Science.gov

Sample records for carbonate wash solutions

  1. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  2. Solvent wash solution

    DOEpatents

    Neace, James C. (Blackville, SC)

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  3. Potential of activated carbon to recover randomly-methylated-?-cyclodextrin solution from washing water originating from in situ soil flushing.

    PubMed

    Sniegowski, K; Vanhecke, M; D'Huys, P-J; Braeken, L

    2014-07-01

    Despite the overall high efficacy of cyclodextrins to accelerate the treatment of soil aquifer remediation by in-situ soil flushing, the use in practice remains limited because of the high costs of cyclodextrin and high concentrations needed to significantly reduce the treatment time. The current study tested the potential of activated carbon to treat washing water originating from soil flushing in order to selectively separate hydrocarbon contaminants from washing water containing cyclodextrin and subsequently reuse the cyclodextrin solution for reinfiltration. A high recovery of the cyclodextrin from the washing water would reduce the costs and would make the technique economically feasible for soil remediation. This study aimed to investigate whether cyclodextrin can pass through the activated carbon filter without reducing the cyclodextrin concentration when the contaminated washing water is treated and whether the presence of cyclodextrin negatively affects the purification potential of activated carbon to remove the organic pollutants from the pumped soil water. Lab-scale column experiments showed that with the appropriate activated carbon 100% of cyclodextrin (randomly-methylated-?-cyclodextrin) can be recovered from the washing water and that the effect on the efficiency of activated carbon to remove the hydrocarbon contaminants remains limited. These results show that additional field tests are useful to make in-situ soil flushing with cyclodextrin both a technical and an economical interesting technique. These results might stimulate the application of cyclodextrin in soil treatment technology. PMID:24325845

  4. Carbonization of perchloroethylene washed coal

    SciTech Connect

    Spearin, E.Y.; Sorensen, S.M.

    1983-01-01

    Pilot-scale carbonization experiments of medium-volatile coals washed in a perchloroethylene medium suggested that there was a relation between coke stability improvement and the organic content of the coal. Two significantly different coals appeared to be particularly sensitive to this treatment. Further carbonization tests at both pilot- and production-scale levels using the perchloroethylene washing technique showed significant improvements in coke quality at both levels of experimentation. It appears that the improvement is the result of a synergistic effect between ash removal caused by the solvent bath washing and interaction of the solvent with the organic component of the coal.

  5. Soil washing of fluorine contaminated soil using various washing solutions.

    PubMed

    Moon, Deok Hyun; Jo, Raehyun; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Park, Jeong-Hun

    2015-03-01

    Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.1 to 3 M with a liquid to solid ratio of 10. The soil washing results showed that the most effective washing solution for the removal of fluoride from contaminated soils was HCl. The highest fluoride removal results of approximately 97 % from the contaminated soil were obtained using 3 M HCl. The fluoride removal efficiency of the washing solution increases in the following order: C4H6O6 < NaOH < H2SO4 < HNO3 < HCl. PMID:25552323

  6. 7 CFR 3201.51 - Parts wash solutions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Parts wash solutions. 3201.51 Section 3201.51... Designated Items 3201.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts in... wash solutions. By that date, Federal agencies that have the responsibility for drafting or...

  7. 7 CFR 3201.51 - Parts wash solutions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Parts wash solutions. 3201.51 Section 3201.51... Designated Items 3201.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts in... wash solutions. By that date, Federal agencies that have the responsibility for drafting or...

  8. 7 CFR 3201.51 - Parts wash solutions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Parts wash solutions. 3201.51 Section 3201.51... Designated Items 3201.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts in... wash solutions. By that date, Federal agencies that have the responsibility for drafting or...

  9. 7 CFR 2902.51 - Parts wash solutions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Parts wash solutions. 2902.51 Section 2902.51 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... Items 2902.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts...

  10. 7 CFR 2902.51 - Parts wash solutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Parts wash solutions. 2902.51 Section 2902.51 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... Items § 2902.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts...

  11. Washing of soils spiked with various pollutants by surfactant solutions

    SciTech Connect

    Yang, G.C.C.; Chang, J.H.

    1995-12-31

    In this study, the batch-type of washing with surfactant solutions was employed for the treatment of soils artificially contaminated with various volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals. 15 industrial grade surfactants were tested. Washing was conducing by adding surfactant solution to the soils and mixing for one hour, then centrifuging it and analyzing the supernatant. Deionized water was used for soil washing for comparison. Results indicated that deionized water performed as well as Surfactant No. 1 in washing VOC-contaminated soils. Therefore, it is concluded that the VOCs tested can be easily washed from soils by rain water. In washing PAH-contaminated soils, nonionic surfactants performed better than anionic surfactants in terms of removal efficiency. The amphoteric surfactant performed worst in washing PAH-contaminated soils. Generally, surfactants are useful in removing cadmium from soils, but are not useful for the removal of lead and copper. Amphoteric, anionic, and low pH cationic surfactants were the most effective of those tested. For PAH/heavy metals-contaminated soils, removal efficiencies were lower than that of soils containing a single contaminant.

  12. Fresh produce washing aid, T-128, enhances inactivation of salmonella and pseudomonas biofilms on stainless steel in chlorinated wash solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of chlorine wash solutions, with/without the washing aid, T-128, on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel coupons was evaluated under conditions of increasing organic matter loads in the wash water. Biofilms were formed statically on stai...

  13. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. PMID:26086811

  14. Synergetic effect of a novel wash aid, T-128, in improving chlorine efficacy against bacterial pathogens in wash solution containing high organic loads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine is widely used as a sanitizer in commercial fresh-cut wash water for produce processing of bagged leafy greens. However, free chlorine depletion occurs rapidly when high organic content loads are introduced directly into the wash solution as part of the washing operation process. This chl...

  15. Remediation of phenanthrene contaminated soils by nonionic-anionic surfactant washing coupled with activated carbon adsorption.

    PubMed

    Liu, Jianfei; Chen, Weihong

    2015-01-01

    Batch experiments were conducted to investigate the performance of nonionic-anionic mixed surfactants and their recovery through activated carbon. The solubilization capabilities of mixed surfactants toward phenanthrene (PHE) were reduced by addition of anionic surfactant to the mixed systems. Results showed that sorption of Triton X-100 (TX100) onto soil decreased with increasing mass fraction of sodium dodecyl sulfate (SDS) in the mixed surfactant solutions. Soil contaminated with PHE at 200 mg/kg was washed with different surfactant concentrations at various mass ratios of nonionic-anionic mixed surfactant. Experiments with low-concentrations of mixed surfactants revealed that removal efficiencies for PHE-contaminated soil close to the individual higher nonionic surfactant concentration can be achieved. Overall performance considering both soil washing and surfactant recovery steps is apposite when an TX100:SDS mass ratio of 8:2 at 3 g/L is used. PMID:26524446

  16. Effect of Variations of Washing Solution Chemistry on Nanomaterial Physicochemical Changes in the Laundry Cycle.

    PubMed

    Mitrano, Denise M; Arroyo Rojas Dasilva, Yadira; Nowack, Bernd

    2015-08-18

    Engineered nanoparticle (ENP) life cycles are strongly dependent on the life-cycle of the nanoenhanced products in which they are incorporated. An important phase for ENP associated with textiles is washing. Using a set of liquid and powdered commercially available detergents that span a wide range of different chemistries, washing studies were performed with one "standard" nanoparticle suspended in wash solution to systematically investigate (changes to) particle size distribution, dissolution, reprecipitation (i.e., "new" particle formation), and complexation to particulate matter. Au ENPs were used as a "tracer" through the system. TEM and EDX analysis were performed to observe morphological and chemical changes to the particles, and single-particle ICP-MS was used to build a size distribution of particles in solution. Varying the washing solution chemistry was found to dictate the extent and rate of dissolution, particle destruction, surface chemistry change(s), and new particle formation. Detergent chemistry, dominated by oxidizing agents, was a major factor. The detergent form (i.e., powder vs liquid) was the other decisive factor, with powder forms providing available surfaces for precipitation and sorption reactions. Control experiments with AgNO3 indicated metallic Ag particles formed during the washing process from dissolved Ag, implying not all Ag-NPs observed in a textile washing study are indicative of released Ag-ENPs but can also be the result of sequential dissolution/reduction reactions. PMID:26200479

  17. Washing of Petroleum and Arsenic Contaminated Soil with Ultrasound and Alkali Phosphate Solution

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hwa; Kim, Jae Gon; Cho, Yong-chan; Chon, Chul-Min; Nam, In-Hyun; Keum, Mi Jung

    2015-04-01

    Soil washing of fine textured soil has been a challenging remedial strategy due to its low remediation efficiency. We adapted ultrasound and dispersion solution to increase the remediation efficiency of the soil washing. The ultrasound and dispersion agent may enhance the dispersion of the aggregate into individual particles and may enhance release of contaminants from the aggregate. We collected the arsenic (As) contaminated silt loam soil from a smelting site, spiked with 1% of diesel and incubated for 6 months. We tested the dispersion rate and the release of diesel with the incubated soil at various pH and concentrations of orthophosphate, pyrophosphate and hexametaphosphate with or without the ultrasound of 28 kHz and 400 W. The As concentrations of coarse (> medium silt) and fine (washing. The dispersion rate and diesel release increased with increasing phosphate concentration and pH of the solution. The application of ultrasound sharply increased the dispersion rate and diesel release comparing with no ultrasound. The optimum condition of the soil washing was turned out to be pH 11_10 mM Na-hexametaphosphate with the ultrasound. The concentration of total petroleum hydrocarbon of the incubated soil reduced from 3101.3 mg kg-1 to 14.0 mg kg-1 after 10 minute washing at the optimum condition. The fine fraction had much higher As concentration than the coarse fraction: 44.4 mg kg-1 for the fine fraction and 14.4 mg kg-1 for the coarse fraction. The results of this study indicate that the ultrasound and alkali phosphate solution increase the soil washing efficiency and can be a promising technology for the remediation of fine textured contaminated soils. Key Words : Ultrasound, Phosphate solution, Soil washing, Mixed contaminants

  18. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    PubMed

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. PMID:25482580

  19. Wash Solution Bath Life Extension for the Space Shuttle Rocket Motor Aqueous Cleaning System

    NASA Technical Reports Server (NTRS)

    Saunders, Chad; Evans, Kurt; Sagers, Neil

    1999-01-01

    A spray-in-air aqueous cleaning system, which replaced 1,1,1 trichloroethane (TCA) vapor degreasing, is used for critical cleaning of Space Shuttle Redesigned Solid Rocket Motor (RSRM) metal parts. Small-scale testing demonstrated that the alkaline-based wash solution possesses adequate soil loading and cleaning properties. However, full-scale testing exhibited unexpected depletion of some primary components of the wash solution. Specifically, there was a significant decrease in the concentration of sodium metasilicate which forced change-out of the wash solution after eight days. Extension of wash solution bath life was necessary to ease the burden of frequent change-out on manufacturing. A laboratory study supports a depletion mechanism that is initiated by the hydrolysis of sodium tripolyphosphate (STPP) lowering the pH of the solution. The decrease in pH causes polymerization and subsequent precipitation of sodium metasilicate (SM). Further investigation showed that maintaining the pH was the key to preventing the precipitation of the sodium metasilicate. Implementation to the full scale operation demonstrated that periodic additions of potassium hydroxide (KOH) extended the useful bath life to more than four months.

  20. Efficacy of different washing solutions and contact times on the microbial quality and safety of fresh-cut paprika.

    PubMed

    Das, B Kumar; Kim, Ji Gang; Choi, Ji Weon

    2011-10-01

    The role of different washing solutions and contact times was investigated to determine their use as potential sanitizers for maintaining the microbial quality and food safety of fresh-cut paprika. Samples were cut into small pieces, washed for both 90 and 180 s by different washing solutions: tap water, chlorinated water (100?mg/L and pH 6.5-7), electrolyzed water (pH 7.2) and ozonized water (4?mg/L). Then, samples were packaged in 50?m polypropylene bags and stored at 5?C for 12 days, followed by an evaluation of the antimicrobial efficacy of the treatments. Various quality and safety parameters, such as gas composition, color, off-odor, electrical conductivity and microbial numbers, were evaluated during storage. Results revealed insignificant differences in gas composition, and no off-odor was observed in any of the samples during the storage period. However, longer contact time resulted in slightly lower hue angle value than a short one for all washing solutions. Moreover, samples washed with ozone washings showed lower electrolyte leakage than other washing solutions. Samples washed for longer contact time except those washed in ozonized water showed increased microbial numbers during storage. Hence, it has been concluded that longer contact time with ozone has positive effects, whereas the other washing solutions adversely affect the microbial quality and safety aspects of fresh-cut paprika. PMID:21954309

  1. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    NASA Astrophysics Data System (ADS)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally to a uranyl peroxide (UO4) precipitate product. Evaluation of operating technique, uranium recovery efficiency, and final product purity were part of each experiment. Evaluation of a technique for removing fluoride from the diuranate precipitation byproduct filtrate using granular calcite was also included at the end of the uranium recovery testing. It was observed that precipitation of sodium diuranate (SDU) was very nearly complete at a pH of 11-12, using room temperature conditions. Uranium residuals in the filtrate ranged from 3.6 - 19.6 ppm, meaning almost complete precipitation as SDU. It was postulated and then verified that a tailing reaction occurs in the SDU precipitation, which necessitates a digestion period of about 2 hours to complete the precipitation. Further, it was shown, during this phase of the process, that a partial precipitation step at pH 5.5 did not adequately separate iron contamination due to an overlap of uranium and iron precipitations at that condition. Carbonate extraction of the SDU required an extended (3-4 hours) digestion at 40°C and pH 7-8 to complete, with sodium bicarbonate found to be the preferred extractant. The carbonate extraction was also proven to successfully separate the iron contamination from the uranium. Potassium-based chemistry did produce a potassium diuranate (KDU) analogue of SDU, but the subsequent carbonate extraction using either potassium bicarbonate or potassium carbonate proved to be too difficult and was incomplete. The potassium testing was terminated at this step. The uranyl peroxide precipitation was found to operate best at pH 3.5 - 4.0, at room temperature, and required an expected, extended digestion period of 8 -10 hours. The reaction was nearly complete at those conditions, with a filtrate residual ranging from 2.4 to 36.8 ppmU. The uranyl peroxide itself was very pure, with impurity averages at a very low 0.8 ppmNa and 0.004 ppmFe. ASTM maximum levels are 20 ppmNa and 150 ppmFe. Fluoride removal from the SDU precipitation filtrate required multiple passes of the solution through a calcite bed with acid additions to adjust the pH back down to below 6 before each pass to allow the removal reaction to proceed. This result was a modification of the single pass technique that was planned due to the apparent shutdown of the NaF/calcite reaction at pH above about 10. Conclusions drawn from the testing were that the results demonstrated a workable and effective series of processing steps. Techniques developed from the tests will make uranium recovery viable when transferred to the commercial process design.

  2. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins.

    PubMed

    Du, Ziwen; Deng, Shubo; Chen, Youguang; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang

    2015-04-01

    Perfluorooctanesulfonyl fluoride (PFOSF) washing wastewater contains high concentrations of perfluorinated carboxylates (PFCAs) including perfluorohexanoate (PFHxA, 0.10 mmol/L), perfluoroheptanoate (PFHpA, 0.11 mmol/L), and perfluorooctanoate (PFOA, 0.29 mmol/L). For the first time, we investigated the removal of these PFCAs from actual wastewater using the bamboo-derived activated carbon (BAC) and resin IRA67. Adsorption kinetics, effects of adsorbent dose, solution pH, and inorganic ions, as well as regeneration and reuse experiments were studied. The removal percents of three PFCAs by BAC and IRA67 followed the increasing order of PFHxA < PFHpA < PFOA, but the adsorption equilibrium time conformed to the reverse trend. PFCAs removal on IRA67 decreased with increasing pH, but BAC almost kept stable PFCAs removal at pH above 5.0. Among competitive adsorption of three PFCAs, PFOA was preferentially adsorbed on both BAC and IRA67. PFCAs removal from actual wastewater by BAC was higher than that in simulated solution, due to the presence of high concentration of inorganic ions in the wastewater. However, the co-existing organic compounds in wastewater significantly suppressed the adsorption of PFCAs. Both spent BAC and IRA67 were successfully regenerated by ethanol solution or NaCl/methanol mixture, and IRA67 showed the stable removal of PFCAs in five adsorption cycles. PMID:25585266

  3. Fresh-cut product sanitation and wash water disinfection: problems and solutions.

    PubMed

    Gil, Maria I; Selma, Maria V; Lpez-Glvez, Francisco; Allende, Ana

    2009-08-31

    It is well known that fresh-cut processors usually rely on wash water sanitizers to reduce microbial counts in order to maintain quality and extend shelf-life of the end product. Water is a useful tool for reducing potential contamination but it can also transfer pathogenic microorganisms. Washing with sanitizers is important in fresh-cut produce hygiene, particularly removing soil and debris, but especially in water disinfection to avoid cross-contamination between clean and contaminated product. Most of the sanitizing solutions induce higher microbial reduction after washing when compared to water washing, but after storage, epiphytic microorganisms grow rapidly, reaching similar levels. In fact, despite the general idea that sanitizers are used to reduce the microbial population on the produce, their main effect is maintaining the microbial quality of the water. The use of potable water instead of water containing chemical disinfection agents for washing fresh-cut vegetables is being advocated in some European countries. However, the problems of using an inadequate sanitizer or even none are considered in this manuscript. The need for a standardized approach to evaluate and compare the efficiency of sanitizing agents is also presented. Most new alternative techniques accentuate the problems with chlorine suggesting that the industry should move away from this traditional disinfection agent. However, the use of chlorine based sanitizers are presented as belonging to the most effective and efficient sanitizers when adequate doses are used. In this review improvements in water disinfection and sanitation strategies, including a shower pre-washing step and a final rinse of the produce, are suggested. PMID:19539390

  4. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (pH approximately 3) of the partially oxidized solution inhibited the general soil microbial activity during the washing cycle. PMID:26796745

  5. Changes in the bacterial flora of skin of processed broiler chickens washed in solutions of salicylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in the number of bacteria recovered from the skin of processed broilers after each of five consecutive washings in salicylic acid (SA) solutions was examined. Skin samples from commercially processed broiler carcasses were divided into 3 groups and washed in distilled water (control), 10% S...

  6. Application of an electrochemical treatment for EDDS soil washing solution regeneration and reuse in a multi-step soil washing process: Case of a Cu contaminated soil.

    PubMed

    Ferraro, Alberto; van Hullebusch, Eric D; Huguenot, David; Fabbricino, Massimiliano; Esposito, Giovanni

    2015-11-01

    Soil washing is an extensively used process for remediation of heavy metals contaminated soils. However the amount of fresh washing solution to be used represents a significant economical drawback of this process. This paper investigates the application of an electrochemical process (Fe/Fe electrodes couple) for the regeneration of a spent EDDS solution, containing Cu and major competitor cations (Ca, Fe, Mg, and Mn). The effect of current density, pH and conductivity of the washing solution on the recovery process performances was investigated. Current density showed the highest influence on Cu, Mg and Mn removal yields. Maximum removal yields reached 99% for Cu, 77% for Mn and 49% for Mg. No influence of the investigated parameters on Ca removal was observed, while an increase of Fe concentration due to anode dissolution occurred. Characterization of sludge produced from the 2h electrochemical test (5mAcm(-2), pH=8, 8mScm(-1)) displayed concentrations of 2.8gkg(-1) for Ca, 0.4gkg(-1) for Cu, 535.6gkg(-1) for Fe, 2.6gkg(-1) for Mg. TCLP tests at pH 2.88 and 4.93 showed a low leaching percentage (Ca, 10-21%; Cu, 6-12%; Fe, 0.22% Mg, 27-36%). Multi-washing tests were carried out to assess the decrease of the chelating ability of the regenerated washing solution and the Cu extraction efficiency. PMID:26292775

  7. Enhanced inactivation of Salmonella and Pseudomonas biofilms on stainless steel by use of T-128, a fresh-produce washing aid, in chlorinated wash solutions.

    PubMed

    Shen, Cangliang; Luo, Yaguang; Nou, Xiangwu; Bauchan, Gary; Zhou, Bin; Wang, Qin; Millner, Patricia

    2012-10-01

    The effect of the washing aid T-128 (generally recognized as safe [GRAS] formulation, composed mainly of phosphoric acid and propylene glycol) on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel was evaluated under conditions of increasing organic matter loads in chlorinated wash solutions dominated by hypochlorous acid. Biofilms were formed statically on stainless steel coupons suspended in 2% lettuce extract after inoculation with Salmonella enterica serovar Thompson or Newport or with Pseudomonas fluorescens. Coupons with biofilms were washed in chlorine solutions (0, 0.5, 1, 2, 5, 10, or 20 mg/liter at pH 6.5, 5.0 and 2.9), with or without T-128, and with increasing loads of organic matter (0, 0.25, 0.5, 0.75, or 1.0% lettuce extract). Cell populations on coupons were dispersed using intermittent, pulsed ultrasonication and vortexing and enumerated by colony counts on XLT-4 or Pseudomonas agars. Cell responses to fluorescent viability staining of biofilm treatment washing solutions were examined using confocal laser scanning microscopy. Results showed that 0.1% T-128 (without chlorine) reduced P. fluorescens biofilm populations by 2.5 log(10) units but did not reduce Salmonella populations. For both Salmonella and Pseudomonas, the sanitizing effect of free chlorine (1.0 to 5.0 mg/liter) was enhanced (P < 0.05) when it was combined with T-128. Application of T-128 decreased the free chlorine depletion rate caused by increasing organic matter in wash waters and significantly (P < 0.05) augmented inactivation of bacteria in biofilms compared to treatments without T-128. Image analysis of surfaces stained with SYTO and propidium iodide corroborate the cultural assay results showing that T-128 can aid in reducing pathogen viability in biofilms and thus can aid in sanitizing stainless steel contact surfaces during processing of fresh-cut produce. PMID:22752180

  8. Enhanced Inactivation of Salmonella and Pseudomonas Biofilms on Stainless Steel by Use of T-128, a Fresh-Produce Washing Aid, in Chlorinated Wash Solutions

    PubMed Central

    Shen, Cangliang; Luo, Yaguang; Nou, Xiangwu; Bauchan, Gary; Zhou, Bin; Wang, Qin

    2012-01-01

    The effect of the washing aid T-128 (generally recognized as safe [GRAS] formulation, composed mainly of phosphoric acid and propylene glycol) on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel was evaluated under conditions of increasing organic matter loads in chlorinated wash solutions dominated by hypochlorous acid. Biofilms were formed statically on stainless steel coupons suspended in 2% lettuce extract after inoculation with Salmonella enterica serovar Thompson or Newport or with Pseudomonas fluorescens. Coupons with biofilms were washed in chlorine solutions (0, 0.5, 1, 2, 5, 10, or 20 mg/liter at pH 6.5, 5.0 and 2.9), with or without T-128, and with increasing loads of organic matter (0, 0.25, 0.5, 0.75, or 1.0% lettuce extract). Cell populations on coupons were dispersed using intermittent, pulsed ultrasonication and vortexing and enumerated by colony counts on XLT-4 or Pseudomonas agars. Cell responses to fluorescent viability staining of biofilm treatment washing solutions were examined using confocal laser scanning microscopy. Results showed that 0.1% T-128 (without chlorine) reduced P. fluorescens biofilm populations by 2.5 log10 units but did not reduce Salmonella populations. For both Salmonella and Pseudomonas, the sanitizing effect of free chlorine (1.0 to 5.0 mg/liter) was enhanced (P < 0.05) when it was combined with T-128. Application of T-128 decreased the free chlorine depletion rate caused by increasing organic matter in wash waters and significantly (P < 0.05) augmented inactivation of bacteria in biofilms compared to treatments without T-128. Image analysis of surfaces stained with SYTO and propidium iodide corroborate the cultural assay results showing that T-128 can aid in reducing pathogen viability in biofilms and thus can aid in sanitizing stainless steel contact surfaces during processing of fresh-cut produce. PMID:22752180

  9. Comparison between supercritical carbon dioxide extraction and aqueous surfactant washing of an oily machining waste.

    PubMed

    Fu, H; Matthews, M A

    1999-06-11

    Mathematical models are developed to compare aqueous surfactant washing to supercritical carbon dioxide (SCCO2) extraction. These two cleaning processes are potentially competitive technologies which can be used to remove oily contaminants from a solid waste. In both processes, the cleaning efficiency for a batch of waste is evaluated by quantifying the residual oil content in the treated sample. A mass transfer model is used to simulate a semi-continuous washing process, and the experimental data, obtained in a batch operation, are used to estimate the equilibrium parameters in the model. For SCCO2 extraction, a linear desorption model is used to describe the supercritical desorption of oil from the solid phase into the CO2 phase and the simulated results agreed very well with the experimental data. The oil removal in aqueous surfactant washing is viewed to be controlled primarily by the diffusional transport of oil from the interiors of the waste elements to the surface, thus, it can be significantly affected by the size of the particles. A pre-cleaning pulverization is then recommended to improve the cleaning efficiency without increasing any other operation costs. In SCCO2 extraction, the desorption of oil from the solid waste is the controlling step and consequently, the solvent flow rate has no influence on oil removal. Our theoretical studies show that the difference between the cleaning efficiencies of these two technologies is not significant, with the oil concentration in the washing products approximately 5% lower than that in the extraction products. PMID:10341302

  10. Effect of number and washing solutions on functional properties of surimi-like material from duck meat.

    PubMed

    Ramadhan, Kurnia; Huda, Nurul; Ahmad, Ruzita

    2014-02-01

    Duck meat is less utilized than other meats in processed products because of limitations of its functional properties, including lower water holding capacity, emulsion stability, and higher cooking loss compared with chicken meat. These limitations could be improved using surimi technology, which consists of washing and concentrating myofibrillar protein. In this study, surimi-like materials were made from duck meat using two or three washings with different solutions (tap water, sodium chloride, sodium bicarbonate, and sodium phosphate buffer). Better improvement of the meat's functional properties was obtained with three washings versus two washings. Washing with tap water achieved the highest gel strength; moderate elevation of water holding capacity, pH, lightness, and whiteness; and left a small amount of fat. Washing with sodium bicarbonate solution generated the highest water holding capacity and pH and high lightness and whiteness values, but it resulted in the lowest gel strength. Processing duck meat into surimi-like material improves its functional properties, thereby making it possible to use duck meat in processed products. PMID:24493882

  11. Physicochemical and microbial quality of stored green slender pepper treated with different washing solutions and packaging films.

    PubMed

    Chandra, Dulal; Kim, Ji Gang; Kim, Yong Phil

    2014-03-01

    The effects of different washing solutions and packaging films on textural, biochemical and microbial quality of green slender peppers (Capsicum annuum L.) were evaluated. Fresh pepper samples were packaged either in 35?m polypropylene or polyethylene bag without washing or after washing in tap water (TW), 100-ppm chlorine solution, 0.5% calcinated calcium solution followed by 25% ethanol rinsing (CC+E) and 1% citric acid solution followed by 50% ethanol spray (CA+E) and then stored at 10? for 4 weeks. Significant differences were found in gas composition between the two packaging films. Changes in skin puncture force, hue angle, soluble solid content, titratable acidity and pH were statistically insignificant. Chlorophyll a, chlorophyll b and total chlorophyll content declined significantly (P?washing treatments compared to unwashed sample except in TW. Yeast and mold count of chlorine and CC+E-treated samples were lower than other treatments. Samples of these two treatments also received marketable limit of visual quality scores until 4 weeks of storage in polypropylene film. Results suggest that CC+E could be a potential sanitizer and alternative to chlorine washing and polypropylene film would provide a little better advantage than polyethylene for green slender pepper. PMID:23733826

  12. Efficacy of a lactic acid/sodium benzoate wash solution in reducing bacterial contamination of raw chicken.

    PubMed

    Hwang, C A; Beuchat, L R

    1995-09-01

    Raw chicken wings inoculated with Salmonella, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, or Escherichia coli O157:H7 were washed in water (control) or a solution of a 0.5% lactic acid/0.05% sodium benzoate (LB) (pH 2.64) for 30 min. Viable cells of pathogenic bacteria and naturally occurring psychrotrophic bacteria on wings were enumerated after 0, 2, 4, 6, and 8 days of storage at 4 degrees C. Lower populations of pathogenic and psychrotrophic bacteria were detected on wings immediately after washing with LB compared to populations detected on control wings. LB solution was more effective in killing Salmonella, C. jejuni, and E. coli O157:H7 than L. monocytogenes, and S. aureus. During refrigerated storage, populations of Salmonella, C. jejuni, L. monocytogenes, and E. coli O157:H7 decreased significantly on LB-washed wings, as compared to populations of respective pathogens on control wings. The growth of psychrotrophic bacteria on LB-washed wings was significantly retarded as compared to growth on control wings during refrigerated storage. Washing chicken wings with a solution containing 0.5% lactic acid and 0.05% sodium benzoate can greatly reduce the populations of pathogenic and psychotrophic bacteria, thus enhancing safety and extending shelf life. PMID:8527331

  13. Effect of exhaust emissions on carbon monoxide levels in employees working at indoor car wash facilities

    PubMed Central

    Topacoglu, H; Katsakoglou, S; Ipekci, A

    2014-01-01

    Background: Exhaust emissions from motor vehicles threaten the environment and human health. Carbon monoxide (CO) poisoning, especially the use of exhaust gas CO in suicidal attempts is well known in the literature. Recently, indoor car wash facilities established in large shopping malls with closed parking, lots is a new risk area that exposes car wash employees to prolonged periods of high level CO emissions from cars. The aim of this study was to investigate how carboxyhemoglobin (COHb) blood levels of employees get affected in confined areas with relatively poor air circulation. Methods: Twenty male volunteers working in indoor parking car wash facilities were included in the study. Participants were informed about the aim of this study and their consent was obtained. Their pulse COHb levels were measured twice, at the beginning and at the end of the working day using Rad-57 pulse CO-oximeter device, allowing non-invasive measurement of COHb blood levels to compare the changes in their COHb levels before and after work. Results: The mean age of the male volunteers was 29.8 ± 11.9 (range 18-55). While the mean COHb levels measured at the start of the working day was 2.1 ± 2.0 (range 0-9), it was increased to 5.2 ± 3.3 (range 1-15) at the end of work shift (Wilcoxon test, p <0.001). There was a statistically significant difference in COHb levels between the beginning and the end of the work shift in smoker subjects, while the difference was not significant in the non-smoking group (Wilcoxon test, p=0.001, p=0.102, respectively). Conclusion: The COHb blood levels of indoor car wash facility employees is directly impacted and gets elevated by motor vechile exhaust emissions. For the health of the employees at indoor parking car wash facilities, stricter precautions are needed and the government should not give permit to such operations. PMID:25125950

  14. Formulating essential oil microemulsions as washing solutions for organic fresh produce production.

    PubMed

    Zhang, Linhan; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2014-12-15

    Applications of plant-derived organic essential oils (EOs) as antimicrobials for post-harvest produce operations are limited by their low water solubility. To dissolve EOs in water, microemulsions were studied using two surfactants permitted for organic production, sucrose octanoate ester (SOE) and soy lecithin that were mixed at various mass ratios before dilution with water to 40% w/w. EOs were then mixed with the surfactant solution by hand shaking. Based on visual transparency, intermediate lecithin:SOE mass ratios favoured the formation of microemulsions, e.g., up to 4.0% clove bud oil at ratios of 2:8 and 3:7, and 4.0% cinnamon bark oil and 3.0% thyme oil at ratios of 2:8 and 1:9, respectively. Microemulsions with intermediate lecithin:SOE mass ratios had a relatively low viscosity and better ability to wet fresh produce surfaces. The microemulsions established in this work may be used as washing solutions to enhance the microbial safety of organic fresh produce. PMID:25038656

  15. Recovery of bacteria from broiler carcasses after spray washing with acidified electrolyzed water or sodium hypochlorite solutions.

    PubMed

    Northcutt, J; Smith, D; Ingram, K D; Hinton, A; Musgrove, M

    2007-10-01

    A study was conducted to investigate the effects of spray washing broiler carcasses with acidified electrolyzed oxidizing water (EO) or sodium hypochlorite (HOCl) solutions for 5, 10, or 15 s. Commercial broiler carcasses were contaminated with 0.1 g of broiler cecal contents inoculated with 10(5) cells of Campylobacter and 10(5) cells of nalidixic acid-resistant Salmonella. Numbers of bacteria recovered from unwashed control carcasses were 6.7, 5.9, 6.3, and 3.9 log(10) cfu/mL for total aerobic bacteria, Escherichia coli, Campylobacter, and Salmonella, respectively. Washing in either EO (50 mg/L of sodium hypochlorite, pH 2.4, oxidation reduction potential of 1,180 mV) or HOCl (50 mg/L of sodium hypochlorite, pH 8.0) significantly reduced the levels of bacteria recovered from carcasses (P < 0.05). Carcasses washed with EO had slightly lower levels of total aerobic bacteria (0.3 log(10) cfu/mL) and E. coli (0.2 log(10) cfu/mL) than HOCl-treated carcasses; however, populations of Campylobacter and Salmonella were comparable after washing in either solution. Increasing the carcass washing time from 5 to 10 s lowered the levels of total aerobic bacteria (6.1 vs. 5.8 log(10) cfu/mL), E. coli (4.6 vs. 4.1 log(10) cfu/mL), Campylobacter (5.2 vs. 4.2 log(10) cfu/mL), and Salmonella (2.0 vs. 1.2 log(10) cfu/mL), but no further microbiological reductions occurred when washing time was extended from 10 to 15 s. Data from the present study show that washing poultry carcasses with EO is slightly better (total aerobic bacteria and E. coli) or equivalent to (Campylobacter and Salmonella) washing with HOCl. Washing broiler carcasses for a period equivalent to 2 inside-outside bird washers (10 s) provided greater reductions in carcass bacterial populations than periods simulating 1 (5 s) or 3 inside-outside bird washers (15 s). PMID:17878456

  16. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges. PMID:26313128

  17. Effects of washing produce contaminated with the snail and slug hosts of Angiostrongylus cantonensis with three common household solutions.

    PubMed

    Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H

    2013-06-01

    The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

  18. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...

  19. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots.

    PubMed

    Conrad; Klose

    1999-10-01

    Washed excised roots of rice (Oryza sativa) produced H(2), CH(4), acetate, propionate and butyrate when incubated under anoxic conditions. Acetate production was most pronounced with a maximum rate (mean+/-standard error; four different root preparations) of 3.4+/-0.6 mol h(-1) g-dry weight(-1) roots, compared to 0.45+/-0.13, 0.06+/-0.03, and 0.04+/-0.01 mol h(-1) g-dw(-1) for propionate, butyrate and CH(4)1 kPa after one day of incubation. Then it decreased and reached more or less constant concentrations of about 50-80 Pa after about 7-8 days. Hydrogen partial pressures were always high enough to allow exergonic methanogenesis (DeltaG=-67 to -98 kJ mol(-1) CH(4)) and exergonic homoacetogenesis (DeltaG=-18 to -48 kJ mol(-1) acetate) from H(2) plus CO(2). Radioactive bicarbonate/CO(2) was incorporated into CH(4), acetate and propionate. The specific radioactivities of the products indicated that CH(4) was exclusively produced from H(2)/CO(2) confirming a previous study. The contribution of CO(2) to the production of acetate and propionate was 32-39% and 42-61%, respectively, assuming that each carbon atom was equally labeled. Propionate also became radioactively labeled, when the roots were incubated with either [1-(14)C]acetate or [2-(14)C]acetate accounting for 60-76% of total propionate production. Reductive formation of propionate was thermodynamically favorable both from H(2) plus acetate plus CO(2) (DeltaG=-15 to -38 kJ mol(-1) propionate) and from H(2) plus CO(2) (DeltaG=-34 to -85 kJ mol(-1) propionate). A substantial fraction of propionate was apparently reductively formed from acetate and/or CO(2). In conclusion, our results demonstrate an intensive anaerobic dark metabolism of CO(2) on washed rice roots with reduction of CO(2) contributing significantly to the production of acetate, propionate and CH(4). The CO(2) reduction seemed to be driven by decay and fermentation of root material. PMID:10508939

  20. Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes, Phase 2

    SciTech Connect

    Withers, C.; Kono, J.

    2015-04-01

    This report provides results from a second-phase research study of a phenomenon generally referred to as wind washing. Wind washing is the movement of unconditioned air around or through building thermal barriers in such a way as to diminish or nullify the intended thermal performance. In some cases, thermal and air barriers are installed very poorly or not at all, and air can readily move from unconditioned attic spaces into quasi-conditioned interstitial spaces. This study focused on the impact of poorly sealed and insulated floor cavities adjacent to attic spaces in Florida homes. In these cases, unconditioned attic air can be transferred into floor cavities through pathways driven by natural factors such as wind, or by thermal differences between the floor cavity and the attic. Air can also be driven into a floor cavity through mechanical forces imposed by return duct leakage in the floor cavity.

  1. Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing.

    PubMed

    Radwan, M A; Abu-Elamayem, M M; Shiboob, M H; Abdel-Aal, A

    2005-04-01

    Profenofos (Selecron 72% EC), was sprayed on field-grown pepper and eggplant at the recommended rate of 1.28 kg a,i/ha. Fruit samples were collected at 1 h to 14 days after application and analysed to determine the content and dissipation rate of profenofos. The effect of different washing solutions and some household processing on the removal of such residues from treated vegetables were also investigated. Profenofos residues were quantified by using gas chromatography. The results showed that the consumable safety time were found to be 10 days on sweet pepper and 14 days on hot pepper and eggplant fruits. The initial disappearance of profenofos appeared to follow first order kinetics with different rates of reaction of 0.38, 0.40 and 0.35 day(-1) for hot pepper, sweet pepper and eggplant, respectively. The corresponding half-lives (t1/2) were 1.84, 1.74 and 1.96 days. Also, the results indicated that tap water, potassium permenganate and acetic acid solution gave high percent removal of profenofos residues from hot and sweet pepper fruits, while no detectable residues was found in eggplant fruit after washing with soap and acetic acid solutions. In general, all tested washing solutions gave higher percent removal of profenofos residues from eggplant fruit than the two other pepper fruits. Blanching and frying of pepper and eggplant fruits resulted in great reduction to almost completely removed (approximately 100%) of the deposited profenofos. In addition, pickling process removed 92.58 and 95.61% from hot pepper fruit after one week and after two weeks, respectively. PMID:15721202

  2. Technology Solutions Case Study: Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes: Phase 2, Southeastern United States

    SciTech Connect

    2015-05-01

    In many two-story homes, there are attic spaces above the first-floor of the home that border portions of the second-story conditioned space. These spaces have breaches of the air and thermal boundaries, creating a phenomenon known as wind washing. This can cause attic air above the first-floor space to be driven into the cavity between the first and second floors by wind, thermal buoyancy forces, or mechanical driving forces as well as circulation of hot attic air against the wallboard because of gaps between insulation batts installed on knee walls and the gypsum wallboard. In this project, the U.S. Department of Energy team Building America Partnership for Improved Residential Construction (BA-PIRC) investigated wind washing in 56 homes. The goals were to identify the failure mechanisms that lead to wind washing, characterize the pathways for air and heat to enter the house, and evaluate the seasonal energy savings and peak demand reduction that can result from repairing these wind washing problems. Based on this research, the team developed recommendations for cost-effective retrofit solutions and information that can help avoid these problems in new construction.

  3. Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes, Phase 2

    SciTech Connect

    Withers, Charles R.; Kono, Jamie

    2015-04-13

    With U.S. Department of Energy goals of reducing existing home energy use by 30% and new home energy use by 50%, it is imperative to focus on several energy efficiency measures, including the quality of air and thermal barriers. This report provides results from a second-phase research study of a phenomenon generally referred to as wind washing. Wind washing is the movement of unconditioned air around or through building thermal barriers in such a way as to diminish or nullify the intended thermal performance. In some cases, thermal and air barriers are installed very poorly or not at all, and air can readily move from unconditioned attic spaces into quasi-conditioned interstitial spaces. This study focused on the impact of poorly sealed and insulated floor cavities adjacent to attic spaces in Florida homes. In these cases, unconditioned attic air can be transferred into floor cavities through pathways driven by natural factors such as wind, or by thermal differences between the floor cavity and the attic. Air can also be driven into a floor cavity through mechanical forces imposed by return duct leakage in the floor cavity.

  4. Fresh produce washing aid, T-128, enhances inactivation of Salmonella and pseudomonas biofilms on stainless steel coupons in chlorinated wash solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Bacterial biofilms on food processing equipment can protect pathogens against sanitizers. When chlorine is rapidly depleted by organic materials present in process wash water, inactivation of biofilm pathogens is further challenging. Purpose: This study was conducted to evaluate the e...

  5. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    PubMed

    Ash, Christopher; Drbek, Ond?ej; Tejneck, Vclav; Jehli?ka, Jan; Michon, Ninon; Bor?vka, Lubo

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ?8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  6. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    PubMed Central

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  7. Solution-processed soldering of carbon nanotubes for flexible electronics

    NASA Astrophysics Data System (ADS)

    Rao, K. D. M.; Radha, B.; Smith, K. C.; Fisher, T. S.; Kulkarni, G. U.

    2013-02-01

    We report a simple lithography-free, solution-based method of soldering of carbon nanotubes with Ohmic contacts, by taking specific examples of multi-walled carbon nanotubes (MWNTs). This is achieved by self-assembling a monolayer of soldering precursor, Pd2+ anchored to 1,10 decanedithiol, onto which MWNTs could be aligned across the gap electrodes via solvent evaporation. The nanosoldering was realized by thermal/electrical activation or by both in sequence. Electrical activation and the following step of washing ensure selective retention of MWNTs spanning across the gap electrodes. The soldered joints were robust enough to sustain strain caused during the bending of flexible substrates as well as during ultrasonication. The estimated temperature generated at the MWNT-Au interface using an electro-thermal model is 150?C, suggesting Joule heating as the primary mechanism of electrical activation. Further, the specific contact resistance is estimated from the transmission line model.

  8. SOIL WASHING TREATMENT

    EPA Science Inventory

    Soil washing is a water-based process for mechanically scrubbing soils ex-situ to remove undesirable contaminants. he process removes contaminants from soils in one of two ways: by dissolving or suspending them in the wash solution (which is later treated by conventional wastewat...

  9. Natural laccase mediators separated from water-washed solution of steam exploded corn straw by nanofiltration and organic solvent fractionation.

    PubMed

    Qiu, Weihua; Zhang, Wenyan; Chen, Hongzhang

    2014-03-01

    Artificially synthetic mediators of laccase had the limitation of high cost and possible toxicity. The separation of natural laccase mediators from water-washed solution (WWS) of steam exploded corn straw (SECS) was studied using nano-filtration and successive organic solvents extraction. Results indicated that the UV absorption intensity of nano-filtrated WWS was significantly enhanced. The UV absorption intensity of each extractive from WWS could be ranked as ether extractive (EE)>ethyl acetate extractive (EAE)>chloroform extractive (CE). Decoloration of crystal violet catalyzed by laccase/EE was higher than that by laccase/ABTS, which was 66.95% and 61.9% at 8h, respectively. All the decoloration rates of malachite green at 60min using EE, EAE and ABTS as mediator were both more than 80%. This research would benefit for broaden the source of laccase mediator and reduce the using cost of laccase/mediator system. PMID:24513027

  10. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of lauric acid (LA)-potassium hydroxide (KOH) solutions to reduce carcass bacterial contamination was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Campylobacter coli. In one trial, in...

  11. High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Brown, G.; Bailey, S. R.; Novotny, M.; Carter, R.; Flahaut, E.; Coleman, K. S.; Hutchison, J. L.; Green, M. L. H.; Sloan, J.

    We describe here the high yield filling (i.e. >50%) of single walled nanotubes (SWNTs) with a variety of halides, achieved according to various modified filling procedures. Both bundles and discrete SWNTs can be filled continuously up to lengths of several hundred nm, often with filling yields approaching 60-70% or better. In addition some high yield filled SWNTs were subjected to long-term washing in either boiling or room temperature. aqueous media, which does not remove the filling from the tubules, but enables effective removal of water-soluble extraneous materials .

  12. Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction.

    PubMed

    Woo, Heesoo; Park, Junboum; Lee, Seockheon; Lee, Seunghak

    2014-02-01

    Washing and drying processes are essential when synthesizing nano-scale zero valent irons (nZVIs) by borohydride reduction of iron salts in aqueous phase. However, effects of these processes on nZVI reactivity have not been investigated in detail, although different washing and drying conditions might alter surface characteristics of nZVIs and thus vary their reactivity towards reducible contaminants. In this study, effects of three washing solutions and drying conditions on the reactivity of nZVIs for nitrate were investigated. Washing with volatile solvents and drying under anaerobic condition decreased thickness of Fe-oxide layer on nZVIs and increased content of Fe(2+)-containing oxides in the layer, which enhanced nZVI reactivity toward nitrate. Volatile solvent washing could minimize the decrease in nZVI reactivity according to changing anaerobic drying condition to aerobic. Findings from this study suggest that application of washing with volatile solvents and drying under aerobic condition should be recommended as effective processes to obtain nZVIs with maximum reactivity at reasonable costs and efforts. PMID:24290304

  13. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil.

    PubMed

    Xu, Jingying; Kleja, Dan B; Biester, Harald; Lagerkvist, Anders; Kumpiene, Jurate

    2014-08-01

    Feasibility of soil washing to remediate Hg contaminated soil was studied. Dry sieving was performed to evaluate Hg distribution in soil particle size fractions. The influence of dissolved organic matter and chlorides on Hg dissolution was assessed by batch leaching tests. Mercury mobilization in the pH range of 3-11 was studied by pH-static titration. Results showed infeasibility of physical separation via dry sieving, as the least contaminated fraction exceeded the Swedish generic guideline value for Hg in soils. Soluble Hg did not correlate with dissolved organic carbon in the water leachate. The highest Hg dissolution was achieved at pH 5 and 11, reaching up to 0.3% of the total Hg. The pH adjustment was therefore not sufficient for the Hg removal to acceptable levels. Chlorides did not facilitate Hg mobilization under acidic pH either. Mercury was firmly bound in the studied soil thus soil washing might be insufficient method to treat the studied soil. PMID:24873713

  14. Modeling of the effect of washing solution flow conditions on Escherichia coli O157:H7 population reduction on fruit surfaces.

    PubMed

    Wang, Hua; Liang, Wei; Feng, Hao; Luo, Yaguang

    2007-11-01

    Washing produce with sanitizing solutions is an important step in reducing microbial populations during postharvest handling. Little information exists regarding the effects of washing solution flow conditions on the efficacy of pathogen reduction during washing. This study was undertaken to investigate the effects of washing conditions such as flow velocity, agitation rate, and contact time on the reduction of Escherichia coli O157:H7 populations from the surfaces of cantaloupe rind and cut apples. Top surfaces of cylindrical samples were spot inoculated with E. coli O157:H7 and treated with peroxyacetic acid (POAA; 80 mg/liter) solution under different flow velocities and agitation rates and with different washing modes. Test results indicate that the reduction rate of E. coli O157:H7 increased with the increase in flow velocity and agitation rate under the testing conditions. In a 3-min treatment in the flow-through chamber, the E. coli O157:H7 count reduction on cantaloupe rind and cup apples reached 2.5 and 2.3 log CFU/cm2, respectively, when the flow velocity increased from 0.0 to 0.8 m/min. Agitation conducted at the bottom of the treatment chamber reduced the E. coli O157:H7 population on cut apples by 1.2 log CFU/cm2 in 3 min, whereas in the treatment with the agitation over the top of the chamber, the survival count of E. coli O157:H7 was reduced by only 0.8 log CFU/cm2. The experimental data were used to fit four microbial reduction kinetic models. It was found that E. coli O157:H7 reduction from the fruit surfaces was best described by the Weibull model. These findings may be useful in designing produce wash systems for achieving enhanced pathogen reduction and improved produce quality and safety. PMID:18044431

  15. Effect of Nitrite/Nitrate concentrations on Corrosivity of Washed Precipitate

    SciTech Connect

    Congdon, J.W.

