Science.gov

Sample records for carbonate wash solutions

  1. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  2. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  3. Soil washing of fluorine contaminated soil using various washing solutions.

    PubMed

    Moon, Deok Hyun; Jo, Raehyun; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Park, Jeong-Hun

    2015-03-01

    Bench-scale soil washing experiments were conducted to remove fluoride from contaminated soils. Five washing solutions including hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), sulfuric acid (H2SO4) and tartaric acid (C4H6O6) were tested. The concentration of the washing solutions used ranged from 0.1 to 3 M with a liquid to solid ratio of 10. The soil washing results showed that the most effective washing solution for the removal of fluoride from contaminated soils was HCl. The highest fluoride removal results of approximately 97 % from the contaminated soil were obtained using 3 M HCl. The fluoride removal efficiency of the washing solution increases in the following order: C4H6O6 < NaOH < H2SO4 < HNO3 < HCl. PMID:25552323

  4. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution.

    PubMed

    Liu, Xitao; Yu, Gang; Han, Wenya

    2007-08-25

    The treatment of 2,4,5-trichlorobiphenyl (PCB29) in simulated soil-washing solution by granular activated carbon (GAC) adsorption and microwave (MW) regeneration was investigated in this study. The PCB29 adsorption process was carried out in a continuous flow adsorption column. After adsorption, the PCB29-loaded GAC was dried at 103 degrees C, and regenerated in a quartz reactor by 2450MHz MW irradiation at 700W for 5min. The efficacy of this procedure was analyzed by determining the rates and amounts of PCB29 adsorbed in successive adsorption/MW regeneration cycles. Effects of the regeneration on the textural properties and the PCB29 adsorption capacity of GAC were examined. It was found that after several adsorption/MW regeneration cycles, the adsorption rate of GAC increased, whereas, the adsorption capacity decreased, which could be explained according to the change of textural properties. Most of the PCB29 adsorbed on GAC was degraded within 3min under MW irradiation, and the analysis of degradation products by GC-MS demonstrated that PCB29 experienced dechlorination during this treatment. PMID:17368933

  5. 7 CFR 2902.51 - Parts wash solutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Parts wash solutions. 2902.51 Section 2902.51 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... Items § 2902.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts...

  6. 7 CFR 2902.51 - Parts wash solutions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Parts wash solutions. 2902.51 Section 2902.51 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY AND NEW USES... Items § 2902.51 Parts wash solutions. (a) Definition. Products that are designed to clean parts...

  7. [Washing copper (II)-contaminated soil using surfactant solutions].

    PubMed

    Zhao, Bao-wei; Wu, Yong-qi; Ma, Chan-Yuan; Zhu, Rui-jia

    2009-10-15

    The batch equilibrium washing of copper (II) in the soil matrix by anionic surfactant, sodium dodecylbenzyl sulfonate (SDBS), nonionic surfactant, octylphenoxypolyethoxyethanol (TX100), and their mixture (SDBS-TX100), was studied and compared. The influences of surfactant concentrations, washing time, pH values of solutions, ratios of soil to water and inorganic salts on washing efficiency were investigated. It was shown that the washing efficiency differed with the kinds of surfactants. Given the initial surfactant concentrations, the washing of copper (II) by single SDBS was greater than those by single TX100 and the mixed SDBS-TX100. The washing efficiency by 6 000 mg x L(-1) of SDBS was up to 46.3%, which was 5.8, 10.8, 10.8 and 19.3 times as those by SDBS-TX100 (3:1), SDBS-TX100 (1:1), SDBS-TX100 (1:3) and single TX100 respectively. When the ratio of soil to water was 1 to 10 and washing time reached 24 h, the washing efficiency achieved the maximum. pH values of solutions had obvious effect on the washing of copper (II). The washing efficiency of copper decreased sharply with the increase of pH. At the high acidity (pH = 1.50), the washing efficiency of copper (II) was up to 95%. The smaller the ratios of soil to water were, the higher the washing efficiencies would be. The existence of inorganic salts with the certain concentrations, such as Na+, Ca2+ and Mg2+, could not influence the washing capacity of surfactants, but the excessive Mg2+ (more than 500 mg x L(-1)) could resulted in the precipitation of SDBS. The results will make an implication for surfactant-enhanced remediation of soils contaminated with heavy metals. PMID:19968132

  8. Washing of soils spiked with various pollutants by surfactant solutions

    SciTech Connect

    Yang, G.C.C.; Chang, J.H.

    1995-12-31

    In this study, the batch-type of washing with surfactant solutions was employed for the treatment of soils artificially contaminated with various volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals. 15 industrial grade surfactants were tested. Washing was conducing by adding surfactant solution to the soils and mixing for one hour, then centrifuging it and analyzing the supernatant. Deionized water was used for soil washing for comparison. Results indicated that deionized water performed as well as Surfactant No. 1 in washing VOC-contaminated soils. Therefore, it is concluded that the VOCs tested can be easily washed from soils by rain water. In washing PAH-contaminated soils, nonionic surfactants performed better than anionic surfactants in terms of removal efficiency. The amphoteric surfactant performed worst in washing PAH-contaminated soils. Generally, surfactants are useful in removing cadmium from soils, but are not useful for the removal of lead and copper. Amphoteric, anionic, and low pH cationic surfactants were the most effective of those tested. For PAH/heavy metals-contaminated soils, removal efficiencies were lower than that of soils containing a single contaminant.

  9. Fresh produce washing aid, T-128, enhances inactivation of salmonella and pseudomonas biofilms on stainless steel in chlorinated wash solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of chlorine wash solutions, with/without the washing aid, T-128, on inactivation of Salmonella and Pseudomonas populations in biofilms on stainless steel coupons was evaluated under conditions of increasing organic matter loads in the wash water. Biofilms were formed statically on stai...

  10. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.

    PubMed

    Wan, Jinzhong; Chai, Lina; Lu, Xiaohua; Lin, Yusuo; Zhang, Shengtian

    2011-05-15

    The present study investigates the selective adsorption of hexachlorobenzene (HCB) from rhamnolipid solution by a powdered activated carbon (PAC). A combined soil washing-PAC adsorption technique is further evaluated on the removal of HCB from two soils, a spiked kaolin and a contaminated real soil. PAC at a dosage of 10 g L(-1) could achieve a HCB removal of 80-99% with initial HCB and rhamnolipid concentrations of 1 mg L(-1) and 3.3-25 g L(-1), respectively. The corresponding adsorptive loss of rhamnolipid was 8-19%. Successive soil washing-PAC adsorption tests (new soil sample was subjected to washing for each cycle) showed encouraging leaching and adsorption performances for HCB. When 25 g L(-1) rhamnolipid solution was applied, HCB leaching from soils was 55-71% for three cycles of washing, and HCB removal by PAC was nearly 90%. An overall 86% and 88% removal of HCB were obtained for kaolin and real soil, respectively, by using the combined process to wash one soil sample for twice. Our investigation suggests that coupling AC adsorption with biosurfactant-enhanced soil washing is a promising alternative to remove hydrophobic organic compounds from soils. PMID:21397398

  11. Aquifer washing by micellar solutions: 2. DNAPL recovery mechanisms for an optimized alcohol surfactant solvent solution

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Lefebvre, René; Gélinas, Pierre J.

    1998-03-01

    A large sand column experiment is used to illustrate the principles of complex organic contaminants (DNAPL) recovery by a chemical solution containing an alcohol ( n-butanol), a surfactant (Hostapur SAS), and two solvents ( d-limonene and toluene). The washing solution is pushed by viscous polymer solutions to keep the displacement stable. The main NAPL recovery mechanisms identified are: (1) immiscible displacement by oil saturation increase (oil swelling), oil viscosity reduction, interfacial tension lowering, and relative permeability increase; (2) miscible NAPL displacement by solubilization. Most of the NAPL was recovered in a Winsor, type II system ahead of the washing solution. The 0.8 pore volume (PV) of alcohol-surfactant-solvent solution injected recovered more than 89% of the initial residual DNAPL saturation (0.195). Winsor system types were determined by visual observation of phases and confirmed by electrical resistivity measurements of phases and water content measurements in the oleic phase. Viscosity and density lowering of the oleic phase was made using solvents and alcohol transfer from the washing solution. Small sand column tests are performed to check different rinsing strategies used to minimize washing solution residual ingredients which can be trapped in sediments. An alcohol/surfactant rinsing solution without solvent, injected behind the washing solution, minimizes solvent trapping in sediments. More than five pore volumes of polymer solution and water must be injected after the rinsing solution to decrease alcohol and SAS concentrations in sediments to an acceptable level. To obtain reasonable trapped surfactant concentrations in sediments, the displacement front between the rinsing solution and the subsequent the following polymer solution has to be stable.

  12. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. PMID:26086811

  13. Aquifer washing by micellar solutions: 1. Optimization of alcohol-surfactant-solvent solutions

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Gélinas, Pierre J.; Desnoyers, Jacques E.

    1998-03-01

    Phase diagrams were used for the formulation of alcohol-surfactant-solvent and to identify the DNAPL (Dense Non Aqueous Phase Liquid) extraction zones. Four potential extraction zones of Mercier DNAPL, a mixture of heavy aliphatics, aromatics and chlorinated hydrocarbons, were identified but only one microemulsion zone showed satisfactory DNAPL recovery in sand columns. More than 90 sand column experiments were performed and demonstrate that: (1) neither surfactant in water, alcohol-surfactant solutions, nor pure solvent can effectively recover Mercier DNAPL and that only alcohol-surfactant-solvent solutions are efficient; (2) adding salts to alcohol-surfactant or to alcohol-surfactant-solvent solutions does not have a beneficial effect on DNAPL recovery; (3) washing solution formulations are site specific and must be modified if the surface properties of the solids (mineralogy) change locally, or if the interfacial behavior of liquids (type of oil) changes; (4) high solvent concentrations in washing solutions increase DNAPL extraction but also increase their cost and decrease their density dramatically; (5) maximum DNAPL recovery is observed with alcohol-surfactant-solvent formulations which correspond to the maximum solubilization in Zone C of the phase diagram; (6) replacing part of surfactant SAS by the alcohol n-butanol increases washing solution efficiency and decreases the density and the cost of solutions; (7) replacing part of n-butanol by the nonionic surfactant HOES decreases DNAPL recovery and increases the cost of solutions; (8) toluene is a better solvent than D-limonene because it increases DNAPL recovery and decreases the cost of solutions; (9) optimal alcohol-surfactant-solvent solutions contain a mixture of solvents in a mass ratio of toluene to D-limonene of one or two. Injection of 1.5 pore volumes of the optimal washing solution of n-butanol-SAS-toluene- D-limonene in water can recover up to 95% of Mercier DNAPL in sand columns. In the first

  14. Synergetic effect of a novel wash aid, T-128, in improving chlorine efficacy against bacterial pathogens in wash solution containing high organic loads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine is widely used as a sanitizer in commercial fresh-cut wash water for produce processing of bagged leafy greens. However, free chlorine depletion occurs rapidly when high organic content loads are introduced directly into the wash solution as part of the washing operation process. This chl...

  15. Efficacy of wash solutions in recovering Cyclospora cayetanensis, Cryptosporidium parvum, and Toxoplasma gondii from basil.

    PubMed

    Chandra, Venessa; Torres, Maria; Ortega, Ynés R

    2014-08-01

    Parasitic diseases can be acquired by ingestion of contaminated raw or minimally processed fresh produce (herbs and fruits). The sensitivity of methods used to detect parasites on fresh produce depends in part on the efficacy of wash solutions in removing them from suspect samples. In this study, six wash solutions (sterile E-Pure water, 3% levulinic acid-3% sodium dodecyl sulfate, 1 M glycine, 0.1 M phosphate-buffered saline, 0.1% Alconox, and 1% HCl-pepsin) were evaluated for their effectiveness in removing Cyclospora cayetanensis, Cryptosporidium parvum, and Toxoplasma gondii from basil. One hundred or 1,000 oocysts of these parasites were inoculated onto the adaxial surfaces of 25 g of basil leaves, placed in stomacher bags, and stored for 1 h at 21°C or 24 h at 4°C. Leaves were hand washed in each wash solution for 1 min. DNA was extracted from the wash solutions and amplified using PCR for the detection of all parasites. Oocysts inoculated at a concentration of 1,000 oocysts per 25 g of basil were detected in all wash solutions. At an inoculum concentration of 100 oocysts per 25 g, oocysts were detected in 18.5 to 92.6% of the wash solutions. The lowest variability in recovering oocysts from basil inoculated with 100 oocysts was observed in 1% HCl-pepsin wash solution. Oocyst recovery rates were higher at 1 h than at 24 h postinoculation. Unlike most bacteria, parasites cannot be enriched; therefore, an optimal recovery process for oocysts from suspected foods is critical. The observations in this study provide guidance concerning the selection of wash solutions giving the highest retrieval of parasite oocysts. PMID:25198596

  16. Plasma-depleted platelet concentrates prepared with a new washing solution.

    PubMed

    Shimizu, T; Shibata, K; Kora, S

    1993-01-01

    In certain clinical situations, complete removal of the plasma proteins from the platelet concentrates (PCs) is necessary by washing prior to transfusion. A simple electrolyte solution with a pH of 6.5 was developed for washing PCs. The platelet-rich plasma collected with acid-citrate-dextrose solution by apheresis in a 0.6-liter polyolefin bag was centrifuged. After removal of the supernatant plasma from pelleted platelet buttons, 200 ml of a washing solution consisting of 90 mM NaCl, 5 mM KCl, 3 mM MgCl2, 17 mM NaH2PO4, 8 mM Na2HPO4, 23 mM Na acetate, 17 mM Na3 citrate, 23.5 mM glucose, 2 mM adenine, 0.1% dextran, and 28.8 mM maltose (pH 6.5) was added to the pelleted platelet button. Steam sterilization of the solution was carried out under nitrogen to avoid caramelization of glucose. After resuspension of the pelleted platelet button with a washing solution and a second centrifugation, Seto additive solution (Seto sol, pH 7.4) was introduced into the bag to resuspend the platelet buttons for storage for 3 days at 22 degrees C. All of these procedures were completed within 3 h using a sterile docking device. In washed PCs, 99.1% of the plasma was removed and platelet recovery was 96%. The washed PCs were compared for 3 days with plasma-poor PCs consisting of 11% plasma and 89% Seto solution. There were no significant differences in percent hypotonic shock response, aggregation, energy metabolism, and morphology of platelets between the two groups during 3 days, except for significant swelling of 3-day-old platelets in washed PCs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8447117

  17. Effect of Variations of Washing Solution Chemistry on Nanomaterial Physicochemical Changes in the Laundry Cycle.

    PubMed

    Mitrano, Denise M; Arroyo Rojas Dasilva, Yadira; Nowack, Bernd

    2015-08-18

    Engineered nanoparticle (ENP) life cycles are strongly dependent on the life-cycle of the nanoenhanced products in which they are incorporated. An important phase for ENP associated with textiles is washing. Using a set of liquid and powdered commercially available detergents that span a wide range of different chemistries, washing studies were performed with one "standard" nanoparticle suspended in wash solution to systematically investigate (changes to) particle size distribution, dissolution, reprecipitation (i.e., "new" particle formation), and complexation to particulate matter. Au ENPs were used as a "tracer" through the system. TEM and EDX analysis were performed to observe morphological and chemical changes to the particles, and single-particle ICP-MS was used to build a size distribution of particles in solution. Varying the washing solution chemistry was found to dictate the extent and rate of dissolution, particle destruction, surface chemistry change(s), and new particle formation. Detergent chemistry, dominated by oxidizing agents, was a major factor. The detergent form (i.e., powder vs liquid) was the other decisive factor, with powder forms providing available surfaces for precipitation and sorption reactions. Control experiments with AgNO3 indicated metallic Ag particles formed during the washing process from dissolved Ag, implying not all Ag-NPs observed in a textile washing study are indicative of released Ag-ENPs but can also be the result of sequential dissolution/reduction reactions. PMID:26200479

  18. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.

    PubMed

    Pociecha, Maja; Lestan, Domen

    2009-06-15

    The feasibility of a two-phase method for remediation of Cu (364+/-2 mg kg(-1)) contaminated vineyard soil was evaluated. In the first phase we used ethylenediamine tetraacetae (EDTA) for Cu leaching, while in the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of the washing solution for soil rinsing (removal of soil-retained, chelant-mobilized Cu complexes) in a closed loop. In the EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (40 mA cm(-2)). The released Cu was removed from the solution mostly as an electro-deposit on the cathode. Two consecutive additions of 10 mmol kg(-1) EDTA removed 26% of Cu from the soil, mostly from carbonate and oxide soil fractions (58% and 40% Cu reduction). The soil Cu oral availability (in vitro Physiologically Based Extraction Test) was reduced after remediation by 42% and 51% in the simulated stomach and intestinal phases. The discharge solution was clear, almost colorless, with pH 8.4 and 0.5 mg L(-1) Cu and 0.07 mM EDTA. The novel method enables soil Cu availability stripping using small volumes of process waters, and no wastewater generation or other emissions into the environment. PMID:19022571

  19. Washing of Petroleum and Arsenic Contaminated Soil with Ultrasound and Alkali Phosphate Solution

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hwa; Kim, Jae Gon; Cho, Yong-chan; Chon, Chul-Min; Nam, In-Hyun; Keum, Mi Jung

    2015-04-01

    Soil washing of fine textured soil has been a challenging remedial strategy due to its low remediation efficiency. We adapted ultrasound and dispersion solution to increase the remediation efficiency of the soil washing. The ultrasound and dispersion agent may enhance the dispersion of the aggregate into individual particles and may enhance release of contaminants from the aggregate. We collected the arsenic (As) contaminated silt loam soil from a smelting site, spiked with 1% of diesel and incubated for 6 months. We tested the dispersion rate and the release of diesel with the incubated soil at various pH and concentrations of orthophosphate, pyrophosphate and hexametaphosphate with or without the ultrasound of 28 kHz and 400 W. The As concentrations of coarse (> medium silt) and fine (washing. The dispersion rate and diesel release increased with increasing phosphate concentration and pH of the solution. The application of ultrasound sharply increased the dispersion rate and diesel release comparing with no ultrasound. The optimum condition of the soil washing was turned out to be pH 11_10 mM Na-hexametaphosphate with the ultrasound. The concentration of total petroleum hydrocarbon of the incubated soil reduced from 3101.3 mg kg-1 to 14.0 mg kg-1 after 10 minute washing at the optimum condition. The fine fraction had much higher As concentration than the coarse fraction: 44.4 mg kg-1 for the fine fraction and 14.4 mg kg-1 for the coarse fraction. The results of this study indicate that the ultrasound and alkali phosphate solution increase the soil washing efficiency and can be a promising technology for the remediation of fine textured contaminated soils. Key Words : Ultrasound, Phosphate solution, Soil washing, Mixed contaminants

  20. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    PubMed

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. PMID:25482580

  1. Wash Solution Bath Life Extension for the Space Shuttle Rocket Motor Aqueous Cleaning System

    NASA Technical Reports Server (NTRS)

    Saunders, Chad; Evans, Kurt; Sagers, Neil

    1999-01-01

    A spray-in-air aqueous cleaning system, which replaced 1,1,1 trichloroethane (TCA) vapor degreasing, is used for critical cleaning of Space Shuttle Redesigned Solid Rocket Motor (RSRM) metal parts. Small-scale testing demonstrated that the alkaline-based wash solution possesses adequate soil loading and cleaning properties. However, full-scale testing exhibited unexpected depletion of some primary components of the wash solution. Specifically, there was a significant decrease in the concentration of sodium metasilicate which forced change-out of the wash solution after eight days. Extension of wash solution bath life was necessary to ease the burden of frequent change-out on manufacturing. A laboratory study supports a depletion mechanism that is initiated by the hydrolysis of sodium tripolyphosphate (STPP) lowering the pH of the solution. The decrease in pH causes polymerization and subsequent precipitation of sodium metasilicate (SM). Further investigation showed that maintaining the pH was the key to preventing the precipitation of the sodium metasilicate. Implementation to the full scale operation demonstrated that periodic additions of potassium hydroxide (KOH) extended the useful bath life to more than four months.

  2. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    NASA Astrophysics Data System (ADS)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally

  3. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins.

    PubMed

    Du, Ziwen; Deng, Shubo; Chen, Youguang; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang

    2015-04-01

    Perfluorooctanesulfonyl fluoride (PFOSF) washing wastewater contains high concentrations of perfluorinated carboxylates (PFCAs) including perfluorohexanoate (PFHxA, 0.10 mmol/L), perfluoroheptanoate (PFHpA, 0.11 mmol/L), and perfluorooctanoate (PFOA, 0.29 mmol/L). For the first time, we investigated the removal of these PFCAs from actual wastewater using the bamboo-derived activated carbon (BAC) and resin IRA67. Adsorption kinetics, effects of adsorbent dose, solution pH, and inorganic ions, as well as regeneration and reuse experiments were studied. The removal percents of three PFCAs by BAC and IRA67 followed the increasing order of PFHxA < PFHpA < PFOA, but the adsorption equilibrium time conformed to the reverse trend. PFCAs removal on IRA67 decreased with increasing pH, but BAC almost kept stable PFCAs removal at pH above 5.0. Among competitive adsorption of three PFCAs, PFOA was preferentially adsorbed on both BAC and IRA67. PFCAs removal from actual wastewater by BAC was higher than that in simulated solution, due to the presence of high concentration of inorganic ions in the wastewater. However, the co-existing organic compounds in wastewater significantly suppressed the adsorption of PFCAs. Both spent BAC and IRA67 were successfully regenerated by ethanol solution or NaCl/methanol mixture, and IRA67 showed the stable removal of PFCAs in five adsorption cycles. PMID:25585266

  4. Electrochemical treatment of spent solution after EDTA-based soil washing.

    PubMed

    Voglar, David; Lestan, Domen

    2012-04-15

    The use of EDTA in soil washing technologies to remediate soils contaminated with toxic metals is prohibitive because of the large volumes of waste washing solution generated, which must be treated before disposal. Degradation of EDTA in the waste solution and the removal of Pb, Zn and Cd were investigated using electrochemical advanced oxidation processes (EAOP) with a boron-doped diamond anode (BDDA), graphite and iron anodes and a stainless-steel cathode. In addition to EAOP, the efficiency of electro-Fenton reactions, induced by the addition of H(2)O(2) and the regulation of electrochemical systems to pH 3, was also investigated. Soil extraction with 15 mmol kg(-1) of soil EDTA yielded waste washing solution with 566 ± 1, 152 ± 1 and 5.5 ± 0.1 mg L(-1) of Pb, Zn and Cd, respectively. Treatments of the waste solution in pH unregulated electrochemical systems with a BDDA and graphite anode (current density 67 mA cm(-2)) were the most efficient and removed up to 98 ± 1, 96 ± 1, 99 ± 1% of Pb, Zn and Cd, respectively, by electrodeposition on the cathode and oxidatively degraded up to 99 ± 1% of chelant. In the electrochemical system with an Fe anode operated at pH 3, the chelant remained preserved in the treated solution, while metals were removed by electrodeposition. This separation opens up the possibility of a new EDTA recycling method from waste soil washing solution. PMID:22305659

  5. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  6. Changes in the bacterial flora of skin of processed broiler chickens washed in solutions of salicylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in the number of bacteria recovered from the skin of processed broilers after each of five consecutive washings in salicylic acid (SA) solutions was examined. Skin samples from commercially processed broiler carcasses were divided into 3 groups and washed in distilled water (control), 10% S...

