Science.gov

Sample records for carbonate yttrium carbonate

  1. Author's personal copy Deposition of yttrium oxide thin films in supercritical carbon dioxide

    E-print Network

    Gougousi, Theodosia

    Author's personal copy Deposition of yttrium oxide thin films in supercritical carbon dioxide 2007 Available online 4 March 2008 Abstract A synthetic avenue for the formation of yttrium oxide thin,5-heptanedionato) yttrium(III) with inorganic (H2O2) and organic (tert-butyl and di-tert-amyl) peroxides

  2. Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters

    NASA Astrophysics Data System (ADS)

    Seraphin, Supapan; Zhou, Dan; Jiao, Jun; Withers, James C.; Loutfy, Raouf

    1993-10-01

    Characterization of the arc-discharge deposits at the cathode from anodes containing yttrium oxide and titanium by transmission electron microscopy and x-ray diffraction shows different results with respect to an encapsulation of the metal carbides into carbon clusters. Yttrium carbide is encapsulated into carbon nanoclusters in a crystalline phase. The formation of titanium carbide, on the other hand, preempts the formation of the carbon—carbon bonds necessary to form the carbon cages, so that only titanium carbide clusters are observed. Thermodynamic data support the interpretation of the results.

  3. Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters

    SciTech Connect

    Seraphin, S.; Zhou, D. ); Jiao, J. ); Withers, J.C.; Loutfy, R. )

    1993-10-11

    Characterization of the arc-discharge deposits at the cathode from anodes containing yttrium oxide and titanium by transmission electron microscopy and x-ray diffraction shows different results with respect to an encapsulation of the metal carbides into carbon clusters. Yttrium carbide is encapsulated into carbon nanoclusters in a crystalline phase. The formation of titanium carbide, on the other hand, preempts the formation of the carbon---carbon bonds necessary to form the carbon cages, so that only titanium carbide clusters are observed. Thermodynamic data support the interpretation of the results.

  4. RBS and GAXRD contributions to yttrium implanted extra low carbon steel characterization

    SciTech Connect

    Caudron, E.; Buscail, H.; Jacob, Y.P.; Stroosnijder, M.F.

    1999-02-01

    Extra low carbon steel samples were yttrium implanted using an ion implantation method. Composition and structural studies were carried out before and after yttrium implantations by several analytical and structural techniques (Rutherford backscattering spectrometry, reflection high energy electron diffraction, scanning electron microscopy, X-ray diffraction, and glancing angle X-ray diffraction) to characterize the yttrium implantation effect on extra low carbon steel. The aim of this article is to show the contributions of Rutherford back-scattering spectrometry (RBS) and glancing angle X-ray diffraction (GAXRD) to the determination of yttrium depth profiles in the samples. The results obtained by these techniques are compared to those of the other analyses performed in this work to show the existing correlation between composition and structural studies. Their results allow a better understanding of the effect of yttrium implantation in extra low carbon steel before studying their corrosion resistance at high temperature.

  5. In situ high-temperature X-ray diffraction characterization of yttrium-implanted extra low-carbon steel

    SciTech Connect

    Caudron, E.; Buscail, H.; Perrier, S.

    1999-11-01

    Yttrium-implanted and unimplanted extra low-carbon steel samples were analyzed at T = 700 C and under an oxygen partial pressure P{sub O2} = 0.041Pa for 24 h to show the yttrium implantation effect on extra low-carbon steel high-temperature corrosion resistance. Sample oxidation weight gains were studied by thermogravimetry, and structural analyses were performed using in situ high-temperature X-ray diffraction with the same experimental conditions. The aim of this paper is to show the initial nucleation stage of the main compounds induced by oxidation at high temperatures according to the initial sample treatment (yttrium-implanted or unimplanted). The results obtained by in situ high-temperature X-ray diffraction will be compared to those by thermogravimetry to show the existing correlation between weight gain curves and structural studies. Results allow one to understand the improved corrosion resistance of yttrium-implanted extra low-carbon steel at high temperatures.

  6. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect

    Liang, Shibo; Zhang, Zhiyong Si, Jia; Zhong, Donglai; Peng, Lian-Mao

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2?V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  7. Correlation of optical properties and temperature-induced irreversible phase transitions in europium-doped yttrium carbonate nanoparticles

    SciTech Connect

    Gunawidjaja, Ray; Myint, Thandar; Eilers, Hergen

    2011-12-15

    Nanophase europium-doped yttrium carbonate precursors are subjected to heat treatments, ranging from 300 Degree-Sign C to 1100 Degree-Sign C for dwell times of 5 min, 30 min, and 180 min. XRD, TEM, FT-IR, fluorescence, fluorescence excitation, and fluorescence lifetime measurements are used to characterize the materials. Upon heating, the material transitions through several amorphous stages until it reaches the crystalline cubic Y{sub 2}O{sub 3} phase. DSC measurements show an exothermic transition at 665.7 Degree-Sign C, indicating the formation of crystalline Y{sub 2}O{sub 3}. The grain size development is fitted by the relaxation equation and yields an activation energy of 50.3 kJ/mol. The amorphous phases are characterized by inhomogenously broadened optical spectra. Heating up to 700 Degree-Sign C leads to an increased fluorescence lifetime (from about 1 ms to 2.4 ms). As the material is heated to higher temperatures and completes the formation of the crystalline cubic Y{sub 2}O{sub 3} phase, the optical spectra become narrower and the fluorescence lifetime decreases to about 1.2 ms. - Graphical abstract: Fluorescence lifetimes of Eu-doped Y{sub 2}O{sub 3} precursors heated for 5, 30, and 180 min to various temperatures. Highlights: Black-Right-Pointing-Pointer Irreversible phase transitions in nanoparticles are of interest for thermometry. Black-Right-Pointing-Pointer Eu-doped nanophase yttrium carbonate precursors were heat-treated. Black-Right-Pointing-Pointer The material undergoes decomposition and crystallization. Black-Right-Pointing-Pointer Morphological and optical properties are measured. Black-Right-Pointing-Pointer Optical properties can be used to deduce the temperature.

  8. Synergistic effects of sequential carbon dioxide and neodymium:yttrium aluminum garnet laser injuries. Experimental observations and measurements

    SciTech Connect

    Primrose, W.J.; McDonald, G.A.; O'Brien, M.J.; Vaughan, C.W.; Strong, M.S.

    1987-01-01

    The carbon dioxide and neodymium:yttrium aluminum garnet lasers have well documented but characteristically different biological effects, yet little is known about their cumulative, synergistic, or paradoxical effects when used sequentially on living tissue. Using a Merrimack ML 880 laser, a series of superimposed CO/sub 2/ and Nd:YAG lesions in various combinations were produced on the undersurface of dog tongues. Therapeutic time and power settings were chosen and the number of applications varied, with suitable controls. Observations and measurements were made on acute, healing, and healed lesions. All lesions were excised and submitted for routine hematoxylin and eosin histology. Acute lesions were also assessed for cell viability using rhodamine 123 as a supravital marker. The results show that, even though all the lesions eventually heal, the actual cell damage produced by the Nd:YAG laser is much more than is suggested by the size of the acute lesion. This cell damage can be reduced by the surface carbonization produced by initial application of the CO/sub 2/ laser. Higher surface temperatures are reached in this combination with less fibrosis and scarring than equal energy counterparts where the Nd:YAG laser was applied first. The knowledge of these synergistic effects can be used to advantage in the clinical setting. The rhodamine 123 technique also appears to be a valid measure of acute thermal tissue injury.

  9. Understanding on the carbon deposition on the Nickel/Yttrium-Stabilized Zirconia anode caused by the CO containing fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxing; Yang, Zongxian; Wang, Mingyang

    2015-04-01

    CO dissociation on clean and hydrogen covered Nickel/Yttrium-Stabilized Zirconia (Ni/YSZ) with interface oxygen vacancy is studied using the first-principles method based on density functional theory. It is found that the CO can be trapped at the interface O vacancy and the trapped CO can dissociate to C and O with a much lower dissociation barrier as compared with that on the pure Ni (111) surface (1.74 vs 2.89 eV). When H atom precovers the Ni part, the H associated CO dissociation path (H + CO ? CHO, CHO ? CH + O) is preferred, while when H atom precovers at the YSZ part, the direct CO dissociation (CO ? C + O) is preferred. Overall, either the H at the Ni part or the YSZ part, the CO dissociations are both accelerated (0.90, 1.41 vs 1.74 eV). Therefore, we propose that the carbon deposition may form easily at the interface oxygen vacancy of triple phase boundary (TPB) and the precovered H atom can accelerate the CO dissociation, which offers new understanding on the carbon deposition of the Ni/YSZ anode of solid oxide fuel cell with the pure CO or CO and H2 mixture as the fuel.

  10. Comparative and quantitative study of neutral debris emanated from tin plasmas produced by neodymium-doped yttrium-aluminum-garnet and carbon dioxide laser pulses

    SciTech Connect

    Matsuoka, Yuji; Nakai, Yuki; Fujioka, Shinsuke; Maeda, Shinsuke; Shimomura, Masashi; Nishimura, Hiroaki; Shimada, Yoshinori; Sunahara, Atsushi; Yoshida, Minoru

    2010-09-13

    Amount of neutral debris emanated from extreme ultraviolet light source must be minimized to maximize its lifetime. Emanation of neutral atomic debris was experimentally investigated using laser-induced-fluorescence technique for carbon dioxide (CO{sub 2}, 10.6 {mu}m in wavelength) and Nd-doped yttrium-aluminum-garnet (Nd:YAG, 1.064 {mu}m) lasers irradiated tin foils. Total number of neutral atomic debris from CO{sub 2} laser-irradiated tin foils was 1/100 times smaller than that from Nd:YAG irradiated ones. Competitiveness of CO{sub 2} laser was revealed in terms of debris mitigation.

  11. Sorption of the Rare Earth Elements and Yttrium (REE-Y) in calcite: the mechanism of a new effective tool in identifying paleoearthquakes on carbonate faults

    NASA Astrophysics Data System (ADS)

    Moraetis, Daniel; Mouslopoulou, Vasiliki; Pratikakis, Alexandros

    2015-04-01

    A new tool for identifying paleoearthquakes on carbonate faults has been successfully tested on two carbonate faults in southern Europe (the Magnola Fault in Italy and the Spili Fault in Greece): the Rare Earth Element and Yttrium (REE-Y) method (Manighetti et al., 2010; Mouslopoulou et al., 2011). The method is based on the property of the calcite in limestone scarps to absorb the REE and Y from the soil during its residence beneath the ground surface (e.g. before its exhumation due to earthquakes). Although the method is established, the details of the enrichment mechanism are poorly investigated. Here we use published data together with new information from pot-experiments to shed light on the sorption mechanism and the time effectiveness of the REE-Y method. Data from the Magnola and Spili faults show that the average chemical enrichment is ~45%, in REE-Y while the denudation rate of the enriched zones is ~1% higher every 400 years due to exposure of the fault scarp in weathering. They also show that the chemical enrichment is significant even for short periods of residence time (e.g., ~100 years). To better understand the enrichment mechanism, we performed a series of pot experiments, where carbonate tiles extracted from the Spili Fault were buried into soil collected from the hanging-wall of the same fault. We irrigated the pots with artificial rain that equals 5 years of rainfall in Crete and at temperatures of 15oC and 25oC. Following, we performed sorption isotherm, kinetic and pH-edge tests for the europium (Eu), the cerium (Ce) and the ytterbium (Yt) that occur in the calcite minerals. The processes of adsorption and precipitation in the batch experiments are simulated by the Mineql software. The pot experiments indicate incorporation of the REE and Y into the surface of the carbonate tile which is in contact with the soil. The pH of the leached solution during the rain application range from 7.6 to 8.3. Nutrient release like Ca is higher in the leached solution at lower temperature (15oC) probably due to higher calcite solubility (higher dissolved CO2(g) content) and to less adsorption capability of the soil in elevated temperatures. The isotherm sorption modeling showed that REE-(CO3)2 precipitation is the dominant mechanism in the incorporation of REE into calcite, while the kinetic tests showed instant REE sorption (within few hours). Our experiments show that pH>7.5 and temperatures ~25° C favor REE-Y sorption on calcite surface. Hence, due to the REE-Y fast interaction with carbonate scarp face and the low denudation rate due to later weathering, the REE-Y method is considered a reliable method for tracing paleoearthquakes along carbonate fault scarps when the scarp is in contact with soil at temperate climates. The resolution of identifying frequent paleoearthquakes with low residence time in contact with soil is also considered high. References Mouslopoulou, V., Moraetis, D., Fassoulas, C., 2011. Earth Planet. Sci. Lett. 309, 45-55. Manighetti, I., Boucher, E., Chauvel, A., Schlagenhauf, A., Benedetti, L., 2010. Terra Nova 22, 477-482.

  12. Microscopy of single-layer carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Su; Zhou, Dan

    1994-07-01

    Single-layer carbon nanotubes produced with yttrium carbide as catalyst have been studied with high-resolution transmission electron microscopy (HRTEM). The morphology, condition of iamging and the method of measurement to determine the actual diameter of a single-layer carbon nanotube have been detailed and the growth mechanism of single-layer carbon nanotubes has been discussed in this research.

  13. Carbon-carbon cylinder block

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O. (Inventor)

    1998-01-01

    A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  14. Carbon-Carbon Radiator

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Carbon-Carbon (C-C) Radiator was a success and proved that the technology can work to reduce Spacecraft weight. C-C has a niche, especially for high temperatures. C-C still needs further development: reduction in fabrication time and cost - high conductivity "traditional" composites are more competitive, and CTE interface issues with heat pipes. Redundancy a good idea - we flew the spare panel. CSRP was a success -informal inter-agency partnership. Possible follow-on: C-C foam for low CTE mirrors/optical benches.

  15. Carbon Smackdown: Carbon Capture

    ScienceCinema

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  16. Carbon Smackdown: Carbon Capture

    SciTech Connect

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  17. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  18. Calcium Carbonate

    MedlinePLUS

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  19. Enhanced electrochemical performance and carbon anti-coking ability of solid oxide fuel cells with silver modified nickel-yttrium stabilized zirconia anode by electroless plating

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyan; Tian, Yu; Zhang, Jun; Zuo, Wei; Kong, Xiaowei; Wang, Jinghui; Sun, Kening; Zhou, Xiaoliang

    2016-01-01

    In this paper, silver (Ag) particles are introduced into the conventional Ni/YSZ anode by utilizing electroless plating method to improve its carbon anti-coking ability in hydrocarbons. The experimental results show that electrochemical performances of the decorated cells in H2, CH4 and C2H6 are all increased as compared to the cell with unmodified Ni/YSZ anode, which are verified by impedance spectrums as well. The durability experiment is carried out for as long as 24 h at the current density of 0.33 A/cm2 where the modified anode is subjected to dry C2H6 indicating the anti-coking ability of the anode is greatly improved. Scanning electron microscope shows that the slight decreasing in the cell terminal voltage can be attributed to the minimized carbon deposition which maybe resulted from the aggregation of silver particles at high temperature. Energy-dispersive X-ray spectroscopy line scanning results after long-term stability operation of the anode suggest that the carbon deposition can be depressed effectively both inside the anode and on the surface of the anode. Therefore, the results show that silver is a promising candidate material for modifying the Ni/YSZ anode with regard to improving electrochemical performance and suppressing the carbon deposition when taking the hydrocarbons as fuels.

  20. Carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.

    1992-01-01

    The current applications of C-C composites extend to aircraft brakes, rocket nozzles, missile nosetips, and leading edges of the Space Shuttle. More advanced, secondary and even primary structure applications in cyclic, high-temperature oxidizing environments depend on effective oxidation protection for repeated missions. Accounts are presently given of state-of-the-art methods in substrate fabrication, carbon deposition, and SiC and Si3N4 protective coatings. Attention is given to current levels of high temperature oxidation protection for various mission and vehicle types, as well as to performance projections for C-C composites used by a representative National Aerospace Plane airframe structure. Future technology requirements in C-C composites are projected.

  1. Morphological Changes of Human Dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) and Carbon Dioxide (CO2) Laser Irradiation and Acid-etch Technique: An Scanning Electron Microscopic (SEM) Evaluation

    PubMed Central

    Shahabi, Sima; Chiniforush, Nasim; Juybanpoor, Nasrin

    2013-01-01

    Introduction: The aim of this study was to investigate the morphological changes of human dentin after Erbium-Doped Yttrium Aluminum Garnet (Er:YAG), Carbon Dioxide(CO2) laser-irradiation and acid-etching by means of scanning electron microscopic (SEM) Methods: 9 extracted human third molars were used in this study. The teeth were divided in three groups: first group, CO2 laser with power of 1.5 w and frequency of 80 Hz; second group, Er:YAG laser with output power of 1.5 W frequency of 10 Hz, very short pulse with water and air spray was applied; and third group, samples were prepared by acid-etching 37% for 15 sec and rinsed with air-water spray for 20 sec. Then, the samples were prepared for SEM examination. Results: Melting and cracks can be observed in CO2 laser but in Er:YAG laser cleanedablated surfaces and exposed dentinal tubules, without smear layer was seen. Conclusion: It can be concluded that Er:YAG laser can be an alternative technique for surface treatment and can be considered as safe as the conventional methods. But CO2 laser has some thermal side effects which make this device unsuitable for this purpose. PMID:25606306

  2. Developments in carbon materials

    NASA Technical Reports Server (NTRS)

    Burchell, Timothy D.

    1994-01-01

    The following carbon-based materials are reviewed and their applications discussed: fullerenes; graphite (synthetic and manufactured); activated carbon fibers; and carbon-carbon composites. Carbon R&D activities at ORNL are emphasized.

  3. Infiltrated carbon foam composites

    NASA Technical Reports Server (NTRS)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  4. Carbon supercapacitors

    SciTech Connect

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  5. Carbon particles

    DOEpatents

    Hunt, Arlon J. (Oakland, CA)

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  6. Carbon microtubes

    DOEpatents

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  7. Carbon disulfide

    Integrated Risk Information System (IRIS)

    Carbon disulfide ; CASRN 75 - 15 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  8. Carbon tetrachloride

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 005F www.epa.gov / iris TOXICOLOGICAL REVIEW OF CARBON TETRACHLORIDE ( CAS No . 56 - 23 - 5 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2010 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document has bee

  9. Carbon investment funds

    SciTech Connect

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  10. IC Engine Applications of Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Rivers, H. Kevin

    2000-01-01

    Many of the properties of carbon-carbon make it an ideal material for reciprocating materials of intermittent combustion (IC) engines. Recent diesel engine tests, shown herein, indicate that the thermal and mechanical properties of carbon-carbon are adequate for piston applications, However, reducing the manufacturing costs and providing long term oxidation protection are still issues that need to be addressed.

  11. Trading forest carbon

    EPA Science Inventory

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  12. Carbon dioxide concentrator

    NASA Technical Reports Server (NTRS)

    Williams, C. F.; Huebscher, R. G.

    1972-01-01

    Passed exhaled air through electrochemical cell containing alkali metal carbonate aqueous solution, and utilizes platinized electrodes causing reaction of oxygen at cathode with water in electrolyte, producing hydroxyl ions which react with carbon dioxide to form carbonate ions.

  13. Photophysics of carbon nanotubes

    E-print Network

    Samsonidze, Georgii G

    2007-01-01

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  14. TOC Total organic carbon MBC Microbial biomass carbon

    E-print Network

    Virginia Tech

    C Carbon TOC Total organic carbon MBC Microbial biomass carbon Active C Pool Indicated by Light, the relationship between carbon dynamics including total organic carbon (TOC) storage, microbial biomass carbon and microbial biomass carbon in subsoil 4 years after rehabilitation · Microbial biomass carbon had a positive

  15. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  16. Calcium carbonate overdose

    MedlinePLUS

    Calcium carbonate is an ingredient that is commonly found in antacids (for heartburn) and some dietary supplements. Calcium carbonate overdose occurs when someone accidentally or intentionally takes ...

  17. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  18. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. Carbon Capture (Carbon Cycle 2.0)

    SciTech Connect

    Smit, Berend

    2010-02-03

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (inventor)

    1993-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  1. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (inventor)

    1995-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  2. Carbon Residence Times in Pedogenic Carbonate Pools

    NASA Astrophysics Data System (ADS)

    Monger, H.; Feng, Y.; Karnjanapiboonwang, A.

    2013-12-01

    Soil carbonate is a huge pool of terrestrial carbon that contains at least 930 to 940 Pg C and has influx rates on the order of 1 to 12 g CaCO3/m2/yr. Such large mass to flux ratios yield long mean residence times for carbon (e.g., 85,000 years)--assuming steady state. Like other global carbon pools, the soil carbonate pool has smaller sub-pools with higher influx rates and shorter mean residence times. For example, pedogenic carbonate in coppice dunes known to have formed since 1858 and carbonate formed on lithic artifacts in soils at archaeology sites suggests mean residence times can be as short as 120 years--again assuming steady state. Harder to assess are efflux rates as CO2 emissions or bicarbonate leaching. Some Bowen-ratio studies have nevertheless found evidence for CO2 emissions resulting from carbonate dissolution, and other studies have found evidence for bicarbonate leaching based on dissolution pipes through calcic horizons using soil morphology studies. Since an understanding of mean residence times are prerequisite for a better understanding of soil carbonate in the global carbon cycle, especially in a scenario of an expanding Aridosphere, more influx and efflux measurements are needed to evaluate the possibility of carbon sequestration by soil carbonate in hyperarid, arid, semiarid, or subhumid soils.