    2001-03-28

    Cyclic polarization scans were performed using A-537 carbon steel in simulated washed precipitate solutions of various nitrite and nitrate concentrations. The results of this study indicate that nitrate is an aggressive anion in washed precipitate. Furthermore, a quantitative linear log-log relationship between the minimum effective nitrite concentration and the nitrate concentration was established for washed precipitate with other ions at their average compositions.

  16. EFFECT OF ALFALFA SEED WASHING ON THE ORGANIC CARBON CONCENTRATION IN CHLORINATED AND OZONATED WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bioassays, assimilable organic carbon (AOC) and coliform growth response (CGR), are better indexes than biological oxygen demand (BOD) to determine water quality and water's ability to support the growth of bacteria. The AOC value increased from 1176 to 1758 gC-eg/liter after the reconditioned ...

  17. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOEpatents

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  18. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    PubMed

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling. PMID:24718362

  19. Aqueous solution dispersement of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  20. Estimating the Contributions of Surface Wash-off and Channel Erosion to Total Sediment and Solute Loads in a Small Mixed Land Use Watershed

    NASA Astrophysics Data System (ADS)

    Nipper, J.; Bowden, W. B.

    2009-12-01

    Watershed sediment and solute loads originate from many different sources. These can include point sources, soil erosion, impervious surface wash-off, channel bank and bed erosion, and other sources depending on the land use activities within the watershed. However, the difficulties encountered in quantifying the contributions of specific nonpoint sources to watershed loads magnifies the uncertainty in watershed management efforts aimed at mitigating the pollutants. The goal of this research is to quantify the contribution of wash-off from residentially developed land and stream channel erosion to total watershed sediment and solute loadings within a 103 ha tributary watershed of Potash Brook, in Chittenden County, Vermont. To do so we deployed autosamplers at two stream cross sections and within two representative storm drain outfalls to sample TSS, TN, NO3-, TKN, TP, and Cl-. Samples were collected during storm events on a flow weighted composite basis, and by periodic base flow sampling. In stream sampling was conducted over a total 5 years and storm drain sampling covered a total of 2 years. Preliminary analysis of these data suggests that surface wash-off from developed portions of the watershed can generate greater than 90% of the TSS and greater than 50% of the Cl- loads measured at the watershed outlet sampling location. Currently, these data are being incorporated into an EPA-SWMM model of the watershed coupled with an evolutionary strategies parameter search algorithm. The model generated and measured wash-off data will be used with the measured load data at the watershed outlet to estimate the contribution of the stream channel by difference over all sampled events.

  1. Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperature because these metal nanoparticles are sheathed by several graphene sheets.

    PubMed

    Pumera, Martin

    2007-05-22

    It is demonstrated that multiwalled (MWCNT) and single-walled (SWCNT) carbon nanotube materials contain residual metal impurities (Fe, Ni, Co, Mo) even after prolonged periods of "washing" with concentrated nitric acid at temperature of 80 degrees C. Transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM) reveals that this is because such metal impurities are intercalated in the nanotube channel (in the case of MWCNT) or in the "bamboo" segment of the nanotube (in the case of "bamboo"-like MWCNT), or they create graphene sheet protected metal core/shell nanoparticles (in the case of SWCNT). TEM/energy-dispersive X-ray spectroscopy (TEM/EDS) elucidate that residual metal impurities presented in "washed" carbon nanotube materials are in some cases in the form of metal alloys or that there can be several different pure metal nanoparticles presented in one CNT material. It is shown by thermogravimetric analysis that "washing" with concentrated nitric acid removes up to 88% (w/w) of metal catalyst nanoparticles from as-received carbon nanotubes and that such removal has in some cases a significant effect on the electrochemical reduction of hydrogen peroxide. PMID:17455966

  2. Biodiesel production by two-stage transesterification with ethanol by washing with neutral water and water saturated with carbon dioxide.

    PubMed

    Mendow, G; Veizaga, N S; Snchez, B S; Querini, C A

    2012-08-01

    Industrial production of ethyl esters is impeded by difficulties in purifying the product due to high amounts of soap formed during transesterification. A simple biodiesel wash process was developed that allows successful purification of samples containing high amounts of soap. The key step was a first washing with neutral water, which removed the soaps without increasing the acidity or affecting the process yield. Afterward, the biodiesel was washed with water saturated with CO(2), a mild acid that neutralized the remaining soaps and extracted impurities. The acidity, free-glycerine, methanol and soaps concentrations were reduced to very low levels with high efficiency, and using non-corrosive acids. Independently of the initial acidity, it was possible to obtain biodiesel within EN14214 specifications. The process included the recovery of soaps by hydrolysis and esterification, making it possible to obtain the theoretical maximum amount of biodiesel. PMID:22721682

  3. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  4. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing.

    PubMed

    Wang, Lei; Jamro, Imtiaz Ali; Chen, Qi; Li, Shaobai; Luan, Jingde; Yang, Tianhua

    2016-03-01

    The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e. 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350°C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents. PMID:26644396

  5. Effect of water temperature, pressure and chemical solution on removal of fecal material and bacteria from lamb adipose tissue by spray-washing.

    PubMed

    Kochevar, S L; Sofos, J N; Levalley, S B; Smith, G C

    1997-03-01

    The objectives of this study were to determine the efficacy of various water temperatures, pressures and chemical solutions of spray-washing on the removal of fecal and bacterial contamination from lamb carcass samples taken from the breast area (< 15 min post mortem) and inoculated (6.50 cm(2) area) with an ovine fecal paste containing Escherichia coli (ATCC 11370). Inoculated samples were held for 15 min and then knife-trimmed and/or spraywashed with varying water temperatures (16, 35 or 74 °C), pressures (2.76, 13.79, 20.68 or 27.58 bar) and chemical solutions (12% trisodium phosphate, 2% acetic acid, 5% hydrogen peroxide or 0.003% available chlorine) for 18 s. After the respective treatments, samples were evaluated visually for presence of fecal material and microbiologically for aerobic plate counts (APC). Knife-trimming reduced (p < 0.05) APC of inoculated samples, while subsequent spray-washing of knife-trimmed samples reduced APC (p < 0.05), even compared to uninoculated control samples. Spray-washing with any temperature and pressure combination reduced (p < 0.05) visible fecal contamination on the samples. Bacterial reductions ranged from 1.48 to 3.83 log colony forming units (CFU/cm(2)) at the inoculation site. Use of 74 °C water was more effective (p < 0.05) in decreasing APC than either 16 or 35 °C water, while water pressure effects were similar. Use of 2% acetic acid reduced the APC more than the use of any other chemical solution tested. APC for the areas surrounding the inoculation site were similar to APC at the inoculation site; thus indicating that either there was no major spread of bacterial contamination to areas above or below the inoculation site or that contamination was diluted to levels lower than initial contamination. Overall, acetic acid and water temperature were the most important factors in reducing APC and fecal contamination on lamb adipose tissue. PMID:22061475

  6. The Comparative Photodegradation Activities of Pentachlorophenol (PCP) and Polychlorinated Biphenyls (PCBs) Using UV Alone and TiO2-Derived Photocatalysts in Methanol Soil Washing Solution

    PubMed Central

    Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing

    2014-01-01

    Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664

  7. The comparative photodegradation activities of pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs) using UV alone and TiO2-derived photocatalysts in methanol soil washing solution.

    PubMed

    Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing

    2014-01-01

    Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664

  8. Ultrasonic washing of textiles.

    PubMed

    Choi, Junhee; Kim, Tae-Hong; Kim, Ho-Young; Kim, Wonjung

    2016-03-01

    We present the results of experimental investigation of ultrasonic washing of textiles. The results demonstrate that cavitation bubbles oscillating in acoustic fields are capable of removing soils from textiles. Since the washing performance is mitigated in a large washing bath when using an ultrasonic transducer, we propose a novel washing scheme by combining the ultrasonic vibration with a conventional washing method utilizing kinetic energy of textiles. It is shown that the hybrid washing scheme achieves a markedly enhanced performance up to 15% in comparison with the conventional washing machine. This work can contribute to developing a novel laundry machine with reduced washing time and waste water. PMID:26215790

  9. Solution-Processable Carbon Nanoelectrodes for Single-Molecule Investigations.

    PubMed

    Zhu, Jingyuan; McMorrow, Joseph; Crespo-Otero, Rachel; Ao, Geyou; Zheng, Ming; Gillin, William P; Palma, Matteo

    2016-03-01

    Here we present a solution-based assembly method for producing molecular transport junctions employing metallic single-walled carbon nanotubes as nanoelectrodes. The molecular junction conductance of a series of oligophenyls was successfully measured, highlighting the potential of an all-carbon based approach for the fabrication of solution-processable single-molecule junctions for molecular electronics. PMID:26854787

  10. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    DOE PAGESBeta

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  11. Picosecond Pulse Radiolysis of Highly Concentrated Carbonate Solutions.

    PubMed

    Ghalei, Mohammad; Ma, Jun; Schmidhammer, Uli; Vandenborre, Johan; Fattahi, Massoud; Mostafavi, Mehran

    2016-03-10

    Highly concentrated potassium carbonate aqueous solutions are studied by picosecond pulse radiolysis with the purpose of exploring the formation processes of carbonate radical CO3(•-). The transient absorption band of solvated electron produced by ionizing is markedly shifted from 715 to 600 nm when the solute concentration of K2CO3 is 5 mol L(-1). This spectral shift is even more important than that observed for the solvated electron in 10 mol L(-1) KOH solutions. The broad absorption band of solvated electron in K2CO3 solutions overlaps with that of carbonate radical CO3(•-) formed at ultrashort time. Nitrate ion is used to scavenge the solvated electron and to observe the contribution of carbonate radical CO3(•-). The analysis of the amplitude and the kinetics of carbonate radical formation in highly concentrated solutions shows that CO3(•-) is formed within the electron pulse (7 ps) by two parallel mechanisms: a direct effect on the solute and the oxidation of the solute by water radical hole H2O(•+). These two mechanisms are followed by an additional one, by reaction between the solute and OH(•) radical especially in lower concentration. The radiolytic yield of each process is discussed. PMID:26885876

  12. Dissolution of Spent Nuclear Fuel in Carbonate-Peroxide Solution

    SciTech Connect

    Soderquist, Chuck Z.; Hanson, Brady D.

    2010-01-31

    This study shows that spent UO2 fuel can be completely dissolved in a carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. Samples of spent nuclear fuel were pulverized and sieved to a uniform size, then duplicate aliquots were weighed into beakers for analysis. One set was dissolved in near-boiling 10M nitric acid, and the other set was dissolved in a solution of ammonium carbonate and hydrogen peroxide at room temperature. All the resulting fuel solutions were then analyzed for Sr-90, Tc-99, Cs-137, plutonium, and Am-241. For all the samples, the concentrations of Cs-137, Sr-90, plutonium, and Am-241 were the same for both the nitric acid dissolution and the ammonium carbonate-hydrogen peroxide dissolution, but the technetium concentration of the ammonium carbonate-hydrogen peroxide fuel solution was only about 25% of the same fuels dissolved in hot nitric acid.

  13. Direct determination of carbon dioxide in aqueous solution using mid-infrared quantum cascade lasers.

    PubMed

    Schaden, S; Haberkorn, M; Frank, J; Baena, J R; Lendl, B

    2004-06-01

    A method for the direct determination of carbon dioxide in aqueous solutions using a room-temperature mid-infrared (MIR) quantum cascade laser at 2330 cm(-1) is reported. The absorption values of different carbon dioxide concentrations were measured in a 119 microm CaF2 flow-through cell. An optical system made of parabolic mirrors was used to probe the flow cell and to focus the laser beam on the mercury cadmium telluride (MCT) detector. Aqueous carbon dioxide standards were prepared by feeding different mixtures of gaseous N2 and CO2 through wash bottles at controlled temperature. The concentration of the dissolved CO2 was calculated according to Henry's law, taking into account the temperature and the partial pressure of CO2. The carbon dioxide standards were connected via a selection valve to a peristaltic pump for subsequent, automated measurement in the flow-through cell. A calibration curve was obtained in the range of 0.338 to 1.350 g/L CO2 with a standard deviation of the method sxo equal to 19.4 mg/L CO2. The limit of detection was calculated as three times the baseline noise over time and was determined to be 39 mg/L. PMID:15198817

  14. Nasal Wash Treatment

    MedlinePLUS

    ... at night. A saltwater nasal wash, or nasal irrigation, can help reduce this. A nasal wash: Cleans ... on a clean towel. If you feel the system is discolored or contaminated, clean the bottle, cap ...

  15. Proper hand washing (image)

    MedlinePLUS

    ... for proper hand washing include: Take off any jewelry. Hold your hands pointing down under warm water ... for proper hand washing include: Take off any jewelry. Hold your hands pointing down under warm water ...

  16. Electroreduction of carbon dioxide in aqueous solutions at metal electrodes

    SciTech Connect

    Augustynski, J.; Jermann, B.; Kedzierzawski, P.

    1996-12-31

    The quantities of carbon stored in the form of atmospheric carbon dioxide, CO{sub 2} in the hydrosphere and carbonates in the terrestrial environment substantially exceed those of fossil fuels. In spite of this the industrial use of carbon dioxide as a source of chemical carbon is presently limited to preparation of urea and certain carboxylic acids as well as organic carbonates and polycarbonates. However, the situation is expected to change in the future, if effective catalytic systems allowing to activate carbon dioxide will become available. In this connection, the electrochemical reduction of CO{sub 2}, requiring only an additional input of water and electrical energy, appears as an attractive possibility. For more than 100 years formic acid and formates of alkali metals were considered as the only significant products of the electroreduction of carbon dioxide in aqueous solutions. The highest current efficiencies, exceeding 90 %, were obtained either with mercury or with amalgam electrodes. The only comprehensive study regarding kinetics of CO{sub 2} reduction in aqueous solution has been performed by Eyring et al. using a mercury cathode. This paper describes electrolysis studies.

  17. Phase transition of carbonate solvent mixture solutions at low temperatures

    NASA Astrophysics Data System (ADS)

    Okumura, Takefumi; Horiba, Tatsuo

    2016-01-01

    The phase transition of carbonate solvent mixture solutions consisting of ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and LiPF6 salt have been studied for improving the low temperature performance of lithium-ion batteries. The Li ion conductivity at 25 °C was maximum at x = 0.3 in a series of 1 M LiPF6 mixed carbonate solvents compositions consisting of ECxDMC0.5-0.5xEMC0.5-0.5x (x = 0 to 0.6), while the maximum tended to shift to x = 0.2 as the temperature lowered. The differential scanning calorimetry results showed that the freezing temperature depressions of EC in the 1 M LiPF6 solution were larger than those of the DMC or EMC. The chemical shift of 7Li nuclear magnetic resonance changed from a constant to increasing at around x = 0.3, which could be reasonably understood by focusing on the change in solvation energy calculated using Born equation. However, in the region of a high EC concentration of over x = 0.3 (EC/LiPF6 > 4) in the 1 M LiPF6 solution, the free EC from the solvation to the lithium ions seems to reduce the freezing temperature depression of the EC, and thus, decreases the ionic conductivity of the solution at low temperatures, due to the EC freezing.

  18. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-01-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  19. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  20. EPA'S MOBILE VOLUME REDUCTION UNIT FOR SOIL WASHING

    EPA Science Inventory

    This paper discusses the design and initial operation of the U.S. Environmental Protection Agency'S (EPA) Mobile Volume Reduction Unit (VRU) for soil washing. oil washing removes contaminants from soils by dissolving or suspending them in the wash solutions (which can be later tr...

  1. BIOGENESIS SOIL WASHING TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. he BioGenesis Soil Washing Technology uses soil washing with a proprietary surfactant solution to transfer organic contaminants from soils to wastewater. ontaminant levels are further red...

  2. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  3. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    SciTech Connect

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.

  4. Development assessment of wash water reclamation

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1976-01-01

    An analytical study assessment of state-of-the-art wash water reclamation technology is presented. It covers all non-phase-change unit operations, unit processes and subsystems currently under development by NASA. Each approach to wash water reclamation is described in detail. Performance data are given together with the projected weights and sizes of key components and subsystems. It is concluded that a simple multifiltration subsystem composed of surface-type cartridge filters, carbon adsorption and ion exchange resins is the most attractive approach for spacecraft wash water reclamation in earth orbital missions of up to 10 years in duration.

  5. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang; Kokhdan, Syamak Nasiri

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  6. Laundry: Washing Infected Material

    MedlinePLUS

    ... reduction of microbial contamination can be achieved at water temperatures lower than 160°F if laundry chemicals suitable for low-temperature washing are used at proper concentrations. In the home, normal washing and drying cycles including "hot" or "cold" cycles are adequate to ...

  7. Inhibition Of Washed Sludge With Sodium Nitrite

    SciTech Connect

    Congdon, J. W.; Lozier, J. S.

    2012-09-25

    This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.

  8. Soil washing enhancement with solid sorbents

    SciTech Connect

    El-Shoubary, Y.M.; Woodmansee, D.E.

    1996-12-31

    Soil washing is a dynamic, physical process that remediates contaminated soil through two mechanisms: particle size separation and transfer of the contaminant into the (mostly) liquid stream. The performance of different sorbents and additives to remove motor oil from sea sand was tested. Hydrocyclone, attrition scrubber, and froth flotation equipment were used for the decontamination study. Sorbents and additives were mixed with soils in the attrition scrubber prior to flotation. Sorbents used were granular activated carbon, powder activated carbon, and rubber tires. Chemical additives used were calcium hydroxide, sodium carbonate, Alconox{reg_sign}, Triton{reg_sign} X-100 and Triton{reg_sign} X-114. When a froth flotation run was performed using no additive, washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). However, when carbon or rubber (6% by weight) was added to the contaminated soils the washed soils {open_quotes}tails{close_quotes} contained 4000 ppm of total oil and grease (TOG). The addition of sodium carbonate or calcium hydroxide (6% by weight) had same effects as sorbents. In both cases washed soil {open_quotes}tails{close_quotes} contained total oil and grease of less than 1000 ppm. The use of these non-hazardous additives or sorbent can enhance the soil washing process and consequently saves on time (residence time in equipment design) required to achieve the target clean up levels. 18 refs., 12 figs.

  9. Electrosorption of inorganic salts from aqueous solution using carbon aerogels.

    PubMed

    Gabelich, Christopher J; Tran, Tri D; Suffet, I H Mel

    2002-07-01

    Capacitive deionization (CDI) with carbon aerogels has been shown to remove various inorganic species from aqueous solutions, though no studies have shown the electrosorption behavior of multisolute systems in which ions compete for limited surface area. Several experiments were conducted to determine the ion removal capacity and selectivity of carbon aerogel electrodes, using both laboratory and natural waters. Although carbon aerogel electrodes have been treated as electrical double-layer capacitors, this study showed that ion sorption followed a Langmuir isotherm, indicating monolayer adsorption. The sorption capacity of carbon aerogel electrodes was approximately 1.0-2.0 x 10(-4) equiv/g aerogel, with ion selectivity being based on ionic hydrated radius. Monovalent ions (e.g., sodium) with smaller hydrated radii were preferentially removed from solution over multivalent ions (e.g., calcium) on a percent or molar basis. Because of the relatively small average pore size (4-9 nm) of the carbon aerogel material, only 14-42 m2/g aerogel surface area was available for ion sorption. Natural organic matter may foul the aerogel surface and limit CDI effectiveness in treating natural waters. PMID:12144279

  10. Simultaneous leaching and carbon sequestration in constrained aqueous solutions.

    PubMed

    Moon, Ji-Won; Cho, Kyu-Seong; Moberly, James G; Roh, Yul; Phelps, Tommy J

    2011-12-01

    The behavior of metal ions' leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals. PMID:21246259

  11. Simultaneous leaching and carbon sequestration in constrained aqueous solutions

    SciTech Connect

    Phelps, Tommy Joe; Moon, Ji Won; Roh, Yul; Cho, Kyu Seong

    2011-01-01

    The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.

  12. Room environment influence on eggshell bacterial levels of non-washed and washed eggs from caged and cage-free laying hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bacteria levels of non-washed and washed eggs obtained from caged and cage-free hens housed in either wire slats or shaving-covered pens were determined. On eight days (from 22 to 52 wk), 20 eggs were collected from each pen. Ten eggs/pen were washed with a commercial egg washing solution, whi...

  13. 3. VIEW LOOKING NORTH AT CHINA WASH FLUME SHOWING WASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH AT CHINA WASH FLUME SHOWING WASH - San Carlos Irrigation Project, China Wash Flume, Main (Florence-Case Grande) Canal at Station 137+00, T4S, R10E, S14, Coolidge, Pinal County, AZ

  14. Sorption of cobalt on activated carbons from aqueous solutions

    SciTech Connect

    Paajanen, A.; Lehto, J.; Santapakka, T.; Morneau, J.P.

    1997-01-01

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  15. Insights into non-Fickian solute transport in carbonates

    PubMed Central

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J

    2013-01-01

    [1] We study and explain the origin of early breakthrough and long tailing plume behavior by simulating solute transport through 3-D X-ray images of six different carbonate rock samples, representing geological media with a high degree of pore-scale complexity. A Stokes solver is employed to compute the flow field, and the particles are then transported along streamlines to represent advection, while the random walk method is used to model diffusion. We compute the propagators (concentration versus displacement) for a range of Peclet numbers (Pe) and relate it to the velocity distribution obtained directly on the images. There is a very wide distribution of velocity that quantifies the impact of pore structure on transport. In samples with a relatively narrow spread of velocities, transport is characterized by a small immobile concentration peak, representing essentially stagnant portions of the pore space, and a dominant secondary peak of mobile solute moving at approximately the average flow speed. On the other hand, in carbonates with a wider velocity distribution, there is a significant immobile peak concentration and an elongated tail of moving fluid. An increase in Pe, decreasing the relative impact of diffusion, leads to the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous transport. The implications for modeling field-scale transport are discussed. Citation: Bijeljic, B., P. Mostaghimi, and M. J. Blunt (2013), Insights into non-Fickian solute transport in carbonates, Water Resour. Res., 49, 27142728, doi:10.1002/wrcr.20238. PMID:24223444

  16. Distribution of trace elements between carbonate minerals and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Rimstidt, J. Donald; Balog, Anna; Webb, John

    1998-06-01

    The experimental distribution coefficients, K 'd, for trace elements in carbonate minerals show a systematic pattern of behavior that differs from that expected if the distribution were controlled by equilibrium thermodynamics. Regression of experimental distribution coefficients, K 'd, from the literature shows that they correlate well with the quotient of the solubility products of the trace element and host carbonate. However, the slope of the correlation line differs from that predicted by equilibrium theory in a way that suggests that the experiments are affected by a kinetic process, whereby the trace element is incorporated into the growing carbonate crystal at a rate that is either faster or slower than the incorporation of Ca. The correlations predict that the K 'd for elements that form rhombdohedral carbonates (e.g., Cd, Zn, Cu, Mn, etc.) is expressed by K 'd=1.6 K MCO3/K TrCO30.57 for calcite and K 'd=4.1 K MCO3/K TrCO30.57 for siderite. These correlations can be used to estimate the K 'd values for cases where no experimental data are available, including for other phases and other temperatures. Thus, the experimental K 'd values can be used to understand general trends in trace element behavior. Analysis of K 'd for calcite shows that this mineral can effectively sequester a variety of toxic cations (e.g., Pb, Cd, Cu, etc.) from solution, so precipitation of calcite from contaminated solutions may provide an effective method of environmental remediation. On the other hand, values of K 'd should be used with caution when interpreting ancient geochemical environments for carbonates, because K 'd values are strongly rate-dependent and the rates of mineral precipitation are seldom known.

  17. Solubilities of carbon dioxide in aqueous potassium carbonate solutions mixed with physical solvents

    SciTech Connect

    Park, S.B.; Lee, H.; Lee, K.H.

    1998-09-01

    The removal of acidic gases such as CO{sub 2}, H{sub 2}S, and COS from gas streams is a very important operation for petrochemical, oil refineries, ammonia manufacture, coal gasification, and natural gas purification plants. Here, the solubilities of carbon dioxide in aqueous potassium carbonate (K{sub 2}CO{sub 3}) solutions mixed with physical solvents were measured at 298.2 and 323.2 K with a CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. 1,2-propanediol and propylene carbonate were selected as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% 1,2-propanediol and propylene carbonate were selected as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% propylene carbonate. The experimental solubility results were presented by the mole ratio of CO{sub 2} and K{sub 2}CO{sub 3} contained in the liquid mixture. The addition of 1,2-propanediol to 5 mass% K{sub 2}CO{sub 3} solution lowered the solubility of CO{sub 2} at constant temperature and pressure conditions when CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. In the case of propylene carbonate the addition of propylene carbonate increased the experimental solubilities in the region of low CO{sub 2} partial pressures and decreased as the CO{sub 2} partial pressure was increased above atmospheric. The solubilities of CO{sub 2} decreased with increasing temperature in the range of 298.2 to 323.2 K.

  18. Efficacy of 1.5% Dish Washing Solution and 95% Lemon Water in Substituting Perilous Xylene as a Deparaffinizing Agent for Routine H and E Staining Procedure: A Short Study

    PubMed Central

    Ananthaneni, Anuradha; Namala, Srilekha; Guduru, Vijay Srinivas; Ramprasad, V. V. S.; Ramisetty, Sabitha Devi; Udayashankar, Urmila; Naik, Kiran Kumar

    2014-01-01

    Aim. To assess the efficacy of dish washing solution and diluted lemon water in deparaffinizing sections during conventional hematoxylin and eosin staining technique. Objective. The objective is to utilize eco-friendly economical substitute for xylene. Materials and Methods. Using twenty paraffin embedded tissue blocks, three sections each were prepared. One section was stained with conventional H and E method (Group A) and the other two sections with xylene-free (XF) H and E (Groups B and C). Staining characteristics were compared with xylene and scoring was given. Total score of 35 was regarded as adequate for diagnosis and less than that inadequate for diagnosis. Statistical Analysis. Chi-square test, Kruskal Wallis ANOVA test, and Mann-Whitney U test were used. Results. Adequacy of nuclear staining, crispness, and staining for diagnosis were greater in both Groups A and C (100%) than Group B (95%). Adequacy of cytoplasmic staining was similar in all the three groups (100%). Group B showed comparatively superior uniform staining and less retention of wax. Conclusion. Dish washing solution or diluted lemon water can be replaced for xylene as deparaffinizing agent in hematoxylin and eosin procedure. PMID:24800109

  19. carbonate solid solution at high pressures up to 55 GPa

    NASA Astrophysics Data System (ADS)

    Spivak, Anna; Solopova, Natalia; Cerantola, Valerio; Bykova, Elena; Zakharchenko, Egor; Dubrovinsky, Leonid; Litvin, Yuriy

    2014-09-01

    Magnesite, siderite and ferromagnesites Mg1- x Fe x CO3 ( x = 0.05, 0.09, 0.2, 0.4) were characterized using in situ Raman spectroscopy at high pressures up to 55 GPa. For the Mg-Fe-carbonates, the Raman peak positions of six modes (T, L, ?4, ?1, ?3 and 2?2) in the dependence of iron content in the carbonates at ambient conditions are presented. High-pressure Raman spectroscopy shows that siderite undergoes a spin transition at ~40 GPa. The examination of the solid solutions with compositions Mg0.6Fe0.4CO3, Mg0.8Fe0.2CO3, Mg0.91Fe0.09CO3 and Mg0.95Fe0.05CO3 indicates that with increase in the amount of the Fe spin transition pressure increases up to ~45 GPa.

  20. Halochemical processes upon washing of calcareous gypsiferous solonchaks

    NASA Astrophysics Data System (ADS)

    Minashina, N. G.; Gavrilova, G. K.

    2008-01-01

    Data on changes in the contents of carbonates, gypsum, and soluble salts upon washing of gypsiferous solonchaks were obtained in laboratory and field experiments. Chemical methods and micromorphological study of thin sections were applied. Stages of the halochemical changes upon the soil washing were identified. It was found that the soil washing results in the formation of secondary magnesium sulfate and pseudomorphic substitution of calcite for gypsum.

  1. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    PubMed

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. PMID:26355411

  2. Soil washing technology evaluation

    SciTech Connect

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  3. Lead removal via soil washing and leaching

    NASA Astrophysics Data System (ADS)

    Lin, H. K.; Man, X. D.; Walsh, D. E.

    2001-12-01

    A soil washing and leaching process was tested for removing lead from soils. A soil-washing circuit, including size and gravity separations, was employed to remove the coarse metallic lead particles, while the leaching was applied to remove fine metallic lead particles and other lead species. The soil-washing tests proved that the metallic lead particles larger than 0.15 mm (100 mesh) could be effectively removed. The sodium-chloride-based leaching solution with ferric chloride or sodium hypochlorite as oxidants was adopted in the leaching. The leaching experimental results indicated that under the pH of 2 and Eh of 1,300 mV, the metallic lead particles smaller than 0.15 mm and other lead species can be dissolved in the leaching solution within 60 minutes.

  4. Effects of dilute substitutional solutes on interstitial carbon in ?-Fe: Interactions and associated carbon diffusion from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2014-07-01

    By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in ?-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.

  5. Domestic wash water reclamation

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    System consists of filtration unit, reverse-osmosis module, tanks, pumps, plumbing, and various gauges, meters, and valves. After water is used in washing machine or shower, it is collected in holding tank. Water is pumped through series of five particulate filters. Pressure tank supplies processed water to commode water closet.

  6. Soil washing treatability study

    SciTech Connect

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS.

  7. Saline nasal washes

    MedlinePLUS

    ... iodine) 1 tsp baking soda 1 cup warm distilled, filtered, or boiled water To use the wash: Fill the device with ... You should: Be sure you only use distilled, boiled, or filtered water. ... Always clean the neti pot or nasal bulb with distilled, ...

  8. The passivity of 304 stainless steel in propylene carbonate solutions

    SciTech Connect

    Shifler, D.A.; Kruger, J. ); Moran, P.J. )

    1992-01-01

    This paper reports that the passivation behavior of 304 stainless steel in anhydrous propylene carbonate (PC) containing 0.5M LiAsF{sub 6} or 0.5M LiClO{sub 4} was studied. The air-formed film on 304SS is stable up to the oxidation potential of PC (PC{sub ox}). Scratch tests show that the bared 304SS surface repassivates in the anhydrous PC solutions of either electrolyte by chemisorption of PC molecules below PC{sub ox}. In PC/0.5M LiAsF{sub 6} solutions, the 304SS is not passivated at potentials above PC{sub ox}. This is attributed to the formation of a thin metastable perchlorate salt film or an adsorbed layer of perchlorate anions. When the perchlorate anions oxidize, the passivation becomes unstable and pitting occurs. Small (3-8 volume percent) additions of PC/0.5M LiClO{sub 4} to PC/0.5M LiAsF{sub 6} solutions raised the passive range to the perchlorate oxidation potential. Small quantities of water, propylene glycol, and propylene oxide added to PC lightly improve the passive range of the 304 stainless steel.

  9. The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar.

    PubMed

    Flora, Justine F R; Lu, Xiaowei; Li, Liang; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization of simulated food waste was performed at 250 C for 20 h using deionized water (DI) and 0.01 N solutions of HCl, NaCl, and NaOH. The hydrochars produced were washed with acetone and the adsorptive capacity of the washed and unwashed hydrochars for atrazine were characterized. Using a generalized linear model, it was shown that the adsorptive capacity of the washed hydrochar was significantly higher than that of the unwashed hydrochars. The HCl processed unwashed hydrochar has a slightly higher adsorptive capacity compared to the DI processed hydrochar while both the NaOH processed washed and unwashed hydrochars were slightly lower than the corresponding DI processed hydrochars. (13)C solid-state NMR results showed no discernible differences in surface functional groups among the washed hydrochars and among the unwashed hydrochars. A clear decrease in alkyl groups and an increase in aromatic/olefinic-C groups were observed after acetone washing. (1)H liquid-phase NMR showed carbon alkyl chains were present in the acetone wash. Interaction energies calculated using dispersion corrected density functional theory show that atrazine is more strongly adsorbed to surfaces without weakly associated alkyl groups. PMID:23931904

  10. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  11. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions.

    PubMed

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best "green" processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 10(2) S m(-1) with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods. PMID:20931147

  12. Aqueous chemical wash compositions

    SciTech Connect

    Bannister, C.E.

    1987-07-21

    This patent describes an aqueous, substantially unfoamed chemical wash composition having properties making it suitable for use as a pre-flush in well cementing operations and/or for removal of drilling mud from a borehole at a temperature of from about 150/sup 0/F to about 270/sup 0/F, the wash a. being predominantly composed of water, b. containing an active surfactant component comprising a combination of (1) from about 0.1 to about 1.5 weight percent (total weight basis) of a water soluble anionic surfactant; (2) from about 0.1 to about 1.5 weight percent (total weight basis) of a nonionic surfactant; and (3) from about 0.05 to about 0.54 weight percent (total weight basis) of at least one water soluble amphoteric surfactant, and c. having dispersed therein a heterogeneous mixture of distinct particles comprising both a first particulate oil soluble resin which is friable and a second particulate oil soluble resin which is pliable and where the size of the friable resin particles ranges from about 0.5 to about 300 microns and the size of the pliable resin particles ranges from about 0.05 to about 30 microns. The amount of the friable-pliable resin mixture is sufficient to impart effective fluid loss control to the chemical wash composition.

  13. Washing Out the Competition

    NASA Technical Reports Server (NTRS)

    2001-01-01

    AJT Associates, Inc. (AJT) worked with NASA to develop a revolutionary ozone-based laundry system. AJT's TecH2Ozone(R) wash system presents its customers with an energy-efficient, cost-effective, and environmentally safe way to perform commercial laundering. TecH2Ozone significantly reduces the amount of water and chemical used as compared to traditional commercial laundry systems. This reduction has resulted in lower cost and shorter wash cycles. And due to the reduced use of chemicals, a significant portion of the rinse water is recycled back into the system for reuse. TecH2Ozone customers, such as hotels and other large commercial laundry facilities, have felt the benefits of this equipment. Because of the reduced cycle times, fewer washers are needed and there is a notable increase in the cleanliness of the laundry. The reduction in chemical residues is a boon to customers with allergies and those prone to skin irritation from chemicals retained in regular laundry. AJT Associates, Inc. (AJT) worked with NASA to develop a revolutionary ozone-based laundry system. AJT's TecH2Ozone(R) wash system presents its customers with an energy-efficient, cost-effective, and environmentally safe way to perform commercial laundering.

  14. Study of Soil Washing for Remediation of Pb and Zn Contaminated Coastal Landfill

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, S.; Lee, M.

    2013-12-01

    As a result of analyzing the pre-treatment process of Pb, Zn in contaminated coastal landfill soil presented by Korean Soil Analysis Method, the each concentration was presented 577.00mg/kg, 3894.34mg/kg. This soil was critically contaminated with Pb and Zn because it was exceeded the Standard of soil contamination(2area: Pb-400mg/kg, Zn-600mg/kg). Soil remediation efficiency of the soil washing process for the removal of Pb and Zn was determined to be consistent with the results. The batch experiment on the several washing solutions(HCl, HNO3), washing solutions concentrations(0.1-0.8M) and the ratio of soil vs. solution for soil washing(1:3, 1:5 and 1:10) was performed. The results of experiments, washing time was appropriate in 30 minutes. The removal efficiency of soil washing increased as the ratio of soil vs. washing solution increased. But, in the case of heavy metals, the soil vs. solution for soil washing was determined as the optimal ratio of 1 : 5. Five consecutive soil washing with 0.5M of HCl and HNO3 solutions were performed. Results of experiments, in case of Pb was removed by target removal efficiency from soil on the twice washing. With in case of Zn was over on the first washing by target removal efficiency, but suggesting that twice consecutive soil washing is desirable as stability at field. Results of consecutive soil washing experiments, the removal efficiency maintained lower than 10 % after the 4th washing. From the results, demanding consecutive washing is not recommended. Results about the heavy metal contaminated soil washing experiments of the coastal landfill, in the case of HCl with more than 0.5 M of solution was performed at 1:5 of soil ratio vs. solution, 30 minutes of washing time and 2-3 consecutive soil washing. And in the case of HNO3 with 0.8 M of solution was performed various ratios of soil vs. washing solution, suggesting that 2-3 consecutive soil washing was reached to Pb and Zn target removal efficiency. Key words : landfill soil; washing solution; heavy metal contamination; soil remediation; soil washing; soil contamination

  15. Carbon Footprint of Telemedicine Solutions - Unexplored Opportunity for Reducing Carbon Emissions in the Health Sector

    PubMed Central

    Holmner, Åsa; Ebi, Kristie L.; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    Background The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. Objectives To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. Methods A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Results Replacing physical visits with telemedicine appointments resulted in a significant 40–70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Conclusions Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints. PMID:25188322

  16. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions

    NASA Astrophysics Data System (ADS)

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A.

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods.The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods. Electronic supplementary information (ESI) available: Aggregation of PEI and PSS in [EMIm][EtSO4], detailed FTIR data, water-contact angle for (PEI/PSS)10 multilayers, and XPS survey spectra. See DOI: 10.1039/b9nr00333a

  17. The regeneration of polluted activated carbon by radiation techniques

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Borong, Bao; Ruimin, Zhou; Jinliang, Zhu; Longxin, Hu

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption

  18. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.

    PubMed

    Dimiev, Ayrat M; Gizzatov, Ayrat; Wilson, Lon J; Tour, James M

    2013-04-01

    Here we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions. PMID:23435853

  19. On the black carbon problem and its solutions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2010-12-01

    Black carbon (BC) warms air temperatures in at least seven major ways: (a) directly absorbing downward solar radiation, (b) absorbing upward reflected solar radiation when it is situated above bright surfaces, such as snow, sea ice, and clouds, (c) absorbing some infrared radiation, (d) absorbing additional solar and infrared radiation upon obtaining a coating, (e) absorbing radiation multiply reflected within clouds when situated interstitially between cloud drops, (f) absorbing additional radiation when serving as CCN or scavenged inclusions within cloud drops, and (g) absorbing solar radiation when deposited on snow and sea ice, reducing the albedos of both. Modeling of the climate effects of BC requires treatment of all these processes in detail. In particular, treatment of BC absorption interstitially between cloud drops and from multiply-dispersed cloud drop BC inclusions must be treated simultaneously with treatment of cloud indirect effects to determine the net effects of BC on cloud properties. Here, results from several simulations of the effects of BC from fossil fuel and biofuel sources on global and regional climate and air pollution health are summarized. The simulations account for all the processes mentioned. Results are found to be statistically significant relative to chaotic variability in the climate system. Over time and in steady state, fossil-fuel soot plus biofuel soot are found to enhance warming more than methane. The sum of the soots causes less steady-state warming but more short term warming than does carbon dioxide. Thus eliminating soot emissions from both sources may be the fastest method of reducing rapid climate warming and possibly the only method of saving the Arctic ice. Eliminating such emissions may also reduce over 1.5 million deaths worldwide, particularly in developing countries. Short term mitigation options include the targeting of fossil-fuel and biofuel BC sources with particle traps, new stove technologies, and rural electrification. However, the real solution, to be implemented over a 20-40 year period is complete conversion of the combustion infrastructure to electricity and electrolytic hydrogen, where the electricity is all produced by near-zero emitting wind, water, and solar (WWS) based energy technologies. Such a conversion would reduce BC and greenhouse gases simultaneously with cooling aerosol particles. This would ramp down the presence of both warming and cooling agents, but still cause net reduction of global warming, while reducing devastating health impacts that are occurring from both warming and cooling aerosols.

  20. Laboratory testing in-tank sludge washing, summary letter report

    SciTech Connect

    Norton, M.V.; Torres-Ayala, F.

    1994-09-01

    In-tank washing is being considered as a means of pretreating high-level radioactive waste sludges, such as neutralized current acid waste (NCAW) sludge. For this process, the contents of the tank will be allowed to settle, and the supernatant solution will be decanted and removed. A dilute sodium hydroxide/sodium nitrite wash solution will be added to the settled sludge and the tank contents will be mixed with a mixer pump system to facilitate washing of the sludge. After thorough mixing, the mixer pumps will be shut off and the solids will be allowed to re-settle. After settling, the supernatant solution will be withdrawn from the tank, and the wash cycle will be repeated several times with fresh wash solution. Core sample data of double shell tank 241-AZ-101 indicate that settling of NCAW solids may be very slow. A complicating factor is that strong thermal currents are expected to be generated from heat produced by radionuclides in the sludge layer at the bottom of the tank. Additionally, there are concerns that during the settling period (i.e., while mixing pumps and air-lift re-circulators are shut off), the radionuclides may heat the residual interstitial water in the sludge to the extent that violent steam discharges (steam bumping) could occur. Finally, there are concerns that during the washing steps sludge settling may be hindered as a result of the reduced ionic strength of the wash solution. To overcome the postulated reduced settling rates during the second and third washing steps, the use of flocculants is being considered. To address the above concerns and uncertainties associated with in-tank washing, PNL has conducted laboratory testing with simulant tank waste to investigate settling rates, steam bump potential, and the need for and use of flocculating agents.

  1. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Pirajn, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTMPS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 Jg?1 for catechol aqueous solutions in a range of 20 at 1500 mgL?1. PMID:22312237

  2. Hydrothermal Carbonization: a feasible solution to convert biomass to soil?

    NASA Astrophysics Data System (ADS)

    Tesch, Walter; Tesch, Petra; Pfeifer, Christoph

    2013-04-01

    The erosion of fertile soil is a severe problem arising right after peak oil (Myers 1996). That this issue is not only a problem of arid countries is shown by the fact that even the European Commission defined certain milestones to address the problem of soil erosion in Europe (European Commission 2011). The application of bio-char produced by torrefaction or pyrolysis for the remediation, revegetation and restoration of depleted soils started to gain momentum recently (Rillig 2010, Lehmann 2011, Beesley 2011). Hydrothermal carbonization (HTC) is a promising thermo-chemical process that can be applied to convert organic feedstock into fertile soil and water, two resources which are of high value in regions being vulnerable to erosion. The great advantage of HTC is that organic feedstock (e.g. organic waste) can be used without any special pretreatment (e.g. drying) and so far no restrictions have been found regarding the composition of the organic matter. By applying HTC the organic material is processed along a defined pathway in the Van Krevelen plot (Behrendt 2006). By stopping the process at an early stage a nutritious rich material can be obtained, which is known to be similar to terra preta. Considering that HTC-coal is rich in functional groups and can be derived from the process under "wet" conditions, it can be expected that it shall allow soil bacteria to settle more easily compared to the bio-char derived by torrefaction or pyrolysis. In addition, up to 10 tons process water per ton organic waste can be gained (Vorlop 2009). Thus, as organic waste, loss of fertile soil and water scarcity becomes a serious issue within the European Union, hydrothermal carbonization can provide a feasible solution to address these issues of our near future. The presentation reviews the different types of feedstock investigated for the HTC-Process so far and gives an overview on the current stage of development of this technology. References Beesley L., Moreno-Jimnez E., Gomez-Eyles J.L., Harris H., Robinson B., Sizmur T.: A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution (159), p. 3269 - 3282, 2011. Behrendt F.: Direktverflssigung von Biomasse - Reaktionsmechanismen und Produktverteilungen Institut fr Energietechnik, Technische Universitt Berlin Studie im Auftrag der Bundesanstalt fr Landwirtschaft und Ernhrung; Projektnummer 114-50-10-0337/05-B, 2006. European Commission: "Roadmap to a Resource Efficient Europe", COM(2011) 571. Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D.: Biochar effects on soil biota - A review, Soil Biology & Biochemistry, p. 1-25, 2011. Myers Norman: "Environmental services of biodiversity", Proc. Natl. Acad. Sci. USA Vol 93, pp. 2764 - 2769, 1996. Rillig M.C., Wagner M., Salem M., Antunes P.M., George C., Ramke H.G., Titirici M.M., Antonietti M.: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Applied Soil Ecology (45), p. 238 - 242, 2010. Vorlop K.D., Schuchardt F., Pre U.: Hydrothermale Carbonisierung Analyse und Ausblicke. FNR-Fachgesprch, Berlin, 2009.

  3. Structure of electrolyte solutions sorbed in carbon nanospaces, studied by the replica RISM theory.

    PubMed

    Tanimura, A; Kovalenko, A; Hirata, F

    2007-01-30

    The replica RISM theory is used to investigate the structure of electrolyte solutions confined in carbonized polyvinylidene chloride (PVDC) nanoporous material, compared to bulk electrolyte solution. Comparisons are made between the models of electrolyte solution sorbed in the carbonized PVDC material and a single carbon nanosphere in bulk electrolyte solution. Particular attention is paid to the chemical potential balance between the species of the sorbed electrolyte solution and the bulk solution in contact with the nanoporous material. As a result of the strong hydrophobicity of the carbonized PVDC material in the absence of activating chemical groups, the densities of water and ions sorbed in the material are remarkably low compared to those in the ambient bulk solution. The interaction between water molecules and cations becomes strong in nanospaces. It turns out that, in carbon nanopores, a cation adsorbed at the carbon surface is fully surrounded by the hydration shell of water molecules which separates the cation and the surface. Distinctively, an anion is adsorbed in direct contact with the carbon surface, which squeezes a part of its hydration shell out. The tendency increases toward smaller cations, which are characterized as "positive hydration" ions. In the bulk, cations are not hydrated so strongly and behave similarly to anions. The results suggest that the specific capacitance of an electric double-layer supercapacitor with nanoporous electrodes is intimately related to the solvation structure of electrolyte solution sorbed in nanopores, which is affected by the microscopic structure of the nanoporous electrode. PMID:17241081

  4. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.

    PubMed

    Naieni, A Kashefian; Nojeh, A

    2012-12-14

    Dielectrophoresis (DEP) is a popular technique for fabricating carbon nanotube (CNT) devices. The electric current passing through the solution during DEP creates a temperature gradient, which results in electrothermal fluid flow because of the presence of the electric field. CNT solutions prepared with various methods can have different conductivities and the motion of the solution because of the electrothermal phenomenon can affect the DEP deposition differently in each case. We investigated the effect of this movement in solutions with various levels of conductivity through experiments as well as numerical modeling. Our results show that electrothermal motion in the solution can alter the deposition pattern of the nanotubes drastically for high conductivity solutions, while DEP remains the dominant force when a low conductivity (surfactant-free) solution is used. The extent of effectiveness of each force is discussed in the various cases and the fluid movement model is investigated using two- and three-dimensional finite element simulations. PMID:23165429

  5. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.

    PubMed

    Dos Santos, Elisama Vieira; Sáez, Cristina; Martínez-Huitle, Carlos Alberto; Cañizares, Pablo; Rodrigo, Manuel Andres

    2016-04-15

    In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal. PMID:26846982

  6. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect

    Peters, T. B.; Fink, S. D.

    2012-10-25

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  7. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect

    Peters, T. B.

    2014-01-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  8. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect

    Peters, T. B.

    2013-10-01

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  9. Study of the reuse of treated wastewater on waste container washing vehicles.

    PubMed

    Vaccari, Mentore; Gialdini, Francesca; Collivignarelli, Carlo

    2013-02-01

    The wheelie bins for the collection of municipal solid waste (MSW) shall be periodically washed. This operation is usually carried out by specific vehicles which consume about 5000 L of water per day. Wastewater derived from bins washing is usually stored on the same vehicle and then discharged and treated in a municipal WWTP. This paper presents a study performed to evaluate the reuse of the wastewater collected from bins washing after it has been treated in a small plant mounted on the vehicle; the advantage of such a system would be the reduction of both vehicle dimension and water consumption. The main results obtained by coagulation-flocculation tests performed on two wastewater samples are presented. The addition of 2 mL/L of an aqueous solution of aluminum polychloride (18% w/w), about 35 mL/L of an aqueous solution of CaO (4% w/w) and 25 mL/L of an aqueous solution of an anionic polyelectrolyte (1 w/w) can significantly reduce turbidity and COD in treated water (to about 99% and 42%, respectively); the concomitant increase of UV transmittance at 254 nm (up to 15%) enables UV disinfection application by a series of two ordinary UV lamps. Much higher UV transmittance values (even higher than 80%) can be obtained by dosing powdered activated carbon, which also results in a greater removal of COD. PMID:23142511

  10. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.