  7. Surgical scrubbing: can we clean up our carbon footprints by washing our hands?

    PubMed

    Somner, J E A; Stone, N; Koukkoulli, A; Scott, K M; Field, A R; Zygmunt, J

    2008-11-01

    A growing scientific consensus states that the global climate is changing and that human activity is responsible for these changes. It folLows that each of us has a responsibility to look at how our own lives impact on the environment. This study aimed to investigate water use during surgical scrubbing. Two water delivery systems were assessed to see whether technological innovation can promote more 'environmentally friendly' scrubbing behaviour. At least 10 different individuals, comprising surgeons, assistants and scrub nurses, were observed at two sites. Twenty-five separate surgical scrubs were observed in each location and the length of time for which the tap was on recorded. The tap was on during surgical scrubbing for a mean of 2 min 23 s at Gartnavel General Hospital (maximum: 4 min 37 s; minimum: 49 s; SD: 55 s) and for a mean of 1 min 7 s at Stobhill Hospital (maximum: 2 min 25 s; minimum: 19 s; SD: 33 s). The mean 'tap on' time (in seconds) at Gartnavel was significantly greater than that at Stobhill [t(39.5)=P<0.001]. A different tap design resulted in a net saving of 5.7 L of hot water, approximately 600 kJ of energy and 80 g of carbon dioxide emitted per surgical scrub. Surgical scrubbing is a ubiquitous procedure performed daily in healthcare settings. A simple technological solution can reduce water and energy use by modifying hand-washing behaviour and thereby reduce the carbon footprint of surgical scrubbing. PMID:18701193

  8. Effect of alfalfa seed washing on the organic carbon concentration in chlorinated and ozonated water.

    PubMed

    Rajkowski, Kathleen T; Rice, Eugene W

    2004-04-01

    The bioassays assimilable organic carbon (AOC) and coliform growth response are better indexes than biological oxygen demand to determine water quality and water's ability to support the growth of bacteria. Ozonated (5 mg/liter) and chlorinated tap water were used to wash alfalfa seeds for 30 min. After washing in the ozonated tap water, the AOC concentration increased 25-fold, whereas the dissolved ozone decreased to undetectable levels. The AOC levels for the chlorinated water after washing the seeds also increased. These increases are due to ozone's strong oxidizing ability to break down refractory, large-molecular-weight compounds, forming smaller ones, which are readily used as nutrient sources for microorganisms. This same phenomenon was observed when using ozone in the treatment of drinking water. The AOC value increased from 1,176 to 1,758 micrograms C-eq/liter after the reconditioned wastewater was ozonated. When the ozonated wastewater was inoculated with Salmonella serotypes, the cells survived and increased generation times were observed. The increased nutrients would now become more readily available to any pathogenic microorganisms located on alfalfa seed surface as seen with the increase in the inoculated levels of Salmonella in the ozonated wastewater. If the washing process using ozonated water is not followed by the recommended hypochlorite treatment or continually purged with ozone, pathogen growth is still possible. PMID:15083737

  9. Effect of number and washing solutions on functional properties of surimi-like material from duck meat.

    PubMed

    Ramadhan, Kurnia; Huda, Nurul; Ahmad, Ruzita

    2014-02-01

    Duck meat is less utilized than other meats in processed products because of limitations of its functional properties, including lower water holding capacity, emulsion stability, and higher cooking loss compared with chicken meat. These limitations could be improved using surimi technology, which consists of washing and concentrating myofibrillar protein. In this study, surimi-like materials were made from duck meat using two or three washings with different solutions (tap water, sodium chloride, sodium bicarbonate, and sodium phosphate buffer). Better improvement of the meat's functional properties was obtained with three washings versus two washings. Washing with tap water achieved the highest gel strength; moderate elevation of water holding capacity, pH, lightness, and whiteness; and left a small amount of fat. Washing with sodium bicarbonate solution generated the highest water holding capacity and pH and high lightness and whiteness values, but it resulted in the lowest gel strength. Processing duck meat into surimi-like material improves its functional properties, thereby making it possible to use duck meat in processed products. PMID:24493882

  10. Physicochemical and microbial quality of stored green slender pepper treated with different washing solutions and packaging films.

    PubMed

    Chandra, Dulal; Kim, Ji Gang; Kim, Yong Phil

    2014-03-01

    The effects of different washing solutions and packaging films on textural, biochemical and microbial quality of green slender peppers (Capsicum annuum L.) were evaluated. Fresh pepper samples were packaged either in 35 µm polypropylene or polyethylene bag without washing or after washing in tap water (TW), 100-ppm chlorine solution, 0.5% calcinated calcium solution followed by 25% ethanol rinsing (CC+E) and 1% citric acid solution followed by 50% ethanol spray (CA+E) and then stored at 10  for 4 weeks. Significant differences were found in gas composition between the two packaging films. Changes in skin puncture force, hue angle, soluble solid content, titratable acidity and pH were statistically insignificant. Chlorophyll a, chlorophyll b and total chlorophyll content declined significantly (P < 0.05) in all treatments during storage. Significant reduction (P < 0.05) in aerobic plate count was found in all washing treatments compared to unwashed sample except in TW. Yeast and mold count of chlorine and CC+E-treated samples were lower than other treatments. Samples of these two treatments also received marketable limit of visual quality scores until 4 weeks of storage in polypropylene film. Results suggest that CC+E could be a potential sanitizer and alternative to chlorine washing and polypropylene film would provide a little better advantage than polyethylene for green slender pepper. PMID:23733826

  11. Nasal Wash Treatment

    MedlinePlus

    ... Make the nasal wash solution. Do not use tap water for the nasal wash (unless boiled or filtered ... water. You may use: Distilled water Sterilized water Tap water that has been boiled for 1 minute (at ...

  12. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review.

    PubMed

    Trellu, Clément; Mousset, Emmanuel; Pechaud, Yoan; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The release of hydrophobic organoxenobiotics such as polycyclic aromatic hydrocarbons, petroleum hydrocarbons or polychlorobiphenyls results in long-term contamination of soils and groundwaters. This constitutes a common concern as these compounds have high potential toxicological impact. Therefore, the development of cost-effective processes with high pollutant removal efficiency is a major challenge for researchers and soil remediation companies. Soil washing (SW) and soil flushing (SF) processes enhanced by the use of extracting agents (surfactants, biosurfactants, cyclodextrins etc.) are conceivable and efficient approaches. However, this generates high strength effluents containing large amount of extracting agent. For the treatment of these SW/SF solutions, the goal is to remove target pollutants and to recover extracting agents for further SW/SF steps. Heterogeneous photocatalysis, technologies based on Fenton reaction chemistry (including homogeneous photocatalysis such as photo-Fenton), ozonation, electrochemical processes and biological treatments have been investigated. Main advantages and drawbacks as well as target pollutant removal mechanisms are reviewed and compared. Promising integrated treatments, particularly the use of a selective adsorption step of target pollutants and the combination of advanced oxidation processes with biological treatments, are also discussed. PMID:26707974

  13. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges. PMID:26313128

  14. Effects of washing produce contaminated with the snail and slug hosts of Angiostrongylus cantonensis with three common household solutions.

    PubMed

    Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H

    2013-06-01

    The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

  15. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...

  16. Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes, Phase 2

    SciTech Connect

    Withers, C.; Kono, J.

    2015-04-01

    This report provides results from a second-phase research study of a phenomenon generally referred to as wind washing. Wind washing is the movement of unconditioned air around or through building thermal barriers in such a way as to diminish or nullify the intended thermal performance. In some cases, thermal and air barriers are installed very poorly or not at all, and air can readily move from unconditioned attic spaces into quasi-conditioned interstitial spaces. This study focused on the impact of poorly sealed and insulated floor cavities adjacent to attic spaces in Florida homes. In these cases, unconditioned attic air can be transferred into floor cavities through pathways driven by natural factors such as wind, or by thermal differences between the floor cavity and the attic. Air can also be driven into a floor cavity through mechanical forces imposed by return duct leakage in the floor cavity.

  17. Technology Solutions Case Study: Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes: Phase 2, Southeastern United States

    SciTech Connect

    2015-05-01

    In many two-story homes, there are attic spaces above the first-floor of the home that border portions of the second-story conditioned space. These spaces have breaches of the air and thermal boundaries, creating a phenomenon known as wind washing. This can cause attic air above the first-floor space to be driven into the cavity between the first and second floors by wind, thermal buoyancy forces, or mechanical driving forces as well as circulation of hot attic air against the wallboard because of gaps between insulation batts installed on knee walls and the gypsum wallboard. In this project, the U.S. Department of Energy team Building America Partnership for Improved Residential Construction (BA-PIRC) investigated wind washing in 56 homes. The goals were to identify the failure mechanisms that lead to wind washing, characterize the pathways for air and heat to enter the house, and evaluate the seasonal energy savings and peak demand reduction that can result from repairing these wind washing problems. Based on this research, the team developed recommendations for cost-effective retrofit solutions and information that can help avoid these problems in new construction.

  18. Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes, Phase 2

    SciTech Connect

    Withers, Charles R.; Kono, Jamie

    2015-04-13

    With U.S. Department of Energy goals of reducing existing home energy use by 30% and new home energy use by 50%, it is imperative to focus on several energy efficiency measures, including the quality of air and thermal barriers. This report provides results from a second-phase research study of a phenomenon generally referred to as wind washing. Wind washing is the movement of unconditioned air around or through building thermal barriers in such a way as to diminish or nullify the intended thermal performance. In some cases, thermal and air barriers are installed very poorly or not at all, and air can readily move from unconditioned attic spaces into quasi-conditioned interstitial spaces. This study focused on the impact of poorly sealed and insulated floor cavities adjacent to attic spaces in Florida homes. In these cases, unconditioned attic air can be transferred into floor cavities through pathways driven by natural factors such as wind, or by thermal differences between the floor cavity and the attic. Air can also be driven into a floor cavity through mechanical forces imposed by return duct leakage in the floor cavity.

  19. Fresh produce washing aid, T-128, enhances inactivation of Salmonella and pseudomonas biofilms on stainless steel coupons in chlorinated wash solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Bacterial biofilms on food processing equipment can protect pathogens against sanitizers. When chlorine is rapidly depleted by organic materials present in process wash water, inactivation of biofilm pathogens is further challenging. Purpose: This study was conducted to evaluate the e...

  20. Shift in aggregation, ROS generation, antioxidative defense, lysozyme and acetylcholinesterase activities in the cells of an Indian freshwater sponge exposed to washing soda (sodium carbonate).

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2016-09-01

    Washing soda, chemically identified as anhydrous sodium carbonate, is a popular cleaning agent among the rural and urban populations of India which often contaminates the freshwater ponds and lakes, the natural habitat of sponge Eunapius carteri. Present investigation deals with estimation of cellular aggregation, generation of ROS and activities of antioxidant enzymes, lysozyme and acetylcholinesterase in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Prolonged treatment of washing soda inhibited the degree of cellular aggregation. Experimental exposure of 8 and 16mg/l of sodium carbonate for 48h elevated the physiological level of reactive oxygen species (ROS) generation in the agranulocytes, semigranulocytes and granulocytes of E. carteri, whereas, treatment of 192h inhibited the ROS generation in three cellular morphotypes. Activities of superoxide dismutase, catalase and glutathione-S-transferase were recorded to be inhibited under prolonged exposure of washing soda. Washing soda mediated inhibition of ROS generation and depletion in the activities of antioxidant enzymes were indicative to an undesirable shift in cytotoxic status and antioxidative defense in E. carteri. Inhibition in the activity of lysozyme under the treatment of sodium carbonate was suggestive to a severe impairment of the innate immunological efficiency of E. carteri distributed in the washing soda contaminated habitat. Washing soda mediated inhibition in the activity of acetylcholinesterase indicated its neurotoxicity in E. carteri. Washing soda, a reported environmental contaminant, affected adversely the immunophysiological status of E. carteri with reference to cellular aggregation, oxidative stress, antioxidative defense, lysozyme and acetylcholinesterase activity. PMID:27178357

  1. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    PubMed

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  2. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    PubMed Central

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  3. SOIL WASHING TREATMENT

    EPA Science Inventory

    Soil washing is a water-based process for mechanically scrubbing soils ex-situ to remove undesirable contaminants. he process removes contaminants from soils in one of two ways: by dissolving or suspending them in the wash solution (which is later treated by conventional wastewat...

  4. Natural laccase mediators separated from water-washed solution of steam exploded corn straw by nanofiltration and organic solvent fractionation.

    PubMed

    Qiu, Weihua; Zhang, Wenyan; Chen, Hongzhang

    2014-03-01

    Artificially synthetic mediators of laccase had the limitation of high cost and possible toxicity. The separation of natural laccase mediators from water-washed solution (WWS) of steam exploded corn straw (SECS) was studied using nano-filtration and successive organic solvents extraction. Results indicated that the UV absorption intensity of nano-filtrated WWS was significantly enhanced. The UV absorption intensity of each extractive from WWS could be ranked as ether extractive (EE)>ethyl acetate extractive (EAE)>chloroform extractive (CE). Decoloration of crystal violet catalyzed by laccase/EE was higher than that by laccase/ABTS, which was 66.95% and 61.9% at 8h, respectively. All the decoloration rates of malachite green at 60min using EE, EAE and ABTS as mediator were both more than 80%. This research would benefit for broaden the source of laccase mediator and reduce the using cost of laccase/mediator system. PMID:24513027

  5. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of lauric acid (LA)-potassium hydroxide (KOH) solutions to reduce carcass bacterial contamination was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Campylobacter coli. In one trial, in...

  6. Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction.

    PubMed

    Woo, Heesoo; Park, Junboum; Lee, Seockheon; Lee, Seunghak

    2014-02-01

    Washing and drying processes are essential when synthesizing nano-scale zero valent irons (nZVIs) by borohydride reduction of iron salts in aqueous phase. However, effects of these processes on nZVI reactivity have not been investigated in detail, although different washing and drying conditions might alter surface characteristics of nZVIs and thus vary their reactivity towards reducible contaminants. In this study, effects of three washing solutions and drying conditions on the reactivity of nZVIs for nitrate were investigated. Washing with volatile solvents and drying under anaerobic condition decreased thickness of Fe-oxide layer on nZVIs and increased content of Fe(2+)-containing oxides in the layer, which enhanced nZVI reactivity toward nitrate. Volatile solvent washing could minimize the decrease in nZVI reactivity according to changing anaerobic drying condition to aerobic. Findings from this study suggest that application of washing with volatile solvents and drying under aerobic condition should be recommended as effective processes to obtain nZVIs with maximum reactivity at reasonable costs and efforts. PMID:24290304

  7. Washing of gloved hands in antiseptic solution prior to central venous line insertion reduces contamination.

    PubMed

    Kocent, H; Corke, C; Alajeel, A; Graves, S

    2002-06-01

    Glove contamination at the time a central venous catheter is handled is highly undesirable and likely to increase the risk of subsequent line infection. This study was designed to determine how frequently gloves become contaminated during central venous line insertion and to demonstrate the value of glove decontamination immediately prior to handling of the central venous catheter During twenty routine internal jugular catheter insertions the sterility of the operator's gloved fingertips (just prior to handling the intravenous catheter) was assessed by touching the fingertips onto blood agar plates. The gloved hands were then rinsed in chlorhexidine/alcohol and after drying were placed onto a further plate. Contamination was detected in 55% of the prewash plates but in none of the postwash plates. Procedures performed by less experienced resident staff had a higher contamination rate despite there being no evident breach of sterile technique. It is likely that glove contamination results from the persistance of bacteria within the deeper layers of the skin, despite surface disinfection. These bacteria may be released by manipulation of the skin when identifying landmarks. This hypothesis was supported by a subsequent observation that gloves were more highly contaminated after firm touching of the skin rather than light touching. Glove contamination during central line insertion is frequent. Catheter contamination rates could be reduced (without risk or additional cost) by rinsing gloved hands in a solution of chlorhexidine (0.5%) in alcohol (70%) prior to handling the catheter. PMID:12075642

  8. Modeling of the effect of washing solution flow conditions on Escherichia coli O157:H7 population reduction on fruit surfaces.

    PubMed

    Wang, Hua; Liang, Wei; Feng, Hao; Luo, Yaguang

    2007-11-01

    Washing produce with sanitizing solutions is an important step in reducing microbial populations during postharvest handling. Little information exists regarding the effects of washing solution flow conditions on the efficacy of pathogen reduction during washing. This study was undertaken to investigate the effects of washing conditions such as flow velocity, agitation rate, and contact time on the reduction of Escherichia coli O157:H7 populations from the surfaces of cantaloupe rind and cut apples. Top surfaces of cylindrical samples were spot inoculated with E. coli O157:H7 and treated with peroxyacetic acid (POAA; 80 mg/liter) solution under different flow velocities and agitation rates and with different washing modes. Test results indicate that the reduction rate of E. coli O157:H7 increased with the increase in flow velocity and agitation rate under the testing conditions. In a 3-min treatment in the flow-through chamber, the E. coli O157:H7 count reduction on cantaloupe rind and cup apples reached 2.5 and 2.3 log CFU/cm2, respectively, when the flow velocity increased from 0.0 to 0.8 m/min. Agitation conducted at the bottom of the treatment chamber reduced the E. coli O157:H7 population on cut apples by 1.2 log CFU/cm2 in 3 min, whereas in the treatment with the agitation over the top of the chamber, the survival count of E. coli O157:H7 was reduced by only 0.8 log CFU/cm2. The experimental data were used to fit four microbial reduction kinetic models. It was found that E. coli O157:H7 reduction from the fruit surfaces was best described by the Weibull model. These findings may be useful in designing produce wash systems for achieving enhanced pathogen reduction and improved produce quality and safety. PMID:18044431

  9. Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution.

    PubMed

    Hasegawa, Hiroshi; Rahman, Ismail M M; Nakano, Masayoshi; Begum, Zinnat A; Egawa, Yuji; Maki, Teruya; Furusho, Yoshiaki; Mizutani, Satoshi

    2011-10-15

    Aminopolycarboxylate chelants (APCs) are extremely useful for a variety of industrial applications, including the treatment of toxic metal-contaminated solid waste materials. Because non-toxic matrix elements compete with toxic metals for the binding sites of APCs, an excess of chelant is commonly added to ensure the adequate sequestration of toxic metal contaminants during waste treatment operations. The major environmental impacts of APCs are related to their ability to solubilize toxic heavy metals. If APCs are not sufficiently eliminated from the effluent, the aqueous transport of metals can occur through the introduction of APCs into the natural environment, increasing the magnitude of associated toxicity. Although several techniques that focus primarily on the degradation of APCs at the pre-release step have been proposed, methods that recycle not only the processed water, but also provide the option to recover and reuse the metals, might be economically feasible, considering the high costs involved due to the chelants used in metal ion sequestration. In this paper, we propose a separation process for the recovery of metals from effluents that contain an excess of APCs. Additionally, the option of recycling the processed water using a solid phase extraction (SPE) system with an ion-selective immobilized macrocyclic material, commonly known as a molecular recognition technology (MRT) gel, is presented. Simulated effluents containing As(V), Cd(II), Cr(III), Pb(II) or Se(IV) in the presence of APCs at molar ratios of 1:50 in H2O were studied with a flow rate of 0.2 mL min(-1). The 'captured' ions in the SPE system were quantitatively eluted with HNO3. The effects of solution pH, metal-chelant stability constants and matrix elements were assessed. Better separation performance for the metals was achieved with the MRT-SPE compared to other SPE materials. Our proposed technique offers the advantage of a non-destructive separation of both metal ions and chelants

  10. Hand Washing

    MedlinePlus

    ... dirty little secrets: Students don't wash their hands often or well. In one study, only 58% of female and 48% of male middle- and high-school students washed their hands after using the bathroom. Yuck! previous continue How ...

  11. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOEpatents

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  12. [Photodegradation of paracetamol in carbonate solution].