  3. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  4. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  5. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  6. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  7. Acetylenic carbon allotrope

    DOEpatents

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  8. Acetylenic carbon allotrope

    DOEpatents

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  9. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  10. Mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  11. Properties Of Carbon/Carbon and Carbon/Phenolic Composites

    NASA Technical Reports Server (NTRS)

    Mathis, John R.; Canfield, A. R.

    1993-01-01

    Report presents data on physical properties of carbon-fiber-reinforced carbon-matrix and phenolic-matrix composite materials. Based on tests conducted on panels, cylinders, blocks, and formed parts. Data used by designers to analyze thermal-response and stress levels and develop structural systems ensuring high reliability at minimum weight.

  12. Modern carbonate environments

    SciTech Connect

    Bhattacharyya, A.; Friedman, G.M.

    1983-01-01

    This book offers help in evaluating potential sites for oil and gas accumulations. Pointing the way to discovery of hydrocarbons in carbonate reservoirs, this volume discusses modern carbonate depositional environments in different geomorphic settings. It compiles papers by scientists whose observations have revolutionized current thinking on facies relationships in ancient carbonate rock. Contents include: Selected carbonate regions --The Algal Sediments on Androa Island in the Bahamas, Sedimentary Facies, Interaction of Genetic Processes in Holocene Reefs off North Eleuthera Island in the Bahamas, Recent Anhydrite, Holocene Shallow-Water Carbonate and Evaporite Sediments of Khor al Bazam; Carbonate production--On the Origin of Aragonite in the Dead Sea, Carbonate Production by Coral Reefs; Cold-water carbonates--Contributions on the Geology of the Northwestern Peninsula of Iceland, Evaluation of Cold-Water Carbonates as a Possible Paleoclimatic Indicator.

  13. Carbon fuel cells with carbon corrosion suppression

    DOEpatents

    Cooper, John F. (Oakland, CA)

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  14. Nonstructural Carbon in Woody Plants

    E-print Network

    Dietze, Michael

    , growth, allocation, osmoregulation Abstract Nonstructural carbon (NSC) provides the carbon and energy as a carbon and energy source, NSC plays important roles in phloem transport, osmoregulation, and cold

  15. Metallic carbon materials

    DOEpatents

    Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  16. Structural response of oxidation resistant carbon-carbon composites 

    E-print Network

    Ashley, Timothy Harold

    1996-01-01

    Since carbon-carbon composites maintain their strength at high temperatures, they are attractive candidates for high temperature applications. Although, in oxygen rich environments at temperatures above 500'C, carbon-carbon composites will oxidize...

  17. Recent advances in carbon-carbon materials systems

    SciTech Connect

    Rummler, D.R.

    1982-11-01

    Carbon-carbon materials and new oxidation resistant coating developments are discussed. Potential areas of application are highlighted. A short bibliography of selected references is included that describe carbon-carbon materials and related technology in detail.

  18. Recent advances in carbon-carbon materials systems

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1982-01-01

    Carbon-carbon materials and new oxidation resistant coating developments are discussed. Potential areas of application are highlighted. A short bibliography of selected references is included that describe carbon-carbon materials and related technology in detail.

  19. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  20. Carbon cycle: Hoard of fjord carbon

    NASA Astrophysics Data System (ADS)

    Keil, Richard

    2015-06-01

    Fjords account for less than 0.1% of the surface of Earth's oceans. A global assessment finds that organic carbon is buried in fjords five times faster than other marine systems, accounting for 11% of global marine organic carbon burial.

  1. Carbon Based Nanotechnology: Review

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation reviews publicly available information related to carbon based nanotechnology. Topics covered include nanomechanics, carbon based electronics, nanodevice/materials applications, nanotube motors, nano-lithography and H2O storage in nanotubes.

  2. Sodium carbonate poisoning

    MedlinePLUS

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and ... products. This article focuses on poisoning due to sodium carbonate. This is for information only and not ...

  3. Interstellar carbon in meteorites

    NASA Technical Reports Server (NTRS)

    Swart, P. K.; Grady, M. M.; Pillinger, C. T.; Lewis, R. S.; Anders, E.

    1983-01-01

    The Murchison and Allende chondrites contain up to 5 parts per million carbon that is enriched in carbon-13 by up to +1100 per mil (the ratio of carbon-12 to carbon-13 is approximately 42, compared to 88 to 93 for terrestrial carbon). This 'heavy' carbon is associated with neon-22 and with anomalous krypton and xenon showing the signature of the s-process (neutron capture on a slow time scale). It apparently represents interstellar grains ejected from late-type stars. A second anomalous xenon component ('CCFXe') is associated with a distinctive, light carbon (depleted in carbon-13 by 38 per mil), which, however, falls within the terrestrial range and hence may be of either local or exotic origin.

  4. Trading forest carbon - OSU

    EPA Science Inventory

    Issues associate with trading carbon sequestered in forests are discussed. Scientific uncertainties associated with carbon measurement are discussed with respect to proposed accounting procedures. Major issues include: (1) Establishing baselines. (2) Determining additivity from f...

  5. Potassium carbonate poisoning

    MedlinePLUS

    Potassium carbonate is a white powder used to make soap, glass, and other items. This article discusses poisoning from swallowing or breathing in potassium carbonate. This is for information only and not ...

  6. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  7. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  8. Metal filled porous carbon

    SciTech Connect

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  9. Graphitization in Carbon MEMS and Carbon NEMS

    NASA Astrophysics Data System (ADS)

    Sharma, Swati

    Carbon MEMS (CMEMS) and Carbon NEMS (CNEMS) are an emerging class of miniaturized devices. Due to the numerous advantages such as scalable manufacturing processes, inexpensive and readily available precursor polymer materials, tunable surface properties and biocompatibility, carbon has become a preferred material for a wide variety of future sensing applications. Single suspended carbon nanowires (CNWs) integrated on CMEMS structures fabricated by electrospinning of SU8 photoresist on photolithographially patterned SU8 followed by pyrolysis are utilized for understanding the graphitization process in micro and nano carbon materials. These monolithic CNW-CMEMS structures enable the fabrication of very high aspect ratio CNWs of predefined length. The CNWs thus fabricated display core---shell structures having a graphitic shell with a glassy carbon core. The electrical conductivity of these CNWs is increased by about 100% compared to glassy carbon as a result of enhanced graphitization. We explore various tunable fabrication and pyrolysis parameters to improve graphitization in the resulting CNWs. We also suggest gas-sensing application of the thus fabricated single suspended CNW-CMEMS devices by using the CNW as a nano-hotplate for local chemical vapor deposition. In this thesis we also report on results from an optimization study of SU8 photoresist derived carbon electrodes. These electrodes were applied to the simultaneous detection of traces of Cd(II) and Pb(II) through anodic stripping voltammetry and detection limits as low as 0.7 and 0.8 microgL-1 were achieved. To further improve upon the electrochemical behavior of the carbon electrodes we elucidate a modified pyrolysis technique featuring an ultra-fast temperature ramp for obtaining bubbled porous carbon from lithographically patterned SU8. We conclude this dissertation by suggesting the possible future works on enhancing graphitization as well as on electrochemical applications

  10. Intro to Carbon Sequestration

    SciTech Connect

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  11. Carbon dioxide concentration indicator

    NASA Technical Reports Server (NTRS)

    King, P. H.

    1972-01-01

    Device will provide visual indication of concentration of carbon dioxide. It consists of small amounts of absorbent material contained in semipermeable membrane and device to detect color changes. Material will absorb quantity of carbon dioxide proportional to carbon dioxide concentration in atmosphere. Amount of absorption is indicated by color change.

  12. Carbon Storage in Forests

    EPA Science Inventory

    This indicator describes net carbon storage rates in forests in the contiguous 48 states from 1953 to 1996. This indicator provides information about the function of the nation’s ecosystems, as storage of carbon in forests is a key component of the carbon cycle and can be c...

  13. Carbon Goes To…

    ERIC Educational Resources Information Center

    Savasci, Funda

    2014-01-01

    The purposes of this activity are to help middle school students understand the carbon cycle and realize how human activities affect the carbon cycle. This activity consists of two parts. The first part of the activity focuses on the carbon cycle, especially before the Industrial Revolution, while the second part of the activity focuses on how…

  14. Intro to Carbon Sequestration

    ScienceCinema

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  15. Formation of Carbon Dwarfs

    E-print Network

    Charles L. Steinhardt; Dimitar D. Sasselov

    2012-01-27

    We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

  16. Method of making carbon-carbon composites

    SciTech Connect

    Engle, G.B.

    1993-06-08

    A method for fabricating a high-strength, high-modulus and high thermal and electrical conducting 2D laminate carbon-carbon composite is described comprising the steps of: (a) forming a green laminate composite comprising: (1) graphitizible carbon cloth plies, (2) fine graphitizible pitch powder; said cloth plies comprising mesophase derived pitch fiber tow with moduli in a range of 25 to 140 Msi, and (3) thermal conductivity enhancers; (b) heating the green laminate composite to a temperature high enough to cause the pitch powder to soften and pressing the composite to form a pressed green laminate composite comprised of graphitizible carbon cloth, pitch matrix and thermal conductivity enhancers; (c) heating the pressed green composite to at least 500 C. to: (1) carbonize the pitch, (2) form a carbon matrix and (3) shrink and crack the matrix carbon; (d) impregnating the composite with additional graphitizible pitch by covering the composite with the pitch and heating the covered composite to at least 200 C. to melt the pitch and permit it to flow into the composite and then increasing the pressure to at least 15 Psi; (e) heating the composites to at least 900 C.; (f) repeating steps d and e at least once; (g) heating the composite to between 2,400 to 3,100 C to graphitize the fibers and the pitch matrix carbon in the composites to produce a graphitized composite having cracks and pores; and (h) reimpregnating the graphitized composites by infiltrating the cracks and pores of the composites with a hydrocarbon gas at a temperature in the range 982 to 1,490 C. and depositing pyrolytic carbon in the pores and cracks.

  17. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber

    E-print Network

    Das, Suman

    Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

  18. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine and 84% conversion of olivine to the carbonate in 6 hours. The results from the current studies suggest that reaction kinetics can be improved by pretreatment of the mineral, catalysis of the reaction, or some combination of the two. Future tests are intended to examine a broader pressure/temperature regime, various pretreatment options, as well as other mineral groups.

  19. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine and 84% conversion of olivine to the carbonate in 6 hours. The results from the current studies suggest that reaction kinetics can be improved by pretreatment of the mineral, catalysis of the reaction, or some combination of the two. Future tests are intended to examine a broader pressure/temperature regime, various pretreatment options, as well as other mineral groups.

  20. Process of making carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor); Kowbel, Witold (Inventor); Bruce, Calvin (Inventor); Vaidyanathan, Ranji (Inventor)

    2000-01-01

    A carbon composite structure, for example, an automotive engine piston, is made by preparing a matrix including of a mixture of non crystalline carbon particulate soluble in an organic solvent and a binder that has a liquid phase. The non crystalline particulate also contains residual carbon hydrogen bonding. An uncured structure is formed by combining the matrix mixture, for example, carbon fibers such as graphite dispersed in the mixture and/or graphite cloth imbedded in the mixture. The uncured structure is cured by pyrolyzing it in an inert atmosphere such as argon. Advantageously, the graphite reinforcement material is whiskered prior to combining it with the matrix mixture by a novel method involving passing a gaseous metal suboxide over the graphite surface.

  1. Carbon-carbon heat pipe assembly

    NASA Astrophysics Data System (ADS)

    Rovang, Richard D.; Palamides, Thomas R.; Hunt, Maribeth E.

    1993-01-01

    A progress review of current efforts to develop a high performance, carbon-carbon, potassium heat pipe is presented. The heat pipe architecture consisting of the carbon-carbon structural support tube, metallic liner, wick, end caps, and fill tubes is described. Tests and analysis performed to select the final design are also discussed. These include wick selection, based on heat pipe performance modeling and materials considerations, and braze alloy selection supported by wettability, stability, and strength testing. The final architecture selected consists of a carbon-carbon tube with 2.5 cm integrally woven fins, silver-based braze, Nb-1% Zr liner, perforated foil wick, end caps, and fill tubes. All these elements have been fabricated and assembly into final test articles initiated. A heat pipe cleaning and filling method which utilizes a potassium flow-through process, with intermediate soaking periods to remove as much free oxygen and other contaminants as possible from the system prior to sealing, was also selected.

  2. Mechanical behavior of carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Rozak, G. A.

    1984-01-01

    A general background, test plan, and some results of preliminary examinations of a carbon-carbon composite material are presented with emphasis on mechanical testing and inspection techniques. Experience with testing and evaluation was gained through tests of a low modulus carbon-carbon material, K-Karb C. The properties examined are the density - 1.55 g/cc; four point flexure strength in the warp - 137 MPa (19,800 psi) and the fill - 95.1 MPa (13,800 psi,) directions; and the warp interlaminar shear strength - 14.5 MPa (2100 psi). Radiographic evaluation revealed thickness variations and the thinner areas of the composite were scrapped. The ultrasonic C-scan showed attenuation variations, but these did not correspond to any of the physical and mechanical properties measured. Based on these initial tests and a survey of the literature, a plan has been devised to examine the effect of stress on the oxidation behavior, and the strength degradation of coated carbon-carbon composites. This plan will focus on static fatigue tests in the four point flexure mode in an elevated temperature, oxidizing environment.

  3. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  4. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  5. COPPER-CATALYZED CROSS-COUPLING REACTIONS: THE FORMATION OF CARBON-CARBON AND CARBON-SULFUR BONDS

    E-print Network

    Venkataraman, Dhandapani "DV"

    COPPER-CATALYZED CROSS-COUPLING REACTIONS: THE FORMATION OF CARBON-CARBON AND CARBON-SULFUR BONDS-COUPLING REACTIONS: THE FORMATION OF CARBON-CARBON AND CARBON-SULFUR BONDS A Dissertation Presented by CRAIG G. BATES: THE FORMATION OF CARBON-CARBON AND CARBON-SULFUR BONDS MAY 2005 CRAIG G BATES, B.S., ROGER WILLIAMS UNIVERISTY

  6. Smooth-Surfaced Carbon/Carbon Reflector Panels

    NASA Technical Reports Server (NTRS)

    Schmitigal, Wesley P.; Jacoy, Paul J.; Porter, Christopher C.; Hickey, Gregory S.

    1992-01-01

    Surface-densification technique integral to fabrication of reflective, lightweight, low-outgassing radio-antenna-reflector panels including carbon/carbon surface laminates supported by carbon/carbon core structures. Densification prevents "print-through" of carbon fibers on surface. When properly densified, surface polished to smooth finish.

  7. 40 CFR 721.2084 - Carbon oxyfluoride (Carbonic difluoride).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Carbon oxyfluoride (Carbonic... Specific Chemical Substances § 721.2084 Carbon oxyfluoride (Carbonic difluoride). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance carbon oxyfluoride (CAS...

  8. 40 CFR 721.2084 - Carbon oxyfluoride (Carbonic difluoride).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Carbon oxyfluoride (Carbonic... Specific Chemical Substances § 721.2084 Carbon oxyfluoride (Carbonic difluoride). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance carbon oxyfluoride (CAS...

  9. CARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE

    E-print Network

    Bateman, Ian J.

    CARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE by Dennis Anderson CSERGE GEC Working Paper 92-28 #12;CARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE by Dennis Anderson of this paper is to explore the principles on which carbon taxes on fossil fuels and `credits' to forestry

  10. Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions

    E-print Network

    Balser, Dana S.

    Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions Dana S. Balser D. Anish Roshi (Raman (Agnes Scott College) #12;Carbon RRLs Carbon Radio Recombination Lines (RRLs) NGC 2024 (Orion B) IC 1795 (W3) Palmer et al. (1967) #12;Carbon RRLs Photodissociation Regions (PDRs) Hollenbach & Tielens (1997

  11. 40 CFR 721.2084 - Carbon oxyfluoride (Carbonic difluoride).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Carbon oxyfluoride (Carbonic... Specific Chemical Substances § 721.2084 Carbon oxyfluoride (Carbonic difluoride). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance carbon oxyfluoride (CAS...

  12. 40 CFR 721.2084 - Carbon oxyfluoride (Carbonic difluoride).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Carbon oxyfluoride (Carbonic... Specific Chemical Substances § 721.2084 Carbon oxyfluoride (Carbonic difluoride). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance carbon oxyfluoride (CAS...

  13. 40 CFR 721.2084 - Carbon oxyfluoride (Carbonic difluoride).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Carbon oxyfluoride (Carbonic... Specific Chemical Substances § 721.2084 Carbon oxyfluoride (Carbonic difluoride). (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance carbon oxyfluoride (CAS...

  14. Reversing Climate Change: Using Carbon Tech to Fight Carbon Em

    E-print Network

    Reversing Climate Change: Using Carbon Tech to Fight Carbon Em Frank H. Shu1 & HX Team (formed 2009 for coal replacement (carbon neutral) · 400 oC: biochar as soil amendment (carbon negative) · Acetate-carbonate/acetone-acetic acid cycle for transp fuel: 3 acetone + heat & zeolite à mesitylene (C9H12) + 3H2O · Syngas: CO, H2

  15. Creating With Carbon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A subsidiary of SI Diamond Technology, Inc., Applied Nanotech, of Austin, Texas, is creating a buzz among various technology firms and venture capital groups interested in the company s progressive research on carbon-related field emission devices, including carbon nanotubes, filaments of pure carbon less than one ten-thousandth the width of human hair. Since their discovery in 1991, carbon nanotubes have gained considerable attention due to their unique physical properties. For example, a single perfect carbon nanotube can range from 10 to 100 times stronger than steel, per unit weight. Recent studies also indicate that the nanotubes may be the best heat-conducting material in existence. These properties, combined with the ease of growing thin films or nanotubes by a variety of deposition techniques, make the carbon-based material one of the most desirable for cold field emission cathodes.

  16. Mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  17. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  19. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  20. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (? 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic dispersions compared to VGCNF/phenolic dispersions. In nanocomposites, at low concentration (? 1.5 wt%), NGP were effective in increasing the flexure strength, char content and lowering the porosity and coefficient of thermal expansion of neat phenolic resin. At higher concentration (>1.5wt%), NGP had a tendency to agglomerate and lost their effectiveness. The behavior observed in nanocomposites continued in manufactured CCC. The highest Inter Laminar Shear Strength (ILSS), flexure strength/modulus, stiffness and density was observed at 1.5 wt% NGP. In CCC at concentrations > 1.5 wt%, the properties (ILSS, flexure, stiffness, density) decreased due to agglomeration but they were still higher compared to that of neat CCC (without NGP).

  1. Synthesis and electron-beam incision of carbon nanocapsules encaging YC 2

    NASA Astrophysics Data System (ADS)

    Saito, Yahachi; Yoshikawa, Tadanobu; Okuda, Mitsumasa; Ohkohchi, Masato; Ando, Yoshinori; Kasuya, Atsuo; Nishina, Yuichiro

    1993-06-01

    Carbon polyhedral particles stuffed with YC 2, which were synthesized by arc discharge of carbon rods containing yttrium, were studied by transmission electron microscopy. The YC 2 crystals with typical sizes of a few tens of nanometers were wrapped by multilayered graphitic sheets, and were protected against hydrolysis. It was demonstrated that the graphite cage was opened by a finely focused electron beam. A growth model of the carbon nanocapsules stuffed with metal carbides is proposed.

  2. Carbon dioxide sequestration by mineral carbonation

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin David C.; O'Connor William K.; Penner Larry R.

    2003-11-01

    Concerns about global warming caused by the increasing concentration of carbon dioxide and other greenhouse gases in the earth’s atmosphere have resulted in the need for research to reduce or eliminate emissions of these gases. Carbonation of magnesium and calcium silicate minerals is one possible method to achieve this reduction. It is possible to carry out these reactions either in situ (storage underground and subsequent reaction with the host rock to trap CO2 as carbonate minerals) or ex situ (above ground in a more traditional chemical processing plant). Research at the Department of Energy’s Albany Research Center has explored both of these routes. This paper will explore parameters that affect the direct carbonation of magnesium silicate minerals serpentine (Mg3Si2O5(OH)4) and olivine (Mg2SiO4) to produce magnesite (MgCO3), as well as the calcium silicate mineral, wollastonite (CaSiO3), to form calcite (CaCO3). The Columbia River Basalt Group is a multi-layered basaltic lava plateau that has favorable mineralogy and structure for storage of CO2. Up to 25% combined concentration of Ca, Fe2+, and Mg cations could react to form carbonates and thus sequester large quantities of CO2. Core samples from the Columbia River Basalt Group were reacted in an autoclave for up to 2000 hours at temperatures and pressures to simulate in situ conditions. Changes in core porosity, secondary minerals, and solution chemistry were measured.