    PubMed

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-06-01

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ?70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired. PMID:22538869

  11. THE SOLAR NEBULA ON FIRE: A SOLUTION TO THE CARBON DEFICIT IN THE INNER SOLAR SYSTEM

    SciTech Connect

    Lee, Jeong-Eun; Bergin, Edwin A.; Nomura, Hideko E-mail: ebergin@umich.edu

    2010-02-10

    Despite a surface dominated by carbon-based life, the bulk composition of the Earth is dramatically carbon poor when compared to the material available at formation. Bulk carbon deficiency extends into the asteroid belt representing a fossil record of the conditions under which planets are born. The initial steps of planet formation involve the growth of primitive sub-micron silicate and carbon grains in the Solar Nebula. We present a solution wherein primordial carbon grains are preferentially destroyed by oxygen atoms ignited by heating due to stellar accretion at radii <5 AU. This solution can account for the bulk carbon deficiency in the Earth and meteorites, the compositional gradient within the asteroid belt, and for growing evidence for similar carbon deficiency in rocks surrounding other stars.

  12. Countercurrent washing of Pittsburgh No. 8 coal after leaching with molten mixtures of sodium and potassium hydroxides

    SciTech Connect

    Chriswell, C.D.; Shah, N.D.; Markuszewski, R. )

    1991-01-01

    Molten caustic leaching is an advanced chemical coal-cleaning process which results in the removal of over 90% of the sulfur and ash from coal. One of the steps in this process is the water washing of caustic-leached coals to remove unreacted caustic and impurities released by reactions with the molten caustic. A countercurrent procedure, designed for efficient washing with minimal water consumption, has been evaluated in the present work. A Pittsburgh No. 8 coal was leached with a one-to-one mixture of molten sodium and potassium hydroxides, and the resulting coal-caustic cake was washed using this countercurrent procedure. The countercurrent washing did result in recovery of caustic at predicted concentrations, and a relatively ash-free and sulfur-free coal was the final product. However, significant problems occurred during the countercurrent washing, all of which could be linked with the formation of a massive precipitate of carbonates from the alkaline process streams. The mass of the precipitate retained fluids and thus led to far lower than predicted recoveries of caustic solutions. the precipitate also caused a significant decrease in filtration rates.

  13. Immunotoxicity of washing soda in a freshwater sponge of India.

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2015-03-01

    The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat. PMID:25497767

  14. Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash.

    PubMed

    Magnone, Joshua P; Marek, Patrick J; Sulakvelidze, Alexander; Senecal, Andre G

    2013-08-01

    The incidence of foodborne outbreaks involving fresh produce is of worldwide concern. Lytic bacteriophage cocktails and a levulinic acid produce wash were investigated for their effectiveness against the foodborne pathogens Escherichia coli O157:H7, Shigella spp., and Salmonella on broccoli, cantaloupe, and strawberries. Inoculated samples were treated with bacteriophage cocktails (BC) before storage at 10°C for 24 h, a levulinic acid produce wash (PW) after storage at 10°C for 24 h, or a combination of the washes (BCPW) before and after storage. All three treatments were compared against a 200-ppm free available chlorine wash. Wash solutions were prepared using potable water and water with an increased organic content of 2.5 g/liter total dissolved solids and total organic carbon. BCPW was the most effective treatment, producing the highest log reductions in the pathogens. Produce treated with BCPW in potable water with a PW exposure time of 5 min resulted in the highest reduction of each pathogen for all samples tested. The type of produce and wash solution had significant effects on the efficacy of the individual treatments. The chlorine wash in water with higher organic content was the least effective treatment tested. An additive effect of BCPW was seen in water with higher organic content, resulting in greater than 4.0-log reductions in pathogens. Our findings indicate that the combination of antimicrobial BC with a commercial produce wash is a very effective method for treating produce contaminated with E. coli O157:H7, Shigella spp., and Salmonella even in the presence of high loads of organic matter. PMID:23905788

  15. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  16. Corrosion Behavior of Mild Carbon Steel in Ethanolic Solutions

    NASA Astrophysics Data System (ADS)

    Bhola, Shaily M.; Bhola, Rahul; Jain, Luke; Mishra, Brajendra; Olson, David L.

    2011-04-01

    Electrochemical evaluation of ASTM A36 steel was performed in ethanolic solutions containing small concentrations of water ranging from 0 to 10 vol.%. Electrochemical techniques such as open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization were utilized to analyze corrosion parameters. A fixed concentration of chloride, as per the ASTM specification for fuel grade ethanol, was added to increase the conductivity of the solutions. The effects of water and oxygen on the corrosion behavior of steel in these solutions have been discussed. Pitting corrosion of the steel specimens in these solutions was evaluated using scanning electron microscopy (SEM) and pitting analysis. This investigation was performed to establish a baseline for the microbiologically influenced corrosion (MIC) of steel in ethanolic solutions.

  17. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  18. Thermodynamic properties of carbon in b.c.c. and f.c.c. iron-silicon-carbon solid solutions.

    NASA Technical Reports Server (NTRS)

    Chraska, P.; Mclellan, R. B.

    1971-01-01

    The equilibrium between hydrogen-methane gas mixtures and Fe-Si-C solid solutions has been investigated both as a function of temperature and carburizing gas composition. The thermodynamic properties of the carbon atoms in both b.c.c. and f.c.c. solid solution have been derived from the equilibrium measurements. The results found have been compared with those of earlier investigations and with the predictions of recent theoretical models on ternary solid solutions containing both substitutional and interstitial solute atoms.

  19. PROCESS FOR RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS BY REDUCTION-PRECIPITATION

    DOEpatents

    Ellis, D.A.; Lindblom, R.O.

    1957-09-24

    A process employing carbonate leaching of ores and an advantageous methcd of recovering the uranium and vanadium from the leach solution is described. The uranium and vanadium can be precipitated from carbonate leach solutions by reaction with sodium amalgam leaving the leach solution in such a condition that it is economical to replenish for recycling. Such a carbonate leach solution is treated with a dilute sodium amalgam having a sodium concentration within a range of about 0.01 to 0.5% of sodium. Efficiency of the treatment is dependent on at least three additional factors, intimacy of contact of the amalgam with the leach solution, rate of addition of the amalgam and exclusion of oxygen (air).

  20. Prototype wash water renovation system integration with goverment-furnished wash fixture

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.

  1. Carbon composite membranes: A solution to adverse humidity effects

    SciTech Connect

    Jones, C.W.; Koros, W.J. )

    1995-01-01

    While the separation properties of carbon molecular sieving membranes are superior to those of other materials, a significant drawback has been their vulnerability to adverse effects from exposure to water vapor. Since significant membrane function is maintained at low levels of exposure, efforts were focused on devising a means to lower the water activity at the carbon surface. This was successfully accomplished with the development of carbon composite membranes. These membranes consist of a hollow fiber carbon membrane coated with a thin layer of certain unique polymeric materials. The polymers are highly hydrophobic but do not prohibitively reduce the flux of other permeating species, and the resulting composite membranes are much more resistant to water vapor effects. The performance of the composite membranes is analyzed in terms of the series resistance model. While small losses in selectivity and productivity occur as a result of the resistance added by the polymer layer, the composite membranes are still very attractive as compared to conventional polymer membranes. The polymer barrier type and thickness and the resulting degree of protection are variables that can be tailored in a controlled manner for specific applications.

  2. Dispersion of multiwalled carbon nanotubes in aqueous silk fibroin solutions.

    PubMed

    Kim, Hyunsuk; Kim, Hun-Sik; Lee, Heon Sang; Chin, In-Joo; Jin, Hyoung-Joon

    2008-10-01

    A simple method was developed to densely assemble multiwalled carbon nanotubes (MWCNTs) onto single native spider silk and silkworm silk fibers in aqueous system. The interactions between the MWCNTs and the silk fibroin were investigated using scanning electron microscopy and transmission electron microscopy. Furthermore, the role of pure silk fibroin in dispersing MWCNTs in aqueous systems was also assessed. PMID:19198494

  3. Basic solutions to carbon/carbon oxidation: Science and technology. Annual technical report, 15 April 1993-14 April 1994

    SciTech Connect

    Harrison, T.R.; Chung, T.; Radovic, L.; Pantano, C.; Thrower, P.A.

    1994-05-13

    The attached report addresses the first year of a program aimed at developing basic solutions to carbon/carbon composite oxidation. In particular, one primary thrust is the development of boron containing carbons through pyrolysis of boron containing polymers. Additionally, a basic understanding of the oxidation mechanisms in carbons and boron containing carbons is being sought. Several new boron containing precursors have been synthesized, which can be converted to B/C materials after pyrolysis. In particular, polyacrylonitrile (PAN) has been copolymerized with a boron-containing monomer (vinylcatecholborane.) Approximately 68% of the original boron is retained after pyrolysis yielding a product with 3.4% boron. 1,4-polybutadiene (PBD) has been hydroborated to contain large amounts of boron. Model compounds have been used to prepare polydiyne with considerable amounts of boron. In the latter two cases, direct analysis for % boron is not yet available. Preliminary TGA data suggests that PBD containing boron results in a more stable structure.

  4. Inhibitive effects of palm kernel oil on carbon steel corrosion by alkaline solution

    NASA Astrophysics Data System (ADS)

    Zulkafli, M. Y.; Othman, N. K.; Lazim, A. M.; Jalar, A.

    2013-11-01

    The behavior of carbon steel SAE 1045 in 1 M NaOH solution containing different concentrations of palm kernel oil (PKO) has been studied by weight loss and polarization measurement. Results showed that the corrosion of carbon steel in NaOH solution was considerably reduced in presence of such inhibitors. The inhibition efficiency increases when concentration of inhibitor increase. Maximum inhibition efficiency (≈ 96.67%) is obtained at PKO concentration 8 v/v %. This result revealed that palm kernel oil can act as a corrosion inhibitor in an alkaline medium. Corrosion rates of carbon steel decrease as the concentration of inhibitor is increased.

  5. GENERATION OF SOIL SOLUTION ACID NEUTRALIZING CAPACITY BY ADDITION OF DISSOLVED INORGANIC CARBON

    EPA Science Inventory

    A Spodosol B horizon(base saturation of 5.4%) collected at the Watershed Manipulation Project site at Lead Mountain, ME, was used to examine soil solution chemistry in response to increasing solution levels of dissolved inorganic carbon (DIC). cid-neutralizing capacity (ANC), det...

  6. Sorption of 4-carboxyquinoline derivatives from aqueous acetonitrile solutions on the surface of porous graphitized carbon

    NASA Astrophysics Data System (ADS)

    Savchenkova, A. S.; Buryak, A. K.; Kurbatova, S. V.

    2015-09-01

    The sorption of 4-carboxyquinoline derivatives from aqueous acetonitrile solutions on porous graphitized carbon was studied. The effect of the structure of analyte molecules and the eluent composition on the characteristics of retention under the conditions of RP HPLC was analyzed. The effect of pH of the eluent on the shift of equilibrium in aqueous acetonitrile solutions was investigated.

  7. Solution processable carbon nanotube network thin-film transistors operated in electrolytic solutions at various pH

    NASA Astrophysics Data System (ADS)

    Haeberle, Tobias; Mnzer, Alexandra M.; Buth, Felix; Antonio Garrido, Jose; Abdellah, Alaa; Fabel, Bernhard; Lugli, Paolo; Scarpa, Giuseppe

    2012-11-01

    We investigate the electronic properties of solution-gated carbon nanotube (CNT) thin-film transistors, where the active layer consists of a randomly distributed single-walled CNT network of >90% semiconducting nanotubes, deposited from an aqueous solution by spin-coating. The devices are characterized in different electrolytic solutions, where a reference electrode immersed in the liquid is used to apply the gate potential. We observe a gate-potential shift in the transfer characteristic when the pH and/or ionic strength of the electrolytic solution is changed with a pH sensitivity of ?19 mV/pH. This sensitivity is attributed to a surface charging effect at the CNT/electrolyte interface.

  8. Synthesis of calcium carbonate in a pure ethanol and aqueous ethanol solution as the solvent

    NASA Astrophysics Data System (ADS)

    Seo, Kang-Seok; Han, Choon; Wee, Jung-Ho; Park, Jin-Koo; Ahn, Ji-Whan

    2005-04-01

    The possibility of formation of precipitated calcium carbonate (PCC) in pure ethanol, not as small additives, but as the main solvent, was investigated by precipitating a variety of PCC via a carbonation reaction. During the carbonation in a slaked lime-pure ethanol suspension, three morphology types of CaCO 3 were also precipitated, including calcite, which was the only type of PCC precipitated in the pure water system, and aragonite and vaterite, which were also precipitated without leaving Ca(OH) 2 as the reactants. Their particle size was half of those from pure water. In a pure ethanol system, calcite was first precipitated from the carbonation in bulk solution as in the pure water system, while the aragonite and vaterite might be synthesized via other local carbonation routes occurring in the surface of the Ca(OH) 2 grain following the bulk carbonation in the solution. In this local carbonation, there was little variation of electrical conductivity and pH. In the aqueous solution of less than 40 mol% ethanol, the PCC is all calcite; therefore, water has dominant effect as the solvent. On the other hand, in the solution of more than 60 mol% ethanol, the solvent acts as the pure ethanol and calcite, aragonite and vaterite can be precipitated.

  9. Efficacy of alkaline washing for the decontamination of orange fruit surfaces inoculated with Escherichia coli.

    PubMed

    Pao, S; Davis, C L; Kelsey, D F

    2000-07-01

    The effectiveness of washing treatments to decontaminate orange fruit surfaces inoculated with Escherichia coli was evaluated. Washing on roller brushes with fruit cleaners or sanitizers followed by potable water rinse reduced E. coli by 1.9 to 3.5 log cycles. Prewetting fruit for 30 s before washing provided no significant benefit in most cases. Additional sanitizing treatments either with chlorine or acid sanitizers did not enhance the results of alkaline washing. In general, high pH washing solutions (pH 11.8) applied with an adequate spray volume effectively reduced the surface contamination of fruit that lowered the microbial load of fresh juice as well. PMID:10914669

  10. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  11. Nasal Wash Treatment

    MedlinePLUS

    ... Do not use well water. You may use: Distilled water Sterilized water Tap water that has been boiled ... with rubbing (70 percent isopropyl) alcohol or white, distilled vinegar (1 part vinegar to 3 parts water). After the use of either solution, rinse the ...

  12. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.

    PubMed

    Cabal, Belen; Budinova, Temenuzhka; Ania, Conchi O; Tsyntsarski, Boyko; Parra, Jos B; Petrova, Bilyana

    2009-01-30

    The preparation of activated carbons from bean pods waste by chemical (K(2)CO(3)) and physical (water vapor) activation was investigated. The carbon prepared by chemical activation presented a more developed porous structure (surface area 1580 m(2) g(-1) and pore volume 0.809 cm(3) g(-1)) than the one obtained by water vapor activation (258 m(2) g(-1) and 0.206 cm(3) g(-1)). These carbons were explored as adsorbents for the adsorption of naphthalene from water solutions at low concentration and room temperature and their properties are compared with those of commercial activated carbons. Naphthalene adsorption on the carbons obtained from agricultural waste was stronger than that of carbon adsorbents reported in the literature. This seems to be due to the presence of large amounts of basic groups on the bean-pod-based carbons. The adsorption capacity evaluated from Freundlich equation was found to depend on both the textural and chemical properties of the carbons. Naphthalene uptake on biomass-derived carbons was 300 and 85 mg g(-1) for the carbon prepared by chemical and physical activation, respectively. Moreover, when the uptake is normalized per unit area of adsorbent, the least porous carbon displays enhanced naphthalene removal. The results suggest an important role of the carbon composition including mineral matter in naphthalene retention. This issue remains under investigation. PMID:18541368

  13. Efficacy of Post-Wash Shell Egg Sanitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine (Cl) solutions of 100-200 ppm are the standard by which post-wash shell egg sanitizers are measured. Any facility that packages eggs with the USDA grade shields must use a comparable sanitizer. While chlorine solutions are inexpensive, non-corrosive, and safe to handle, they are not very ...

  14. Inhibition Effect of Dodecylamine on Carbon Steel Corrosion in Hydrochloric Acid Solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyu; Huang, Ling; Qiu, Yubing; Guo, Xingpeng

    2012-12-01

    Dodecylamine spontaneously adsorbs on carbon steel via its polar group (-NH2) in hydrochloric acid solution. Furthermore, it forms a monolayer film on carbon steel surface. The inhibition mechanism of dodecylamine for carbon steel is geometric blocking effect. The adsorption of dodecylamine on carbon steel surface follows Arrhenius equation. The adsorption slightly increases activated energy, but greatly reduces pre-exponential factor value. Atomic force microscopy force curves indicate that at the area without adsorbed dodecylamine, no obvious adhere force occurs. At the area with adsorbed dodecylamine, however, an average 1.3 nN adhere force is observed.

  15. Fabrication of carbon nanowires by pyrolysis of aqueous solution of sugar within asbestos nanofibers

    NASA Astrophysics Data System (ADS)

    Butko, V. Yu.; Fokin, A. V.; Nevedomskii, V. N.; Kumzerov, Yu. A.

    2015-05-01

    Carbon nanowires have been fabricated by pyrolysis of an aqueous solution of sugar in nanochannels of asbestos fibers. Electron microscopy demonstrates that the diameter of these nanochannels corresponds to the diameter of the thinnest of the carbon nanowires obtained. Some of these nanowires have a graphite crystal lattice and internal pores. After asbestos is etched out, the carbon nanowires can retain the original shape of the asbestos fibers. Heating in an inert atmosphere reduces the electrical resistivity of the carbon nanowires to ˜0.035 Ω cm.

  16. Ceramic wash-coat for catalyst support

    DOEpatents

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    Abstract A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  17. pH-metric determination of ammonium carbonate and bicarbonate in solutions containing ammonium vanadate

    SciTech Connect

    Fofanov, Al.A.; Yuorenko, V.V.; Kharlampieva, T.I.; Potapov, V.I.

    1986-07-01

    Ammonium carbonate and bicarbonate and ammonium carbonate salts used in hydrometallurgy are characterized by low stability both in solid form and in solutions. The frequently used method of acid-base titration in the presence of a pH indicator is unsuitable in the presence of ions in solution that change color within the investigated pH range. The purpose of this paper is to develop a method of rapid determination of the concentration of ammonium carbonate and bicarbonate in solutions containing ammonium vanadate. The authors used a 0.1 M solution of hydrochloric acid, analytical grade ammonium vanadate, and ammonium carbonate salts, the composition of which approximates real technological solutions. An aliquot portion of the test solution (1-2 ml) is transferred to a 50-ml beaker, and 10 ml of distilled water is added. The electrodes of the pH meter are placed in the solution, and it is titrated with 0.1 M hydrochloric acid with constant mixing.

  18. Extraction of actinides into aqueous polyethylene glycol solutions from carbonate media in the presence of alizarin complexone

    SciTech Connect

    Molochnikova, N.P.; Frenkel', V.Ya.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-01-01

    Actinide extraction in a two-phase aqueous system based on polyethylene glycol from carbonate solutions of various compositions in presence of alizarin complexone is studied. It is shown that the nature of the alkali metals affects actinide extraction into the polyethylene glycol phase. Tri- and tetravalent actinides are extracted maximally from sodium carbonate solutions. Separation of actinides in different oxidation states is more effective in potassium carbonate solutions. The behavior of americium in different oxidation states in the system carbonate-polyethylene glycol-complexone is studied. The possibility of extraction separation of microamount of americium(V) from curium in carbonate solutions in presence of alizarin complexone is shown.

  19. Solution-reactor-produced Mo-99 using activated carbon to remore I-131

    SciTech Connect

    Kitten, S.; Cappiello, C.

    1998-06-01

    The production of {sup 99}Mo in a solution reactor was explored. Activated charcoal was used to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba; the carbon trapped a diminutive amount of {sup 99}Mo. The results promote the idea of solution-reactor-produced {sup 99}Mo. Solution reactors are favorable both energetically and environmentally. A solution reactor could provide enough {sup 99}Mo/{sup 99m}Te to support both the current and future radiopharmaceutical needs of the U.S.

  20. Problem of regenerating coal wash oil

    SciTech Connect

    Volkov, E.L.

    1984-01-01

    The main problems associated with the recovery of benzene hydrocarbons from coking gas using coal wash oil are seen as oil polymerization and the effects of placement of coolers on the quality of oil. The worsening condition of the oil is a result of insufficient effectiveness of its regeneration, and no immediate solution to this problem is suggested. The immediate concern is seen as bringing losses of ammonia gas into line with standards of technical operation. The use of a separate tubular furnace with flame-heater is deemed much more satisfactory than regeneration coil pipes in the oven.

  1. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  2. 27 CFR 19.328 - Wash water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wash water. 19.328 Section... THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production Chemical By-Products § 19.328 Wash water. Water used in washing chemicals to remove spirits therefrom may be run into a wash tank or a...

  3. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  4. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  5. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  6. Enhanced sludge washing evaluation plan

    SciTech Connect

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.

  7. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  8. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson (Castro Valley, CA)

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  9. Galvanic Corrosion of a Carbon Steel-Stainless Steel Couple in Sulfide Solutions

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Xiao, K.; Li, X. G.; Cheng, Y. F.

    2011-12-01

    The galvanic corrosion behavior of carbon steel-stainless steel couples with various cathode/anode area ratios was investigated in S 2--containing solutions, which were in equilibrium with air, by electrochemical measurements, immersion test, and surface characterization. It is found that the galvanic corrosion effect on carbon steel anode increases with the cathode/anode area ratios, and decreases with the increasing concentration of S2- in the solution. A layer of sulfide film is formed on carbon steel surface, which protects it from corrosion. When the cathode/anode area ratio is 1:1, the potentiodynamic polarization curve measurement and the weight-loss determination give the identical measurement of the galvanic corrosion effect. With the increase of the cathode/anode area ratio, the electrochemical method may not be accurate to determine the galvanic effect. The anodic dissolution current density of carbon steel cannot be approximated simply with the galvanic current density.

  10. Optoelectronic ally automated system for carbon nanotubes synthesis via arc-discharge in solution

    SciTech Connect

    Bera, Debasis; Brinley, Erik; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Kabes, Bradley

    2005-03-01

    The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy.

  11. Carbonized material adsorbents for the removal of mercury from aqueous solutions

    SciTech Connect

    Ishihara, S.; Pulido, L.L.; Kajimoto, T.

    1996-12-31

    Although wood has essentially been excluded as a starting material for the production of granular activated carbon because of the poor strength and friability of the products, powdered wood based activated carbons are still being used in water treatment and other liquid phase applications. However, the capability of powdered wood-based charcoal which in itself porous has not been fully known. Few studies have been conducted in harnessing its potential for adsorption purposes especially in water treatment. This study was conducted to investigate the possibility of using wood based carbonized materials from Sugi (Cryptomeria japonica D. Don) as adsorption materials in aqueous solutions of heavy metals like mercury, zinc, lead, cadmium and arsenic. However, of all the heavy metals investigated, mercury is considered to be the most toxic so this paper describes only the adsorption ability of the carbonized materials in adsorbing this metal from aqueous solutions of different concentrations.

  12. Effects of solution chemistry and flow on the corrosion of carbon steel in sweet production

    SciTech Connect

    Herce, J.A.; Wright, E.J.; Efird, K.D.; Boros, J.A.; Hailey, T.G.

    1995-10-01

    The corrosion rate of AISI 1018 carbon steel was measured over a range of temperatures, CO{sub 2} partial pressures, flow rates, and solution chemistry under turbulent pipe flow conditions. The combined effects of CO{sub 2} partial pressure, ionic strength, temperature, and initial bicarbonate ion concentration, i.e., solution chemistry, may be described by a single variable, pH. The effects of flow can be combined with pH to form a new variable, hydrogen ion flux, to describe the overall effect of solution chemistry and flow on the sweet corrosion of a film free carbon steel surface. Sweet corrosion rates are directly proportional to hydrogen ion flux over a wide range of temperatures and solution pH`s. Finally, the separate effects of dissolved iron and chloride ion concentration are described.

  13. A shift in designing cage-washing operations.

    PubMed

    Zynda, Jeffrey R

    2015-04-01

    Support systems for animal research facilities are often complex and resource-intensive operations whose successful design and implementation require substantial experience. The cage-washing center is at the heart of these support spaces and is not only one of the largest spaces found in an animal facility but also one of the greatest consumers of resources, in terms of both utilities and human labor. Certain methodologies and systems for cage-wash operations have become 'go-to' solutions, but alternative approaches have the potential to reduce utility consumption and human labor. The author's firm analyzed cage-washing operations at an academic institution with the goal of reducing consumption of resources, both human labor and utilities such as water, steam and electricity. Here he describes the analysis and design process as a case study and shows that substantial savings can be achieved by using alternative systems in cage-washing systems. He recommends that cage-washing operations can be optimized by thoroughly investigating the anticipated cage-washing throughput and then thoughtfully selecting the most efficient means to handle that workload. PMID:25793681

  14. Solution and shock-induced exsolution of argon in vitreous carbon

    NASA Technical Reports Server (NTRS)

    Gazis, Carey; Ahrens, Thomas J.

    1991-01-01

    To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.

  15. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    SciTech Connect

    Wang, S.W.

    1980-06-01

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  16. A Window-Washing Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Skyscrapers sure do have a lot of windows, and these windows are cleaned and checked regularly. All this takes time, money, and puts workers at potential risk. Might there be a better way to do it? In this article, the author discusses a window-washing challenge and describes how students can tackle this task, pick up the challenge, and creatively…

  17. Abdominopelvic washings: A comprehensive review

    PubMed Central

    Rodriguez, Erika F.; Monaco, Sara E.; Khalbuss, Walid; Austin, R. Marshall; Pantanowitz, Liron

    2013-01-01

    Intraperitoneal spread may occur with gynecological epithelial neoplasms, as well as with non-gynecological malignancies, which may result in serosal involvement with or without concomitant effusion. Therefore, washings in patients with abdominopelvic tumors represent important specimens for cytologic examination. They are primarily utilized for staging ovarian cancers, although their role has decreased in staging of endometrial and cervical carcinoma. Abdominopelvic washings can be positive in a variety of pathologic conditions, including benign conditions, borderline neoplastic tumors, locally invasive tumors, or distant metastases. In a subset of cases, washings can be diagnostically challenging due to the presence of co-existing benign cells (e.g., mesothelial hyperplasia, endosalpingiosis, or endometriosis), lesions in which there is only minimal atypia (e.g., serous borderline tumors) or scant atypical cells, and the rarity of specific tumor types (e.g., mesothelioma). Ancillary studies including immunocytochemistry and fluorescence in situ hybridization may be required in difficult cases to resolve the diagnosis. This article provides a comprehensive and contemporary review of abdominopelvic washings in the evaluation of gynecologic and non-gynecologic tumors, including primary peritoneal and mesothelial entities. PMID:23858317

  18. Abdominopelvic washings: A comprehensive review.

    PubMed

    Rodriguez, Erika F; Monaco, Sara E; Khalbuss, Walid; Austin, R Marshall; Pantanowitz, Liron

    2013-01-01

    Intraperitoneal spread may occur with gynecological epithelial neoplasms, as well as with non-gynecological malignancies, which may result in serosal involvement with or without concomitant effusion. Therefore, washings in patients with abdominopelvic tumors represent important specimens for cytologic examination. They are primarily utilized for staging ovarian cancers, although their role has decreased in staging of endometrial and cervical carcinoma. Abdominopelvic washings can be positive in a variety of pathologic conditions, including benign conditions, borderline neoplastic tumors, locally invasive tumors, or distant metastases. In a subset of cases, washings can be diagnostically challenging due to the presence of co-existing benign cells (e.g., mesothelial hyperplasia, endosalpingiosis, or endometriosis), lesions in which there is only minimal atypia (e.g., serous borderline tumors) or scant atypical cells, and the rarity of specific tumor types (e.g., mesothelioma). Ancillary studies including immunocytochemistry and fluorescence in situ hybridization may be required in difficult cases to resolve the diagnosis. This article provides a comprehensive and contemporary review of abdominopelvic washings in the evaluation of gynecologic and non-gynecologic tumors, including primary peritoneal and mesothelial entities. PMID:23858317

  19. A Window-Washing Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Skyscrapers sure do have a lot of windows, and these windows are cleaned and checked regularly. All this takes time, money, and puts workers at potential risk. Might there be a better way to do it? In this article, the author discusses a window-washing challenge and describes how students can tackle this task, pick up the challenge, and creatively

  20. Carbon-13 NMR characterization of actinyl(VI) carbonate complexes in aqueous solution

    SciTech Connect

    Clark, D.L.; Hobart, D.E.; Palmer, P.D.; Sullivan, J.C.; Stout, B.E.

    1992-07-01

    The uranyl(VI) carbonate system has been re-examined using {sup 13}C NMR of 99.9% {sup 13}C-enriched U{sup VI}O{sub 2} ({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} in millimolar concentrations. By careful control of carbonate ion concentration, we have confirmed the existence of the trimer, and observed dynamic equilibrium between the monomer and the timer. In addition, the ligand exchange reaction between free and coordinated carbonate on Pu{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} and Am{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} systems has been examined by variable temperature {sup 13}C NMR line-broadening techniques {sup 13}C NMR line-broadening techniques. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was written to allow for experimental determination of ligand exchange parameters for paramagnetic actinide complexes. Preliminary Eyring analysis has provided activation parameters of {Delta}G{sup {double_dagger}}{sub 295} = 56 kJ/M, {Delta}H{sup {double_dagger}} = 38 kJ/M, and {Delta}S{sup {double_dagger}} = {minus}60 J/M-K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl (VI) carbonate complex self-exchange reaction. Experiments for determination of the activation parameters for the americium (VI) carbonate system are in progress.

  1. Synthesis of nanostructured carbon through ionothermal carbonization of common organic solvents and solutions.

    PubMed

    Chang, Yuanqin; Antonietti, Markus; Fellinger, Tim-Patrick

    2015-04-27

    A combination of ionothermal synthesis and hot-injection techniques leads to novel nanocarbons made from organic solvents. Controlled addition of commonly used organic solvents into a hot ZnCl2 melt gives rise to spherical, sheetlike, and branched nanofibrous carbon nanoparticles with surprisingly high carbon efficiency. When heteroatom-containing solvents were used, the doping levels reach up to 14?wt.?% nitrogen and 13?wt.?% sulfur. Materials with high surface areas and large pore volumes of solvent carbons as high as 1666?m(2) ?g(-1) and 2.80?cm(3) ?g(-1) in addition to CO2 adsorption capacities of 4.13?mmol?g(-1) at 273?K and 1?bar can be obtained. The new method works not only for pure carbon materials, but was also extended for the synthesis of carbon/inorganic nanocomposites. ZnS@C, Ni@C, and Co@C were successfully prepared with this straightforward procedure. The obtained Ni@C nanocomposites perform well in the electrocatalytic water oxidation, comparable with commercial noble-metal catalysts. PMID:25740456

  2. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell.

    PubMed

    Zabihi, M; Haghighi Asl, A; Ahmadpour, A

    2010-02-15

    The adsorption ability of a powdered activated carbons (PAC) derived from walnut shell was investigated in an attempt to produce more economic and effective sorbents for the control of Hg(II) ion from industrial liquid streams. Carbonaceous sorbents derived from local walnut shell, were prepared by chemical activation methods using ZnCl(2) as activating reagents. Adsorption of Hg(II) from aqueous solutions was carried out under different experimental conditions by varying treatment time, metal ion concentration, pH and solution temperature. It was shown that Hg(II) uptake decreases with increasing pH of the solution. The proper choice of preparation conditions were resulted in microporous activated carbons with different BET surface areas of 780 (Carbon A, 1:0.5 ZnCl(2)) and 803 (Carbon B, 1:1 ZnCl(2))m(2)/g BET surface area. The monolayer adsorption capacity of these particular adsorbents were obtained as 151.5 and 100.9 mg/g for carbons A and B, respectively. It was determined that Hg(II) adsorption follows both Langmuir and Freundlich isotherms as well as pseudo-second-order kinetics. PMID:19833433

  3. Radiolysis of Bicarbonate and Carbonate Aqueous Solutions: Product Analysis and Simulation of Radiolytic Processes

    SciTech Connect

    Cai Zhongli; Li Xifeng; Katsumura, Yosuke; Urabe, Osamu

    2001-11-15

    An understanding of the radiation-induced effects in groundwater is essential to evaluate the safe geological disposal of spent fuel. In groundwater, the bicarbonate ion is the predominant and common anion; this work investigated radiation-induced chemical reactions of (bi)carbonate aqueous solutions with steady-state irradiation and pulse radiolysis methods. Aqueous solutions of sodium (bi)carbonate as high as 50 mmol.dm{sup -3} were used. The formation of formate, oxalate, and H{sub 2}O{sub 2} were measured under different conditions. A complete set of reaction steps and reliable kinetic data for the radiolysis of (bi)carbonate aqueous solutions at ionic strength close to the groundwater were proposed. Kinetic calculations were completed based on the proposed reaction steps and the kinetic data obtained in the present work. The results from the calculation are in good agreement with the experimental results. With these proposed reaction steps and kinetic data, computer simulation can be performed to predict the yield of radiolytic products of (bi)carbonate aqueous solutions as a function of irradiation time and used to evaluate the safety of geological disposal options of spent fuel.

  4. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  5. CO2 adsorption on modified carbon coated monolith: effect of surface modification by using alkaline solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Soraya; Marahel, Ehsan; Bayesti, Iman; Abbasi, Ali; Chuah Abdullah, L.; Choong, Thomas S. Y.

    2015-01-01

    A monolithic column was used to study the feasibility of modified carbon-coated monolith for recovery of CO2 from gaseous mixtures (He/CO2) in a variety of operating conditions. Carbon-coated monolith was prepared by dip-coating method and modified by two alkaline solutions, i.e. NH3 and KOH. The surface properties of the carbon-coated monolith were altered by functional groups via KOH and NH3 treatments. The comparative study of CO2 uptake by two different adsorbents, i.e. unmodified and modified carbon-coated monolith, demonstrated that the applied modification process had improved CO2 adsorption. The presence of nitrogen- and oxygen-containing functional groups on the surface of the carbon led to an improved level of microporosity on the synthesized carbon-coated monolith. The physical parameters such as higher surface area, lower pore diameter, and larger micropore volume of modified monoliths indicated direct influence on the adsorbed amount of CO2. In the present study, the Deactivation Model is applied to analyze the breakthrough curves. The adsorption capacity increased with an increase in pressure and concentration, while a reduction of CO2 adsorption capacity was occurred with increase in temperature. Ammonia (NH3) and potassium hydroxide (KOH)-modified carbon-coated monolith showed an increase of approximately 12 and 27% in CO2 adsorption, respectively, as compared to unmodified carbon-coated monolith.

  6. A basket for washing benthological samples

    USGS Publications Warehouse

    Selgeby, James H.

    1971-01-01

    Since benthological samples collected with dredges are usually too large to be preserved in toto, a washing method must be employed to reduce the sample volume without losing or damaging the organisms. Traditionally, the sample is washed in a sieve until the volume is small enough for convenient handling or preservation. Most washing procedures are time-consuming and laborious. To save time in washing samples, a washing 'basket' was designed which accomadates a Ponar dredge. The only additional equipment needed to employ the washing basket effectively is a pump that delivers about 8 gallons of water per minute.

  7. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    NASA Astrophysics Data System (ADS)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The rates of crystal growth were measured as a function of the solution supersaturation using the highly accurate and reproducible methodology of constant supersaturation. The dependence of the rates of crystal growth on supersaturation suggested surface diffusion controlled mechanism. At constant supersaturation it was possible to extend the time period for the growth of the initially forming polymorph, in a way that sufficient amount is precipitated for characterization with X-ray diffraction (XRD). Moreover, scanning electron microscopy (SEM) was used for the characterization of the morphology of the precipitated solid. In all cases and depending on the solution supersaturation vaterite formed first from solutions of high supersaturation while at low supersaturations calcite formed exclusively. The presence of dodecane reduced the stability of the supersaturated solutions with the crystals forming at the oil-water interface. The presence of ethylene glycol (concentrations between 10-80%) also affected the stability and the kinetics of calcium carbonate precipitation. The morphology of the formed crystals showed habit modifications: Spherical formations consisting of aggregated nanocrystals and calcite crystals with profound pits on the faces were the characteristic feature in the presence of dodecane. ACKNOWLEDGMENT This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program Education and Lifelong Learning under the action Aristeia II( Code No 4420).

  8. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    SciTech Connect

    Afanasiev, Pavel

    2014-05-01

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoS{sub x} (x≈4) of 10–30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoS{sub x} under nitrogen or hydrogen flow at 400 °C allows obtaining mesoporous MoS{sub 2} materials with very high pore volume and specific surface area, up to 0.45 cm{sup 3}/g and 190 m{sup 2}/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts. - Graphical abstract: Solution reaction in propylene carbonate allows preparing weakly agglomerated molybdenum sulfide with particle size 20 nm and advantageous catalytic properties. - Highlights: • Solution reaction in propylene carbonate yields MoS{sub x} particles near 20 nm size. • Addition of starch as capping agent reduces particles size and hinder agglomeration. • EXAFS at Mo K edge shows rapid oxygen to sulfur exchange in the solution. • Thermal treatment leads to MoS{sub 2} with very high porosity and surface area.

  9. Energetic stability of solute-carbon-vacancy complexes in bcc iron

    NASA Astrophysics Data System (ADS)

    Bakaev, Alexander; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Neck, Dimitri

    2015-06-01

    The strong binding between a vacancy and carbon in bcc iron plays an important role in the evolution of radiation-induced microstructure. Our previous ab initio study points to the fact that the vacancy-carbon (V-C) pair can serve as a nucleus for the solute-rich clusters. Here, we continue the ab initio study by considering the interaction of mixed solute clusters (Mn, Ni and Si) with the V-C pair, and the interaction of typical alloying elements of Fe-based steels (i.e., Mn, Ni, Cu, Si, Cr and P) with di-carbon-vacancy pair (V-C2). We have identified the sequence of growth of Ni, Si and Mn solute-rich clusters nucleating on the V-C pair. The mixed-solute-V-C configurations are found to be less stable clusters than pure-solute-V-C clusters with the energy difference up to 0.22 eV per four atoms. The V-C2 pair is found to be as strong nucleation site for the solute-rich clusters as the V-C pair. Only Si solute atom stands out from the trend showing a weaker affinity to the V-C2 complex by 0.09 eV compared to the attraction to the V-C pair. The overall results point to the importance of taking into account the existence of both V-C and V-C2 complexes in studying the formation of solute-rich clusters in Fe-based steels for nuclear applications.

  10. Adsorption of carbon dioxide by solution-plasma-synthesized heteroatom-doped carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Thongwichit, Nanthiya; Li, Oi Lun Helena; Yaowarat, Wattanachai; Saito, Nagahiro; Suriyapraphadilok, Uthaiporn

    2016-01-01

    Porous carbon nanospheres (CNSs) synthesized by a plasma-in-liquid technique were applied as an adsorbent for CO2 adsorption. Two different types of aromatic solvents, benzene and pyridine, were used as precursors to generate CNSs. The prepared CNSs were carbonized and then activated with CO2 to obtain carbon materials with a suitable porous structure for CO2 adsorption. To improve CO2 adsorption capacity, activated CNSs were then chemically modified using different approaches of surface treatment, namely, HNO3 oxidation, amination without HNO3 preoxidation, and amination with HNO3 preoxidation. The CO2 adsorption capacities of the samples were investigated at 1 atm and 40 °C using a simultaneous thermal analyzer. It was found that the CO2 adsorption of CNSs was enhanced through the development of textural properties. All of the surface treatment approaches led to the increase in CO2 adsorption capacity of the activated CNSs owing to the presence of nitrogen or oxygen functional groups introduced onto the carbon surface during the treatment.

  11. Biodegradation of biodiesel wash water from a biodiesel fuel production plant.

    PubMed

    Fukuda, Naohiro; Habe, Hiroshi; Ito, Masataka

    2013-01-01

    The objective of this research was the modification of our biodiesel fuel (BDF) production process to make higher quality BDF. The existing process which does not include a water washing process for raw BDF, has the advantage of no wash water discharge, but occasionally the resultant BDF is of lower grade due to residual ingredients. First, we attempted to integrate water washing into the existing process. After being neutralized and washed with H2SO4, the raw BDF was then washed with water equal to 20% of the raw BDF volume. A good separation of BDF and wash water was achieved, and the resultant wash water contained less than 2% methanol. Second, we evaluated biodegradation of the resultant wash water constituents, and 70% of the strains isolated from environmental samples removed 80 to 90% of total organic carbon. Among these, strain No. 20-68 removed both glycerol and methanol in the wash water within 7 days and was identified as Fusarium falciforme, a ubiquitous environmental microorganisms. These results suggest that if the wash water is released to the environments, the effects on environmental microorganisms will be minimal. PMID:23823919

  12. Selective removal of cadmium from mixed metal solution by carbonate infusion

    SciTech Connect

    Cho, S.H.; Young, K.K. )

    1991-01-01

    The purpose of this study is to develop the technology of selective precipitation of a single metal from a mixed solution by carbonate infusion. Experiments were conducted in Pyrex reactors and jar testers. Synthetic wastewater of cadmium and copper mixed solution was used in this study. Initial cadmium and copper concentrations were 10{sup {minus}5}, 10{sup {minus}4}, 10{sup {minus}3} M, which are the concentrations commonly occurring in electroplating rinsewater. The effects of pH, carbonate concentration, and mixing rate on copper and cadmium hydrolysis were investigated. The optimum conditions of selective precipitation for the cadmium form mixed solutions were around pH 9, and the mixing rate was 100 rpm.

  13. First Molecular Dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Gauden, Piotr A.; Zieliński, Wojciech; Furmaniak, Sylwester; Wesołowski, Radosław P.; Klimek, Kamil K.

    2011-10-01

    The results of 84 MD simulations showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds from aqueous solutions on carbons are reported. Based on a model of 'soft' activated carbon, three carbon structures with gradually changed microporosity were created. Next, different number of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons.

  14. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    SciTech Connect

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  15. Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes

    SciTech Connect

    Y Mikata

    2006-08-22

    This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbon nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.

  16. Dioxin removal from contaminated soils by ethanol washing.

    PubMed

    Jonsson, Sofia; Lind, Henrik; Lundstedt, Staffan; Haglund, Peter; Tysklind, Mats

    2010-07-15

    The aim of this study was to investigate the potential utility of ethanol washing for remediating soils contaminated with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), as a cost-efficient alternative to conventional remediation methods of PCDD/F-contaminated soils. Initially, screening experiments were performed with a two-level full factorial design to examine the effects of temperature, extraction time and ethanol concentration on the removal efficiency. The screening experiments showed that the ethanol concentration was the most important parameter. In addition, repeated washing cycles considerably improved the results. Ethanol washing conditions were then selected (10 wash cycles with 75% ethanol at 60 degrees C), and applied to four soils with different soil characteristics and contamination levels to test the robustness of the selected method. Treatment efficiencies of 81% and 85% were obtained for a lightly contaminated sandy-silty soil and a highly contaminated clay soil rich in graphite particles, respectively. Even higher treatment efficiencies (> or = 97%) were obtained for two other highly contaminated soils, one of which contained high amounts of organic matter. PCDD/Fs were found to both dissolve in the solvent and migrate into it as species adsorbed to particles. The relative contributions of these mechanisms and the overall efficiency of the removal seem to depend on contaminant concentration, the types of carbon in the soil matrix and the particle size distribution. The study shows that ethanol washing has effective remediation potential for a variety of PCDD/F-contaminated soils. PMID:20399556

  17. Performance evaluation of trimethylamine-carbon dioxide thermolytic draw solution for engineered osmosis

    SciTech Connect

    Boo, C; Khalil, YF; Elimelech, M

    2015-01-01

    We evaluated the performance of trimethylamine-carbon dioxide (TMA-CO2) as a potential thermolytic draw solution for engineered osmosis. Water flux and reverse solute flux with TMA-CO2 draw solution were measured in forward osmosis (FO) and pressure retarded osmosis (PRO) modes using thin-film composite (TFC) and cellulose triacetate (CTA) FO membranes. Water flux with the TMA-CO2 draw solution was comparable to that obtained with the more common ammonia-carbon dioxide (NH3-CO2) thermolytic draw solution at similar (1 M) concentration. Using a TFC-FO membrane, the water fluxes produced by 1 M TMA-CO2 and NH3-CO2 draw solutions with a DI water feed were, respectively, 33.4 and 35.6 L m(-2) h(-1) in PRO mode and 14.5 and 152 L m(-2) h(-1) in FO mode. Reverse draw permeation of TMA-CO2 was relatively low compared to NH3-CO2, ranging from 0.1 to 0.2 mol m(-2) h(-1) in all experiments, due to the larger molecular size of TMA. Thermal separation and recovery efficiency for TMA-CO2 was compared to NH3-CO2 by modeling low-temperature vacuum distillation utilizing low-grade heat sources. We also discuss possible challenges in the use TMA-CO2, including potential adverse impact on human health and environments. (C) 2014 Elsevier B.V. All rights reserved.

  18. Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems

    SciTech Connect

    Gonzalez, L.A.; Lohmann, K.C.

    1985-01-01

    Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

  19. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution.

    PubMed

    Blanch, Adam J; Lenehan, Claire E; Quinton, Jamie S

    2010-08-01

    The sonication-centrifugation technique is commonly used for dispersing single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solutions. However, the methodologies and materials used for this purpose are widely varied, and few dispersive agents have been studied systematically. This work describes a systematic study into the ability of some well-known (and some less common) surfactants and polymers to disperse SWCNTs fabricated by two different techniques. UV-vis-NIR absorbance spectra of their supernatant solutions showed that the smaller ionic surfactants were generally more effective dispersants, with larger polymer and surfactant molecules exhibiting a reduced performance for ensembles of carbon nanotubes of smaller average diameter. Optimal surfactant concentrations were established for dispersions of carbon nanotubes produced by the electric arc method in aqueous solutions of sodium dodecylbenzene sulfonate, sodium deoxycholate, Triton X-405, Brij S-100, Pluronic F-127, and polyvinylpyrrolidone. This optimum value was determined as the point at which the relative concentration of nanotubes dispersed is maximized, before flocculation-inducing attractive depletion interactions begin to dominate. The aggregation state of carbon nanotubes dispersed in sodium dodecylbenzene sulfonate was probed by AFM at different stages of rebundling, showing the length dependence of these effects. PMID:20666522

  20. The effect of contaminant aging upon soil washing removal efficiencies for lead contaminated soils

    SciTech Connect

    Cline, S.R.; Reed, B.E.; Moore, R.E.

    1994-10-01

    The objective of this research was to investigate lead removal efficiencies from various soils using a variety of washing solutions. Most soil types have a strong affinity for lead. Thus, it is plausible to expect washing solutions that are capable of removing lead could also remove other divalent heavy metals. Four soil samples from the eastern US were collected and characterized for this study. The study soils were then spiked to approximate lead concentrations of 1,000 and 10,000 mg Pb/kg soil. The efficiencies of six washing solutions in removing lead from the contaminated soils were then investigated via lab-scale batch washing experiments. Unlike current field-scale soil washing practices, all particle size fractions were washed and recovered in these experiments. (Solutions investigated include: tap water, HCl, EDTA, HNO{sub 3}, CH{sub 3}COOH, and CaCl{sub 2}.) In order to examine the effect of aging upon soil washing efficiencies, some of the spiked soils were washed a second time after an aging period of nearly 2 years.

  1. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves.

    PubMed

    Gallyamov, Marat O; Chaschin, Ivan S; Khokhlova, Marina A; Grigorev, Timofey E; Bakuleva, Natalia P; Lyutova, Irina G; Kondratenko, Janna E; Badun, Gennadii A; Chernysheva, Maria G; Khokhlov, Alexei R

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H2O and CO2. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16-33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. PMID:24582232

  2. Room temperature synthesis of nano-carbons using an electrochemical technique of organic solution

    NASA Astrophysics Data System (ADS)

    Yokomichi, H.; Sakai, F.; Ichihara, M.; Kishimoto, N.

