Molten Carbonate Fuel Cell Hybrid System

    NASA Astrophysics Data System (ADS)

    Kimijima, Shinji; Kasagi, Nobuhide

    A hybrid system based on a micro gas turbine (µGT) and a high-temperature fuel cell, i.e., molten carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC), is expected to achieve a much higher efficiency than conventional distributed power generation systems. In this study, a cycle analysis method and the performance evaluation of a µGT-MCFC hybrid system, of which the power output is 30kW, are investigated to clarify its feasibility. We developed a general design strategy in which a low fuel input to a combustor and higher MCFC operating temperature result in a high power generation efficiency. A high recuperator temperature effectiveness and a moderate steam-carbon ratio are the requirements for obtaining a high material strength in a turbine. In addition, by employing a combustor for complete oxidation of MCFC effluents without additional fuel input, i.e., a catalytic combustor, the power generation efficiency of a µGT-MCFC is achieved at over 60%(LHV).

  2. Direct Oxidation of Tryptophan on Multi-Wall Carbon Nanotubes Modified Carbon Electrode and its Application to Fuel Cell

    NASA Astrophysics Data System (ADS)

    Yabutani, Tomoki; Shoda, Yoshio; Tani, Yuji; Yamada, Yohei; Motonaka, Junko

    Direct oxidation of tryptophan on multi-wall carbon nanotubes modified glassy carbon electrode was examined. Surface poisoning, which was suppression of oxidative current caused from adsorption of oxidized compounds of amino acids through multiple redox scan, was observed on carbon material electrodes (multi-wall carbon nano tube(CNT), carbon powder(CP), Ketjen Black (KB) and glassy carbon(GC). It was found that CNT showed a highly inhibitory effect on the surface poisoning and high current value in the direct oxidation of tryptophan because of a π-π interaction between CNT and indole ring of tryptophan results from orbital mixing. This CNT modified GC electrode was applied to an anode in a fuel cell used with amino acids as fuel. As a result, the maximum of the power density showed 0.36 mW cm-2 at 2.5 mA cm-2 of the current density and 140 mV of the cell voltage.

  3. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  4. Modeling of indirect carbon fuel cell systems with steam and dry gasification

    NASA Astrophysics Data System (ADS)

    Ong, Katherine M.; Ghoniem, Ahmed F.

    2016-05-01

    An indirect carbon fuel cell (ICFC) system that couples coal gasification to a solid oxide fuel cell (SOFC) is a promising candidate for high efficiency stationary power. This study couples an equilibrium gasifier model to a detailed 1D MEA model to study the theoretical performance of an ICFC system run on steam or carbon dioxide. Results show that the fuel cell in the ICFC system is capable of power densities greater than 1.0 W cm-2 with H2O recycle, and power densities ranging from 0.2 to 0.4 W cm-2 with CO2 recycle. This result indicates that the ICFC system performs better with steam than with CO2 gasification as a result of the faster electro-oxidation kinetics of H2 relative to CO. The ICFC system is then shown to reach higher current densities and efficiencies than a thermally decoupled gasifier + fuel cell (G + FC) system because it does not include combustion losses associated with autothermal gasification. 55-60% efficiency is predicted for the ICFC system coupled to a bottoming cycle, making this technology competitive with other state-of-the-art stationary power candidates.

  5. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    SciTech Connect

    Skok, A.J.; Abueg, R.Z.; Schwartz, P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  6. Feasibility study of wood biomass gasification/molten carbonate fuel cell power system—comparative characterization of fuel cell and gas turbine systems

    NASA Astrophysics Data System (ADS)

    Morita, H.; Yoshiba, F.; Woudstra, N.; Hemmes, K.; Spliethoff, H.

    The conversion of biomass by means of gasification into a fuel suitable for a high-temperature fuel cell has recently received more attention as a potential substitute for fossil fuels in electric power production. However, combining biomass gasification with a high-temperature fuel cell raises many questions with regard to efficiency, feasibility and process requirements. In this study, a biomass gasification/molten carbonate fuel cell (MCFC) system is modelled and compared with a relatively well-established biomass gasification/gas turbine (GT), in order to understand the peculiarities of biomass gasification/MCFC power systems and to develop a reference MCFC system as a future biomass gasification/MCFC power station.

  7. High temperature corrosion of metallic materials in molten carbonate fuel cells environment

    NASA Astrophysics Data System (ADS)

    Durante, G.; Vegni, S.; Capobianco, P.; Golgovici, F.