  3. Method for Making a Carbon-Carbon Cylinder Block

    NASA Technical Reports Server (NTRS)

    Ransone, Phillip O. (Inventor)

    1997-01-01

    A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  4. Microbially mediated mineral carbonation

    NASA Astrophysics Data System (ADS)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O ? (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily implemented and economically efficient alternative to other technologies currently under development for mineral sequestration. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 19, 235-240. Ferris FG, Wiese RG, Fyfe WS (1994) Precipitation of carbonate minerals by microorganisms: Implications of silicate weathering and the global carbon dioxide budget. Geomicrobiology Journal, 12, 1-13. Lackner KS, Wendt CH, Butt DP, Joyce EL, Jr., Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170. Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chemical Geology, 206, 302-316. Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, 995-998.

  5. Elevated atmospheric carbon dioxide increases soil carbon

    SciTech Connect

    Norby, Richard J; Jastrow, Julie D; Miller, Michael R; Matamala, Roser; Boutton, Thomas W; Rice, Charles W; Owensby, Clenton E

    2005-01-01

    In a study funded by the U.S. Department of Energy's Office of Science, researchers from Argonne and Oak Ridge National Laboratories and Kansas State and Texas A&M Universities evaluated the collective results of earlier studies by using a statistical procedure called meta-analysis. They found that on average elevated CO2 increased soil carbon by 5.6 percent over a two to nine year period. They also measured comparable increases in soil carbon for Tennessee deciduous forest and Kansas grassland after five to eight years of experimental exposure to elevated CO2.

  6. Carbon Energy Flows Belowground

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants use photosynthesis to convert carbon dioxide in the atmosphere and energy from sunlight into energy-containing, carbon-based foodstuffs (i.e. carbohydrates such as sugars and starches) that provide the building blocks for all life on Earth. Without photosynthesis, sunlight would not be a goo...

  7. Plant Carbonic Anhydrases

    PubMed Central

    Atkins, C. A.; Patterson, B. D.; Graham, D.

    1972-01-01

    On the basis of polyacrylamide gradient gel electrophoresis of leaf extracts from 24 species of higher plants, two main forms of carbonic anhydrase (EC 4.2.1.1) were recognized; the “dicotyledon” type and the “monocotyledon” type. More than one band of enzyme was found on gels from most species, suggesting the possibility of carbonic anhydrase isoenzymes in higher plants. Images PMID:16658144

  8. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  9. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  10. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  11. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  12. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  13. Seeing the Carbon Cycle

    ERIC Educational Resources Information Center

    Drouin, Pamela; Welty, David J.; Repeta, Daniel; Engle-Belknap, Cheryl A.; Cramer, Catherine; Frashure, Kim; Chen, Robert

    2006-01-01

    In this article, the authors present a classroom experiment that was developed to introduce middle school learners to the carbon cycle. The experiment deals with transfer of CO[subscript 2] between liquid reservoirs and the effect CO[subscript 2] has on algae growth. It allows students to observe the influence of the carbon cycle on algae growth,…

  14. The carbon cycle revisited

    NASA Technical Reports Server (NTRS)

    Bolin, Bert; Fung, Inez

    1992-01-01

    Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.

  15. What is carbon? Carbon is every where

    E-print Network

    Tsymbal, Evgeny Y.

    in carbon nanotubes? Thermal conductivity 3500 W·m-1·K-1, 1.52 W·m-1·K-1, similar to soil 10 times larger than Copper In axis direction In radial direction Highly anisotropic thermal conductivity ! #12;How nanotubes? 100 times stronger than steel, but 6 times lighter. The strongest material ever known so far

  16. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... false Carbon monoxide and carbon dioxide analyzer specifications. 86...316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made...

  17. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... false Carbon monoxide and carbon dioxide analyzer specifications. 86...316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made...

  18. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... false Carbon monoxide and carbon dioxide analyzer specifications. 86...316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made...

  19. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... false Carbon monoxide and carbon dioxide analyzer specifications. 86...316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made...

  20. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  1. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  2. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  3. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  4. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  5. What is carbon monoxide? Carbon monoxide (CO) is a poisonous,

    E-print Network

    Johnson, Eric E.

    occupations: Welder Garage mechanic Firefighter Carbon-black maker Organic chemical synthesizer MetalWhat is carbon monoxide? Carbon monoxide (CO) is a poisonous, colorless, odorless, and tasteless, you can inhale carbon monoxide right along with gases that you can smell and not even know that CO

  6. Trading Water for Carbon with Biological Carbon Sequestration

    E-print Network

    Jackson, Robert B.

    Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

  7. The diffusion of carbon atoms inside carbon Yanjie Gan,1

    E-print Network

    Nordlund, Kai

    The diffusion of carbon atoms inside carbon nanotubes Yanjie Gan,1 J. Kotakoski,2,3 A. V microscope with kinetic Monte Carlo simulations to determine the mobility of interstitial carbon atoms in single-walled carbon nanotubes. We measure the irradiation dose necessary to cut nanotubes repeatedly

  8. IMPACCT: Carbon Capture Technology

    SciTech Connect

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  9. Carbon monoxide poisoning

    PubMed Central

    Dolan, Michael C.

    1985-01-01

    Carbon monoxide poisoning is a significant cause of illness and death. Its protean symptoms probably lead to a gross underestimation of its true incidence. Low levels of carbon monoxide aggravate chronic cardiopulmonary problems, and high levels are associated with cardiac arrhythmias and cerebral edema. Patients who survive acute poisoning are at risk of delayed neurologic sequelae. The measurement of carboxyhemoglobin levels does not reveal the tissue levels of carbon monoxide but is useful in determining therapy. Treatment includes the monitoring and management of cardiac arrhythmias and oxygenation. Hyperbaric oxygenation is beneficial, but there are currently no definite criteria for its use. PMID:4027805

  10. Preparing to capture carbon

    SciTech Connect

    Schrag, D.P.

    2007-02-09

    Carbon sequestration from large sources of fossil fuel combustion, particularly coal, is an essential component of any serious plan to avoid catastrophic impacts of human-induced climate change. Scientific and economic challenges still exist, but none are serious enough to suggest that carbon capture and storage will not work at the scale required to offset trillions of tons of carbon dioxide emissions over the next century. The challenge is whether the technology will be ready when society decides that it is time to get going.

  11. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  12. Improving carbon fixation pathways

    SciTech Connect

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  13. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  14. CEOS STRATEGY FOR CARBON OBSERVATIONS

    E-print Network

    Nassar, Ray

    CEOS STRATEGY FOR CARBON OBSERVATIONS FROM SPACE APRIL 2014 #12;#12;CEOS Strategy for Carbon Observations from Space The Committee on Earth Observation Satellites (CEOS) Response to the Group on Earth Observations (GEO) Carbon Strategy Developed under the auspices of the CEOS Carbon Task Force #12;The front

  15. CARBON MANAGEMENT PLAN Department Estates

    E-print Network

    Davies, John N.

    0 CARBON MANAGEMENT PLAN Department Estates Author Paul Wright & Fiona Williams - Carbon Management Team Authorised By: Lynda Powell Implementation By: Carbon Management Team Policy Reference: PLEST1415008 Policies Replaced: Carbon Management Plan 09.11.12 (Minute no. 13.30) Version No: Version 1 2014

  16. GETTING CARBON CAPTURE AND STORAGE

    E-print Network

    Haszeldine, Stuart

    GETTING CARBON CAPTURE AND STORAGE TECHNOLOGIES TO MARKET BREAKING THE DEADLOCK Report of a Science: Carbon Capture and Storage © OECD/IEA 2009, fig. 1, p. 6 Figures 2 and 3 reprinted with permission from `UK Carbon storage and capture, where is it?' by Stuart Haszeldine, Professor of Carbon Capture

  17. Research Report Forests and carbon

    E-print Network

    Research Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry, baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FC

  18. Method for synthesizing carbon nanotubes

    DOEpatents

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  19. Carbon nanotubes: Fibrillar pharmacology

    NASA Astrophysics Data System (ADS)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  20. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  1. Extrasolar Carbon Planets

    E-print Network

    Marc J. Kuchner; S. Seager

    2005-05-02

    We suggest that some extrasolar planets planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

  2. Estimating carbon monoxide exposure

    NASA Technical Reports Server (NTRS)

    Edgerley, R. H.

    1971-01-01

    Method predicts effects of carbon monoxide on astronauts confined in spacecraft cabin atmospheres. Information on need for low toxicity level also applies to confined spaces. Benefits are applicable to industry and public health.

  3. Carbon sequestration in soils

    SciTech Connect

    Bruce, J.P.; Frome, M.; Haites, E.; Janzen, H.; Lal, R.; Paustian, K.

    1999-01-01

    The purpose of this article is to examine (a) the magnitude of the potential for carbon sequestration in the soil as a means of reducing carbon dioxide (CO{sub 2}) in the atmosphere, (b) some of the measures that might be used to achieve this potential, (c) the methods available for estimating carbon sequestration on a farm or regional level, (d) what is needed to achieve international consensus, and (e) additional information needs. This article is not presented as a definitive document but rather as an overview of where scientific opinion converges and where more work is needed. In addition, it aims to provoke discussion of the measures that can increase soil carbon sequestration and the policies that might be used to implement those measures.

  4. Carbon Monoxide Poisoning

    MedlinePLUS

    ... related Carbon Monoxide Exposures Additional Resources Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ... KB] Ti?ng Vi?t [PDF - 89 KB] Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ...

  5. Hypervelocity technology carbon/carbon testing

    NASA Astrophysics Data System (ADS)

    Anselmo, John V.; Kretz, Lawrence O.

    The paper describes the procedures used at the Structures Test Laboratory of the Wright Laboratory's Flight Dynamics Directorate to test a carbon/carbon hot structure representing a typical hypersonic gliding body, and presents the results of tests. The forebody was heated to 1371 C over 13 test runs, using radiant quartz lamps; a vertical shear force of 5.34 kN was introduced to the nose at a stabilized temperature of 816 C. Test data were collected using prototype high-temperature strain gages, in-house-designed high-temperature extensometers, conventional strain gages, and thermocouples. Video footage was taken of all test runs. Test runs were successfully completed up to 1371 C with flight typical thermal gradients at heating rates up to 5.56 C/sec. Results showed that, overall, the termal test control systems performed as predicted and that test temperatures and thermal gradients were achieved to within about 5 percent in most cases.

  6. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  7. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  8. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Webber, Stephen E.

    2003-01-01

    These project will explore the functionalization of carbon nanotubes via the formation of molecular complexes with perylene diimide based systems. It is anticipated that these complexes would be soluble in organic solvent and enable the homogenous dispersion of carbon nanotubes in polymer films. Molecular complexes will be prepared and characterized using standard spectroscopic and thermal analytical techniques. Polymer films will be prepared with these complexes and their properties (electrical and thermal conductivity, mechanical properties, stability) evaluated.

  9. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  10. Carbon dioxide poisoning.

    PubMed

    Langford, Nigel J

    2005-01-01

    Carbon dioxide is a physiologically important gas, produced by the body as a result of cellular metabolism. It is widely used in the food industry in the carbonation of beverages, in fire extinguishers as an 'inerting' agent and in the chemical industry. Its main mode of action is as an asphyxiant, although it also exerts toxic effects at cellular level. At low concentrations, gaseous carbon dioxide appears to have little toxicological effect. At higher concentrations it leads to an increased respiratory rate, tachycardia, cardiac arrhythmias and impaired consciousness. Concentrations >10% may cause convulsions, coma and death. Solid carbon dioxide may cause burns following direct contact. If it is warmed rapidly, large amounts of carbon dioxide are generated, which can be dangerous, particularly within confined areas. The management of carbon dioxide poisoning requires the immediate removal of the casualty from the toxic environment, the administration of oxygen and appropriate supportive care. In severe cases, assisted ventilation may be required. Dry ice burns are treated similarly to other cryogenic burns, requiring thawing of the tissue and suitable analgesia. Healing may be delayed and surgical intervention may be required in severe cases. PMID:16499405

  11. The Contemporary Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33°C). Additions of greenhouse gases to the atmosphere from industrial activity, however, are increasing the concentrations of these gases, enhancing the greenhouse effect, and starting to warm the Earth.The rate and extent of the warming depend, in part, on the global carbon cycle. If the rate at which the oceans remove CO2 from the atmosphere were faster, e.g., concentrations of CO2 would have increased less over the last century. If the processes removing carbon from the atmosphere and storing it on land were to diminish, concentrations of CO2 would increase more rapidly than projected on the basis of recent history. The processes responsible for adding carbon to, and withdrawing it from, the atmosphere are not well enough understood to predict future levels of CO2 with great accuracy. These processes are a part of the global carbon cycle.Some of the processes that add carbon to the atmosphere or remove it, such as the combustion of fossil fuels and the establishment of tree plantations, are under direct human control. Others, such as the accumulation of carbon in the oceans or on land as a result of changes in global climate (i.e., feedbacks between the global carbon cycle and climate), are not under direct human control except through controlling rates of greenhouse gas emissions and, hence, climatic change. Because CO2 has been more important than all of the other greenhouse gases under human control, combined, and is expected to continue so in the future, understanding the global carbon cycle is a vital part of managing global climate.This chapter addresses, first, the reservoirs and natural flows of carbon on the earth. It then addresses the sources of carbon to the atmosphere from human uses of land and energy and the sinks of carbon on land and in the oceans that have kept the atmospheric accumulation of CO2 lower than it would otherwise have been. The chapter describes changes in the distribution of carbon among the atmosphere, oceans, and terrestrial ecosystems over the past 150 years as a result of human-induced emissions of carbon. The processes responsible fo

  12. Carbon based prosthetic devices

    SciTech Connect

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T.; Klawitter, J.J.; Ogilvie, W.; Strzepa, P.; Cook, S.D.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  13. Carbon Characterization Laboratory Report

    SciTech Connect

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  14. Implications of carbon dust emission for terrestrail carbon cycling and carbon accounting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion preferentially removes the finest carbon- and nutrient-rich soil fractions, and consequently its role may be significant within terrestrial carbon (C) cycles. However, the impacts of wind erosion on soil organic carbon (SOC) redistribution are not considered in most carbon cycle models,...

  15. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3)

    E-print Network

    Kaiser, Ralf I.

    Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2 monoxide (CO), carbon dioxide (CO2), and molecular oxygen (O2) with varying carbon-to-oxygen ratios from 1 and destruction pathways of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3

  16. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  17. WESTCARB Carbon Atlas

    DOE Data Explorer

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  18. Response of carbon-carbon composites to challenging environments

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.; Ohlhorst, Craig W.; Barrett, David M.; Ransone, Philip O.; Sawyer, J. Wayne

    1988-01-01

    This paper presents results from material performance evaluations of oxidation-resistant carbon-carbon composites intended for multiuse aerospace applications, which cover the effects of the following environmental parameters: the oxidizing nature of the environments (including both high and low oxygen partial pressures), high temperatures, moisture, cyclic temperature service, and foreign-object impact. Results are presented for the carbon-carbon material currently in use as the thermal-protection-system material on Space Shuttle, as well as for newer and more advanced structural forms of carbon-carbon composites.

  19. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  20. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  1. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  2. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  3. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  4. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  5. Carbon copy deaths: carbon monoxide gas chamber.

    PubMed

    Patel, F

    2008-08-01

    The news media can exert a powerful influence over suicidal behaviour. It has been observed that like-minded individuals are able to preplan a group suicide method using modern communication technology in the form of websites and online chatrooms and mobile phone texting. A case of carbon monoxide (CO) poisoning is presented to illustrate the recent phenomenon of cyber suicides by suffocation from a burning barbecue (charcoal burner) in 'gas chamber' conversions. Although barbecues (BBQ) are very popular in Britain and widely available, there have been relatively few reported cases of copycat deaths from CO gas suffocation. PMID:18586213

  6. Carbon microstructures for electrochemical studies

    SciTech Connect

    Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim

    2001-06-22

    Thin layers of photoresist were spin coated onto silicon wafers, and then carbonized to form smooth carbon films by heating in nitrogen for 1 hour at temperatures between 600 to 1100 C. Well-defined carbon microstructures on Si wafers that are being considered for electrodes in a microbattery concept were obtained by additional processing steps involving patterning and lithography of the photoresist prior to carbonization. The status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist, characterization of the carbons by surface-sensitive techniques and electrochemical analysis by cyclic voltammetry of the I{sup -}/I{sub 3}{sup -} redox reaction is described.

  7. Solid State Carbon Monoxide Sensor

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Wood, George M. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); DAmbrosia, Christine M. (Inventor)

    1999-01-01

    A means for detecting carbon monoxide which utilizes an un-heated catalytic material to oxidize carbon monoxide at ambient temperatures. Because this reaction is exothermic, a thermistor in contact with the catalytic material is used as a sensing element to detect the heat evolved as carbon monoxide is oxidized to carbon dioxide at the catalyst surface, without any heaters or external heating elements for the ambient air or catalytic element material. Upon comparison to a reference thermistor, relative increases in the temperature of the sensing thermistor correspond positively with an increased concentration of carbon monoxide in the ambient medium and are thus used as an indicator of the presence of carbon monoxide.

  8. Carbon Fibers Conductivity Studies

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Butkus, A. M.

    1980-01-01

    In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.

  9. The Pyrogenic Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Bird, Michael I.; Wynn, Jonathan G.; Saiz, Gustavo; Wurster, Christopher M.; McBeath, Anna

    2015-05-01

    Pyrogenic carbon (PyC; includes soot, char, black carbon, and biochar) is produced by the incomplete combustion of organic matter accompanying biomass burning and fossil fuel consumption. PyC is pervasive in the environment, distributed throughout the atmosphere as well as soils, sediments, and water in both the marine and terrestrial environment. The physicochemical characteristics of PyC are complex and highly variable, dependent on the organic precursor and the conditions of formation. A component of PyC is highly recalcitrant and persists in the environment for millennia. However, it is now clear that a significant proportion of PyC undergoes transformation, translocation, and remineralization by a range of biotic and abiotic processes on comparatively short timescales. Here we synthesize current knowledge of the production, stocks, and fluxes of PyC as well as the physical and chemical processes through which it interacts as a dynamic component of the global carbon cycle.

  10. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  11. Carbon-particle generator

    DOEpatents

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  12. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  13. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...50-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon...

  14. Global carbon balance

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken

    2015-03-01

    Human emissions of CO2 now outpace natural sources by two orders of magnitude. The current concentration of CO2 has not been substantially exceeded in the past 30 million years. Multiple model exercises indicate that consuming all fossil fuels would result in concentrations more than double present levels, even after 10,000 years. The global warming effect of carbon emissions appears within 5-7 years. However, since the effect of present infrastructure over its expected life would only modestly increase CO2 concentrations and global temperature, human choices over its replacement will decisively influence ultimate carbon impacts, both short-term and long-term.

  15. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  16. Carbon Capture and Storage

    SciTech Connect

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  17. Method for production of carbon nanofiber mat or carbon paper

    DOEpatents

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  18. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-print Network

    in the atmosphere causes global warming and other forms of climate disruption, while that portion that entersCumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert* Abstract statistic, called cumulative carbon. This statistic is the aggregate amount ofcarbon emitted in theform

  19. Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in

    E-print Network

    Fayer, Michael D.

    Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in Room-Temperature Solution Junrong Zheng, Kyungwon Kwak, Jia Xie, M. D. Fayer Generally, rotational isomerization about the carbon echo spectroscopy to observe isomerization between the gauche and trans conformations of an ethane

  20. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  1. Determination of carbonate carbon in geological materials by coulometric titration

    USGS Publications Warehouse

    Engleman, E.E.; Jackson, L.L.; Norton, D.R.

    1985-01-01

    A coulometric titration is used for the determination of carbonate carbon in geological materials. Carbon dioxide is evolved from the sample by the addition of 2 M perchloric acid, with heating, and is determined by automated coulometric titration. The coulometric titration showed improved speed and precision with comparable accuracy to gravimetric and gasometric techniques. ?? 1985.

  2. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  3. Gas dynamic effects on formation of carbon dimers in laser-produced plasmas

    E-print Network

    Harilal, S. S.

    ; accepted 12 September 2011; published online 29 September 2011) We investigated the effect of helium:yttrium aluminum garnet laser. The emission from excited C2 and CN molecules was studied using space resolved ambient gases. While C2 can form, within the plasma, by recombination of carbon atoms and ions

  4. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  5. Sensor applications of carbon nanotubes

    E-print Network

    Rushfeldt, Scott I

    2005-01-01

    A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

  6. Irradiation Stability of Carbon Nanotubes 

    E-print Network

    Aitkaliyeva, Assel

    2010-01-14

    Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies...

  7. Calcium carbonate with magnesium overdose

    MedlinePLUS

    The combination of calcium carbonate and magnesium is commonly found in antacids, which are medicines that provide heartburn relief. Calcium carbonate with magnesium overdose occurs when someone accidentally or ...

  8. REPORT TO CONGRESS ON BLACK CARBON

    EPA Science Inventory

    The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and thei...