    PubMed

    Gao, Ying; Yang, Xi; Liu, Yu

    2008-03-01

    The photodegradation of paracetamol in the solution of carbonate with comparably environmental concentration was studied through kinetics method. Experiments were carried out to compare the different photodegradation effects of paracetamol in the solution of carbonate radical and hydroxyl radical. The effects of such factors, pH, nitrate, humic matters, chloride sodium, calcium and magnesium were also analyzed. The products of the photodegradation were identified with GC/MS, and the degradation mechanism of paracetamol was discussed. The results indicate that, the scondary reaction rate constant (k(a)) between paracetamol and carbonate radical is 5.0 x 10(7) L (mol s)(-1), which is lower than that with hydroxyl radical [k(b) = 8.1 x 10(9) L (mol s)(-1)]. But in natural aqueous system, the stable concentration of carbonate radical is much higher than that of hydroxyl. Therefore, the effect of carbonate radical on paracetamol approximately equals to that of hydroxyl radical. The degradation rate of paracetamol increases when the system was changed with higher pH, adding of nitrate, chloride sodium, calcium and magnesium which increase the rigidity of the water, while decreases when the SRFA is present. PMID:18649521

  13. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    PubMed

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling. PMID:24718362

  14. Hand washing.

    PubMed

    2016-07-01

    A surgery matron has writt en a hand hygiene promotional video rap to encourage staff, patients and visitors to wash their hands. Vicky Cartwright from University Hospitals of Leicester NHS Trust rewrote the lyrics to 1990s hit rap, Ice Ice Baby. PMID:27380706

  15. Aqueous solution dispersement of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  16. Part 2. Comparison of emergency washing solutions in 70% hydrofluoric acid-burned human skin in an established ex vivo explants model

    PubMed Central

    Burgher, François; Mathieu, Laurence; Lati, Elian; Gasser, Philippe; Peno-Mazzarino, Laurent; Blomet, Joël; Hall, Alan H; Maibach, Howard I

    2011-01-01

    Background: Hydrofluoric acid (HF) is a small and partially dissociated acid (pKa 3.2), able to deeply penetrate into human skin in addition to the corrosiveness of the hydrogen ion (H+) and the toxicity of the fluoride ion (F-). However, there has been a lack of experimental studies to objectively characterize the results of human HF skin exposure decontamination. Methodology/principal findings: A previously established experimental method using a human skin explants ex vivo model (Part 1. Experimental 70% hydrofluoric acid (HF) burns: Histological observations in an established human skin explants ex vivo model) described the lesions that appeared following 70% HF penetration. Within 5min, 70% HF penetrates to the dermis. Using the same experimental conditions, a comparison study of two different washing protocols was performed: water + topical calcium gluconate (CaG) versus Hexafluorine®. In these conditions, washing for 15min with running tap water followed by topical CaG ointment only delayed burn onset, while severe tissue damage appeared later. In contrast, after washing with Hexafluorine® over 10 min, no histological lesions developed. These results are in accordance with the results of accidental human industrial case reports. Conclusion/significance: Amphoteric and hypertonic Hexafluorine® can deactivate H+ and chelate F- ions. Based on these results, it should be considered as a promising first-aid decontamination solution to prevent or minimize significant local and systemic consequences of concentrated HF skin exposures. PMID:21083510

  17. Washing off intensification of cotton and wool fabrics by ultrasounds.

    PubMed

    Peila, R; Actis Grande, G; Giansetti, M; Rehman, S; Sicardi, S; Rovero, G

    2015-03-01

    Wet textile washing processes were set up for wool and cotton fabrics to evaluate the potential of ultrasound transducers (US) in improving dirt removal. The samples were contaminated with an emulsion of carbon soot in vegetable oil and aged for three hours in fan oven. Before washing, the fabrics were soaked for 3 min in a standard detergent solution and subsequently washed in a water bath. The dirt removal was evaluated through colorimetric measurements. The total color differences ΔE of the samples were measured with respect to an uncontaminated fabric, before and after each washing cycle. The percentage of ΔE variation obtained was calculated and correlated to the dirt removal. The results showed that the US transducers enhanced the dirt removal and temperature was the parameter most influencing the US efficiency on the cleaning process. Better results were obtained at a lower process temperature. PMID:25258212

  18. Effectiveness of an anaerobic granular activated carbon fluidized-bed bioreactor to treat soil wash fluids: a proposed strategy for remediating PCP/PAH contaminated soils.

    PubMed

    Koran, K M; Suidan, M T; Khodadoust, A P; Sorial, G A; Brenner, R C

    2001-07-01

    An integrated system has been developed to remediate soils contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil-solvent washing and anaerobic biotreatment of the extract. Specifically, this study evaluated the effectiveness of a granular activated carbon (GAC) fluidized-bed reactor to treat a synthetic-waste stream of PCP and four PAHs (naphthalene, acenaphthene, pyrene, and benzo(b)fluoranthene) under anaerobic conditions. This waste stream was intended to simulate the wash fluids from a soil washing process treating soils from a wood-preserving site. The reactor achieved a removal efficiency of greater than 99.8% for PCP with conversion to its dechlorination intermediates averaging 46.5%. Effluent, carbon extraction, and isotherm data also indicate that naphthalene and acenaphthene were removed from the liquid phase with efficiencies of 86 and 93%, respectively. Effluent levels of pyrene and benzo(b)fluoranthene were extremely low due to the high-adsorptive capacity of GAC for these compounds. Experimental evidence does not suggest that the latter two compounds were biochemically transformed within the reactor. PMID:11394769

  19. Biodiesel production by two-stage transesterification with ethanol by washing with neutral water and water saturated with carbon dioxide.

    PubMed

    Mendow, G; Veizaga, N S; Sánchez, B S; Querini, C A

    2012-08-01

    Industrial production of ethyl esters is impeded by difficulties in purifying the product due to high amounts of soap formed during transesterification. A simple biodiesel wash process was developed that allows successful purification of samples containing high amounts of soap. The key step was a first washing with neutral water, which removed the soaps without increasing the acidity or affecting the process yield. Afterward, the biodiesel was washed with water saturated with CO(2), a mild acid that neutralized the remaining soaps and extracted impurities. The acidity, free-glycerine, methanol and soaps concentrations were reduced to very low levels with high efficiency, and using non-corrosive acids. Independently of the initial acidity, it was possible to obtain biodiesel within EN14214 specifications. The process included the recovery of soaps by hydrolysis and esterification, making it possible to obtain the theoretical maximum amount of biodiesel. PMID:22721682

  20. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  1. Immobilization of trace elements in municipal solid waste incinerator (MSWI) fly ash by producing calcium sulphoaluminate cement after carbonation and washing.

    PubMed

    Wang, Lei; Jamro, Imtiaz Ali; Chen, Qi; Li, Shaobai; Luan, Jingde; Yang, Tianhua

    2016-03-01

    The possibility of producing calcium sulphoaluminate cement (CSA) by adding municipal solid waste incinerator (MSWI) fly ash to raw meal was investigated. After subjecting MSWI fly ash to accelerated carbonation and washing with water (ACW), various amounts (i.e., 5, 10 and 15 wt%) of the treated ash were added to raw meal composed of a mixture of bauxite, limestone and gypsum. The mixtures were sintered in a laboratory-scale muffle furnace at temperatures of 1250°, 1300°, 1325° and 1350 °C for various durations. The influence of different quantities of MSWI fly ash on the mineralogy, major phase composition and strength development of the resulting clinker was studied, as was the effect of ash treatments on leaching and volatilization of trace elements. The ACW treatment reduced the volatilization ratio of trace elements during the clinkerization process. Volatilization ratios for lead, cadmium and zinc were 21.5%, 33.6% and 16.3%, respectively, from the ACW fly ash treatment, compared with ratios of 97.5%, 93.1% and 85.2% from untreated fly ash. The volatilization ratios of trace elements were ordered as follows: untreated fly ash > carbonated fly ash > carbonated and water-washed fly ash. The ACW process also reduced the chloride content in the MSWI fly ash by 90 wt% and prevented high concentrations of trace elements in the effluents. PMID:26644396

  2. The Comparative Photodegradation Activities of Pentachlorophenol (PCP) and Polychlorinated Biphenyls (PCBs) Using UV Alone and TiO2-Derived Photocatalysts in Methanol Soil Washing Solution

    PubMed Central

    Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing

    2014-01-01

    Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664

  3. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    SciTech Connect

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  4. Ultrasonic washing of textiles.

    PubMed

    Choi, Junhee; Kim, Tae-Hong; Kim, Ho-Young; Kim, Wonjung

    2016-03-01

    We present the results of experimental investigation of ultrasonic washing of textiles. The results demonstrate that cavitation bubbles oscillating in acoustic fields are capable of removing soils from textiles. Since the washing performance is mitigated in a large washing bath when using an ultrasonic transducer, we propose a novel washing scheme by combining the ultrasonic vibration with a conventional washing method utilizing kinetic energy of textiles. It is shown that the hybrid washing scheme achieves a markedly enhanced performance up to 15% in comparison with the conventional washing machine. This work can contribute to developing a novel laundry machine with reduced washing time and waste water. PMID:26215790

  5. Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution.

    PubMed

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-Yoon; Lee, Eil-Hee; Song, Kyusuk; Song, Kee-Chan

    2009-11-15

    This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO(2) gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH(-) concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution. PMID:19604641

  6. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution.

    PubMed

    Finzgar, Neza; Lestan, Domen

    2008-11-01

    The feasibility of a novel two-phase method for remediation of Pb (1374 mg kg(-1)), Zn (1007 mg kg(-1)), and Cd (9.1 mg kg(-1)) contaminated soil was evaluated. In the first phase we used EDTA for leaching heavy metals from the soil. In the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of washing solution for soil rinsing (removal of the soil-retained, chelant-mobilized metallic species). In EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (15 mA cm(-2)). The released metals were removed from the solution by filtration as insoluble participate and by electro-deposition on the cathode. Four consecutive additions of 5.0 mm ol kg(-1) EDTA (total 20 mmol kg(-1)) removed 44% Pb, 14% Zn and 35% Cd from the soil. The mobility of the Pb, Zn and Cd (Toxicity Characteristic Leaching Procedure) left in the soil after remediation was reduced by 1.6, 3.4 and 1.5 times, respectively. The Pb oral availability (Physiologically Based Extraction Test) in the simulated stomach phase was reduced by 2.4 and in the intestinal phase by 1.7 times. The discharge solution was clear, almost colorless, with pH 7.73 and 0.47 mg L(-1) Pb, 1.03 mg L(-1) Zn, bellow the limits of quantification of Cd and 0.023 mM EDTA. The novel method enables soil leaching with small water requirements and no wastewater generation or other emissions into the environment. PMID:18762318

  7. Dissolution of Spent Nuclear Fuel in Carbonate-Peroxide Solution

    SciTech Connect

    Soderquist, Chuck Z.; Hanson, Brady D.

    2010-01-31

    This study shows that spent UO2 fuel can be completely dissolved in a carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. Samples of spent nuclear fuel were pulverized and sieved to a uniform size, then duplicate aliquots were weighed into beakers for analysis. One set was dissolved in near-boiling 10M nitric acid, and the other set was dissolved in a solution of ammonium carbonate and hydrogen peroxide at room temperature. All the resulting fuel solutions were then analyzed for Sr-90, Tc-99, Cs-137, plutonium, and Am-241. For all the samples, the concentrations of Cs-137, Sr-90, plutonium, and Am-241 were the same for both the nitric acid dissolution and the ammonium carbonate-hydrogen peroxide dissolution, but the technetium concentration of the ammonium carbonate-hydrogen peroxide fuel solution was only about 25% of the same fuels dissolved in hot nitric acid.

  8. Quantum conductance steps in solutions of multiwalled carbon nanotubes.

    PubMed

    Urbina, A; Echeverría, I; Pérez-Garrido, A; Díaz-Sánchez, A; Abellán, J

    2003-03-14

    We have prepared solutions of multiwalled carbon nanotubes in Aroclor 1254, a mixture of polychlorinated biphenyls. The solutions are stable at room temperature. Transport measurements were performed using a scanning-tunneling probe on a sample prepared by spin coating the solution on gold substrates. Conductance steps were clearly seen. A histogram of a high number of traces shows maximum peaks at integer values of the conductance quantum G(0)=2e(2)/h, demonstrating ballistic transport at room temperature along the carbon nanotube over distances longer than 1.4 microm. PMID:12689021

  9. Saline nasal washes

    MedlinePlus

    Salt water washes; Nasal irrigation; Nasal lavage; Sinusitis - nasal wash ... by mixing: 3 teaspoons (tsp) canning or pickling salt (no iodine) 1 tsp baking soda 1 cup warm distilled, filtered, or boiled water To use the wash: Fill the device with ...

  10. Late Washing efficiency

    SciTech Connect

    Morrissey, M.F.

    1992-08-31

    Interim Waste Technology has demonstrated the Late Washing concept on the Experimental Laboratory Filter (ELF) at TNX. In two tests, washing reduced the [NO{sub 2}{sup {minus}}] from 0.08 M to approximately 0.01 M on slurries with 2 year equivalent radiation exposures and 9.5 wt. % solids. For both washes, the [NO{sub 2}{sup {minus}}] decreased at rates near theoretical for a constant volume stirred vessel, indicating approximately l00% washing efficiency. Permeate flux was greater than 0.05 gpm/ft{sup 2} for both washes at a transmembrane pressure of 50 psi and flow velocity of 9 ft/sec.

  11. Electroreduction of carbon dioxide in aqueous solutions at metal electrodes

    SciTech Connect

    Augustynski, J.; Jermann, B.; Kedzierzawski, P.

    1996-12-31

    The quantities of carbon stored in the form of atmospheric carbon dioxide, CO{sub 2} in the hydrosphere and carbonates in the terrestrial environment substantially exceed those of fossil fuels. In spite of this the industrial use of carbon dioxide as a source of chemical carbon is presently limited to preparation of urea and certain carboxylic acids as well as organic carbonates and polycarbonates. However, the situation is expected to change in the future, if effective catalytic systems allowing to activate carbon dioxide will become available. In this connection, the electrochemical reduction of CO{sub 2}, requiring only an additional input of water and electrical energy, appears as an attractive possibility. For more than 100 years formic acid and formates of alkali metals were considered as the only significant products of the electroreduction of carbon dioxide in aqueous solutions. The highest current efficiencies, exceeding 90 %, were obtained either with mercury or with amalgam electrodes. The only comprehensive study regarding kinetics of CO{sub 2} reduction in aqueous solution has been performed by Eyring et al. using a mercury cathode. This paper describes electrolysis studies.

  12. Effect of extraction solutions on carbonation of cementitious materials in aqueous solutions.

    PubMed

    Jo, Hwanju; Jo, Ho Young; Jang, Young-Nam

    2012-06-01

    Carbonation efficiency was evaluated for three cementitious materials having different CaO-bearing minerals (lime, Portland cement and waste concrete) using various extraction reagents (HCl, CH3COOH, NH4Cl and deionized water). The cementitious materials were subjected to Ca extraction and carbonation tests under ambient pressure and temperature conditions. The Ca extraction efficiency generally decreased in the order lime, Portland cement and waste concrete, regardless of the extraction solution. Among the extraction solutions, NH4Cl was the most effective for Ca extraction and carbonation. The results of this study suggest that the types of extraction solution and CaO-bearing mineral of the materials are primary factors affecting carbonation efficiency. PMID:22856314

  13. Thermodynamics of trivalent lanthanide and actinide elements in carbonate solutions

    SciTech Connect

    Rao, L.; Rai, D.; Felmy, A.R.; Fulton, R.W.

    1995-12-01

    Knowledge of the thermodynamics of actinide and lanthanide elements in various aqueous electrolyte solutions is essential for the development of actinide separation techniques. It is particularly important to understand the thermodynamics of these elements in basic and concentrated electrolyte solutions if the separation techniques are in concentrated electrolytes and to be applied to the treatment of nuclear wastes, since many of these wastes contain concentrated electrolytes and are under strongly basic conditions. Solubility experiments were conducted for neodymium(III) in bicarbonate and carbonate solutions. Experimental results were analyzed with the specific ion-interaction approach of Pitzer. A thermodynamic model was developed to describe the solubilities of corresponding carbonate compounds of neodymium(III) and americium(III) under wide ranges of pH and carbonate concentrations.

  14. Phase transition of carbonate solvent mixture solutions at low temperatures

    NASA Astrophysics Data System (ADS)

    Okumura, Takefumi; Horiba, Tatsuo

    2016-01-01

    The phase transition of carbonate solvent mixture solutions consisting of ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and LiPF6 salt have been studied for improving the low temperature performance of lithium-ion batteries. The Li ion conductivity at 25 °C was maximum at x = 0.3 in a series of 1 M LiPF6 mixed carbonate solvents compositions consisting of ECxDMC0.5-0.5xEMC0.5-0.5x (x = 0 to 0.6), while the maximum tended to shift to x = 0.2 as the temperature lowered. The differential scanning calorimetry results showed that the freezing temperature depressions of EC in the 1 M LiPF6 solution were larger than those of the DMC or EMC. The chemical shift of 7Li nuclear magnetic resonance changed from a constant to increasing at around x = 0.3, which could be reasonably understood by focusing on the change in solvation energy calculated using Born equation. However, in the region of a high EC concentration of over x = 0.3 (EC/LiPF6 > 4) in the 1 M LiPF6 solution, the free EC from the solvation to the lithium ions seems to reduce the freezing temperature depression of the EC, and thus, decreases the ionic conductivity of the solution at low temperatures, due to the EC freezing.

  15. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    PubMed

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution. PMID:27031800

  16. Observations on the Solubility of Skeletal Carbonates in Aqueous Solutions.

    PubMed

    Chave, K E; Deffeyes, K S; Weyl, P K; Garrels, R M; Thompson, M E

    1962-07-01

    Carbonate skeletal materials of marine organisms exhibit a wide range of solubilities in aqueous solutions. In most cases, the dissolution of the carbonate mineral is irreversible and therefore the material can have no true equilibrium solubility. Relative solubilities have been measured in distilled water and in sea water. The least soluble mineral appears to be calcite with low magnesium content; the most soluble is calcite containing 20 to 30 percent MgCO(3) in solid solution. Aragonite has an intermediate solubility. PMID:17774123

  17. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  18. Viability and functional integrity of washed platelets.

    PubMed

    Pineda, A A; Zylstra, V W; Clare, D E; Dewanjee, M K; Forstrom, L A

    1989-01-01

    The viability and functional integrity of saline- and ACD-saline-washed platelets were compared with those of unwashed platelets. After template bleeding time (TBT) was measured, 15 healthy volunteers underwent plateletpheresis and ingested 600 mg of aspirin. Autologous 111In-labeled platelets were transfused: unwashed (n = 5), washed with 0.9 percent saline solution (SS) (n = 5), and washed with a buffered 12.6 percent solution of ACD-A in 0.9 percent saline solution (n = 5). After transfusion, we measured TBT at 1, 4, and 24 hours; platelet survival at 10 minutes and 1, 4, and 24 hours and daily for 6 days; and the percentage of uptake in liver and spleen by quantitative whole-body radionuclide scintigraphy at 24 and 190 hours. We found that saline washing affected platelet recovery, 23.47 +/- 12 percent (p less than 0.001) as compared to 52.43 +/- 17 percent (p less than 0.002) for ACD-saline and 73.17 +/- 8 percent for control; that saline washing resulted in a greater liver uptake than control and ACD-saline-washed platelets (31.9 +/- 8% [p less than 0.001] vs 17.7 +/- 4.1 and 19.3 +/- 2.1% [p greater than 0.1], respectively); that, unlike control and ACD-saline-washed platelets, saline-washed platelets did not shorten bleeding time; and that neither type of washing affected survival. Although ACD-saline washing affects recovery, it also results in intact function, normal survival, higher recovery than SS platelets, and no significant liver uptake. PMID:2749876

  19. Viability and functional integrity of washed platelets

    SciTech Connect

    Pineda, A.A.; Zylstra, V.W.; Clare, D.E.; Dewanjee, M.K.; Forstrom, L.A.

    1989-07-01

    The viability and functional integrity of saline- and ACD-saline-washed platelets were compared with those of unwashed platelets. After template bleeding time (TBT) was measured, 15 healthy volunteers underwent plateletpheresis and ingested 600 mg of aspirin. Autologous /sup 111/In-labeled platelets were transfused: unwashed (n = 5), washed with 0.9 percent saline solution (SS) (n = 5), and washed with a buffered 12.6 percent solution of ACD-A in 0.9 percent saline solution (n = 5). After transfusion, we measured TBT at 1, 4, and 24 hours; platelet survival at 10 minutes and 1, 4, and 24 hours and daily for 6 days; and the percentage of uptake in liver and spleen by quantitative whole-body radionuclide scintigraphy at 24 and 190 hours. We found that saline washing affected platelet recovery, 23.47 +/- 12 percent (p less than 0.001) as compared to 52.43 +/- 17 percent (p less than 0.002) for ACD-saline and 73.17 +/- 8 percent for control; that saline washing resulted in a greater liver uptake than control and ACD-saline-washed platelets (31.9 +/- 8% (p less than 0.001) vs 17.7 +/- 4.1 and 19.3 +/- 2.1% (p greater than 0.1), respectively); that, unlike control and ACD-saline-washed platelets, saline-washed platelets did not shorten bleeding time; and that neither type of washing affected survival. Although ACD-saline washing affects recovery, it also results in intact function, normal survival, higher recovery than SS platelets, and no significant liver uptake.

  20. Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution

    NASA Astrophysics Data System (ADS)

    Jiao, Caina; Wang, Yanen; Li, Menghua; Wu, Qiuhua; Wang, Chun; Wang, Zhi

    2016-06-01

    In this paper, a magnetic nanoporous carbon (Fe3O4/NPC) was successfully synthesized by using MOF-5 as carbon precursor and Fe salt as magnetic precursor. The texture properties of the as-synthesized nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N2 adsorption-desorption isotherms. The Fe3O4/NPC had a high surface area with strong magnetic strength. Its adsorption behavior was tested by its adsorption capacity for the removal of methylene blue from aqueous solution. The results demonstrated that the Fe3O4/NPC had a high adsorption capacity, rapid adsorption rate, and easy magnetic separabilty. Moreover, the adsorbent could be easily regenerated by washing it with ethanol. The Fe3O4/NPC can be used as a good alternative for the effective removal of organic dyes from wastewater.

  1. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  2. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    SciTech Connect

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.

  3. Development assessment of wash water reclamation

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1976-01-01

    An analytical study assessment of state-of-the-art wash water reclamation technology is presented. It covers all non-phase-change unit operations, unit processes and subsystems currently under development by NASA. Each approach to wash water reclamation is described in detail. Performance data are given together with the projected weights and sizes of key components and subsystems. It is concluded that a simple multifiltration subsystem composed of surface-type cartridge filters, carbon adsorption and ion exchange resins is the most attractive approach for spacecraft wash water reclamation in earth orbital missions of up to 10 years in duration.