    Molten carbonate fuel cells (MCFCs) are electrochemical devices that convert energy of a chemical reaction into electricity without any kind of combustion. So, MCFCs are promising for their high efficiency and their low environmental pollution. A limiting aspect for reaching the goal of 40,000 h of life-time is the corrosion of metallic parts of MCFC, especially for current collectors and separator plates. Generally, this corrosion leads to metal loss and to an important increase of the electrical resistance due to the formation of resistive oxides. One of the most critic components in a MCFC is the anodic side metallic components. More used choice for these components is actually a sheet of AISI310S cladded at both sides by a Ni layer. The analysis of the behaviour of this material after different steps of corrosion in a typical molten carbonate fuel cell environment could be important to understand some phenomena that cause the damage of the anodic current collector.

  8. Operation of molten carbonate fuel cells with different biogas sources: A challenging approach for field trials

    NASA Astrophysics Data System (ADS)

    Trogisch, S.; Hoffmann, J.; Daza Bertrand, L.

    In the past years research in the molten carbonate fuel cells (MCFC) area has been focusing its efforts on the utilisation of natural gas as fuel (S. Geitmann, Wasserstoff- & Brennstoffzellen-Projekte, 2002, ISBN 3-8311-3280-1). In order to increase the advantages of this technology, an international consortium has worked on the utilisation of biogas as fuel in MCFC. During the 4 years lasting RTD project EFFECTIVE two different gas upgrading systems have been developed and constructed together with two mobile MCFC test beds which were operated at different locations for approximately 2.000-5.000 h in each run with biogas from different origins and quality. The large variety of test locations has enabled to gather a large database for assessing the effect of the different biogas qualities on the complete system consisting of the upgrading and the fuel cell systems. The findings are challenging. This article also aims at giving an overview of the advantages of using biogas as fuel for fuel cells.

  9. Lithium ferrate and lithium cobaltate cathodes for molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.; Bloom, I.; Indacochea, J.E.; Kucera, G.

    1994-08-01

    The objective of this research is to develop cathodes for the molten carbonate fuel cells (MCFC) having a performance approaching that of the lithiated nickel oxide cathode and a significantly greater life, particularly in pressurized MCFCs. To meet this objective, cathodes containing either doubly doped lithium ferrate or lithium cobaltate are being developed. In this project, the authors are optimizing the composition, microstructure, and loading density of the doubly doped lithium ferrate cathode and the lithium cobaltate cathodes.

  10. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  11. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect

    Not Available

    1992-11-01

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  12. Studies on the initial behaviours of the molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Ye-Ro; Kim, In-Goo; Chung, Gui-Yung; Lee, Choong-Gon; Lim, Hee-Chun; Lim, Tae-Hoon; Nam, Suk-Woo; Hong, Seong-Ahn

    Mathematical modelling of the unsteady-state of a unit molten carbonate fuel cell (MCFC) has been made. The behaviour of the fuel cell at the beginning of the operation is observed. The effects of the molar flow rates of gases and the utilization of fuel gas are studied. The current density decreases with time and reaches a steady-state value of 0.14 A cm -2 at 0.58 s for the chosen reference conditions. As the inlet gas-flow rates or the hydrogen utilization are increased, the time required to reach a steady-state decreases. With increased flow rates of the anode and cathode gases, the average current density is high and the total concentration is low. The current density increases with increasing utilization of hydrogen.

  13. Ceramic anode catalyst for dry methane type molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Tagawa, T.; Yanase, A.; Goto, S.; Yamaguchi, M.; Kondo, M.

    Oxide catalyst materials for methane oxidation were examined in order to develop the anode electrode for molten carbonate type fuel cell (MCFC). As a primary selection, oxides such as lanthanum (La 2O 3) and samarium (Sm 2O 3) were selected from screening experiments of TPD, TG and tubular reactor. Composite materials of these oxides with titanium fine powder were assembled into a cell unit for MCFC as the anode electrode. Steady-state activities were observed with these anode electrode materials when hydrogen was used as a fuel. When methane was directly charged to anode as a fuel (dry methane operation), a power generation with steady state was observed on both lanthanum and samarium composites after gradual decrease of open circuit electromotive force (OCV) and closed circuit current (CCI). The steady-state activity held as long as 144 h of continuous operation.

  14. Development of sulfur-tolerant components for the molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Sammells, A. F.; Nicholson, S. B.; Ang, P. G. P.