  9. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  10. Poly(carbonate-imide) polymer

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Maudgal, Shubha (Inventor); Pratt, J. Richard (Inventor)

    1987-01-01

    A novel series of polymers and copolymers based on a polyimide backbone with the incorporation of carbonate moieties along the backbone. The process for preparing these polymers and copolymers is also disclosed as is a novel series of dinitrodiphenyl carbonates and diaminodiphenyl carbonates. The novel polymers and copolymers exhibit high temperature capability and because of the carbonate unit, many exhibit a high degree of order and/or crystallinity.

  11. Poly (Carbonate-Mide) Polymer

    NASA Technical Reports Server (NTRS)

    St.clair, T. L. (inventor); Maudgal, S. (inventor); Pratt, J. R. (inventor)

    1986-01-01

    A novel series of polymers and copolymers based on a polymide backbone with the incorporation of carbonate moieties along the backbone is presented. The preparation process for the polymers and copolymers is disclosed together with a novel series of dinitrodiphenyl carbonates and diaminodiphenyl carbonates. The novel polyners and copolymers exhibit high temperature capability and because of the carbonate unit, many exhibit a high degree of order and/or crystallinity.

  12. Carbon nanotube array based sensor

    SciTech Connect

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  13. Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records

    E-print Network

    Jain, Atul K.

    Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and the terrestrial biosphere based on carbon dioxide and carbon isotope records, and prior information on model of carbon dioxide and the resulting atmospheric concentration of carbon dioxide determined from the behavior

  14. Carbon smackdown: wind warriors

    SciTech Connect

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  15. GLOBAL TERRESTRIAL CARBON CYCLE

    EPA Science Inventory

    There is great uncertainty with regard to the future role of the terrestrial biosphere in the global carbon cycle, arising from both an inadequate understanding of current pools and fluxes as well as the potential effects of rising atmospheric concentrations of CO, on natural eco...

  16. Automobile carbon monoxideemission

    E-print Network

    Denver, University of

    Automobile carbon monoxideemission By Donald H. Sredman It is amazing what can be seen of passing cars in less than one second per vehicle. Briefly, the re- mote sensor measures the increase in IR absorption by CO and CO?, com- pared with the air in front of the car. If these observed increases of CO

  17. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  18. Carbon Nanotube Solar Cells

    PubMed Central

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement. PMID:22655070

  19. Carbon-Fuelled Future

    SciTech Connect

    Appel, Aaron M.

    2014-09-12

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The author¹s work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  20. Carbon cloth supported electrode

    DOEpatents

    Lu, Wen-Tong P. (Upper St. Clair, PA); Ammon, Robert L. (Baldwin both of, PA)

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  1. Polyimide/carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2003-01-01

    The goal of this product is to design and characterize well-defined conductive nanocomposite materials. The materials will be composed of a polymer matrix composed of rigid-backbone polyimides, and will be filled with modified or unmodified multi-walled carbon nanotubes (MWNTs). The ultimate design of this project is to create composite materials with optical clarity and a high conductivity.

  2. Carbon smackdown: wind warriors

    ScienceCinema

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  3. Carbon nanotubes for microelectronics?

    PubMed

    Graham, Andrew P; Duesberg, Georg S; Seidel, Robert V; Liebau, Maik; Unger, Eugen; Pamler, Werner; Kreupl, Franz; Hoenlein, Wolfgang

    2005-04-01

    Despite all prophecies of its end, silicon-based microelectronics still follows Moore's Law and continues to develop rapidly. However, the inherent physical limits will eventually be reached. Carbon nanotubes offer the potential for further miniaturization as long as it is possible to selectively deposit them with defined properties. PMID:17193459

  4. Carbon Fiber Risk Analysis. [conference

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.

  5. Low Carbon Development of Hainan

    NASA Astrophysics Data System (ADS)

    Yi, Feng; Kun, Zhang

    With the construction of Hainan international tourism island rising to a national strategy level, the green growth pattern based on low carbon objectives will become a significant part in the development of Hainan's economy. In this paper, low carbon electric power system and differentiation service will be discussed, and some opinions were brought up to have a good impact on Hainan's low carbon development.

  6. The Structures & Properties of Carbon

    ERIC Educational Resources Information Center

    Castellini, Olivia M.; Lisensky, George C.; Ehrlich, Jennifer; Zenner, Greta M.; Crone, Wendy C.

    2006-01-01

    The four main forms of carbon--diamond, graphite, buckyballs, and carbon nanotubes (CNTs)--are an excellent vehicle for teaching fundamental principles of chemical bonding, material structure, and properties. Carbon atoms form a variety of structures that are intrinsically connected to the properties they exhibit. Educators can take advantage of…

  7. Dispersion toughened silicon carbon ceramics

    DOEpatents

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  8. Research Report Forests and carbon

    E-print Network

    Research Report Forests and carbon: valuation, discounting and risk management #12;#12;Forests and carbon: valuation, discounting and risk management Gregory Valatin Forestry Commission: Edinburgh-0-85538-815-7 Valatin, G. (2010). Forests and carbon: valuation, discounting and risk management. Forestry Commission

  9. OF CARBON FIBERS TURBINE BLADE

    E-print Network

    THE USE IN WIND DESIGN: OF CARBON FIBERS TURBINE BLADE A SERI-8BLADE EXAMPLE Cheng Printed March 2000 The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng-4035 Sandia Contract: BE-6196 Abstract The benefit ofintroducing carbon fibers inawind turbine blade

  10. Carbon Nanomaterials: The Ideal Interconnect

    E-print Network

    Carbon Nanomaterials: The Ideal Interconnect Technology for Next- Generation ICs Hong Li, Chuan Xu-generation ICs. In this research, carbon nanomaterials, with their many attractive properties, are emerging-a`-vis optical and RF interconnects, and we illustrate why carbon nanomaterials constitute the ideal intercon

  11. CARBON IN FORESTS: QUALITY MATTERS

    EPA Science Inventory

    The nature of carbon in forests is discussed from the perspective of carbon sequestration and global climate change. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Areas vulnerable to climate change with respect to ca...

  12. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOEpatents

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  13. Carbon Sequestered, Carbon Displaced and the Kyoto Context

    SciTech Connect

    Marland, G.; Schlamadinger, B.

    1999-04-18

    The integrated system that embraces forest management, forest products, and land-use change impacts the global carbon cycle - and hence the net emission of the greenhouse gas carbon dioxide - in four fundamental ways. Carbon is stored in living and dead biomass, carbon is stored in wood products and landfills, forest products substitute in the market place for products made from other materials, and forest harvests can be used wholly or partially to displace fossil fuels in the energy sector. Implementation of the Kyoto Protocol to the United Nations Framework Convention on Climate Change would result in the creation of international markets for carbon dioxide emissions credits, but the current Kyoto text does not treat all carbon identically. We have developed a carbon accounting model, GORCAM, to examine a variety of scenarios for land management and the production of forest products. In this paper we explore, for two simple scenarios of forest management, the carbon flows that occur and how these might be accounted for under the Kyoto text. The Kyoto protocol raises questions about what activities can result in emissions credits, which carbon reservoirs will be counted, who will receive the credits, and how much credit will be available? The Kyoto Protocol would sometimes give credits for carbon sequestered, but it would always give credits when fossil-fuel carbon dioxide emissions are displaced.

  14. Carbon sequestration and its role in the global carbon cycle

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  15. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  16. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE PAGESBeta

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions,more »relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  17. Authigenic carbonate and the history of the global carbon cycle.

    PubMed

    Schrag, Daniel P; Higgins, John A; Macdonald, Francis A; Johnston, David T

    2013-02-01

    We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O(2) or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic. PMID:23372007

  18. Development of a carbon formation reactor for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, G.

    1985-01-01

    Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.

  19. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  20. The Global Carbon Cycle Radiative forcing

    E-print Network

    Follows, Mick

    The Global Carbon Cycle Radiative forcing Global carbon reservoirs Glacial-interglacial cycles Anthropogenic CO2 Ocean carbon cycle Carbonate chemistry and air-sea equilibrium "Solubility pump due to CO2 #12;Global carbon reservoirs #12;Geologic timescales #12;Pre-industrial Carbon Cycle

  1. Catalytic Carbon-Carbon and Carbon-Silicon Bond Activation and Functionalization by Nickel Complexes

    E-print Network

    Jones, William D.

    Catalytic Carbon-Carbon and Carbon-Silicon Bond Activation and Functionalization by Nickel of Rochester, Rochester, New York 14627 Received June 11, 1999 The nickel alkyne complexes (dippe)Ni(Me3Si, and nickel phosphine complexes.3 Milstein and co-workers reported the cata- lytic hydrogenolysis

  2. Carbon Capture and Storage, 2008

    SciTech Connect

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  3. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  4. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  5. Hidden carbon sink beneath desert

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wang, Yu-Gang; Houghton, R. A.; Tang, Li-Song

    2015-07-01

    For decades, global carbon budget accounting has identified a "missing" or "residual" terrestrial sink; i.e., carbon dioxide (CO2) released by anthropogenic activities does not match changes observed in the atmosphere and ocean. We discovered a potentially large carbon sink in the most unlikely place on earth, irrigated saline/alkaline arid land. When cultivating and irrigating arid/saline lands in arid zones, salts are leached downward. Simultaneously, dissolved inorganic carbon is washed down into the huge saline aquifers underneath vast deserts, forming a large carbon sink or pool. This finding points to a direct, rapid link between the biological and geochemical carbon cycles in arid lands which may alter the overall spatial pattern of the global carbon budget.

  6. A carbon sink pathway increases carbon productivity in cyanobacteria.

    PubMed

    Oliver, John W K; Atsumi, Shota

    2015-05-01

    The burning of fossil reserves, and subsequent release of carbon into the atmosphere is depleting the supply of carbon-based molecules used for synthetic materials including plastics, oils, medicines, and glues. To provide for future society, innovations are needed for the conversion of waste carbon (CO2) into organic carbon useful for materials. Chemical production directly from photosynthesis is a nascent technology, with great promise for capture of CO2 using sunlight. To improve low yields, it has been proposed that photosynthetic capacity can be increased by a relaxation of bottlenecks inherent to growth. The limits of carbon partitioning away from growth within the cell and the effect of partitioning on carbon fixation are not well known. Here we show that expressing genes in a pathway between carbon fixation and pyruvate increases partitioning to 2,3-butanediol (23BD) and leads to a 1.8-fold increase in total carbon yield in the cyanobacterium Synechococcus elongatus PCC 7942. Specific 2,3-butanediol production increases 2.4-fold. As partitioning increases beyond 30%, it leads to a steep decline in total carbon yield. The data suggests a local maximum for carbon partitioning from the Calvin Benson cycle that is scalable with light intensity. PMID:25777135

  7. Carbon K-edge Spectra of Carbonate Minerals

    SciTech Connect

    Brandes, J.; Wirick, S; Jacobsen, C

    2010-01-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  8. Oxidation of Carbon/Carbon through Coating Cracks

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Roth, d. J.; Rauser, R. W.; Cawley, J. D.; Curry, D. M.

    2008-01-01

    Reinforced carbon/carbon (RCC) is used to protect the wing leading edge and nose cap of the Space Shuttle Orbiter on re-entry. It is composed of a lay-up of carbon/carbon fabric protected by a SiC conversion coating. Due to the thermal expansion mismatch of the carbon/carbon and the SiC, the SiC cracks on cool-down from the processing temperature. The cracks act as pathways for oxidation of the carbon/carbon. A model for the diffusion controlled oxidation of carbon/carbon through machined slots and cracks is developed and compared to laboratory experiments. A symmetric cylindrical oxidation cavity develops under the slots, confirming diffusion control. Comparison of cross sectional dimensions as a function of oxidation time shows good agreement with the model. A second set of oxidation experiments was done with samples with only the natural craze cracks, using weight loss as an index of oxidation. The agreement of these rates with the model is quite reasonab

  9. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  10. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of some of the widely-varied terrain of the martian south polar residual cap. The landforms here are composed mainly of frozen carbon dioxide. Each year since MGS arrived in 1997, the scarps that bound each butte and mesa, or line the edges of each pit, in the south polar region, have changed a little bit as carbon dioxide is sublimed away. The scarps retreat at a rate of about 3 meters (3 yards) per martian year. Most of the change occurs during each southern summer.

    Location near: 86.7oS, 9.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  11. Carbon materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gao, Yang

    As an important energy storage device, electrochemical supercapacitors or ultracapacitors fill the gap between conventional dielectric capacitors and batteries in terms of specific energy and power. Although supercapacitors have been used in electric vehicles, digital communication instruments, and pulsed lasers, further improvement of supercapacitor performance is highly needed to enhance the energy density without significantly losing the power density. Additionally, the conventional supercapacitors use rigid packages and liquid electrolytes, which limit applications in transparent and flexible electronics. To address these challenges, the research efforts in this dissertation mainly focused on: 1) improvement of the energy density of carbon nanoonions by chemical activation; 2) laser-assisted activation of carbon nanotubes for improved energy density; 3) fabrication of flexible solid-state supercapacitors based on nanocarbon and manganese dioxide (MnO2) hybrid electrodes; and 4) investigation of the electrochemical performance of graphene as transparent and flexible supercapacitor electrodes.

  12. Defects in carbon nanostructures

    SciTech Connect

    Zhou, O.; Fleming, R.M.; Murphy, D.W.; Chen, C.H.; Haddon, R.C.; Ramirez, A.P.; Glarum, S.H. )

    1994-03-25

    Previous high-resolution electron microscopy (HREM) observations of carbon nanotubes have led to a Russian doll' structural model that is based on hollow concentric cylinders capped at both ends. The structures of the carbon nanotubes and particles were characterized here by bulk physical and chemical property measurements. The individual nanostructure is as compressible as graphite in the c-axis, and such nanostructures can be intercalated with potassium and rubidium, leading to a saturation composition of Mc[sub 8]'. These results are counter to expectations that are based on a Russian doll structure. HREM after intercalation with potassium and deintercalation indicates that individual nanoparticles are a paper-mache' of smaller graphite layers. Direct current magnetization and electron spin resonance measurements indicate that the electronic properties of the nanostructures are distinctly different from those of graphite. Although the nanostructures have distinct morphologies and electronic properties, they are highly defective and have a local structure similar to turbostratic graphite.

  13. Plasticity of amorphous carbon

    NASA Astrophysics Data System (ADS)

    von Lautz, Julian; Moseler, Michael; Pastewka, Lars

    2014-03-01

    We use molecular dynamics simulations to probe the plastic response of representative bulk volumes of amorphous carbon at densities from 2.0 g cm-3 to 3.3 g cm-3 in simple and triaxial shear. After an initial elastic response the samples yield with only little strain hardening or softening. Individual plastic events in this network forming glass are strikingly similar to those observed for bulk metallic glasses: We find that plasticity is carried by fundamental rearrangements of regions of around 100 atoms, the shear transformation zone. In the simple shear geometry, those events coalesce to form a shear-band on longer time scales. During plastic deformation, the material changes its hybridization by transforming sp3 carbon atoms to sp2. We provide evidence that this transformation of the structural state occurs before the material yields, hence weakening the material. This work was supported by the European Commission (Marie-Curie IOF 272619).

  14. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  15. Carbon nanotube network varactor.

    PubMed

    Generalov, A A; Anoshkin, I V; Erdmanis, M; Lioubtchenko, D V; Ovchinnikov, V; Nasibulin, A G; Räisänen, A V

    2015-01-30

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. PMID:25556375

  16. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  17. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  18. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad (Huntington, CT); Yuh, Chao-Yi (New Milford, CT)

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  19. Electrowetting in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, J. Y.; Kutana, A.; Collier, C. P.; Giapis, K. P.

    2005-12-01

    We demonstrate reversible wetting and filling of open single-wall carbon nanotubes with mercury by means of electrocapillary pressure originating from the application of a potential across an individual nanotube in contact with a mercury drop. Wetting improves the conductance in both metallic and semiconducting nanotube probes by decreasing contact resistance and forming a mercury nanowire inside the nanotube. Molecular dynamics simulations corroborate the electrocapillarity-driven filling process and provide estimates for the imbibition speed and electrocapillary pressure.

  20. Carbon Dioxide Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.

  1. Frozen Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a south polar residual cap landscape, formed in frozen carbon dioxide. There is no place on Earth that one can go to visit a landscape covering thousands of square kilometers with frozen carbon dioxide, so mesas, pits, and other landforms of the martian south polar region are as alien as they are beautiful. The scarps of the south polar region are known from thousands of other MGS MOC images to retreat at a rate of about 3 meters (3 yards) per martian year, indiating that slowly, over the course of the MGS mission, the amount of carbon dioxide in the martian atmosphere has probably been increasing.

    Location near: 86.9oS, 25.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  2. Determining activated carbon performance

    SciTech Connect

    Naylor, W.F.; Rester, D.O.

    1995-07-01

    This article discusses the key elements involved in evaluating a system`s performance. Empty bed contact time (EBCT) is a term used to describe the length of time a liquid stream being treated is in contact with a granular activated carbon bed. The EBCT is the time required for a fluid to pass through the volume equivalent of the media bed, without the media being present. In a bed of granular activated carbon, the void volume or space between particles is usually about 45 percent. Therefore, the EBCT is about twice the true or actual time of contact between the fluid being treated and the GAC particles. The EBCT plays an important role in determining the effectiveness and longevity of granular activated carbon (GAC) used to treat liquids in a fixed-bed adsorber. Factors that influence and are influenced by EBCT, and their relationship to GAC performance in a treatment scheme include: adsorption, mass transfer zone, impurity concentration, adsorption affinity, flow rate and system design considerations.

  3. Carbon Structure Hazard Control

    NASA Technical Reports Server (NTRS)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  4. Carbon taxes and India

    SciTech Connect

    Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H.; Shukla, P.R.

    1994-07-01

    Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

  5. Studies of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  6. Carbon Dioxide "Trapped" in a ?-Carbonic Anhydrase.

    PubMed

    Aggarwal, Mayank; Chua, Teck Khiang; Pinard, Melissa A; Szebenyi, Doletha M; McKenna, Robert

    2015-11-01

    Carbonic anhydrases (CAs) are enzymes that catalyze the hydration/dehydration of CO2/HCO3(-) with rates approaching diffusion-controlled limits (kcat/KM ? 10(8) M(-1) s(-1)). This family of enzymes has evolved disparate protein folds that all perform the same reaction at near catalytic perfection. Presented here is a structural study of a ?-CA (psCA3) expressed in Pseudomonas aeruginosa, in complex with CO2, using pressurized cryo-cooled crystallography. The structure has been refined to 1.6 Å resolution with Rcryst and Rfree values of 17.3 and 19.9%, respectively, and is compared with the ?-CA, human CA isoform II (hCA II), the only other CA to have CO2 captured in its active site. Despite the lack of structural similarity between psCA3 and hCA II, the CO2 binding orientation relative to the zinc-bound solvent is identical. In addition, a second CO2 binding site was located at the dimer interface of psCA3. Interestingly, all ?-CAs function as dimers or higher-order oligomeric states, and the CO2 bound at the interface may contribute to the allosteric nature of this family of enzymes or may be a convenient alternative binding site as this pocket has been previously shown to be a promiscuous site for a variety of ligands, including bicarbonate, sulfate, and phosphate ions. PMID:26457866

  7. Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2006-01-01

    Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.

  8. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube.

    PubMed

    Zhao, Xinluo; Ando, Yoshinori; Liu, Yi; Jinno, Makoto; Suzuki, Tomoko

    2003-05-01

    A new type of one-dimensional (1D) carbon structure, carbon nanowires (CNWs), was discovered in the cathode deposits prepared by hydrogen arc discharge evaporation of carbon rods. Observation of high-resolution transmission electron microscopy (HRTEM) indicates that a CNW consists of a multiwalled carbon nanotube (MWNT) with a long 1D linear carbon chain (C chain) inserted into its innermost tube of 0.7 nm in diameter. The characteristic Raman peaks of CNWs appeared at around 1850 cm(-1). Raman scattering and HRTEM studies show the formation of a long linear C chain involving more than 100 carbon atoms inside a MWNT. This novel 1D carbon allotrope has potential applications in nanoelectronics, nanomechanics, and nanomaterials. PMID:12786041

  9. Single-walled carbon nanotubes growing radially from YC2 particles

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Seraphin, Supapan; Wang, Su

    1994-09-01

    In the primary soot produced by arc discharge using an yttrium carbide loaded anode, bundles of single-walled carbon nanotubes (SWT) are observed, protruding radially from YC2 particles coated with graphitic multilayers. The graphitic cages separating YC2 particle and SWT bundles fall into the narrow range of 10-20 layers. The morphology of the clusters suggests a two-step growth model: The radial SWT growth pattern is first initiated by catalytic action between the YC2 droplet and the carbon in the gas phase. Second, and upon cooling, the graphitic cage starts by segregating excess carbon from the YC2 bulk, arresting further growth of SWT.