    2005-08-01

    Room temperature synthesis of nano-carbons, i.e., whiskers, wires, onions and tubes, has been achieved by an electrochemical process under a liquid phase of organic solution with a metal catalyst. The electrochemical method supplies athermal energy to the reactants contrary to ordinary methods, i.e., this method creates nano-carbons directly transferring electrons at the electrode in the condensed phase, and the temperature does not increase during the synthesis. The nano-carbons with various structures were obtained by using C2H5OH with \\mathrm {Ni}(\\mathrm {NO}_{3})_{n}{\\bdot }\\mathrm {mH}_{2}\\mathrm {O} solution under a high electric field. The metal catalyst plays an important role in the nano-carbon growth in the present method, in a similar way to the usual methods. By virtue of the low temperature synthesis, this technique has great advantages in nano-scale interconnections and large area field emission cathodes of nano-carbons in next-generation devices on a thermally unstable substrate.

  3. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  4. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  5. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  6. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  7. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  8. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  9. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  10. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  11. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  12. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  13. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral-solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  14. Solution and precipitation hardening in carbon-doped two-phase {gamma}-titanium aluminides

    SciTech Connect

    Appel, F.; Christoph, U.; Wagner, R.

    1997-12-31

    A two-phase titanium aluminide alloy was systematically doped with carbon to improve its high temperature strength. Solid solutions and precipitates of carbon were formed by different thermal treatments. A fine dispersion of perovskite precipitates was found to be very effective for improving the high temperature strength and creep resistance of the material. The strengthening mechanisms were characterized by flow stresses and activation parameters. The investigations were accompanied by electron microscope observation of the defect structure which was generated during deformation. Special attention was paid on the interaction mechanisms of perfect and twinning dislocations with the carbide precipitates.

  15. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    SciTech Connect

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  16. Electrical Switchability and Dry-Wash Durability of Conductive Textiles.

    PubMed

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  17. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    NASA Astrophysics Data System (ADS)

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-06-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

  18. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  19. Determination of electronic states of individually dissolved ( n, m) single-walled carbon nanotubes in solution

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Hirayama, Kohei; Niidome, Yasuro; Nakashima, Naotoshi

    2009-11-01

    Solution redox chemistry is useful to understand the chirality-dependent electronic properties of single-walled carbon nanotubes (SWNTs). We have found that the electron transfer reactions of sodium dithionite with SWNTs cause photoluminescence (PL) quenching processes of 14 individually dissolved SWNTs in an aqueous micellar solution. Based on the analysis using the Nernst equation for the PL change, we have determined the conduction band ( c1) levels of the 14 isolated SWNTs. We have also estimated the valence band ( ?1) levels as well as the Fermi levels of the SWNTs using the reported bandgap values of the corresponding isolated SWNTs.

  20. Comparative alkali washing of simulated radioactive sludge

    SciTech Connect

    Fugate, G.A.; Ensor, D.D.; Egan, B.Z.

    1996-10-01

    The treatment of large volumes of radioactive sludge generated from uranium and plutonium recovery processes is a pressing problem in the environmental restoration currently planned at various U.S. Department of Energy sites. This sludge, commonly stored in underground tanks, is mainly in the form of metal oxides or precipitated metal hydroxides and the bulk of this material is nonradioactive. One method being developed to pretreat this waste takes advantage of the amphoteric character of aluminum and other nonradioactive elements. Previous studies have reported on the dissolution of eleven elements from simulated sludge using NaOH solutions up to 6M. This work provides a comparative study using KOH. The effectiveness of the alkali washing as a treatment method to reduce the bulk of radioactive sludge requiring long term isolation will be discussed.

  1. Vapor pressure data for potassium carbonate-potassium bicarbonate solutions for application to multiuse power cycles

    NASA Astrophysics Data System (ADS)

    Hosler, E. R.; Ghandeharioun, S.

    A novel method of generating electric power based on a gas absorption cycle, rather than a normal Rankine steam power cycle, has been developed. This cycle uses carbon dioxide as the working fluid in the turbine and potassium carbonate solutions as the carrier fluid for the absorption part of the cycle. Thermodynamic calculations for typical operating parameters show a cycle efficiency of about 30 percent compared to a Carnot efficiency of about 40 percent and a Rankine cycle efficiency of about 20 percent for the same temperature limits. Thus, the cycle offers a significant thermal efficiency advantage compared to a Rankine cycle. Vapor pressure data have been obtained for various carrier solution concentrations in the high temperature, high pressure region where no previous data existed. This paper summarized these data. The data support the hypothesis that the gas absorption power cycle offers thermal efficiency benefits compared to a conventional steam power cycle.

  2. Precipitation studies of ammonium uranyl carbonate from UO 2F 2 solutions

    NASA Astrophysics Data System (ADS)

    Kan-Sen, Chou; Ding-Yi, Lin; Mu-Chang, Shieh

    1989-05-01

    The precipitation of ammonium uranyl carbonate (AUC) from UO 2F 2 solutions is investigated in this report. An intermediate product, identified as (NH 4) 3UO 2F 5 (AUF), was found preceding the formation of normal AUC precipitates. It dissolves only slowly in the ammonia carbonate solution. Methods of experimental design were adopted here to decide the relative importance of several parameters with respect to either uranium recovery or fluorine content. Our results suggest that the aging temperature is the most important parameter within the ranges of studies affecting the recovery of uranium in this precipitation process. While, on the other hand, the titration rate of (NH 4) 2CO 3 is the only parameter that affects the fluorine content independently. The inclusion of additional NH 4OH in the precipitant can improve the recovery of uranium but unfortunately it increases the fluorine contents as well. Other changes in the characteristics of the precipitate occur undoubtedly.

  3. Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

    NASA Astrophysics Data System (ADS)

    Scheibe, Blazej; Rümmeli, Mark H.; Borowiak-Palen, Ewa; Kalenczuk, Ryszard J.

    2011-04-01

    This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).

  4. TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES

    SciTech Connect

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-09-29

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na{sub 2}SO{sub 4} {center_dot} Na{sub 2}CO{sub 3}). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

  5. Changing fluxes of carbon and other solutes from the Mekong River

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.

    2015-11-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42‑, Cl‑ and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3‑ (23.4) > Ca2+ (6.4) > SO42‑ (3.8) > Cl‑ (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3‑ and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3‑ flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3‑, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  6. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    SciTech Connect

    Philip E. Zapp; John W. Van Zee

    2002-02-01

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation.

  7. Changing fluxes of carbon and other solutes from the Mekong River

    PubMed Central

    Li, Siyue; Bush, Richard T.

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  8. Changing fluxes of carbon and other solutes from the Mekong River.

    PubMed

    Li, Siyue; Bush, Richard T

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4)?>?HCO3(-) (23.4)?>?Ca(2+) (6.4)?>?SO4(2-) (3.8)?>?Cl(-) (1.74)~Na(+) (1.7)?~?Si (1.67)?>?Mg(2+) (1.2)?>?K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014??10(9) mol/y (0.41 Pg C/y), 3915?Mt/y for solute load, including HCO3(-), and 13,553?Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  9. FILM FORMATION ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS UNDER OPEN CIRCUIT CONDITIONS

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1980-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO{sub 4} and LiAsF{sub 6} at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fastformation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionicconductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  10. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-04-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

  11. Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    PubMed Central

    Erdem, Murat; Ucar, Suat; Karagz, Selhan; Tay, Turgay

    2013-01-01

    The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2?mg?g?1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous. PMID:23853528

  12. Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-13

    Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  13. Shear-induced structure evolution of carbon nanotubes dispersions in polyacrylonitrile-dimethylsulfoxide solution

    NASA Astrophysics Data System (ADS)

    Karpushkin, Evgeny; Lapshina, Maria; Sergeyev, Vladimir

    2015-04-01

    Rheological behavior of carbon nanotubes finely dispersed in polyacrylonitrile-dimethylsulfoxide solution has been studied as function of the applied pre-shear stress and discussed in view of possible structural changes induced by the pre-shearing of the samples. The observed effects can be ascribed to a combination of internal processes involving alignment and association of the macromolecules as well as orientation and association of carbon nanotubes. The effects caused by the macromolecules alignment and association are mainly observed at low concentration of the filler and at higher shear stress, whereas the processes involving carbon nanotubes reorganization are mainly observed at the higher filler content and at low pre-shear stress.

  14. Interaction of organic acids with carbonate mineral surfaces in seawater and related solutions

    SciTech Connect

    Zullig, J.J.; Morse, J.W. )

    1988-06-01

    The adsorption of C{sub 4} to C{sub 18} fatty acid anion homologs from seawater and related solutions was examined on calcite, aragonite, dolomite and magnesite surfaces. Butyrate, octanoate and laurate did not adsorb, while myristate, palmitate and stearate absorbed on all carbonate surfaces. An increasing affinity for carbonate surfaces was found with increasing alkyl chain length for these fatty acids. Adsorption at low concentrations typical of marine waters is controlled by surface adsorption sites. At high concentration adsorption is governed by solution composition and limited by aqueous solubility. Adsorption-desorption reactions were characterized by a large resistant component that resulted in nonsingular isotherms. Myristate adsorption was enhanced in the presence of stearate cosorption. Orthophosphate in trace quantities was capable of displacing fatty acids from carbonate surfaces, but contrary to earlier studies, the authors found on major influence from magnesium ion on adsorption. The results of this study are interpreted in terms of a model based on the different types of forces which contribute to adsorption of these organic compounds. This model emphasizes the importance of organic aqueous solubility and the acid function as criteria controlling the adsorption of natural hydrophobic organics with carbonate mineral surfaces in aqueous fluids.

  15. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons.

    PubMed

    Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O

    2015-07-01

    This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices. PMID:25554087

  16. Removal of organic contaminants from aqueous solution by cattle manure compost (CMC) derived activated carbons

    NASA Astrophysics Data System (ADS)

    Qian, Qingrong; Chen, Qinghua; Machida, Motoi; Tatsumoto, Hideki; Mochidzuki, Kazuhiro; Sakoda, Akiyoshi

    2009-04-01

    The activated carbons (ACs) prepared from cattle manure compost (CMC) with various pore structure and surface chemistry were used to remove phenol and methylene blue (MB) from aqueous solutions. The adsorption equilibrium and kinetics of two organic contaminants onto the ACs were investigated and the schematic models for the adsorptive processes were proposed. The result shows that the removal of functional groups from ACs surface leads to decreasing both rate constants for phenol and MB adsorption. It also causes the decrement of MB adsorption capacity. However, the decrease of surface functional groups was found to result in the increase of phenol adsorption capacity. In our schematic model for adsorptive processes, the presence of acidic functional groups on the surface of carbon is assumed to act as channels for diffusion of adsorbate molecules onto small pores, therefore, promotes the adsorption rate of both phenol and MB. In phenol solution, water molecules firstly adsorb on surface oxygen groups by H-bonding and subsequently form water clusters, which cause partial blockage of the micropores, deduce electrons from the ?-electron system of the carbon basal planes, hence, impede or prevent phenol adsorption. On the contrary, in MB solution, the oxygen groups prefer to combine with MB + cations than water molecules, which lead to the increase of MB adsorption capacity.

  17. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Su, Ting-Yi

    2006-06-30

    The adsorption behaviors of bisphenol-A, which has been listed as one of endocrine disrupting chemicals, from aqueous solution onto four minerals including andesite, diatomaceous earth, titanium dioxide, and activated bleaching earth, and two activated carbons with coconut-based and coal-based virgins were examined in this work. Based on the adsorption results at the specified conditions, the adsorption capacities of activated carbons are significantly larger than those of mineral adsorbents, implying that the former is effective for removal of the highly hydrophobic adsorbate from the aqueous solution because of its high surface area and low surface polarity. The adsorption capacities of bisphenol-A onto these mineral adsorbents with different pore properties are almost similar in magnitude mainly due to the weakly electrostatic interaction between the mineral surface with negative charge and the target adsorbate with hydrophobic nature. Further, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of bisphenol-A onto the two common activated carbons at different solution conditions. It was found that the adsorption process could be well described with the pseudo-second-order model. The kinetic parameters of the model obtained in the present work are in line with the pore properties of the two adsorbents. PMID:16343748

  18. Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang

    2014-06-15

    Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. PMID:24767505

  19. Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon.

    PubMed

    Peng, Xiaoming; Hu, Fengping; Lam, Frank L-Y; Wang, Yajun; Liu, Zhanmeng; Dai, Hongling

    2015-12-15

    The performances of ordered mesoporous carbon CMK-3 (OMC), bamboo-based carbon (BC), and these two kinds of adsorbents modified by thermal treatment in the ammonia atmosphere at high temperatures were evaluated for the removal fluoroquinolone antibiotic (ciprofloxacin) from aqueous solution. The adsorption behavior of ciprofloxacin (CIP) onto OMC and BC including adsorption isotherms and kinetics were investigated. The effect of various factors (pH, ionic strength and temperature) on the adsorption process was also investigated. The results demonstrated that the modified OMC and BC can further enhance the adsorption capacity due to introduce of alkaline nitrogen functionalities on the carbon surface. And their maximum adsorption capacity reached as high as 233.37mgg(-1) and 362.94mgg(-1) under the same experimental conditions, respectively. This is primarily ascribed to the positive effect of the surface basicity. The highest sorption was observed at the lowest solubility, which indicated that hydrophobic interaction was the dominant sorption mechanism for CIP uptake onto the four adsorbents. The adsorption data of antibiotics was analyzed by Langmuir and Freundlich model, and the better correlation was achieved by the Langmuir isotherm. The kinetic data showed that the adsorption of CIP onto OMC and BC follow closely the pseudo-second order model. The removal efficiency and adsorption capacity increased with increasing temperature. The results of thermodynamic study indicated that the adsorption process was a spontaneous and endothermic. PMID:26385593

  20. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions.

    PubMed

    Sharma, K; Kim, Y-H; Gabitto, J; Mayes, R T; Yiacoumi, S; Bilheux, H Z; Walker, L M H; Dai, S; Tsouris, C

    2015-01-27

    Desalination of high-salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization (CDI) for water desalination. Experiments were conducted with a flow-through CDI cell designed for neutron imaging and with lithium-6 chloride ((6)LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of (6)LiCl solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the CDI process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why CDI is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of CDI devices, which can improve the process for high ionic-strength solutions. PMID:25533167

  1. Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Jintao; Sundramoorthy, Ashok Kumar; Chen, Peng; Chan-Park, Mary B.

    2014-04-01

    In a simple, cost-effective, and solution-based process, a thin-film of single-walled carbon nanotubes is hybridized on a PET film which has been patterned with solution self-assembled Ag nanoparticles. Such a flexible and transparent electrode exhibits a sheet resistance down to ~5.8 ? sq-1 at ~83.7% optical transmittance. The hybrid films are stable under ambient conditions and offer excellent bendability.In a simple, cost-effective, and solution-based process, a thin-film of single-walled carbon nanotubes is hybridized on a PET film which has been patterned with solution self-assembled Ag nanoparticles. Such a flexible and transparent electrode exhibits a sheet resistance down to ~5.8 ? sq-1 at ~83.7% optical transmittance. The hybrid films are stable under ambient conditions and offer excellent bendability. Electronic supplementary information (ESI) available: Experimental details, performance of graphene-Ag hybrid and met-SWNT-Ag hybrid films. See DOI: 10.1039/c3nr06386k

  2. OPTIMIZATION OF THE WASH-OFF METHOD FOR MEASURING AEROSOL CONCENTRATIONS

    EPA Science Inventory

    Using the fluorescence-washing technique, oleic acid particles tagged with uranine were extracted and analyzed fluorometrically. The possible sources of errors in the technique were evaluated in this study. First, the sensitivity of uranine fluorescence in different solutions ...

  3. Picosecond Pulse Radiolysis of Propylene Carbonate as a Solute in Water and as a Solvent.

    PubMed

    Marignier, Jean-Louis; Torche, Fayçal; Le Caër, Sophie; Mostafavi, Mehran; Belloni, Jacqueline

    2016-03-10

    The ester propylene carbonate (PC) is a solvent with a high static dielectric constant where the charges generated by ionizing radiation are expected to be long-lived at room temperature. Time-resolved optical absorption spectroscopy after picosecond electron pulses reveals the formation of a UV band, within less than two nanoseconds, that is assigned to the radical anion PC(-•), arising from a fast attachment reaction of electrons onto PC. Assignment and reactivity of PC(-•) in neat solvent and solutions are discussed in relation with data obtained in solutions of PC in water under reducing or oxidizing conditions and in solutions in PC of aromatic scavengers with various reduction potentials. The fate of the electrons and the ionization yield in PC are compared with those of other solvents. PMID:26840402

  4. Fabrication of Carbon Nanotube High-Frequency Nanoelectronic Biosensor for Sensing in High Ionic Strength Solutions

    PubMed Central

    Kulkarni, Girish S.; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11. PMID:23912795

  5. Potential benefit of surfactants in a hydrocarbon contaminated soil washing process: fluorescence spectroscopy based assessment.

    PubMed

    Uhmann, Amandine; Aspray, Thomas J

    2012-06-15

    Soil washing is an ex situ soil remediation treatment process. The purpose of soil washing is to clean the major gravel and sand fractions, concentrating contamination into the fine silt and clay fractions. The addition of surfactants can improve the efficiency of this method. Here we report the use of UV fluorescence spectroscopy to assess the hydrocarbon cleaning process as a rapid and cost effective alternative to gas chromatography. Three wash solutions were tested on a total petroleum hydrocarbon contaminated soil: water, Sea Power 101 (SP101) at 1% (v/v) and Tween80 at 0.5% (w/v). The most effective to wash the gravel and sand was SP101 (54 and 65% improvement over the water only wash, respectively) which moved contamination to the silt fraction (94% of contaminants). Tween80 appeared not to enhance TPH removal efficiency from the gravel and sand fractions but did concentrate TPH in the effluent (95% more than water wash). In addition to TPH removal from gravel and sand, SP101 also showed potential benefit in the soil washing sedimentation process, enhancing sludge/water volume separation by 10% over the water only wash. In summary, fluorescence spectroscopy proved an effective technique to compare TPH removal efficiencies as part of soil washing laboratory based treatability testing. PMID:22503218

  6. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. The path forward includes developing the OBA into a well engineered solution for achieving RCRA clean closure of the EBR-II Primary Reactor Tank system. Several high level tasks are also part of the path forward such as reassigning responsibility of the cleanup project to a dedicated project team that is funded by the DOE Office of Environmental Management, and making it a priority so that adequate funding is available to complete the project. Based on the experience of the sodium cleanup specialists, negotiations with the DEQ will be necessary to determine a risk-based de minimus quantity for acceptable amount of sodium that can be left in the reactor systems after cleanup has been completed.

  7. Effect of carbon on formation of mixed solid solutions during mechanochemical synthesis of Ni-Al-Mo-C mixtures and ordering of solutions during heating

    NASA Astrophysics Data System (ADS)

    Portnoi, V. K.; Leonov, A. V.; Streletskii, A. N.; Logacheva, A. I.

    2014-03-01

    Solid solutions Ni(Al, Mo, C) are formed via milling the Ni2.8Al1Mo0.2 and Ni3Al0.8Mo0.2 and graphite-containing Ni2.8Al1Mo0.2C(0.25, 0.5) and Ni3Al0.8Mo0.2C(0.25, 0.5) mixtures. In this case, some amount of Mo remains beyond the solid solution. Graphite added to a starting mixture decreases the Mo solubility and favors the amorphization of solid solutions. The complete amorphization was found for the mixture with the 5 at % C and 5 at % Mo, which was added instead of Ni. The heating of mechanically synthesized (MS) powder alloys leads to the ordering of carbon-free and carbon-containing solid solutions with the formation of the L12 and E21 structure, respectively. In the course of the ordering of the Ni(Al, Mo, C) solid solutions, Mo and carbon precipitate in the form of the molybdenum carbide (Mo2C) second phase. The hardness of the MS three-phase Ni-Al-Mo-C solid solutions subjected to hot isostatic pressing is determined by the mass fraction of the formed Mo2C carbide. It is shown that the carbon content in the multicomponent antiperovskite can be estimated by analyzing the ratio of integral intensities of superlattice reflections I (100)/ I (110).

  8. Preconcentration of f-elements from aqueous solution utilizing a modified carbon paste electrode.

    PubMed

    Schumacher, Paul D; Fitzgerald, Kelly A; Schenk, James O; Clark, Sue B

    2011-02-15

    An evaluation using paraffin oil based, Acheson 38 carbon paste electrodes modified with α-hydroxyisobutyric acid (HIBA) to preconcentrate f-elements cathodically is described. The modified paste was made by directly mixing solid HIBA into the carbon paste. A chemically reversible cyclic voltammogram for HIBA was observed on this modified carbon paste, which was found to be a non-Nerstian, single electron transfer process. Lanthanides (less promethium) were found to accumulate onto the electrode surface during a 30 s electrodeposition step at -0.4 V vs Ag/AgCl from 0.1 M LiCl. The elements were then stripped off into a 2% HNO(3) solution by an oxidative step at +0.8 V vs Ag/AgCl; quantitative removal from the electrode was confirmed by ICPMS. Ultratrace solutions with initial concentrations down to 5 parts per quadrillion (ppq) were preconcentrated in 5 min above our instrumental limit of detection (LOD) of around 1 ppt for lanthanides. PMID:21271692

  9. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin.

    PubMed

    Lee, Chang-Gu; Jeon, Jun-Woo; Hwang, Min-Jin; Ahn, Kyu-Hong; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2015-07-01

    Phenolic resin-based carbon foam was prepared as an adsorbent for removing heavy metals from aqueous solutions. The surface of the produced carbon foam had a well-developed open cell structure and the specific surface area according to the BET model was 458.59m(2)g(-1). Batch experiments showed that removal ratio increased in the order of copper (19.83%), zinc (34.35%), cadmium (59.82%), and lead (73.99%) in mixed solutions with the same initial concentration (50mgL(-1)). The results indicated that the Sips isotherm model was the most suitable for describing the experimental data of lead and copper. The maximum adsorption capacity of lead and copper determined to Sips model were 491mgg(-1) and 247mgg(-1). The obtained pore diffusion coefficients for lead and copper were found to be 1.02×10(-6) and 2.42×10(-7)m(2)s(-1), respectively. Post-sorption characteristics indicated that surface precipitation was the primary mechanism of lead and copper removal by the carbon foam, while the functional groups on the surface of the foam did not affect metal adsorption. PMID:25819762

  10. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes.

    PubMed

    Cho, Hyun-Hee; Huang, Haiou; Schwab, Kellogg

    2011-11-01

    Single-walled carbon nanotubes (SWCNTs), multiwalled carbon nanotubes (MWCNTs), and oxidized MWCNTs (O-MWCNTs) were studied for the adsorption of ibuprofen (IBU) and triclosan (TCS) as representative types of pharmaceutical and personal care products (PPCPs) under different chemical solution conditions. A good fitting of sorption isotherms was obtained using a Polanyi-Manes model (PMM). IBU and TCS sorption was stronger for SWCNTs than for MWCNTs due to higher specific surface area. The high oxygen content of O-MWCNT further depressed PPCP sorption. The sorption capacity of PPCPs was found to be pH-dependent, and more adsorption was observed at pHs below their pK(a) values. Ionic strength was also found to substantially affect TCS adsorption, with higher adsorption capacity observed for TCS at lower ionic strength. In the presence of a reference aquatic fulvic acid (FA), sorption of IBU and TCS was reduced due to the competitive sorption of FA on carbon nanotubes (CNTs). Sorption isotherm results with SWCNTs, MWCNTs and O-MWCNTs confirmed that the surface chemistry of CNTs, the chemical properties of PPCPs, and aqueous solution chemistry (pH, ionic strength, fulvic acid) all play an important role in PPCP adsorption onto CNTs. PMID:21913654

  11. Synthesis of nitrogen-containing carbon by solution plasma in aniline with high-repetition frequency discharges

    NASA Astrophysics Data System (ADS)

    Hyun, Koangyong; Ueno, Tomonaga; Saito, Nagahiro

    2016-01-01

    Nitrogen-containing carbon nanoparticles were synthesized in aniline by solution plasma with high-repetition frequency discharges. We developed a bipolar pulsed power supply that can apply high-repetition frequencies ranging from 25 to 200 kHz. By utilizing high-repetition frequencies, conductive carbons were directly synthesized. The crystallinity was increased and H/C ratio of carbon was decreased. Furthermore, nitrogen atoms were simultaneously embedded in the carbon matrix. Due to the presence of nitrogen atoms, the conductivity and electrocatalytic activity of the samples were remarkably improved compared to that of a pure carbon matrix synthesized from a benzene precursor.

  12. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 in 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.

  13. Generation of soil solution acid-neutralizing capacity by addition of dissolved inorganic carbon

    SciTech Connect

    David, M.B.; Vance, G.F.

    1989-01-01

    A Spodosol B horizon (base saturation of 5.4%) collected at the Watershed Manipulation Project site at Lead Mountain, ME, was used to examine soil solution chemistry in response to increasing solution levels of dissolved inorganic carbon (DIC). Acid-neutralizing capacity (ANC), determined by Gran titration, increased from -5 to 163 mw equiv/L in response to increasing DIC, with a corresponding increase in base cations (Ca2+, Mg2+, K+, and Na+). For the negative ANC solutions, degassing increased solution pH (in equilibrium with atmospheric CO2) slightly from 4.94 to 5.14, whereas solutions with positive ANC showed large pH shifts (e.g., ANC of 69, pH shift from 4.73 to 6.81). Under equilibrium assumptions and log K(sub A1) determined from 2.66pH-pAl, measured values from ANC, sum of cations, pH, and degassed pH were found to be in agreement with predictions from a chemical equilibrium model.

  14. Effect of solution additives on the performance of PMAN carbon anodes in 1M LiPF{sub 6}/EC-DMC solutions

    SciTech Connect

    Guidotti, R.A.; Johnson, B.J.

    1996-12-31

    A study was undertaken to examine the use of a number of solution additives in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions to improve the performance of carbon anodes derived from polymethylacrylonitrile (PMAN)-divinylbenzene (DVB) copolymers. The study goals were to improve the cycle life and reduce the formation of the passivation layer during the first reduction, thereby minimizing the irreversible-capacity losses. Additives studied were 12-crown-4 (12-Cr-4) ether, decalin, and dilithium phthalocyanine (Li{sub 2}Pc). The carbon performance was characterized by galvanostatic cycling, cyclic voltammetry, and complex-impedance spectroscopy. Limited success was obtained with 12-Cr-4 ether at 0.25 M and decalin at 1 v/o. Poor results were noted with Li{sub 2}Pc at 0.025 M and 0.5 M.

  15. Solution-processed thin films for electronics from single-walled carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Eda, Goki

    Single-walled carbon nanotubes (SWNTs) and graphene are sp 2 hybridized carbon nanostructures which exhibit extraordinary electronic properties arising from their unique energy dispersions and dimensionalities. A major issue preventing implementation of these materials into integrated electronic devices is the absence of large-scale controllable synthesis and subsequent manipulation. To circumvent this issue, solution processing of SWNTs and graphene has been proposed. Deposition of thin film networks allows the realization of a new class of materials that are useful for large-area or "macro-electronics" on flexible and inexpensive platforms. In this thesis, controllable and efficient solution-based deposition of SWNT and graphene thin film networks and their opto-electronic properties are investigated. Topics such as material dynamics in liquid, chemical structures, defects, morphology, and doping are studied utilizing various spectroscopy and microscopy analysis along with complementary electrical measurements. Further insight is provided through demonstrations of proof-of-principle thin film transistors, organic photovoltaics, and field emitters based on solution-processed SWNT and graphene thin films.

  16. Solution-reactor-produced-{sup 99}Mo using activated carbon to remove {sup 131}I

    SciTech Connect

    Kitten, S.; Cappiello, C.

    1998-09-01

    This research explores the idea of producing {sup 99}Mo in a solution reactor. The Solution High Energy Burst Assembly (SHEBA), located at the Los Alamos Critical Assembly Facility, was used to facilitate this study. The goal of this study was to build on work previously completed and to investigate a possible mode of radioactive contaminant removal prior to a {sup 99}Mo extraction process. Prior experiments, performed using SHEBA and a single-step sorption process, showed a significant amount of {sup 131}I present along with the {sup 99}Mo on the alumina that was used to isolate the {sup 99}Mo. A high concentration of {sup 131}I and/or other contaminants present in a sample prohibits the Food and Drug Administration from approving an extraction of that nature for radiopharmaceutical use. However, if it were possible to remove the {sup 131}I and other contaminants prior to a {sup 99}Mo extraction, a simple column extraction process might be feasible. Activated charcoal was used to try to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of the {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba. Most importantly, the carbon traps a diminutive amount of {sup 99}Mo.

  17. Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation, Majella Mountain, Italy)

    NASA Astrophysics Data System (ADS)

    Rustichelli, A.; Tondi, E.; Agosta, F.; Cilona, A.; Giorgioni, M.

    2012-04-01

    The Oligo-Miocene ramp carbonates pertaining to the Bolognano Formation, cropping out at the Majella Mountain, Central Italy, are diffusely crosscut by bed-parallel structural elements such as compaction bands and pressure solution seams. These bed-parallel structural elements formed under a vertical loading, during the progressive burial of the carbonates. The present field and laboratory study focuses on the control exerted, on development and distribution of bed-parallel compaction bands and pressure solution seams, by compositional, sedimentological and pore network characteristics of a variety of carbonate rocks (skeletal grainstones and packstones, marly wackestones to mudstones). The main results are consistent with the following statements: (i) bed-parallel compaction bands formed only within poorly cemented, porous grainstones (2D porosity > 10%; 3D porosity > 15%). Their dimensional parameters (i.e., length, spacing, thickness) were strongly controlled by both sorting and sphericity of the carbonate grains, as well as by the amount of intergranular macroporosity. All these rock characteristics enhanced all physical processes (i.e. grain rotation, translation and fracturing) associated to compaction banding; (ii) bed-parallel pressure solution seams predominantly formed within fine-grained packstones made up of well-sorted and spherical carbonate grains with absence of internal pores, and small amounts of clayish matrix (2-4% of total rock volume). High contents of pre-existing cement also enhanced pressure solution; (iii) well-sorted carbonates with spherical grains may be suitable to both compaction banding and pressure solution; (iv) skeletal grain types which compose grain-supported carbonate rocks (grainstones and packstones), in many cases, indirectly influence the distribution of both bed-parallel compaction bands and pressure solution seams. Considering that the containment and migration capacity of geofluids in the subsurface within carbonate rocks is strongly influenced by the distribution of compaction bands and pressure solution seams, the results of this research provide new tools useful to improve the prediction of reservoir quality by mapping/simulating/assessing carbonate facies.

  18. Wash water waste pretreatment system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  19. Role of the surface chemistry of activated carbons in dye removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhou, Hua-lei; Zhen, Wen-juan; Zhu, Qian; Wu, Xiao-bin; Chang, Zhi-dong; Li, Wen-jun

    2015-07-01

    Commercial activated carbons were modified by a series of chemical or physical treatments using H2O2, NH3, and heating under N2 flow without notably changing their pore structures. The resultant carbons were characterized by N2 adsorption and Bohem titration and then used to remove Ponceau 4R, methyl orange and brilliant blue from aqueous solutions. Surface chemistry was found to play a significantly different role in removing these three compounds. The removal of anionic Ponceau 4R increases with increasing carbon surface basicity due to the predominant dispersive interaction mechanism. In contrast, surface chemistry has little effect on the removal of anionic methyl orange, which can be explained by two parallel mechanisms involving electrostatic and dispersive interactions due to the basic amine group in a dye molecule. The influence of surface chemistry on the removal of amphoteric brilliant blue dye can also be ignored due to a weak interaction between the carbons and dye molecules, which is resulted from strong cohesive energy from electrostatic forces inside amphoteric dye molecules.

  20. Photochemical reactions of Am(V) in bicarbonate-carbonate solutions

    SciTech Connect

    Yusov, A.B.; Shilov, V.P.

    1995-12-01

    The effect of ultraviolet (UV) radiation on Am(V) in sodium carbonate and bicarbonate solutions of pH 9.00 - 11.40 was studied by spectrophotometry. An Am(IV) + Am(VI) mixture was formed at pH 9 to 10; however, the conversion of Am(V) did not exceed 60 - 70%. The reaction rate order with respect to Am(V) was about 1. A quantum yield for the reaction on photolysis with light of {lambda} = 337 nm was estimated at 0.003. The reaction rate and the conversion of Am(V) were decreased with increasing pH. The reaction started with the absorption of a UV quantum by a carbonate complex of Am(V). Its first step was presumably the electron transfer either from a water molecule to Am(V) in the coordination sphere of the excited carbonate complex of Am(V) or between two Am(V) ions in an excimer involving an excited and an unexcited carbonate complex of Am(V).

  1. Macromolecular conformation in solution. Study of carbonic anhydrase by the positron annihilation technique.

    PubMed Central

    Handel, E D; Graf, G; Glass, J C

    1980-01-01

    The structural features of carbonic anhydrase (carbonate hydro-lyase; EC 4.2.1.1) in aqueous solution were probed by the positron annihilation technique. The data obtained under varying conditions of temperature, pH, and enzyme concentration were interpreted in terms of the free volume model. The change of enzymic activity with temperature is accompanied by a change in free volume of the protein. Upon thermal denaturation an irreversible change in free volume of the molecule occurred. At low temperatures the protein-water interactions were investigated. These results are discussed in terms of current concepts of structure-function relationships in proteins. This study shows the sensitivity of the positron annihilation method toward the structure of proteins related to their overall conformation and to the nature of bound water. PMID:6789901

  2. Dehydration and crystallization of amorphous calcium carbonate in solution and in air

    PubMed Central

    Ihli, Johannes; Wong, Wai Ching; Noel, Elizabeth H.; Kim, Yi-Yeoun; Kulak, Alexander N.; Christenson, Hugo K.; Duer, Melinda J.; Meldrum, Fiona C.

    2014-01-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fractioncomprising less than 15% of the totalthen triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes. PMID:24469266

  3. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators. PMID:25133545

  4. Formation of nanostructures from colloidal solutions of silicon dioxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhukalin, D. A.; Tuchin, A. V.; Goloshchapov, D. L.; Bityutskaya, L. A.

    2015-02-01

    The formation of nanostructures from colloidal solutions of amorphous silicon dioxide (SiO2) and carbon nanotubes (CNTs) in evaporating drops at room temperature has been studied. It is established that spherical aggregates with an average diameter of 2 ?m and rodlike nanostructures with diameters within 250-300 nm and lengths of 4 ?m are formed under these conditions. The mechanisms of covalent and van der Waals interaction between CNTs and SiO2 are considered in the framework of a phenomenological model of the active center of a closed CNT.

  5. Some organic compounds as inhibitors for the corrosion of aluminum alloy 6063 in deaerated carbonate solution

    SciTech Connect

    Bazzi, L.; Hamdani, M.; Kertit, S.

    1995-11-01

    Some organic compounds were tested as corrosion inhibitors for aluminum alloy 6063 (Al 6063, UNS A96063) in a deaerated carbonate solution using the electrochemical polarization method. The compounds studied were thiourea (TOR), diorthoaminodiphenyldisulfane (DOAPD), and benzotriazole (BTA). Results showed DOAPD was the best inhibitor. Its inhibition efficiency reaches a maximum value of 95.8% at 10{sup {minus}2} M. Polarization measurements indicated DOAPD acted as a cathodic and anodic (mixed) inhibitor without changing the mechanism of the water evolution reaction. DOAPD was adsorbed on the aluminum surface according to a Langmuir isotherm model. The other compounds tested had no effect on pitting corrosion of Al 6063.

  6. Carbonized material adsorbents for the removal of mercury from aqueous solutions

    SciTech Connect

    1996-10-01

    Charcoal in itself is porous making it an excellent material for activated charcoal manufacture. However, few studies have been conducted in harnessing its potential for adsorption purposes, especially in water treatment. This paper describes the possibility of utilizing charcoal materials from Sugi (Cryptomeria japonica) for adsorbing heavy metals like mercury from aqueous solutions of different concentrations. The effect of soaking time, pore analyses and chemical properties on the adsorption capabilities of the carbonized materials were discussed. The pH value and chemical oxygen demand (COD) monitored during the soaking period were also described.

  7. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    SciTech Connect

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V. . Dept. de Ingenieria Quimica y Nuclear); Lacoste, G. )

    1994-03-01

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  8. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcys law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  9. Soil washing: A preliminary assessment of its applicability to Hanford

    SciTech Connect

    Gerber, M A; Freeman, H D; Baker, E G; Riemath, W F

    1991-09-01

    Soil washing is being considered for treating soils at the US Department of Energy's (DOE) Hanford Site. As a result of over 50 years of operations to produce plutonium for the US Department of Defense and research for DOE, soils in areas within the Site are contaminated with hazardous wastes and radionuclides. In the soil washing process, contaminated soil is mixed with a liquid and then physically and/or chemically treated to dissolve the contaminants into solution and/or concentrate them in a small fraction of the soil. The purpose of this procedure is to separate the contaminants from the bulk of the soil. The key to successful application is to match the types of contaminants and soil characteristics with physical-chemical methods that perform well under the existing conditions. The applicability of soil washing to Hanford Site contaminated soils must take into account both the characteristics of the oil and the type of contamination. Hanford soils typically contain up to 90% sand, gravel, and cobbles, which generally are favorable characteristics for soil washing. For example, in soil samples from the north pond in the 300 Area, 80% to 90% of the soil particles were larger than 250 {mu}m. The principal contaminants in the soil are radionuclides, heavy metals, and nitrate and sulfate salts. For most of the sites, organic contaminants are either not present or are found in very low concentration. 28 refs., 5 figs., 10 tabs.

  10. Separation of hydrophobic organic compound from surfactant solutions with activated carbon in a fixed bed.

    PubMed

    Liu, Jianfei; Chen, Jiajun; Jiang, Lin; Chen, Cheng

    2013-01-01

    The adsorption behavior of phenanthrene (PHE) in Triton X-100 (TX100) solutions with fixed activated carbon (AC) bed was studied to recover the surfactant. The effect of various parameters like bed depths, flow rates, influent TX100 concentration, and influent PHE concentration were investigated. The breakthrough time of both TX100 and PHE increased with the increase of bed height and decrease of flow rate and influent concentration. In the case of fixed length, a lower flow rate, higher concentration of TX100, and lower concentration of PHE will benefit the longer effective surfactant recovery time. The adsorption data were integrated into bed depth service time models. The height of exchange zone of TX100 should be much shorter than that of PHE, which provides conditions to separate the hydrophobic organic compound from surfactant solutions with AC in a fixed bed. It is likely that the adsorption process is controlled by hydrophobic interaction. PMID:24292481

  11. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    NASA Astrophysics Data System (ADS)

    Afanasiev, Pavel

    2014-05-01

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoSx (x?4) of 10-30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoSx under nitrogen or hydrogen flow at 400 C allows obtaining mesoporous MoS2 materials with very high pore volume and specific surface area, up to 0.45 cm3/g and 190 m2/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts.

  12. EFRT M-12 Issue Resolution: Solids Washing

    SciTech Connect

    Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. Two operating scenarios were evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-VSL-T01A/B ultrafiltration feed vessels, identified as Integrated Test A. The second scenario has caustic leaching conducted in the UFP-VSL-T02A ultrafiltration feed preparation vessel, identified as Integrated Test B. Washing operations in PEP Integrated Tests A and B were conducted successfully as per the approved run sheets. However, various minor instrumental problems occurred, and some of the process conditions specified in the run sheet were not met during the wash operations, such as filter-loop flow-rate targets not being met. Five analytes were selected based on full solubility and monitored in the post-caustic-leach wash as successful indicators of washing efficiency. These were aluminum, sulfate, nitrate, nitrite, and free hydroxide. Other analytes, including sodium, oxalate, phosphate, and total dissolved solids, showed indications of changing solubility; therefore, they were unsuitable for monitoring washing efficiency. In the post-oxidative-leach wash, two analytes with full solubility were selected as suitable indicators of washing efficiency. These were chromium and oxalate. Other analytes, including sodium, manganese, nitrate, and total dissolved solids, showed indications of changing solubility; therefore, they were unsuitable for monitoring washing efficiency. An overall wash efficiency of 1.00 ± 0.01 was determined for the post-caustic-leach wash. The overall wash efficiency for the post-oxidative-leach wash was determined also to be 0.99 ± 0.01. These wash efficiencies were based on the weighted least squares fit of the full data set for each applicable analyte and are an average of several analytes traced during the washing steps in Integrated Tests A and B. Incremental wash efficiencies as a function of wash step were also given to provide an indication of the variability during the washing process. Chemical tracer tests resulted in the major conclusion that nearly complete mixing was achieved between 2 and 4 minutes after tracer injection. With inconsistent filter-loop flow rates and other mixing parameters, future process conditions should be taken into account during further interpretation of these data. A slight decrease of 8 to 10% in the tracer concentration between 4 and 60 minutes suggests that there was a relatively small unmixed region that mixed over the course of the 1-hour test. The IW batch time interval, defined as the duration between the start of the IW wash injection for a batch to the start for the IW wash injection for the subsequent batch, was often close to or less than the required 4-minute mixing time indicated by the tracer tests. Such short batch durations did not appear to have significantly impacted the washing efficiencies.

  13. Na⁺-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination.

    PubMed

    Guo, Chun Xian; Zhao, Dieling; Zhao, Qipeng; Wang, Peng; Lu, Xianmao

    2014-07-14

    A new type of biocompatible draw solute, Na(+)-functionalized carbon quantum dots (Na_CQDs) with ultra-small size and rich ionic species, in forward osmosis (FO) is developed for seawater desalination. The aqueous dispersion of Na_CQDs demonstrates a high osmotic pressure, which allows high FO water flux and negligible reverse solute permeation. PMID:24870226

  14. Laboratory differential simulation design method of pressure absorbers for carbonization of phenolate solution by carbon dioxide in coal-tar processing

    SciTech Connect

    Linek, V.; Sinkule, J.; Moucha, T.; Rejl, J.F.

    2009-01-15

    A laboratory differential simulation method is used for the design of carbonization columns at coal-tar processing in which phenols are regenerated from phenolate solution by carbon dioxide absorption. The design method is based on integration of local absorption rates of carbon dioxide along the column. The local absorption rates into industrial phenolate mixture are measured in a laboratory model contactor for various compositions of the gas and liquid phases under the conditions that ensure the absorption rates in the laboratory absorber simulate the local rates in the industrial column. On the bases of the calculations, two-step carbonization columns were designed for 30000 t/year of the phenolate solution treatment by carbon dioxide. The absorption proceeds at higher pressure of 500 kPa and temperatures from 50 to 65 C, pure carbon dioxide is used and toluene is added. These conditions have the following favourable effects: (I) significant size reduction of the columns, (ii) it is possible to process more concentrated solutions without danger of silting the columns by crystallization of NaHCO{sub 3} on the packing. (iii) small amount of inert gas is released, (iv) lower alkalinity and better separability of the organic phase (phenols with toluene) from water phase (soda or bicarbonate solution) in separators.

  15. Biosorption of arsenic (V) with acid-washed crab shells.

    PubMed

    Niu, Catherine Hui; Volesky, Bohumil; Cleiman, Daniel

    2007-06-01

    Highly toxic arsenate occurs naturally in some well water as well as in industrial wastewaters. Removal of arsenate (As(V)) by biosorption with acid-washed crab shells (AWCS) is very sensitive to solution pH. It greatly increased when the solution pH was lowered from 3.44+/-0.07 to 2.51+/-0.02, but it was reduced at pH below 1.99+/-0.01. Change of solution pH not only affected the charged functional groups on AWCS but also the speciation of arsenate in solution. Increasing ionic strength of solution negatively affected the arsenic uptake. At ionic strength 0.1M, arsenic uptake was seriously depressed. Arsenic biosorption with AWCS was mainly through arsenate binding on the amide groups in the AWCS. AWCS has a dense structure and low extent of swelling in aqueous solutions. This might prevent effective arsenate access to the functional groups in AWCS. PMID:17459449

  16. Vegetable wash water chemical characterization and chlorination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of high quality, fresh-cut produce is a key driver for the produce industry. A critical area of concern is the chlorinated wash water used during post-harvest processing in large industrial processing facilities. Predominantly using a batch process, wash water is recycled over 8hr shift...

  17. Tolerance and Safety of Different Concentrations of Chlorhexidine for Peripartum Vaginal and Infant Washes: HIVNET025

    PubMed Central

    Wilson, Craig M.; Gray, Glenda; Read, Jennifer S.; Mwatha, Anthony; Lala, Sanjay; Johnson, Saul; Violari, Avye; Sibiya, Portia Mabali; Fleming, Thomas R.; Koonce, Ann; Vermund, Sten H.; McIntyre, James

    2009-01-01

    Background There is a continuing need to evaluate sustainable interventions for prevention of mother-to-child transmission (MTCT) of HIV type 1. We evaluated different concentrations (0.25%, 1%, and 2%) of chlorhexidine (CHX) for perinatal maternal and infant washes to identify the maximum tolerable concentration of CHX for such an intervention. Methods Women were enrolled during their third trimester at the maternity unit of the Chris Hani Baragwanath Hospital in Soweto, South Africa, and perinatal maternal and infant washes were completed. Subjective maternal symptoms as well as infant examinations were used to assess tolerability of the washes. Results The 0.25% concentration of CHX was well tolerated by the mothers (n = 29). Ten of 79 women (13%) with 1% CHX washes complained of mild vaginal area burning or itching, and washes were stopped in 5 (6%). Twenty-three of 75 women (31%) in the 2% CHX wash group had subjective complaints, and the washes were stopped in 12 (16%). There were no clinical indications of toxicity of the CHX washes among infants. Conclusion A 1% solution of CHX appears to be a safe and tolerable concentration of CHX for consideration in an MTCT prevention trial. PMID:14722445

  18. Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing

    SciTech Connect

    Ichin, Yoshimichi; Mitamura, Koji; Saito, Nagahiro; Takai, Osamu

    2009-07-15

    In order to improve the energy-conversion efficiency in fuel cells, the authors loaded Pt nanoparticles on carbon nanoballs (CNBs) by using solution plasma processing (SPP) involving CNB and Pt ion with a protection group. In this study, we employed poly(vinylpyrrolidone) (PVP) or sodium dodecyl sulfate (SDS) to prepare Pt nanoparticles supported on CNB (Pt/CNB) by the SPP, and the electrochemical properties as a catalyst was evaluated by cyclic voltammetry. The carbon nanoballs were prepared by thermal decomposition process of ethylene and hydrogen gases. Color of the solution changed from yellow to dark brown as synthesis time. This change indicates the improvement of dispersibility of CNB. Moreover, transmission electron microscopy images and elemental mapping images showed the Pt nanoparticles supported on CNB. A catalytic activity of the Pt/CNB in use of SDS was shown to be higher than the Pt/CNB prepared with PVP system. The SDS-containing Pt/CNB also showed the higher activity than that obtained by the conventional method.

  19. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program. PMID:26421625

  20. Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution.

    PubMed

    Koh, Byumseok; Park, Jong Bae; Hou, Ximiao; Cheng, Wei

    2011-03-24

    Single-walled carbon nanotubes (SWCNT) produced by various methods are commercially available but systematic characterization of their dispersion behavior in aqueous solution is rare. Here, we compare the properties of various SWCNT after their dispersion in aqueous solution assisted by DNA oligo. UV-vis-NIR absorbance measurement and atomic force microscopy (AFM) imaging showed marked differences among SWCNT produced from arc-discharge (AD) method, chemical vapor deposition (CVD), and high-pressure carbon monoxide process (HiPCO). To our surprise, the SWCNT produced from AD method showed the highest nanotube purity and the cleanest AFM image, better than HiPCO SWCNT that has been used extensively for biological applications. We also report our systematic studies on optimizing dispersing conditions to maximize SWCNT solubility and remove insoluble materials. We recommend a low power and short time of sonication to disperse SWCNT to preserve their average lengths. These results altogether serve as a future guide for the usage of commercial SWCNT in water-based applications. PMID:21355620

  1. Removal of nickel(II) from aqueous solution using Citrus Limettioides peel and seed carbon.

    PubMed

    Sudha, R; Srinivasan, K; Premkumar, P

    2015-07-01

    The agricultural wastes like Citrus Limettioides peel and seed to be suitable precursor for the preparation of carbon [Citrus Limettioides peel carbon (CLPC) and seed carbon (CLSC)] has been explored in the present work, utilizing sulfuric acid as the activating agent. Adsorption studies were performed by varying contact time, solution pH, adsorbent dose and temperature. The equilibrium time for Ni(II) ions was determined as 4h and optimal pH was 4-7. Surface morphology and functionality of the CLPC and CLSC were characterized by SEM, EDX and FT-IR. The experimental data were analysed using the Freundlich, Langmuir, Temkin, Redlich-Peterson, Sips and Dubinin-Radushkevich adsorption isotherm equations using nonlinear regression analysis. Equilibrium data were found to fit well in the Langmuir isotherm, which confirmed the monolayer coverage of Ni(II) ions. The Langmuir monolayer adsorption capacity of CLPC and CLSC was found to be 38.46 and 35.54 mg/g. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic in nature. The kinetic data followed pseudo-second order model with film diffusion process. The adsorbents were tested with Ni(II) plating wastewater in connection with the reuse and selectivity of the adsorbents. PMID:25841067

  2. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids.