  4. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang; Kokhdan, Syamak Nasiri

    2015-02-01

    The use of cheep, non-toxic, safe and easily available adsorbent are efficient and recommended material and alternative to the current expensive substance for pollutant removal from wastewater. The activated carbon prepared from wood waste of local tree (millet) extensively was applied for quantitative removal of methylene blue (MB), while simply. It was used to re-used after heating and washing with alkaline solution of ethanol. This new adsorbent was characterized by using BET surface area measurement, FT-IR, pH determination at zero point of charge (pHZPC) and Boehm titration method. Response surface methodology (RSM) by at least the number of experiments main and interaction of experimental conditions such as pH of solution, contact time, initial dye concentration and adsorbent dosage was optimized and set as pH 7, contact time 18 min, initial dye concentration 20 ppm and 0.2 g of adsorbent. It was found that variable such as pH and amount of adsorbent as solely or combination effects seriously affect the removal percentage. The fitting experimental data with conventional models reveal the applicability of isotherm models Langmuir model for their well presentation and description and Kinetic real rate of adsorption at most conditions efficiently can be represented pseudo-second order, and intra-particle diffusion. It novel material is good candidate for removal of huge amount of MB (20 ppm) in short time (18 min) by consumption of small amount (0.2 g).

  5. Inhibition Of Washed Sludge With Sodium Nitrite

    SciTech Connect

    Congdon, J. W.; Lozier, J. S.

    2012-09-25

    This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.

  6. Electrosorption of inorganic salts from aqueous solution using carbon aerogels.

    PubMed

    Gabelich, Christopher J; Tran, Tri D; Suffet, I H Mel

    2002-07-01

    Capacitive deionization (CDI) with carbon aerogels has been shown to remove various inorganic species from aqueous solutions, though no studies have shown the electrosorption behavior of multisolute systems in which ions compete for limited surface area. Several experiments were conducted to determine the ion removal capacity and selectivity of carbon aerogel electrodes, using both laboratory and natural waters. Although carbon aerogel electrodes have been treated as electrical double-layer capacitors, this study showed that ion sorption followed a Langmuir isotherm, indicating monolayer adsorption. The sorption capacity of carbon aerogel electrodes was approximately 1.0-2.0 x 10(-4) equiv/g aerogel, with ion selectivity being based on ionic hydrated radius. Monovalent ions (e.g., sodium) with smaller hydrated radii were preferentially removed from solution over multivalent ions (e.g., calcium) on a percent or molar basis. Because of the relatively small average pore size (4-9 nm) of the carbon aerogel material, only 14-42 m2/g aerogel surface area was available for ion sorption. Natural organic matter may foul the aerogel surface and limit CDI effectiveness in treating natural waters. PMID:12144279

  7. Room environment influence on eggshell bacterial levels of non-washed and washed eggs from caged and cage-free laying hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bacteria levels of non-washed and washed eggs obtained from caged and cage-free hens housed in either wire slats or shaving-covered pens were determined. On eight days (from 22 to 52 wk), 20 eggs were collected from each pen. Ten eggs/pen were washed with a commercial egg washing solution, whi...

  8. Simultaneous leaching and carbon sequestration in constrained aqueous solutions

    SciTech Connect

    Phelps, Tommy Joe; Moon, Ji Won; Roh, Yul; Cho, Kyu Seong

    2011-01-01

    The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.

  9. Simultaneous leaching and carbon sequestration in constrained aqueous solutions.

    PubMed

    Moon, Ji-Won; Cho, Kyu-Seong; Moberly, James G; Roh, Yul; Phelps, Tommy J

    2011-12-01

    The behavior of metal ions' leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals. PMID:21246259

  10. 3. VIEW LOOKING NORTH AT CHINA WASH FLUME SHOWING WASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW LOOKING NORTH AT CHINA WASH FLUME SHOWING WASH - San Carlos Irrigation Project, China Wash Flume, Main (Florence-Case Grande) Canal at Station 137+00, T4S, R10E, S14, Coolidge, Pinal County, AZ

  11. Sorption of cobalt on activated carbons from aqueous solutions

    SciTech Connect

    Paajanen, A.; Lehto, J.; Santapakka, T.; Morneau, J.P.

    1997-01-01

    The efficiencies of 15 commercially available activated carbons were tested for the separation of trace cobalt ({sup 60}Co) in buffer solutions at pH 5.0, 6.7, and 9.1. On the basis of the results four carbon products, Diahope-006, Eurocarb TN5, Hydraffin DG47, and Norit ROW Supra, were selected for further study. These carbons represented varying (low, medium and high) cobalt removal efficiencies and were prepared of three typical raw materials: peat, coconut shell, or coal. Study was made of the effects on sorption efficiencies of factors of interest in metal/radionuclide-bearing waste effluents. These factors were pH, sodium ions, borate, and citrate.

  12. Insights into non-Fickian solute transport in carbonates

    PubMed Central

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J

    2013-01-01

    [1] We study and explain the origin of early breakthrough and long tailing plume behavior by simulating solute transport through 3-D X-ray images of six different carbonate rock samples, representing geological media with a high degree of pore-scale complexity. A Stokes solver is employed to compute the flow field, and the particles are then transported along streamlines to represent advection, while the random walk method is used to model diffusion. We compute the propagators (concentration versus displacement) for a range of Peclet numbers (Pe) and relate it to the velocity distribution obtained directly on the images. There is a very wide distribution of velocity that quantifies the impact of pore structure on transport. In samples with a relatively narrow spread of velocities, transport is characterized by a small immobile concentration peak, representing essentially stagnant portions of the pore space, and a dominant secondary peak of mobile solute moving at approximately the average flow speed. On the other hand, in carbonates with a wider velocity distribution, there is a significant immobile peak concentration and an elongated tail of moving fluid. An increase in Pe, decreasing the relative impact of diffusion, leads to the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous transport. The implications for modeling field-scale transport are discussed. Citation: Bijeljic, B., P. Mostaghimi, and M. J. Blunt (2013), Insights into non-Fickian solute transport in carbonates, Water Resour. Res., 49, 2714–2728, doi:10.1002/wrcr.20238. PMID:24223444

  13. TANK 7 CHARACTERIZATION AND WASHING STUDIES

    SciTech Connect

    Lambert, D.; Pareizs, J.; Click, D.

    2010-02-04

    and cations remaining, with the exception of sodium and oxalate, for which the percentages were 2.8% and 10.8% respectively. The post-wash sodium concentration was 9.25 wt% slurry total solids basis and 0.15 M supernate. (5) The settling rate of slurry was very fast allowing the completion of one decant/wash cycle each day. (6) The measured yield stress of as-received (6.42 wt% undissolved solids) and post-wash (7.77 wt% undissolved solids) slurry was <1 Pa. For rapidly settling slurries, it can be hard to measure the yield stress of the slurry so this result may be closer to the supernate result than the slurry. The recommended strategy for developing the oxalate target for sludge preparation for Sludge Batch 7 includes the following steps: (1) CPC simulant testing to determine the percent oxalate destruction and acid mix needed to produce a predicted redox of approximately 0.2 Fe{sup +2}/{Sigma}Fe in a SME product while meeting all DWPF processing constraints. (2) Perform a DWPF melter flammability assessment to ensure that the additional carbon in the oxalate together with other carbon sources will not lead to a flammability issue. (3) Perform a DWPF glass paper assessment to ensure the glass produced will meet all DWPF glass limits due to the sodium concentration in the sludge batch. The testing would need to be repeated if a significant CPC processing change, such as an alternative reductant to formic acid, is implemented.

  14. Fluidic delivery of homogeneous solutions through carbon tube bundles

    NASA Astrophysics Data System (ADS)

    Srikar, R.; Yarin, A. L.; Megaridis, C. M.

    2009-07-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (~1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 µm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  15. carbonate solid solution at high pressures up to 55 GPa

    NASA Astrophysics Data System (ADS)

    Spivak, Anna; Solopova, Natalia; Cerantola, Valerio; Bykova, Elena; Zakharchenko, Egor; Dubrovinsky, Leonid; Litvin, Yuriy

    2014-09-01

    Magnesite, siderite and ferromagnesites Mg1- x Fe x CO3 ( x = 0.05, 0.09, 0.2, 0.4) were characterized using in situ Raman spectroscopy at high pressures up to 55 GPa. For the Mg-Fe-carbonates, the Raman peak positions of six modes (T, L, ν4, ν1, ν3 and 2ν2) in the dependence of iron content in the carbonates at ambient conditions are presented. High-pressure Raman spectroscopy shows that siderite undergoes a spin transition at ~40 GPa. The examination of the solid solutions with compositions Mg0.6Fe0.4CO3, Mg0.8Fe0.2CO3, Mg0.91Fe0.09CO3 and Mg0.95Fe0.05CO3 indicates that with increase in the amount of the Fe spin transition pressure increases up to ~45 GPa.

  16. Reclamation of zinc-contaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting.

    PubMed

    Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung

    2016-01-15

    A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. PMID:26355411

  17. Dispersion of denatured carbon nanotubes by using a dimethylformamide solution

    NASA Astrophysics Data System (ADS)

    Thuy Nguyen, Thi; Uan Nguyen, Sy; Tam Phuong, Dinh; Chien Nguyen, Duc; Mai, Anh Tuan

    2011-09-01

    The dispersion of carbon nanotubes (CNTs) in liquid plays an important role in fundamental research and applied science. The most common technique applied to disperse CNTs is ultrasonication. The surfactants used for CNT dispersion are ethanol, sodium dodecyl benzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DATB), sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS). This paper presents the dispersion of denatured CNTs by using a dimethylformamide (DMF) solution. The DMF is adsorbed on the surface of the nanotubes by a hydrophobic or π–π interaction. Ultrasonication helps DMF debundle the nanotubes by Coulombic or hydrophilic interaction, allowing the Van der Waals forces among the individual nanotubes to be overcome. UV–Vis spectra of dispersed CNTs in solution showed a maximum at 260 nm and decreased from UV to near IR. The vibration properties of the carbon samples were characterized with Raman spectroscopy, which illustrated the D and G bands of denatured CNTs at 1354 and 1581 cm‑1, respectively, different from the values of 1352 cm‑1 and 1580 cm‑1, respectively, for undenatured CNTs. Finally, the interaction between surfactants and nanotubes was studied by Fourier transform infrared spectroscopy (FTIR).

  18. Insights into non-Fickian solute transport in carbonates

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J.

    2013-05-01

    We study and explain the origin of early breakthrough and long tailing plume behavior by simulating solute transport through 3-D X-ray images of six different carbonate rock samples, representing geological media with a high degree of pore-scale complexity. A Stokes solver is employed to compute the flow field, and the particles are then transported along streamlines to represent advection, while the random walk method is used to model diffusion. We compute the propagators (concentration versus displacement) for a range of Peclet numbers (Pe) and relate it to the velocity distribution obtained directly on the images. There is a very wide distribution of velocity that quantifies the impact of pore structure on transport. In samples with a relatively narrow spread of velocities, transport is characterized by a small immobile concentration peak, representing essentially stagnant portions of the pore space, and a dominant secondary peak of mobile solute moving at approximately the average flow speed. On the other hand, in carbonates with a wider velocity distribution, there is a significant immobile peak concentration and an elongated tail of moving fluid. An increase in Pe, decreasing the relative impact of diffusion, leads to the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous transport. The implications for modeling field-scale transport are discussed.

  19. Soil washing technology evaluation

    SciTech Connect

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  20. Lead removal via soil washing and leaching

    NASA Astrophysics Data System (ADS)

    Lin, H. K.; Man, X. D.; Walsh, D. E.

    2001-12-01

    A soil washing and leaching process was tested for removing lead from soils. A soil-washing circuit, including size and gravity separations, was employed to remove the coarse metallic lead particles, while the leaching was applied to remove fine metallic lead particles and other lead species. The soil-washing tests proved that the metallic lead particles larger than 0.15 mm (100 mesh) could be effectively removed. The sodium-chloride-based leaching solution with ferric chloride or sodium hypochlorite as oxidants was adopted in the leaching. The leaching experimental results indicated that under the pH of 2 and Eh of 1,300 mV, the metallic lead particles smaller than 0.15 mm and other lead species can be dissolved in the leaching solution within 60 minutes.

  1. Domestic wash water reclamation

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    System consists of filtration unit, reverse-osmosis module, tanks, pumps, plumbing, and various gauges, meters, and valves. After water is used in washing machine or shower, it is collected in holding tank. Water is pumped through series of five particulate filters. Pressure tank supplies processed water to commode water closet.

  2. Wash Your Hands

    MedlinePlus

    ... do if you don't have soap and clean, running water? Washing hands with soap and water is the ... specific questions. More Information CDC's Handwashing Work Handwashing: Clean Hands Save Lives Hand Hygiene in Healthcare Settings Water-related Hygiene Hand Hygiene to Help Prevent Flu ...

  3. Soil washing treatability study

    SciTech Connect

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS.

  4. Removal of Uranium From Aqueous Solution by Carbon Nanotubes.

    PubMed

    Yu, Jing; Wang, Jianlong

    2016-10-01

    The adsorption of uranium onto carbon nanotubes (CNTs) was investigated. The effect of solution pH, contact time, initial uranium concentration, and temperature on the adsorption capacity of uranium was determined. CNTs were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder x-ray diffraction (XRD), Raman spectra, and the Fourier infrared spectra (FTIR). The diameters of the CNTs varied from 10 to 50 nm in diameter and 1 ~ 2 μm in length. FTIR spectra analysis indicated that carboxyl groups were involved in adsorption of U(VI) by CNTs. The experimental results showed that U(VI) adsorption onto CNTs reached equilibrium within 10 min, and the removal efficiency was 95% at pH = 5. The adsorption kinetics of U(VI) could be described by a pseudo first-order kinetic model. The adsorption isotherm conformed to the Slips model. The adsorption process was spontaneous and endothermic. PMID:27575349

  5. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  6. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.

    PubMed

    Szlachta, M; Wójtowicz, P

    2013-01-01

    This study was conducted to determine the adsorption removal of dyes by powdered activated carbon (PAC, Norit) and multi-walled carbon nanotubes (MWCNTs, Chinese Academy of Science) from an aqueous solution. Methylene blue (MB) and Congo red (CR) were selected as model compounds. The adsorbents tested have a high surface area (PAC 835 m(2)/g, MWCNTs 358 m(2)/g) and a well-developed porous structure which enabled the effective treatment of dye-contaminated waters and wastewaters. To evaluate the capacity of PAC and MWCNTs to adsorb dyes, a series of batch adsorption experiments was performed. Both adsorbents exhibited a high adsorptive capacity for MB and CR, and equilibrium data fitted well with the Langmuir model, with the maximum adsorption capacity up to 400 mg/g for MB and 500 mg/g for CR. The separation factor, RL, revealed the favorable nature of the adsorption process under experimental conditions. The kinetics of adsorption was studied at various initial dye concentrations and solution temperatures. The pseudo-second-order model was used for determining the adsorption kinetics of MB and CR. The data obtained show that adsorption of both dyes was rapid in the initial stage and followed by slower processing to reach the plateau. The uptake of dyes increased with contact time, irrespective of their initial concentration and solution temperature. However, changes in the solution temperature did not significantly influence dye removal. PMID:24292474

  7. Ethylbenzene Removal by Carbon Nanotubes from Aqueous Solution

    PubMed Central

    Bina, Bijan; Pourzamani, Hamidreza; Rashidi, Alimorad; Amin, Mohammad Mehdi

    2012-01-01

    The removal of ethylbenzene (E) from aqueous solution by multiwalled, single-walled, and hybrid carbon nanotubes (MWCNTs, SWCNTs, and HCNTs) was evaluated for a nanomaterial dose of 1 g/L, concentration of 10–100 mg/L, and pH 7. The equilibrium amount removed by SWCNTs (E: 9.98 mg/g) was higher than by MWCNTs and HCNTs. Ethylbenzene has a higher adsorption tendency on CNTs, so that more than 98% of it adsorbed in first 14 min, which is related to the low water solubility and the high molecular weight. The SWCNTs performed better for ethylbenzene sorption than the HCNTs and MWCNTs. Isotherms study indicates that the BET isotherm expression provides the best fit for ethylbenzene sorption by SWCNTs. Carbon nanotubes, specially SWCNTs, are efficient and rapid adsorbents for ethylbenzene which possess good potential applications to maintain high-quality water. Therefore, it could be used for cleaning up environmental pollution to prevent ethylbenzene borne diseases. PMID:22187576

  8. Solubility of plutonium(VI) carbonate in saline solutions

    NASA Astrophysics Data System (ADS)

    Reilly, Sean D.; Runde, Wolfgang; Neu, Mary P.

    2007-06-01

    Among the plutonium oxidation states found to form in the environment, mobile plutonium(VI) can exist under oxidizing conditions and in waters with high chloride content due to radiolysis effects. We are investigating the solubility and speciation of plutonium(VI) carbonate under conditions relevant to natural waters and brines such as those found near some geologic radioactive waste repositories. The solid Pu(VI) phase PuO 2CO 3(s) was prepared and its solubility was measured in NaCl and NaClO 4 solutions in a CO 2 atmosphere as a function of pH and ionic strength (0.1-5.6 m). The concentration of soluble plutonium in solution was calculated from spectroscopic data and liquid scintillation counting. Spectroscopic measurements also revealed the plutonium oxidation state. The apparent solubility product of PuO 2CO 3(s) was determined at selected electrolyte concentrations to be, log Ks,0 = -13.95 ± 0.07 (0.1 m NaCl), log Ks,0 = -14.07 ± 0.13 (5.6 m NaCl), and log Ks,0 = -15.26 ± 0.11 (5.6 m NaClO 4). Specific ion interaction theory was used to calculate the solubility product at zero ionic strength, logKs,0∘=-14.82±0.05.

  9. Study of Soil Washing for Remediation of Pb and Zn Contaminated Coastal Landfill

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, S.; Lee, M.

    2013-12-01

    As a result of analyzing the pre-treatment process of Pb, Zn in contaminated coastal landfill soil presented by Korean Soil Analysis Method, the each concentration was presented 577.00mg/kg, 3894.34mg/kg. This soil was critically contaminated with Pb and Zn because it was exceeded the Standard of soil contamination(2area: Pb-400mg/kg, Zn-600mg/kg). Soil remediation efficiency of the soil washing process for the removal of Pb and Zn was determined to be consistent with the results. The batch experiment on the several washing solutions(HCl, HNO3), washing solutions concentrations(0.1-0.8M) and the ratio of soil vs. solution for soil washing(1:3, 1:5 and 1:10) was performed. The results of experiments, washing time was appropriate in 30 minutes. The removal efficiency of soil washing increased as the ratio of soil vs. washing solution increased. But, in the case of heavy metals, the soil vs. solution for soil washing was determined as the optimal ratio of 1 : 5. Five consecutive soil washing with 0.5M of HCl and HNO3 solutions were performed. Results of experiments, in case of Pb was removed by target removal efficiency from soil on the twice washing. With in case of Zn was over on the first washing by target removal efficiency, but suggesting that twice consecutive soil washing is desirable as stability at field. Results of consecutive soil washing experiments, the removal efficiency maintained lower than 10 % after the 4th washing. From the results, demanding consecutive washing is not recommended. Results about the heavy metal contaminated soil washing experiments of the coastal landfill, in the case of HCl with more than 0.5 M of solution was performed at 1:5 of soil ratio vs. solution, 30 minutes of washing time and 2-3 consecutive soil washing. And in the case of HNO3 with 0.8 M of solution was performed various ratios of soil vs. washing solution, suggesting that 2-3 consecutive soil washing was reached to Pb and Zn target removal efficiency. Key words

  10. Washing Out the Competition

    NASA Technical Reports Server (NTRS)

    2001-01-01

    AJT Associates, Inc. (AJT) worked with NASA to develop a revolutionary ozone-based laundry system. AJT's TecH2Ozone(R) wash system presents its customers with an energy-efficient, cost-effective, and environmentally safe way to perform commercial laundering. TecH2Ozone significantly reduces the amount of water and chemical used as compared to traditional commercial laundry systems. This reduction has resulted in lower cost and shorter wash cycles. And due to the reduced use of chemicals, a significant portion of the rinse water is recycled back into the system for reuse. TecH2Ozone customers, such as hotels and other large commercial laundry facilities, have felt the benefits of this equipment. Because of the reduced cycle times, fewer washers are needed and there is a notable increase in the cleanliness of the laundry. The reduction in chemical residues is a boon to customers with allergies and those prone to skin irritation from chemicals retained in regular laundry. AJT Associates, Inc. (AJT) worked with NASA to develop a revolutionary ozone-based laundry system. AJT's TecH2Ozone(R) wash system presents its customers with an energy-efficient, cost-effective, and environmentally safe way to perform commercial laundering.

  11. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation.

    PubMed

    Villa, Ricardo D; Trovó, Alam G; Nogueira, Raquel F Pupo

    2010-02-15

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC(eff)). The wastewater obtained was then treated using a solar photo-Fenton process. After 6h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation. PMID:19853992

  12. Carbon Footprint of Telemedicine Solutions - Unexplored Opportunity for Reducing Carbon Emissions in the Health Sector

    PubMed Central

    Holmner, Åsa; Ebi, Kristie L.; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    Background The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. Objectives To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. Methods A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Results Replacing physical visits with telemedicine appointments resulted in a significant 40–70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Conclusions Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints. PMID:25188322

  13. Experimental fractionation of stable carbon isotopes during degassing of carbon dioxide and precipitation of calcite from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Müller, K.; Winde, V.; Escher, P.; von Geldern, R.; Böttcher, M. E.

    2012-04-01

    Processes in the carbonate system of surface waters are in particular sensitive to variations of boundary conditions as, for instance, the partial pressure of carbon dioxide in the atmosphere and the aqueous solution. Examples range from streams, rivers, to coastal marine waters. The flux of carbon dioxide from continental flowing waters was recently included into calculations of the global carbon budget (Butman & Raymond, 2011, Nature Geo.). These solutions, are often supersaturated in carbon dioxide with respect to the atmosphere. The degassing of carbon dioxide is associated with a kinetically controlled fractionation of the stable carbon isotopes, which has to be considered in balancing water-air carbon dioxide fluxes. The degassing process additionally leads to the super-saturation of the aqueous solution with respect to calcium carbonate. Stable isotope fractionation is of particular value to identify and quantify processes at the water-gas phase interface and link these non-equilibrium processes to the formation mechanisms of calcite and the hydrodynamics of surface waters. Experiments were carried out with or without inert N2 gas flow to degas carbon dioxide from initially supersaturated solutions. Natural solutions used are from different stations of the Elbe estuary, the Jade Bay, the backbarrier tidal area of Spiekeroog Island, carbonate springs of Rügen Island, and the Baltic Sea coastline. Results are compared experiments using bottled mineral waters. By following the (physico) chemical changes in the solutions (pH, TA, Ca PHREEQC modeling) it was found, that two evolutionary stages can be differentiated. Reaction progress led to the preferential liberation of carbon dioxide containing the light carbon isotope, following a Rayleigh-type process. After an induction period, where only degassing of carbon dioxide took place, a second stage was observed where calcite began to form from the highly supersaturated solutions. In this stage the carbonate

  14. Effect of a magnetic field on the dissolution kinetics of carbon dioxide in aqueous solutions

    SciTech Connect

    Kruglitskii, N.N.; Kolomiets, A.A.; Kul'skii, L.A.; Rubezhanskii, K.A.; Zhantalai, B.P.