    1980-02-01

    The sulfur tolerance of candidate anode and anode current collector materials for the molten carbonate fuel cell were evaluated in an electrochemical half-cell using both steady-state and transient potentiostatic techniques. Hydrogen sulfide was introduced into the fuel at concentrations of 50 and 1000 ppm; at the higher sulfur concentration nickel and cobalt underwent a negative shift in their open-circuit potentials, and high anodic and cathodic currents were observed compared with clean fuels. Exchange currents were not greatly affected by 50 ppm H2S; but, at higher sulfur concentrations, higher apparent exchange currents were observed, indicating a probable sulfidation reaction. New anode materials including TiC showed good stability in the anodic region. Of the anode current collector materials evaluated, high stabilities were found for 410 and 310 stainless steels.

  15. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  16. Molten carbonate fuel cells fed with biogas: combating H(2)S.

    PubMed

    Ciccoli, R; Cigolotti, V; Lo Presti, R; Massi, E; McPhail, S J; Monteleone, G; Moreno, A; Naticchioni, V; Paoletti, C; Simonetti, E; Zaza, F

    2010-06-01

    The use of biomass and waste to produce alternative fuels, due to environmental and energy security reasons, is a high-quality solution especially when integrated with high efficiency fuel cell applications. In this article we look into the coupling of an anaerobic digestion process of organic residues to electrochemical conversion to electricity and heat through a molten carbonate fuel cell (MCFC). In particular the pathway of the exceedingly harmful compound hydrogen sulphide (H(2)S) in these phases is analysed. Hydrogen sulphide production in the biogas is strongly interrelated with methane and/or hydrogen yield, as well as with operating conditions like temperature and pH. When present in the produced biogas, this compound has multiple negative effects on the performance and durability of an MCFC. Therefore, there are important issues of integration to be solved. Three general approaches to solve the sulphur problem in the MCFC are possible. The first is to prevent the formation of hydrogen sulphide at the source: favouring conditions that inhibit its production during fermentation. Secondly, to identify the sulphur tolerance levels of the fuel cell components currently in use and develop sulphur-tolerant components that show long-term electrochemical performance and corrosion stability. The third approach is to remove the generated sulphur species to very low levels before the gas enters the fuel cell. PMID:20211554

  17. Hot-gas cleanup for molten carbonate fuel cells-dechlorination and soot formation

    NASA Astrophysics Data System (ADS)

    Ham, D.; Gelb, A.; Lord, G.; Simons, G.

    1984-01-01

    Two separate aspects of hot-gas conditioning for molten carbonate fuel cells (MCFC) were investigated: potential high temperature chloride sorbent materials were screened and tested and carbon deposition on MCFC components was studied experimentally to determine guidelines for maximizing MCFC efficiency while avoiding carbon fouling. Natural minerals containing sodium carbonate were identified as the most promising candidates for economical removal of chlorides from coal gasifier effluents at temperatures of about 800 K (980 F). The mineral Shortite was tested in a fixed bed and found to perform remarkably well with no calcination. Measurements showed that carbon deposition can occur in the equilibrium carbon free region because of the relative rates of the relevant reactions. On all surfaces tested, the Boudouard carbon formation reaction is much faster than the water-gas shift reaction which is much faster than the methanation reaction. This means that the normal practice of adding steam to prevent carbon formation will only succeed if flows are slow enough for the water shift reaction to go substantially to completion. More direct suppression of carbon formation can be achieved by CO2 addition through anode recycle to force the Boudouard reaction backward.

  18. CO[sub 2] recovery in molten carbonate fuel cell system by pressure swing adsorption

    SciTech Connect

    Sasaki, A.; Matsumoto, S.; Fujitsuka, M.; Shinoki, T.; Tanaka, T. ); Ohtsuki, J. )

    1993-03-01

    The carbon dioxide recycle configuration by pressure swing adsorption (PSA) is examined in the indirect internal reforming molten carbonate fuel cell (IIR-MCFC) system, theoretically and experimentally. It is the result of system studies that the CO[sub 2] PSA makes the system efficiency higher than ordinary combustion process. A test plant is fabricated in order to evaluate the PSA performance in the IIR-MCFC system operation. The experimental results with respect to CO[sub 2] recovery ratio, purity and pressure fluctuations in both electrode chambers are acceptable. The system integration is necessary in order to decrease the auxiliary power still more and to give the control logic robust.

  19. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review.