  10. Optoelectronics with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kinoshita, Megumi

    2011-12-01

    The carbon nanotube is a promising material for future micro- and nano-scale electronics because of its unique electronic properties, high carrier mobility and extraordinary capacity for high current density. In particular, semiconducting carbon nanotubes are direct bandgap materials with a typical energy gap in the order of 1 eV, which means they emit light in the near-infrared range, making them an attractive option in telecommunications applications. However, there have been few systematic investigations of electrically-induced light emission (i.e. electroluminescence) from carbon nanotubes, and their emission properties are not well understood. In this dissertation, we explore the characteristics of electroluminescence in three different types of carbon-nanotube devices. The first is a single-tube field-effect transistor (CNTFET), whose emission has previously been found to have a very broad spectral shape and low emission efficiency. We analyze the spectral shape in detail, which reveals that a high electric field near metal contacts contributes most to the bias-dependent component of broadening, in addition to smaller contributions from tube nonuniformity, inelastic scattering of phonons, high temperature, etc. In the second part of the study, single-tube light-emitting diodes are constructed by employing a split top-gate scheme. The split gate creates p- and n-doped regions electrostatically, so that electrons and holes combine between the two sections and can decay radiatively. This configuration creates electron-hole pairs under much lower electric fields and gives us a greater control over carrier distribution in the device channel, resulting in much narrower spectral linewidths and an emission intensity several orders of magnitude larger than that of CNTFETs. The much better signal-to-noise also leads to the observation of emission from defect-induced states. Finally, we extend the idea of the single-tube p-n diode and fabricate CNT film diodes from many purified tubes aligned in parallel. While the operating principle is somewhat different from that of single-tube diodes because of the presence of metallic tubes in the material, the film diodes nonetheless show a rectifying behavior and much greater light intensity than single-tube devices. With their superior light output and robustness, they bring us one step closer to a real-world application of carbon nanotubes optoelectronics.

  11. Tetrahedrally bonded carbonates and aqueous carbonate anions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Pan, Ding; Galli, Giulia; Deep Carbon Observatory Collaboration

    The carbonate ion, CO32- , has a trigonal planar structure composed of carbon bonded with three oxygen atoms. The existence of tetrahedrally bonded carbonate units, CO4, analogous to SiO4 in silicates, has long been under debate. Using a combination of first-principles calculations and in situ infrared spectroscopy measurements, we provided definitive evidence that in magnesite, at pressures above 80 GPa, sp2 bonded CO3 trigonal groups transforms into sp3 bonded CO4 tetrahedral units. These units were found to be asymmetric, with two longer and two shorter C-O bonds. In addition, using first principles molecular dynamics we investigated carbonate anions in water at high temperature and pressure, corresponding to Earth's upper mantle conditions. We found significant quantities of bicarbonate ions dissolved in the liquid. The relevance of our simulation results for geophysical models of hydrous carbonates in the Earth will be discussed. Supported by the Sloan Foundation through the Deep Carbon Observatory.

  12. Oxidative Attack of Carbon/Carbon Substrates through Coating Pinholes

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Leonhardt, Todd; Curry, Donald; Rapp, Robert A.

    1998-01-01

    A critical issue with oxidation protected carbon/carbon composites used for spacecraft thermal protection is the formation of coating pinholes. In laboratory experiments, artificial pinholes were drilled through SiC-coatings on a carbon/carbon material and the material was oxidized at 600, 1000, and 1400 C at reduced pressures of air. The attack of the carbon/carbon was quantified by both weight loss and a novel cross-sectioning technique. A two-zone, one dimensional diffusion control model was adapted to analyze this problem. Agreement of the model with experiment was reasonable at 1000 and 1400 C; however results at lower temperatures show clear deviations from the theory suggesting that surface reaction control plays a role.

  13. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  14. Uncovering the Neoproterozoic carbon cycle.

    PubMed

    Johnston, D T; Macdonald, F A; Gill, B C; Hoffman, P F; Schrag, D P

    2012-03-15

    Interpretations of major climatic and biological events in Earth history are, in large part, derived from the stable carbon isotope records of carbonate rocks and sedimentary organic matter. Neoproterozoic carbonate records contain unusual and large negative isotopic anomalies within long periods (10-100 million years) characterized by ?(13)C in carbonate (?(13)C(carb)) enriched to more than +5 per mil. Classically, ?(13)C(carb) is interpreted as a metric of the relative fraction of carbon buried as organic matter in marine sediments, which can be linked to oxygen accumulation through the stoichiometry of primary production. If a change in the isotopic composition of marine dissolved inorganic carbon is responsible for these excursions, it is expected that records of ?(13)C(carb) and ?(13)C in organic carbon (?(13)C(org)) will covary, offset by the fractionation imparted by primary production. The documentation of several Neoproterozoic ?(13)C(carb) excursions that are decoupled from ?(13)C(org), however, indicates that other mechanisms may account for these excursions. Here we present ?(13)C data from Mongolia, northwest Canada and Namibia that capture multiple large-amplitude (over 10 per mil) negative carbon isotope anomalies, and use these data in a new quantitative mixing model to examine the behaviour of the Neoproterozoic carbon cycle. We find that carbonate and organic carbon isotope data from Mongolia and Canada are tightly coupled through multiple ?(13)C(carb) excursions, quantitatively ruling out previously suggested alternative explanations, such as diagenesis or the presence and terminal oxidation of a large marine dissolved organic carbon reservoir. Our data from Namibia, which do not record isotopic covariance, can be explained by simple mixing with a detrital flux of organic matter. We thus interpret ?(13)C(carb) anomalies as recording a primary perturbation to the surface carbon cycle. This interpretation requires the revisiting of models linking drastic isotope excursions to deep ocean oxygenation and the opening of environments capable of supporting animals. PMID:22388817

  15. Lowstand carbonates, highstand sandstones?

    NASA Astrophysics Data System (ADS)

    Brachert, T. C.; Forst, M. H.; Pais, J. J.; Legoinha, P.; Reijmer, J. J. G.

    2003-01-01

    The sedimentary facies, sediment dynamics and sequence architecture of modern high-energy shelves in the mid and high latitudes are largely governed by wave abrasion processes. Cool-water carbonates may form there, if the influx and/or net accretion of siliciclastics is kept at a minimum. Little dilution of the carbonate produced in situ is generally promoted by a wide "epicontinental" shelf, subdued topography of the adjacent mainland, the predominance of limestone outcrops, and an arid climate. The aforementioned requirements are rarely met, and thus will automatically lead to the formation of mixed siliciclastic-cool-water carbonates. Such an example is found in the Early to Mid-Miocene Lagos-Portimão Formation (Algarve, S-Portugal), which formed on a narrow high-energy shelf of the Atlantic Ocean that was bounded by a mountain range. The sediments of the formation consist of fossiliferous sandstone (FS), shell beds, and rhodolith blankets. Along strike, the stratification of the formation is monotonous for tens of kilometres and well exposed in coastal cliffs, whereas no outcrops of dip sections exist. The bulk skeletal composition of the sediments is typical for the warm-temperate climatic zone: various endo- and epibenthic bivalves, bryozoans, coralline algae, echinoderms, gastropods, and large foraminifers ( Heterostegina). In some very rare beds, a few isolated, not framework-forming specimens of zooxanthellate corals ( Porites, Tarbellastrea) indicate temporally elevated surface water temperatures close to the lower threshold of the coral reef ecosystem. In sandstones, the fauna is well preserved and burrowing bivalves are commonly found in life position. In limestone beds, the state of preservation of the grains ranges from intact to disintegrated and abraded specimens. We infer an accumulation of the shell beds through winnowing of fine materials (siliciclastic sand and carbonate mud) at wave abrasion depth and concentration of calcareous skeletons associated with the subsequent attraction of new epibiota in a complex shell bed. The vertical alternation of fossiliferous sandstone and shell beds, and in-phase variations of the "Photo Index" (photic biota vs. bryozoans) and "Bryozoan Index" (bivalves vs. bryozoans) is envisaged to document variations of water depth (and sea level). Sandstone units built up when wave abrasion depth (WAD) rose above the sea floor during TST (and early HST), whereas the shell beds formed during LST when the WAD for sand intersected with the sea floor. Clastic sediments were probably brought on the outer shelf during early transgression, and by longshore currents. Sea-level signatures inferred in the mixed siliciclastic-cool-water carbonate shelf setting of S-Portugal therefore significantly deviate from conventional concepts of carbonate sequence stratigraphy, which were developed for flat-topped platforms. Successful interpretations of ancient mixed sequences must therefore take into consideration the processes of production, concentration and accretion of the carbonate sediments.

  16. Carbon-hydrogen bonding in near-frictionless carbon

    SciTech Connect

    Johnson, Jackie A.; Woodford, John B; Rajput, Deepak; Kolesnikov, Alexander I; Schleuter, John A; Eryilmaz, Osman L; Erdemir, Ali

    2008-01-01

    The uniquely low friction behavior of near frictionless carbon (NFC) as compared to conventional diamond-like carbon (DLC) is determined by the bonding within the film. Inelastic neutron scattering (INS) and Fourier Transform Infrared (FTIR) spectroscopy were used to probe the bonding environment of carbon and hydrogen; both INS and FTIR can probe the whole sample. Previous work has focused on surface studies; the present results show that in the film as a whole the majority of the hydrogen is adjacent to sp3-bonded carbon. In addition this work has determined the absence of any molecular hydrogen in NFC.

  17. Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1998-01-01

    An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  18. Carbon-hydrogen bonding in near-frictionless carbon.

    SciTech Connect

    Johnson, J. A.; Woodford, J. B.; Rajput, D.; Kolesnikov, A. I.; Schleuter, J. A.; Eryilmaz, O. L.; Erdemir, A.; Univ. of Tennessee Space Inst.; ORNL

    2008-01-01

    The uniquely low friction behavior of near-frictionless carbon (NFC) as compared to conventional diamondlike carbon (DLC) is determined by the bonding within the film. Inelastic neutron scattering (INS) and Fourier transform infrared (FTIR) spectroscopy were used to probe the bonding environment of carbon and hydrogen; both INS and FTIR can probe the whole sample. Previous work has focused on surface studies; the present results show that in the film as a whole the majority of the hydrogen is adjacent to sp{sup 3}-bonded carbon. In addition this work has determined the absence of any molecular hydrogen in NFC.

  19. Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)

    ScienceCinema

    DePaolo, Don [Director, LBNL Earth Sciences Division

    2011-06-08

    Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Development of improved coating for advanced carbon-carbon components

    NASA Technical Reports Server (NTRS)

    Yamaki, Y. R.; Brown, J. J.

    1984-01-01

    Reaction sintered silicon nitride (RSSN) was studied as a substitute coating material on the carbon-carbon material (RCC) presently used as a heat shield on the space shuttle, and on advanced carbon-carbon (ACC), a later development. On RCC, RSSN showed potential in a 538 C (1000 F) screening test in which silicon carbide coated material exhibits its highest oxidation rate; RSSN afforded less protection to ACC because of a larger thermal expansion mismatch. Organosilicon densification and metallic silicon sealing methods were studied as means of further increasing the oxidation resistance of the coating, and some improvement was noted when these methods were employed.

  1. Novel carbon–carbon bond formations for biocatalysis

    PubMed Central

    Resch, Verena; Schrittwieser, Joerg H; Siirola, Elina; Kroutil, Wolfgang

    2011-01-01

    Carbon–carbon bond formation is the key transformation in organic synthesis to set up the carbon backbone of organic molecules. However, only a limited number of enzymatic C–C bond forming reactions have been applied in biocatalytic organic synthesis. Recently, further name reactions have been accomplished for the first time employing enzymes on a preparative scale, for instance the Stetter and Pictet–Spengler reaction or oxidative C–C bond formation. Furthermore, novel enzymatic C–C bond forming reactions have been identified like benzylation of aromatics, intermolecular Diels-Alder or reductive coupling of carbon monoxide. PMID:21354781

  2. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  3. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Moorhead, Arthur J. (Knoxville, TN)

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  4. Carbon Nanotube-Enhanced Carbon-Phenenolic Ablator Material

    NASA Technical Reports Server (NTRS)

    Kikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B. A.; Waid, M.; Moloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.

    2006-01-01

    This viewgraph presentation reviews the use of PICA (phenolic impregnated carbon ablator) as the selected material for heat shielding for future earth return vehicles. It briefly reviews the manufacturing of PICA and the advantages for the use of heat shielding, and then explains the reason for using Carbon Nanotubes to improve strength of phenolic resin that binds carbon fibers together. It reviews the work being done to create a carbon nanotube enhanced PICA. Also shown are various micrographic images of the various PICA materials.

  5. Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)

    SciTech Connect

    DePaolo, Don

    2010-02-03

    Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  6. Terrestrial carbon histories: Implications for future global carbon cycle dynamics

    SciTech Connect

    Solomon, A.M.; Webb. T.; Prentice, I.C. Brown Univ., Providence, RI Univ. of Lund )

    1993-06-01

    One of the most recalcitrant scientific questions during the past 20 years of research on increasing atmospheric CO[sub 2] is whether (and how much) the earth is a net source or a net sink for carbon now, and, whether (and how much) it will be so in the future. The answer is critical to cleaning international response strategies as well as to predicting biospheric futures with or without effects of political action. Here, we examine the potential value of information available in paleoecological data for defining the role of the terrestrial biosphere in global carbon cycle variations. The data describe histories of carbon in the atmosphere (primarily from stratigrapheric CO[sub 2] concentrations embedded in polar ice caps), above-ground biomass (primarily vegetation reconstructed from fossil pollen data in lacustrine sediments) and soil carbon pools (primarily from soil carbon inventories and landscape histories). After discussing the implications of inferences on the nature of global carbon cycling which are directly obtainable from the data, we evaluate the paleoecological information for formulating and testing predictive models written to describe future carbon cycle dynamics. Finally, we apply one such model to project future dynamics of the terrestrial carbon cycle, and use the obvious uncertainties in the results to define the paleoecological research agenda required for definitive solution of the carbon sequestration question.

  7. Howell, R.A., 2012 Living with a carbon allowance 1 Living with a carbon allowance: the experiences of Carbon

    E-print Network

    Howell, R.A., 2012 Living with a carbon allowance 1 Living with a carbon allowance: the experiences of Carbon Rationing Action Groups and implications for policy Rachel A. Howell Environmental Change with a carbon allowance: the experiences of Carbon Rationing Action Groups and implications for policy. Energy

  8. Carbon-Hydrogen and Carbon-Carbon Bond Activation of Cyclopropane by a Hydridotris(pyrazolyl)borate

    E-print Network

    Jones, William D.

    Carbon-Hydrogen and Carbon-Carbon Bond Activation of Cyclopropane by a Hydridotris and re-forming alkanes via carbon-carbon bond activation using heterogeneous catalysts is an important results in C-H activation of the hydrocarbon. The cyclopropyl hydride complex rearranges in benzene

  9. Compilation of carbon-14 data

    SciTech Connect

    Paasch, R.A.

    1985-07-08

    A review and critical analysis was made of the original sources of carbon-14 in the graphite moderator and reflector zones of the eight Hanford production reactors, the present physical and chemical state of the carbon-14, pathways (other than direct combustion) by which the carbon-14 could be released to the biosphere, and the maximum rate at which it might be released under circumstances which idealistically favor the release. Areas of uncertainty are noted and recommendations are made for obtaining additional data in three areas: (1) release rate of carbon-14 from irradiated graphite saturated with aerated water; (2) characterization of carbon-14 deposited outside the moderator and reflector zones; and (3) corrosion/release rate of carbon-14 from irradiated steel and aluminum alloys.

  10. Radiocarbon dating of terrestrial carbonates

    USGS Publications Warehouse

    Pigati, Jeffrey S.

    2014-01-01

    Terrestrial carbonates encompass a wide range of materials that potentially could be used for radiocarbon (14C) dating. Biogenic carbonates, including shells and tests of terrestrial and aquatic gastropods, bivalves, ostracodes, and foraminifera, are preserved in a variety of late Quaternary deposits and may be suitable for 14C dating. Primary calcareous deposits (marls, tufa, speleothems) and secondary carbonates (rhizoliths, fracture fill, soil carbonate) may also be targeted for dating when conditions are favorable. This chapter discusses issues that are commonly encountered in 14C dating of terrestrial carbonates, including isotopic disequilibrium and open-system behavior, as well as methods used to determine the reliability of ages derived from these materials. Recent methodological advancements that may improve the accuracy and precision of 14C ages of terrestrial carbonates are also highlighted.

  11. Using CarbonTracker carbon flux estimates to improve a terrestrial carbon cycle model

    NASA Astrophysics Data System (ADS)

    Peters, W.; Krol, M.; Miller, J. B.; Tans, P. P.; Carvalhais, N.; Schaefer, K.

    2009-12-01

    Estimates of net ecosystem exchange (NEE) from NOAA’s CarbonTracker CO2 data assimilation system show patterns of annual net uptake not represented in most terrestrial carbon cycle models. This is mainly because such models lack information on the land-use history of individual ecosystems, which is the main driver of long-term mean carbon exchange. Instead, they assume the biosphere to be in steady-state, with annual gross photosynthesis equalling ecosystem respiration everywhere. This limits their use in interpreting observations of carbon dynamics such as with eddy-covariance techniques or through atmospheric CO2 records. We have implemented a method that takes the long-term mean NEE estimates from CarbonTracker to derive the size of the dominant carbon pool in each ecosystem of the SIBCASA biosphere model. With the new pool sizes, the SIBCASA model is no longer in steady-state and reproduces annual carbon uptake patterns from CarbonTracker. We will show that the non steady-state SIBCASA model is not only much more consistent with the atmospheric CO2 record, but also with independent data on standing wood biomass and forest age from the Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service. Four years of CarbonTracker NEE are needed to reliably derive a long term mean for this process, and we use three other years from CarbonTracker to evaluate the non steady state SIBCASA NEE. We will furthermore show that the non steady-state SIBCASA NEE is a much better first-guess for the CarbonTracker data assimilation process, allowing more confidence in its final NEE estimate, and reducing a systematic bias in CarbonTracker modeled atmospheric CO2. This overcomes a long standing issue in inverse modeling, and opens the way for further assessment and improvement of carbon cycle models such as SIBCASA.

  12. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents.

    PubMed

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-10-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m²/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3-11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  13. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents

    PubMed Central

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-01-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m2/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3–11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  14. Refractory Oxidative-Resistant Ceramic Carbon Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2001-01-01

    High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.

  15. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  16. Carbon-assisted flyer plates

    DOEpatents

    Stahl, David B. (Los Alamos, NM); Paisley, Dennis L. (Santa Fe, NM)

    1994-01-01

    A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

  17. Premium carbon products from coal

    SciTech Connect

    Rusinko, F. Jr.; Morrison, J.L.

    2000-07-01

    The face of the US coal industry and its markets are changing. Environmental concerns over global warming and plant emissions are two factors that will continue to gain national attention and consequently will challenge the use of coal in the US within its traditional markets. The decline of coke production in the US has lead to high quality metallurgical-grade coal being used to generate electricity. One could argue this is a waste of a limited valuable resource. The debate over global warming and the generation of greenhouse gases, particularly CO{sub 2}, will undoubtedly negatively impact the use of coal in newly constructed power plants. What is the future of the US coal industry and the industries that benefit from coal? This paper will review the use of coal and coal-derived materials in new, non-fuel markets. It will review a new industrial consortium that has recently been formed to stimulate the use of coal in value-added carbon markets. One of the questions the reader should ask when reading this paper is: Is coal more valuable for its carbon content or its BTU content? Carbon materials such as carbon fibers, carbon-carbon composites, specialty and mechanical graphite, activated carbon, carbon black, and carbon foams may provide new markets for the coal industry. These markets are expanding and some of these markets are in their infancy. These new material applications offer an exciting, but little recognized, opportunity for the expanded use of coal.

  18. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2, or F2, or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  19. Functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or F.sub.2 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  20. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  1. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1?, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), EFF was 8.9 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.9 ± 0.8 GtC yr-1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr-1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr-1, GATM was 5.4 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3-3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr-1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870-2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

  2. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  3. Global carbon budget 2014

    DOE PAGESBeta

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; et al

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissionsmore »from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1?;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr?¹,ELUC 0.9 ± 0.5 GtC yr?¹, GATM 4.3 ± 0.1 GtC yr?¹, SOCEAN 2.6 ± 0.5 GtC yr?¹, and SLAND 2.9 ± 0.8 GtC yr?¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr?¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr?¹, GATM was 5.4 ± 0.2 GtC yr?¹, SOCEAN was 2.9 ± 0.5 GtC yr?¹, and SLAND was 2.5 ± 0.9 GtC yr?¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr?¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).« less

  4. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2014-09-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1?, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), EFF was 8.9 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.9 ± 0.8 GtC yr-1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr-1, 2.3% above 2012, contining the growth trend in these emissions. ELUC was 0.9 ± 0.5 GtC yr-1, GATM was 5.4 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1 and SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2013 reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3-3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr-1), 65% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870-2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and datasets used in this new carbon budget compared with previous publications of this living dataset (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). Italic font highlights significant methodological changes and results compared to the Le Quéré et al. (2014) manuscript that accompanies the previous version of this living data.

  5. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  6. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether. 151.50-40 Section...Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl...

  7. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether. 151.50-40 Section...Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl...

  8. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether. 151.50-40 Section...Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl...

  9. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether. 151.50-40 Section...Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl...

  10. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether. 151.50-40 Section...Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl...