    1986-02-01

    This paper gives an account of an investigation into the effect of a magnetic field on the rate of dissolution of carbon dioxide in aqueous solutions. The CO/sub 2/ pressure in the system was maintained by a Hoffer valve. The method used for studying the dissolution kinetics of carbon dioxide in aqueous solutions is described. The specific rate of dissolution of carbon dioxide in solutions exposed to a magnetic field is lower than in solutions not so exposed. There is a tendency for the equilibrium solubility of CO/sub 2/ to increase in solutions exposed to a magnetic field.

  15. Polyelectrolyte and carbon nanotube multilayers made from ionic liquid solutions

    NASA Astrophysics Data System (ADS)

    Nakashima, Takuya; Zhu, Jian; Qin, Ming; Ho, Szushen; Kotov, Nicholas A.

    2010-10-01

    The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are advantageous in respect to traditional organic solvents. Poly(ethyleneimine) (PEI) and poly(sodium styrenesulfonate) (PSS) were dispersed in a hydrophilic IL and successfully deposited in the LBL fashion. To produce electroactive thin films with significance to electronics, a similar process was realized for PSS-modified single-walled carbon nanotubes (SWNT-PSS) and poly(vinyl alcohol) (PVA). Characterization of the coating using standard spectroscopy and microscopy techniques typical of the multilayer field indicated that there are both similarities and differences in the structure and properties of LBL films build from ILs and aqueous solutions. The films exhibited electrical conductivity of 102 S m-1 with transparency as high as 98% for visible light, which is comparable to similar parameters for many carbon nanotube and graphene films prepared by both aqueous LBL and other methods.The inevitable contact of substrates with water during the traditional practice of layer-by-layer assembly (LBL) creates problems for multiple potential applications of LBL films in electronics. To resolve this issue, we demonstrate here the possibility of a LBL process using ionic liquids (ILs), which potentially eliminates corrosion and hydration processes related to aqueous media and opens additional possibilities in structural control of LBL films. ILs are also considered to be one of the best ``green'' processing solvents, and hence, are

  16. Leaching kinetics of malachite in ammonium carbonate solutions

    NASA Astrophysics Data System (ADS)

    Oudenne, Paul D.; Olson, Ferron A.

    1983-03-01

    Leaching of malachite was conducted with ammonium carbonate as lixiviant and with temperature, lixiviant concentration, and particle size as variables. Two stages of reaction were found. In Stage I, the initial dissolution of malachite proceeds rapidly, but after about 10 pct reaction the rate is reduced by surface blockage due to the presence of a needle-structured intermediate, presumably Cu(OH)2. Subsequently, malachite and the intermediate dissolve concurrently. In Stage II, after 90 pct reaction, essentially all of the malachite has dissolved and only the intermediate remains. It dissolves in Stage II. The activation energy is 64 kJ/mole (15.3 kcal/mole) for Stage I and 75 kJ/mole (18 kcal/mole) for Stage II. The rate of reaction in Stage I is proportional to the reciprocal of particle size and is 0.8 order with respect to the concentration of ammonium carbonate. The structures of leaching residues were studied using a scanning electron microscope. The kinetic data (activation energy and entropy), particle size and concentration dependence, residue morphology, and general leaching behavior evident from microscopic monitoring during leaching were used to develop the geometric equation for leaching in Stage I. The equation, based on a heterogeneous reaction with geometric rate control, is: 1 - (1 - α 1/3 = K01/r0/[(NH4)2C03]0.8 exp(-64,000/RT)t. It was deduced that initial steps in reaction were: (1) release of Cu2+ from malachite; (2) initial complexing with ammonia to form Cu(NH3)2+; and (3) subsequent complexing to produce Cu(NH3){4/2+} which is stable in solution at pH 8.8, the buffered pH of reaction. Stage II appears to be a similar reaction except that the reaction obeys cylindrical geometry instead of spherical geometry as in Stage I.

  17. The regeneration of polluted activated carbon by radiation techniques

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Borong, Bao; Ruimin, Zhou; Jinliang, Zhu; Longxin, Hu

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption

  18. Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures.

    PubMed

    Dimiev, Ayrat M; Gizzatov, Ayrat; Wilson, Lon J; Tour, James M

    2013-04-01

    Here we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions. PMID:23435853

  19. Solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1,3-propanediol

    SciTech Connect

    Baek, J.I.; Yoon, J.H.

    1998-07-01

    The equilibrium solubility of carbon dioxide in aqueous solutions of 2-amino-2-methyl-1,3-propanediol (AMPD) has been measured at (30, 40, and 60) C and the partial pressure of carbon dioxide ranging from (0.5 to 3065) kPa. The concentrations of the aqueous solutions were (10 and 30) mass % AMPD. The tendency of the solubility of carbon dioxide in 30 mass % AMPD aqueous solution at 40 C was found to be similar to that in 30 mass % N-methyldiethanolamine aqueous solution.

  20. On the black carbon problem and its solutions

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2010-12-01

    Black carbon (BC) warms air temperatures in at least seven major ways: (a) directly absorbing downward solar radiation, (b) absorbing upward reflected solar radiation when it is situated above bright surfaces, such as snow, sea ice, and clouds, (c) absorbing some infrared radiation, (d) absorbing additional solar and infrared radiation upon obtaining a coating, (e) absorbing radiation multiply reflected within clouds when situated interstitially between cloud drops, (f) absorbing additional radiation when serving as CCN or scavenged inclusions within cloud drops, and (g) absorbing solar radiation when deposited on snow and sea ice, reducing the albedos of both. Modeling of the climate effects of BC requires treatment of all these processes in detail. In particular, treatment of BC absorption interstitially between cloud drops and from multiply-dispersed cloud drop BC inclusions must be treated simultaneously with treatment of cloud indirect effects to determine the net effects of BC on cloud properties. Here, results from several simulations of the effects of BC from fossil fuel and biofuel sources on global and regional climate and air pollution health are summarized. The simulations account for all the processes mentioned. Results are found to be statistically significant relative to chaotic variability in the climate system. Over time and in steady state, fossil-fuel soot plus biofuel soot are found to enhance warming more than methane. The sum of the soots causes less steady-state warming but more short term warming than does carbon dioxide. Thus eliminating soot emissions from both sources may be the fastest method of reducing rapid climate warming and possibly the only method of saving the Arctic ice. Eliminating such emissions may also reduce over 1.5 million deaths worldwide, particularly in developing countries. Short term mitigation options include the targeting of fossil-fuel and biofuel BC sources with particle traps, new stove technologies, and rural

  1. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  2. Kinetics of pyrite oxidation in sodium carbonate solutions

    SciTech Connect

    Ciminelli, V.S.T.; Osseo-Asare, K.

    1995-04-01

    The kinetics of pyrite oxidation in sodium carbonate solutions were investigated in a stirred vessel, under temperatures ranging from 50 C to 85 C, oxygen partial pressures from 0 to 1 atm, particle size fractions from {minus}150 + 106 to {minus}38 + 10 {mu}m ({minus}100 + 150 Mesh to {minus}400 Mesh + 10 {mu}m) and pH values of up to 12.5. The rate of the oxidation reaction is described by the following expression: {minus}dN/dt = SbkpO{sup 0.5}{sub 2} [OH{sup {minus}}]{sup 0.1} where N represents moles of pyrite, S is the surface area of the solid particles, b is a stoichiometric factor, k is an apparent rate constant, pO{sub 2} is the oxygen partial pressure, and [OH{sup {minus}}] is the hydroxyl ion concentration. The experimental data were fitted by a stochastic model for chemically controlled reactions, represented by the following fractional conversion (X) vs time (t) equation: (1 {minus} X){sup {minus}2/3} {minus} 1 = k{sub ST}t. The assumption behind this model, i.e., surface heterogeneity leading to preferential dissolution, is supported by the micrographs of reacted pyrite particles, showing pits created by localized dissolution beneath an oxide layer. In addition to the surface texture, the magnitude of the activation energy (60.0 kJ/mol or 14.6 {+-} 2.7 kcal/mol), the independence of rate on the stirring speed, the inverse relationship between the rate constant and the initial particle diameter, and the fractional reaction orders are also in agreement with a mechanism controlled by chemical reaction.

  3. Kinetics of pyrite oxidation in sodium carbonate solutions

    NASA Astrophysics Data System (ADS)

    Ciminelli, V. S. T.; Osseo-Asare, K.

    1995-04-01

    The kinetics of pyrite oxidation in sodium carbonate solutions were investigated in a stirred vessel, under temperatures ranging from 50 °C to 85 °C, oxygen partial pressures from 0 to 1 atm, particle size fractions from -150 + 106 to -38 + 10 µm (-100 + 150 Mesh to -400 Mesh + 10 µm) and pH values of up to 12.5. The rate of the oxidation reaction is described by the following expression: -dN/dt = SbkpO{2/0.5} [OH-]0.1 where N represents moles of pyrite, S is the surface area of the solid particles, b is a stoichiometric factor, k is an apparent rate constant, pO```2`` is the oxygen partial pressure, and [OH-] is the hydroxyl ion concentration. The experimental data were fitted by a stochastic model for chemically controlled reactions, represented by the following fractional conversion (X) vs time ( t) equation: (1-X)-2/3-1 = k STt The assumption behind this model, i.e., surface heterogeneity leading to preferential dissolution, is supported by the micrographs of reacted pyrite particles, showing pits created by localized dissolution beneath an oxide layer. In addition to the surface texture, the magnitude of the activation energy (60.9 kJ/mol or 14.6 ± 2.7 kcal/mol), the independence of rate on the stirring speed, the inverse relationship between the rate constant and the initial particle diameter, and the fractional reaction orders are also in agreement with a mechanism controlled by chemical reaction.

  4. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.

    PubMed

    Naieni, A Kashefian; Nojeh, A

    2012-12-14

    Dielectrophoresis (DEP) is a popular technique for fabricating carbon nanotube (CNT) devices. The electric current passing through the solution during DEP creates a temperature gradient, which results in electrothermal fluid flow because of the presence of the electric field. CNT solutions prepared with various methods can have different conductivities and the motion of the solution because of the electrothermal phenomenon can affect the DEP deposition differently in each case. We investigated the effect of this movement in solutions with various levels of conductivity through experiments as well as numerical modeling. Our results show that electrothermal motion in the solution can alter the deposition pattern of the nanotubes drastically for high conductivity solutions, while DEP remains the dominant force when a low conductivity (surfactant-free) solution is used. The extent of effectiveness of each force is discussed in the various cases and the fluid movement model is investigated using two- and three-dimensional finite element simulations. PMID:23165429

  5. Hydrothermal Carbonization: a feasible solution to convert biomass to soil?

    NASA Astrophysics Data System (ADS)

    Tesch, Walter; Tesch, Petra; Pfeifer, Christoph

    2013-04-01

    The erosion of fertile soil is a severe problem arising right after peak oil (Myers 1996). That this issue is not only a problem of arid countries is shown by the fact that even the European Commission defined certain milestones to address the problem of soil erosion in Europe (European Commission 2011). The application of bio-char produced by torrefaction or pyrolysis for the remediation, revegetation and restoration of depleted soils started to gain momentum recently (Rillig 2010, Lehmann 2011, Beesley 2011). Hydrothermal carbonization (HTC) is a promising thermo-chemical process that can be applied to convert organic feedstock into fertile soil and water, two resources which are of high value in regions being vulnerable to erosion. The great advantage of HTC is that organic feedstock (e.g. organic waste) can be used without any special pretreatment (e.g. drying) and so far no restrictions have been found regarding the composition of the organic matter. By applying HTC the organic material is processed along a defined pathway in the Van Krevelen plot (Behrendt 2006). By stopping the process at an early stage a nutritious rich material can be obtained, which is known to be similar to terra preta. Considering that HTC-coal is rich in functional groups and can be derived from the process under "wet" conditions, it can be expected that it shall allow soil bacteria to settle more easily compared to the bio-char derived by torrefaction or pyrolysis. In addition, up to 10 tons process water per ton organic waste can be gained (Vorlop 2009). Thus, as organic waste, loss of fertile soil and water scarcity becomes a serious issue within the European Union, hydrothermal carbonization can provide a feasible solution to address these issues of our near future. The presentation reviews the different types of feedstock investigated for the HTC-Process so far and gives an overview on the current stage of development of this technology. References Beesley L., Moreno-Jiménez E

  6. 16 CFR 1630.62 - Wool flokati carpets and rugs-alternative washing procedure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...(a) and 1 CFR part 51. Alternatively the selected sample or oversized specimens thereof may be washed... permanent label containing the following statement: Do Not Wash in Home Machine or Dry Clean—Avoid Rubbing... a shallow pan which has been filled to a depth of 2″ with a wash solution of 1.1 grams of...

  7. 16 CFR 1631.62 - Wool flokati carpets and rugs-alternative washing procedure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...(a) and 1 CFR part 51. Alternatively the selected sample or oversized specimens thereof may be washed... permanent label containing the following statement: Do Not Wash in Home Machine or Dry Clean—Avoid Rubbing... a shallow pan which has been filled to a depth of 2” with a wash solution of 1.1 grams of...

  8. 16 CFR 1630.62 - Wool flokati carpets and rugs-alternative washing procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...(a) and 1 CFR part 51. Alternatively the selected sample or oversized specimens thereof may be washed... permanent label containing the following statement: Do Not Wash in Home Machine or Dry Clean—Avoid Rubbing... a shallow pan which has been filled to a depth of 2″ with a wash solution of 1.1 grams of...

  9. 16 CFR 1631.62 - Wool flokati carpets and rugs-alternative washing procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...(a) and 1 CFR part 51. Alternatively the selected sample or oversized specimens thereof may be washed... permanent label containing the following statement: Do Not Wash in Home Machine or Dry Clean—Avoid Rubbing... a shallow pan which has been filled to a depth of 2” with a wash solution of 1.1 grams of...

  10. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.

    PubMed

    dos Santos, Elisama Vieira; Sáez, Cristina; Martínez-Huitle, Carlos Alberto; Cañizares, Pablo; Rodrigo, Manuel Andres

    2016-04-15

    In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal. PMID:26846982

  11. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect

    Peters, T. B.

    2014-01-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  12. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect

    Peters, T. B.

    2013-10-01

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  13. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect

    Peters, T. B.; Fink, S. D.

    2012-10-25

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  14. Study of the reuse of treated wastewater on waste container washing vehicles.

    PubMed

    Vaccari, Mentore; Gialdini, Francesca; Collivignarelli, Carlo

    2013-02-01

    The wheelie bins for the collection of municipal solid waste (MSW) shall be periodically washed. This operation is usually carried out by specific vehicles which consume about 5000 L of water per day. Wastewater derived from bins washing is usually stored on the same vehicle and then discharged and treated in a municipal WWTP. This paper presents a study performed to evaluate the reuse of the wastewater collected from bins washing after it has been treated in a small plant mounted on the vehicle; the advantage of such a system would be the reduction of both vehicle dimension and water consumption. The main results obtained by coagulation-flocculation tests performed on two wastewater samples are presented. The addition of 2 mL/L of an aqueous solution of aluminum polychloride (18% w/w), about 35 mL/L of an aqueous solution of CaO (4% w/w) and 25 mL/L of an aqueous solution of an anionic polyelectrolyte (1 ‰ w/w) can significantly reduce turbidity and COD in treated water (to about 99% and 42%, respectively); the concomitant increase of UV transmittance at 254 nm (up to 15%) enables UV disinfection application by a series of two ordinary UV lamps. Much higher UV transmittance values (even higher than 80%) can be obtained by dosing powdered activated carbon, which also results in a greater removal of COD. PMID:23142511

  15. THE SOLAR NEBULA ON FIRE: A SOLUTION TO THE CARBON DEFICIT IN THE INNER SOLAR SYSTEM

    SciTech Connect

    Lee, Jeong-Eun; Bergin, Edwin A.; Nomura, Hideko E-mail: ebergin@umich.edu

    2010-02-10

    Despite a surface dominated by carbon-based life, the bulk composition of the Earth is dramatically carbon poor when compared to the material available at formation. Bulk carbon deficiency extends into the asteroid belt representing a fossil record of the conditions under which planets are born. The initial steps of planet formation involve the growth of primitive sub-micron silicate and carbon grains in the Solar Nebula. We present a solution wherein primordial carbon grains are preferentially destroyed by oxygen atoms ignited by heating due to stellar accretion at radii <5 AU. This solution can account for the bulk carbon deficiency in the Earth and meteorites, the compositional gradient within the asteroid belt, and for growing evidence for similar carbon deficiency in rocks surrounding other stars.

  16. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.

    PubMed

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-06-01

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired. PMID:22538869

  17. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili

    2012-05-01

    Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ~70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.

  18. Countercurrent washing of Pittsburgh No. 8 coal after leaching with molten mixtures of sodium and potassium hydroxides

    SciTech Connect

    Chriswell, C.D.; Shah, N.D.; Markuszewski, R. )

    1991-01-01

    Molten caustic leaching is an advanced chemical coal-cleaning process which results in the removal of over 90% of the sulfur and ash from coal. One of the steps in this process is the water washing of caustic-leached coals to remove unreacted caustic and impurities released by reactions with the molten caustic. A countercurrent procedure, designed for efficient washing with minimal water consumption, has been evaluated in the present work. A Pittsburgh No. 8 coal was leached with a one-to-one mixture of molten sodium and potassium hydroxides, and the resulting coal-caustic cake was washed using this countercurrent procedure. The countercurrent washing did result in recovery of caustic at predicted concentrations, and a relatively ash-free and sulfur-free coal was the final product. However, significant problems occurred during the countercurrent washing, all of which could be linked with the formation of a massive precipitate of carbonates from the alkaline process streams. The mass of the precipitate retained fluids and thus led to far lower than predicted recoveries of caustic solutions. the precipitate also caused a significant decrease in filtration rates.

  19. Effects of Shampoo and Water Washing on Hair Cortisol Concentrations

    PubMed Central

    Hamel, Amanda F.; Meyer, Jerrold S.; Henchey, Elizabeth; Dettmer, Amanda M.; Suomi, Stephen J.; Novak, Melinda A.

    2010-01-01

    Background Measurement of cortisol in hair is an emerging biomarker for chronic stress in human and nonhuman primates. Currently unknown, however, is the extent of potential cortisol loss from hair that has been repeatedly exposed to shampoo and/or water. Methods Pooled hair samples from 20 rhesus monkeys were subjected to five treatment conditions: 10, 20, or 30 shampoo washes, 20 water-only washes, or a no-wash control. For each wash, hair was exposed to a dilute shampoo solution or tap water for 45 s, rinsed 4 times with tap water, and rapidly dried. Samples were then processed for cortisol extraction and analysis using previously published methods. Results Hair cortisol levels were significantly reduced by washing, with an inverse relationship between number of shampoo washes and the cortisol concentration. This effect was mainly due to water exposure, as cortisol levels following 20 water-only washes were similar to those following 20 shampoo treatments. Conclusions Repeated exposure to water with or without shampoo appears to leach cortisol from hair, yielding values that underestimate the amount of chronic hormone deposition within the shaft. Collecting samples proximal to the scalp and obtaining hair washing frequency data may be valuable when conducting human hair cortisol studies. PMID:21034727

  20. Immunotoxicity of washing soda in a freshwater sponge of India.

    PubMed

    Mukherjee, Soumalya; Ray, Mitali; Ray, Sajal

    2015-03-01

    The natural habitat of sponge, Eunapius carteri faces an ecotoxicological threat of contamination by washing soda, a common household cleaning agent of India. Washing soda is chemically known as sodium carbonate and is reported to be toxic to aquatic organisms. Domestic effluent, drain water and various human activities in ponds and lakes have been identified as the major routes of washing soda contamination of water. Phagocytosis and generation of cytotoxic molecules are important immunological responses offered by the cells of sponges against environmental toxins and pathogens. Present study involves estimation of phagocytic response and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase in E. carteri under the environmentally realistic concentrations of washing soda. Sodium carbonate exposure resulted in a significant decrease in the phagocytic response of sponge cells under 4, 8, 16 mg/l of the toxin for 96h and all experimental concentrations of the toxin for 192h. Washing soda exposure yielded an initial increase in the generation of the superoxide anion and nitric oxide followed by a significant decrease in generation of these cytotoxic agents. Sponge cell generated a high degree of phenoloxidase activity under the experimental exposure of 2, 4, 8, 16 mg/l of sodium carbonate for 96 and 192 h. Washing soda induced alteration of phagocytic and cytotoxic responses of E. carteri was indicative to an undesirable shift in their immune status leading to the possible crises of survival and propagation of sponges in their natural habitat. PMID:25497767

  1. Extraction of palladium from acidic solutions with the use of carbon adsorbents

    SciTech Connect

    O.N. Kononova; N.G. Goryaeva; N.B. Dostovalova; S.V. Kachin; A.G. Kholmogorov

    2007-08-15

    We studied the sorption of palladium(II) on LKAU-4, LKAU-7, and BAU carbon adsorbents from model hydrochloric acid solutions and the solutions of spent palladium-containing catalysts. It was found that sorbents based on charcoal (BAU) and anthracite (LKAU-4) were characterized by high sorption capacities for palladium. The kinetics of the saturation of carbon adsorbents with palladium(II) ions was studied, and it was found that more than 60% of the initial amount of Pd(II) was recovered in a 1-h contact of an adsorbent with a model solution. This value for the solutions of spent catalysts was higher than 35%.