    PubMed

    Sun, Haishu; Xu, Shengjun; Zhuang, Guoqiang; Zhuang, Xuliang

    2016-01-01

    Microbial fuel cells (MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However, large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms. PMID:26899662

  20. Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate

    NASA Astrophysics Data System (ADS)

    Song, Ying; Wei, Yu; Xu, Hui; Williams, Minkmas; Liu, Yuxiu; Bonville, Leonard J.; Russell Kunz, H.; Fenton, James M.

    Proton exchange membrane (PEM) fuel cells with optimized cathode structures can provide high performance at higher temperature (120 °C). A "pore-forming" material, ammonium carbonate, applied in the unsupported Pt cathode catalyst layer of a high temperature membrane electrode assembly enhanced the catalyst activity and minimized the mass-transport limitations. The ammonium carbonate amount and Nafion ® loading in the cathode were optimized for performance at two conditions: 80 °C cell temperature with 100% anode/75% cathode R.H. and 120 °C cell temperature with 35% anode/35% cathode R.H., both under ambient pressure. A cell with 20 wt.% ammonium carbonate and 20 wt.% Nafion ® operating at 80 °C and 120 °C presented the maximum cell performance. Hydrogen/air cell voltages at a current density of 400 mA cm -2 using the Ionomem/UConn membrane as the electrolyte with a cathode platinum loading of 0.5 mg cm -2 were 0.70 V and 0.57 V at the two conditions, respectively. This was a 19% cell voltage increase over a cathode without the "pore-forming" ammonium carbonate at the 120 °C operating condition.

  1. Thermodynamic performance analysis of a molten carbonate fuel cell at very high current densities

    NASA Astrophysics Data System (ADS)

    Ramandi, M. Y.; Dincer, I.

    2011-10-01

    This study is basically composed of two sections. In the first section, a CFD analysis is used to provide a better insight to molten carbonate fuel cell operation and performance characteristics at very high current densities. Therefore, a mathematical model is developed by employing mass and momentum conservation, electrochemical reaction mechanisms and electric charges. The model results are then compared with the available data for an MCFC unit, and a good agreement is observed. In addition, the model is applied to predict the unit cell behaviour at various operating pressures, temperatures, and cathode gas stoichiometric ratios. In the second section, a thermodynamic model is utilized to examine energy efficiency, exergy efficiency and entropy generation of the MCFC. At low current densities, no considerable difference in output voltage and power is observed; however, for greater values of current densities, the difference is not negligible. If the molten carbonate fuel cell is to operate at current densities smaller than 2500 A m-2, there is no point to pressurize the system. If the fuel cell operates at pressures greater than atmospheric pressure, the unit cell cost could be minimized. In addition, various partial pressure ratios at the cathode side demonstrated nearly the same effect on the performance of the fuel cell. With a 60 K change in operating temperature, almost 10% improvement in energy and exergy efficiencies is obtained. Both efficiencies initially increase at lower current densities and then reach their maximum values and ultimately decrease with the increase of current density. By elevating the pressure, both energy and exergy efficiencies of the cell enhance. In addition, higher operating pressure and temperature decrease the unit cell entropy generation.

  2. Molted carbonate fuel cell product design and improvement - 4th quarter, 1995. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect

    1998-04-01

    The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.

  3. Cathode materials for the molten carbonate fuel cell

    SciTech Connect

    Kucera, G.H.; Brown, A.P.; Roche, M.F.; Indacochea, E.J.; Krumpelt, M.; Myles, K.M.

    1993-08-01

    Both LiFeO{sub 2} and Li{sub 2},MnO{sub 3} were stable in the cathode environment, had low solubility, and were nonprecipitating in the anode environment. Dopants were employed to enhance the electronic conductivity of both materials. Cobalt-doped LiFeO{sub 2} was a factor of 30 more conductive than the undoped LiFeO{sub 2}; Nb-doped Li{sub 2}MnO{sub 3} was a factor of 60 more conductive than its undoped form. However, only the Co-doped LiFeO{sub 2} Li{sub 2} exhibited the desired p-type conduction. Half- and full-cell tests with Co-doped LiFeO{sub 2} as the cathode material showed that its performance strongly depended on the oxygen partial pressure. Under simulated high-pressure conditions, where the O{sub 2} partial pressure was 70 kPa, the performance was good. LiCoO{sub 2} had low solubility and was a good electronic conductor undoped. In addition, it exhibited p-type conduction, and, when used as a cathode material, gave good cell performance. It precipitated as cobalt metal under reducing conditions in anode. However, neither rate of deposition nor conditions influencing deposition and location are known.

  4. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    SciTech Connect

    Not Available

    1980-01-01

    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  5. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro

    2015-02-01

    Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).