  11. Activated Boron Nitride Derived from Activated Carbon

    E-print Network

    Zettl, Alex

    polymeric solids, and porous carbon.1 Among these, porous carbon, often called activated carbon, displays-linked in a random manner.2 Activated carbon is currently the most economic and popularly used porous solid.2CyNz intermediate product was collected from the bed of porous carbon. To determine appropriate experimental

  12. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  13. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  14. Carbon Management Plan 1. Executive summary 5

    E-print Network

    Haase, Markus

    Carbon Management Plan June 2011 #12;2 #12;3 CONTENTS 1. Executive summary 5 2. Introduction 15 3. Background and context 16 4. Carbon management strategy 18 5. Carbon emissions baseline and projections 22 6. Past actions and achievements 30 7. Carbon Management Plan implementation 33 8. Carbon Management Plan

  15. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  16. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  17. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  18. University of Aberdeen Carbon Management Plan

    E-print Network

    Neri, Peter

    of Aberdeen is committed to reducing its carbon footprint and to playing its part in limiting the worstUniversity of Aberdeen Carbon Management Plan Higher Education Carbon Management Programme working with Page 1 The University of Aberdeen Carbon Management Programme Carbon Management Plan (CMP

  19. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  20. Carbon dioxide sequestration in cement kiln dust through mineral carbonation

    SciTech Connect

    Deborah N. Huntzinger; John S. Gierke; S. Komar Kawatra; Timothy C. Eisele; Lawrence L. Sutter

    2009-03-15

    Carbon sequestration through the formation of carbonates is a potential means to reduce CO{sub 2} emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation. The degree of mineral carbonation achievable in cement kiln dust (CKD) under ambient temperatures and pressures was examined through a series of batch and column experiments. The overall extent and potential mechanisms and rate behavior of the carbonation process were assessed through a complementary set of analytical and empirical methods, including mass change, thermal analysis, and X-ray diffraction. The carbonation reactions were carried out primarily through the reaction of CO{sub 2} with Ca(OH){sub 2}, and CaCO{sub 3} was observed as the predominant carbonation product. A sequestration extent of over 60% was observed within 8 h of reaction without any modifications to the waste. Sequestration appears to follow unreacted core model theory where reaction kinetics are controlled by a first-order rate constant at early times; however, as carbonation progresses, the kinetics of the reaction are attenuated by the extent of the reaction due to diffusion control, with the extent of conversion never reaching completion. 35 refs., 3 figs., 1 tab.

  1. Radiogenic Carbon Isotopes in Authigenic Carbonate from Lake Neusiedl, Austria

    NASA Astrophysics Data System (ADS)

    Neuhuber, Stephanie; Steier, Peter; Gier, Susanne; Draganits, Erich; Kogelbauer, Ilse

    2015-04-01

    Formation of authigenic carbonate in Lake Neusiedl, Austia, has been reported since the 1960ies. The reaction pathways resulting in carbonate precipitation (protodolomite and high magnesium calcite) have yet to be identified. Lake Neusiedl is a shallow lake without significant sediment accumulation but constant reworking of sediment due to its shallow depth (1.8m) and influence by wind. The sediments are water-saturated silts and clays that overly Neogene sediments. The age of Lake Neusiedl is unknown due to its low sedimentation rate and constant remixing of sediment. Dating of authigenic minerals is an alternative method to determine the minimum age of water present - even episodically - at the location. We characterize the sediments mineralogy in different size fractions by X-Ray Diffractometry (XRD), Simultaneous Themo Analysis (STA) and Fourier Transform Infra Red Spectroscopy, stable carbon and oxygen isotopes as well as radiogenic carbon. To describe the authigenic carbonates and find the fractions with highest authigenic carbonate minerals we investigate the size fractions <4 µm, <3 µm, <2 µm, <1 µm, 0.5 µm and <0.2 µm. The "coarser" fractions (4 µm to 2 µm) contain detrital minerals such as chlorite, muscovite, quartz, feldspar, stoichiometric calcite and stoichiometric dolomite as well as authigenic high Mg calcite. Radiogenic carbon ages increase with increasing grain size from 850 years before present to 2300 years before present and indicate a very slow growth rate or episodic growth of authigenic carbonate phases.

  2. Carbon balance of anaerobic granulation process: carbon credit.

    PubMed

    Wong, Biing-Teo; Show, K Y; Lee, D J; Lai, J Y

    2009-03-01

    The concept of carbon credit arose out of increasing awareness of the need to reduce emissions of greenhouse gases to combat global warming which was formalized in the Kyoto protocol. In addition to contribution to sustainable development with energy recovery in the form of methane, carbon credits can be claimed by application of advanced anaerobic processes in wastewater treatment for reducing emissions of greenhouse gases. As anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they could render much more carbon credits than other conventional anaerobic systems. This study investigated the potential carbon credit derived from laboratory-scale upflow anaerobic sludge blanket (UASB) reactors based on a carbon balance analysis. Methane emission reduction could be calculated by calculating the difference of UASB reactors and open lagoon treatment systems. Based on the 2.5l bench-scale reactor, the total CH(4) emissions reduction was calculated as 29 kg CO(2)/year. On scaling up to a typical full-scale anaerobic digester, the total CH(4) emissions reduction could achieve 46,420 tons CO(2) reduction/year. The estimated carbon credits would amount to 278,500 US$ per year by assuming a carbon price of 6 US$ per metric ton CO(2) reduction. The analysis postulated that it is financially viable to invest in advanced anaerobic granular treatment system from the revenue generated from carbon credits. PMID:18990565

  3. Carbon Mineralization and Labile Organic Carbon Pools in the Sandy

    E-print Network

    Grunwald, Sabine

    Carbon Mineralization and Labile Organic Carbon Pools in the Sandy Soils of a North Florida mineralization were best explained by TOC (62%) and hot-water- extractable C (59%), whereas acid-hydrolyzable C mineralization and clay content were directly linearly correlated, indicating a possible stimulatory effect

  4. Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle

    SciTech Connect

    Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob

    2012-05-22

    An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

  5. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  6. [Unusual carbon monoxide poisoning].

    PubMed

    Schmidt, P; Musshoff, F; Dettmeyer, R; Madea, B

    2001-01-01

    Despite of indicative death scenes or characteristic findings of the external examination, about 40% of the accidental fatal intoxications due to carbon monoxide are not recognized before the performance of the autopsy. Six cases are reported which illustrate possible reasons for the delayed establishment of the diagnosis: unusual circumstances of the intoxication or sources of carbon monoxide, only subtle degree or lack of external signs of the intoxication or a competing cause of death at autopsy.--Cases 1 and 2: 53, respectively 54-year-old couple, found dead in a caravan, extreme putrefaction of the bodies, spectrophotometric detection of the fatal carboxyhaemoglobin level in oedema fluid of the scalp.--Case 3: 23-year-old lorry driver, found dead in the tightly closed cab of his lorry, operation of a source of electricity with "environmentally friendly" fuel, carboxyhaemoglobin level 83%.--Case 4: 19-year-old man, found dead in the flat of friends, removal of the CO-source before alerting the police forces, lack of the bright pink coloration of livor mortis, haemopericardium due to atrial rupture at postmortem examination, carboxyhaemoglobin level 65%.--Case 5: 27-year-old man, found dead in his flat, advanced decomposition of the body, residues of a charcoal fire in a metal bucket in the sink, carboxyhaemoglobin level 80%.--Case 6: 42-year-old woman, lying dead in the garage beside her car, engine switched-off, ignition key next to the body on the floor under the car, carboxyhaemoglobin level 46%. PMID:11591055

  7. [Carbon monoxide poisoning].

    PubMed

    Jaeger, K; Ruschulte, H; Heine, J; Piepenbrock, S

    2000-01-01

    Carbon monoxide (CO) is a product of incomplete burning of coals and carbon compounds and is a gas without any typical taste, colour or smell. Defective radiators or gas pipes, open fireplaces, fires and explosions are sources of unintended CO production and inhalation. CO bonds with haemoglobin much more readily than oxygen does. CO toxicity causes impaired oxygen delivery and utilisation at cellular level. It affects different sites within the body, but has its most profound impact on the organs with the highest oxygen requirement. CO concentration and the intensity and duration of inhalation determine the extent of intoxication. Following basic life support, assisted or controlled ventilation with 100% oxygen is essential during emergency care. Hyperbaric oxygenation (HBO) is the preferred therapeutic option for releasing CO from its binding to haemoglobin. It has been shown that CO may cause lipid peroxidation and leukocyte-mediated inflammatory changes in the brain, a process that may be inhibited by HBO. Patients with neurological symptoms including loss of consciousness and expectant mothers should undergo HBO treatment, no matter how high their CO levels are. Neonates and in-utero fetuses are more vulnerable due to the natural leftward shift of the dissociation curve of fetal haemoglobin, a lower baseline pO2 and carboxyhaemoglobin levels at equilibration that are 10-15% higher than maternal levels. Physicians need to be aware of the potential occurrence of this life threatening hazard so that appropriate emergency treatment can be administered and fatalities prevented. PMID:10920484

  8. Mixing of carbonate waters

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, L.N.

    1976-01-01

    When mineral solutions of different compositions are mixed, the molalities and activities of individual ions in the mixture are often non-linear functions of their end-member values. This non-linearity is particularly significant in determining mineral saturation levels. Mixtures of saturated solutions may be either undersaturated or supersaturated depending on the end-member compositions and the physical conditions in which end-members and their mixtures exist. In carbonate solutions important non-linear effects occur due to redistribution of carbonate species. In extreme cases this causes mixture pH to be below both the end-member pH values. A simple but precise computer program (WATMIX) has been developed for calculating mixture composition for closed and open system mixing of arbitrary end-members. A number of mixing examples are considered which allow one to isolate three important processes leading to non-linear behaviour: the algebraic effect, the ??PCO2 effect, and the ionic strength effect. ?? 1976.

  9. Tuning Organic Carbon Dioxide Absorbents for Carbonation and Decarbonation

    PubMed Central

    Rajamanickam, Ramachandran; Kim, Hyungsoo; Park, Ji-Woong

    2015-01-01

    The reaction of carbon dioxide with a mixture of a superbase and alcohol affords a superbase alkylcarbonate salt via a process that can be reversed at elevated temperatures. To utilize the unique chemistry of superbases for carbon capture technology, it is essential to facilitate carbonation and decarbonation at desired temperatures in an easily controllable manner. Here, we demonstrate that the thermal stabilities of the alkylcarbonate salts of superbases in organic solutions can be tuned by adjusting the compositions of hydroxylic solvent and polar aprotic solvent mixtures, thereby enabling the best possible performances to be obtained from the various carbon dioxide capture agents based on these materials. The findings provides valuable insights into the design and optimization of organic carbon dioxide absorbents. PMID:26033537

  10. Compressed carbon nanotubes: a family of new multifunctional carbon allotropes.

    PubMed

    Hu, Meng; Zhao, Zhisheng; Tian, Fei; Oganov, Artem R; Wang, Qianqian; Xiong, Mei; Fan, Changzeng; Wen, Bin; He, Julong; Yu, Dongli; Wang, Hui-Tian; Xu, Bo; Tian, Yongjun

    2013-01-01

    The exploration of novel functional carbon polymorphs is an enduring topic of scientific investigations. In this paper, we present simulations demonstrating metastable carbon phases as the result of pressure induced carbon nanotube polymerization. The configuration, bonding, electronic, and mechanical characteristics of carbon polymers strongly depend on the imposed hydrostatic/non-hydrostatic pressure, as well as on the geometry of the raw carbon nanotubes including diameter, chirality, stacking manner, and wall number. Especially, transition processes under hydrostatic/non-hydrostatic pressure are investigated, revealing unexpectedly low transition barriers and demonstrating sp(2)?sp(3) bonding changes as well as peculiar oscillations of electronic property (e.g., semiconducting?metallic?semiconducting transitions). These polymerized nanotubes show versatile and superior physical properties, such as superhardness, high tensile strength and ductility, and tunable electronic properties (semiconducting or metallic). PMID:23435585

  11. The kinetics of binding carbon dioxide in magnesium carbonate

    SciTech Connect

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Vaidya, R.; Pile, D.L.; Park, Y.; Holesinger, T.; Harradine, D.M.; Nomura, Koji |

    1998-08-01

    Humans currently consume about 6 Gigatons of carbon annually as fossil fuel. In some sense, the coal industry has a unique advantage over many other anthropogenic and natural emitters of CO{sub 2} in that it owns large point sources of CO{sub 2} from which this gas could be isolated and disposed of. If the increased energy demands of a growing world population are to be satisfied from coal, the implementation of sequestration technologies will likely be unavoidable. The authors` method of sequestration involves binding carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, with minimal environmental impact. The technology is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Realization of a cost effective method requires development of optimal technologies for efficient extraction and thermal carbonation.

  12. Compressed carbon nanotubes: A family of new multifunctional carbon allotropes

    PubMed Central

    Hu, Meng; Zhao, Zhisheng; Tian, Fei; Oganov, Artem R.; Wang, Qianqian; Xiong, Mei; Fan, Changzeng; Wen, Bin; He, Julong; Yu, Dongli; Wang, Hui-Tian; Xu, Bo; Tian, Yongjun

    2013-01-01

    The exploration of novel functional carbon polymorphs is an enduring topic of scientific investigations. In this paper, we present simulations demonstrating metastable carbon phases as the result of pressure induced carbon nanotube polymerization. The configuration, bonding, electronic, and mechanical characteristics of carbon polymers strongly depend on the imposed hydrostatic/non-hydrostatic pressure, as well as on the geometry of the raw carbon nanotubes including diameter, chirality, stacking manner, and wall number. Especially, transition processes under hydrostatic/non-hydrostatic pressure are investigated, revealing unexpectedly low transition barriers and demonstrating sp2?sp3 bonding changes as well as peculiar oscillations of electronic property (e.g., semiconducting?metallic?semiconducting transitions). These polymerized nanotubes show versatile and superior physical properties, such as superhardness, high tensile strength and ductility, and tunable electronic properties (semiconducting or metallic). PMID:23435585

  13. Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report

    SciTech Connect

    Lara-Curzio, Edgar

    2007-06-01

    The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

  14. Prospects for using carbon-carbon composites for EMI shielding

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1990-01-01

    Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.

  15. Carbon Sequestration and Its Role in the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-05-01

    The science of climate change, and the role carbon dioxide (CO2) plays in it, was launched into the public consciousness by Charles David Keeling's investigations in the late 1950s. Keeling conducted early atmospheric carbon measurements high on Hawaii's Mauna Loa volcano and found that even after ruling out natural fluctuations, the concentration of CO2 in the atmosphere was increasing year after year. The findings, published in the 1960s, led to the now iconic Keeling curve and raised several questions about the contribution of fossil fuel burning to atmospheric CO2 concentrations. The AGU monograph Carbon Sequestration and Its Role in the Global Carbon Cycle, edited by Brian J. McPherson and Eric T. Sundquist, moves beyond the “how much?” and “where is it coming from?” of atmospheric CO2 and provides an interdisciplinary look at what we can do to address imbalances in the carbon cycle. In this interview, Eos talks with McPherson.

  16. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (˜400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (˜80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (˜1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  17. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  18. Partial replacement of carbon fiber by carbon black in multifunctional cementmatrix composites

    E-print Network

    Chung, Deborah D.L.

    Partial replacement of carbon fiber by carbon black in multifunctional cement­matrix composites and the EMI shielding effectiveness of cement, but carbon fiber is more effective than carbon black. Partial (50%) replacement of carbon fiber by carbon black lowers the cost, in addition to increasing

  19. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  20. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  1. Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle.

    E-print Network

    Grünbaum, Daniel

    Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle. Carbon is one: a reservoir where the stuff goes; carbon sink: ocean, landfills, trees Carbon cycling is a type the youtube video linked from the powerpoint on carbon cycling if there is extra time. #12;

  2. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 2010-04-01 false Potassium carbonate. 582.1619 Section 582.1619...General Purpose Food Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  3. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 2014-04-01 2014-04-01 false Potassium carbonate. 582.1619 Section 582.1619...General Purpose Food Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  4. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 2011-04-01 2011-04-01 false Potassium carbonate. 582.1619 Section 582.1619...General Purpose Food Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  5. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 2012-04-01 2012-04-01 false Potassium carbonate. 582.1619 Section 582.1619...General Purpose Food Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  6. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 2013-04-01 2013-04-01 false Potassium carbonate. 582.1619 Section 582.1619...General Purpose Food Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  7. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...3 2014-04-01 2014-04-01 false Potassium carbonate. 184.1619 Section 184.1619...Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2 CO3 , CAS Reg. No....

  8. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Carbon disulfide. 153.1040 Section 153...Special Cargo Procedures § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the cargo tank...

  9. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Carbon disulfide. 153.1040 Section 153...Special Cargo Procedures § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the cargo tank...

  10. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Carbon disulfide. 153.1040 Section 153...Special Cargo Procedures § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the cargo tank...

  11. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food...Specific Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2 , CAS...

  12. 16 CFR 260.5 - Carbon offsets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2014-01-01 2014-01-01 false Carbon offsets. 260.5 Section 260.5 Commercial...ENVIRONMENTAL MARKETING CLAIMS § 260.5 Carbon offsets. (a) Given the complexities of carbon offsets, sellers should employ...

  13. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Carbon disulfide. 153.1040 Section 153...Special Cargo Procedures § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the cargo tank...

  14. 16 CFR 260.5 - Carbon offsets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2013-01-01 2013-01-01 false Carbon offsets. 260.5 Section 260.5 Commercial...ENVIRONMENTAL MARKETING CLAIMS § 260.5 Carbon offsets. (a) Given the complexities of carbon offsets, sellers should employ...

  15. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Carbon disulfide. 153.1040 Section 153...Special Cargo Procedures § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the cargo tank...

  16. DENSITY OF STATES CALCULATIONS FOR CARBON

    E-print Network

    Adler, Joan

    DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES EDUARDO WARSZAWSKI #12;#12;DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES Research Thesis Submitted in Partial;#12;Contents Abstract xiii 1 Introduction 1 1.1 Carbon allotropes

  17. Carbon Dioxide Reduction Through Urban Forestry

    E-print Network

    Carbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry of Agriculture; 237 p. Carbon dioxide reduction through urban forestry--Guidelines for professional and volunteer

  18. Carbon Fiber Composite Cellular A Dissertation

    E-print Network

    Wadley, Haydn

    Carbon Fiber Composite Cellular Structures ____________________________________ A Dissertation and honeycombs. However, for weight sensitive, ambient temperature applications, carbon fiber composites have emerged as a promising material due to its high specific strength and low density. Carbon fiber reinforced

  19. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 2013-04-01 2013-04-01 false Magnesium carbonate. 582.1425 Section 582.1425...General Purpose Food Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  20. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 2012-04-01 2012-04-01 false Magnesium carbonate. 582.1425 Section 582.1425...General Purpose Food Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  1. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 2011-04-01 2011-04-01 false Magnesium carbonate. 582.1425 Section 582.1425...General Purpose Food Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  2. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 2010-04-01 false Magnesium carbonate. 582.1425 Section 582.1425...General Purpose Food Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  3. 21 CFR 582.1425 - Magnesium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 2014-04-01 2014-04-01 false Magnesium carbonate. 582.1425 Section 582.1425...General Purpose Food Additives § 582.1425 Magnesium carbonate. (a) Product. Magnesium carbonate. (b) Conditions of use....

  4. Carbon recycling in ophiolite-hosted carbonates, Oman-UAE

    NASA Astrophysics Data System (ADS)

    Stephen, A.; Jenkin, G. R.; Smith, D. J.; Styles, M. T.; Naden, J.; Boyce, A. J.; Bryant, C. L.

    2013-12-01

    Large-scale surface and subsurface freshwater carbonate deposits of probable Quaternary age have formed on the Oman-UAE ophiolite. Here, serpentinisation reactions in ultramafic rocks have produced calcite and magnesite. These carbonates are frequently cited as examples of natural atmospheric CO2 sequestration, but the possibility of carbon recycling has not been addressed. The aim of this study is to assess the degree of atmospheric CO2 being incorporated into carbonates versus that which has been recycled from alternative sources such as soil CO2, or limestones that underlie the ophiolite. This has been determined through ?13C/?18O, 87Sr/86Sr and 14C analysis of all major carbonate lithofacies identified. Our analyses of modern carbonate crusts forming on the surface of stagnant hyperalkaline (pH >11) waters show highly depleted ?13C and ?18O values (-25.5‰ ×0.5 PDB and -16.8‰ ×0.5 PDB respectively). This depletion has been attributed to a kinetic isotope effect occurring during atmospheric CO2 exchange with Ca(OH)2 hyperalkaline waters [1]. By comparison, inactive travertine deposits show a large range in ?13C (-10.5 to -21.8‰ PDB) which lies on a trajectory from the composition of modern crusts towards bicarbonate fluids in equilibrium with soil CO2. We interpret this trend as being produced by the mixing of different carbon sources, either at the time of formation or during later alteration. Modern carbonates and inactive travertines also have 87Sr/86Sr ratios and Sr concentrations similar to Cretaceous and Tertiary limestones which surround the ophiolite, whilst subsurface veins also display 87Sr/86Sr ratios similar to these Cretaceous limestones. Carbon recycling can also be determined with 14C. Modern atmospheric CO2 has a global average of 105-106% modern 14C (pMC), therefore freshwater carbonates forming solely from atmospheric CO2 would be expected to contain >100 pMC. However, modern carbonates display varied results from 94.5-101.4 pMC. Low values could be caused by meteoric waters incorporating 14C 'dead' carbon through the dissolution of limestones and/or uptake of soil CO2. This 'dead' carbon would then be assimilated into veins and surface deposits, offsetting pMC values. Inactive travertines show significant fluctuations in 14C values within a single hand sample, where stratigraphically younger samples give older radiocarbon 'ages' outside of error. These fluctuations may have been caused by the presence of limestone sourced 'dead' carbon in waters at time of formation, surface runoff containing soil CO2 or by later recrystallisation. Isotopic evidence indicates that mixing of contemporary atmospheric carbon and recycled older carbon has taken place during the on-going carbonation of the Oman-UAE ophiolite sequence. Failure to account for this recycled carbon could lead to inaccurate estimates of natural CO2 sequestration rates. References [1] Clark, I.D. and Fontes, J. (1990) Palaeoclimatic reconstruction in Northern Oman based on carbonates from hyperalkaline groundwaters. Quaternary Res, 33, 320-336

  5. DIALKYL CARBONATES AS LUBRICANT ADDITIVES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been previously reported that dialkyl carbonates represent attractive lubricants, in part, to their ampiphilic nature and their decomposition to non-corrosive simple alcohols and carbon dioxide. Members of our labs previously examined such materials as additives for biodiesel applications an...