  2. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruiz, B.; Cabrita, I.; Mestre, A. S.; Parra, J. B.; Pires, J.; Carvalho, A. P.; Ania, C. O.

    2010-06-01

    The removal of a compound with therapeutic activity (paracetamol) from aqueous solutions using chemically modified activated carbons has been investigated. The chemical nature of the activated carbon material was modified by wet oxidation, so as to study the effect of the carbon surface chemistry and composition on the removal of paracetamol. The surface heterogeneity of the carbon created upon oxidation was found to be a determinant in the adsorption capability of the modified adsorbents, as well as in the rate of paracetamol removal. The experimental kinetic data were fitted to the pseudo-second order and intraparticle diffusion models. The parameters obtained were linked to the textural and chemical features of the activated carbons. After oxidation the wettability of the carbon is enhanced, which favors the transfer of paracetamol molecules to the carbon pores (smaller boundary layer thickness). At the same time the overall adsorption rate and removal efficiency are reduced in the oxidized carbon due to the competitive effect of water molecules.

  3. PROCESS FOR RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS BY REDUCTION-PRECIPITATION

    DOEpatents

    Ellis, D.A.; Lindblom, R.O.

    1957-09-24

    A process employing carbonate leaching of ores and an advantageous methcd of recovering the uranium and vanadium from the leach solution is described. The uranium and vanadium can be precipitated from carbonate leach solutions by reaction with sodium amalgam leaving the leach solution in such a condition that it is economical to replenish for recycling. Such a carbonate leach solution is treated with a dilute sodium amalgam having a sodium concentration within a range of about 0.01 to 0.5% of sodium. Efficiency of the treatment is dependent on at least three additional factors, intimacy of contact of the amalgam with the leach solution, rate of addition of the amalgam and exclusion of oxygen (air).

  4. Prototype wash water renovation system integration with goverment-furnished wash fixture

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A total renovation concept for removing objectionable materials from spacecraft wash water to make the water reusable was developed. This concept included ferric chloride pretreatment to coagulate suspended solids such as soap and lint, pressure filtration, and carbon adsorption and ion exchange to remove trace dissolved organics and inorganic salts. A breadboard model which was developed to demonstrate the design adequacy of the various system components and the limits on system capacities and efficiencies.

  5. Selective removal of plutonium 238 from a canal sediment using a carbonate-chelant soil washing technology (ACT*DE*CON).

    PubMed

    Negri, M C; Swift, N A; Carfagno, D; Neff, R A; North, J

    1999-04-23

    The Mound laboratory site in Miamisburg, OH, a former plutonium processing facility, contains approximately 40000 yd(3) (30,580 m3) of plutonium- and thorium-contaminated soils and sediments at levels that require remediation. Existing applicable remediation technologies are unsatisfactory, because they are expensive and do not provide volume reduction. ACT*DE*CON is a chemical soil leaching technology for the treatment of soils that utilizes contaminant dissolution via dilute selective solutions to remove radionuclides. In bench-scale tests, process parameters were developed for the optimal treatment of the Miami Erie Canal soil at the Mound site, combining the maximum plutonium removal with an acceptable amount of soil dissolution and minimizing the costs of reagents. Parameters evaluated included soil to extractant mass ratio, temperature, rinse solution composition, kinetics, and the application of several dewatering aids. Plutonium removal rates of >95% were achieved, and the residual plutonium in the treated soil proved to be very immobile-confirming that the process had removed the most accessible species of the radionuclide. Currently being tested at Mound is an engineering scale-up that includes an attrition scrubber, a counter-current extractor, and a reverse osmosis system. Economic evaluations based on bench-scale results put the treatment cost at US$278/yd(3) (US$364/m3), compared to US$350/yd(3) (US$458/m3) for the 'box-and-bury' baseline alternative treatment system. PMID:10379033

  6. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis.

    PubMed

    Wang, Chengwei; Wang, Yuan; Graser, Jake; Zhao, Ran; Gao, Fei; O'Connell, Michael J

    2013-12-23

    A facile and scalable solution-based, spray pyrolysis synthesis technique was used to synthesize individual carbon nanospheres with specific surface area (SSA) up to 1106 m(2)/g using a novel metal-salt catalyzed reaction. The carbon nanosphere diameters were tunable from 10 nm to several micrometers by varying the precursor concentrations. Solid, hollow, and porous carbon nanospheres were achieved by simply varying the ratio of catalyst and carbon source without using any templates. These hollow carbon nanospheres showed adsorption of to 300 mg of dye per gram of carbon, which is more than 15 times higher than that observed for conventional carbon black particles. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed, with no capacitance loss after 20,000 cycles. PMID:24274705

  7. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  8. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  9. Efficacy of Post-Wash Shell Egg Sanitizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine (Cl) solutions of 100-200 ppm are the standard by which post-wash shell egg sanitizers are measured. Any facility that packages eggs with the USDA grade shields must use a comparable sanitizer. While chlorine solutions are inexpensive, non-corrosive, and safe to handle, they are not very ...

  10. Inhibition Effect of Dodecylamine on Carbon Steel Corrosion in Hydrochloric Acid Solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyu; Huang, Ling; Qiu, Yubing; Guo, Xingpeng

    2012-12-01

    Dodecylamine spontaneously adsorbs on carbon steel via its polar group (-NH2) in hydrochloric acid solution. Furthermore, it forms a monolayer film on carbon steel surface. The inhibition mechanism of dodecylamine for carbon steel is geometric blocking effect. The adsorption of dodecylamine on carbon steel surface follows Arrhenius equation. The adsorption slightly increases activated energy, but greatly reduces pre-exponential factor value. Atomic force microscopy force curves indicate that at the area without adsorbed dodecylamine, no obvious adhere force occurs. At the area with adsorbed dodecylamine, however, an average 1.3 nN adhere force is observed.

  11. Fabrication of carbon nanowires by pyrolysis of aqueous solution of sugar within asbestos nanofibers

    NASA Astrophysics Data System (ADS)

    Butko, V. Yu.; Fokin, A. V.; Nevedomskii, V. N.; Kumzerov, Yu. A.

    2015-05-01

    Carbon nanowires have been fabricated by pyrolysis of an aqueous solution of sugar in nanochannels of asbestos fibers. Electron microscopy demonstrates that the diameter of these nanochannels corresponds to the diameter of the thinnest of the carbon nanowires obtained. Some of these nanowires have a graphite crystal lattice and internal pores. After asbestos is etched out, the carbon nanowires can retain the original shape of the asbestos fibers. Heating in an inert atmosphere reduces the electrical resistivity of the carbon nanowires to ˜0.035 Ω cm.

  12. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells.

    PubMed

    Ramuz, Marc P; Vosgueritchian, Michael; Wei, Peng; Wang, Chenggong; Gao, Yongli; Wu, Yingpeng; Chen, Yongsheng; Bao, Zhenan

    2012-11-27

    Carbon allotropes possess unique and interesting physical, chemical, and electronic properties that make them attractive for next-generation electronic devices and solar cells. In this report, we describe our efforts into the fabrication of the first reported all-carbon solar cell in which all components (the anode, active layer, and cathode) are carbon based. First, we evaluate the active layer, on standard electrodes, which is composed of a bilayer of polymer sorted semiconducting single-walled carbon nanotubes and C(60). This carbon-based active layer with a standard indium tin oxide anode and metallic cathode has a maximum power conversion efficiency of 0.46% under AM1.5 Sun illumination. Next, we describe our efforts in replacing the electrodes with carbon-based electrodes, to demonstrate the first all-carbon solar cell, and discuss the remaining challenges associated with this process. PMID:23113673

  13. Ceramic wash-coat for catalyst support

    DOEpatents

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  14. Extraction of actinides into aqueous polyethylene glycol solutions from carbonate media in the presence of alizarin complexone

    SciTech Connect

    Molochnikova, N.P.; Frenkel', V.Ya.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-01-01

    Actinide extraction in a two-phase aqueous system based on polyethylene glycol from carbonate solutions of various compositions in presence of alizarin complexone is studied. It is shown that the nature of the alkali metals affects actinide extraction into the polyethylene glycol phase. Tri- and tetravalent actinides are extracted maximally from sodium carbonate solutions. Separation of actinides in different oxidation states is more effective in potassium carbonate solutions. The behavior of americium in different oxidation states in the system carbonate-polyethylene glycol-complexone is studied. The possibility of extraction separation of microamount of americium(V) from curium in carbonate solutions in presence of alizarin complexone is shown.

  15. Selective sorption of PCBs by low-cost polymers and application to soil washing processes

    SciTech Connect

    Sivavec, T.M.; Webb, J.L.; Gascoyne, D.G.

    1996-10-01

    Surfactant-assisted soil washing and soil flushing processes have shown to be a promising soil decontamination method. In these and other remediation technologies that employ surfactants to mobilize organic contaminants, large volumes of contaminated aqueous solutions are generated. An efficient process to selectively concentrate the organic contaminant from the aqueous surfactant solution, thereby allowing the recycle of the surfactant, is considered essential for cost-effective application of these remediation methods. To this end, a process was developed wherein commercial, low-cost polymers are used to selectively sorb PCBs and petroleum oils from aqueous surfactant solutions. Sorption isotherms and sorption rates were determined for a large number of polymer sorbents and several significant structure-property relationships were observed. Two classes of polymers, polyester elastomers and carbon-filled elastomer rubbers (e.g., recycled rubber tire), were found to perform superiorly in this application and a successful pilot-scale demonstration of the process was conducted.

  16. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOEpatents

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  17. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  18. 27 CFR 19.328 - Wash water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wash water. 19.328 Section... THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production Chemical By-Products § 19.328 Wash water. Water used in washing chemicals to remove spirits therefrom may be run into a wash tank or a...

  19. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  20. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  1. 27 CFR 19.310 - Wash water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Wash water. 19.310 Section 19.310 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Byproducts § 19.310 Wash water. Water used in washing chemicals to remove spirits may be run into a wash...

  2. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  3. Enhanced sludge washing evaluation plan

    SciTech Connect

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.

  4. Optoelectronic ally automated system for carbon nanotubes synthesis via arc-discharge in solution

    SciTech Connect

    Bera, Debasis; Brinley, Erik; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Kabes, Bradley

    2005-03-01

    The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy.

  5. Optoelectronically automated system for carbon nanotubes synthesis via arc-discharge in solution

    NASA Astrophysics Data System (ADS)

    Bera, Debasis; Brinley, Erik; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Kabes, Bradley

    2005-03-01

    The method of arc discharge in the solution is unique and inexpensive route for synthesis of the carbon nanotubes (CNTs), carbon onions, and other carbon nanostructures. Such a method can be used for in situ synthesis of CNTs decorated with nanoparticles. Herein, we report a simple and inexpensive optoelectronically automated system for arc discharge in solution synthesis of CNTs. The optoelectronic system maintains a constant gap between the two electrodes allowing a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analog electronic unit, as controller. This computerized feeding system of the anode was used for in situ nanoparticles incorporated CNTs. For example, we have successfully decorated CNTs with ceria, silica, and palladium nanoparticles. Characterizations of nanostructures are performed using high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy, and scanning electron microscopy.

  6. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    SciTech Connect

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.; Browning, G.J.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict the densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.

  7. Subaerial diagenesis of carbonate sediments: efficiency of the solution-reprecipitation process.

    PubMed

    Harris, W H; Matthews, R K

    1968-04-01

    Interaction between percolating groludwaters and aragonitic carbonate sediments within the vadose zone of the coral cap of Barbados, West Indies, results in dissolution of aragonite and concurrent reprecipitation as low-magnesium calcite. Comparison of the ratios of strontium to calcium in groundwater, aragonitic carbonate, and recrystallized calcite indicates that locally the solution-reprecipitation process is operating at an efficiency greater than 90 percent. PMID:17808784

  8. Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions.

    PubMed

    Nordström, E G; Karlsson, K H

    1992-01-01

    A potassium-doped synthetic apatite was prepared by soaking hydroxyapatite in potassium carbonate and potassium chloride solutions. The hydroxyapatite was prepared by firing slip cast ceramic bodies in vacuum at 1100 degrees C. The conical ceramic samples and a crushed material of this were soaked in carbonate and chloride solutions for 2, 4, 6, and 8 weeks. Potassium, calcium, and phosphate were determined by direct current plasma emission spectroscopy. The carbonate content was determined by thermogravimetric analysis and chloride titrimetrically. After 2 weeks, one potassium ion substituted one calcium ion when soaked in a carbonate solution. When soaked in the chloride solution substitution occurred to the same extent. At phosphate sites the substitution of phosphate for carbonate occurred at one sixth of the sites after 2 weeks. Chloride incorporated one half of the OH-sites after 2 weeks. After 4 weeks about one chloride ion was found in the apatite, and after 6 weeks one and a half of the OH-sites were occupied by chloride ions. PMID:1483120

  9. Solution and shock-induced exsolution of argon in vitreous carbon

    NASA Technical Reports Server (NTRS)

    Gazis, Carey; Ahrens, Thomas J.

    1991-01-01

    To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.

  10. Kinetic peculiarities of diamond crystallization in K-Na-Mg-Ca-Carbonate-Carbon melt-solution

    NASA Astrophysics Data System (ADS)

    Solopova, N. A.; Spivak, A. V.; Litvin, Yu. A.; Shiryaev, A. A.; Tsel'movich, V. A.; Nekrasov, A. N.

    2013-02-01

    The kinetic peculiarities of diamond crystallization in multicomponent K-Na-Mg-Ca-carbonate-carbon system have been studied in conditions of diamond stability at 1500-1800°C and 7.5-8.5 GPa. It has been established that the diamond phase nucleation density at a fixed temperature of 1600°C decreases from 1.3 × 105 nuclei/mm3 at 8.5 GPa to 3.7 × 103 nuclei/mm3 at 7.5 GPa. The fluorescence spectra of obtained diamond crystals contain peaks at 504 nm ( H3-defect), 575 nm (NV-center), and 638 nm (NV-defect), caused by the presence of nitrogen impurity. In the cathodoluminescence spectra, an A-band with the maximum at 470 nm is present. The obtained data make it possible to assign the synthesized diamonds in the carbonate-carbon system to the mixed Ia + Ib type.

  11. A Window-Washing Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Skyscrapers sure do have a lot of windows, and these windows are cleaned and checked regularly. All this takes time, money, and puts workers at potential risk. Might there be a better way to do it? In this article, the author discusses a window-washing challenge and describes how students can tackle this task, pick up the challenge, and creatively…

  12. Carbon-13 NMR characterization of actinyl(VI) carbonate complexes in aqueous solution

    SciTech Connect

    Clark, D.L.; Hobart, D.E.; Palmer, P.D.; Sullivan, J.C.; Stout, B.E.

    1992-07-01

    The uranyl(VI) carbonate system has been re-examined using {sup 13}C NMR of 99.9% {sup 13}C-enriched U{sup VI}O{sub 2} ({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} in millimolar concentrations. By careful control of carbonate ion concentration, we have confirmed the existence of the trimer, and observed dynamic equilibrium between the monomer and the timer. In addition, the ligand exchange reaction between free and coordinated carbonate on Pu{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} and Am{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} systems has been examined by variable temperature {sup 13}C NMR line-broadening techniques {sup 13}C NMR line-broadening techniques. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was written to allow for experimental determination of ligand exchange parameters for paramagnetic actinide complexes. Preliminary Eyring analysis has provided activation parameters of {Delta}G{sup {double_dagger}}{sub 295} = 56 kJ/M, {Delta}H{sup {double_dagger}} = 38 kJ/M, and {Delta}S{sup {double_dagger}} = {minus}60 J/M-K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl (VI) carbonate complex self-exchange reaction. Experiments for determination of the activation parameters for the americium (VI) carbonate system are in progress.

  13. Solution-phase EPR studies of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chen, J.; Hu, H.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    1999-01-01

    We report EPR studies on pristine, purified, shortened and soluble SWNTs in various solution phases. Some of these samples give rise to strong, sharp EPR signals, and this technique is useful for monitoring the presence of SWNTs in aqueous and organic solvents. The soluble SWNTs carry about 1 unpaired electron per 10000 carbon atoms and give a free electron g-value.

  14. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  15. Computer simulation of cascade damage in -iron with carbon in solution

    SciTech Connect

    Calder, Andrew F; Bacon, David J; Barashev, Aleksandr; Osetsky, Nickolai

    2008-01-01

    Computer simulation of cascade damage in -iron with carbon in solution Original Research Article Journal of Nuclear Materials, Volume 382, Issues 2 3, 1 December 2008, Pages 91-95 Andrew F. Calder, David J. Bacon, Alexander V. Barashev, Yuri N. Osetsky

  16. Radiolysis of Bicarbonate and Carbonate Aqueous Solutions: Product Analysis and Simulation of Radiolytic Processes

    SciTech Connect

    Cai Zhongli; Li Xifeng; Katsumura, Yosuke; Urabe, Osamu

    2001-11-15

    An understanding of the radiation-induced effects in groundwater is essential to evaluate the safe geological disposal of spent fuel. In groundwater, the bicarbonate ion is the predominant and common anion; this work investigated radiation-induced chemical reactions of (bi)carbonate aqueous solutions with steady-state irradiation and pulse radiolysis methods. Aqueous solutions of sodium (bi)carbonate as high as 50 mmol.dm{sup -3} were used. The formation of formate, oxalate, and H{sub 2}O{sub 2} were measured under different conditions. A complete set of reaction steps and reliable kinetic data for the radiolysis of (bi)carbonate aqueous solutions at ionic strength close to the groundwater were proposed. Kinetic calculations were completed based on the proposed reaction steps and the kinetic data obtained in the present work. The results from the calculation are in good agreement with the experimental results. With these proposed reaction steps and kinetic data, computer simulation can be performed to predict the yield of radiolytic products of (bi)carbonate aqueous solutions as a function of irradiation time and used to evaluate the safety of geological disposal options of spent fuel.

  17. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes.

    PubMed

    Nakagawa, Kyuya; Namba, Akio; Mukai, Shin R; Tamon, Hajime; Ariyadejwanich, Pisit; Tanthapanichakoon, Wiwut

    2004-04-01

    Activated carbons were produced from several solid wastes, namely, waste PET, waste tires, refuse derived fuel and wastes generated during lactic acid fermentation from garbage. Activated carbons having various pore size distributions were obtained by the conventional steam-activation method and via the pre-treatment method (i.e., mixture of raw materials with a metal salt, carbonization and acid treatment prior to steam-activation) that was proposed by the authors. The liquid-phase adsorption characteristics of organic compounds from aqueous solution on the activated carbons were determined to confirm the applicability of these carbons, where phenol and a reactive dye, Black5, were employed as representative adsorbates. The hydrophobic surface of the carbons prepared was also confirmed by water vapor adsorption. The characteristics of a typical commercial activated carbon were also measured and compared. It was found that the activated carbons with plentiful mesopores prepared from PET and waste tires had quite high adsorption capacity for large molecules. Therefore they are useful for wastewater treatment, especially, for removal of bulky adsorbates. PMID:15026233

  18. A basket for washing benthological samples

    USGS Publications Warehouse

    Selgeby, James H.

    1971-01-01

    Since benthological samples collected with dredges are usually too large to be preserved in toto, a washing method must be employed to reduce the sample volume without losing or damaging the organisms. Traditionally, the sample is washed in a sieve until the volume is small enough for convenient handling or preservation. Most washing procedures are time-consuming and laborious. To save time in washing samples, a washing 'basket' was designed which accomadates a Ponar dredge. The only additional equipment needed to employ the washing basket effectively is a pump that delivers about 8 gallons of water per minute.

  19. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    NASA Astrophysics Data System (ADS)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  20. Characterization of Th carbonate solutions using XAS and implications for thermodynamic modeling

    SciTech Connect

    Hess, N.J.; Felmy, A.R.; Rai, D.; Conradson, S.D.

    1997-12-31

    The chemical behavior of actinide elements in tank solutions, in soil, and in groundwater is dependent upon the chemical species that form when aqueous solutions come in contact with the actinide compounds. In particular the chemical speciation of the reduced actinide oxidation states (III and IV) are important, for example, to DOE waste tank processing and, more generally, to nuclear waste disposal issues. Predicting the solubility of the actinides in these solutions requires identification of the strong aqueous complexes, such as carbonates and organic chelating agents, that can form in aqueous solution. Previous speciation work has often relied on indirect techniques such as potentiometric titrations or solubility measurements. Recent XAS experiments determine directly the speciation of the Th carbonato species of seven solutions under a range of carbonate concentrations and pH conditions. The presence of the pentacarbonato complex is confirmed and the complex`s stability at low carbonate concentrations is determined. These experimental results support a proposed thermodynamic model that describes the solubility of Th(IV) hydrous oxide in the aqueous Na{sup +}-HCO{sub 3}{sup {minus}}-CO{sub 3}{sup 2{minus}}-OH{sup {minus}}-ClO{sub 4}{sup {minus}}-H{sub 2}O system extending to high concentrations at 25 C. This model is relatively simple in that only two aqueous species are included Th(OH){sub 3}CO{sub 3}{sup {minus}} and Th(CO{sub 3}){sub 5}{sup 6{minus}}.

  1. Synthesis of finely divided molybdenum sulfide nanoparticles in propylene carbonate solution

    SciTech Connect

    Afanasiev, Pavel

    2014-05-01

    Molybdenum sulfide nanoparticles have been prepared from the reflux solution reaction involving ammonium heptamolybdate and elemental sulfur in propylene carbonate. Addition to the reaction mixture of starch as a natural capping agent leads to lesser agglomeration and smaller size of the particles. Nanoparticles of MoS{sub x} (x≈4) of 10–30 nm size are highly divided and form stable colloidal suspensions in organic solvents. Mo K edge EXAFS of the amorphous materials shows rapid exchange of oxygen to sulfur in the molybdenum coordination sphere during the solution reaction. Thermal treatment of the amorphous sulfides MoS{sub x} under nitrogen or hydrogen flow at 400 °C allows obtaining mesoporous MoS{sub 2} materials with very high pore volume and specific surface area, up to 0.45 cm{sup 3}/g and 190 m{sup 2}/g, respectively. The new materials show good potential for the application as unsupported hydrotreating catalysts. - Graphical abstract: Solution reaction in propylene carbonate allows preparing weakly agglomerated molybdenum sulfide with particle size 20 nm and advantageous catalytic properties. - Highlights: • Solution reaction in propylene carbonate yields MoS{sub x} particles near 20 nm size. • Addition of starch as capping agent reduces particles size and hinder agglomeration. • EXAFS at Mo K edge shows rapid oxygen to sulfur exchange in the solution. • Thermal treatment leads to MoS{sub 2} with very high porosity and surface area.