  6. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  7. An electrolyte distribution model in consideration of the electrode wetting in the molten carbonate fuel cell

    SciTech Connect

    Kawase, Makoto; Mugikura, Yoshihiro; Watanabe, Takao

    2000-03-01

    In the molten carbonate fuel cell, the electrolyte distribution in the electrode is one of the major factors affecting cell performance. An electrolyte distribution model was developed in consideration of the electrode's wetting properties and the pore size distribution within the electrode. Because wettability data, e.g., contact angles, are required for model calculations, the meniscus heights of (Li/K)CO{sub 3} and (Li/Na)CO{sub 3} on Ni were measured under various anode gas conditions, and contact angles were derived.

  8. Analysis of gas products from direct utilization of carbon in a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Siengchum, Tritti; Guzman, Felipe; Chuang, Steven S. C.

    2012-09-01

    The evolution of gases from direct utilization of carbon in a solid oxide fuel cell (C-SOFC) was studied by potentiostatic/galvanostatic discharge of a fuel cell with coconut carbon, a carbonaceous material with low ash and sulfur content. Operation of C-SOFC at 750 °C produced less CO and more CO2 than those predicted by thermodynamic calculation using total Gibbs free energy minimization method. The addition of CO2 to the anode chamber increased CO formation and maximum power density from 0.09 W cm-2 to 0.13 W cm-2, indicating the occurrence of Boudouard reaction (CO2 + C ⇔ 2CO) coupling with CO electrochemical oxidation on the C-SOFC. Analysis of CO and CO2 concentration as a function of current and voltage revealed that electricity was mainly produced from the electrochemical oxidation of carbon at low current density and produced from the electrochemical oxidation of CO at high current density. The results suggest the electrochemical oxidation of solid carbon is more mass transfer limited than electrochemical oxidation of CO.

  9. Temperature and voltage responses of a molten carbonate fuel cell in the presence of a hydrogen fuel leakage

    NASA Astrophysics Data System (ADS)

    Law, M. C.; Liang, G. V. Y.; Lee, V. C. C.; Wee, S. K.

    2015-04-01

    A two dimensional (2-D), dynamic model of a molten carbonate fuel cell (MCFC) was developed using COMSOL Multi-physics. The model was used to investigate the dynamic behaviour of the MCFC in the presence of hydrogen fuel leakage. A leakage was modelled as a known outflow velocity at the anode gas channel. The effects of leakage velocity and the leakage location were investigated. The simulations show that anode electrode temperature increases as the leakage velocity increases. The voltage generated is shown to decrease at the start of the leakage occurrence due to loss of hydrogen gas. Later the voltage increases as the anode temperature increases. The results also show that the changes of temperature and voltage are more significant if a leakage occurs nearer to the inlet compared to that at the outlet of anode gas channel.

  10. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.

    PubMed

    Yu, Yang-Yang; Guo, Chun Xian; Yong, Yang-Chun; Li, Chang Ming; Song, Hao

    2015-12-01

    Nitrogen doped carbon nanoparticles (NDCN) were applied to modify the carbon cloth anodes of microbial fuel cells (MFCs) inoculated with Shewanella oneidensis MR-1, one of the most well-studied exoelectrogens. Experimental results demonstrated that the use of NDCN increased anodic absorption of flavins (i.e., the soluble electron mediator secreted by S. oneidensis MR-1), facilitating shuttle-mediated extracellular electron transfer. In addition, we also found that NDCN enabled enhanced contact-based direct electron transfer via outer-membrane c-type cytochromes. Taken together, the performance of MFCs with the NDCN-modified anode was enormously enhanced, delivering a maximum power density 3.5 times' higher than that of the MFCs without the modification of carbon cloth anodes. PMID:25439129

  11. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  12. Fundamental stack and system issues in molten carbonate fuel cell development

    SciTech Connect

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1993-12-31

    Stack research and system issues in molten carbonate fuel cell (MCFC) technology development and commercialization are discussed within context of status of MCFC development and commercialization in US. Status of MCFC development is addressed. Major known fundamental stack research issues remaining for the MCFC technology are identified and discussed. The cathode remains a focal point of performance improvement and cost reduction. The various aspects of MCFC power plant network and systems issues are also addressed and discussed. These include cost, heat loss management, startup and shutdown modes, dynamic response, footprint, packaging and integration, parasitic power losses, pressurization and reforming. Potential of MCFC networks is discussed. With the initial demonstration of full-area, fullheight 250-kW to 2-MW MCFC power plants, the spatial configuration of the MCFC stacks into networks in the fuel cell power plant takes on importance for the first time.