  6. 2013 Carbon Management Research Symposium

    E-print Network

    2013 Carbon Management Research Symposium Effects of Formation Heterogeneity on CO2 Gas Phase the formation and growth of gas phase CO2 from aqueous solution in porous media? a. Where is gas phase first. BACKGROUND · As a first step towards developing risk assessment strategies for carbon sequestration projects

  7. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  8. Permafrost soils and carbon cycling

    NASA Astrophysics Data System (ADS)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-01

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.

  9. SOURCE ASSESSMENT: CARBON BLACK MANUFACTURE

    EPA Science Inventory

    The report summarizes the assessment of air emissions from the manufacture of carbon black, currently manufactured in the U.S. by two major processes: thermal and oil furnace. Sources of atmospheric emissions within oil furnace plants (about 90% of the 30 U.S. carbon black plants...

  10. Carbon budgets in symbiotic associations

    SciTech Connect

    Muscatine, L.; Falkowski, P.G.; Dubinsky, Z.

    1983-01-01

    Methods are described which permit the estimation of daily budgets for photosynthetically fixed carbon in any alga-invertebrate symbiosis. Included is a method for estimating total daily translocation which does not involve the use of C-14. A daily carbon budget for a shallow water symbiotic reef coral is presented.

  11. CARBON NANOTUBES AS MULTIPOLLUTANT SORBENTS

    EPA Science Inventory

    Exploratory Research Program Project - Carbon nanotubes (CNTs) are formed from graphite (or graphene) sheets rolled into tubes, typically with diameters of 1 - 10 nm and lengths of 200 - 500 nm. Carbon nanotubes have unique electrical properties that have led to interest in thei...

  12. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  13. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore »this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  14. Global carbon budget 2014

    SciTech Connect

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1?;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr?¹,ELUC 0.9 ± 0.5 GtC yr?¹, GATM 4.3 ± 0.1 GtC yr?¹, SOCEAN 2.6 ± 0.5 GtC yr?¹, and SLAND 2.9 ± 0.8 GtC yr?¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr?¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr?¹, GATM was 5.4 ± 0.2 GtC yr?¹, SOCEAN was 2.9 ± 0.5 GtC yr?¹, and SLAND was 2.5 ± 0.9 GtC yr?¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr?¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. Fr

  15. Natural materials for carbon capture.

    SciTech Connect

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  16. Method for producing carbon nanotubes

    DOEpatents

    Phillips, Jonathan (Santa Fe, NM); Perry, William L. (Jemez Springs, NM); Chen, Chun-Ku (Albuquerque, NM)

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  17. The carbon brace

    PubMed Central

    2013-01-01

    Background The CMCR brace (Corset MonocoqueCarbone respectant la Respiration –which means Monoshell Carbon Brace respecting Breathing) is an innovative brace, used in orthopaedic treatment for progressive thoracic, thoraco-lumbar or combined scoliosis, whatever their etiology. It can be used at the very young age without disrupting the chest growth, but should be kept for reducible scoliosis in older teenagers. Brace description and principles The CMCR brace is monoshell while retaining the corrective principle of the polyvalve Lyon brace with one or two supports (brace “pads”) located on hump(s).In contrast to Lyon brace made of plexidur and structured by metal reinforcement with adjustable but fixed localized supports, the CMCR brace is made of polyethylene and carbon with adjustable and mobile supports. This mobility provides a permanent pressure, which varies depending on ribs and spine movements. The correction is obtained without spinal extension so that each respiratory movement takes part in a gradual return to dorsal kyphosis. Results Results were presented in two published analysis: •?In the first retrospective study about 115 patients, French-published in the Annals of Physical Medicine and Rehabilitation (2005), the CMCR brace stabilized moderate scoliosis, decreased the vital capacity (VC) of 13% compared to the VC without brace, and did not have sufficient impact on the hump reduction. Treatment had better results when started at Risser 3 or 4 than Risser 0, 1, 2. The brace was then modified to increase the dorsal pad pressure and the location of correction forces was defined more precisely through the use of 3D analysis. •?The second study published in Scoliosis (2011) mainly focused on the impact on VC at brace setting up and followed a cohort of 90 patients treated with CMCR. Girls as well as boys increased VC during treatment, and at brace definitive removal, VC had increased of 21% from the initial value, whereas the theoretical VC at the same time rose by 18%. The difference between the time where the child actually wears its brace and the time asked by the clinician for the brace to be worn is only 1 hour, which means that this brace is accepted by teenagers. Conclusions Orthopaedic treatment is still a heavy treatment for teenagers in growth period. This orthosis is designed to partly maintain spine and chest mobility. We hope so to have part in improving life conditions of these teenagers, compared to those treated with rigid braces. PMID:23409701

  18. Process for making hollow carbon spheres

    DOEpatents

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  19. Four advances in carbon-carbon materials technology

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.; Vaughn, Wallace L.; Kowbel, Witold

    1994-01-01

    Carbon-carbon composites are a specialty class of materials having many unique properties making these composites attractive for a variety of demanding engineering applications. Chief among these properties are exceptional retention of mechanical properties at temperatures as high as 4000 F, excellent creep resistance, and low density (1.6 to 1.8 g/cu cm). Although carbon-carbon composites are currently in service in a variety of applications, much development work remains to be accomplished before these materials can be considered to be fully mature, realizing their full potential. Four recent technology advances holding particular promise for overcoming current barriers to the wide-spread commercialization of carbon-carbon composites are described. These advances are: markedly improved interlaminar strengths (more than doubled) of two dimensional composites achieved by whiskerization of the fabric reinforcing plies, simultaneously improved oxidation resistance and mechanical properties achieved by the incorporation of matrix-phase oxidation inhibitors based on carborane chemistry, improved oxidation resistance achieved by compositionally graded oxidation protective coatings, and markedly reduced processing times (hours as opposed to weeks or months) accomplished through a novel process of carbon infiltration and coatings deposition based on the use of liquid-phase precursor materials.

  20. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  1. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  2. Lightweight Carbon-Carbon High-Temperature Space Radiator

    NASA Technical Reports Server (NTRS)

    Miller, W.O.; Shih, Wei

    2008-01-01

    A document summarizes the development of a carbon-carbon composite radiator for dissipating waste heat from a spacecraft nuclear reactor. The radiator is to be bonded to metal heat pipes and to operate in conjunction with them at a temperature approximately between 500 and 1,000 K. A goal of this development is to reduce the average areal mass density of a radiator to about 2 kg/m(exp 2) from the current value of approximately 10 kg/m(exp 2) characteristic of spacecraft radiators made largely of metals. Accomplishments thus far include: (1) bonding of metal tubes to carbon-carbon material by a carbonization process that includes heating to a temperature of 620 C; (2) verification of the thermal and mechanical integrity of the bonds through pressure-cycling, axial-shear, and bending tests; and (3) construction and testing of two prototype heat-pipe/carbon-carbon-radiator units having different radiator areas, numbers of heat pipes, and areal mass densities. On the basis of the results achieved thus far, it is estimated that optimization of design could yield an areal mass density of 2.2 kg/m (exp 2) close to the goal of 2 kg/m(exp 2).

  3. Lignin-Derived Advanced Carbon Materials.

    PubMed

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. PMID:26568373

  4. Carbon nanotube terahertz detector.

    PubMed

    He, Xiaowei; Fujimura, Naoki; Lloyd, J Meagan; Erickson, Kristopher J; Talin, A Alec; Zhang, Qi; Gao, Weilu; Jiang, Qijia; Kawano, Yukio; Hauge, Robert H; Léonard, François; Kono, Junichiro

    2014-07-01

    Terahertz (THz) technologies are promising for diverse areas such as medicine, bioengineering, astronomy, environmental monitoring, and communications. However, despite decades of worldwide efforts, the THz region of the electromagnetic spectrum still continues to be elusive for solid state technology. Here, we report on the development of a powerless, compact, broadband, flexible, large-area, and polarization-sensitive carbon nanotube THz detector that works at room temperature. The detector is sensitive throughout the entire range of the THz technology gap, with responsivities as high as ?2.5 V/W and polarization ratios as high as ?5:1. Complete thermoelectric and opto-thermal characterization together unambiguously reveal the photothermoelectric origin of the THz photosignal, triggered by plasmonic absorption and collective antenna effects, and suggest that judicious design of thermal management and quantum engineering of Seebeck coefficients will lead to further enhancement of device performance. PMID:24875576

  5. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of the south polar residual cap at full MOC resolution, 1.5 m (5 ft) per pixel. During each of the three summers since the start of the MGS mapping mission in March 1999, the scarps that form mesas and pits in the 'Swiss cheese'-like south polar terrain have retreated an average of about 3 meters (1 yard). The material is frozen carbon dioxide; another 3 meters or so of each scarp is expected to be removed during the next summer, in late 2005. This image is located near 86.0oS, 350.8oW, and covers an area about 1.5 km (0.9 mi) wide. Sunlight illuminates the scene from the top/upper left.

  6. Total organic carbon analyzer

    NASA Technical Reports Server (NTRS)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  7. Carbon Nanotube based Nanotechnolgy

    NASA Astrophysics Data System (ADS)

    Meyyappan, M.

    2000-10-01

    Carbon nanotube(CNT) was discovered in the early 1990s and is an off-spring of C60(the fullerene or buckyball). CNT, depending on chirality and diameter, can be metallic or semiconductor and thus allows formation of metal-semiconductor and semiconductor-semiconductor junctions. CNT exhibits extraordinary electrical and mechanical properties and offers remarkable potential for revolutionary applications in electronics devices, computing and data storage technology, sensors, composites, storage of hydrogen or lithium for battery development, nanoelectromechanical systems(NEMS), and as tip in scanning probe microscopy(SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization and applications touch upon all disciplines of science and engineering. A common growth method now is based on CVD though surface catalysis is key to synthesis, in contrast to many CVD applications common in microelectronics. A plasma based variation is gaining some attention. This talk will provide an overview of CNT properties, growth methods, applications, and research challenges and opportunities ahead.

  8. Forests as carbon sinks

    SciTech Connect

    Houghton, R.A.; Woodwell, R.M.

    1995-11-01

    When the nations of the world signed and later ratified the United Nations Framework Convention on Climate Change (FCCC), they accepted the difficult challenge of stabilizing the composition of the atmosphere with respect to the greenhouse gases (GHGs). Success will require a reduction in both use of fossil fuels and rates of deforestation. Forests have a large enough influence on the atmosphere that one of the options for stabilizing the concentrations of GHGs in the atmosphere includes the use of forests as a carbon sink through reforestation of large areas. We identify in this paper the potential and the limitations of such projects. We discuss the implications of four approaches in management of forests globally: (i) continued deforestation, (ii) halting deforestation, (iii) net reforestation including agroforestry, and (iv) substituting the use of wood fuels for fossil fuels.

  9. Cantilevered carbon nanotube hygrometer

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Toshinori; Terada, Yuki; Takei, Kuniharu; Akita, Seiji; Arie, Takayuki

    2014-05-01

    We investigate the effects of humidity on the vibrations of carbon nanotubes (CNTs) using two types of CNT cantilevers: open-ended and close-ended CNT cantilevers. As the humidity increases, the resonant frequency of the open-ended CNT cantilever decreases due to the adsorption of water molecules onto the CNT tip, whereas that of the close-ended CNT cantilever increases probably due to the change in the viscosity of the air surrounding the CNT cantilever, which is negatively correlated with the humidity of air. Our findings suggest that a close-ended CNT cantilever is more suitable for a quick-response and ultrasensitive hygrometer because it continuously reads the viscosity change of moist air in the vicinity of the CNT.

  10. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  11. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  12. Carbon nanotube biconvex microcavities

    SciTech Connect

    Butt, Haider Ahmed, Rajib; Yetisen, Ali K.; Yun, Seok Hyun; Dai, Qing

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3??m tall MWCNTs were patterned as biconvex microcavities, which were separated by 10??m in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  13. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. PMID:26081307

  14. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  15. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  16. Carbon Monoxide Sensor

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The fuel cell is a system which employs an electrochemical process to convert gases- J such as hydrogen and oxygen directly into electricity. Under NASA sponsorship, GE's Aircraft Equipment Division developed fuel cells to supply electrical power for the Gemini and Biosatellite spacecraft of the sixties and is currently working on advanced fuel cell development. This long-term effort has resulted in a series of spinoff applications using the same general technology for a variety of purposes, among them the recently marketed Dosimeter. The Dosimeter is designed to help users meet safety requirements for industrial atmospheres, as specified by the Occupational Safety and Health Administration and other regulatory agencies. The compact, pocket-sized sensor measures personnel exposure to carbon monoxide and provides both a visual and an audible alarm if the concentration of the gas exceeds present levels. The Dosimeter offers substantial improvement in measuring accuracy over earlier warning indicators.

  17. Carbon Anode Materials

    NASA Astrophysics Data System (ADS)

    Ogumi, Zempachi; Wang, Hongyu

    Accompanying the impressive progress of human society, energy storage technologies become evermore urgent. Among the broad categories of energy sources, batteries or cells are the devices that successfully convert chemical energy into electrical energy. Lithium-based batteries stand out in the big family of batteries mainly because of their high-energy density, which comes from the fact that lithium is the most electropositive as well as the lightest metal. However, lithium dendrite growth after repeated charge-discharge cycles easily will lead to short-circuit of the cells and an explosion hazard. Substituting lithium metal for alloys with aluminum, silicon, zinc, and so forth could solve the dendrite growth problem.1 Nevertheless, the lithium storage capacity of alloys drops down quickly after merely several charge-discharge cycles because the big volume change causes great stress in alloy crystal lattice, and thus gives rise to cracking and crumbling of the alloy particles. Alternatively, Sony Corporation succeeded in discovering the highly reversible, low-voltage anode, carbonaceous material and commercialized the C/LiCoO2 rocking chair cells in the early 1990s.2 Figure 3.1 schematically shows the charge-discharge process for reversible lithium storage in carbon. By the application of a lithiated carbon in place of a lithium metal electrode, any lithium metal plating process and the conditions for the growth of irregular dendritic lithium could be considerably eliminated, which shows promise for reducing the chances of shorting and overheating of the batteries. This kind of lithium-ion battery, which possessed a working voltage as high as 3.6 V and gravimetric energy densities between 120 and 150 Wh/kg, rapidly found applications in high-performance portable electronic devices. Thus the research on reversible lithium storage in carbonaceous materials became very popular in the battery community worldwide.

  18. The reionization of carbon

    NASA Astrophysics Data System (ADS)

    Finlator, Kristian; Thompson, Robert; Huang, Shuiyao; Davé, Romeel; Zackrisson, E.; Oppenheimer, B. D.

    2015-03-01

    Observations suggest that C II was more abundant than C IV in the intergalactic medium towards the end of the hydrogen reionization epoch (z ˜ 6). This transition provides a unique opportunity to study the enrichment history of intergalactic gas and the growth of the ionizing ultraviolet background (UVB) at early times. We study how carbon absorption evolves from z = 10 to 5 using a cosmological hydrodynamic simulation that includes a self-consistent multifrequency UVB as well as a well-constrained model for galactic outflows to disperse metals. Our predicted UVB is within ˜2-4 times of that from Haardt & Madau, which is fair agreement given the uncertainties. Nonetheless, we use a calibration in post-processing to account for Lyman ? forest measurements while preserving the predicted spectral slope and inhomogeneity. The UVB fluctuates spatially in such a way that it always exceeds the volume average in regions where metals are found. This implies both that a spatially uniform UVB is a poor approximation and that metal absorption is not sensitive to the epoch when H II regions overlap globally even at column densities of 1012 cm-2. We find, consistent with observations, that the C II mass fraction drops to low redshift while C IV rises owing the combined effects of a growing UVB and continued addition of carbon in low-density regions. This is mimicked in absorption statistics, which broadly agree with observations at z = 6-3 while predicting that the absorber column density distributions rise steeply to the lowest observable columns. Our model reproduces the large observed scatter in the number of low-ionization absorbers per sightline, implying that the scatter does not indicate a partially neutral Universe at z ˜ 6.

  19. Carbon sequestration in European croplands.

    PubMed

    Smith, Pete; Falloon, Pete

    2005-01-01

    The Marrakech Accords allow biospheric carbon sinks and sources to be included in attempts to meet emission reduction targets for the first commitment period of the Kyoto Protocol. Forest management, cropland management, grazing land management, and re-vegetation are allowable activities under Article 3.4 of the Kyoto Protocol. Soil carbon sinks (and sources) can, therefore, be included under these activities. Croplands are estimated to be the largest biospheric source of carbon lost to the atmosphere in Europe each year, but the cropland estimate is the most uncertain among all land-use types. It is estimated that European croplands (for Europe as far east as the Urals) lose 300 Tg (C) per year, with the mean figure for the European Union estimated to be 78 Tg (C) per year (with one SD=37). National estimates for EU countries are of a similar order of magnitude on a per-area basis. There is significant potential within Europe to decrease the flux of carbon to the atmosphere from cropland, and for cropland management to sequester soil carbon, relative to the amount of carbon stored in cropland soils at present. The biological potential for carbon storage in European (EU 15) cropland is of the order of 90-120 Tg (C) per year, with a range of options available that include reduced and zero tillage, set-aside, perennial crops, deep rooting crops, more efficient use of organic amendments (animal manure, sewage sludge, cereal straw, compost), improved rotations, irrigation, bioenergy crops, extensification, organic farming, and conversion of arable land to grassland or woodland. The sequestration potential, considering only constraints on land use, amounts of raw materials and available land, is up to 45 Tg (C) per year. The realistic potential and the conservative achievable potentials may be considerably lower than the biological potential because of socioeconomic and other constraints, with a realistically achievable potential estimated to be about 20% of the biological potential. As with other carbon sequestration options, potential impacts of non-CO, trace gases also need to be factored in. If carbon sequestration in croplands is to be used in helping to meet emission reduction targets for the first commitment period of the Kyoto Protocol, the changes in soil carbon must be measurable and verifiable. Changes in soil carbon can be difficult to measure over a 5-year commitment period, and this has implications for Kyoto accounting and verification. Currently, most countries can hope to achieve only a low level of verifiability during the first commitment period, whereas those with the best-developed national carbon accounting systems will be able to deliver an intermediate level of verifiability. Very stringent definitions of verifiability would require verification that would be prohibitively expensive for any country. There is considerable potential in European croplands to reduce carbon fluxes to the atmosphere and to sequester carbon iri the soil, but carbon sequestration in soil has a finite potential and is non-permanent. Given that carbon sequestration may also be difficult to measure and verify, soil carbon sequestration is a riskier long-term strategy for climate mitigation than direct reduction of carbon emissions. However, improved agricultural management often has a range of other environmental and economic benefits in addition to climate mitigation potential, and this may make attempts to improve soil carbon storage attractive as part of integrated sustainability policies. PMID:17633030

  20. Mechanistic studies of carbonate macrocyclization: Rates of carbonate bond formation

    SciTech Connect

    Aquino, E.; Brittain, W.J.; Brunelle, D.J.

    1993-12-31

    High yields of cyclic oligomeric carbonates can be prepared using an amine-catalyzed reaction of bisphenol A-bischloroformate. The authors have studied the kinetics of this carbonate macrocyclization by the isolated study of key chemical events. Using stopped-flow FT-IR spectroscopy, it was found that the rate of carbonate formation between the intermediate acyl ammonium salt (1) and 4-isopropylphenol (4-IPP) is the same for tributylamine, triethylamine and diethylmethylamine. Previously, it was found that conversion of 1 to urethane was also insensitive to amine structure while the formation of 1 is profoundly dependent on amine structure.