    PubMed

    Kleinerman, O; Parra-Vasquez, A Nicholas G; Green, M J; Behabtu, N; Schmidt, J; Kesselman, E; Young, C C; Cohen, Y; Pasquali, M; Talmon, Y

    2015-07-01

    Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy. PMID:25818279

  3. Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank's solution

    NASA Astrophysics Data System (ADS)

    Mohan, L.; Anandan, C.; Grips, V. K. William

    2012-06-01

    Diamond like carbon (DLC) coatings posses high hardness and low friction coefficient and also biocompatible, hence, they are of interest for enhancing the wear and corrosion resistance of bio-implant materials. Beta stabilized titanium alloys are attractive for biomedical applications because of their high specific strength and low modulus. In this work Beta-21S alloy (Ti-15Mo-3Nb-3Al-0.2Si) was implanted with carbon ions by plasma immersion ion implantation using methane and hydrogen gas mixture followed by DLC deposition by plasma enhanced chemical vapour deposition (PECVD). The implanted layers enabled deposition of adherent diamond-like carbon coatings on the titanium alloy which was otherwise not possible. The corrosion behavior of the treated and untreated samples was investigated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies in simulated body fluid (Hank's solution). XPS, micro Raman and EDAX investigation of the samples showed the formation of a thin oxide layer on the treated samples after corrosion experiments. Corrosion resistance of the DLC coated sample is comparable with that of the untreated samples. Electrochemical impedance data of the substrate and implanted samples were fitted with two time constant equivalent circuits and that of DLC coated samples with two-layer model.

  4. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions.

    PubMed

    Alvarez, P M; García-Araya, J F; Beltrán, F J; Masa, F J; Medina, F

    2005-03-15

    The impact of ozonation on textural and chemical surface characteristics of two granular activated carbons (GAC), namely F400 and AQ40, and their ability to adsorb phenol (P), p-nitrophenol (PNP), and p-chlorophenol (PCP) from aqueous solutions have been studied. The porous structure of the ozone-treated carbons remained practically unchanged with regard to the virgin GAC. However, important modifications of the chemical surface and hydrophobicity were observed from FTIR spectroscopy, pH titrations, and determination of pH(PZC). As a rule, the ozone treatment at either room temperature (i.e., about 25 degrees C) or 100 degrees C gave rise to acidic surface oxygen groups (SOG). At 25 degrees C primarily carboxylic acids were formed while a more homogeneous distribution of carboxylic, lactonic, hydroxyl, and carbonyl groups was obtained at 100 degrees C. The experimental isotherms for phenolic compounds on both GAC were analyzed using the Langmuir model. Dispersive interactions between pi electrons of the ring of the aromatics and those of the carbon basal planes were thought to be the primary forces responsible for the physical adsorption whereas oxidative coupling of phenolic compounds catalyzed by basic SOG was a major cause of irreversible adsorption. The exposure of both GAC to ozone at room temperature decreased their ability to adsorb P, PNP, and PCP. However, when ozone was applied at 100 degrees C adsorption was not prevented but in some cases (P and PNP on F400) the adsorption process was even enhanced. PMID:15721926

  5. Adsorption equilibrium, kinetics and thermodynamics of dichloroacetic acid from aqueous solution using mesoporous carbon.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Cao, Yang; Chen, Shenglu

    2014-08-01

    The presence of disinfection by-products, such as trihalomethanes and haloacetic acids in water, is believed to be harmful to human health. In this work, mesoporous carbon was synthesized with the evaporation-induced self-assembly method and employed to evaluate the effects of initial concentration, contact time, pH and temperature on the removal of dichloroacetic acid in batch experiments. Adsorption equilibrium was established in 480 min and the maximum adsorption (350mg/g) of dichloroacetic acid on the mesoporous carbon was observed to occur at 308 K and pH 3.0. Freundlich and Langmuir isotherms were used to analyse the equilibrium data at different temperatures; kinetic data were fitted to the pseudo-first-order and pseudo-second-order models and found that the adsorption capacity, mass transfer coefficient and diffusivity of dichloroacetic acid were directly affected by the physical and chemical parameters. In addition, the various thermodynamic parameters, such as Gibbs free energy (Delta G), enthalpy (Delta H = 54.35 kJmol-1) and entropy (Delta S = 258.36 Jmol-1 K-1) were calculated to analyse the adsorption process. The experimental results indicated that the mesoporous carbon was an excellent adsorbent for dichloroacetic acid removal from aqueous solutions. PMID:24956790

  6. The Effect of Electrode Gap Distance on the Synthesis of Carbon Materials by Using Solution Plasma Process

    NASA Astrophysics Data System (ADS)

    Lee, Hoonseung; Ueno, Tomonaga; Saito, Nagahiro

    2015-11-01

    Carbon nanomaterials were synthesized by using the solution plasma process and the carbon structure was precisely controlled through adjusting electrode gap distances. Transmission electron microscope and diffraction images showed ordered graphitic layers and clear ring patterns when the electrode distance was wider. The measurement of conductive properties has been improved approximately 400 times from 19 k Ω cm to 47 Ω cm, and the C/H ratio from the result of elemental analysis decreased from 0.31 to 0.18 with decreasing resistivity of carbon. These results showed that the electrode distance was an important factor to control the energy input during the synthesis of carbon materials in the plasma/gas zone generated by solution plasma processing and strongly affect the properties of synthesized carbon materials.

  7. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency. PMID:25532323

  8. Solute Export and Carbon Dioxide Trends of the Altamaha River Basin

    NASA Astrophysics Data System (ADS)

    Vuong, C. K.; Patel, K.; Karim, A.

    2007-12-01

    The Altamaha River Basin (ARB), a major drainage of the Atlantic seaboard, was monitored near Jesup, Georgia, on a biweekly frequency during April 2006 through June 2007. Alkalinity, pH, temperature, and Total Dissolved Solids (TDS) were measured in the field. Geographic Information Systems and historical precipitation and stream flow were used to calculate mean annual: (1) precipitation flux into the basin; (2) runoff from the basin; (3) solute export; and (4) partial pressure of carbon dioxide (pCO2). The mean annual precipitation flux to the ARB is 46.4 km3. Runoff near the mouth of the Altamaha River is 12.1 km3 or about 26% of the precipitation input, implying that roughly three quarters of all the rain that falls on the basin is lost to evapotranspiration. The ARB has discharge-weighted average TDS concentration of 53.3 mg/L and annually exports 646,445 metric tons of dissolved solutes to the Atlantic Ocean. The pCO2 values range between close to atmospheric equilibrium in May to 106 times above atmospheric equilibrium in December. For the rising limb of the hydrograph, pCO2 trend mimics stream flow with pCO2 peak occurring about a month ahead of discharge. The low values probably indicate CO2 drawdown by aquatic photosynthesis and higher values indicate discharge of wastewater/shallow groundwater charged with bacterially respired carbon dioxide. Thus, the ARB was a net source of carbon dioxide to the atmosphere during the water year 2006-2007.

  9. Contaminant resorption during soil washing

    SciTech Connect

    Gombert, D.

    1993-10-01

    To evaluate the applicability of soil washing to a specific site requires some basic research in how contaminants are bound. Much can be learned from sequential extraction methodology based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. This procedure uses a series of progressively more aggressive solvents to dissolve the principle phases that make up a soil, however, the published studies do not appear to consider the potential for a contaminant released from one type of site to resorb on another site during an extraction. This physical model assumes no ion exchange or adsorption at sites either previously occupied by other ions, or exposed by the dissolution. Therefore, to make engineering use of the sequential extraction data, the release of contamination must be evaluated relative to the effects of resorption. Time release studies were conducted to determine the optimum duration for extraction to maximize complete destruction of the target matrix fraction while minimizing contaminant resorption. Tests with and without a potassium brine present to inhibit cesium resorption indicated extraction efficiency could be enhanced by as much as a factor of ten using the brine.

  10. Linking mineralisation process and sedimentary product in terrestrial carbonates using a solution thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Rogerson, M.; Pedley, H. M.; Kelham, A.; Wadhawan, J. D.

    2014-04-01

    Determining the processes which generate terrestrial carbonate deposits (tufas, travertines and to a lesser extent associated chemical sediments such as calcretes and speleothems) is a long-standing problem. Precipitation of mineral products from solution reflects a complex combination of biological, equilibrium and kinetic processes, and the different morphologies of carbonate sediment produced by different processes have yet to be clearly demarked. Building on the groundbreaking work of previous authors, we propose that the underlying control on the processes leading to the deposition of these products can be most parsimoniously understood from the thermodynamic properties of their source solutions. Here, we report initial observations of the differences in product generated from spring and lake systems spanning a range of temperature-supersaturation space. We find that at high supersaturation, biological influences are masked by high rates of physico-chemical precipitation, and sedimentary products from these settings infrequently exhibit classic "biomediated" fabrics such as clotted micrite. Likewise, at high temperature (>40 °C) exclusion of vascular plants and complex/diverse biofilms can significantly inhibit the magnitude of biomediated precipitation, again impeding the likelihood of encountering the "bio-type" fabrics. Conversely, despite the clear division in product between extensive tufa facies associations and less spatially extensive deposits such as oncoid beds, no clear division can be identified between these systems in temperature-supersaturation space. We reiterate the conclusion of previous authors, which demonstrate that this division cannot be made on the basis of physico-chemical characteristics of the solution alone. We further provide a new case study of this division from two adjacent systems in the UK, where tufa-like deposition continuous on a metre scale is happening at a site with lower supersaturation than other sites exhibiting only discontinuous (oncoidal) deposition. However, a strong microbiological division is demonstrated between these sites on the basis of suspended bacterial cell distribution, which reach a prominent maximum where tufa-like deposits are forming. We conclude that at high supersaturation, the thermodynamic properties of solutions provide a highly satisfactory means of linking process and product, raising the opportunity of identifying water characteristics from sedimentological/petrological characteristics of ancient deposits. At low supersaturation, we recommend that future research focuses on geomicrobiological processes rather than the more traditional, inorganic solution chemistry approach dominant in the past.

  11. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon

    NASA Astrophysics Data System (ADS)

    Asgari, Ghorban; Samiee, Fateme; Ahmadian, Mohammad; Poormohammadi, Ali; solimanzadeh, Bahman

    2014-11-01

    The efficiency of granular activated carbon (GAC) was investigated in this study as a catalyst for the elimination of pentachlorophenol (PCP) from contaminated streams in a laboratory-scale semi-batch reactor. The influence of important parameters including solution pH (2-10), radical scavenger (tert-butanol, 0.04 mol/L), catalyst dosage (0.416-8.33 g/L), initial PCP concentration (100-1000 mg/L) and ozone flow rate (2.3-12 mg/min) was examined on the efficiency of the catalytic ozonation process (COP) in degradation and mineralization of PCP in aqueous solution. The experimental results showed that catalytic ozonation with GAC was most effective at pH of 8 with ozone flow rate of 12 mg/min and a GAC dosage of 2 g. Compared to the sole ozonation process (SOP), the removal levels of PCP and COP were, 98, and 79 %, respectively. The degradation rate of kinetics was also investigated. The results showed that using a GAC catalyst in the ozonation of PCP produced an 8.33-fold increase in rate kinetic compared to the SOP under optimum conditions. Tert-butanol alcohol (TBA) was used as a radical scavenger. The results demonstrated that COP was affected less by TBA than by SOP. These findings suggested that GAC acts as a suitable catalyst in COP to remove refractory pollutants from aqueous solution.

  12. Highly selective adsorption of methanol in carbon nanotubes immersed in methanol-water solution.

    PubMed

    Zhao, Wen-Hui; Shang, Bo; Du, Sheng-Ping; Yuan, Lan-Feng; Yang, Jinlong; Zeng, Xiao Cheng

    2012-07-21

    The systems of open-ended carbon nanotubes (CNTs) immersed in methanol-water solution are studied by molecular dynamics simulations. For the (6,6) CNT, nearly pure methanol is found to preferentially occupy interior space of the CNT. Even when the mass fraction (MF) of methanol in bulk solution is as low as 1%, the methanol MF within the CNT is still more than 90%. For CNTs with larger diameters, the methanol concentrations within CNTs are also much higher than those outside CNTs. The methanol selectivity decreases with increasing CNT diameter, but not monotonically. From microscopic structural analyses, we find that the primary reason for the high selectivity of methanol by CNTs lies on high preference of methanol in the first solvation shell near the inner wall of CNT, which stems from a synergy effect of the van der Waals interaction between CNT and the methyl groups of methanol, together with the hydrogen bonding interaction among the liquid molecules. This synergy effect may be of general significance and extended to other systems, such as ethanol aqueous solution and methanol/ethanol mixture. The selective adsorption of methanol over water in CNTs may find applications in separation of water and methanol, detection of methanol, and preservation of methanol purity in fuel cells. PMID:22830705

  13. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Ma, Jie; Han, Sheng

    2014-06-01

    Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.3-8.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.3-8.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs.

  14. Transport of carbon, nitrogen, phosphorus, and major solutes in the Gambia River, West Africa

    SciTech Connect

    Lesack, L.F.W.; Hecky, R.E.; Melack, J.M.

    1984-07-01

    Transport of solutes and particulate materials and their variation with discharge were studied for 1 year (July 1980-June 1981) in the Gambia River in the tropical savanna of West Africa. The water is a dilute solution of SiO/sub 2/ and HCO/sub 3//sup -/. Na/sup +/, K/sup +/, Cl/sup -/, and total dissolved nitrogen showed no significant relation with discharge. Ca/sup 2 +/, Mg/sup 2 +/, HCO/sub 3//sup -/, conductivity, and SO/sub 4//sup 2 -/ decreased as discharge increased, while total dissolved phosphorus increased with discharge. After an initial increase SiO/sub 2/ was independent of discharge. Dissolved organic carbon displayed counterclockwise hysteresis with rising and falling discharge. Particulate phosphorus and total particulate materials displayed clockwise hysteresis. Total transport amounted to 9.66 t x km/sup -2/ x yr/sup -1/. The transport rates of both dissolved and particulate organic C are among the lowest ever reported. The low transport of total particulates and solutes is attributed to lack of relief and the lithology of the catchment.

  15. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents

    PubMed Central

    Yu, Fei; Ma, Jie; Han, Sheng

    2014-01-01

    Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.38.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.38.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs. PMID:24937315

  16. Effects of impurities on the electroreduction of carbon dioxide on platinum electrodes in acid solutions

    SciTech Connect

    Huang, H. )

    1992-02-01

    The electroreduction of carbon dioxide has been studied in this laboratory using electrochemical techniques and in situ Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) on both polycrystalline and single-crystalline platinum electrodes in 0.1M HClO{sub 4} solution. On polycrystalline electrodes and two single-crystalline planes ((110) and (100)), the reduction reaction proceeds in the hydrogen absorption region and gives rise the polycrystalline electrode and Pt(110), and bridge-bonded Co on Pt(100). No. CO was detected on Pt(111). The introduction of CO{sub 2} in solution shows a similar effect on the Butterfly peaks of Pt(111) to that of specifically adsorbed anions, such as bisulfate. The has been attributed tentatively to the absorption of HCO{sub 3} in the potential region between the onset of the butterfly peaks and the formation of oxide. The IR absorption peak between 1418 and 1456 cm{sup {minus}1}, which is assigned to the absorbed HCO{sub 3}{sup {minus}}, shows a large positive shift with increasing potential (127 cm{sup {minus}1}/V). As part of the research on CO{sub 2} reduction, this paper examines the effects of impurities (Cl{sup {minus}}) and electrode rotation rates on Co{sub 2} reduction on polycrystalline Pt electrodes in 0.1M HClO{sub 4} solutions.

  17. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution.

    PubMed

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli; Zhang, Zhaohong; Yuan, Tianxin; Tian, Fangyuan; Dionysiou, Dionysios D

    2016-06-01

    In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10-20nm, 20-40nm, and 40-60nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10-20nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10-20nm CNTs within 7.0min irradiation when 25mL MO solution (25mg/L), 1.2g/L catalyst dose, 450W, 2450MHz, and pH=6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10-20nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168min(-1), respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters. PMID:26937869

  18. Genesis Eco Systems, Inc. soil washing process

    SciTech Connect

    Cena, R.J.

    1994-10-11

    The Genesis soil washing system is an integrated system of modular design allowing for maximum material handling capabilities, with optimized use of space for site mobility. The Surfactant Activated Bio-enhanced Remediation Equipment-Generation 1 (SABRE-1, Patent Applied For) modification was developed specifically for removing petroleum byproducts from contaminated soils. Scientifically formulated surfactants, introduced by high pressure spray nozzles, displace the contaminant from the surface of the soil particles into the process solution. Once the contaminant is dispersed into the liquid fraction of the process, it is either mechanically removed, chemically oxidized, or biologically oxidized. The contaminated process water is pumped through the Genesis Biosep (Patent Applied For) filtration system where the fines portion is flocculated, and the contaminant-rich liquid portion is combined with an activated mixture of nutrients and carefully selected bacteria to decompose the hydrocarbon fraction. The treated soil and dewatered fines are transferred to a bermed stockpile where bioremediation continues during drying. The process water is reclaimed, filtered, and recycled within the system.

  19. Bauxite washing for the removal of clay

    NASA Astrophysics Data System (ADS)

    Ahmad, Ishaq; Hartge, Ernst-Ulrich; Werther, Joachim; Wischnewski, Reiner

    2014-11-01

    Clay impurities associated with bauxite negatively affect the Bayer process for alumina production. These impurities should be removed as far as possible by a beneficiation technique before the ore is used as feed for the Bayer process. In this current investigation, bauxite washing was conducted in the laboratory. Bauxite washing is a physical process that causes the disintegration and deagglomeration of the clay matrix, and bauxite is liberated from the clay (mainly rich in silica). Subsequently, separation occurs with the assistance of wet screening at a predetermined cut size. Three techniques were investigated in the laboratory: drum washing, water-jet washing, and ultrasonic washing. Various operating parameters were investigated for drum washing and water-jet washing, including materials retention time, drum rotation speed, solid concentration, water-jet spray duration, pressure, and height. We concluded that the retention time of bauxite inside the drum at a solid concentration of 55wt% and a drum rotation speed of 31 r/min is the dominant parameter for the removal of clay from the bauxite surface.

  20. Effect of multiple washing in salicylic acid on the bacterial flora of the skin of processed broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to determine changes in the bacterial flora of the skin of processed broilers after each of five consecutive washings in solutions of the keratolytic agent, salicylic acid. Skin samples from commercially processed broiler carcasses were divided into 3 groups and washed in ...

  1. Wash water solids removal system study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    During wash water purification, surfactants tend to precipitate and foul the RO membranes, causing water flux decline and loss of salt rejection. The use of 165 to 190 ppm ferric chloride and optionally 0.25 to 1.0 ppm polymeric flocculate precipitates 92 to 96 percent of the surfactant from an Olive Leaf Soap based wash water. Crossflow filtration and pressure filtration yield good soap rejection at high water flux rates. Post-treatment of the chemically pretreated and filtered wash water with activated charcoal removes the residual soap down to an undetectable level.

  2. Water movement and solute transport in permafrost wetlands: implications for inorganic carbon cycling

    NASA Astrophysics Data System (ADS)

    Jessen, Sren; Dahl Holmslykke, Hanne; Rasmussen, Kristine; Richardt, Niels; Engelund Holm, Peter

    2014-05-01

    Carbon dioxide emissions from thawing permafrost wetlands are an expected consequence of global warming. Addressing the pathways by which carbon is emitted, we investigated the hydrological and geochemical controls on the pore water chemistry of a permafrost wetland, with a shallow geological sequence comprising loam overlain by sphagnum peat, in Ilulissat, Greenland. A 400 m transect parallel to the general flow direction was established, along which water table measurements and slug tests were conducted, and the active layer thickness recorded (typically ~0.5 m). Also, in three detailed profiles along the transect, the vertical distributions of stable isotopes of water and major ion chemistry were investigated, by analysis of active layer pore water and water of melted core sections of permafrost. Concentrations of chloride (0.3-0.4 mM) did not show variation with depth, dismissing solute movement by ion freeze-out during fall freeze-up as a main control on the water chemistry. In addition, the observed vertical ?18O distribution did not to any extent conform to modelled Rayleigh distillation curves for the preferential inclusion of H218O into ice, which could be a scenario for fall freeze-up. The ?18O data therefore suggests either a rapid freeze-up or a simultaneous phase transition at all depths of the active layer, which in either case also would minimize potential ion freeze-out effects. Nevertheless, concentrations of major ions generally increased with depth. A conceptual model for water and solute transport was therefore established, according to which solutes are mobilized by weathering reactions in the loam and then transported upwards to the peat by diffusion. In the peat, lateral advective solute transport dominates. We applied the model to observed profiles of Ca, Mg, HCO3 and the partial CO2 pressure (PCO2). Concentrations of Ca, Mg and HCO3 increased with depth, reaching ~2 mM, ~2 mM and ~8 meq/L at the bottom of the active layer. Pore water at all depths was of Ca-Mg-HCO3 type (1:1:4 stoichiometry), and was subsaturated for calcite and dolomite. Immediately below the permafrost table, however, Ca, Mg and HCO3 showed an abrupt decrease. Similarly, highly elevated PCO2 of up to 1.8 atm were observed in the active layer, followed by an abrupt decrease to

  3. Solution-mediated selective nanosoldering of carbon nanotube junctions for improved device performance.

    PubMed

    Do, Jae-Won; Chang, Noel N; Estrada, David; Lian, Feifei; Cha, Hyeongyun; Duan, Xiangyun J; Haasch, Richard T; Pop, Eric; Girolami, Gregory S; Lyding, Joseph W

    2015-05-26

    As-grown randomly aligned networks of carbon nanotubes (CNTs) invariably suffer from limited transport properties due to high resistance at the crossed junctions between CNTs. In this work, Joule heating of the highly resistive CNT junctions is carried out in the presence of a spin-coated layer of a suitable chemical precursor. The heating triggers thermal decomposition of the chemical precursor, tris(dibenzylideneacetone)dipalladium (Pd2(dba)3), and causes local deposition of Pd nanoparticles at the CNT junctions, thereby improving the on/off current ratio and mobility of CNT network devices by an average factor of ?6. This process can be conducted either in air or under vacuum depending on the characteristics of the precursor species. The solution-mediated nanosoldering process is simple, fast, scalable with manufacturing techniques, and extendable to the nanodeposition of a wide variety of materials. PMID:25844819

  4. Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process

    PubMed Central

    2012-01-01

    Hybrid transparent electrodes with silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs) were fabricated on plastic films by a low-temperature solution process. The hybrid transparent electrodes exhibited a sheet resistance of 29.2 ?/sq with a transparency of 80% when 6 wt.% of SWCNTs was mixed with AgNWs. This sheet resistance was less than one-fourth that of the AgNW transparent electrodes that were prepared using the same method. This reduction in sheet resistance is because the SWCNTs formed bridges between the AgNWs, thus, resulting in high conductivity of the hybrid transparent electrodes. The hybrid electrodes formed on plastic films exhibited high conductivity as well as excellent stability in sheet resistance when tested using a repeated bending test. PACS: 62.23.Hj; 61.48.De; 81.15.-z. PMID:22650906

  5. Photosensitized Reduction of Carbon Dioxide in Solution Using Noble-Metal Clusters for Electron Transfer

    NASA Astrophysics Data System (ADS)

    Toshima, Naoki; Yamaji, Yumi; Teranishi, Toshiharu; Yonezawa, Tetsu

    1995-03-01

    Carbon dioxide was reduced to methane by visible-light irradiation of a solution composed of tris(bipyridine)ruthenium(III) as photosensitizer, ethylenediaminetetraacetic acid disodium salt as sacrificial reagent, methyl viologen as electron relay, and a colloidal dispersion of polymer-protected noble-metal clusters, prepared by alcohol-reduction, as catalyst. Among the noble-metal clusters examined, Pt clusters showed the highest activity for the formation of methane as well as hydrogen. In order to improve the activity, oxidized clusters and bimetallic clusters were also applied. For example, the CH4 yield in 3-h irradiation increased from 51 x 10-3 ?mol with unoxidized Pt clusters to 72 x 10-3 ?mol with partially oxidized ones. In the case of Pt/Ru bimetalic systems, the improvement of the catalytic activity by air treatment was much greater than in case of monometallic clusters.

  6. Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes

    SciTech Connect

    Wang, X. Z.; Li, M. G.; Chen, Y. W.; Cheng, R. M.; Huang, S. M.; Pan, L. K.; Sun, Z.

    2006-07-31

    Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers (CNTs-CNFs) composite film electrodes has been demonstrated. The large area CNTs-CNFs film was directly grown on Ni plate by low pressure and low temperature thermal chemical vapor deposition. The CNTs-CNFs electrodes have great advantages such as low cost, easy operation, long-term reproducibility, and integrity of monolithic CNTs-CNFs film and current collector. Batch-mode experiments at low voltage (0.4-2 V) were conducted in a continuously recycling system to investigate the electrosorption process. Purification of water with good reproducibility was achieved because of optimal pore size distribution of CNTs-CNFs composite films.

  7. Adsorption of fluoranthene in surfactant solution on activated carbon: equilibrium, thermodynamic, kinetic studies.

    PubMed

    Liu, Jianfei; Chen, Jiajun; Jiang, Lin; Wang, Xingwei

    2014-02-01

    Adsorption of fluoranthene (FLA) in surfactant solution on activated carbon (AC) was investigated. Isotherm, thermodynamic, and kinetic attributes of FLA adsorption in the presence of the surfactant on AC were studied. Effects of AC dosage, initial concentration of TX100, initial concentration of FLA, and addition of fulvic acid on adsorption were studied. The experimental data of both TX100 and FLA fitted the Langmuir isotherm model and the pseudo-second-order kinetic model well. Positive enthalpy showed that adsorption of FLA on AC was endothermic. The efficiency of selective FLA removal generally increased with increasing initial surfactant concentration and decreasing fulvic acid concentration. The surface chemistry of AC may determine the removal of polycyclic aromatic hydrocarbons. The adsorption process may be controlled by the hydrophobic interaction between AC and the adsorbate. The microwave irradiation of AC may be a feasible method to reduce the cost of AC through its regeneration. PMID:23979852

  8. Compaction creep by pore failure and pressure solution applied to a carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Jamtveit, Bjrn; Dysthe, Dag Kristian

    2015-04-01

    The Ekofisk field in the Norwegian North sea is an example of a compacting carbonate reservoir with considerable seafloor subsidence due to petroleum production. Previously, a number of models were created to predict the compaction using different phenomenological approaches. We present a different approach, based on microscopic mechanisms with no fitting parameters. We create a time-dependent micromechanical model combining pore failure and pressure solution creep in presence of a oil-water mixture pore fluid. Then we use a statistical mechanical approach to scale it up to macroscopic scale and predict strain rate at core scale and at reservoir scale. The model is able to reproduce the magnitude of the observed subsidence making it the first microstructural model which can explain the Ekofisk compaction.

  9. Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Li, M. G.; Chen, Y. W.; Cheng, R. M.; Huang, S. M.; Pan, L. K.; Sun, Z.

    2006-07-01

    Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers (CNTs-CNFs) composite film electrodes has been demonstrated. The large area CNTs-CNFs film was directly grown on Ni plate by low pressure and low temperature thermal chemical vapor deposition. The CNTs-CNFs electrodes have great advantages such as low cost, easy operation, long-term reproducibility, and integrity of monolithic CNTs-CNFs film and current collector. Batch-mode experiments at low voltage (0.4-2V) were conducted in a continuously recycling system to investigate the electrosorption process. Purification of water with good reproducibility was achieved because of optimal pore size distribution of CNTs-CNFs composite films.

  10. Mixed electrolyte solutions of propylene carbonate and dimethoxyethane for high energy density batteries

    NASA Astrophysics Data System (ADS)

    Matsuda, Y.; Satake, H.

    1980-04-01

    The effects of mixing propylene carbonate (PC) and dimethoxyethane (DME), containing some perchlorates, are investigated with reference to the electric conductance, dielectric constant, and viscosity. It is found that the viscosity of the mixed solvents increases when PC is added into DME, and the experimental values tend to be lower than the predictions based on the ideal solution theory. The dielectric constants of the mixed solvents increase when PC is added into DME; the measured values are almost linear. The conductance of the mixed electrolytes is found to be higher than that of each solvent with NaClO4, and the maximum value of the equivalent conductance is obtained at the mixing ratio of about one to one.

  11. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process.

    PubMed

    Wang, Huijiao; Yuan, Shi; Zhan, Juhong; Wang, Yujue; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin

    2015-09-01

    Electro-peroxone (E-peroxone) is a novel electrocatalytic ozonation process that combines ozonation and electrolysis process to enhance pollutant degradation during water and wastewater treatment. This enhancement has been mainly attributed to several mechanisms that increase O3 transformation to OH in the E-peroxone system, e.g., electro-generation of H2O2 from O2 at a carbon-based cathode and its subsequent peroxone reaction with O3 to OH, electro-reduction of O3 to OH at the cathode, and O3 decomposition to OH at high local pH near the cathode. To get more insight how these mechanisms contribute respectively to the enhancement, this study investigated total organic carbon (TOC) elimination from oxalic acid (OA) solutions by the E-peroxone process. Results show that the E-peroxone process significantly increased TOC elimination rate by 10.2-12.5 times compared with the linear addition of the individual rates of corresponding ozonation and electrolysis process. Kinetic analyses reveal that the electrochemically-driven peroxone reaction is the most important mechanism for the enhanced TOC elimination rate, while the other mechanisms contribute minor to the enhancement by a factor of 1.6-2.5. The results indicate that proper selection of electrodes that can effectively produce H2O2 at the cathode is critical to maximize TOC elimination in the E-peroxone process. PMID:25989593

  12. An experimental design approach for modeling As(V) adsorption from aqueous solution by activated carbon.

    PubMed

    Bakkal Gula, C; Bilgin Simsek, E; Duranoglu, D; Beker, U

    2015-01-01

    The present paper discusses response surface methodology as an efficient approach for predictive model building and optimization of As(V) adsorption on activated carbon derived from a food industry waste: peach stones. The objectives of the study are application of a three-factor 2 full factorial and central composite design technique for maximizing As(V) removal by produced activated carbon, and examination of the interactive effects of three independent variables (i.e., solution pH, temperature, and initial concentration) on As(V) adsorption capacity. Adsorption equilibrium was investigated by using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. First-order and second-order kinetic equations were used for modeling of adsorption kinetics. Thermodynamic parameters (?G , ?H , and ?S ) were calculated and used to explain the As(V) adsorption mechanism. The negative value of ?H (-7.778 kJ mol?) supported the exothermic nature of the sorption process and the Gibbs free energy values (?G) were found to be negative, which indicates that the As(V) adsorption is feasible and spontaneous. PMID:25633943

  13. Titanium Implant Osseointegration Problems with Alternate Solutions Using Epoxy/Carbon-Fiber-Reinforced Composite

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical semiconductors, stress transfer, additives with low thermal PMC processing and new coating possibilities. PMID:25635227

  14. The influence of dissolved organic carbon on pH measurements of low solute content waters

    NASA Astrophysics Data System (ADS)

    Metcalf, Richard C.; Peck, David V.; Lori, Arent J.

    1989-04-01

    This study has thoroughly examined the concern that dissolved organic carbon (DOC) interferes with pH electrode measurements of low solute content waters. Using Ross pH combination electrodes according to protocols of the U.S. Environmental Protection Agency's National Surface Water Survey (NSWS), our laboratory pH measurements of 10 -4 N H 2SO 4 standards (spiked from 0 to 100 mg L -1 DOC with potassium hydrogen ortho-phthalate, humic acid, or the surfactant Tergitol 15-S-9) showed little or no evidence of DOC interference, within the 0.05 (2s) pH unit measurement precision. Concern with DOC-induced pH measurement errors prompted previous researchers to advocate using a calculated pH value, based on measurements of dissolved inorganic carbon (DIC), P co 2, water temperature, and the appropriate carbonate equilibria. CO 2-equilibrated pH measurements from the Eastern Lake Survey Phase-I showed no significant difference with calculated pH values based on the above model. A limited sensitivity analysis of the errors associated with direct pH electrode measurements compared to calculated pH values indicates that, for a regional survey taking place over weeks or months, potentiometric determinations are more precise at present. All of this evidence suggests that the pH measurements for the NSWS (as well as a long series of prior regional studies) are unaffected by DOC-induced pH measurement errors, although reference electrode junction errors still deserve greater attention in many studies.

  15. Staring eyes prompt people to wash hands.

    PubMed

    2015-12-16

    Using 'nudges' such as a picture of a man's intense staring eyes or a clean citrus smell increased the number of healthcare staff and visitors washing their hands in an intensive care unit, a study found. PMID:26669372

  16. TRUCK WASHING TERMINAL WATER POLLUTION CONTROL

    EPA Science Inventory

    A laboratory and pilot-scale investigation of a treatment sequence, including physical, chemical, and biological treatment steps led to a full-scale installation for the treatment of tank truck washing wastewater. The system included gravity separation, equalization, neutralizati...

  17. Wash water waste pretreatment system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  18. Sodium carbonate poisoning

    MedlinePLUS

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and ... products. This article focuses on poisoning due to sodium carbonate. This is for information only and not ...

  19. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber.

    PubMed

    Tang, Dengyong; Zheng, Zheng; Lin, Kui; Luan, Jingfei; Zhang, Jibiao

    2007-05-01

    The adsorption of p-nitrophenol (PNP) onto activated carbon fiber (ACF) was investigated in simulated wastewater in a batch system to evaluate the effects of solution pH, presence of sodium chloride, adsorbent doses and temperature. It was found that PNP adsorption amount depended on pH, sodium chloride content, adsorbent doses and temperature. Langmuir and Freundlich models were applied to describe the adsorption isotherms. Freundlich model agreed with experimental data well, indicating the possibility of more than just one monomolecular layer of coverage. SEM photographs of ACF before and after adsorption revealed that it was in part with multimolecular layers of coverage on ACF surfaces. The change of free energy, enthalpy, and entropy of adsorption were also evaluated for the adsorption process. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The experimental data fitted very well the pseudo-second-order kinetic model. Attempts were made to desorb PNP from ACF using dilute NaOH solution and water, and desorption efficiency was obtained to the extent of 92.7% with 0.025 M NaOH and water at 368 K. PMID:17030422

  20. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite

    PubMed Central

    2014-01-01

    In this work the adsorption features of activated carbon and the magnetic properties of iron oxides were combined in a composite to produce magnetic adsorbent. Batch experiments were conducted to study the adsorption behavior of arsenate onto the synthetic magnetic adsorbent. The effects of initial solution pH, contact time, adsorbent dosage and co-existing anionic component on the adsorption of arsenate were investigated. The results showed that the removal percentage of arsenate could be over 95% in the conditions of adsorbent dosage 5.0g/L, initial solution pH3.0-8.0, and contact time 1h. Under the experimental conditions, phosphate and silicate caused greater decrease in arsenate removal percentage among the anions, and sulfate had almost no effect on the adsorption of arsenate. Kinetics study showed that the overall adsorption rate of arsenate was illustrated by the pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the arsenate adsorption data was tested. Both the models adequately describe the experimental data. Moreover, the magnetic composite adsorbent could be easily recovered from the medium by an external magnetic field. It can therefore be potentially applied for the treatment of water contaminated by arsenate. PMID:24602339

  1. Direct Assembly of Modified Proteins on Carbon Nanotubes in an Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol; Harrison, Joycelyn S.

    2007-01-01

    Carbon nanotubes (CNTs) have superior mechanical and electrical properties that have opened up many potential applications. However, poor dispersibility and solubility, due to the substantial van der Waals attraction between tubes, have prevented the use of CNTs in practical applications, especially biotechnology applications. Effective dispersion of CNTs into small bundles or individual tubes in solvents is crucial to ensure homogeneous properties and enable practical applications. In addition to dispersion of CNTs into a solvent, the selection of appropriate solvent, which is compatible with a desired matrix, is an important factor to improve the mechanical, thermal, optical, and electrical properties of CNT-based fibers and composites. In particular, dispersion of CNTs into an aqueous system has been a challenge due to the hydrophobic nature of CNTs. Here we show an effective method for dispersion of both single wall CNTs (SWCNTs) and few wall CNTs (FWCNTs) in an aqueous buffer solution. We also show an assembly of cationized Pt-cored ferritins on the well dispersed CNTs in an aqueous buffer solution.

  2. Solution-processed carbon nanotube thin-film complementary static random access memory

    NASA Astrophysics Data System (ADS)

    Geier, Michael L.; McMorrow, Julian J.; Xu, Weichao; Zhu, Jian; Kim, Chris H.; Marks, Tobin J.; Hersam, Mark C.

    2015-11-01

    Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties, making them one of the most promising candidates for solution-processable, high-performance integrated circuits. In particular, advances in the enrichment of high-purity semiconducting SWCNTs have enabled recent circuit demonstrations including synchronous digital logic, flexible electronics and high-frequency applications. However, due to the stringent requirements of the transistors used in complementary metaloxidesemiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors, the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality. Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors.

  3. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste.

    PubMed

    Liao, Dexiang; Zheng, Wei; Li, Xiaoming; Yang, Qi; Yue, Xiu; Guo, Liang; Zeng, Guangming

    2010-05-15

    Carbonate hydroxyapatite (CHAP) synthesized from eggshell waste was used for removing lead ion from aqueous solutions. The effects of pH, contact time and initial concentration were studied in batch experiments. The maximum uptake of lead ion was obtained at pH 6.0. Adsorption equilibrium was established by 60 min. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were applied to study the kinetics of the sorption processes. The pseudo-second order kinetic model provided the best correlation (R(2)>0.9991) of the used experimental data compared to the pseudo-first order and intraparticle diffusion kinetic models. The adsorption of lead ion by CHAP increased as the initial concentration of lead ion increased in the medium. The maximum lead ion adsorbed was found to be 101 mg g(-1). It was found that the adsorption of Pb(II) on CHAP was correlated well (R(2)=0.9995) with the Langmuir equation as compared to Freundlich isotherm equation under the concentration range studied. This study indicated that CHAP could be used as an efficient adsorbent for removal of lead ion from aqueous solution. PMID:20042291

  4. Solution-processed carbon nanotube thin-film complementary static random access memory.

    PubMed

    Geier, Michael L; McMorrow, Julian J; Xu, Weichao; Zhu, Jian; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2015-11-01

    Over the past two decades, extensive research on single-walled carbon nanotubes (SWCNTs) has elucidated their many extraordinary properties, making them one of the most promising candidates for solution-processable, high-performance integrated circuits. In particular, advances in the enrichment of high-purity semiconducting SWCNTs have enabled recent circuit demonstrations including synchronous digital logic, flexible electronics and high-frequency applications. However, due to the stringent requirements of the transistors used in complementary metal-oxide-semiconductor (CMOS) logic as well as the absence of sufficiently stable and spatially homogeneous SWCNT thin-film transistors, the development of large-scale SWCNT CMOS integrated circuits has been limited in both complexity and functionality. Here, we demonstrate the stable and uniform electronic performance of complementary p-type and n-type SWCNT thin-film transistors by controlling adsorbed atmospheric dopants and incorporating robust encapsulation layers. Based on these complementary SWCNT thin-film transistors, we simulate, design and fabricate arrays of low-power static random access memory circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. PMID:26344184

  5. The electrochromic behavior of indium tin oxide in propylene carbonate solutions

    SciTech Connect

    Bressers, P.M.M.C. |; Meulenkamp, E.A.

    1998-07-01

    The authors report on a study of transparent conducting tin-doped indium oxide (ITO) electrodes in propylene carbonate solutions containing lithium ions. The system was studied using electrochemical methods in combination with in situ techniques: ultraviolet-visible spectroscopy, X-ray diffraction, and quartz crystal microbalance. The results show that the cathodic process at E {approx_gt} 1.0 V vs. Li/Li{sup +} mainly involves the reduction of the electrolyte solution, leading to the formation of a thin, lithium-rich surface film. At potentials {approx_lt}1.0 V vs. Li/Li{sup +}, degradation of ITO and the formation of metallic indium take place. No evidence was obtained that lithium-ion intercalation into ITO, which has been suggested by several workers, occurs to a significant extent. The authors conclude that ITO probably cannot be used as a combined ion-storage layer and transparent conductor for all-solid-state and laminated electrochromic switching devices in view of long-term stability.

  6. Solution blow spinning: parameters optimization and effects on the properties of nanofibers from poly(lactic) acid/ dimethyl carbonate solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution blow spinning (SBS) is a process to produce non-woven fiber sheets with high porosity and an extremely large amount of surface area. In this study, a Box-Behnken experimental design (BBD) was used to optimize the processing parameters for the production of nanofibers from polymer solutions ...

  7. Radionuclide content of Las Vegas wash sediments

    SciTech Connect

    Rudin, M.J.; Meyers, A.M.; Johnson, W.H.

    1996-06-01

    The Las Vegas Wash is an excavated waterway channel which drains all surface water and effluent discharge from sewage-treatment facilities from the greater Las Vegas Metropolitan Area to Lake Mead. Runoff and erosion processes are expected to transport man-made radioactivity that was deposited over the past several decades in the Las Vegas Valley. Additionally, radionuclides disposed of via the city`s sanitary system are expected to accumulate in the Wash sediments. Fine and coarse sediment samples were collected at 100 m intervals and analyzed to determine the distribution of alpha- and gamma-emitting radionuclides in the lower 5,500 in of the Las Vegas Wash. Results indicate little accumulation of long-lived fission products in upstream Wash sediments. However, trace amounts of fission products measured in downstream sediments suggest the resuspension and transport of radioactive particulate matter within the Wash. Levels of naturally-occurring radionuclides found in Wash sediments were found to be consistent with levels typically found in southeast Nevada soils.

  8. Linking process and product in terrestrial carbonates using a solution thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Rogerson, M.; Pedley, H. M.; Kelham, A.

    2013-09-01

    Determining the processes which generate terrestrial carbonate deposits (tufas, travertines and associated chemical sediments) is a long-standing problem. Deposition of mineral products from solution reflects a complex combination of biological, equilibrium and kinetic processes, and the differences in products these processes produce are yet to be clearly demarked. Building on the groundbreaking work of previous authors, we propose that the underlying control on the processes leading to the deposition of these products can be most parsimoniously understood from the thermodynamic properties of their source solutions. Here, we report initial observations of the differences in product generated from spring and lake systems spanning a range of temperature : supersaturation space. We find that at high supersaturation, biological influences are masked by high rates of spontaneous nucleation and sedimentary products from these settings infrequently exhibit classic "biomediated" fabrics such as clotted micrite. Likewise, at high temperature exclusion of vascular plants and complex/diverse biofilms significantly inhibits the magnitude of biomediated precipitation, again impeding the likelihood of encountering the "bio-type" fabrics. Conversely, despite the clear division in product between extensive tufa facies associations and discontinuous deposits such as oncoid beds, no clear division can be identified between these systems in temperature : supersaturation space. We reiterate the conclusion of previous authors, which demonstrate that this division cannot be made on the basis of physico-chemical characteristics of the solution alone. We further provide a new case study of this division from two adjacent systems in the UK, where continuous tufa-like deposition is happening at a site with lower supersaturation than other sites exhibiting only discontinuous (oncoidal) deposition. However, a strong microbiological division is demonstrated between these sites on the basis of suspended bacterial cell distribution, which reach a prominent maximum where tufa-like deposits are forming. We conclude that at high supersaturation, the thermodynamic properties of solutions provide a highly satisfactory means of linking process and product, raising the opportunity of identifying water characteristics from sedimentological/petrological characteristics of ancient deposits. At low supersaturation, we recommend that future research focuses on geomicrobiological processes rather than the more traditional, inorganic solution chemistry approach dominant in the past.

  9. Analytical solution of geological carbon sequestration under constant pressure injection into a horizontal radial reservoir

    NASA Astrophysics Data System (ADS)

    Jhang, R.; Liou, T.

    2013-12-01

    Carbon capture and sequestration (CCS) is believed to be an economically feasible technology to mitigate global warming by capturing carbon dioxide (CO2), the major component of greenhouse gases, from the atmosphere and injecting it into deep geological formations.Several mechanisms can help trap CO2 in the pore space of a geological reservoir, stratigraphic and structural trapping, hydrodynamic trapping, and geochemical trapping.Besides these trapping mechanisms, another important issue that deserves careful attention is the risk of CO2 leakage. The common ';constant injection rate' scenario may induce high pressure buildup that will endanger the mechanical integrity as well as the sealing capability of the cap rock. Instead of injecting CO2 at a constant mass rate, CO2 can be injected into the reservoir by fixing the pressure (usually the bottom-hole pressure) in the injection borehole. By doing so, the inevitable pressure buildup associated with the constant injection scheme can be completely eliminated in the constant pressure injection scheme. In this paper, a semi-analytical solution for CO2 injection with constant pressure was developed. For simplicity, structural and geochemical trapping mechanisms were not considered. Therefore, a horizontal reservoir with infinite radial extent was considered. Prior to injection, the reservoir is fully saturated with the formation brine. It is assumed that CO2 does not mix with brine such that a sharp interface is formed once CO2 invades the brine-saturated pores. Because of the density difference between CO2 and brine, CO2 resides above the interface. Additional assumptions were also made when building up the brine and CO2 mass balance equations: (1) both of the fluids and the geological formations are incompressible, (2) capillary pressure is neglected, (3)there is no fluid flow in the vertical direction, and the horizontal flow satisfies the Darcy's law.In order to solve for the height of brine-CO2 interface, the two mass balance equations are combined into a single one by using a similarity transformation such that the two independent variables (radial distance and time) are reduced into only one similarity variable. The resulting mass balance equation is recast as a second-order ordinary differential equation, which can be treated as an initial value problem and solved conveniently by MATLAB. We have tested this solution using one hypothetical parameter set. In the next step, we will verify this analytical solution by conducting a parallel numerical simulation using TOUGH2 ECO2N. Then, characteristics of the CO2 front will be studied and compared with the Buckley-Leverett theory.

  10. Spectroscopic and electrochemical studies of selected lanthanides and actinides in concentrated aqueous carbonate and carbonate-hydroxide solutions and in molten dimethyl sulfone

    SciTech Connect

    Varlashkin, P.G.

    1985-03-01

    Electrochemical and spectroscopic studies of neptunium, plutonium, americium, californium, and terbium in concentrated aqueous carbonate and carbonate-hydroxide solutions have been carried out. Changes in the absorption spectra of Np(VII), Np(V), Pu(VI), Pu(V), Am(VI), and Am(V) in concentrated Na/sub 2/CO/sub 3/ solution and in the formal potentials of the Np(VI)/Np(V) and Pu(VI)/Pu(V) couples as a function of pH were observed. Heptavalent neptunium in concentrated Na/sub 2/CO/sub 3/ solution could only be producted at pH values close to or greater than 14. Plutonium(VII) in 2 M Na/sub 2/CO/sub 3/ solution could only be produced at hydroxide ion concentrations in excess of about 2.5 M. The complexation of Np(VII) and Pu(VII) in Na/sub 2/CO/sub 3/-NaOH solution seems to be mainly by hydroxide ions. Neptunium(IV) and plutonium(IV) are insoluble in Na/sub 2/CO/sub 3/ solution above ca. pH 11-12. Neptunium(III) in carbonate solution is rapidly oxidized by water to Np(IV). Plutonium(III) is insoluble in Na/sub 2/CO/sub 3/ solution. In K/sub 2/CO/sub 3/ solution Pu(III) is stable to oxidation by water but is very sensitive to air oxidation. The redox properties of Cf(III) in Na/sub 2/CO/sub 3/ and K/sub 2/CO/sub 3/ solutions at pH values from 8 to 14 were investigated. The oxidation of terbium(III) in K/sub 2/CO/sub 3/-KOH solution was studied. Spectroscopic and electrochemical studies of cerium, samarium, europium, ytterbium, uranium, neptunium, plutonium, and americium in molten dimethyl sulfone (DMSO/sub 2/) at 400 K were performed. Differences in the DMSO/sub 2/ solution absorption spectra of trivalent Sm, Eu, and Yb and divalent Eu compared with those in aqueous solution were observed. Complexation effects on the spectra of Ce(III), Ce(IV), U(VI), Np(VI), Pu(VI), and Am(VI) are more noticeable in poorly coordinating DMSO/sub 2/ than they are in water. 123 references, 54 figures, 11 tables.