  13. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    SciTech Connect

    Skok, A.J.; Leo, A.J.; O`Shea, T.P.

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  14. Evaluation of the feasibility of ethanol steam reforming in a molten carbonate fuel cell

    SciTech Connect

    Cavallaro, S.; Passalacqua, E.; Maggio, G.; Patti, A.; Freni, S.

    1996-12-31

    The molten carbonate fuel cells (MCFCs) utilizing traditional fuels represent a suitable technological progress in comparison with pure hydrogen-fed MCFCs. The more investigated fuel for such an application is the methane, which has the advantages of low cost and large availability; besides, several authors demonstrated the feasibility of a methane based MCFC. In particular, the methane steam-reforming allows the conversion of the fuel in hydrogen also inside the cell (internal reforming configuration), utilizing the excess heat to compensate the reaction endothermicity. In this case, however, both the catalyst and the cell materials are subjected to thermal stresses due to the cold spots arising near to the reaction sites MCFC. An alternative, in accordance with the recent proposals of other authors, may be to produce hydrogen from methane by the partial oxidation reaction, rather than by steam reforming. This reaction is exothermic ({Delta}H{degrees}=-19.1 kJ/mol H{sub 2}) and it needs to verify the possibility to obtain an acceptable distribution of the temperature inside the cell. The alcohols and, in particular, methanol shows the gas reformed compositions as a function of the steam/ethanol molar ratio, ranging from 1.0 to 3.5. The hydrogen production enhances with this ratio, but it presents a maximum at S/EtOH of about 2.0. Otherwise, the increase of S/EtOH depresses the production of CO and CH{sub 4}, and ethanol may be a further solution for the hydrogen production inside a MCFC. In this case, also, the reaction in cell is less endothermic compared with the methane steam reforming with the additional advantage of a liquid fuel more easily storable and transportable. Aim of the present work is to perform a comparative evaluation of the different solutions, with particular reference to the use of ethanol.

  15. Novel carbon-ion fuel cells. Final report, October 1, 1993--September 30, 1996

    SciTech Connect

    Cocks, F.H.

    1997-01-01

    Mixed lanthanide dicarbides having the fluorite crystal structure have been synthesized using the elemental lanthanide metals and elemental carbon that was 99.9% pure carbon-13 isotope. A two step process of first, arc furnace melting of the components, followed by an annealing step in a high vacuum furnace, was adopted as the standard method of fabricating small cast ingots of the dicarbides. The crystal structure of the various lanthanide dicarbides produced were confirmed by x-ray diffraction under protective atmospheres at both room temperature at Duke University and at high temperature at Oak Ridge National Laboratory. After more than 15 combinations of cerium or lanthanum with dopants were tried, low temperature x-ray diffraction showed that Ce{sub .5}Er{sub .5}C{sub 2} had been successfully stabilized and had the desired fluorite crystal structure at room temperature. The fluorite crystal structure lanthanide dicarbide cast ingots were further prepared by having flat and clean surfaces ground onto their surfaces by high-speed milling machines inside argon gas atmosphere gloveboxes. The surfaces thus created were then coated with carbon-12 by the arc evaporation method under low pressure argon gas. The coated ingots were then allowed to have carbon diffusion occur from the surface coating of carbon-12 into the ingot of dicarbide that had been synthesized from carbon-13. After the diffusion run, the cast ingots were slit down the axis perpendicular to the carbon coating. The fracture surface created was then squared and polished by high,speed milling in a glove box with a argon atmosphere. The high diffusion co-efficient of carbon in lanthanide dicarbides having the fluorite crystal structure would make possible the manufacture of a carbon-ion electrolyte for use in a battery or a fuel cell that could consume solid carbon as it`s feedstock.

  16. Effects of coal-derived trace species on the performance of molten carbonate fuel cells. Topical report on thermochemical studies

    SciTech Connect

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  17. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Xie, Yongmin; Cai, Weizi; Xiao, Jie; Tang, Yubao; Liu, Jiang; Liu, Meilin

    2015-03-01

    Solid oxide fuel cells (SOFCs), with yttrium stabilized zirconia (YSZ) as electrolyte, composite of strontium-doped lanthanum manganate (LSM) and YSZ as cathode, and cermet of silver and gadolinium-doped ceria (GDC) as anode, are prepared and tested with 5wt% Fe-loaded activated carbon as fuel and ambient air as oxidant. It is found that electricity and CO gas can be cogenerated in the direct carbon SOFCs through the electrochemical oxidation of CO and the Boudouard reaction. The gas-electricity cogeneration performances are investigated by taking the operating time of the DC-SOFCs as a measure of rate decrease of the Boudouard reaction. Three single cells and a two-cell-stack are tested and characterized in terms of electrical power output, CO production rate, electrical conversion efficiency, and overall conversion efficiency. It turns out that a rapid rate of the Boudouard reaction is necessary for getting high electrical power and CO production. Taking the emitted CO as part of the power output, an overall efficiency of 76.5% for the single cell, and of 72.5% for the stack, is obtained.