  2. Adsorption of carbon dioxide by solution-plasma-synthesized heteroatom-doped carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Thongwichit, Nanthiya; Li, Oi Lun Helena; Yaowarat, Wattanachai; Saito, Nagahiro; Suriyapraphadilok, Uthaiporn

    2016-01-01

    Porous carbon nanospheres (CNSs) synthesized by a plasma-in-liquid technique were applied as an adsorbent for CO2 adsorption. Two different types of aromatic solvents, benzene and pyridine, were used as precursors to generate CNSs. The prepared CNSs were carbonized and then activated with CO2 to obtain carbon materials with a suitable porous structure for CO2 adsorption. To improve CO2 adsorption capacity, activated CNSs were then chemically modified using different approaches of surface treatment, namely, HNO3 oxidation, amination without HNO3 preoxidation, and amination with HNO3 preoxidation. The CO2 adsorption capacities of the samples were investigated at 1 atm and 40 °C using a simultaneous thermal analyzer. It was found that the CO2 adsorption of CNSs was enhanced through the development of textural properties. All of the surface treatment approaches led to the increase in CO2 adsorption capacity of the activated CNSs owing to the presence of nitrogen or oxygen functional groups introduced onto the carbon surface during the treatment.

  3. First Molecular Dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons

    NASA Astrophysics Data System (ADS)

    Terzyk, Artur P.; Gauden, Piotr A.; Zieliński, Wojciech; Furmaniak, Sylwester; Wesołowski, Radosław P.; Klimek, Kamil K.

    2011-10-01

    The results of 84 MD simulations showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds from aqueous solutions on carbons are reported. Based on a model of 'soft' activated carbon, three carbon structures with gradually changed microporosity were created. Next, different number of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons.

  4. Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes

    SciTech Connect

    Y Mikata

    2006-08-22

    This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbon nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.

  5. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  6. Performance evaluation of trimethylamine-carbon dioxide thermolytic draw solution for engineered osmosis

    SciTech Connect

    Boo, C; Khalil, YF; Elimelech, M

    2015-01-01

    We evaluated the performance of trimethylamine-carbon dioxide (TMA-CO2) as a potential thermolytic draw solution for engineered osmosis. Water flux and reverse solute flux with TMA-CO2 draw solution were measured in forward osmosis (FO) and pressure retarded osmosis (PRO) modes using thin-film composite (TFC) and cellulose triacetate (CTA) FO membranes. Water flux with the TMA-CO2 draw solution was comparable to that obtained with the more common ammonia-carbon dioxide (NH3-CO2) thermolytic draw solution at similar (1 M) concentration. Using a TFC-FO membrane, the water fluxes produced by 1 M TMA-CO2 and NH3-CO2 draw solutions with a DI water feed were, respectively, 33.4 and 35.6 L m(-2) h(-1) in PRO mode and 14.5 and 152 L m(-2) h(-1) in FO mode. Reverse draw permeation of TMA-CO2 was relatively low compared to NH3-CO2, ranging from 0.1 to 0.2 mol m(-2) h(-1) in all experiments, due to the larger molecular size of TMA. Thermal separation and recovery efficiency for TMA-CO2 was compared to NH3-CO2 by modeling low-temperature vacuum distillation utilizing low-grade heat sources. We also discuss possible challenges in the use TMA-CO2, including potential adverse impact on human health and environments. (C) 2014 Elsevier B.V. All rights reserved.

  7. The effect of contaminant aging upon soil washing removal efficiencies for lead contaminated soils

    SciTech Connect

    Cline, S.R.; Reed, B.E.; Moore, R.E.

    1994-10-01

    The objective of this research was to investigate lead removal efficiencies from various soils using a variety of washing solutions. Most soil types have a strong affinity for lead. Thus, it is plausible to expect washing solutions that are capable of removing lead could also remove other divalent heavy metals. Four soil samples from the eastern US were collected and characterized for this study. The study soils were then spiked to approximate lead concentrations of 1,000 and 10,000 mg Pb/kg soil. The efficiencies of six washing solutions in removing lead from the contaminated soils were then investigated via lab-scale batch washing experiments. Unlike current field-scale soil washing practices, all particle size fractions were washed and recovered in these experiments. (Solutions investigated include: tap water, HCl, EDTA, HNO{sub 3}, CH{sub 3}COOH, and CaCl{sub 2}.) In order to examine the effect of aging upon soil washing efficiencies, some of the spiked soils were washed a second time after an aging period of nearly 2 years.

  8. Controls of carbonate mineralogy and solid-solution of Mg in calcite: evidence from spelean systems

    SciTech Connect

    Gonzalez, L.A.; Lohmann, K.C.

    1985-01-01

    Precipitation of carbonate minerals in spelean systems occurs under a wide range of fluid chemistry, Mg-Ca ratios, alkalinities, pH and temperatures; thus, spelean systems provide ideal settings to determine factors controlling the mineralogy of precipitated carbonates and solid-solution of Mg in calcite. Cave waters and actively-precipitating carbonate speleothems were collected from Carlsbad Caverns National Park, New Mexico and the Mammoth-Flint Cave System, Kentucky. Carbonate mineralogy of precipitated phases was determined by x-ray diffraction, and major and minor element composition of waters and accompanying minerals were determined by Atomic Absorption Spectrophotometry. Results demonstrate that at a constant CO3 concentration the precipitation threshold for calcite to aragonite is controlled dominantly by the Mg/Ca ratio of the ambient fluid. Aragonite precipitation is favored by high Mg/Ca ratios. Conversely, with increasing CO3 concentration at constant fluid Mg/Ca ratios, calcite is preferentially precipitated. Solid-solution of Mg in calcite is positively correlated with both increased Mg/Ca ratios and CO3 concentrations. These data suggest that Mg contents of calcite can not be defined solely in terms of a homogeneous distribution coefficient. Rather, Mg concentrations can be also be affected by the CO3 concentration and degree of calcite saturation, suggesting that the rate of crystal growth also plays and important role in Mg solid-solution in calcites.

  9. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves.

    PubMed

    Gallyamov, Marat O; Chaschin, Ivan S; Khokhlova, Marina A; Grigorev, Timofey E; Bakuleva, Natalia P; Lyutova, Irina G; Kondratenko, Janna E; Badun, Gennadii A; Chernysheva, Maria G; Khokhlov, Alexei R

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H2O and CO2. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16-33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. PMID:24582232

  10. RADIATION CHEMISTRY OF HIGH ENERGY CARBON, NEON AND ARGON IONS: INTEGRAL YIELDS FROM FERROUS SULFATE SOLUTIONS

    SciTech Connect

    Christman, E.A.; Appleby, A.; Jayko, M.

    1980-07-01

    Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.

  11. Solution and precipitation hardening in carbon-doped two-phase {gamma}-titanium aluminides

    SciTech Connect

    Appel, F.; Christoph, U.; Wagner, R.

    1997-12-31

    A two-phase titanium aluminide alloy was systematically doped with carbon to improve its high temperature strength. Solid solutions and precipitates of carbon were formed by different thermal treatments. A fine dispersion of perovskite precipitates was found to be very effective for improving the high temperature strength and creep resistance of the material. The strengthening mechanisms were characterized by flow stresses and activation parameters. The investigations were accompanied by electron microscope observation of the defect structure which was generated during deformation. Special attention was paid on the interaction mechanisms of perfect and twinning dislocations with the carbide precipitates.

  12. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  13. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  14. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  15. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  16. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  17. 21 CFR 1250.87 - Wash water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wash water. 1250.87 Section 1250.87 Food and Drugs... Sanitation Facilities and Conditions on Vessels § 1250.87 Wash water. Where systems installed on vessels for wash water, as defined in § 1250.3(n), do not comply with the requirements of a potable water...

  18. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  19. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  20. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  1. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  2. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be...

  3. Alternative Antimicrobial Commercial Egg Washing Procedures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures ...

  4. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  5. Washing and caustic leaching of Hanford Tank C-106 sludge

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Hoopes, F.V.; Steele, R.T.

    1996-10-01

    This report describes the results of a laboratory-scale washing and caustic leaching test performed on sludge from Hanford Tank C-106. The purpose of this test was to determine the behavior of important sludge components when subjected to washing with dilute or concentrated sodium hydroxide solutions. The results of this laboratory-scale test were used to support the design of a bench-scale washing and leaching process used to prepare several hundred grams of high-level waste solids for vitrification tests to be done by private contractors. The laboratory-scale test was conducted at Pacific Northwest Laboratory in FY 1996 as part of the Hanford privatization effort. The work was funded by the US Department of Energy through the Tank Waste Remediation System (TWRS; EM-30).

  6. Static and dynamic adsorption of phenol from aqueous solution using spherical carbon

    NASA Astrophysics Data System (ADS)

    Bhargavi, R.; Kadirvelu, K.; Kumar, N. S.

    2013-06-01

    The objective of this work is to evaluate spherical carbon and modified spherical carbon for the removal of phenol from aqueous solution in static and dynamic studies under various conditions. It explores mainly two adsorbents, that is, activated spherical carbon (ASC) and modified activated spherical carbon (SSC). SEM characterization of both the adsorbents showed a clear change in the physical and chemical properties of the modified adsorbent from its precursor activated carbon. Both the adsorbents are subjected to static mode adsorption studies and after a comparison based on isotherm analysis; more efficient adsorbent is screened for column mode adsorption studies. The phenol removal increased for modified carbon. The aim of carrying out column mode studies will aid in ascertaining the practical applicability of the adsorbent in the real system and therefore, to assess the effect of various process variables, viz., bed height of the adsorbent, flow rate and initial concentration of the adsorbate on breakthrough time and adsorption capacity. The column studies generated data were modeled using the empirical relationship based on Bohart-Adams model. At the end, the option of regenerating the adsorbent was also explored using sodium hydroxide with the aim of minimize the hazardous generated and also to reuse the adsorbent material for many cycles without affecting original properties. Adsorbent regeneration efficiency of 72% was achieved. This investigation reveals that the material used as an adsorbent is very effective with high adsorption capacities and also possible to use in the real contaminated system.

  7. Determination of electronic states of individually dissolved ( n, m) single-walled carbon nanotubes in solution

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Hirayama, Kohei; Niidome, Yasuro; Nakashima, Naotoshi

    2009-11-01

    Solution redox chemistry is useful to understand the chirality-dependent electronic properties of single-walled carbon nanotubes (SWNTs). We have found that the electron transfer reactions of sodium dithionite with SWNTs cause photoluminescence (PL) quenching processes of 14 individually dissolved SWNTs in an aqueous micellar solution. Based on the analysis using the Nernst equation for the PL change, we have determined the conduction band ( c1) levels of the 14 isolated SWNTs. We have also estimated the valence band ( ν1) levels as well as the Fermi levels of the SWNTs using the reported bandgap values of the corresponding isolated SWNTs.

  8. Solubility of mixtures of hydrogen sulfide and carbon dioxide in aqueous N-methyldiethanolamine solutions

    SciTech Connect

    Jou, Fang Yuan; Carroll, J.J.; Mather, A.E.; Otto, F.D. . Dept. of Chemical Engineering)

    1993-01-01

    Aqueous solutions of alkanolamines are commonly used to strip acid gases (H[sub 2]S and CO[sub 2]) from streams contaminated with these components. The two most widely used amines are monoethanolamine (MEA) and diethanolamine (DEA). The solubilities of mixtures of hydrogen sulfide and carbon dioxide in a 35 wt% (3.04 kmol/m[sup 3]) aqueous solution of N-methyldiethanolamine at 40 and 100C have been measured. Partial pressures of the acid gases ranged from 0.006 to 101 kPa at 40C and from 4 to 530 kPa at 100C.

  9. Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

    NASA Astrophysics Data System (ADS)

    Scheibe, Blazej; Rümmeli, Mark H.; Borowiak-Palen, Ewa; Kalenczuk, Ryszard J.

    2011-04-01

    This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).

  10. Comparative alkali washing of simulated radioactive sludge

    SciTech Connect

    Fugate, G.A.; Ensor, D.D.; Egan, B.Z.

    1996-10-01

    The treatment of large volumes of radioactive sludge generated from uranium and plutonium recovery processes is a pressing problem in the environmental restoration currently planned at various U.S. Department of Energy sites. This sludge, commonly stored in underground tanks, is mainly in the form of metal oxides or precipitated metal hydroxides and the bulk of this material is nonradioactive. One method being developed to pretreat this waste takes advantage of the amphoteric character of aluminum and other nonradioactive elements. Previous studies have reported on the dissolution of eleven elements from simulated sludge using NaOH solutions up to 6M. This work provides a comparative study using KOH. The effectiveness of the alkali washing as a treatment method to reduce the bulk of radioactive sludge requiring long term isolation will be discussed.

  11. Changing fluxes of carbon and other solutes from the Mekong River

    PubMed Central

    Li, Siyue; Bush, Richard T.

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  12. FILM FORMATION ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS UNDER OPEN CIRCUIT CONDITIONS

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1980-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO{sub 4} and LiAsF{sub 6} at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fastformation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionicconductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  13. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    SciTech Connect

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-04-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

  14. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    SciTech Connect

    Philip E. Zapp; John W. Van Zee

    2002-02-01

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation.

  15. Changing fluxes of carbon and other solutes from the Mekong River.

    PubMed

    Li, Siyue; Bush, Richard T

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  16. Changing fluxes of carbon and other solutes from the Mekong River

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.

    2015-11-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42-, Cl- and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3- (23.4) > Ca2+ (6.4) > SO42- (3.8) > Cl- (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3- and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3- flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3-, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  17. TANK 4 CHARACTERIZATION, SETTLING, AND WASHING STUDIES

    SciTech Connect

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-09-29

    insoluble or undissolved form. (3) There is 19% more S than can be accounted for by IC sulfate measurement. This additional soluble S is detected by ICP-AES analysis of the supernate. (4) Total supernate and slurry sulfur by ICP-AES should be monitored during washing in addition to supernate sulfate in order to avoid under estimating the amount of sulfur species removed or remaining in the supernate. (5) OLI simulation calculations show that the presence of undissolved Burkeite in the Tank 4 sample is reasonable, assuming a small difference in the Na concentration that is well within the analytical uncertainties of the reported value. The following conclusions were drawn from the blend studies of Tank 4 and decanted Tank 51-E1: (1) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the degree and time for settling. (2) The addition of Tank 4 slurry to a decanted Tank 51-E1 sample significantly improved the plastic viscosity and yield stress. (3) The SRNL washing test, where nearly all of the wash solution was decanted from the solids, indicates that approximately 96% or more of the total S was removed from the blend in these tests, and the removal of the sulfur tracks closely with that of Na. Insoluble (undissolved) S remaining in the washed sludge was calculated from an estimate of the final slurry liquid fraction, the S result in the slurry digestion, and the S in the final decant (which was very close to the method detection limit). Based on this calculated result, about 4% of the initial total S remained after these washes; this amount is equivalent to about 18% of the initially undissolved S.

  18. Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    PubMed Central

    Erdem, Murat; Ucar, Suat; Karagöz, Selhan; Tay, Turgay

    2013-01-01

    The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous. PMID:23853528

  19. Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-13

    Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  20. Solution deposition of thin carbon coatings on LiFePO₄.

    PubMed

    Zhu, Jianxin; Yoo, Kevin; El-Halees, Ibrahim; Kisailus, David

    2014-12-10

    We report the synthesis of ultrathin carbon coatings on polycrystalline LiFePO4 via solution deposition and subsequent annealing. The annealing temperature was systematically investigated with polymer systems on LiFePO4 nanostructures. The crystal structures, sizes, and morphologies were monitored and analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Micro-Raman and TEM were used to interrogate the carbon coatings after heat-treatments. Electrochemical performance of coated materials was investigated by cyclic voltammograms (CVs) and galvanostatic charge-discharge analysis. The olivine structured LiFePO4 remained stable up to 600 °C but underwent a rapid reduction reaction from LiFePO4 to Fe2P above 700 °C. The good compatibility between polyethylene glycol (PEG) and the surface of LiFePO4 enabled the formation of core-shell structure, which was transformed into a thin carbon coating on LiFePO4 after annealing. Both PEG and sucrose carbon-based sources yielded high-quality carbon coatings after annealing, as determined by the graphitic/disordered (G/D) ratios of 1.30 and 1.20, respectively. By producing more uniform and coherent coatings on LiFePO4 particles, batteries with significantly less carbon (i.e., 0.41 wt %) were fabricated and demonstrated comparable performance to traditionally synthesized carbon-coated LiFePO4 with higher carbon loadings (ca. 2.64 wt %). This will enable development of batteries with higher active material loading and therefore significantly larger energy densities. PMID:25387242

  1. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons.

    PubMed

    Mansouri, Hayet; Carmona, Rocio J; Gomis-Berenguer, Alicia; Souissi-Najar, Souad; Ouederni, Abdelmottaleb; Ania, Conchi O

    2015-07-01

    This work investigates the competitive adsorption under dynamic and equilibrium conditions of ibuprofen (IBU) and amoxicillin (AMX), two widely consumed pharmaceuticals, on nanoporous carbons of different characteristics. Batch adsorption experiments of pure components in water and their binary mixtures were carried out to measure both adsorption equilibrium and kinetics, and dynamic tests were performed to validate the simultaneous removal of the mixtures in breakthrough experiments. The equilibrium adsorption capacities evaluated from pure component solutions were higher than those measured in dynamic conditions, and were found to depend on the porous features of the adsorbent and the nature of the specific/dispersive interactions that are controlled by the solution pH, density of surface change on the carbon and ionization of the pollutant. A marked roll-up effect was observed for AMX retention on the hydrophobic carbons, not seen for the functionalized adsorbent likely due to the lower affinity of amoxicillin towards the carbon adsorbent. Dynamic adsorption of binary mixtures from wastewater of high salinity and alkalinity showed a slight increase in IBU uptake and a reduced adsorption of AMX, demonstrating the feasibility of the simultaneous removal of both compounds from complex water matrices. PMID:25554087

  2. Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Su, Ting-Yi

    2006-06-30

    The adsorption behaviors of bisphenol-A, which has been listed as one of endocrine disrupting chemicals, from aqueous solution onto four minerals including andesite, diatomaceous earth, titanium dioxide, and activated bleaching earth, and two activated carbons with coconut-based and coal-based virgins were examined in this work. Based on the adsorption results at the specified conditions, the adsorption capacities of activated carbons are significantly larger than those of mineral adsorbents, implying that the former is effective for removal of the highly hydrophobic adsorbate from the aqueous solution because of its high surface area and low surface polarity. The adsorption capacities of bisphenol-A onto these mineral adsorbents with different pore properties are almost similar in magnitude mainly due to the weakly electrostatic interaction between the mineral surface with negative charge and the target adsorbate with hydrophobic nature. Further, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of bisphenol-A onto the two common activated carbons at different solution conditions. It was found that the adsorption process could be well described with the pseudo-second-order model. The kinetic parameters of the model obtained in the present work are in line with the pore properties of the two adsorbents. PMID:16343748

  3. Removal of organic contaminants from aqueous solution by cattle manure compost (CMC) derived activated carbons

    NASA Astrophysics Data System (ADS)

    Qian, Qingrong; Chen, Qinghua; Machida, Motoi; Tatsumoto, Hideki; Mochidzuki, Kazuhiro; Sakoda, Akiyoshi

    2009-04-01

    The activated carbons (ACs) prepared from cattle manure compost (CMC) with various pore structure and surface chemistry were used to remove phenol and methylene blue (MB) from aqueous solutions. The adsorption equilibrium and kinetics of two organic contaminants onto the ACs were investigated and the schematic models for the adsorptive processes were proposed. The result shows that the removal of functional groups from ACs surface leads to decreasing both rate constants for phenol and MB adsorption. It also causes the decrement of MB adsorption capacity. However, the decrease of surface functional groups was found to result in the increase of phenol adsorption capacity. In our schematic model for adsorptive processes, the presence of acidic functional groups on the surface of carbon is assumed to act as channels for diffusion of adsorbate molecules onto small pores, therefore, promotes the adsorption rate of both phenol and MB. In phenol solution, water molecules firstly adsorb on surface oxygen groups by H-bonding and subsequently form water clusters, which cause partial blockage of the micropores, deduce electrons from the π-electron system of the carbon basal planes, hence, impede or prevent phenol adsorption. On the contrary, in MB solution, the oxygen groups prefer to combine with MB + cations than water molecules, which lead to the increase of MB adsorption capacity.

  4. Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang

    2014-06-15

    Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. PMID:24767505

  5. Bio-desulfurization and denitrification by anaerobic-anoxic process for the treatment of wastewater from flue gas washing.

    PubMed

    Song, Ziyu; Zhou, Xuemei; Li, Yuguang; Yang, Maohua; Xing, Jianmin

    2013-01-01

    For amine-based carbon dioxide capture, nitrogen oxides and sulfur oxides were the main pollutants that had a negative effect on the regeneration of solvent. Before carbon dioxide capture, the sulfur oxides in flue gas should be removed by the method of calcium salt, and then washed by alkaline solution to eliminate the residual nitrogen oxides and sulfur oxides. The washing wastewater containing sulfate and nitrate needs to be treated. In this study, a novel anaerobic-anoxic process was built up for the treatment of this washing wastewater. Nitrate was reduced to nitrogen by denitrifying bacteria. Sulfate was firstly reduced to sulfide by sulfate reducing bacteria, and then selectively oxidized to element sulfur by sulfide oxidizing bacteria. The treated liquid could be reused as absorption after the adjustment of pH value. The performances of this bioprocess were investigated under various pH values and S/N ratios. It was found that the optimal pH value of influent was 6.0, the percentages of denitrification and sulfate reducing could reach 90 and 89%, respectively. Seventy-six percent of sulfate was transformed into element sulfur. Nitrate significantly had a negative effect on sulfate reduction above 10 mM. As 20 mM nitrate, the sulfate reducing percentage would drop to 67%. These results showed that the anaerobic-anoxic process was feasible for the treatment of flue gas washing wastewater. It would be prospectively applied to other wastewater with the higher ratio of SO4(2-)/NO3(-). PMID:23656948

  6. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.