  11. Generation of chlorine by-products in simulated wash water.

    PubMed

    Shen, Cangliang; Norris, Pauline; Williams, Olivia; Hagan, Stephanie; Li, KaWang

    2016-01-01

    Free chlorine (FC) reacting with organic matter in wash water promotes the formation of chlorine by-products. This study aims to evaluate the dynamic impact of FC and organic load on the generation of haloacetic acids (HAAs) and trihalomethanes (THMs) in simulated wash water. Lettuce juice was sequentially added into FC solution with FC periodically replenished. Water samples were collected after each lettuce juice addition to measure water qualities and determine HAAs and THMs using US-Environmental-Protection-Agency (EPA) methods. Concentrations of 88-2103 μg/l of total HAAs and 20.79-859.47 μg/l of total THMs were detected during the study. Monobromoacetic, tribromoacetic, chlorodibromoacetic and trichloroacetic acid were the major HAAs components. Chloroform (trichloromethane) was the primary THMs present. A significant correlation of HAAs with chemical oxygen demand and THMs with FC was observed. Results indicated that optimizing wash water sanitizing systems to limit organic matters and maintain minimal effective FC concentration is critical. PMID:26212946

  12. Ca-Rich Carbonate Melts: A Regular-Solution Model, with Applications to Carbonatite Magma + Vapor Equilibria and Carbonate Lavas on Venus

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1995-01-01

    A thermochemical model of the activities of species in carbonate-rich melts would be useful in quantifying chemical equilibria between carbonatite magmas and vapors and in extrapolating liquidus equilibria to unexplored PTX. A regular-solution model of Ca-rich carbonate melts is developed here, using the fact that they are ionic liquids, and can be treated (to a first approximation) as interpenetrating regular solutions of cations and of anions. Thermochemical data on systems of alkali metal cations with carbonate and other anions are drawn from the literature; data on systems with alkaline earth (and other) cations and carbonate (and other) anions are derived here from liquidus phase equilibria. The model is validated in that all available data (at 1 kbar) are consistent with single values for the melting temperature and heat of fusion for calcite, and all liquidi are consistent with the liquids acting as regular solutions. At 1 kbar, the metastable congruent melting temperature of calcite (CaCO3) is inferred to be 1596 K, with (Delta)bar-H(sub fus)(calcite) = 31.5 +/- 1 kJ/mol. Regular solution interaction parameters (W) for Ca(2+) and alkali metal cations are in the range -3 to -12 kJ/sq mol; W for Ca(2+)-Ba(2+) is approximately -11 kJ/sq mol; W for Ca(2+)-Mg(2+) is approximately -40 kJ/sq mol, and W for Ca(2+)-La(3+) is approximately +85 kJ/sq mol. Solutions of carbonate and most anions (including OH(-), F(-), and SO4(2-)) are nearly ideal, with W between 0(ideal) and -2.5 kJ/sq mol. The interaction of carbonate and phosphate ions is strongly nonideal, which is consistent with the suggestion of carbonate-phosphate liquid immiscibility. Interaction of carbonate and sulfide ions is also nonideal and suggestive of carbonate-sulfide liquid immiscibility. Solution of H2O, for all but the most H2O-rich compositions, can be modeled as a disproportionation to hydronium (H3O(+)) and hydroxyl (OH(-)) ions with W for Ca(2+)-H3O(+) (approximately) equals 33 kJ/sq mol. The regular-solution model of carbonate melts can be applied to problems of carbonatite magma + vapor equilibria and of extrapolating liquidus equilibria to unstudied systems. Calculations on one carbonatite (the Husereau dike, Oka complex, Quebec, Canada) show that the anion solution of its magma contained an OH mole fraction of (approximately) 0.07, although the vapor in equilibrium with the magma had P(H2O) = 8.5 x P(CO2). F in carbonatite systems is calculated to be strongly partitioned into the magma (as F(-)) relative to coexisting vapor. In the Husereau carbonatite magma, the anion solution contained an F(-) mole fraction of (approximately) 6 x 10(exp -5).

  13. Activated carbons from potato peels: The role of activation agent and carbonization temperature of biomass on their use as sorbents for bisphenol A uptake from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Arampatzidou, An; Deliyanni, Eleni A.

    2015-04-01

    Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.

  14. Effect of yttrium and chromium ion implantation on crevice electrochemical behavior of carbon steel in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Liang, Chenghao; Huang, Naibao

    2008-12-01

    In order to study the effect of yttrium (Y) and chromium (Cr) ion implantation on the crevice corrosion behavior of carbon steel, the carbon steel was implanted with Y and Cr ion using MEVVA source at an energy of 40 keV. Electrochemical measurement was employed to evaluate the crevice corrosion of implanted carbon steel in NaCl solution. The results indicated that, after Y and Cr ion implantation, the carbon steel's crevice corrosion resistance and electrochemical characteristic were significantly improved in NaCl solution when the implantation dose of Y increased. Auger electron spectroscopy (AES) analysis of the implanted carbon steel manifested that the surface layer was mainly composed of elements Fe, Cr, O, and Y. Most of element Y was located near the outside region of the surface layer/solution interface, whereas Cr was enriched in the transition area between surface layer and matrix. By X-ray photoelectron spectroscopy (XPS) analysis, the implanted Y was in the form of Y 2O 3, whereas Cr in the form of Cr 2O 3 in the surface layer. The mechanism of the crevice corrosion resistance and electrochemical characteristic improvement was that, after Y and Cr ion implantation, the surface layer seemed to be constituted by Y 2O 3 and Cr 2O 3. The surface layer acted as a barrier to reduce the metal matrix to contact with the corrosion medium such as inhibiting Cl - ions from corroding the layer.

  15. High catalytic performance of Pt nanoparticles on plasma treated carbon nanotubes for electrooxidation of ethanol in a basic solution

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongqing; Jiang, Zhong-jie; Meng, Yuedong

    2011-01-01

    Nanosized Pt particles deposited on plasma treated multi-walled carbon nanotubes have been used in electrocatalytic oxidation of ethanol in a basic solution. These Pt nanoparticles have very narrow size distribution and exhibit significant higher catalytic activities, higher Pt utilization efficiency (93.77%) and improved durability in comparison to the commercial available Johnson Matthey Pt/C catalyst.

  16. Functionalization of Multiwalled Carbon Nanotubes by Solution Plasma Processing in Ammonia Aqueous Solution and Preparation of Composite Material with Polyamide 6

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Noguchi, Yohei; Yamamoto, Taibou; Hieda, Junko; Saito, Nagahiro; Takai, Osamu; Tsuchimoto, Akiharu; Nojima, Kazuhiro; Okabe, Youji

    2013-12-01

    Solution plasma processing (SPP) has been performed on multiwalled carbon nanotubes (MWCNTs) in ammonia aqueous solution. The MWCNTs, which do not disperse in aqueous solution, uniformly dispersed after the SPP. Only 2 h was required to obtain 10 g of the dispersed MWCNTs, while 7 days and additional chemicals were required for 185 mg in a previous study. The X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the SPP-treated MWCNTs revealed that nitrogen- and oxygen-containing groups are formed on the MWCNTs. Serious damage to the MWCNT structure was not observed in the Raman spectrum or transmission electron microscopy images of the SPP-treated MWCNTs. The composite materials prepared using polyamide 6 with the SPP-treated MWCNTs showed better tensile, bending, and impact strength than those prepared with nontreated MWCNTs.

  17. Hand washing promotion for preventing diarrhoea

    PubMed Central

    Ejemot-Nwadiaro, Regina I; Ehiri, John E; Arikpo, Dachi; Meremikwu, Martin M; Critchley, Julia A

    2015-01-01

    Background Diarrhoea accounts for 1.8 million deaths in children in low- and middle-income countries (LMICs). One of the identified strategies to prevent diarrhoea is hand washing. Objectives To assess the effects of hand washing promotion interventions on diarrhoeal episodes in children and adults. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (27 May 2015); CENTRAL (published in the Cochrane Library 2015, Issue 5); MEDLINE (1966 to 27 May 2015); EMBASE (1974 to 27 May 2015); LILACS (1982 to 27 May 2015); PsycINFO (1967 to 27 May 2015); Science Citation Index and Social Science Citation Index (1981 to 27 May 2015); ERIC (1966 to 27 May 2015); SPECTR (2000 to 27 May 2015); Bibliomap (1990 to 27 May 2015); RoRe, The Grey Literature (2002 to 27 May 2015); World Health Organization (WHO) International Clinical Trial Registry Platform (ICTRP), metaRegister of Controlled Trials (mRCT), and reference lists of articles up to 27 May 2015. We also contacted researchers and organizations in the field. Selection criteria Individually randomized controlled trials (RCTs) and cluster-RCTs that compared the effects of hand washing interventions on diarrhoea episodes in children and adults with no intervention. Data collection and analysis Three review authors independently assessed trial eligibility, extracted data, and assessed risk of bias. We stratified the analyses for child day-care centres or schools, community, and hospital-based settings. Where appropriate, incidence rate ratios (IRR) were pooled using the generic inverse variance method and random-effects model with 95% confidence intervals (CIs). We used the GRADE approach to assess the quality of evidence. Main results We included 22 RCTs: 12 trials from child day-care centres or schools in mainly high-income countries (54,006 participants), nine community-based trials in LMICs (15,303 participants), and one hospital-based trial among people with acquired immune deficiency syndrome (AIDS) (148 participants). Hand washing promotion (education activities, sometimes with provision of soap) at child day-care facilities or schools prevents around one-third of diarrhoea episodes in high income countries (rate ratio 0.70; 95% CI 0.58 to 0.85; nine trials, 4664 participants, high quality evidence), and may prevent a similar proportion in LMICs but only two trials from urban Egypt and Kenya have evaluated this (rate ratio 0.66, 95% CI 0.43 to 0.99; two trials, 45,380 participants, low quality evidence). Only three trials reported measures of behaviour change and the methods of data collection were susceptible to bias. In one trial from the USA hand washing behaviour was reported to improve; and in the trial from Kenya that provided free soap, hand washing did not increase, but soap use did (data not pooled; three trials, 1845 participants, low quality evidence). Hand washing promotion among communities in LMICs probably prevents around one-quarter of diarrhoea episodes (rate ratio 0.72, 95% CI 0.62 to 0.83; eight trials, 14,726 participants, moderate quality evidence). However, six of these eight trials were from Asian settings, with only single trials from South America and sub-Saharan Africa. In six trials, soap was provided free alongside hand washing education, and the overall average effect size was larger than in the two trials which did not provide soap (soap provided: rate ratio 0.66, 95% CI 0.56 to 0.78; six trials, 11,422 participants; education only: rate ratio: 0.84, 95% CI 0.67 to 1.05; two trials, 3304 participants). There was increased hand washing at major prompts (before eating/cooking, after visiting the toilet or cleaning the baby's bottom), and increased compliance to hand hygiene procedure (behavioural outcome) in the intervention groups than the control in community trials (data not pooled: three trials, 3490 participants, high quality evidence). Hand washing promotion for the one trial conducted in a hospital among high-risk population showed significant reduction in mean episodes of diarrhoea (1.68 fewer) in the intervention group (Mean difference 1.68, 95% CI 1.93 to 1.43; one trial, 148 participants, moderate quality evidence). There was increase in hand washing frequency, seven times per day in the intervention group versus three times in the control in this hospital trial (one trial, 148 participants, moderate quality evidence). We found no trials evaluating or reporting the effects of hand washing promotions on diarrhoea-related deaths, all-cause-under five mortality, or costs. Authors' conclusions Hand washing promotion probably reduces diarrhoea episodes in both child day-care centres in high-income countries and among communities living in LMICs by about 30%. However, less is known about how to help people maintain hand washing habits in the longer term. PLAIN LANGUAGE SUMMARY Hand washing promotion for preventing diarrhoea Review question This Cochrane Review summarises trials evaluating the effects of promoting hand washing on the incidence of diarrhoea among children and adults in day-care centres, schools, communities, or hospitals. After searching for relevant trials up to 27 May 2015, we included 22 randomized controlled trials conducted in both high-income countries (HICs) and low- and middle-income countries (LMICs). These trials enrolled 69,309 children and 148 adults. How does hand washing prevent diarrhoea and how might hand washing be promoted Diarrhoea causes many deaths in children below five years of age, mostly in LMICs. The organisms causing diarrhoea are transmitted from person to person through food and water contaminated with faeces, or through person-to-person contact. Hand washing after defecation, or after cleaning a baby's bottom, and before preparing and eating food, can therefore reduce the risk of diarrhoea. Hand washing can be promoted through group or individual training on hygiene education, germ-health awareness, use of posters, leaflets, comic books, songs, and drama. What this review says Hand washing promotion at child day-care facilities or schools in HICs probably prevents around 30% of diarrhoea episodes (high quality evidence), and may prevent a similar proportion in schools in LMICs (low quality evidence). Among communities in LMICs hand washing promotion prevents around 28% of diarrhoea episodes (moderate quality evidence). In the only hospital-based trial included in this review, hand washing promotion also had important reduction in the mean episodes of diarrhoea (moderate quality evidence). This is based on only a single trial with few participants and thus there is need for more trials to confirm this. Effects of hand washing promotion on related hand hygiene behaviour changes improved more in the intervention groups than in the control in all the settings (low to high quality evidence). None of the included trials assessed the effect of handwashing promotion on diarrhoeal-related deaths, all-cause under-five mortality, or the cost-effectiveness of hand washing promotions. Conclusion Hand washing promotion in HICs and LMICs settings may reduce incidence of diarrhoea by about 30%. However, less is known about how to help people maintain hand washing habits in the longer term. PMID:26346329

  18. Energetic changes in the surface of activated carbons and relationship with Ni(II) adsorption from aqueous solution

    NASA Astrophysics Data System (ADS)

    Rodrguez-Estupian, Paola; Giraldo, Liliana; Moreno-Pirajn, Juan Carlos

    2013-12-01

    This study investigated Ni(II) ion adsorption from aqueous solution on activated carbons obtained by chemically modifying the surface with the oxidizing agents nitric acid and hydrogen peroxide (CAGoxP and CAGoxN, respectively). The activated carbons were characterized by total acidity and basicity, pH at the point of charge zero determination and IR spectroscopy. Textural parameters such as the BET area and pore volumes were evaluated by gas adsorption. The BET area of the materials was between 816 and 876 m2 g-1. Additionally, the immersion enthalpies of the activated carbons in water and benzene were determined. The experimental results on adsorption in solution were adjusted to the Langmuir and Freundlich models, obtaining values for the monolayer capacity between 29.68 and 50.97 mg g-1, which indicates that the adsorption capacity depends largely on solid surface chemistry.

  19. Polymorph selection and nanocrystallite rearrangement of calcium carbonate in carboxymethyl chitosan aqueous solution: Thermodynamic and kinetic analysis

    SciTech Connect

    Zhao, Donghui; Key Lab of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi, Changning, Shanghai 200050 ; Zhu, Yingchun; Li, Fang; Ruan, Qichao; Zhang, Shengmao; Zhang, Linlin; Xu, Fangfang

    2010-01-15

    In this article, the polymorph selection of calcium carbonate has been successfully achieved in water-soluble carboxymethyl chitosan aqueous solution at different temperatures (25-95 {sup o}C). Vaterite is formed in carboxymethyl chitosan solution 25 {sup o}C accompanied with trace of calcite, whereas pure aragonite is obtained at 95 {sup o}C. Scanning electron microscopy and transmission electron microscopy analyses show that the products are formed from the recrystallization of nanometer crystallites. Thermodynamic and kinetic analyses reveal that the polymorph of calcium carbonate is controlled and selected by kinetics in various temperatures. As a heterogeneous nucleator and stabilizing agent, carboxymethyl chitosan changes the nucleation and growth of calcium carbonate from thermodynamic into kinetic control. Under kinetic limitation, the reaction rate of aragonite increases along with the elevating of temperature and surpasses the rate of vaterite above 327 K.

  20. Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California

    USGS Publications Warehouse

    Barnes, I.; O'Neil, J.R.

    1971-01-01

    Two calcium-magnesium carbonate solid solutions form Holocene travertines and conglomerate cements in fresh water stream channels of the Coast Range of California. Calcite does not yield the {015} diffraction maximum. The {006} diffraction maximum is lacking over most of the range of composition of calcite. Calcite has compositions from CaCO3 to Ca0.5Mg0.5CO3. Dolomite yields both the {006} and {015} diffraction maxima over its entire composition range, Ca0.6Mg0.4CO3 to Ca0.5Mg0.5CO3. The Ca-Mg carbonates form in isotopic equilibrium and thermodynamic disequilibrium from dispersion of Ca2+-rich water into CO32--rich water within the alluvium. The stable isotope data suggest that all the Mg-rich carbonates are primary precipitates and not a result of Mg-substitution in precursor CaCO3. There is a correlation between ??C13 and Mg content of the carbonates which predicts a 5%. fractionation of C13 between dolomite and calcite at sedimentary temperatures. C14 is incorporated in Ca-Mg carbonates forming from C13-poor meteoric waters and C13-rich waters from Cretaceous sediments. C14 ages of the Ca-Mg carbonates are apparent, and cannot be corrected to absolute values. Solution rates of calcite decrease with increasing MgCO3 content; dolomite dissolves slower than any calcite. ?? 1971.

  1. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    SciTech Connect

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  2. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  3. Metallocoenzyme-mediated reductive transformation of carbon tetrachloride in titanium (III) citrate aqueous solution

    SciTech Connect

    Chiu, P.C.; Reinhard, M.

    1995-03-01

    Transformation pathways for carbon tetrachloride (CCl{sub 4}) catalyzed by hematin or vitamin B{sub 12} in aqueous titanium(III) citrate solution are proposed. The reaction of CCl{sub 4} with B{sub 12} was zero order in CCl{sub 4} and first order in B{sub 12}, and the rate constant was measured from pH 7.3 to pH 10.3. The proposed rate-limiting step is the reduction of the stable trichloromethylcobalamin (CCl{sub 3}-Cbl) intermediate by titanium(III) citrate at alkaline pH and the sterically induced CCl{sub 3}-Cbl decomposition at neutral pH. The reaction kinetics can be described by a modified Michaelis-Menten model in the saturated regime. With hematin, only the pseudo-first-order rate constant was determined due to the significant deactivation of the coenzyme. The turnover number of hematin (molecules of CCl{sub 4} transformed/molecule of hematin deactivated) was 27 at pH 8.0 and 42 at pH 9.9. Vitamin B{sub 12} was a more stable and more effective catalyst (on a molar basis) than hematin with respect to CCl{sub 4}. Chloroform (CHCl{sub 3}) was the primary product in titanium(III) citrate solution, and the yield was a function of pH, Ti(III) concentration, and organic content regardless of whether a coenzyme was present or which coenzyme was used. Although B{sub 12} and hematin can both enhance the CCl{sub 4} transformation rate, they have little effect on the CHCl{sub 3} yield. Titanium(III) citrate, on the other hand, controls not only the transformation rate but also CHCl{sub 3} formation. 77 refs., 10 figs.

  4. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    PubMed

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-12-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3?min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323?mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through ??-?? interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5?mol?L(-1)), presence of NOM (5?mg?L(-1)), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place. PMID:26050736

  5. Cr(VI) removal from aqueous solution by activated carbon coated with quaternized poly(4-vinylpyridine)

    SciTech Connect

    Fang, Jun; Gu, Zhimang; Gang, Dianchen; Liu, Chongxuan; Ilton, Eugene S.; Deng, Baolin

    2007-06-05

    A composite sorbent (GAC-QPVP) was prepared by coating poly(4-vinylpyridine) onto a commercial activated carbon (F400, Calgon), followed by cross-linking and quaternization processes. The sorbent was characterized by scanning electron microscopy, point of zero charge measurement, and BET analysis. Batch experiments with variable pH, ionic strength, and concentrations of Cr(VI), sorbent, and competing anions were conducted to evaluate the selective sorption of Cr(VI) from aqueous solutions. The equilibrium uptake of Cr(VI) increased with decreasing pH, decreasing ionic strength, and increasing sorbent concentration. The estimated maximum equilibrium uptake of chromium was 53.7 mg/g at pH = 2.25, 30.7 mg/g at pH = 3.65, and 18.9 mg/g at pH = 6.03, which were much higher than the maximum capacity of 3.5 mg/g for the PVP-coated silica gel at pH = 5.0 (optimum pH for Cr(VI) sorption) reported in the literature [13]. The effect of phosphate, sulfate, and nitrate was minor on the selective sorption of Cr(VI) and only when above a specific molar ratio. An ion exchange model that was linked with aqueous speciation chemistry reasonably well describe Cr(VI) sorption as a function of pH, ionic strength, and Cr(VI) concentration. Model simulations suggested that sorbed Cr(VI) was partially reduced to Cr(III) on the sorbent when pH < 4. The presence of Cr(III) on the sorbent was confirmed by the X-ray photoelectron spectroscopic analysis of the reacted sorbent. Overall, the results showed that GAC-QPVP can effectively remove Cr(VI) from aqueous solutions under a wide range of experimental conditions.

  6. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Allocation of washed coal. 1206.459 Section... INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it...

  7. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  8. 30 CFR 206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.260 Section 206... MANAGEMENT PRODUCT VALUATION Federal Coal § 206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the...

  9. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Allocation of washed coal. 1206.260 Section... INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it...

  10. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Allocation of washed coal. 1206.260 Section... RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  11. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  12. 30 CFR 206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Allocation of washed coal. 206.459 Section 206... MANAGEMENT PRODUCT VALUATION Indian Coal § 206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b) When the...

  13. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  14. 30 CFR 1206.459 - Allocation of washed coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Allocation of washed coal. 1206.459 Section... RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.459 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must be allocated to the leases from which it was extracted. (b)...

  15. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  16. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  17. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  18. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  19. 21 CFR 133.137 - Washed curd cheese for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Washed curd cheese for manufacturing. 133.137... Standardized Cheese and Related Products § 133.137 Washed curd cheese for manufacturing. Washed curd cheese for manufacturing conforms to the definition and standard of identity prescribed for washed curd cheese by §...

  20. 30 CFR 1206.260 - Allocation of washed coal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Allocation of washed coal. 1206.260 Section 1206.260 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.260 Allocation of washed coal. (a) When coal is subjected to washing, the washed coal must...

  1. Technical bases DWPF Late Washing Facility

    SciTech Connect

    Fish, D.L.; Landon, L.F.

    1992-08-10

    A task force recommended that the technical feasibility of a Late Wash' facility be assessed [1]. In this facility, each batch of tetraphenylborate slurry from Tank 49 would be given a final wash to reduce the concentrations of nitrite and radiolysis products to acceptable levels. Laboratory-scale studies have demonstrated that d the nitrite content of the slurry fed to DWPF is reduced to 0.01 M or less (and at least a 4X reduction in concentration of the soluble species is attained), (1) the need for HAN during hydrolysis is eliminated (eliminating the production of ammonium ion during hydrolysis), (2) hydrolysis may be done with a catalyst concentration that will not exceed the copper solubility in glass and (3) the non-polar organic production during hydrolysis is significantly reduced. The first phase of an aggressive research and development program has been completed and all test results obtained to date support the technical feasibility of Late Washing. Paralleling this research and development effort is an aggressive design study directed by DWPF to scope and cost retrofitting the Auxiliary Pump Pit (APP) to enable performing a final wash of each batch of precipitate slurry before R is transferred into the DWPF Soft Processing Cell (SPC). An initial technical bases for the Late Wash Facility was transmitted to DWPF on June 15, 1992. Research and development activities are continuing directed principally at optimization of the cross-f low fitter decontamination methodology and pilot-scale validation of the recommended benzene stripping metodology.

  2. Activated carbon enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: effect of activated carbon dosage and pH.

    PubMed

    Xing, Linlin; Xie, Yongbing; Minakata, Daisuke; Cao, Hongbin; Xiao, Jiadong; Zhang, Yi; Crittenden, John C

    2014-10-01

    Ozonation of oxalate in aqueous phase was performed with a commercial activated carbon (AC) in this work. The effect of AC dosage and solution pH on the contribution of hydroxyl radicals (HO) in bulk solution and oxidation on the AC surface to the removal of oxalate was studied. We found that the removal of oxalate was reduced by tert-butyl alcohol (tBA) with low dosages of AC, while it was hardly affected by tBA when the AC dosage was greater than 0.3g/L. tBA also inhibited ozone decomposition when the AC dosage was no more than 0.05g/L, but it did not work when the AC dosage was no less than 0.1g/L. These observations indicate that HO in bulk solution and oxidation on the AC surface both contribute to the removal of oxalate. HO oxidation in bulk solution is significant when the dosage of AC is low, whereas surface oxidation is dominant when the dosage of AC is high. The oxalate removal decreased with increasing pH of the solution with an AC dosage of 0.5g/L. The degradation of oxalate occurs mainly through surface oxidation in acid and neutral solution, but through HO oxidation in basic bulk solution. A mechanism involving both HO oxidation in bulk solution and surface oxidation was proposed for AC enhanced ozonation of oxalate. PMID:25288554

  3. ENTEROBACTERIACEAE AND RELATED ORGANISMS ISOLATED FROM SHELL EGGS WASHED IN COOLER WASH WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Processing guidelines in 7 CFR part 56 dictate that shell eggs be washed in water at 32- 49 C. As they pass through the dual commercial washers, egg temperatures often rise to levels conducive to bacterial growth. A commercial study was conducted to determine if washing eggs with cooler water woul...

  4. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  5. Wash water reclamation technology for advanced manned spacecraft

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1977-01-01

    The results of an analytical study and assessment of state-of-the-art wash water reclamation technology for advanced manned spacecraft is presented. All non-phase-change unit operations, unit processes, and subsystems currently under development by NASA are considered. Included among these are: filtration, ultrafiltration, carbon adsorption, ion exchange, chemical pretreatment, reverse osmosis, hyperfiltration, and certain urea removal techniques. Performance data are given together with the projected weights and sizes of key components and subsystems. In the final assessment, a simple multifiltration approach consisting of surface-type cartridge filters, carbon adsorption and ion exchange resins receives the highest rating for six-man orbital missions of up to 10 years in duration.

  6. Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution.

    PubMed

    Linhares, Bruno; Weber, Caroline Trevisan; Foletto, Edson Luiz; Paz, Diego Silva; Mazutti, Marcio A; Collazzo, Gabriela Carvalho

    2013-01-01

    Activated carbon prepared from yerba mate (Ilex paraguariensis) was used as adsorbent for the removal of tannery dye from aqueous solution. The activated carbon was characterized, and it showed a mesoporous texture, with surface area of 537.4 m2 g(-1). The initial dye concentration, contact time and pH influenced the adsorption capacity. The equilibrium data were in good agreement with both Langmuir and Freundlich isotherms. The adsorption kinetics of the tannery dye on activated carbon prepared from yerba mate followed a pseudo-second-order model. The adsorption process was found to be controlled by both external mass-transfer and intraparticle diffusion, but the external diffusion was the dominating process. This work highlights the potential application of activated carbon produced from yerba mate in the field of adsorption. PMID:24350496

  7. Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater.

    PubMed

    Poerschmann, J; Weiner, B; Baskyr, I

    2013-09-01

    Organic components in olive mill wastewater (OMW) were analyzed by exhaustive solvent extraction of the lyophilisate followed by pre-chromatographic derivatization techniques and GC/MS-analysis of the extracts. Simple biophenols including tyrosol (Tyr), hydroxytyrosol (OH-Tyr) and homovanillic alcohol as well as complex biophenols including decarbomethoxy ligostride aglycon and decarbomethoxy oleuropein aglycon proved most abundant analytes. Hydroxylated benzoic and cinnamic acids are less abundant, which may indicate a humification process to have occurred. The pattern of organic components obtained from native OMW was compared with that obtained from hydrothermal carbonization (HTC) of the waste product. Former results provided strong evidence that HTC of OMW at 220C for 14h results in an almost complete hydrolysis of complex aglycons. However, simple biophenols were not decomposed on hydrothermal treatment any further. Phenol and benzenediols as well as low molecular weight organic acids proved most abundant analytes which were generated due to HTC. Similarly to aglycons, lipids including most abundant acylglycerines and less abundant wax esters were subjected almost quantitatively to hydrolysis under hydrothermal conditions. Fatty acids (FAs) released from lipids were further decomposed. The pathways of volatile analytes in both native OMW and aqueous HTC solutions were studied by solventless headspace-Solid Phase Micro Extraction. Basically, a wide array low molecular alcohols and ketones occurring in native OMW survived the HTC process. PMID:23648325

  8. Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres.

    PubMed

    Zhou, Jianguo; Wang, Yuefeng; Wang, Jitong; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2016-01-15

    High-surface-area mesoporous carbon microspheres were successfully synthesized by a spraying method with the purpose of removing Cr(VI) from waste water. Various factors influencing the adsorption of Cr(VI), including pH, adsorption temperature, and contact time were studied. As the adsorption process was pH dependent, it showed maximum removal efficiency of Cr(VI) at pH 3.0. Pseudo-second-order model was found to best represent the kinetics of Cr(VI) adsorption. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models, and Qm value was as high as 165.3mg/g. The thermodynamic parameters including standard Gibb's free energy (ΔG(0)), standard enthalpy (ΔH(0)) and standard entropy (ΔS(0)) were investigated for predicting the nature of adsorption, which suggested the adsorption was an endothermic and a spontaneous thermodynamically process. Furthermore, Fe3O4-loaded MCMs were prepared to rapidly separate the adsorbent from the solution by a simple magnetic process. Fe3O4-loaded MCMs had a high adsorption capacity of 156.3mg/g, and a good regeneration ability with a capacity of 123.9mg/g for the fifth adsorption-desorption cycle. PMID:26454379

  9. Reactivity of Hontomn carbonate rocks to acidic solution injection: reactive "push-pull" tracer tests results

    NASA Astrophysics Data System (ADS)

    De Gaspari, Francesca; Cabeza, Yoar; Luquot, Linda; Rtting, Tobias; Saaltink, Maarten W.; Carrera, Jesus

    2014-05-01

    Several field tests will be carried out in order to characterize the reservoir for CO2 injection in Hontomn (Burgos, Spain) as part of the Compostilla project of "Fundacin Ciudad de la Energa" (CIUDEN). Once injected, the dissolution of the CO2 in the resident brine will increase the acidity of the water and lead to the dissolution of the rocks, constituted mainly by carbonates. This mechanism will cause changes in the aquifer properties such as porosity and permeability. To reproduce the effect of the CO2 injection, a reactive solution with 2% of acetic acid is going to be injected in the reservoir and extracted from the same well (reactive "push-pull" tracer tests) to identify and quantify the geochemical reactions occurring into the aquifer. The reactivity of the rock will allow us also to evaluate the changes of its properties. Previously, theoretical calculations of Damkhler numbers were done to determine the acid concentrations and injection flow rates needed to generate ramified-wormholes patterns, during theses "push-pull" experiments. The aim of this work is to present the results and a preliminary interpretation of the field tests.

  10. Np(v) complexation with carbonate in aqueous solutions studied by spectrophotometric titration at various temperatures.

    PubMed

    Yang, Suliang; Zhao, Yaping; Tian, Guoxin

    2016-02-14

    The complexation of neptunium(v) with carbonate has been studied at temperatures from 10 to 70 °C in 0.1 M LiClO4 by spectrophotometry. Three NpO2(+)-CO3(2-) complex species, NpO2(CO3)n((2n-1)-) (n = 1, 2, 3), are identified and the stability constants are calculated by using the absorption spectra in the near-IR region collected from titrations at varying temperatures. The enthalpies and entropies are calculated with van't Hoff equations in the temperature range of 10 to 70 °C, indicating that the formation of all NpO2(+)-CO3(2-) complexes is mainly entropy driven. The structures of the NpO2(+)-CO3(2-) complex species in aqueous solutions are also reviewed. Based on the molar absorptivity of Np(v) in the near-IR region the structure of NpO2(CO3)2(3-) is re-constructed as NpO2(CO3)2(H2O)(3-)of low symmetry but not as NpO2(CO3)2(H2O)2(3-)of high symmetry as suggested in a previous study. PMID:26744184

  11. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  12. Low-cost, solution processable carbon nanotube supercapacitors and their characterization

    NASA Astrophysics Data System (ADS)

    Lehtimki, Suvi; Tuukkanen, Sampo; Prhnen, Juho; Moilanen, Pasi; Virtanen, Jorma; Honkanen, Mari; Lupo, Donald

    2014-06-01

    We report ecological and low-cost carbon nanotube (CNT) supercapacitors fabricated using a simple, scalable solution processing method, where the use of a highly porous and electrically conductive active material eliminates the need for a current collector. Electrodes were fabricated on a poly(ethylene terephthalate) substrate from a printable multi-wall CNT ink, where the CNTs are solubilized in water using xylan as a dispersion agent. The dispersion method facilitates a very high concentration of CNTs in the ink. Supercapacitors were assembled using a paper separator and an aqueous NaCl electrolyte and the devices were characterized with a galvanostatic discharge method defined by an industrial standard. The capacitance of the 2 cm^2 devices was 6 mF/cm^2 (2.3 F/g) and equivalent series resistance 80 ? . Low-cost supercapacitors fabricated from safe and environmentally friendly materials have potential applications as energy storage devices in ubiquitous and autonomous intelligence as well as in disposable low-end products.

  13. Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites.

    PubMed

    Yang, Shubin; Han, Cho; Wang, Xiangke; Nagatsu, Masaaki

    2014-06-15

    The technology development of Cs(+) capture from aqueous solution is crucial for the disposal of nuclear waste and still remains a significant challenge. Previous researches have been proven that ion exchanges with the cations and hydroxyl exchange are the main sorption mechanisms for Cs(+). Therefore, how important are the cation exchange and the hydroxyl exchange mechanisms to Cs(+) sorption? And whether can we improve the sorption capacity of the material by increasing the amount of hydroxyl groups? With these in mind, we herein designed the chitosan-grafted carbon nanotubes (CS-g-CNTs) and the chitosan-grafted bentonite (CS-g-bentonite) by plasma-induced grafting method. The interactions of Cs(+) with CNTs, bentonite, CS-g-CNTs and CS-g-bentonite composites were investigated. The sorption of Cs(+) is mainly dominated by strong cation exchange in monovalent Group I and divalent Group II. And the cation-exchange mechanism is much more effective than the hydroxyl group exchange. The effect of hydroxyl groups is dependent on the property of the matrix. We cannot improve the Cs adsorption capacity of material for Cs(+) only by increasing the amount of hydroxyl groups in any case. The spatial structure and the cation-exchange capacity of the material are important factors for choosing the sorbent for Cs(+) removal from radioactive waste water. PMID:24762700

  14. Contact angles of diiodomethane on silicon-doped diamond-like carbon coatings in electrolyte solutions.

    PubMed

    Borisenko, Konstantin B; Evangelou, Evangelos A; Zhao, Qi; Abel, Eric W

    2008-10-15

    The influence of surrounding electrolyte type and concentration on the contact angle of hydrophobic diiodomethane on silicon-doped diamond-like carbon (DLC) coatings was examined to provide insight into how the presence of electrolytes in the solution influences adhesion of hydrophobic material to doped DLC surfaces. There was a small but statistically significant increase of contact angle with increasing electrolyte concentration over the range from 0 to approximately 0.01 M, after which the contact angle was virtually unaffected by further increase in the concentration of electrolyte. It was shown that CaCl(2) has a stronger influence on the change of the contact angle than NaCl, and that an increase in Si content in the DLC coatings increased the change in the contact angle of diiodomethane for all types of electrolyte. These observations suggest that the adhesion to the Si-doped DLC surfaces is reduced by addition of the electrolytes to the surrounding solvent. This could be explained by increased ion adsorption on the DLC surface with increase in silicon doping, causing the surfaces to be more hydrophilic. PMID:18657820

  15. 2-chlorophenol sorption from aqueous solution using granular activated carbon and polymeric adsorbents

    NASA Astrophysics Data System (ADS)

    Ghatbandhe, A. S.; Jahagirdar, H. G.; Yenkie, M. K. N.; Deosarkar, S. D.

    2013-08-01

    Adsorption equilibrium and kinetics of 2-chlorophenol (2-CP) one of the chlorophenols (CPs) onto bituminous coal based Filtrasorb-400 grade granular activated carbon and three different types of polymeric adsorbents were studied in aqueous solution in a batch system. Langmuir isotherm models were applied to experimental equilibrium data of 2-CP adsorption. Equilibrium data fitted very well to the Langmuir equilibrium models of 2-CP. Adsorbent monolayer capacity Q Langmuir constant b and adsorption rate constants k a were evaluated. 2-CP adsorption using GAC is very rapid in the first hour of contact where 70-80% of the adsorbate is removed by GAC followed by a slow approach to equilibrium. Whereas in case of polymeric adsorbents 60-65% of the adsorbate is removed in the first 30 min which is then followed by a slow approach to equilibrium. The order of adsorption of 2-CP on different adsorbents used in the study is found to be in following order: F-400 > XAD-1180 > XAD-4 > XAD-7HP.

  16. Solvation dynamics in viscous polymer solution: Propylene carbonate confined by poly(methylmethacrylate)

    NASA Astrophysics Data System (ADS)

    He, Fang; Richert, Ranko

    2006-07-01

    Solvation dynamics of a triplet state probe is used to explore the dynamics of supercooled propylene carbonate (PC) when modified by the presence of poly(methyl methacrylate) (PMMA) in viscous polymer solution. In the PMMA weight fraction range 0 to 0.32, the relaxation time for dipolar solvation increases by a factor of approximately 1500, if evaluated at a constant temperature. This is equivalent to a shift of the PC glass-transition temperature Tg by +6.4K as a result of geometrical restriction by the presence of 32wt.% PMMA. In terms of the estimated average PC-PMMA distance, the relaxation time approaches the bulk value much more rapidly compared with size effects of confinement in porous glasses or microemulsion droplets. The interpretation of this feature is that a reduced PMMA concentration not only increases the average PC-PMMA distance, but also changes from a solid to a more open topology of the confining material. Accordingly, the slowest dynamics in these mixtures are not found near a single polymer chain, but only in the more concentrated polymer environments where a larger fraction of the cooperative volume is immobilized by macromolecules.

  17. Wash solvent reuse in paint production

    SciTech Connect

    Parsons, A.B.; Heater, K.J.; Olfenbuttel, R.F.

    1994-04-01

    The project evaluated solvent used to clean paint manufacture equipment for its utility in production of subsequent batches of solvent-borne paint. Reusing wash solvent would reduce the amount of solvent disposed of as waste. The evaluation of this wash-solvent recovery technology was conducted by Battelle Memorial Institute for the Pollution Prevention Research Branch of the U.S. Environmental Protection Agency. The evaluation was conducted with the cooperation and assistance of Vanex Color, Inc. The product quality, waste reduction/pollution prevention, and economic impacts of this technology change, as it has been implemented by Vanex, were examined. Two batches of a solvent-borne alkyd house paint were prepared at Vanex--one batch made with 100%-new solvent and the other with 30%-wash solvent--and sampled for laboratory analysis at Battelle.

  18. Impact of inorganic buffering ions on the stability of Fe(vi) in aqueous solution: role of the carbonate ion.

    PubMed

    Kolář, Michal; Novák, Petr; Šišková, Karolína M; Machala, Libor; Malina, Ondřej; Tuček, Jiří; Sharma, Virender K; Zbořil, Radek

    2016-02-01

    An iron compound of +6 oxidation state (Fe(VI)O4(2-), Fe(vi)) is a green molecule for various applications (water oxidation catalyst, organic transformation for synthesis, and water remediation agent). However, its use is hindered because of its inherent decay in aqueous solution. This study presents a systematic kinetics investigation of the decay of ferrate(vi) in the presence of inorganic buffering ions (borate, phosphate, and carbonate) at a pH range from 6.0 to 9.0. When the heterogeneous decay of Fe(vi) on ferric products was inhibited by phosphate, detailed kinetic analysis revealed that the carbonate anion enhanced the Fe(vi) decay rate, compared to phosphate and borate ions. The order of the Fe(vi) decay rate under neutral solution conditions was carbonate > phosphate ≥ borate. In alkaline solution, the decay rates of Fe(vi) were similar for the studied buffering ions. The decay of Fe(vi) in the presence of the carbonate ion was described by mixed first- and second-order kinetics and the first-order rate constant (k1') had a linear relationship with the concentration of the carbonate ion at a neutral pH (k1' = 0.023 + 3.54 × [carbonate] L mol(-1) s(-1)). The analysis of the Fe(vi) decay intermediates/products (˙O2(-), H2O2, and O2) suggests similar decay pathways in the presence of different buffering anions. The impact of carbonate ions on the size of the nanoparticles of the Fe(iii) precipitate, the final reduced form of Fe(vi), was studied using transmission electron microscopy, (57)Fe Mössbauer spectroscopy, and magnetization measurements. The results indicated that carbonate ions induce the formation of ultrasmall iron(iii) oxyhydroxide nanoparticles (<5 nm), which apparently contribute to increased decay of Fe(vi) due to their larger specific surface area. The described homogeneous reaction of carbonate with Fe(vi) has important implications in the efficiency of environmental Fe(vi) applications. On the other hand, the observed low reactivity of borate with Fe(vi) demonstrates that borate is the least reactive buffer in studies of Fe(vi) reactivity in neutral solutions. PMID:26790819

  19. Basic solutions to carbon/carbon oxidation: Science and technology. Final report, 15 April 1993--14 April 1998

    SciTech Connect

    Harrison, I.R.; Chung, T.; Pantano, C.; Radovic, L.; Thrower, P.

    1998-04-14

    The goal of this study was to gain a fundamental understanding of the role of boron in carbon oxidation. Boron-doped carbons were synthesized via CVD, ion implantation and high temperature doping are subsequently characterized. It was found that high temperature doped HOPG carbons were ideal for oxidation studies because their surface could be reproduced, their surface structures were determined and they were able to be characterized by XPS, AFM and SEM. The direct analysis of the chemical structures and atomic arrangements in boron- doped carbon or carbon surfaces by these techniques was critical in determining the effect of boron on carbon oxidation. XPS was utilized in this work to determine the local bonding environment of boron in carbon before an after oxidation. It was necessary to obtain an accurate calibration of the B1s binding energy scale which was accomplished by obtaining photoemission spectra of boron-doped carbons with known structures (local boron bonding environments), such as boron oxide, boron carbide, triphenylboroxine, tourmaline, boric acid, danburite and high temperature boron-doped graphite. All of the aforementioned standards contain boron in a unique bonding environment and thus their spectra formulated a complete conversion of B1s binding energies to boron chemical environments which has not been reported in the past. It was clearly established that a chemical shift for substitutional boron in graphite exists at 186.5 eV with a FWHM of 1.2. The chemical structures of the boron in the standards were related to the binding energy using a Pauling charge distribution model and a modification of the Sanderson electronegativity method. This approach was used to determine whether the B1s binding energy would change depending upon the specific location of boron in the graphite or graphite surface.

  20. Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland

    SciTech Connect

    Siegel, D.I.

    1992-04-09

    Peatlands are one of the most important terrestrial reservoirs in the global cycle for carbon, and are a major source for atmospheric methane. However, little is known about the dynamics of these carbon reservoirs or their feedback mechanisms with the pool of atmospheric CO{sub 2} during the Holocene. Specifically, it is unknown whether large peat basins are sources, sinks, or steady-state reservoirs for the global carbon cycle. In particular, the production and transport of methane, carbon dioxide, and dissolved organic carbon form the deeper portions of these peatlands is unknown. Our DOE research program is to conduct an integrated ecologic and hydrogeochemical study of the Glacial Lake Agassiz peatlands (northern Minnesota) to better understand the carbon dynamics in globally significant peat basins. Specifically, our study will provide local and regional data on (1), rates of carbon accumulation and loss and fluxes of methane in the peat profiles; (2) the physical and botanical factors controlling the production of methane and carbon dioxide in the wetland; and (3) the role of hydrogeologic processes in controlling the fluxes of gases and solutes through the peat. We intend to use computer simulation models, calibrated to field data, to scale-up from local to regional estimates of methane and carbon dioxide within the basin. How gases and dissolved organic carbon escapes form peatlands in unknown. It has been suggested that the concentrations of methane produced in the upper peat are sufficient to produce diffusion gradients towards the surface. Alternatively, gas may move through the peat profile by groundwater advection.

  1. Carbon-Impurity Affected Depth Elemental Distribution in Solution-Processed Inorganic Thin Films for Solar Cell Application.

    PubMed

    Rehan, Shanza; Kim, Ka Young; Han, Jeonghyeob; Eo, Young-Joo; Gwak, Jihye; Ahn, Seung Kyu; Yun, Jae Ho; Yoon, KyungHoon; Cho, Ara; Ahn, SeJin

    2016-03-01

    A common feature of the inorganic thin films including Cu(In,Ga)(S,Se)2 fabricated by nonvacuum solution-based approaches is the doubled-layered structure, with a top dense inorganic film and a bottom carbon-containing residual layer. Although the latter has been considered to be the main efficiency limiting factor, (as a source of high series resistance), the exact influence of this layer is still not clear, and contradictory views are present. In this study, using a CISe as a model system, we report experimental evidence indicating that the carbon residual layer itself is electrically benign to the device performance. Conversely, carbon was found to play a significant role in determining the depth elemental distribution of final film, in which carbon selectively hinders the diffusion of Cu during selenization, resulting in significantly Cu-deficient top CISe layer while improving the film morphology. This carbon-affected compositional and morphological impact on the top CISe films is a determining factor for the device efficiency, which was supported by the finding that CISe solar cells processed from the precursor film containing intermediate amount of carbon demonstrated high efficiencies of up to 9.15% whereas the performances of the devices prepared from the precursor films with very high and very low carbon were notably poor. PMID:26817680

  2. Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution

    SciTech Connect

    Pilkey, A.K.; Lambert, S.B.; Plumtree, A. . Dept. of Mechanical Engineering)

    1995-02-01

    An experimental system was developed to reproduce stress corrosion cracking (SCC) of API X-60 line pipe steels in highly alkaline (pH = 10) carbonate-bicarbonate (1 N sodium carbonate [Na[sub 2]CO[sub 3

  3. Multi-instrumental characterization of carbon nanotubes dispersed in aqueous solutions

    EPA Science Inventory

    Previous studies showed that the dispersion extent and physicochemical properties of carbon nanotubes are highly dependent upon the preparation methods (e.g., dispersion methods and dispersants). In the present work, multiwalled carbon nanotubes (MWNTs) are dispersed in aqueous s...

  4. PREDICTING EQUILIBRIA FOR SINGLE SOLUTE AND MULTICOMPONENT AQUEOUS-PHASE ADSORPTION ONTO ACTIVATED CARBON

    EPA Science Inventory

    Granular activated carbon (GAC) is useful for removing potentially harmful synthetic organic chemical (SOCs) found in drinking water sources. In the design of fixed-bed contacters, equilibrium considerations govern the usage rate of the carbon, while mass transfer considerations ...

  5. Carbon Solution in Core-Forming Magma Ocean Conditions: Implications for the Origin and Distribution of Terrestrial Carbon

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Chi, H.; Walker, D.; Shimizu, N.; Buono, A. S.