  18. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  19. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS). PMID:25959077

  20. Effect of carbon support on catalytic efficiency and durability in fuel cells

    NASA Astrophysics Data System (ADS)

    Malardier-Jugroot, Cecile; Groves, Michael; Durbin, Deborah; Jugroot, Manish

    2012-02-01

    New nanomaterials already play a key role in several emerging technologies. For instance, in fuel cell technology, catalytic efficiency can be greatly enhanced due to the high surface area of nanomaterials. Improving the durability and efficiency of a platinum catalyst is an important step in increasing its utility when incorporated as the anode or cathode of a proton exchange membrane fuel cell (PEMFC). The authors have shown using Density Functional Theory methods [1] that doping the carbon support of the Pt catalyst can increase the durability and efficiency of the catalyst. This paper will present the effect of doping of the carbon support on the complete reaction path of the Oxygen Reduction Reaction using ab initio structural methods as well as a complete ab initio molecular dynamics characterization of the reaction. In addition, the electronic structure of the carbon support was shown to improve the metal/CO interaction for the development of a membrane to prevent catalyst poisoning [2]. The paper will also emphasize the effect of the solvent, which is experimentally shown to be crucial. [1] M. Groves, A. Chan, C. Malardier-Jugroot and M. Jugroot, Chem. Phys. Letters, 481(4-6), 214-219, 2009 [2] D. Durbin and C. Malardier-Jugroot, J. Phys. Chem. C, 115 (3), 808--815, 2011

  1. Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Behmenyar, Gamze; Akın, Ayşe Nilgün

    2014-03-01

    Carbon supported Pd and bimetallic Pd-Cu nanoparticles with different compositions are prepared by a modified polyol method and used as anode catalysts for direct borohydride fuel cell (DBFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), ICP-AES, cyclic voltammetry (CV), chronoamperometry (CA), and fuel cell experiments. The results show that the carbon supported Pd-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4- than the carbon supported pure nanosized Pd catalyst, especially the Pd50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBFC using Pd50Cu50/C as anode catalyst and Pt/C as cathode catalyst gives the best performance, and the maximum power density is 98 mW cm-2 at a current density of 223 mA cm-2 at 60 °C.

  2. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Li, Baikun; Cristiani, Pierangela; Ieropoulos, Ioannis

    2015-12-01

    In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process. PMID:26343045

  3. Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode.

    PubMed

    Unni, Sreekuttan M; Illathvalappil, Rajith; Bhange, Siddheshwar N; Puthenpediakkal, Hasna; Kurungot, Sreekumar

    2015-11-01

    Current low-temperature fuel cell research mainly focuses on the development of efficient nonprecious electrocatalysts for the reduction of dioxygen molecule due to the reasons like exorbitant cost and scarcity of the current state-of-the-art Pt-based catalysts. As a potential alternative to such costly electrocatalysts, we report here the preparation of an efficient graphene nanotube based oxygen reduction electrocatalyst which has been derived from single walled nanohorns, comprising a thin layer of graphene nanotubes and encapsulated iron oxide nanoparticles (FeGNT). FeGNT shows a surface area of 750 m(2)/g, which is the highest ever reported among the metal encapsulated nanotubes. Moreover, the graphene protected iron oxide nanoparticles assist the system to attain efficient distribution of Fe-Nx and quaternary nitrogen based active reaction centers, which provides better activity and stability toward the oxygen reduction reaction (ORR) in acidic as well as alkaline conditions. Single cell performance of a proton exchange membrane fuel cell by using FeGNT as the cathode catalyst delivered a maximum power density of 200 mW cm(-2) with Nafion as the proton exchange membrane at 60 °C. The facile synthesis strategy with iron oxide encapsulated graphitic carbon morphology opens up a new horizon of hope toward developing Pt-free fuel cells and metal-air batteries along with its applicability in other energy conversion and storage devices. PMID:26458554

  4. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT LADWP MAIN STREET SERVICE CENTER

    SciTech Connect

    William W. Glauz

    2004-09-10

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Main Street 250kW MCFC power plant during its first year of operation from September 2003 to August 2004. The data for the month of

  5. Molten carbonate fuel cell (MCFC) porous electrode and kinetic studies. Final report

    SciTech Connect

    Selman, J.R.