    PubMed

    Regmi, Pusker; Garcia Moscoso, Jose Luis; Kumar, Sandeep; Cao, Xiaoyan; Mao, Jingdong; Schafran, Gary

    2012-10-30

    Biochar produced from switchgrass via hydrothermal carbonization (HTC) was used as a sorbent for the removal of copper and cadmium from aqueous solution. The cold activation process using KOH at room temperature was developed to enhance the porous structure and sorption properties of the HTC biochar. The sorption efficiency of HTC biochar and alkali activated HTC biochar (HTCB) for removing copper and cadmium from aqueous solution were compared with commercially available powdered activated carbon (PAC). The present batch adsorption study describes the effects of solution pH, biochar dose, and contact time on copper and cadmium removal efficiency from single metal ion aqueous solutions. The activated HTCB exhibited a higher adsorption potential for copper and cadmium than HTC biochar and PAC. Experiments conducted with an initial metal concentration of 40 mg/L at pH 5.0 and contact time of 24 h resulted in close to 100% copper and cadmium removal by activated HTCB at 2 g/L, far greater than what was observed for HTC biochar (16% and 5.6%) and PAC (4% and 7.7%). The adsorption capacities of activated HTCB for cadmium removal were 34 mg/g (0.313 mmol/g) and copper removal was 31 mg/g (0.503 mmol/g). PMID:22687632

  7. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions.

    PubMed

    Sharma, K; Kim, Y-H; Gabitto, J; Mayes, R T; Yiacoumi, S; Bilheux, H Z; Walker, L M H; Dai, S; Tsouris, C

    2015-01-27

    Desalination of high-salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization (CDI) for water desalination. Experiments were conducted with a flow-through CDI cell designed for neutron imaging and with lithium-6 chloride ((6)LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of (6)LiCl solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the CDI process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why CDI is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of CDI devices, which can improve the process for high ionic-strength solutions. PMID:25533167

  8. OPTIMIZATION OF THE WASH-OFF METHOD FOR MEASURING AEROSOL CONCENTRATIONS

    EPA Science Inventory

    Using the fluorescence-washing technique, oleic acid particles tagged with uranine were extracted and analyzed fluorometrically. The possible sources of errors in the technique were evaluated in this study. First, the sensitivity of uranine fluorescence in different solutions ...

  9. Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium

    NASA Astrophysics Data System (ADS)

    LaFlamme, Brian D.; Murray, James W.

    1987-02-01

    Elevated activities of dissolved Th have been found in Soap Lake, an alkaline lake in Eastern Washington. Dissolved 232Th ranges from less than 0.001 to 4.9 dpm/L compared to about 1.3 × 10 -5 dpm/ L in sea water. The enhanced activity in the lake coincides with an increase in carbonate alkalinity. Experiments were conducted to evaluate the effect of pH, ionic strength and carbonate alkalinity on Th adsorption on goethite. Thorium (10 -13 M total) in the presence of 5.22 mg/L α-FeOOH and 0.1 M NaNO 3 has an adsorption edge from pH 2-5. At pH 9.0 ± 0.6 the percent Th absorbed on the solid began to decrease from 100% at 100 meq/L carbonate alkalinity and exhibited no adsorption above 300 meq/L. The experimental data were modeled to obtain the intrinsic adsorption equilibrium constants for Th hydrolysis species. These adsorption constants were incorporated in the model to interpret the observed effect of carbonate alkalinity on Th adsorption. There are two main effects of the alkalinity. To a significant degree the decrease in Th adsorption is due to competition of HCO -3 and CO 2-3 ions for surface sites. Dissolved Th carbonate complexes also contribute to the increase of Th in solution.

  10. Picosecond Pulse Radiolysis of Propylene Carbonate as a Solute in Water and as a Solvent.

    PubMed

    Marignier, Jean-Louis; Torche, Fayçal; Le Caër, Sophie; Mostafavi, Mehran; Belloni, Jacqueline

    2016-03-10

    The ester propylene carbonate (PC) is a solvent with a high static dielectric constant where the charges generated by ionizing radiation are expected to be long-lived at room temperature. Time-resolved optical absorption spectroscopy after picosecond electron pulses reveals the formation of a UV band, within less than two nanoseconds, that is assigned to the radical anion PC(-•), arising from a fast attachment reaction of electrons onto PC. Assignment and reactivity of PC(-•) in neat solvent and solutions are discussed in relation with data obtained in solutions of PC in water under reducing or oxidizing conditions and in solutions in PC of aromatic scavengers with various reduction potentials. The fate of the electrons and the ionization yield in PC are compared with those of other solvents. PMID:26840402

  11. Fabrication of Carbon Nanotube High-Frequency Nanoelectronic Biosensor for Sensing in High Ionic Strength Solutions

    PubMed Central

    Kulkarni, Girish S.; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11. PMID:23912795

  12. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions. PMID:23912795

  13. 49 CFR 230.60 - Time of washing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Time of washing. 230.60 Section 230.60... Washing Boilers § 230.60 Time of washing. (a) Frequency of washing. All boilers shall thoroughly be washed... inspection. The date of the boiler wash shall be noted on the FRA Form No. 1 or FRA Form No. 3. (See...

  14. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  15. Precipitation of Co(2+) carbonates from aqueous solution: insights on the amorphous to crystalline transformation.

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Fernández-González, Ángeles; Jiménez, Amalia

    2016-04-01

    Cobalt is toxic metal that is present only as a trace in the Earth crust. However, Co might concentrate on specific areas due to both natural and anthropogenic factors and thus, soils and groundwater can be contaminated. It is from this perspective that we are interested in the precipitation of cobalt carbonates, since co-precipitation with minerals phases is a well-known method for metal immobilization in the environment. In particular, the carbonates are widely used due to its reactivity and natural abundance. In order to evaluate the cobalt carbonate precipitation at room temperature, a simple experimental work was carried out in this work. The precipitation occurred via reaction of two common salts: 0.05M of CoCl2 and 0.05M of Na2CO3 in aqueous solution. After reaction, the precipitated solid was kept in the remaining water at 25 oC and under constant stirring for different aging times of 5 min, 1 and 5 hours, 1, 2, 4, 7, 30 and 60 days. In addition to the aging and precipitation experiments, we carried out experiments to determine the solubility of the solids. In these experiments each precipitate was dissolved in Milli-Q water until equilibrium was reached and then the aqueous solution was analyzed regarding Co2+ and total alkalinity. Furthermore, acid solution calorimetry of the products were attained. Finally, we modeled the results using the PHREEQC code. Solid and aqueous phase identification and characterization have been extensively reported in a previous work (González-López et al., 2015). The main results of our investigation were the initial precipitation of an amorphous cobalt carbonate that evolve towards a poorly crystalline cobalt hydroxide carbonate with aging treatment. Solubility of both phases have been calculated under two different approaches: precipitation and dissolution. Values of solubility from each approach were obtained with a general error due to differences in experiment conditions, for instance, ionic strength, temperature and

  16. Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin.

    PubMed

    Lee, Chang-Gu; Jeon, Jun-Woo; Hwang, Min-Jin; Ahn, Kyu-Hong; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2015-07-01

    Phenolic resin-based carbon foam was prepared as an adsorbent for removing heavy metals from aqueous solutions. The surface of the produced carbon foam had a well-developed open cell structure and the specific surface area according to the BET model was 458.59m(2)g(-1). Batch experiments showed that removal ratio increased in the order of copper (19.83%), zinc (34.35%), cadmium (59.82%), and lead (73.99%) in mixed solutions with the same initial concentration (50mgL(-1)). The results indicated that the Sips isotherm model was the most suitable for describing the experimental data of lead and copper. The maximum adsorption capacity of lead and copper determined to Sips model were 491mgg(-1) and 247mgg(-1). The obtained pore diffusion coefficients for lead and copper were found to be 1.02×10(-6) and 2.42×10(-7)m(2)s(-1), respectively. Post-sorption characteristics indicated that surface precipitation was the primary mechanism of lead and copper removal by the carbon foam, while the functional groups on the surface of the foam did not affect metal adsorption. PMID:25819762

  17. Preconcentration of f-elements from aqueous solution utilizing a modified carbon paste electrode.

    PubMed

    Schumacher, Paul D; Fitzgerald, Kelly A; Schenk, James O; Clark, Sue B

    2011-02-15

    An evaluation using paraffin oil based, Acheson 38 carbon paste electrodes modified with α-hydroxyisobutyric acid (HIBA) to preconcentrate f-elements cathodically is described. The modified paste was made by directly mixing solid HIBA into the carbon paste. A chemically reversible cyclic voltammogram for HIBA was observed on this modified carbon paste, which was found to be a non-Nerstian, single electron transfer process. Lanthanides (less promethium) were found to accumulate onto the electrode surface during a 30 s electrodeposition step at -0.4 V vs Ag/AgCl from 0.1 M LiCl. The elements were then stripped off into a 2% HNO(3) solution by an oxidative step at +0.8 V vs Ag/AgCl; quantitative removal from the electrode was confirmed by ICPMS. Ultratrace solutions with initial concentrations down to 5 parts per quadrillion (ppq) were preconcentrated in 5 min above our instrumental limit of detection (LOD) of around 1 ppt for lanthanides. PMID:21271692

  18. Synthesis of nitrogen-containing carbon by solution plasma in aniline with high-repetition frequency discharges

    NASA Astrophysics Data System (ADS)

    Hyun, Koangyong; Ueno, Tomonaga; Saito, Nagahiro

    2016-01-01

    Nitrogen-containing carbon nanoparticles were synthesized in aniline by solution plasma with high-repetition frequency discharges. We developed a bipolar pulsed power supply that can apply high-repetition frequencies ranging from 25 to 200 kHz. By utilizing high-repetition frequencies, conductive carbons were directly synthesized. The crystallinity was increased and H/C ratio of carbon was decreased. Furthermore, nitrogen atoms were simultaneously embedded in the carbon matrix. Due to the presence of nitrogen atoms, the conductivity and electrocatalytic activity of the samples were remarkably improved compared to that of a pure carbon matrix synthesized from a benzene precursor.

  19. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 in 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.

  20. Effect of solution additives on the performance of PMAN carbon anodes in 1M LiPF{sub 6}/EC-DMC solutions

    SciTech Connect

    Guidotti, R.A.; Johnson, B.J.

    1996-12-31

    A study was undertaken to examine the use of a number of solution additives in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions to improve the performance of carbon anodes derived from polymethylacrylonitrile (PMAN)-divinylbenzene (DVB) copolymers. The study goals were to improve the cycle life and reduce the formation of the passivation layer during the first reduction, thereby minimizing the irreversible-capacity losses. Additives studied were 12-crown-4 (12-Cr-4) ether, decalin, and dilithium phthalocyanine (Li{sub 2}Pc). The carbon performance was characterized by galvanostatic cycling, cyclic voltammetry, and complex-impedance spectroscopy. Limited success was obtained with 12-Cr-4 ether at 0.25 M and decalin at 1 v/o. Poor results were noted with Li{sub 2}Pc at 0.025 M and 0.5 M.

  1. Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution.

    PubMed

    Hayashida, Takuya; Umemura, Kazuo

    2016-07-01

    We evaluated hybrids of DNA and single-walled carbon nanotubes (SWNTs) in aqueous solution and in air using atomic force microscopy (AFM). Although intensive AFM observations of these hybrids were previously carried out for samples in air, this is the first report on AFM observations of these hybrids in solution. As expected, diameters of DNA-SWNT hybrids dramatically increased in tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid (TE) buffer solution. The data suggest that DNA molecules maintain their structures even on the SWNT surfaces. Furthermore, we simultaneously observed single DNA-SWNT hybrids using three different AFM modes in air and in the TE buffer solution. Height value of the hybrids was largest in the solution, and lowest for the mode that repulsive force is expected in air. For the bare SWNT molecules, height differences among the three AFM modes were much lower than those of the DNA-SWNT hybrids. DNA molecules adsorbed on SWNT surfaces flexibly changed their morphology as well as DNA molecules on flat surfaces such as mica. This is hopeful results for biological applications of DNA-SWNT hybrids. In addition, our results revealed the importance of the single-molecule approach to evaluate DNA structures on SWNT surfaces. PMID:27045980

  2. The Electrochemical Behavior of Zn-Mn Alloy Coating in Carbonated Concrete Solution

    NASA Astrophysics Data System (ADS)

    Touazi, S.; Bučko, M.; Makhloufi, L.; Legat, A.; Bajat, J. B.

    2016-05-01

    In order to improve the protective performance of Zn coating on reinforcing steel in concrete, the electrochemical deposition of Zn-Mn coatings was conducted on steel surface. The morphology, chemical and phase compositions of Zn-Mn coatings obtained from sulfate-citrate bath were investigated in the first part of paper. In the second part, the obtained deposits were tested in solution simulating carbonated concrete, consisting of NaHCO3 and Na2CO3. Data obtained from Tafel analysis showed higher corrosion resistance for Zn-Mn alloy deposits obtained at -1700 and -1800mV versus SCE, when compared to pure Zn deposit. Impedance spectroscopy investigations revealed that the total impedance of Zn-Mn coatings increased steadily with time, and was significantly higher as compared to pure Zn after 24h in corrosion solution. On the contrary, for pure Zn, the impedance increased in the first 12h, and then decreased during prolonged exposure time, which can be explained by rapid growth of nonprotective white rust and the degradation of zinc coating, as was confirmed by optical microscope after 24h of immersion in carbonated concrete pore solution.

  3. Solution-processed thin films for electronics from single-walled carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Eda, Goki

    Single-walled carbon nanotubes (SWNTs) and graphene are sp 2 hybridized carbon nanostructures which exhibit extraordinary electronic properties arising from their unique energy dispersions and dimensionalities. A major issue preventing implementation of these materials into integrated electronic devices is the absence of large-scale controllable synthesis and subsequent manipulation. To circumvent this issue, solution processing of SWNTs and graphene has been proposed. Deposition of thin film networks allows the realization of a new class of materials that are useful for large-area or "macro-electronics" on flexible and inexpensive platforms. In this thesis, controllable and efficient solution-based deposition of SWNT and graphene thin film networks and their opto-electronic properties are investigated. Topics such as material dynamics in liquid, chemical structures, defects, morphology, and doping are studied utilizing various spectroscopy and microscopy analysis along with complementary electrical measurements. Further insight is provided through demonstrations of proof-of-principle thin film transistors, organic photovoltaics, and field emitters based on solution-processed SWNT and graphene thin films.

  4. Integration of High-Purity Carbon Nanotube Solution into Electronic Devices

    NASA Astrophysics Data System (ADS)

    Tulevski, George; IBM TJ Watson Reserach Center Team

    Due to their exceptional electronic properties, carbon nanotubes (cnt) are leading candidates to be employed as channel materials in future nanoelectronic devices. A key bottleneck to realizing device integration is the sorting of carbon nanotubes, namely the isolation of high-purity, semiconducting cnt solutions. This talk will describe our efforts in using polymer-based sorting methods to isolate high-density and high-purity semiconducting cnt solutions. We explore the dependence of starting material and polymer to cnt ratio on the effectiveness of the separation. We confirm optically and electrically that the semiconducting purity is >99.99% through several thousand individual device measurements. In addition to single-cnt devices, thin-film transistors were also fabricated and tested. Due to the high purity of the solutions, device switching (~105 ION/IOFF) was observed at channel lengths below the percolation threshold (<500 nm). Operating below the percolation threshold allows for devices with much higher current densities and effective mobilities as transport is now the result of direct transport as opposed to hopping between cnts.

  5. Computer Simulation of Cascade Damage in α-Iron with Carbon in Solution

    SciTech Connect

    Andrew, Calder F; Bacon, David J; Barashev, Aleksandr; Osetskiy, Yury N

    2008-01-01

    Molecular dynamics simulation method is used to investigate defect production by displacement cascades in iron with carbon (C) in solution. This is the first study of cascade damage in a metal containing interstitial solute. Iron is of particular interest because of the use of ferritic steels in plant for nuclear power generation. Cascades are simulated with energy in the range 5 to 20keV in iron at either 100 or 600K containing carbon with concentration in the range 0 to 1at%. C in solution has no discernible effect on the number of defects produced in cascades under any of the conditions simulated, nor on the clustered fraction of either self-interstitial atoms (SIAs) or vacancies. However, significant fractions of single SIAs and vacancies are trapped by C in the cascade process, irrespective of cascade energy. The fraction is independent of temperature for vacancies, but increases strongly with temperature for SIAs: this is a consequence of the higher mobility of the SIA.

  6. Role of PF6- in the radiolytical and electrochemical degradation of propylene carbonate solutions

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Jimenez Gordon, Isabel; Legand, Solène; Dauvois, Vincent; Baltaze, Jean-Pierre; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie

    2016-09-01

    The behavior under irradiation of neat propylene carbonate (PC), a co-solvent usually used in Li-ion batteries (LIB), and also of Li salt solutions is investigated. The decomposition of neat PC is studied using radiolysis in the pulse and steady state regime and is assigned to the ultrafast formation, in the reducing channel, of the radical anion PCrad - by electron attachment, followed by the ring cleavage, leading to CO. In the oxidative channel, the PC(sbnd H)rad radical is formed, generating CO2. The CO2 and CO yields are both close to the ionization yield of PC. The CO2 and CO productions in LiClO4, LiBF4 and LiN(CF3)2(SO2)2 solutions are similar as in neat PC. In contrast, in LiPF6/PC a strong impact on PC degradation is measured with a doubling of the CO2 yield due to the high reactivity of the electron towards PF6- observed in the picosecond range. A small number of oxide phosphine molecules are detected among the various products of the irradiated solutions, suggesting that most of them, observed in carbonate mixtures used in LIBs, arise from linear rather than from cyclical molecules. The similarity between the degradation by radiolysis or electrolysis highlights the interest of radiolysis as an accelerated aging method.

  7. Development and distribution of bed-parallel compaction bands and pressure solution seams in carbonates (Bolognano Formation, Majella Mountain, Italy)

    NASA Astrophysics Data System (ADS)

    Rustichelli, A.; Tondi, E.; Agosta, F.; Cilona, A.; Giorgioni, M.

    2012-04-01

    The Oligo-Miocene ramp carbonates pertaining to the Bolognano Formation, cropping out at the Majella Mountain, Central Italy, are diffusely crosscut by bed-parallel structural elements such as compaction bands and pressure solution seams. These bed-parallel structural elements formed under a vertical loading, during the progressive burial of the carbonates. The present field and laboratory study focuses on the control exerted, on development and distribution of bed-parallel compaction bands and pressure solution seams, by compositional, sedimentological and pore network characteristics of a variety of carbonate rocks (skeletal grainstones and packstones, marly wackestones to mudstones). The main results are consistent with the following statements: (i) bed-parallel compaction bands formed only within poorly cemented, porous grainstones (2D porosity > 10%; 3D porosity > 15%). Their dimensional parameters (i.e., length, spacing, thickness) were strongly controlled by both sorting and sphericity of the carbonate grains, as well as by the amount of intergranular macroporosity. All these rock characteristics enhanced all physical processes (i.e. grain rotation, translation and fracturing) associated to compaction banding; (ii) bed-parallel pressure solution seams predominantly formed within fine-grained packstones made up of well-sorted and spherical carbonate grains with absence of internal pores, and small amounts of clayish matrix (2-4% of total rock volume). High contents of pre-existing cement also enhanced pressure solution; (iii) well-sorted carbonates with spherical grains may be suitable to both compaction banding and pressure solution; (iv) skeletal grain types which compose grain-supported carbonate rocks (grainstones and packstones), in many cases, indirectly influence the distribution of both bed-parallel compaction bands and pressure solution seams. Considering that the containment and migration capacity of geofluids in the subsurface within carbonate

  8. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  9. Dynamic effects in the production of diamond from solid-solution carbon

    SciTech Connect

    Sobolev, V.V.; Didyk, R.P.; Merezhko, Y.I.; Skidanenko, A.I.; Slobodskoi, V.Y.

    1984-03-01

    The authors examine the scope for diamond to grow at atmospheric pressure in iron alloys. For the purpose of this investigation, diamond nuclei were produced in a cast-iron specimen by a dynamic pressure of 80-90GPa. The mass proportion of diamond polycrystals of maximum size 40-50 ..mu..m did not exceed 1%. The largest diamond content occurred in the fraction 0.1-5 ..mu..m and constituted about 80%. The studies show that: the presence of diamond inclusions in a metal matrix substantially influences the structural transformations during isothermal heating and slow cooling; the solid-solution carbon, the carbon compounds, and the graphite inclusions can serve as sources of carbon in the growth of diamond crystals in the metastable region; and dynamic pressures generate numerous defects in cast-iron specimens, which are sources of vacancies, which facilitate the diffusion of the carbon to the growing diamond crystals and the removal of iron from them.

  10. A comparison of fenuron degradation by hydroxyl and carbonate radicals in aqueous solution.

    PubMed

    Mazellier, Patrick; Busset, Cécile; Delmont, Anne; De Laat, Joseph

    2007-12-01

    A comparative study of the transformation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by hydroxyl radicals and carbonate radicals in aqueous solution (pH 7.2-phosphate buffer) has been undertaken. Hydroxyl radical was generated by the well-known photolysis of hydrogen peroxide at 254 nm and carbonate radical was formed by photolysis of Co(NH(3))(5)CO(3)(+) at 254 nm. Competitive kinetic experiments were performed with atrazine used as the main competitor for both processes. Accordingly, the second-order rate constant of reaction between fenuron and carbonate radical was found to be (7-12+/-3)x10(6)M(-1)s(-1) [(7+/-1)x10(9)M(-1)s(-1) for hydroxyl radical]. The formation of degradation products was studied by LC-MS in the two cases and a comparison has been performed. The reaction with carbonate radical leads to the formation of a quinone-imine derivative which appears as the major primary product together with ortho and para hydroxylated compounds. These two compounds represent the major products in the reaction with hydroxyl radicals. The reaction of both radicals also leads to the transformation of the dimethylurea moiety. PMID:17675205