    2012-12-01

    The origin of bulk silicate Earth carbon inventory is poorly known and the fate of the element during the early Earth differentiation and core formation is a missing link in the evolution of the terrestrial carbon cycle. Here we present high pressure-temperature experiments that simulate metal-silicate equilibria in a shallow magma ocean. Experiments were performed at 1-5 GPa, 1600-2100 C on mixtures of synthetic or natural silicates (tholeiitic basalt/ alkali basalt/ komatiite/ fertile peridotite) and Fe-Ni-CCoS contained in graphite or MgO capsules. All the experiments produced immiscible Fe-rich metallic and silicate melts at oxygen fugacity (fO2) between ~IW-1.5 and IW-1.9. Carbon and hydrogen concentrations of basaltic glasses and non-glassy quenched silicate melts were determined using secondary ionization mass spectrometry (SIMS) and speciation of dissolved C-O-H volatiles in silicate glasses was constrained using Raman spectroscopy. Carbon contents of metallic melts were determined using both electron microprobe and SIMS. Our experiments indicate that at core-forming, reduced conditions, carbon in mafic-ultramafic magmas dissolves primarily as various hydrogenated species and the total carbon storage capacity, although is significantly higher than solubility of CO2 under similar conditions, remains low (<500 ppm). The total carbon content in our reduced melts at graphite saturation increases with increasing melt depolymerization (NBO/T), consistent with recent spectroscopic studies [1], and modestly with increasing hydration. Carbon behaves as a metal loving element during core-mantle separation and metal/silicate carbon partition coefficient, DC varies between ~3500 and ?150 and increases with increasing pressure and decreases with increasing temperature and melt NBO/T. Extrapolation of our data to the plausible conditions of core-mantle equilibration suggest that if only a trace amount of carbon (~730 ppm C; [2]) was available during early Earth differentiation, most of it was partitioned to the core (with 0.20-0.25 wt.% C) and no more than ~10-30% of the present-day mantle carbon budget (50-200 ppm CO2) could be derived from a magma ocean residual to core formation. With equilibrium core formation removing most of the carbon initially retained in the terrestrial magma ocean, explanation of the modern bulk silicate Earth carbon inventory requires a later replenishment mechanism. Partial entrapment of metal melt in solid silicate matrix, carbon ingassing by magma ocean-atmosphere interaction, and carbon outgassing from the core aided by reaction of core metal and deeply subducted water are some of the viable mechanisms. [1] Mysen et al. (2009), GCA 73, 1696-1710. [2] McDonough (2003), The Mantle and Core, Treatise of Geochemistry, 547-568.

  6. Solutions

    NASA Astrophysics Data System (ADS)

    Hong, Qin-Gang; Chang, Li-Shin; Hsieh, Huey-Lin

    2014-06-01

    Type-VIII Ba8Ga16Sn30 polycrystalline clathrates were grown vertically downwards from Ba8Ga16Sn50 solution at furnace temperatures between 500C and 800C with an ampoule velocity of 0.36 cm/h. The microstructure, composition, crystal structure, and thermoelectric properties of crystals were investigated. Polycrystalline samples in which Ba8Ga16Sn30 grains were wetted by an Sn-rich phase were prepared. In general, grain size increases along the direction of growth. It was found that the sample grown at 650C had the largest grains. Smaller grains were observed for samples grown at lower temperatures, as a result of higher rate of nucleation, because of higher undercooling at the solid-liquid interface caused by the lower thermal gradient in the liquid. However, at furnace temperatures higher than 650C enhanced convection in the solution at higher temperature gradients and wetting phenomena may cause instability of the solid-liquid interface and solid nuclei may flow into the liquid to become new nucleation sites. This explains the decrease of grain size at higher furnace temperatures. The optimum ZT and power factor of the undoped Ba8Ga16Sn30 clathrate prepared by the vertical Bridgman method in this study were, respectively, 0.8 and 11.4 ?W/cmK2 at 200C; the Seebeck coefficient was -260 ?V/K.

  7. Molecular-scale Hydrophilicity Induced by Solute: Molecular-thick Charged Pancakes of Aqueous Salt Solution on Hydrophobic Carbon-based Surfaces

    PubMed Central

    Shi, Guosheng; Shen, Yue; Liu, Jian; Wang, Chunlei; Wang, Ying; Song, Bo; Hu, Jun; Fang, Haiping

    2014-01-01

    We directly observed molecular-thick aqueous salt-solution pancakes on a hydrophobic graphite surface under ambient conditions employing atomic force microscopy. This observation indicates the unexpected molecular-scale hydrophilicity of the salt solution on graphite surfaces, which is different from the macroscopic wetting property of a droplet standing on the graphite surface. Interestingly, the pancakes spontaneously displayed strong positively charged behavior. Theoretical studies showed that the formation of such positively charged pancakes is attributed to cation–π interactions between Na+ ions in the aqueous solution and aromatic rings on the graphite surface, promoting the adsorption of water molecules together with cations onto the graphite surface; i.e., Na+ ions as a medium adsorbed to the graphite surface through cation–π interactions on one side while at the same time bonding to water molecules through hydration interaction on the other side at a molecular scale. These findings suggest that actual interactions regarding carbon-based graphitic surfaces including those of graphene, carbon nanotubes, and biochar may be significantly different from existing theory and they provide new insight into the control of surface wettability, interactions and related physical, chemical and biological processes. PMID:25348642

  8. Morphology of carbonates particles precipitated from saline waste solution: Influence of magnesium

    NASA Astrophysics Data System (ADS)

    Filippov, L. O.; Grandjean, M.; Filippova, I. V.; Pelletier, M.

    2013-03-01

    The role of a very low concentration of Mg on the nature, morphology and surface of carbonate particles during soda-ash residual brine carbonation has been studied. The Mg concentration of 200 mg/kg in brine slows down the kinetic of carbonation, modifies the shape of precipitated particles and new carbonated phases are precipitated. The existence of aragonite and (Ca, Mg) hydrated phases is supposed for Ca:Mg ratio equivalent to 24:1 in solid fraction.

  9. Adsorption of Zn(II) and Cd(II) ions onto magnesium and activated carbon composite in aqueous solution

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Hiroki; Matsumoto, Yuki; Machida, Motoi

    2010-01-01

    Magnesium and coconuts shell activated carbon composite was prepared to selectively remove heavy metals ions in aqueous solution. Zinc(II) and cadmium(II) ions were used to clarify the adsorption capacity of the composite in comparison with no magnesium containing activated carbon. Influence of the initial heavy metal concentration, time course and solution temperature on the adsorption amounts were examined for the two adsorbents, and surface chemistry of the adsorbents was also characterized using Boehm titration. The magnesium composite adsorbed greater amount of Zn(II) and Cd(II) ions than the no magnesium counterpart. The adsorption amount of Cd(II) was not influenced with rise in solution temperature for the composite, whereas decrease in adsorption was observed for the counterpart. The loaded magnesium was estimated to be combined with carbon surface via oxygen bridge. Cadmium(II) was adsorbed onto the composite surface by ion exchange process with releasing equivalent amount of Mg(II) from the carbon surface, while Zn(II) would adsorb onto the composite by not only the ion exchange, but also the electrostatic interaction with the C? electrons on the graphite surface from the experimental results.

  10. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture

    USGS Publications Warehouse

    Zhang, S.; Zhang, Z.; Lu, Y.; Rostam-Abadi, M.; Jones, A.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90days at 50??C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4M), nitrate (0.05M) and chloride (0.3M) typically found in flue gas scrubbing liquids than their free counterparts. ?? 2011 Elsevier Ltd.

  11. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture.

    PubMed

    Zhang, Shihan; Zhang, Zhaohui; Lu, Yongqi; Rostam-Abadi, Massoud; Jones, Andrew

    2011-11-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90 days at 50 C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4 M), nitrate (0.05 M) and chloride (0.3 M) typically found in flue gas scrubbing liquids than their free counterparts. PMID:21974883

  12. The radiation induced chemistry of uranyl cation in aqueous carbonate –bicarbonate solutions as followed by NMR spectroscopy

    SciTech Connect

    McNamara, Bruce K.; Snow, Lanee A.; Soderquist, Chuck Z.; Sinkov, Sergei I.; Cho, Herman M.; Friese, Judah I.

    2006-05-01

    Alpha radiation induced formation of hydrogen peroxide in carbonate ?bicarbonate media was followed by 13C NMR using dissolved [233UO2(13CO3)3]4- as the alpha source (Dalpha= 12.1 Gy/hr). Between the pH region between 5.9 and 11.6 hydrogen peroxide causes a varied speciation of the uranyl carbonates that is a function of the uranium, carbonate and the hydrogen peroxide concentrations. It is shown that the speciation of the peroxy carbonates (or other species) formed in solution by titration with hydrogen peroxide are common to those formed by hydrogen peroxide generated by radiolysis. The radiolysis experiment was carried out above pH = 9.96 to minimize the loss of 13CO2 over a 2800 hr period. Radiolytic generation of hydrogen peroxide was followed by formation of a uranyl peroxy carbonate complex and complex formation accelerated for about 1200 hours. Complex formation was observed to terminate at a concentration between 1x10-4 and 5x10-4 M. It is assumed that either a steady state H2O2 production rate was established in solution or that some limiting feature of the experiment was responsible for slowing the yield of product.

  13. Laboratory development of sludge washing and alkaline leaching processes: Test plan for FY 1994

    SciTech Connect

    Rapko, B.M.; Lumetta, G.J.

    1994-07-01

    The US Department of Energy plans to vitrify (as borosilicate glass) the large volumes of high-level radioactive wastes at the Hanford site. To reduce costs, pretreatment processes will be used to reduce the volume of borosilicate glass required for disposal. Several options are being considered for the pretreatment processes: (1) sludge washing with water or dilute hydroxide: designed to remove most of the Na from the sludge, thus significantly reducing the volume of waste to be vitrified; (2) sludge washing plus caustic leaching and/or metathesis (alkaline sludge leaching): designed to dissolve large quantities of certain nonradioactive elements, such as Al, Cr and P, thus reducing the volume of waste even more; (3) sludge washing, sludge dissolution, and separation of radionuclides from the dissolved sludge solutions (advanced processing): designed to remove all radionuclides for concentration into a minimum waste volume. This report describes a test plan for work that will be performed in FY 1994 under the Sludge Washing and Caustic Leaching Studies Task (WBS 0402) of the Tank Waste Remediation System (TWRS) Pretreatment Project. The objectives of the work described here are to determine the effects of sludge washing and alkaline leaching on sludge composition and the physical properties of the washed sludge and to evaluate alkaline leaching methods for their impact on the volume of borosilicate glass required to dispose of certain Hanford tank sludges.

  14. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  15. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils.

    PubMed

    Demir, Aydeniz; Kleli, Nurcan

    2013-01-01

    A two-step method for the remediation of three different types of lead (Pb)-contaminated soil was evaluated. The first step included soil washing with ethylenediaminetetraacetic acid (EDTA) to remove Pb from soils. The washing experiments were performed with 0.05 M Na2EDTA at 1:10 soil to liquid ratio. Following the washing, Pb removal efficiency from soils ranged within 50-70%. After the soil washing process, Pb2+ ions in the washing solution were reduced electrochemically in a fixed-bed reactor. Lead removal efficiency with the electrochemical reduction at -2.0 V potential ranged within 57-76%. The overall results indicate that this two-step method is an environmentally-friendly and effective technology to remediate Pb-contaminated soils, as well as Pb-contaminated wastewater treatment due to the transformation of toxic Pb2+ ions into a non-hazardous metallic form (Pb(0)). PMID:23837331

  16. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  17. Carbonized properties of iodine-incorporated poly(vinyl alcohol) composite films prepared by gelation/crystallization from solution.

    PubMed

    Nakano, Yumiko; Matsuo, Masaru

    2010-02-16

    Poly(vinyl alcohol) (PVA) and titanium dioxide (TiO(2)) composite films were prepared by gelation/crystallization from a dispersed solution containing different TiO(2) contents against PVA. Iodine was incorporated into the composites, and the iodine-incorporated composites were carbonized under argon gas in the temperature range of 700-1600 degrees C. Under the carbonization process, the incorporation of iodine into composites ensured tough films without cracks. This indicated that iodine incorporation played an important role as a catalyst to promote the formation of cross links between amorphous carbon chains through the resultant Ti-C structure that occurs by hydration. Surprisingly, X-ray diffraction intensity measurements revealed that the coagulated TiO(2) powders in the composite film carbonized at 1200 degrees C remained predominantly anatase type, which has generally been known as photocatalytic activity. The perfect transition to the rutile-type structure dramatically occurred at 1600 degrees C. Judging from the carbon coating on the TiO(2) particle surface as detected by ESCA, no disruption of the composite was found to be due to the appearances of Ti(2)O(3) groups and the Ti-C structure performing cross linking between neighboring amorphous carbon chains. The characteristics of anatase-type TiO(2) crystallites and amorphous carbon structures were analyzed using the para-crystalline theory concerning the distance fluctuation between graphene sheets. The electrical conductivity of the carbonized composite was ca. 0.01 S/cm and was independent of the TiO(2) admixed in the carbon matrix. PMID:19883066

  18. Ring-Oven Washing Technique Integrated Paper-based Immunodevice for Sensitive Detection of Cancer Biomarker.

    PubMed

    Liu, Wei; Guo, Yumei; Zhao, Mei; Li, Huifang; Zhang, Zhujun

    2015-08-01

    A paper-based microfluidic immunodevice has recently attracted considerable interest for point-of-care testing (POCT) and a washing procedure was used as a standard procedure in immunoassay to eliminate the nonspecific binding protein from a paper surface. However, the traditional washing method cannot get rid of the nonspecific binding protein more completely to get a lower background. In this work, a novel washing strategy with a ring-oven technique integrated on a paper-based immunodevice was presented, which can effectively wash a nonspecific binding protein and enable a low background for sensitive detection of the carcinoembryonic antigen (CEA). By immobilizing the antibody on the detection area and incorporating the temperature-controlled ring-oven under the paper-based device, the continuous washing solution can carry the nonspecific binding protein to the waste area freely by capillary force and then the waste area dried quickly by heating. The paper device, which is matched to the size of the ring-oven, is composed of eight microfluidic channels by the simple and rapid paper-cutting fabrication method. With the HRP-catalyzed 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 colorimetric detection method, a lower detection limit of 0.03 ng/mL CEA can be obtained by enzyme-linked immunosorbent assay (ELISA). The washing efficiency for the nonspecific binding protein was improved a lot compared to the traditional washing methods, and the established paper-based device can be used in the determination of CEA in human serum with high sensitivity. The paper-based device provides a new washing strategy for sensitive immunoassay and point-of-care diagnostics. PMID:26140306

  19. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    PubMed

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously. PMID:23241014

  20. SOIL-WASHING TECHNOLOGY AND PRACTICE

    EPA Science Inventory

    Soil washing in the United States has been studied and evaluated with increasing thoroughness during the last 15 to 20 years. It is now entering a phase of actual use and acceptance as its applicability and economics become clearer. This paper reviews the principles behind soil...

  1. DEMONSTRATION BULLETIN: SOIL WASHING SYSTEM - BIOTROL, INC.

    EPA Science Inventory

    The three component technologies of the BioTrol Soil Washing System (BSWS). Tested in the SITE demonstration were a Soil Washer (SW), and Aqueous Treatment System (ATS), and a Slurry Bio-Reactor (SBR). The Soil Washer operates on the principle that a significant fraction of the...

  2. FIELD STUDIES OF IN SITU SOIL WASHING

    EPA Science Inventory

    The EPA and US Air Force conducted a research test program to demonstrate the removal of hydrocarbons and chlorinated hydrocarbons from a sandy soil by in situ soil washing using surfactants. Contaminated soil from the fire training area of Volk Air National Guard Base, WI, was f...

  3. What Happens at a Car Wash?

    ERIC Educational Resources Information Center

    Gallick, Barbara; Lee, Lisa

    2010-01-01

    A class of 3- to 5-year-old children in a child care center in the midwestern United States chose to study a car wash as a group project. This article discusses how the project evolved, describes the three phases of the project, and provides the teachers' reflections on the project. Photos taken during the project and children's sketches are

  4. EVALUATION OF THE BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    The BioGenesis Enterprises, Inc. (BioGenesis) soil washing technology was demonstrated as part of the US Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program in November 1992. he demonstration was conducted over three days at a petrole...

  5. An Alternative Antimicrobial Commercial Egg Washing Procedure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presently, commercial eggs are washed with water containing an alkali detergent at approximately pH 11 followed by a chlorine rinse. At this pH, it is likely that there is little, if any, free chlorine in the final rinse to act as an antimicrobial against pathogens like Salmonella. Using a chlorine ...

  6. PROPELLER WASH EFFECTS ON SPRAY DRIFT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For aerial spray application, there is some question if off-target drift (both near and far) is influenced by which boom is spraying and the direction of propeller wash rotation. This information may be useful when switching off one boom close to a field boundary. The effect of alternate boom switch...

  7. EVALUATION OF THE BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    The BioGenesis Enterprises, Inc. (BioGenesis) soil washing technology was demonstrated as part of the US Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) program in November 1992. The demonstration was conducted over three days at a petrol...

  8. Washed Out Bridge, Snake Creek Near Whitesburg

    USGS Multimedia Gallery

    Tributary to Snake Creek, near Whitesburg, Georgia, showing a washed out bridge. When bridges such as this one collapse during a flood, it is rarely the pressure of the rushing water against the bridge that causes the bridge to fail. Rather, the rushing water erodes the ground underneath and surroun...

  9. Late Wash Filter Demonstration Unit program plan

    SciTech Connect

    Nash, C.A.; Budenstein, S.A.; Boersma, M.D.

    1992-11-10

    This report details a planned a non-radioactive engineering demonstration of the DWPF Late Wash Facility (LWF) for washing salt precipitate feed, and of the In-Tank Precipitate (ITP) filters. The scale will be 0.05 to 0.1, with some larger components, prototypical instruments, and full-length filter elements. Precipitate slurry for late wash tests will be fully irradiated (3EO8 rads). Program needs and objectives are to demonstrate LWF design, optimize LWF process operations including filter cleaning and benzene sparging, test actual instruments including benzene and nitrite monitors, and test advanced design concepts such as etched filters. In addition, the Late Wash Filter Demonstration Unit (LWFDU) will support the operation and long-term improvement of ITP filtration. The expected cost of the LWFDU is $1.8 million. Operating costs in FY 1993 are expected to be $1.0 million. Testing is expected to begin 3QFY93, with LWF design confirmation and LWF operations bases completed by the end of 1QFY94.

  10. Prototype wash water renovation system integration with government-furnished wash fixture

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The requirements of a significant quantity of proposed life sciences experiments in Shuttle payloads for available wash water to support cleansing operations has provided the incentive to develop a technique for wash water renovation. A prototype wash water waste renovation system which has the capability to process the waste water and return it to a state adequate for reuse in a typical cleansing fixture designed to support life science experiments was investigated. The resulting technology is to support other developments efforts pertaining to water reclamation by serving as a pretreatment step for subsequent reclamation procedures.

  11. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2015-09-01

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions.

  12. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  13. RISM-SCF-SEDD study on the symmetry breaking of carbonate and nitrate anions in aqueous solution.

    PubMed

    Vchirawongkwin, Viwat; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-08-19

    The planarity of carbonate and nitrate anions was investigated in the gas and solution phases by means of the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-SEDD) method. The computed optimized geometries and solvation structures are compared with the diffraction data. In the solution phase, the symmetry of carbonate anion is changed from D3h to C3v, whereas the planarity of nitrate anion is still retained. These are fully consistent with experimental knowledge. The classical electrostatic model was also utilized to elucidate the mechanism of the symmetry breaking. It should be emphasized that the symmetry breaking occurs not only by a specific solvent molecule attaching to the ion but by an overall electrostatic interaction between the infinite number of solvent molecules and the ion. PMID:20734470

  14. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  15. NMR Measurements in Carbonate Rocks: Problems and an Approach to a Solution

    NASA Astrophysics Data System (ADS)

    Westphal, Hildegard; Surholt, Iris; Kiesl, Christian; Thern, Holger F.; Kruspe, Thomas

    2005-03-01

    Carbonate rocks are well known for their complex petrophysical behavior where, in contrast to siliciclastic rocks, different parameters, including porosity and permeability, usually are not directly related. This behavior is the result of thorough reorganization of porosity during diagenesis, and it turns prediction of reservoir quality of carbonate rocks into a challenge. The study presented here deals with the problem of utilizing NMR techniques in prediction of petrophysical properties in carbonates.

  16. Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide.

    PubMed

    Barber, Patrick S; Griggs, Chris S; Gurau, Gabriela; Liu, Zhen; Li, Shan; Li, Zengxi; Lu, Xingmei; Zhang, Suojiang; Rogers, Robin D

    2013-11-18

    Chemisorption of carbon dioxide by 1-ethyl-3-methylimidazolium acetate ([C2 mim][OAc]) provides a route to coagulate chitin and cellulose from [C2 mim][OAc] solutions without the use of high-boiling antisolvents (e.g., water or ethanol). The use of CO2 chemisorption as an alternative coagulating process has the potential to provide an economical and energy-efficient method for recycling the ionic liquid. PMID:24115399

  17. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open-circuit conditions

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-11-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fast formation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  18. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste

    SciTech Connect

    Goni, S.; Guerrero, A

    2003-01-01

    The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl{sup -} by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO{sub 2} gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl{sup -} analyses in the simulated pore solution.

  19. Prediction of adsorption from multicomponent solutions by activated carbon using single-solute parameters. Part II--Proposed equation.

    PubMed

    Alkhamis, Khouloud A; Wurster, Dale Eric

    2002-01-01

    Prediction of multicomponent adsorption is still one of the most challenging problems in the adsorption field. Many models have been proposed and employed to obtain multicomponent isotherms from single-component equilibrium data. However, most of these models were based on either unrealistic assumptions or on empirical equations with no apparent definition. The purpose of this investigation was to develop a multicomponent adsorption model based on a thermodynamically consistent equation, and to validate that model using experimental data. Three barbiturates--phenobarbital, mephobarbital, and primidone--were combined to form a ternary system. The adsorption of these barbiturates from simulated intestinal fluid (without pancreatin) by activated carbon was studied using the rotating bottle method. The concentrations, both before and after the attainment of equilibrium, were determined with a high-performance liquid chromatography system employing a reversed-phase column. The proposed equation and the competitive Langmuir-like equation were both fit to the data. A very good correlation was obtained between the experimental data and the calculated data using the proposed equation. The results obtained from the original competitive Langmuir-like model were less satisfactory. These results suggest that the proposed equation can successfully predict the trisolute isotherms of the barbituric acid derivatives employed in this study. PMID:12916938

  20. Understanding the Impact of Poly(ethylene oxide) on the Assembly of Lignin in Solution toward Improved Carbon Fiber Production.

    PubMed

    Imel, Adam E; Naskar, Amit K; Dadmun, Mark D

    2016-02-10

    Carbon fiber produced from lignin has recently become an industrial scalable product with applications ranging from thermal insulation to reinforcing automobile bodies. Previous research has shown that mixing 1-2 wt %, of poly(ethylene oxide) (PEO) with the lignin before fiber formation can enhance the properties of the final carbon fibers. The research reported here determines the impact of adding PEO to a lignin solution on its assembly, focusing on the role of the lignin structure on this assembly process. Results indicate the addition of PEO anisotropically directs the self-assembly of the hardwood and softwood lignin by lengthening the cylindrical building blocks that make up the larger global aggregates. On the other hand, results from an annual lignin exhibit a shapeless, more complex structure with a unique dependence on the PEO loading. These results are consistent with improved carbon fibers from solutions of lignin that include PEO, as the local ordering and directed assembly will inhibit the formation of defects during the carbon fiber fabrication process. PMID:26756927

  1. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    PubMed

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. PMID:24656549

  2. Adsorption of the complex ion Au(CN)2- onto sulfur-impregnated activated carbon in aqueous solutions.

    PubMed

    Ramírez-Muñiz, Kardia; Song, Shaoxian; Berber-Mendoza, Selene; Tong, Shitang

    2010-09-15

    The adsorption of the gold-cyanide complex ion (Au(CN)(2)(-)) on sulfur-impregnated activated carbon in aqueous solution has been studied in order to find a better adsorbent for the gold cyanidation process for extracting gold from ores. This study was performed using sulfur-impregnated activated carbon (SIAC 8.0) made from high-sulfur petroleum coke and an artificial aqueous solution of Au(CN)(2)(-). The experimental results have shown that Au(CN)(2)(-) strongly adsorbed onto the SIAC 8.0, leading the gold adsorption capacity of the SIAC 8.0 to be 2.25x that on conventional activated carbon. It has been also found that the adsorption fit the Langmuir isotherm well, and the adsorption density of Au(CN)(2)(-) on the SIAC 8.0 in aqueous solution increased with increasing temperature, suggesting chemical adsorption. The chemical adsorption might be attributed to the formation of S-Au-CN on SIAC 8.0 surfaces through the covalent bond between the gold atom of the ion and the sulfur in the molecular structure of the SIAC 8.0. In addition, the desorption test has demonstrated that the majority of the adsorption was irreversible, which depended on the density of the adsorption sites on the SIAC. PMID:20580375

  3. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics.

    PubMed

    Kilic, Murat; Apaydin-Varol, Esin; Ptn, Ay?e E

    2011-05-15

    This study consists of producing high surface area activated carbon from tobacco residues by chemical activation and its behavior of phenol removal from aqueous solutions. K(2)CO(3) and KOH were used as chemical activation agents and three impregnation ratios (50, 75 and 100 wt.%) were applied on biomass. Maximum BET surface areas of activated carbons were obtained from impregnation with 75 wt.% of K(2)CO(3) and 75 wt.% of KOH as 1635 and 1474 m(2)/g, respectively. Optimum adsorption conditions were determined as a function of pH, adsorbent dosage, initial phenol concentration, contact time and temperature of solution for phenol removal. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ?G, ?H and ?S were calculated for predicting the nature of adsorption. According to the experimental results, activated carbon prepared from tobacco residue seems to be an effective, low-cost and alternative adsorbent precursor for the removal of phenol from aqueous solutions. PMID:21420235

  4. Effects of taste solutions, carbonation, and cold stimulus on the power frequency content of swallowing submental surface electromyography.

    PubMed

    Miura, Yutaka; Morita, Yuji; Koizumi, Hideki; Shingai, Tomio

    2009-05-01

    This study explored the effects of 5 taste solutions (citric acid, sucrose, sodium chloride, caffeine, and sodium glutamate) versus water on the power frequency content of swallowing submental surface electromyography (sEMG). Healthy subjects were presented with 5 ml of each of 5 tastants and water. Data were collected in 3 trials of the 5 tastants and water by using submental sEMG, which was then subjected to spectral analysis. Sour and salt taste solutions increased the spectrum-integrated values of the total power components. The spectrum-integrated values of low-frequency power (below 10 Hz) in the salt taste trial significantly increased, whereas those of high-frequency power (above 10 Hz) in the sour taste trial tended to increase. Neither pleasantness nor intensity of taste was related to these changes. This study also explored the effects of carbonation and cold stimulus on the power frequency content of continuous swallowing sEMG for 60-ml solutions. Carbonation significantly increased the spectrum-integrated value of the total power components by significantly increasing the high-frequency content. Cold stimulus significantly decreased the low-frequency content. In summary, this study reveals that taste, carbonation, and cold stimulus have qualitatively different influences on the power frequency content of swallowing sEMG. PMID:19221127

  5. Comparison of the Laboratory Standard Washing Using CIPAC Washing Agent and the Domestic Washing on Three Recommended Types of Long-Lasting Insecticidal Mosquito Nets

    PubMed Central

    Ouattara, Jean Pierre Nablni; Louwagie, Johanna; Pigeon, Olivier; Spanoghe, Pieter

    2013-01-01

    Background One of the best ways to prevent malaria is the use of insecticide-treated bed nets. Manufacturers pursue easier, safer and more efficient nets. Hence, many studies on the efficacy and wash resistance using World Health Organization standards have been reported. The commonly used detergent is Savon de Marseille, because it closely resembles actually used soaps. At the 54th Collaborative International Pesticides Analytical Council (CIPAC) Technical Meeting in 2010, it was suggested to replace it by a standardized CIPAC washing agent. The aim of this study was to investigate the difference between a laboratory hand washing simulation using the CIPAC washing agent (method-1) and a domestic washing (method-2) on different bed nets, as well as the effect of the drying process on the release of active ingredient. Methods Interceptor, Permanet2.0 and Netprotect nets were used in three treatments, each repeated 20 times. The first treatment included method-1 washing and indoor drying. The second treatment included method-2 washing and indoor drying. The third treatment used method-2 washing and UV-drying. The residual insecticide contents were determined using gas chromatography. Results The washing procedure and the number of washes have a significant effect on the release of active ingredient. Statistically, the two washing methods have the same effect on removing the active ingredient from the Interceptor and Permanet2.0 net, but a significantly different influence on the Netprotect nets. The drying process has no significant effect on the insecticide. Conclusion Both washing procedures affected the amount of insecticide remaining on nets independently of the impregnation technology. The active ingredient decreases with the number of washing cycles following an exponential or logarithmic model for coated nets. The laboratory hand washing simulation had more impact on the decrease of active ingredient content of the Netprotect nets. All net types seemed to be effectively protected against UV-light. PMID:24130671

  6. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) solution (w/v). Forty eviscerated carcasses and 5 ceca were obtained from the processing li...

  7. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  8. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...

  9. SUPERFUND TREATABILITY CLEARINGHOUSE: LABORATORY FEASIBILITY TESTING OF PROTOTYPE SOIL WASHING CONCEPTS

    EPA Science Inventory

    This draft document reports on laboratory testing of several washing solutions to decontaminate soils contaminated vith dioxins. The following extractants were evaluated; surfactant mixtures of 0.5% to 3% Adsee 799 and 0.5* to 3% Hyonic NP90 in distilled water, Freon TF with ...

  10. Effect of washing broiler carcasses in potassium hydroxide and lauric acid on native bacterial flora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to examine the bactericidal effect of potassium hydroxide (KOH) and lauric acid (LA) on the native bacterial flora of broiler carcasses. Carcasses were placed in solutions of 1.0% KOH and 2.0 % LA or in distilled water (control) and washed by shaking for 1 min on a mechani...

  11. Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution.

    PubMed

    Asadullah, Mohammad; Asaduzzaman, Mohammad; Kabir, Mohammad Shajahan; Mostofa, Mohammad Golam; Miyazawa, Tomohisa

    2010-02-15

    Activated carbons have been prepared from jute sticks by chemical activation using ZnCl(2) and physical activation using steam for the removal of Brilliant Green dye from aqueous solution. The activated carbons and charcoal prepared from jute sticks were characterized by evaluating the surface chemistry, structural features and surface morphology. The maximum BET surface area was obtained to be 2304 m(2)/g for chemical activated carbon (ACC) while it is 730 and 80 m(2)/g for steam activated carbon (ACS) and charcoal, respectively. The FT-IR spectra exhibited that the pyrolysis and steam activation of jute sticks resulted in the release of aliphatic and O-containing functional groups by thermal effect. However, the release of functional groups is the effect of chemical reaction in the ZnCl(2) activation process. A honeycomb-type carbon structure in ACC was formed as observed on SEM images. Although charcoal and ACC were prepared at 500 degrees C the ACC exhibited much lower Raman sensitivity due to the formation of condensed aromatic ring systems. Due to high surface area and high porous structure with abundance of functional groups, the ACC adsorbed dye molecules with much higher efficiency than those of ACS and charcoal. PMID:19815339

  12. A simple synthesis method for nano-metal catalyst supported on mesoporous carbon: the solution plasma process.

    PubMed

    Kang, Jun; Li, Oi Lun; Saito, Nagahiro

    2013-08-01

    High-electrocatalytic-activity noble nanoparticles (NPs) supported on carbon nanoballs (CNBs) were synthesized using an innovative plasma-in-liquid method, which is known as solution plasma processing (SPP). This technique uses a one-step method for the synthesis of NPs on carbon materials. CNBs are formed using benzene as a carbon precursor while gold (Au) or platinum (Pt) nanoparticles are generated instantaneously via sputtering from metal electrodes. The synthesized NP/CNBs were annealed at 850 C in order to increase the conductivity of the material. The results of structural characterizations reveal that the Au and Pt NPs are smaller than 10 nm and have a uniform size distribution, and these NPs are successfully loaded onto highly mesoporous CNBs that have an average pore diameter between 13 and 16 nm. In the results from cyclic voltammetry measurements, the Au/CNBs and Pt/CNBs show clear peaks corresponding to the oxidation and reduction features in the catalytic reactions. Apart from noble nanoparticles, SPP can also be used to synthesize various kinds of NPs including bimetallic NPs loaded on spherical carbon supports by changing the working electrodes. The proposed mechanism for the synthesis is discussed in detail. This method shows potential to be a candidate for the next-generation synthesis of NP/carbon in the future. PMID:23783397

  13. The microwave assisted synthesis of 1-alkyl-3-methylimidazolium bromide as potential corrosion inhibitor toward carbon steel in 1 M HCl solution saturated with carbon dioxide

    NASA Astrophysics Data System (ADS)

    Pasasa, Norman Vincent A.; Bundjali, Bunbun; Wahyuningrum, Deana

    2015-09-01

    Injection of corrosion inhibitor into the fluid current of oil and gas pipelines is an effective way to mitigate corrosion rate on the inner-surface parts of pipelines, especially carbon steel pipelines. In this research, two alkylimidazolium ionic liquids, 1-decyl-3-methylimidazolium bromide (IL1) and 1-dodecyl-3-methylimidazolium bromide (IL2) have been synthesized and studied as a potential corrosion inhibitor towards carbon steel in 1 M HCl solution saturated with carbon dioxide. IL1 and IL2 were synthesized using microwave assisted organic synthesis (MAOS) method. Mass Spectrometry analysis of IL1 and IL2 showed molecular mass [M-H+] peak at 223.2166 and 251.2484, respectively. The FTIR,1H-NMR and 13C-NMR spectra confirmed that IL1 and IL2 were successfully synthesized. Corrosion inhibition activity of IL1 and IL2 were determined using weight loss method. The results showed that IL1 and IL2 have the potential as good corrosion inhibitors with corrosion inhibition efficiency of IL1 and IL2 are 96.00% at 100 ppm (343 K) and 95.60% at 50 ppm (343 K), respectively. The increase in the concentration of IL1 and IL2 tends to improve their corrosion inhibition activities. Analysis of the data obtained from the weight loss method shows that the adsorption of IL1 and IL2 on carbon steel is classified into chemisorption which obeys Langmuir's adsorption isotherm.

  14. Ion Enrichment on the Hydrophobic Carbon-based Surface in Aqueous Salt Solutions due to Cation-? Interactions

    PubMed Central

    Shi, Guosheng; Liu, Jian; Wang, Chunlei; Song, Bo; Tu, Yusong; Hu, Jun; Fang, Haiping

    2013-01-01

    By incorporating cation-? interactions to classic all-atoms force fields, we show that there is a clear enrichment of Na+ on a carbon-based ? electron-rich surface in NaCl solutions using molecular dynamics simulations. Interestingly, Cl? is also enriched to some extend on the surface due to the electrostatic interaction between Na+ and Cl?, although the hydrated Cl?-? interaction is weak. The difference of the numbers of Na+ and Cl? accumulated at the interface leads to a significant negatively charged behavior in the solution, especially in nanoscale systems. Moreover, we find that the accumulation of the cations at the interfaces is universal since other cations (Li+, K+, Mg2+, Ca2+, Fe2+, Co2+, Cu2+, Cd2+, Cr2+, and Pb2+) have similar adsorption behaviors. For comparison, as in usual force field without the proper consideration of cation-? interactions, the ions near the surfaces have a similar density of ions in the solution. PMID:24310448

  15. Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures

    SciTech Connect

    Khan, A.R.; Ataullah, R.; Al-Haddad, A.

    1997-10-01

    Aqueous solutions of phenol, p-chlorophenol, and p-nitrophenol have been used to determine the adsorption isotherm for single solute systems on activated carbon at different temperatures. The experimental program has been conducted to investigate the influence of concentration and temperature. All the reported equilibrium isotherm equations have been tried on present and published experimental data. A generalized isotherm equation which was proposed by Khan et al. and tested for bi-solute adsorption data has been modified for single-solute system. The temperature dependency has also been incorporated into a generalized equation. It has been noticed that the Radke and Prausnitz and generalized isotherm equations could represent the entire data with a minimum average percentage error. The influence of different adsorbents, sorbate concentrations, and pH of aqueous solutions has also been discussed in detail. The temperature dependency has been investigated using both the Dubinin-Astakov and the modified generalized equation. The generalized equation describes the experimental and published data adequately and provides a single value of differential molar heat of adsorption, {Delta}H{sub ads}, for a single solute adsorption system. The Dubinin-Astakov isotherm equation has shown an increasing trend of {Delta}H{sub ads} as the loading of adsorbent has increased.

  16. 4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP LOOKING SOUTHWEST. DAM AND SPILLWAY VISIBLE IN BOTTOM OF PHOTO. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  17. 6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND FOR MONITORING MOVEMENT OF DAM AND EARTH. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  18. BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHWEST. - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  19. Modelling the wash from a ship's propeller

    NASA Astrophysics Data System (ADS)

    Brewster, Paul Michael

    The characteristics of the velocity field produced by a ship's propeller were investigated using a commercial Computational Fluid Dynamics (CFD) software package. A CFD model of the propeller wash was developed using a sliding mesh technique to simulate the rotating blades of the propeller. Experimental measurements using Laser Doppler Anemometry and Pitot tube methods were used to validate the computational approach. Measurements and predictions of the axial and radial velocity fields for two propellers operating over a range of speeds were used in the validation. The results from the CFD simulation are in reasonable agreement. However, improvements to the approach used to model the turbulence in the flow may lead to a more accurate simulation. The validated CFD approach is used to investigate the propeller wash where an experimental study has been difficult or impossible to undertake. The velocity field close to the rotating blades was found to exhibit a pulsing behaviour. The characteristics of the pulsing are related to the speed of rotation and the geometrical characteristics of the rotating propeller. The tangential velocity field was found to be more prominent in the wash than the radial component of velocity. However, the axial component of velocity is the largest contributor to the resultant velocity field in the propeller wash. The formation of the tangential velocity field is related to the geometrical characteristics of the rotating blades. The diffusion characteristics of the tangential velocity field appear to be influenced by the behaviour of the axial velocity field. The maximum tangential velocity decays exponentially. The simulation of a full-size propeller was used to verify the scaling approach adopted for previous experimental investigations. The results indicated that scale effects due to viscosity were negligible, and the use of Froudian scaling for the experimental investigations was justified.

  20. Washing of the AN-107 entrained solids

    SciTech Connect

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  1. Performance of high-recovery recycling reverse osmosis with wash water

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.

    1993-01-01

    Inclusion of a recycling loop for partially-desalted water from second-stage reverse-osmosis permeate has been shown useful for achieving high-recovery at moderate applied pressures. This approach has now been applied to simulated wash waters, to obtain data on retention by the membranes of solutes in a mixture comparable to anticipated spacecraft hygiene wastewaters, and to generate an estimate of the maximum concentration that can be expected without causing membrane fouling. A first experiment set provides selectivity information from a single membrane and an Igepon detergent, as a function of final concentration. A reject concentration of 3.1% Total Organic Carbon has been reached, at a pressure of 1.4 Mega Pascals, without membrane fouling. Further experiments have generated selectivity values for the recycle configuration from two washwater simulations, as a function of applied pump pressure. Reverse osmosis removal has also been tested for washwater containing detergent formulated for plant growth compatibility (containing nitrogen, phosphorous and potassium functional groups.)

  2. Thermodynamic Control of the Isotope Composition of Divalent Metal Cations in Aqueous Solutions and in Carbonate Minerals

    NASA Astrophysics Data System (ADS)

    Schott, J.; Mavromatis, V.; Pearce, C. R.; Fujii, T.; Oelkers, E. H.

    2014-12-01

    The very contrasting steric and electronic properties of divalent metals dramatically affect the reactivity and composition of their aqueous species and their partitioning between fluids and minerals. These contrasting properties result also in very distinct kinetic and thermodynamic trends of their isotopic composition in aqueous fluids and carbonate minerals. For example, if alkaline earths in calcite are all enriched in light isotopes, only Mg exhibits a decrease of its isotope fractionation with increasing calcite growth rate. Moreover, the Mg2+ aquo ion is the only alkaline earth ion whose isotopic composition is markedly affected by the presence in solution of inorganic ligands like bicarbonate, carbonate or sulfate. The distinct behavior of Mg stems from the reduced lability of water molecules in its coordination sphere and from the reduction of its aquo ion coordination sphere when it coordinates to HCO3- and CO32-. Ab initio calculations show that the preferred four hydration number of Mg in stable Mg bicarbonate and Mg carbonate monomers results in a strong enrichment in 26Mg of these species compared to Mg(H2O)62+ (i.e. 1000lnβ26/24MgCO3°-1000lnβ26/24Mg2+ = 5.16 ‰; Fujii, personal communication). The analysis of recent experiments on Mg isotope fractionation between carbonate crystals and solution using density functionnal theory estimation of lnβ values from Fujii i) confirm the marked impact of carbonate and bicarbonate ligands on the isotope composition of Mg in calcite and magnesite and ii) allow to reconcile First-principles and experimental estimates of equilibrium Mg isotope fractionation in carbonate crystals. Recent experiments also confirm that the strong affinity of Zn2+ or Cu2+ for RO- ligands results in a marked impact of fluid pH, ΣCO2(aq) and/or carboxylic ligands concentrations on the isotope composition of these metals in carbonate minerals. These observations provide new insights into the parameters controlling the isotope composition of Me2+(aq) as well as new tools to reconstruct paleo-environmental conditions from the isotope composition of Me2+ recorded in carbonate sediments.

  3. Continuous concentration and constant volume washing of tetraphenylborate slurries

    SciTech Connect

    Siler, J.L.

    1999-12-08

    SRTC has completed filtration testing of tetraphenylborate (TPB) slurries with and without sludge. These tests were slightly different from previous SRS tests in that they used continuous mode concentration and constant volume washing evolutions. The extent of TPB recovery during washing was measured. The resulting washed precipitate slurry, with sludge, was stored at ambient temperature and under a nitrogen-inerted atmosphere to study TPB stability. Samples of both unwashed and washed slurries were submitted for rheology measurements.

  4. Bacterial Exchange in Household Washing Machines.

    PubMed

    Callewaert, Chris; Van Nevel, Sam; Kerckhof, Frederiek-Maarten; Granitsiotis, Michael S; Boon, Nico

    2015-01-01

    Household washing machines (WMs) launder soiled clothes and textiles, but do not sterilize them. We investigated the microbial exchange occurring in five household WMs. Samples from a new cotton T-shirt were laundered together with a normal laundry load. Analyses were performed on the influent water and the ingoing cotton samples, as well as the greywater and the washed cotton samples. The number of living bacteria was generally not lower in the WM e?uent water as compared to the influent water. The laundering process caused a microbial exchange of influent water bacteria, skin-, and clothes-related bacteria and biofilm-related bacteria in the WM. A variety of biofilm-producing bacteria were enriched in the e?uent after laundering, although their presence in the cotton sample was low. Nearly all bacterial genera detected on the initial cotton sample were still present in the washed cotton samples. A selection for typical skin- and clothes-related microbial species occurred in the cotton samples after laundering. Accordingly, malodour-causing microbial species might be further distributed to other clothes. The bacteria on the ingoing textiles contributed for a large part to the microbiome found in the textiles after laundering. PMID:26696989

  5. Bacterial Exchange in Household Washing Machines

    PubMed Central

    Callewaert, Chris; Van Nevel, Sam; Kerckhof, Frederiek-Maarten; Granitsiotis, Michael S.; Boon, Nico

    2015-01-01

    Household washing machines (WMs) launder soiled clothes and textiles, but do not sterilize them. We investigated the microbial exchange occurring in five household WMs. Samples from a new cotton T-shirt were laundered together with a normal laundry load. Analyses were performed on the influent water and the ingoing cotton samples, as well as the greywater and the washed cotton samples. The number of living bacteria was generally not lower in the WM effluent water as compared to the influent water. The laundering process caused a microbial exchange of influent water bacteria, skin-, and clothes-related bacteria and biofilm-related bacteria in the WM. A variety of biofilm-producing bacteria were enriched in the effluent after laundering, although their presence in the cotton sample was low. Nearly all bacterial genera detected on the initial cotton sample were still present in the washed cotton samples. A selection for typical skin- and clothes-related microbial species occurred in the cotton samples after laundering. Accordingly, malodour-causing microbial species might be further distributed to other clothes. The bacteria on the ingoing textiles contributed for a large part to the microbiome found in the textiles after laundering. PMID:26696989

  6. Breadboard wash water renovation system. [using ferric chloride and ion exchange resins to remove soap and dissolved salts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A total wash water renovation system concept was developed for removing objectionable materials from spacecraft wash water in order to make the water reusable. The breadboard model system described provides for pretreatment with ferric chloride to remove soap by chemical precipitation, carbon adsorption to remove trace dissolved organics, and ion exchange for removal of dissolved salts. The entire system was put into continuous operation and carefully monitored to assess overall efficiency and equipment maintenance problems that could be expected in actual use. In addition, the capacity of the carbon adsorbers and the ion-exchange resin was calculated and taken into consideration in the final evaluation of the system adequacy. The product water produced was well within the Tentative Wash Water Standards with regard to total organic carbon, conductivity, urea content, sodium chloride content, color, odor, and clarity.

  7. Assessment and optimization of an ultrasound-assisted washing process using organic solvents for polychlorinated biphenyl-contaminated soil.

    PubMed

    Bezama, Alberto; Flores, Alejandra; Araneda, Alberto; Barra, Ricardo; Pereira, Eduardo; Hernndez, Vctor; Moya, Heriberto; Konrad, Odorico; Quiroz, Roberto

    2013-10-01

    The goal of this work was to evaluate a washing process that uses organic solutions for polychlorinated biphenyl (PCB)-contaminated soil, and includes an ultrasound pre-treatment step to reduce operational times and organic solvent losses. In a preliminary trial, the suitability of 10 washing solutions of different polarities were tested, from which three n-hexane-based solutions were selected for further evaluation. A second set of experiments was designed using a three-level Taguchi L27 orthogonal array to model the desorption processes of seven different PCB congeners in terms of the variability of their PCB concentration levels, polarity of the washing solution, sonication time, the ratio washing solution/soil, number of extraction steps and total washing time. Linear models were developed for the desorption processes of all congeners. These models provide a good fit with the results obtained. Moreover, statistically significant outcomes were achieved from the analysis of variance tests carried out. It was determined that sonication time and ratio of washing solution/soil were the most influential process parameters. For this reason they were studied in a third set of experiments, constructed as a full factorial design. The process was eventually optimized, achieving desorption rates of more than 90% for all congeners, thus obtaining concentrations lower than 5 ppb in all cases. The use of an ultrasound-assisted soil washing process for PCB-contaminated soils that uses organic solvents seems therefore to be a viable option, especially with the incorporation of an extra step in the sonication process relating to temperature control, which is intended to prevent the loss of the lighter congeners. PMID:23771880

  8. 30 CFR 1206.457 - Washing allowances-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Coal 1206.457 Washing allowancesgeneral. (a... wash coal, unless the value determined pursuant to 1206.456 of this subpart was based upon like-quality unwashed coal. Under no circumstances will the authorized washing allowance and the...

  9. 30 CFR 1206.458 - Determination of washing allowances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 1206.458 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Coal 1206.458 Determination of washing allowances. (a) Arm's... washing allowance shall be the reasonable actual costs incurred by the lessee for washing the coal...

  10. 30 CFR 1206.258 - Washing allowances-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Coal 1206.258 Washing allowancesgeneral. (a... wash coal, unless the value determined pursuant to 1206.257 of this subpart was based upon like-quality unwashed coal. Under no circumstances will the authorized washing allowance and the...

  11. Application of Chinese Ink Wash Drawing in Product Design

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Huang, Qiming; Qin, Chuan

    Based on the analysis of the art of Chinese Ink Wash Drawing style, then explains the purpose and meaning of the study for product design with Ink Wash Drawing, in the end combined with actual cases, describes the application of product design using Chinese Ink Wash Drawing.