    1992-10-01

    This report sumarizes a research project undertaken to improve the performance and understand the limitations of porous electrodes for molten carbonate fuel cells (MCFCs). Using a novel MCFC ``rotating-disk`` electrode, the electrode kinetic and mass transfer properties of commonly used electrode materials were determined, and a practical performance model for MCFC electrodes was developed. The report also outlines a general strategy for designing a high-performance MCFC electrode, assesses the current understanding of porous electrode operation, and discusses some of the unresolved questions of the field. An appendix gives a complete list of the many theses, journal articles, and symposium contributions based on this research.

  6. A three-phase homogeneous model for porous electrodes in molten-carbonate fuel cells

    SciTech Connect

    Prins-Jansen, J.A.; Hemmes, K.; Wit, J.H.W. de; Fehribach, J.D.

    1996-05-01

    In this paper a new model for porous electrodes in molten-carbonate fuel cells (MCFC) is presented. The model is based on an averaging technique commonly used in porous-media problems. Important disadvantages of the existing agglomerate model caused by geometric assumptions and restrictions are eliminated in this new model. Unlike the agglomerate model, the new model is suitable for studying three-dimensional and anisotropic problems and incorporating the degree of electrolyte fill. Different reaction mechanisms can easily be incorporated. The validity of the new model is checked and compared with the agglomerate model by fitting the two models to ac-impedance spectra recorded from porous MCFC cathodes.

  7. Development of molten carbonate fuel cell technology at M-C Power Corporation

    SciTech Connect

    Dilger, D.

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  8. Study of different carbon materials for their use as bioanodes in microbial fuel cells.

    PubMed

    González-Nava, Catalina; Godínez, Luis A; Chávez, Abraham U; Cercado, Bibiana; Arriaga, Luis G; Rodríguez-Valadez, Francisco J

    2016-01-01

    Microbial fuel cells (MFCs) are capable of removing the organic matter contained in water while generating a certain amount of electrical power at the same time. One of the most important aspects in the operation of MFCs is the formation of biofilms on the anode. Here, we report the characterization of different carbon electrodes and biofilm using a rapid and easy methodology for the growth of biofilms. The biofilms were developed and generated a voltage in less than 4 days, obtaining a maximum of 0.3 V in the cells. Scanning electron microscopy images revealed that growth of the biofilm was only on the surface of the electrode, and consequently both carbon cloth Electrochem and carbon cloth Roe materials showed a greater quantity of volatile solids on the surface of the anode and power density. The results suggested that the best support was carbon cloth Electrochem because it generated a power density of 13.4 mW/m(2) and required only a few hours for the formation of the biofilm. PMID:27332829

  9. Study of CO2 recovery in a carbonate fuel cell tri-generation plant

    NASA Astrophysics Data System (ADS)

    Rinaldi, Giorgio; McLarty, Dustin; Brouwer, Jack; Lanzini, Andrea; Santarelli, Massimo

    2015-06-01

    The possibility of separating and recovering CO2 in a biogas plant that co-produces electricity, hydrogen, and heat is investigated. Exploiting the ability of a molten carbonate fuel cell (MCFC) to concentrate CO2 in the anode exhaust stream reduces the energy consumption and complexity of CO2 separation techniques that would otherwise be required to remove dilute CO2 from combustion exhaust streams. Three potential CO2 concentrating configurations are numerically simulated to evaluate potential CO2 recovery rates: 1) anode oxidation and partial CO2 recirculation, 2) integration with exhaust from an internal combustion engine, and 3) series connection of molten carbonate cathodes initially fed with internal combustion engine (ICE) exhaust. Physical models have been calibrated with data acquired from an operating MCFC tri-generating plant. Results illustrate a high compatibility between hydrogen co-production and CO2 recovery with series connection of molten carbonate systems offering the best results for efficient CO2 recovery. In this case the carbon capture ratio (CCR) exceeds 73% for two systems in series and 90% for 3 MCFC in series. This remarkably high carbon recovery is possible with 1.4 MWe delivered by the ICE system and 0.9 MWe and about 350 kg day-1 of H2 delivered by the three MCFC.

  10. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth. PMID:22437017