  12. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil. PMID:26527338

  13. Activated carbons from coal/pitch and polyethylene terephthalate blends for the removal of phenols from aqueous solutions

    SciTech Connect

    Ewa Lorenc-Grabowska; Grazyna Gryglewicz; Jacek Machnikowski

    2009-05-15

    Blends of two bituminous coals and a coal-tar pitch (CTP) with polyethylene terephthalate (PET) were evaluated as precursors of activated carbons (ACs). The intensity of the interactions between the raw materials, coal/CTP and PET during copyrolysis was closely observed by means of thermogravimetric analysis. In addition, the homogeneity of the carbon matrix of the chars produced at 800{sup o}C in a horizontal oven was studied by polarized light optical microscopy. Activated carbons were prepared from single components and their blends (1:1 w/w) by subjecting them to carbonization up to 800{sup o}C in a horizontal oven and then activation with steam at 800{sup o}C to 50% burnoff. The porous structure of the ACs was determined by sorption of N{sub 2} at 77 K and of CO{sub 2} at 273 K. The PET-containing blends produced microporous activated carbons with a maximum BET surface area of nearly 1100 m{sup 2} g{sup -1} and a maximum micropore size distribution of 0.6-0.8 nm in the case of the AC from the CTP/PET blend. The addition of PET to a bituminous coal was compared with the preoxidation of coal P in air as a way to reduce thermoplasticity and to promote the development of the porous structure. The modification of bituminous coals by PET appeared to be more effective than conventional coal preoxidation treatment. The resultant ACs were tested by measuring their effectiveness in removing phenols from an aqueous solution. The adsorption of p-chlorophenol (PCP) by the ACs prepared from the PET-containing blends was slightly higher than for the commercial activated carbon. The ability to adsorb PCP was found to be related to the volume of the super-micropores.

  14. Junction-Controlled Elasticity of Single-Walled Carbon Nanotube Dispersions in Acrylic Copolymer Gels and Solutions

    SciTech Connect

    Schoch, Andrew B.; Shull, Kenneth R.; Brinson, L. Catherine

    2008-08-26

    Oscillatory shear rheometry is used to study the mechanical response of single-walled carbon nanotubes dispersed in solutions of acrylic diblock or triblock copolymers in 2-ethyl-1-hexanol. Thermal transitions in the copolymer solutions provide a route for the easy processing of these composite materials, with excellent dispersion of the nanotubes as verified by near-infrared photoluminescence spectroscopy. The nanotube dispersions form elastic networks with properties that are controlled by the junction points between nanotubes, featuring a temperature-dependent elastic response that is controlled by the dynamic properties of the matrix copolymer solution. The data are consistent with the formation of micelle-like aggregates around the nanotubes. At low temperatures the core-forming poly(methyl methacrylate) blocks are glassy, and the overall mechanical response of the composite does not evolve with time. At higher temperatures the enhanced mobility of the core-forming blocks enables the junctions to achieve more intimate nanotube-nanotube contact, and the composite modulus increases with time. These aging effects are observed in both diblock and triblock copolymer solutions but are partially reversed in the triblock solutions by cooling through the gel transition of the triblock copolymer. This result is attributed to the generation of internal stresses during gelation and the ability of these stresses to break or weaken the nanotube junctions.

  15. Generalized linear solvation energy model applied to solute partition coefficients in ionic liquid-supercritical carbon dioxide systems.

    PubMed

    Planeta, Josef; Karsek, Pavel; Hohnov, Barbora; S?avkov, Lenka; Roth, Michal

    2012-08-10

    Biphasic solvent systems composed of an ionic liquid (IL) and supercritical carbon dioxide (scCO(2)) have become frequented in synthesis, extractions and electrochemistry. In the design of related applications, information on interphase partitioning of the target organics is essential, and the infinite-dilution partition coefficients of the organic solutes in IL-scCO(2) systems can conveniently be obtained by supercritical fluid chromatography. The data base of experimental partition coefficients obtained previously in this laboratory has been employed to test a generalized predictive model for the solute partition coefficients. The model is an amended version of that described before by Hiraga et al. (J. Supercrit. Fluids, in press). Because of difficulty of the problem to be modeled, the model involves several different concepts - linear solvation energy relationships, density-dependent solvent power of scCO(2), regular solution theory, and the Flory-Huggins theory of athermal solutions. The model shows a moderate success in correlating the infinite-dilution solute partition coefficients (K-factors) in individual IL-scCO(2) systems at varying temperature and pressure. However, larger K-factor data sets involving multiple IL-scCO(2) systems appear to be beyond reach of the model, especially when the ILs involved pertain to different cation classes. PMID:22552202

  16. Impedance spectroscopy of nonactive metal electrodes at low potentials in propylene carbonate solutions: A comparison to studies of Li electrodes

    SciTech Connect

    Aurbach, D.; Zaban, A. . Dept. of Chemistry)

    1994-07-01

    Surface films formed on nonactive metals (nickel, gold, and silver) in propylene carbonate solutions were investigated using impedance spectroscopy. The salts used included LiClO[sub 4], LiAsF[sub 6], LiBF[sub 4], and LiPF[sub 6], and the impact of their concentration on the properties of the surface films was explored. In addition, the influence of the presence of additives such as O[sub 2], H[sub 2]O, and CO[sub 2] in solutions and the potential of formation on the properties of these surface films was rigorously studied. Using simple methods and simulation programs, it was possible to separate the time constants of the impedance spectra, relate them to different parts of the metal-solution interface, and to calculate the thickness of these surface films from the interfacial capacitances. Following variations of the thickness calculated for the surface films formed in the different systems as a function of applied potential and solution composition, it was possible to study the stability of the surface films, their dissolution rates and the influence of different additives on their stability. For a few systems, ex situ Fourier transform infrared spectroscopy (external reflectance mode) was also applied. The results thus obtained were correlated to previous studies of Li electrodes in the same solutions.

  17. Thin layer of Ni-modified 13X zeolite on glassy carbon support as an electrode material in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mojovi?, Z.; Mentus, S.; Krsti?, I.

    2007-09-01

    A new type of an electrode material, zeolite modified by the incorporation of Ni or NiO clusters into its cavities, was synthesized by multiple impregnation of zeolite 13X with a Ni-acetylacetonate solution followed by solvent evaporation and thermal degradation of the nickel compound. Samples with a Ni/13X mass ratio within the range 0.2-1.0 were synthesized. Modification by both Ni and NiO clusters, depending on whether the atmosphere was reducing (H2) or oxidizing (air), respectively, was used to finish the sample. After modification, the zeolite kept its original crystallographic structure, as proven by X-ray diffractommetry. The dimensions of the incorporated clusters were limited by the diameter of the zeolite cavities (reaching 1.3 nm). This material, homogenized with 10 wt % of nanodispersed carbon, was bonded in the form of a thin layer to a glassy carbon disc by means of Nafion and used as an electrode material in an aqueous 0.1 M NaOH solution. The cyclovoltammograms of this thin-layer electrode resemble those of a smooth nickel electrode in alkaline solutions.

  18. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls.

    PubMed

    Rao, M Madhava; Ramesh, A; Rao, G Purna Chandra; Seshaiah, K

    2006-02-28

    Activated carbon prepared from Ceiba pentandra hulls, an agricultural solid waste by-product, for the removal of copper and cadmium from aqueous solutions has been studied. Parameters such as equilibrium time, effect of pH and adsorbent dose on removal were studied. The adsorbent exhibited good sorption potential for copper and cadmium at pH 6.0. C=O and S=O functional groups present on the carbon surface were the adsorption sites to remove metal ions from solution. The experimental data was analysed by both Freundlich and Langmuir isotherm models. The maximum adsorption capacity of copper and cadmium was calculated from Langmuir isotherm and found to be 20.8 and 19.5 mg/g, respectively. The sorption kinetics of the copper and cadmium have been analysed by Lagergren pseudo-first-order and pseudo-second-order kinetic models. The desorption studies were carried out using dilute hydrochloric acid solution and the effect of HCl concentration on desorption was also studied. Maximum desorption of 90% for copper and 88% for cadmium occurred with 0.2 M HCl. PMID:16191464

  19. Interactions between viruses and goethite during saturated flow: Effects of solution pH, carbonate, and phosphate

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Jin, Yan

    2008-05-01

    Metal oxides have great potential for controlling the fate and transport of viruses in the subsurface and water-treatment systems. The processes, however, are subject to solution chemistry. In this study, a number of column experiments were conducted to examine the effects of solution pH and anions (carbonate and phosphate) on attachment, transport, and inactivation of two bacteriophages (?X174 and MS-2) in goethite-coated sand medium. Removal of both viruses on goethite-coated sand increased as solution pH decreased from 9.3 to 7.5, due mostly to virus inactivation. MS-2, a relatively hydrophobic virus with a lower isoelectric point (3.9), was more sensitive to the change of solution pH than ?X174, a relatively hydrophilic virus with a higher isoelectric point (6.6), in terms of their attachment and inactivation on goethite. About 90% of the MS-2 particles removed by goethite (accounting for 81% of the total input) were inactivated at pH 7.5, whereas all of the removed MS-2 particles (accounting for 10% of the total input) still remained infectious at pH 9.3. In comparison, ~ 74% of the goethite-bound ?X174 particles (accounting for 95% of the total input) lost their infectivity at pH 7.5, in contrast to a complete recovery at pH 9.3 (accounting for 65% of the total input) when the columns were eluted using a beef extract solution (pH 9.5). Presence of phosphate (20 mM H 2PO 4-) in input solution reduced virus attachment and appeared to protect the viruses from being inactivated during transport; this effect was more significant on MS-2 than on ?X174. Specifically, ~ 29% of the ?X174 particles and ~ 49% of MS-2 particles injected into the column were removed during transport. Mass recovery data showed that no ?X174 was inactivated in the presence of phosphate, whereas about 38% of the MS-2 particles attached on goethite lost their infectivity. Conversely, presence of carbonate on goethite increased virus attachment and inactivation due to contribution of additional attachment sites from protonated surface groups of the carbonate ions that were adsorbed on goethite. About 70% of the total input viruses (both ?X174 and MS-2) were removed during transport, of which 35% ?X174 and 85% MS-2 were eventually inactivated.

  20. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    PubMed

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction. PMID:26387324

  1. Corrosion inhibition behavior of propyl phosphonic acid-Zn2+ system for carbon steel in aqueous solution

    NASA Astrophysics Data System (ADS)

    Prabakaran, M.; Venkatesh, M.; Ramesh, S.; Periasamy, V.

    2013-07-01

    The effectiveness of propyl phosphonic acid (PPA) as a corrosion inhibitor in association with a bivalent cation like Zn2+ has been studied. An eco-friendly inhibitor in controlling corrosion of carbon steel in neutral aqueous medium in the absence and presence of Zn2+ has been evaluated by gravimetric method. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous environment. Potentiodynamic polarization studies showed that the inhibitor is a mixed inhibitor. X-ray photoelectron spectroscopic analysis (XPS) of the protective film exhibited the presence of the elements viz., iron, phosphorus, oxygen, carbon and zinc. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of oxides/hydroxides of iron(III), Zn(OH)2 and [Fe(II)/(III)-Zn(II)-PPA] complex. Further, the surface analysis techniques viz., FT-IR, AFM and SEM studies confirm the formation of an adsorbed protective film on the carbon steel surface. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

  2. Two competitive nucleation mechanisms of calcium carbonate biomineralization in response to surface functionality in low calcium ion concentration solution

    PubMed Central

    Deng, Hua; Wang, Shuo; Wang, Xiumei; Du, Chang; Shen, Xingcan; Wang, Yingjun; Cui, Fuzhai

    2015-01-01

    Four self-assembled monolayer surfaces terminated with –COOH, –OH, –NH2 and –CH3 functional groups are used to direct the biomineralization processes of calcium carbonate (CaCO3) in low Ca2+ concentration, and the mechanism of nucleation and initial crystallization within 12 h was further explored. On −COOH surface, nucleation occurs mainly via ion aggregation mechanism while prenucleation ions clusters may be also involved. On −OH and −NH2 surfaces, however, nucleation forms via calcium carbonate clusters, which aggregate in solution and then are adsorbed onto surfaces following with nucleation of amorphous calcium carbonate (ACC). Furthermore, strongly negative-charged −COOH surface facilitates the direct formation of calcites, and the −OH and −NH2 surfaces determine the formation of vaterites with preferred crystalline orientations. Neither ACC nor crystalline CaCO3 is observed on −CH3 surface. Our findings present a valuable model to understand the CaCO3 biomineralization pathway in natural system where functional groups composition plays a determining role during calcium carbonate crystallization. PMID:26814639

  3. Origin of gasoline-range hydrocarbons and their migration by solution in carbon dioxide in Norton basin, Alaska.

    USGS Publications Warehouse

    Kvenvolden, K.A.; Claypool, G.E.

    1980-01-01

    Carbon dioxide from a submarine seep in Norton Sound carries a minor component of gas- and gasoline-range hydrocarbons. The molecular and isotopic compositions of the hydrocarbon gases and the presence of gasoline-range hydrocarbons indicate that these molecules are derived from thermal alteration of marine and/or nonmarine organic matter buried within Norton basin. The gasoline-range hydrocarbon distribution suggests that the hydrocarbon mixture is an immature petroleum-like condensate of lower temperature origin than normal crude oil. The submarine seep provides a natural example in support of a carbon dioxide solution transport mechanism thought to be operative in the migration of hydrocarbons in certain reservoirs.-Authors

  4. Chemical comminution of coal in pressurized binary system of carbon-dioxide and sodium-hydroxide solution

    SciTech Connect

    Mamaghani, A.H.

    1988-01-01

    Chemical comminution of coal involves introduction of reactive chemical agent into a coal seam converting the monolithic coal into a particulate slurry of coal particles. A pressurized binary system of carbon dioxide and sodium hydroxide solution and a pressurized system of carbon dioxide and water were used as the chemical reagents and their comminution ability were studied under different conditions of reactor pressure, reagent concentration, reaction time, and reactor temperature. These variables showed significant effects on the fragmentation rates. It was shown that comminution rates increased with a rise in reactor pressure and temperature. The maximum comminution rates were obtained around 7 molar sodium hydroxide concentration. The activation energy of the chemical comminution was calculated to be around 4650 calories per gram mole. The comminution rates ranged from 0.5 to 355.0 cm{sup 2}/hr-g. The Iowa coal proved to react better with these systems than Ohio coal.

  5. Polymer-sorted (6,5) single-walled carbon nanotubes for solution-processed low-voltage flexible microelectronics

    NASA Astrophysics Data System (ADS)

    Bottacchi, Francesca; Petti, Luisa; Spth, Florian; Namal, Imge; Trster, Gerhard; Hertel, Tobias; Anthopoulos, Thomas D.

    2015-05-01

    We report on low operating voltage transistors based on polymer-sorted semiconducting (6,5) single-walled carbon nanotube (SWNT) networks processed from solution at room temperature. The (6,5) SWNTs were separated from the as-received carbon nanotubes mixture using a polyfluorene-based derivative as the sorting and dispersing polymer agent. As-prepared devices exhibit primarily p-type behavior with channel current on/off ratio >103 and hole mobility ?2 cm2 V-1 s-1. These transistor characteristics enable realization of low-voltage unipolar inverters with wide noise margins and high signal gain (>5). Polymer/(6,5) SWNT transistors were also fabricated on free-standing polyimide foils. The devices exhibit even higher hole mobility (?8 cm2 V-1 s-1) and on/off ratios (>104) while remaining fully functional when bent to a radius of 4 mm.

  6. Face washing promotion for preventing active trachoma

    PubMed Central

    Ejere, Henry OD; Alhassan, Mahmoud B; Rabiu, Mansur

    2015-01-01

    Background Trachoma remains a major cause of avoidable blindness among underprivileged populations in many developing countries. It is estimated that about 146 million people have active trachoma and nearly six million people are blind due to complications associated with repeat infections. Objectives The objective of this review was to assess the effects of face washing promotion for the prevention of active trachoma in endemic communities. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 1), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to January 2015), EMBASE (January 1980 to January 2015), PubMed (January 1948 to January 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to January 2015), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) (accessed 10 January 2014), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 26 January 2015. To identify further relevant trials we checked the reference lists of the included trials. Also, we used the Science Citation Index to search for references to publications that cited the trials included in the review. We contacted investigators and experts in the field to identify additional trials. Selection criteria We included randomized controlled trials (RCTs) or quasi-RCTs that compared face washing with no treatment or face washing combined with antibiotics against antibiotics alone. Trial participants were residents of endemic trachoma communities. Data collection and analysis Two review authors independently extracted data and assessed trial quality. We contacted trial authors for additional information when needed. Two trials met our inclusion criteria; but we did not conduct meta-analysis due to methodological heterogeneity. Main results We included two cluster-RCTs, which provided data from 2447 participants. Both trials were conducted in areas endemic to trachoma: Northern Australia and Tanzania. The follow-up period was three months in one trial and 12 months in the other; both trials had about 90% participant follow-up at final visit. Overall the quality of the evidence is uncertain due to the trials not reporting many design methods and the differences in outcomes reported between trials. Face washing combined with topical tetracycline was compared with topical tetracycline alone in three pairs of villages in one trial. The trial found that face washing combined with topical tetracycline reduced severe active trachoma compared with topical tetracycline alone at 12 months (adjusted odds ratio (OR) 0.62, 95% confidence interval (CI) 0.40 to 0.97); however, the trial did not find any important difference between the intervention and control villages in reducing other types of active trachoma (adjusted OR 0.81, 95% CI 0.42 to 1.59). Intervention villages had a higher prevalence of clean faces than the control villages among children with severe trachoma (adjusted OR 0.35, 95% CI 0.21 to 0.59) and any trachoma (adjusted OR 0.58, 95% CI 0.47 to 0.72) at 12 months follow-up. The second trial compared eye washing to no treatment or to topical tetracycline alone or to a combination of eye washing and tetracycline drops in children with follicular trachoma. At three months, the trial found no evidence of benefit of eye washing alone or in combination with tetracycline eye drops in reducing follicular trachoma amongst children with follicular trachoma (risk ratio (RR) 1.03, 95% CI 0.96 to 1.11; one trial, 1143 participants). Authors conclusions There is evidence from one trial that face washing combined with topical tetracycline may be effective in reducing severe active trachoma and in increasing the prevalence of clean faces at one year follow-up. Current evidence is inconclusive as to the effectiveness of face washing alone or in combination with topical tetracycline in reducing active or severe trachoma. PMID:25697765

  7. Large-area assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors.

    PubMed

    Park, Steve; Pitner, Gregory; Giri, Gaurav; Koo, Ja Hoon; Park, Joonsuk; Kim, Kwanpyo; Wang, Huiliang; Sinclair, Robert; Wong, H-S Philip; Bao, Zhenan

    2015-04-24

    Dense alignment of single-walled carbon nanotubes over a large area is demonstrated using a novel solution-shearing technique. A density of 150-200 single-walled carbon nanotubes per micro-meter is achieved with a current density of 10.08 ?A ?m(-1) at VDS = -1 V. The on-current density is improved by a factor of 45 over that of random-network single-walled carbon nanotubes. PMID:25788393

  8. Temperature effects on the performance of PMAN-derived carbon anodes in 1M LiPF{sub 6}/EC-DMC solution

    SciTech Connect

    Guidotti, R.A.; Johnson, B.J.

    1998-04-01

    The effect of temperature on the reversible and irreversible capacities of disordered carbons derived from polymethacryonitrile (PMAN) and divinylbenzene (DVB) copolymers was studied in 1 M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) (1:1 v/v) solution by galvanostatic cycling. The kinetics of passive film formation were examined by complex-impedance spectroscopy. Temperatures of 5, 21, and 35 C were used in the study.

  9. Fabrication of the supersaturated solid solution of carbon in copper by mechanical alloying

    SciTech Connect

    Liu Xueran; Liu Yongbing; Ran Xu; An Jian; Cao Zhanyi . E-mail: caozy@jlu.edu.cn

    2007-06-15

    Mechanical alloying of powder mixtures of copper and graphite was performed in a high energy ball mill. The as-milled powder was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy, respectively. These investigations indicated that high energy ball milling could largely extend the solid solubility of carbon in copper and the 4 wt.% C was dissolved in Cu. It was ascribed to the decrease of the grain size and the increase of the lattice strain. Nanostructures, amorphous carbon and lamellar graphite were observed in the as-milled powder after milling for 24 h.

  10. Hand washing practices in a college town environment.

    PubMed

    Borchgrevink, Carl P; Cha, JaeMin; Kim, SeungHyun

    2013-04-01

    Many people do not wash their hands when the behavior in which they engage would warrant it. Most research of hand washing practices to date has taken place in high-traffic environments such as airports and public attraction venues. These studies have established a persistent shortcoming and a gender difference in hand washing compliance. Using field observations of 3,749 people in a college town environment, the research described in this article replicates and extends earlier work while identifying potential environmental and demographic predictors of hand washing compliance. Additionally, the authors' research suggests that proper hand washing practices, as recommended by the Centers for Disease Control and Prevention, are not being practiced. Finally, the authors' research raises a question as to the accuracy of earlier measurements of "proper" hand washing practices, suggesting that compliance rates are inflated. The results can help increase hand washing rates for the general public and thus decrease the risk of transmitting disease. PMID:23621052

  11. Fundamental Effects of Aging on Creep Properties of Solution-Treated Low-Carbon N-155 Alloy

    NASA Technical Reports Server (NTRS)

    Frey, D N; Freeman, J W; White, A E

    1950-01-01

    A method is developed whereby the fundamental mechanisms are investigated by which processing, heat treatment, and chemical composition control the properties of alloys at high temperatures. The method used metallographic examination -- both optical and electronic --studies of x-ray diffraction-line widths, intensities, and lattice parameters, and hardness surveys to evaluate fundamental structural conditions. Mechanical properties at high temperatures are then measured and correlated with these measured structural conditions. In accordance with this method, a study was made of the fundamental mechanism by which aging controlled the short-time creep and rupture properties of solution-treated low-carbon n-155 alloy at 1200 degrees F.

  12. Pyridine as a probe molecule for surface enhanced Raman spectroscopy of the silver-modified glassy carbon/solution interface

    NASA Astrophysics Data System (ADS)

    Mayer, Peter; Holze, Rudolf

    2003-01-01

    Pyridine is employed as a probe molecule to study with surface enhanced Raman spectroscopy the interface between an aqueous electrolyte solution and an electrochemically activated glassy carbon surface modified with electrodeposited silver. Results demonstrate the feasibility of this approach. The surface of the silver deposits shows surface enhanced Raman scattering without further activation. Band positions are compared with those obtained with electrochemically roughened solid silver electrodes. Further simple adsorbates (halide or oxoanions) were studied; their behaviour closely resembles previous observations with solid silver electrodes.

  13. Passivity and Pitting Corrosion of X80 Pipeline Steel in Carbonate/Bicarbonate Solution Studied by Electrochemical Measurements

    NASA Astrophysics Data System (ADS)

    Xue, H. B.; Cheng, Y. F.

    2010-12-01

    This work investigated the effects of chloride ions and hydrogen-charging on the passivity and pitting corrosion behavior of X80 pipeline steel in a bicarbonate-carbonate solution by electrochemical and photo-electrochemical techniques. It was found that a stable passivity can be established on the steel in the absence and presence of chloride ions. The hydrogen-charging does not alter the transpassive potential, but increases the passive current density. When chloride ions are contained in the solution, pitting corrosion will be initiated. The pitting potential is independent of the hydrogen-charging. Hydrogen-charging would enhance the anodic dissolution and electrochemical activity of the steel, but does not affect the pitting potential, which indicates that the charged hydrogen is not involved in the pitting initiation. However, hydrogen may accelerate the pit growth. Photo illumination could enhance the activity of the steel electrode, resulting in an increase of photo-induced anodic current density.

  14. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO(2)(2+) from aqueous solution.

    PubMed

    Shao, Dadong; Jiang, Zhongqing; Wang, Xiangke; Li, Jiaxing; Meng, Yuedong

    2009-01-29

    Carboxymethyl cellulose (CMC) is grafted on multiwalled carbon nanotubes (MWCNT) by using plasma techniques. The CMC grafted MWCNT (MWCNT-g-CMC) is characterized by using Fourier transform infrared spectra (FT-IR), Raman spectra, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA)-differential thermal analysis (DTA), scanning electron microscopy (SEM), and N(2)-BET methods in detail. The application of MWCNT-g-CMC in the removal of UO(2)(2+) from aqueous solution is investigated. MWCNT-g-CMC has much higher sorption ability in the removal of UO(2)(2+) than raw MWCNT. The MWCNT-g-CMC is a suitable material in the preconcentration and solidification of heavy metal ions from large volume of aqueous solutions. PMID:19128017

  15. A simple synthesis method for nano-metal catalyst supported on mesoporous carbon: the solution plasma process

    NASA Astrophysics Data System (ADS)

    Kang, Jun; Li, Oi Lun; Saito, Nagahiro

    2013-07-01

    High-electrocatalytic-activity noble nanoparticles (NPs) supported on carbon nanoballs (CNBs) were synthesized using an innovative plasma-in-liquid method, which is known as solution plasma processing (SPP). This technique uses a one-step method for the synthesis of NPs on carbon materials. CNBs are formed using benzene as a carbon precursor while gold (Au) or platinum (Pt) nanoparticles are generated instantaneously via sputtering from metal electrodes. The synthesized NP/CNBs were annealed at 850 C in order to increase the conductivity of the material. The results of structural characterizations reveal that the Au and Pt NPs are smaller than 10 nm and have a uniform size distribution, and these NPs are successfully loaded onto highly mesoporous CNBs that have an average pore diameter between 13 and 16 nm. In the results from cyclic voltammetry measurements, the Au/CNBs and Pt/CNBs show clear peaks corresponding to the oxidation and reduction features in the catalytic reactions. Apart from noble nanoparticles, SPP can also be used to synthesize various kinds of NPs including bimetallic NPs loaded on spherical carbon supports by changing the working electrodes. The proposed mechanism for the synthesis is discussed in detail. This method shows potential to be a candidate for the next-generation synthesis of NP/carbon in the future.High-electrocatalytic-activity noble nanoparticles (NPs) supported on carbon nanoballs (CNBs) were synthesized using an innovative plasma-in-liquid method, which is known as solution plasma processing (SPP). This technique uses a one-step method for the synthesis of NPs on carbon materials. CNBs are formed using benzene as a carbon precursor while gold (Au) or platinum (Pt) nanoparticles are generated instantaneously via sputtering from metal electrodes. The synthesized NP/CNBs were annealed at 850 C in order to increase the conductivity of the material. The results of structural characterizations reveal that the Au and Pt NPs are smaller than 10 nm and have a uniform size distribution, and these NPs are successfully loaded onto highly mesoporous CNBs that have an average pore diameter between 13 and 16 nm. In the results from cyclic voltammetry measurements, the Au/CNBs and Pt/CNBs show clear peaks corresponding to the oxidation and reduction features in the catalytic reactions. Apart from noble nanoparticles, SPP can also be used to synthesize various kinds of NPs including bimetallic NPs loaded on spherical carbon supports by changing the working electrodes. The proposed mechanism for the synthesis is discussed in detail. This method shows potential to be a candidate for the next-generation synthesis of NP/carbon in the future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01229h

  16. TRICHLOROETHYLENE ADSORPTION BY ACTIVATED CARBON PRELOADED WITH HUMIC SUBSTANCES: EFFECTS OF SOLUTION CHEMISTRY. (R828157)

    EPA Science Inventory

    Abstract

    Trichloroethylene (TCE) adsorption by activated carbon previously loaded ("preloaded") with humic substances was found to decrease with increasing concentrations of monovalent ions (NaCl), calcium (until solubility was exceeded), or dissolved oxygen in...

  17. Using semi-analytic solutions to approximate the area of potential impact for carbon dioxide injection

    EPA Science Inventory

    This study examines using the threshold critical pressure increase and the extent of the carbon dioxide (CO2) plume to delineate the area of potential impact (AoPI) for geologic CO2 storage projects. The combined area covering both the CO2 plume and the region where the pressure ...

  18. ANION AND CATION REMOVAL FROM SOLUTION USING ACTIVATED CARBONS FROM MUNICIPAL SLUDGE AND POULTRY MANURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The removal of potentially toxic metal cations and anions from water is essential to providing safe water for consumption and recreation. The objective of this study was to evaluate the ability of activated carbons made from municipal sludge and poultry manure to remove certain metal cations and an...

  19. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  20. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGESBeta

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  1. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Peter Zalupski; Rocklan McDowell; Guy Dutech

    2014-10-01

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  2. An HPLC chromatographic framework to analyze the ?-cyclodextrin/solute complexation mechanism using a carbon nanotube stationary phase.

    PubMed

    Aljhni, Rania; Andre, Claire; Lethier, Lydie; Guillaume, Yves Claude

    2015-11-01

    A carbon nanotube (CNT) stationary phase was used for the first time to study the ?-cyclodextrin (?-CD) solute complexation mechanism using high performance liquid chromatography (HPLC). For this, the ?-CD was added at various concentrations in the mobile phase and the effect of column temperature was studied on both the retention of a series of aniline and benzoic acid derivatives with the CNT stationary phase and their complexation mechanism with ?-CD. A decrease in the solute retention factor was observed for all the studied molecules without change in the retention order. The apparent formation constant KF of the inclusion complex ?-CD/solute was determined at various temperatures. Our results showed that the interaction of ?-CD with both the mobile phase and the stationary phase interfered in the complex formation. The enthalpy and entropy of the complex formation (?HF and ?SF) between the solute molecule and CD were determined using a thermodynamic approach. Negative enthalpies and entropies indicated that the inclusion process of the studied molecule in the CD cavity was enthalpically driven and that the hydrogen bonds between carboxylic or aniline groups and the functional groups on the ?-CD rim play an important role in the complex formation. PMID:26452814

  3. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix. Photoinduced crystallization of CaCO3 from homogenous solution was demonstrated. 2-(3-benzoylphenyl)propionic acid was used as a photoreactive CO2 generator. Partially hydrolyzed poly(vinyl alcohol) worked as a stabilizer in the solution. Complete conversion of Ca2+ to CaCO3 was achieved by UV irradiation for 50 min. Nanometer-to-micron-sized calcites dispersed in the poly(vinyl alcohol) matrix.

  4. Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid.

    PubMed

    Li, Yu-jiao; Hu, Peng-jie; Zhao, Jie; Dong, Chang-xun

    2015-04-01

    Composite washing of cadmium (Cd)- and lead (Pb)-contaminated agricultural soil from Hunan province in China using mixtures of chlorides (FeCl3, CaCl2) and citric acid (CA) was investigated. The concentrations of composite washing agents for metal removal were optimized. Sequential extraction was conducted to study the changes in metal fractions after soil washing. The removal of two metals at optimum concentration was reached. Using FeCl3 mixed with CA, 44% of Cd and 23% of Pb were removed, and 49 and 32% by CaCl2 mixed with CA, respectively. The mechanism of composite washing was postulated. A mixture of chlorides and CA enhanced metal extraction from soil through the formation of metal-chloride and metal-citrate complexes. CA in extract solutions promoted the formation of metal-chloride complexes and reduced the solution pH. Composite washing reduced Cd and Pb in Fe-Mn oxide forms significantly. Chlorides and CA exerted a synergistic effect on metal extraction during composite washing. PMID:25342453

  5. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH){sub 2} solutions

    SciTech Connect

    Zheng, Haibing; Li, Weihua; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 ; Ma, Fubin; Kong, Qinglin

    2014-01-15

    In the present work, the performance of an amino alcohol based surface applied inhibitor was studied by the electrochemical techniques in saturated Ca(OH){sub 2} solutions. The surface morphology of the carbon steel was observed by scanning electron microscope, and the energy diffraction spectrum was also tested. Results showed that the inhibitor used in this work demonstrated obvious inhibition efficiency on the carbon steel in saturated Ca(OH){sub 2} solutions. The inhibition mechanism of the inhibitor lies in the quick adsorption of the active component on carbon steel surface.

  6. Remediation of nitrobenzene contaminated soil by combining surfactant enhanced soil washing and effluent oxidation with persulfate.

    PubMed

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4-, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532

  7. Influence of hydrophobic substance on enhancing washing durability of water soluble flame-retardant coating

    NASA Astrophysics Data System (ADS)

    Jindasuwan, Sunisa; Sukmanee, Nattinee; Supanpong, Chanida; Suwan, Mantana; Nimittrakoolchai, On-uma; Supothina, Sitthisuntorn

    2013-06-01

    Flame-retardant textiles are used in many consumer products. Among halogen-free flame retardant substances, inorganic flame retardants are mainly based on phosphorus, antimony, aluminum and boron-containing compounds. These coatings are soluble in water and therefore are not subjected to washing. In this study, washing durability of the inorganic flame retardant has been improved by incorporation of the hydrophobic substance to the coating. Composition of the coating which is the flame-retardant, monoammonium phosphate (MAP), and the hydrophobic substances, poly(methylhydrogen siloxane) (PMHS) and poly(dimethyl siloxane) (PDMS)), were varied to find the optimum coating solution. The results of SEM and TGA analysis, as well as the burning and washing tests, revealed that the coating solution consisting of MAP:PMHS:PDMS = 5:2:1 wt.% was the optimum condition. It showed the increased residue on the TGA profile compared to the uncoated sample, and self-extinguish after removal of the ignition source. The flame-retardant property can be maintained after washing, making it feasible for variety of applications.

  8. Effect of Washes and Centrifugation on the Efficacy of Lipofilling With or Without Local Anesthetic

    PubMed Central

    Mirbeau, Sophie; Gence, Lydie; Hivernaud, Vincent; Delarue, Pierre; Hulard, Olivier; Festy, Franck; Roche, Regis

    2015-01-01

    Background: Among the different parameters that influence fat graft survival and lipofilling success, the use of local anesthetic and the way to process the fat before injection have often been pointed out. Likewise, we evaluated different techniques for processing adipose tissue before its injection and analyzed the quality of the grafts. Methods: Adipose tissue from the same patient was gently harvested from one side of the abdomen after infiltration of a tumescent solution without lidocaine and from the other side of the abdomen using a tumescent solution containing lidocaine 2%. Harvested tissue was prepared with different protocols, from simple decantation to advanced protocols including single or multiple washes and centrifugations. Each type of processed adipose tissue was then injected subcutaneously into immunodeficient mice. Adipose grafts were collected after 1 month and analyzed by histology with a detailed scoring method. Results: After lidocaine use, decantation protocol led to adipose grafts of poor quality with high resorption rate and oil vacuole formation. Larger grafts were obtained after centrifugation, but centrifugation alone resulted in increased fibrosis and necrosis, with or without the use of lidocaine. Finally, multiple washes and centrifugations greatly improved the quality of the lipografts. Conclusions: Centrifugation alone is not sufficient and must be associated with multiple washes to improve graft quality. This article aims to provide further evidence of lidocaine and washing/centrifugation effects in fat grafting to provide easy tips aimed at ensuring graft efficiency with a long-term clinical outcome. PMID:26495209

  9. Remediation of Nitrobenzene Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Effluent Oxidation with Persulfate

    PubMed Central

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4?, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532

  10. Removal of hexavalent chromium from groundwater by granular activated carbon

    SciTech Connect

    Han, I.; Schlautman, M.A.; Batchelor, B.

    2000-02-01

    Removal of hexavalent chromium, Cr(VI), from an artificial groundwater by two commercially available granular activated carbons (GACs) was investigated in batch and continuous-flow column studies. Experimental parameters examined included solution pH, presence of dissolved oxygen (DO), and GAC pretreatment with reducing agents. As solution pH increased from 4 to 7.5, the amount of Cr(VI) removed by both GACs decreased significantly. Removal of DO from experimental systems enhanced GAC performance, but pretreatment of the GACs with reductants (ferrous iron or dithionite) did not improve Cr(VI) removal. Equilibration with 0.01 M dibasic potassium phosphate [to extract adsorbed Cr(VI)] followed by a wash with 0.02 N sulfuric acid [to remove precipitated-sorbed Cr(III)] proved to be a viable method to regenerate carbons whose Cr(VI) removal capacities were exhausted. Performance of regenerated carbons exceeded that of virgin carbons, primarily because of the favorable adsorption of Cr(VI) at low pH values and the reduction of Cr(VI) to Cr(III) on acidic GAC surfaces. The presence of Cr(III) in acid wash solutions provides direct evidence that Cr(VI) is reduced to Cr(III) in GAC systems under relatively acidic conditions. Granular activated carbon performance during five complete cycles was consistently high, which suggests that such a system will be able to function over many operation cycles without deleterious effects.

  11. Molecular Simulation of the Diffusion of Uranyl Carbonate Species in Aqueous Solution

    SciTech Connect

    Kerisit, Sebastien N.; Liu, Chongxuan

    2010-09-01

    Molecular dynamics simulations of aqueous uranyl carbonate species were carried out with two different potential models to gain molecular-level insight into the hydration properties of these species and evaluate the ability of the two models to reproduce published ab initio and experimental data. The simulation results were used to estimate the self-diffusion coefficients of uranyl carbonate species that often dominate uranyl speciation in groundwater systems. The first potential model was based on a series of shell models developed by Parker and co-workers (including (DE LEEUW and PARKER, 1998; KERISIT and PARKER, 2004; PAVESE et al., 1996). The second potential model was a rigid-ion model based on the flexible SPC water model (TELEMAN et al., 1987), the uranyl model of Guilbaud and Wipff (GUILBAUD and WIPFF, 1996), and the parameters for the carbonate ion given by Greathouse and co-workers (GREATHOUSE and CYGAN, 2005; GREATHOUSE et al., 2002). Analysis of structural (mean interatomic distances and coordination numbers) and dynamical (water residence times in hydration shell and self-diffusion coefficients) properties showed that, overall, the first potential model performed best when compared to published data, although the only major discrepancy with the second model was a misrepresentation of the configuration adopted by the alkaline-earth uranyl carbonate ions. The diffusion coefficients obtained for the alkaline-earth cations and the uranyl ion were compared with three variants of the Stokes-Einstein (SE) equation and it was found that none of the three SE models were able to reproduce both the absolute values and the overall trend determined from the molecular dynamics simulations. However, as would be expected based on the SE equation, a plot of the diffusion coefficients of the uranyl carbonate complexes as a function of the inverse of the equivalent spherical radius showed a general linear dependence with the two models yielding almost identical gradients. The nature of the alkaline-earth cation in the uranyl carbonate complexes was found to have only a small effect on the ions diffusion coefficient.

  12. Axial Dispersion during Hanford Saltcake Washing

    SciTech Connect

    Josephson, Gary B.; Geeting, John GH; Lessor, Delbert L.; Barton, William B.

    2006-08-01

    Clean up of Hanford salt cake wastes begins with dissolution retrieval of the sodium rich salts that make up the dominant majority of mass in the tanks. Water moving through the porous salt cake dissolves the soluble components and also displaces the soluble radionuclides (e.g. 137Cs and 99TcO4- ). The separation that occurs from this displacement, known as Selective dissolution, is an important component in Hanfords pretreatment of low activity wastes for subsequent Supplemental treatment. This paper describes lab scale testing conducted to evaluate Selective dissolution of cesium from non-radioactive Hanford tank 241-S-112 salt cake simulant containing the primary chemicals found the the actual tank. An modified axial dispersion model with increasing axial dispersion was developed to predict cesium removal. The model recognizes that water dissolves the salt cake during washing, which causes an increase in the axial dispersion during the wash. This model was subsequently compared with on-line cesium measurements from the retrieval of tank 241-S-112. The model had remarkably good agreement with both the lab scale and full scale data.

  13. Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution.

    PubMed

    Zhang, Shihan; Lu, Hong; Lu, Yongqi

    2013-12-01

    A novel potassium-carbonate-based absorption process is currently being developed to reduce the energy consumption when capturing CO2 from coal combustion flue gas. The process employs the enzyme carbonic anhydrase (CA) as a catalyst to accelerate the rate of CO2 absorption. This study focused on the immobilization of a new variant of the CA enzyme onto a new group of nonporous nanoparticles to improve the enzyme's thermal stability and its chemical resistance to major impurities from the flue gas. The CA enzyme was manufactured at the pilot scale by a leading enzyme company. As carrier materials, two different batches of SiO2-ZrO2 composite nanoparticles and one batch of silica nanoparticle were synthesized using a flame spray pyrolysis method. Classic Danckwerts absorption theory with reaction was applied to determine the kinetics of the immobilized enzymes for CO2 absorption. The immobilized enzymes retained 56-88% of their original activity in a K2CO3/KHCO3 solution over a 60-day test period at 50 C, compared with a 30% activity retention for their free CA enzyme counterpart. The immobilized CA enzymes also revealed improved chemical stability. The inactivation kinetics of the free and immobilized CA enzymes in the K2CO3/KHCO3 solution were experimentally quantified. PMID:24187930

  14. The Inhibitory Effect of Some Bipyridine Derivatives on the Corrosion Behavior of N80 Carbon Steel in Sulphuric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Okafor, Peter C.; Jiang, Bin; Hu, Hongxiang; Zheng, Yugui

    2015-11-01

    The corrosion inhibition characteristics of 2,2‧-bipyridine (BIPY) and 2,2‧-bipyridine-3,3‧-dicarboxylic acid (BIDA), on carbon steel in sulphuric acid solutions was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques at 20°C, 30°C and 40°C. The results indicate that the organic compounds inhibit the corrosion of mild steel in H2SO4 solutions and the extent of inhibition increases with inhibitor concentration and decreases with temperature. A mixed-inhibition mechanism is proposed for the inhibitive effects of the compounds. The order of inhibition efficiency obtained was BIDA>BIPY. There is a good correlation between the quantum chemical parameters and experimentally determined inhibition efficiency of the inhibitors. The adsorption characteristics of the inhibitor were approximated by Temkin isotherm. Morphological study of the carbon steel electrode surface was undertaken by scanning electron microscope (SEM) and the interfacial species formed on the surface in the presence of inhibitors analyzed by Infrared spectroscopy.

  15. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. 2: Graphite electrodes

    SciTech Connect

    Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski, S.; Carmeli, Y.; Yamin, H.

    1995-09-01

    The electrochemical behavior of Li-graphite intercalation anodes in ethylene and diethyl carbonates (EC-DEC) solutions was studied using surface sensitive Fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy in conjunction with standard electrochemical techniques. Three different solvent combinations, four different salts: LiBF{sub 4}, LiPF{sub 6}, LiClO{sub 4}, and LiAsF{sub 6}, and the influence of the presence of CO{sub 2} were investigated. Graphite electrodes could be cycled hundreds of times obtaining a reasonable reversible capacity. The best electrolyte was found to be LiAsF{sub 6} and the presence of CO{sub 2} in solutions considerably increased the reversible capacity upon cycling. This improved performance is due to precipitation of the ethylene carbonate reduction product, (CH{sub 2}OCO{sub 2}Li){sub 2}, which is an excellent passivating agent, on the electrode surface. Aging processes of these surface films and their influence on the electrode properties are discussed.

  16. Theoretical study of enzymatically catalyzed tautomerization of carbon acids in aqueous solution: quantum calculations and steered molecular dynamics simulations.

    PubMed

    Tolosa, Santiago; Hidalgo, Antonio; Sansn, Jorge A

    2016-02-01

    The thermodynamics and kinetics of enzymatically assisted reactions of carbon acids were studied theoretically in this work. Quantum electronic (QE) structure calculations and steered molecular dynamics (SMD) simulations were carried out. Three 3-butenal tautomerization reactions that proceed from the ?,?-unsaturated reactant (R) to the ?,?-unsaturated carbon acid product (P) and occur in two elementary steps through an intermediate (I) were studied, ignoring or including the surrounding aqueous medium in the calculations. The Gibbs free energies of activation of the R ? I enolization and I ? P ketonization steps were found to decrease considerably when residues simulating enzymes were introduced into these processes. Although the processes became slightly more favorable thermodynamically when the solution was included in the simulations, they became less favorable kinetically. The results from SMD simulations of these reactions were qualitatively consistent with the values we obtained using QE as well as those found by other authors in similar studies. Our simulations also allowed us to perform a detailed study of these reactions in solution. PMID:26815031

  17. Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution.

    PubMed

    Ryoo, Min-Woong; Kim, Jong-Ho; Seo, Gon

    2003-08-15

    Adsorption isotherms of NaCl on activated carbon cloth (ACC) and titania-incorporated activated carbon cloth (Ti-ACC) under an electric field were investigated to deduce the role of titania in capacitive deionization (CDI) of NaCl. Electrosorption of NaCl on the ACC was significantly increased by titania incorporation, whereas its physical adsorption was considerably decreased, resulting in an improved performance of the Ti-ACC as a CDI electrode. Langmuir isotherms based on a localized and fixed amount of adsorption were suitable for the simulation of electrosorption and physical adsorption of ions on the ACC electrodes. The variances of q(m) and b of Langmuir isotherms with electric potential indicate increases in the number of ions per adsorption site and in electrosorption strength of ions by titania incorporation. A cyclic voltammetric study for ion adsorption on ACC electrodes confirms the reversibility between electrosorption and desorption of ions, regardless of titania incorporation. PMID:16256660

  18. Removal of р-nitrophenol from aqueous solution by magnetically modified activated carbon

    NASA Astrophysics Data System (ADS)

    Han, Shuai; Zhao, Feng; Sun, Jian; Wang, Bin; Wei, Rongyan; Yan, Shiqiang

    2013-09-01

    Activated carbon was modified with γ-Fe2O3 nanoparticles, using the chemical co-precipitation technique and the carboxylic acid vapor treatment technique. Two magnetic composites were characterized and compared by Fourier Transform Infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry and nitrogen adsorption-desorption. Then the two materials were used to remove p-nitrophenol in water. The equilibrium data revealed that the Langmuir isotherm was better in fitting the experiment result than the Freundlich isotherm, and the sorption capacity of the nanocomposite made by the chemical co-precipitation technique was higher than that of the other one. We suggest that the chemical co-precipitation technique is a more efficient and practical method to produce magnetically modified activated carbon.

  19. Deposition of diamond and diamond-like carbon nuclei by electrolysis of alcohol solutions

    NASA Astrophysics Data System (ADS)

    Tosin, M. C.; Peterlevitz, A. C.; Surdutovich, G. I.; Baranauskas, V.

    1999-04-01

    We show that nuclei and aggregates of diamond, diamond-like carbon (DLC) and crystalline graphite may be deposited by the electrolysis of heated methanol. The structures were characterized by micro-Raman spectroscopy, optical microscopy and scanning electron microscopy (SEM). It is observed that bubble formation inhibits the film deposition in DLC form on the immersed substrate but enhances the formation of carbon nuclei on the wetted capillary area of the substrate. We observed experimentally an inhomogeneity in the film thickness in the vertical direction and explain this effect by relating it to an inhomogeneous turbulent `boiling layer' present near the cathode. In addition, we observed that the film growth rate on the wetted capillary area is much higher than the average growth rate on the immersed cathode.

  20. Reactivity of Mg-Al hydrotalcites in solid and delaminated forms in ammonium carbonate solutions

    NASA Astrophysics Data System (ADS)

    Stoica, Georgiana; Santiago, Marta; Abell, Snia; Prez-Ramrez, Javier

    2010-10-01

    Treatment of Mg-Al hydrotalcites (LDHs, layered double hydroxides) in aqueous (NH 4) 2CO 3 at 298 K leads to composites of dawsonite, hydrotalcite, and magnesium ammonium carbonate. The mechanism and kinetics of this transformation, ultimately determining the relative amounts of these components in the composite, depend on the treatment time (from 1 h to 9 days), the Mg/Al ratio in the hydrotalcite (2-4), and on the starting layered double hydroxide (solid or delaminated form). The materials at various stages of the treatment were characterized by inductive coupled plasma-optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, thermogravimetry, and nitrogen adsorption at 77 K. The progressive transformation of hydrotalcite towards crystalline dawsonite and magnesium ammonium carbonate phases follows a dissolution-precipitation mechanism. A gradual decrease of the Mg/Al ratio in the resulting solids was observed in time due to magnesium leaching in the reacting medium. Dawsonite-hydrotalcite composite formation is favored at high aluminum contents in the starting hydrotalcite, while the formation of magnesium ammonium carbonate is favored at high Mg/Al ratios. The synthetic strategy comprising hydrotalcite delamination in formamide prior to aqueous (NH 4) 2CO 3 treatment is more reactive towards composite formation than starting from the bulk solid hydrotalcite.