  1. Nanophase Carbonates on Mars: Implications for Carbonate Formation and Habitability

    NASA Technical Reports Server (NTRS)

    Archer, P. Douglas, Jr.; Lauer, H. Vern; Ming, Douglas W.; Niles, Paul B.; Morris, Richard V.; Rampe, Elizabeth B.; Sutter, Brad

    2014-01-01

    Despite having an atmosphere composed primarily of CO2 and evidence for abundant water in the past, carbonate minerals have only been discovered in small amounts in martian dust [1], in outcrops of very limited extent [2, 3], in soils in the Northern Plains (the landing site of the 2007 Phoenix Mars Scout Mission) [4] and may have recently been detected in aeolian material and drilled and powdered sedimentary rock in Gale Crater (the Mars Science Laboratory [MSL] landing site) [5]. Thermal analysis of martian soils by instruments on Phoenix and MSL has demonstrated a release of CO2 at temperatures as low as 250-300 degC, much lower than the traditional decomposition temperatures of calcium or magnesium carbonates. Thermal decomposition temperature can depend on a number of factors such as instrument pressure and ramp rate, and sample particle size [6]. However, if the CO2 released at low temperatures is from carbonates, small particle size is the only effect that could have such a large impact on decomposition temperature, implying the presence of extremely fine-grained (i.e., "nanophase" or clay-sized) carbonates. We hypothesize that this lower temperature release is the signature of small particle-sized (clay-sized) carbonates formed by the weathering of primary minerals in dust or soils through interactions with atmospheric water and carbon dioxide and that this process may persist under current martian conditions. Preliminary work has shown that clay-sized carbonate grains can decompose at much lower temperatures than previously thought. The first work took carbonate, decomposed it to CaO, then flowed CO2 over these samples held at temperatures >100 degC to reform carbonates. Thermal analysis confirmed that carbonates were indeed formed and transmission electron microsopy was used to determine crystal sized were on the order of 10 nm. The next step used minerals such as diopside and wollastonite that were sealed in a glass tube with a CO2 and H2O source. After reacting these materials for a number of hours, thermal analysis demonstrated the formations of carbonates that decomposed at temperatures as low as 500 degC [7]. Further work is underway to carry out the weathering process under more Mars-like conditions (low pressure and low temperature) to determine if the carbonate decomposition temperature can be shifted to even lower temperatures, consistent with what has been detected by thermal analysis instruments on Mars.

  2. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  3. Method for fabricating composite carbon foam

    DOEpatents

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  4. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  5. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung; Takahashi, Taro

    1993-06-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0{sup 2} include carbon chemistry, distribution of alkalinity, pCO{sup 2} and total concentration of dissolved C0{sup 2}, sea-air pCO{sup 2} difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0{sup 2} uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0{sup 2} from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0{sup 2} fertilization is a potential candidate for such missing carbon sinks.

  6. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung ); Takahashi, Taro . Lamont-Doherty Earth Observatory)

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0[sup 2] include carbon chemistry, distribution of alkalinity, pCO[sup 2] and total concentration of dissolved C0[sup 2], sea-air pCO[sup 2] difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0[sup 2] uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0[sup 2] from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0[sup 2] fertilization is a potential candidate for such missing carbon sinks.

  7. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  8. Carbon Cycling with Nuclear Power

    NASA Astrophysics Data System (ADS)

    Lackner, Klaus S.

    2011-11-01

    Liquid hydrocarbon fuels like gasoline, diesel or jet fuel are the most efficient ways of delivering energy to the transportation sector, in particular cars, ships and airplanes. Unfortunately, their use nearly unavoidably leads to the emission of carbon dioxide into the atmosphere. Unless an equivalent amount is removed from the air, the carbon dioxide will accumulate and significantly contribute to the man-made greenhouse effect. If fuels are made from biomass, the capture of carbon dioxide is a natural part of the cycle. Here, we discuss technical options for capturing carbon dioxide at much faster rates. We outline the basic concepts, discuss how such capture technologies could be made affordable and show how they could be integrated into a larger system approach. In the short term, the likely source of the hydrocarbon fuels is oil or gas; in the longer term, technologies that can provide energy to remove oxygen from carbon dioxide and water molecules and combine the remaining components into liquid fuels make it possible to recycle carbon between fuels and carbon dioxide in an entirely abiotic process. Here we focus on renewable and nuclear energy options for producing liquid fuels and show how air capture combined with fuel synthesis could be more economic than a transition to electric cars or hydrogen-fueled cars.

  9. Type Ia Supernova Carbon Footprints

    NASA Astrophysics Data System (ADS)

    Thomas, R. C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Loken, S.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Rubin, D.; Runge, K.; Scalzo, R.; Smadja, G.; Tao, C.; Weaver, B. A.; Wu, C.; Brown, P. J.; Milne, P. A.; Nearby Supernova Factory

    2011-12-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II ?6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s-1) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22+10 - 6% of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II ?6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a "carbon blobs" hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  10. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    SciTech Connect

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2011-12-10

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II {lambda}6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s{sup -1}) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22{sup +10}{sub -6%} of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II {lambda}6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  11. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  12. Carbon-carbon composites: Emerging materials for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Maahs, Howard G.

    1989-01-01

    An emerging class of high temperature materials called carbon-carbon composites are being developed to help make advanced aerospace flight become a reality. Because of the high temperature strength and low density of carbon-carbon composites, aerospace engineers would like to use these materials in even more advanced applications. One application of considerable interest is as the structure of the aerospace vehicle itself rather than simply as a protective heat shield as on Space Shuttle. But suitable forms of these materials have yet to be developed. If this development can be successfully accomplished, advanced aerospace vehicles such as the National Aero-Space Plane (NASP) and other hypersonic vehicles will be closer to becoming a reality. A brief definition is given of C-C composites. Fabrication problems and oxidation protection concepts are examined. Applications of C-C composites in the Space Shuttle and in advanced hypersonic vehicles as well as other applications are briefly discussed.

  13. Carbon dioxide hydrate particles for ocean carbon sequestration

    E-print Network

    Chow, Aaron C.

    This paper presents strategies for producing negatively buoyant CO[subscript 2] hydrate composite particles for ocean carbon sequestration. Our study is based on recent field observations showing that a continuous-jet ...

  14. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  15. Current and relic carbon using natural abundance carbon-13

    SciTech Connect

    layse,MF; Clapp,CE; Allmaras,RR; Linden,D.R; Molina, JAE.; Copeland,SM; Dowdy,RH

    2002-05-01

    The role of agricultural practices on soil carbon (C) dynamics is critical to improved soil management. The main objective was to examine the C interactions resulting from crop changes under different tillage and residue treatments.

  16. Measuring supply chain carbon efficiency : a carbon label framework

    E-print Network

    Craig, Anthony (Anthony J.)

    2012-01-01

    In the near term, efficiency improvements represent a key option for reducing the impacts of climate change. The growing awareness of climate change has increased the attention regarding the carbon emissions "embedded" in ...

  17. Carbon Dots: The Newest Member of the Carbon Nanomaterials Family.

    PubMed

    Himaja, A L; Karthik, P S; Singh, Surya Prakash

    2015-06-01

    Carbon nanomaterials have been extensively researched in the past few years owing to their interesting properties. The massive research efforts resulted in the emergence of carbon dots, which belong to the carbon nanomaterials family. Carbon dots (C-dots) have garnered the attention of researchers mainly due to their convenient availability from organic as well as inorganic materials and also due to the novel properties they exhibit. C-Dots have been said to overcome the era of quantum dots, referring to their levels of toxicity and biocompatibility. In this review, we focus on the discovery of C-dots, their structure and composition, surface passivation to enhance their optical properties, the various synthetic methods used, their applications in different areas, and future perspectives. Emphasis has been given to greener approaches for the synthesis of C-dots in order to make them cost effective as well as to improve their biocompatibility. PMID:25755070

  18. Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites

    SciTech Connect

    Dai, Sheng; Liu, Rui; Mahurin, Shannon Mark; Li, Chen; Unocic, Raymond R; Idrobo Tapia, Juan C; Gao, Hongjun; Pennycook, Stephen J

    2011-01-01

    A facile and versatile synthesis using dopamine as a carbon source gives hollow carbon spheres and yolk-shell Au{at}Carbon nanocomposites. The uniform nature of dopamine coatings and their high carbon yield endow the products with high structural integrity. The Au{at}C nanocomposites are catalytically active.

  19. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  20. Sedimentology of polar carbonate systems

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; James, N. P.

    2013-12-01

    The key attributes, processes, and products associated with carbonate accumulation and diagenesis at tropical and temperate latitudes are well known. Comparatively little work has concentrated on carbonate deposition at the coldest end of the depositional spectrum, the polar shelves. Such deposits are not abundant, but they have the potential to provide unique insights into paleoceanographic and paleoclimatic conditions in regions of the planet that are arguably the most sensitive to global change. We examined skeletal assemblages, facies, stratigraphy, petrography, geochemistry, and diagenesis of Quaternary deposits from the Ross Sea, Antarctica and Permian counterparts from Gondwana (now eastern Australia). These modern and ancient polar carbonate factories possess several unique characteristics that set them apart from better-known systems of the temperate and tropical latitudes. All production is biogenic and there are no significant calcareous phototrophs. Carbonate communities are not capable of building rigid frameworks, and thus their deposits are prone to winnowing and reworking by waves and bottom currents. The seawater, although frigid, is isothermal, and thus deep-water benthic communities can exist near the surface. Carbonate saturation, which is at or below solubility for both aragonite and high-Mg calcite, plays a key role in determining the dominant mineralogy of benthos as well as the preservation potential of skeletal debris. As many taxa precipitate low-Mg calcite in isotopic equilibrium, deposits have potential to provide geochemical proxy information for use in paleoceanographic and paleoclimatic reconstructions. More than any other type of carbonate system, the slow biogenic carbonate production and accumulation in cold waters is achieved firstly by arresting siliciclastic sedimentation and secondly by increasing nutrient availability. Thus, carbonate deposition may occur during the coldest of times, such as during glacial advance when terrigenous clastics are sequestered inboard and invigorated ocean circulation enhances upwelling. Radiocarbon data from Quaternary deposits in the Ross Sea indicate that short windows of accumulation during favorable conditions are followed by longer intervals of non-productivity, during which skeletal debris undergoes dissolution and infestation by endolithic borers, carbonate sediments are reworked by bottom currents, and glacigene siliciclastic facies are deposited. Similar patterns are evident in Permian deposits. We interpret the post-carbonate depositional periods as not only due to increased terrigenous input but also dramatically reduced trophic resources. The foregoing hypothesis is at odds with most current thinking about carbonate deposition and points to an evolving paradigm within which polar carbonate deposition is dramatically different than that in temperate and tropical settings.

  1. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  2. Reversible Photoswitching of Carbon Dots

    PubMed Central

    Khan, Syamantak; Verma, Navneet Chandra; Gupta, Abhishek; Nandi, Chayan Kanti

    2015-01-01

    We present a method of reversible photoswitching in carbon nanodots with red emission. A mechanism of electron transfer is proposed. The cationic dark state, formed by the exposure of red light, is revived back to the bright state with the very short exposure of blue light. Additionally, the natural on-off state of carbon dot fluorescence was tuned using an electron acceptor molecule. Our observation can make the carbon dots as an excellent candidate for the super-resolution imaging of nanoscale biomolecules within the cell. PMID:26078266

  3. Photoacoustic detection of particulate carbon

    SciTech Connect

    Bennett, C.A.; Patty, R.R.

    1981-08-01

    A photoacoustic technique for the mass monitoring of carbonaceous aerosols deposited on filter substrates has been developed. The technique involves the use of a specially designed photoacoustic cell. Photoacoustic response is calibrated as a function of elemental carbon loading using laboratory-generated elemental carbon standards. The nature of the photoacoustic response is examined at several chopping frequencies using these calibration standards, and the physical principles necessary for an adequate interpretation of the experimental results is presented in detail. Practical considerations concerning ambient carbon monitoring are outlined; in particular, the perturbation due to the presence of scattering particulates is examined and limited experimental quantification of this perturbation is reported.

  4. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  5. The biodiversity of carbon assimilation.

    PubMed

    Kroth, Peter G

    2015-01-01

    As all plastids that have been investigated so far can be traced back to endosymbiotic uptake of cyanobacteria by heterotrophic host cells, they accordingly show a high similarity regarding photosynthesis, which includes both the photosystems and the biochemical reactions around the CO2 fixation via the Calvin-Bassham cycle. Major differences between the different algal and plant groups may include the presence or absence of carbon concentrating mechanisms, pyrenoids, Rubisco activases, carbonic anhydrases as well as differences in the regulation of the Calvin-Bassham cycle. This review describes the diversity of primary carbon fixation steps in algae and plants and the respective regulatory mechanisms. PMID:25239594

  6. The Orbiting Carbon Observatory (OCO)

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    CO2 is the principal human generated driver of climate change. Accurate forecasting of future climate requires an improved understanding of the global carbon cycle and its interaction with the climate system. The Orbiting Carbon Observatory (OCO) will make global, space-based observations of atmospheric CO2 with the precision, resolution, and coverage needed to understand sources and sinks. OCO data will provide critical information for decision makers including the scientific basis for policy formulation, guide for carbon management strategies and treaty monitoring.

  7. Fractionation between inorganic and organic carbon during the Lomagundi (2.222.1 Ga) carbon isotope excursion

    E-print Network

    Bekker, Andrey

    April 2008 Editor: H. Elderfield Keywords: Precambrian carbon cycle Lomagundi Event carbon isotope. carbonate carbon isotopic values on the shallow-marine carbonate platform suggests that the carbon cyclingFractionation between inorganic and organic carbon during the Lomagundi (2.22­2.1 Ga) carbon

  8. Acoustic fatigue characterization of carbon/carbon panels

    NASA Technical Reports Server (NTRS)

    Rizzi, S. A.; Clevenson, S. A.; Daniels, E. F.

    1992-01-01

    Data from a sonic fatigue test of a blade-stiffened carbon/carbon panel is analyzed to determine the progression of damage to failure. The reduction in stiffness, as observed from acceleration measurements taken during the test, is correlated with the physical damage. Damage was measured through visual inspection, thermographic measurements, and through the novel use of vibration data collected using a scanning laser vibrometer.

  9. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    SciTech Connect

    Overholt, D.M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications. 3 refs.

  10. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  11. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    USGS Publications Warehouse

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  12. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Chen, Jeffrey; Benezeth Ep Gisquet, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-07-14

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  13. The Impact of Carbon Dioxide on Climate.

    ERIC Educational Resources Information Center

    MacDonald, Gordon J.

    1979-01-01

    Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)

  14. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... process”; or (3) By precipitation of calcium carbonate from calcium chloride in the “Calcium chloride... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food... Specific Substances Affirmed as GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS...

  15. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... process”; or (3) By precipitation of calcium carbonate from calcium chloride in the “Calcium chloride... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food... Specific Substances Affirmed as GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS...

  16. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... calcium carbonate from calcium chloride in the “Calcium chloride process”. (b) The ingredient meets the... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food... GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS Reg. No. 471-34-1) is prepared...

  17. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... process”; or (3) By precipitation of calcium carbonate from calcium chloride in the “Calcium chloride... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium carbonate. 184.1191 Section 184.1191 Food... Specific Substances Affirmed as GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS...

  18. 21 CFR 184.1191 - Calcium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... process”; or (3) By precipitation of calcium carbonate from calcium chloride in the “Calcium chloride... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium carbonate. 184.1191 Section 184.1191 Food... Specific Substances Affirmed as GRAS § 184.1191 Calcium carbonate. (a) Calcium carbonate (CaCO3, CAS...

  19. Measuring Carbon Sequestration in Pasture Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of croplands to pasture can greatly increase sequestration of carbon in soil organic matter, removing carbon dioxide from the atmosphere and helping to reduce the impacts of climate change. The measurement of soil carbon, and its limitations, could impact future carbon credit programs. ...

  20. Carbon nanotube composites P. J. F. Harris*

    E-print Network

    Harris, Peter J F

    Carbon nanotube composites P. J. F. Harris* Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. They are among the stiffest and strongest fibres known, with Young. There is currently great interest in exploiting these properties by incorporating carbon nanotubes into some form

  1. Irradiation-induced phenomena in carbon

    E-print Network

    Krasheninnikov, Arkady V.

    Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

  2. 16 CFR 260.5 - Carbon offsets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Carbon offsets. 260.5 Section 260.5... ENVIRONMENTAL MARKETING CLAIMS § 260.5 Carbon offsets. (a) Given the complexities of carbon offsets, sellers... deceptive to misrepresent, directly or by implication, that a carbon offset represents emission...

  3. 16 CFR 260.5 - Carbon offsets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Carbon offsets. 260.5 Section 260.5... ENVIRONMENTAL MARKETING CLAIMS § 260.5 Carbon offsets. (a) Given the complexities of carbon offsets, sellers... deceptive to misrepresent, directly or by implication, that a carbon offset represents emission...

  4. Mesoporous carbonates and method of making

    DOEpatents

    Fryxell, Glen; Liu, Jun; Zemanian, Thomas S.

    2004-06-15

    Mesoporous metal carbonate structures are formed by providing a solution containing a non-ionic surfactant and a calcium acetate salt, adding sufficient base to react with the acidic byproducts to be formed by the addition of carbon dioxide, and adding carbon dioxide, thereby forming a mesoporous metal carbonate structure containing the metal from said metal salt.

  5. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3,...

  6. 21 CFR 184.1137 - Ammonium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...). It is prepared by the sublimation of a mixture of ammonium sulfate and calcium carbonate and occurs... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium carbonate. 184.1137 Section 184.1137 Food... Specific Substances Affirmed as GRAS § 184.1137 Ammonium carbonate. (a) Ammonium carbonate ((NH4)2CO3,...

  7. CARBON DIOXIDE AND OUR OCEAN LEGACY

    E-print Network

    CARBON DIOXIDE AND OUR OCEAN LEGACY G Carbon Dioxide: Our Role The United States is the single. Every day the average American adds about 118 pounds of carbon dioxide to the atmos- phere, due largely tons of carbon dioxide, more than six times as much as the average person living outside of the United

  8. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of ?78.5 °C. Carbon dioxide is prepared as a...

  9. Carbon Cycle Coastal Sensitivity to Sea

    E-print Network

    Carbon Cycle Climate Coastal Sensitivity to Sea Level Rise Energy and Socioeconomic Systems Terrestrial Carbon Management Subject Areas New IPCC Tier1 Global Biomass Carbon Map for the Year 2000 these data as: Ruesch, Aaron, and Holly K. Gibbs. 2008. New IPCC Tier1 Global Biomass Carbon Map

  10. Nonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD

    E-print Network

    Schmittner, Andreas

    Nonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD Canadian Centre for Climate Modelling uptake to CO2 (concentration­carbon cycle feedback) and climate change (climate­carbon cycle feedback) combine linearly. This study explores the linearity in the carbon cycle re- sponse by analyzing

  11. REDUCING CARBON EMISSIONS REAL WORLD EXAMPLES

    E-print Network

    Brown, Sally

    , Chemicals & Materials Bioproducts Biofuels Feedstocks and fuels #12;#12;WEYERHAEUSER'S CARBON CYCLE 6REDUCING CARBON EMISSIONS REAL WORLD EXAMPLES Edie Sonne Hall, Ph.D. Manager Sustainable Forests and Products Weyerhaeuser Company #12;REDUCING CARBON EMISSIONS OPTIONS FOR FOREST INDUSTRY - CARBON

  12. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  13. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOEpatents

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  14. Emerging Applications of Carbon Nanotubes

    E-print Network

    Schnorr, Jan Markus

    On the basis of their unique electrical and mechanical properties, carbon nanotubes (CNTs) have attracted great attention in recent years. A diverse array of methods has been developed to modify CNTs and to assemble them ...

  15. Radiocarbon and Soil Carbon Dynamics

    E-print Network

    Trumbore, S

    2009-01-01

    response of soil C to climate or land-use change. Evidencesoil organic matter, carbon cycle, state factor, radiocarbon, climate changesoil mineral surfaces, and the minerals themselves, can respond to climate change.

  16. Method for making carbon films

    DOEpatents

    Tan, Ming X. (Livermore, CA)

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  17. AMAZING CARBON Prof. David Tomnek

    E-print Network

    Tománek, David

    functionalized carbon, often forming sp bonded chains, dominates our world, disguised as clothing, medication that the number of commercial nanotube suppliers is growing fast, with producing countries ranging from the U

  18. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-07-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even if environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth exceeds the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  19. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  20. Carbon dynamics in arctic vegetation 

    E-print Network

    Street, Lorna Elizabeth

    2011-11-24

    Rapid climate change in Arctic regions is of concern due to important feedbacks between the Arctic land surface and the global climate system. A large amount of organic carbon (C) is currently stored in Arctic soils; if ...

  1. Method for making carbon films

    DOEpatents

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  2. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  3. Carbon-assisted flyer plates

    DOEpatents

    Stahl, D.B.; Paisley, D.L.

    1994-04-12

    A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.

  4. PHOTOACOUSTIC DETECTION OF PARTICULATE CARBON

    EPA Science Inventory

    A photoacoustic technique for the mass monitoring of carbonaceous aerosols deposited on filter substrates has been developed. The technique involves the use of a specially designed photoacoustic cell. Photoacoustic response is calibrated as a function of elemental carbon loading ...

  5. Reducing carbon dioxide to products

    DOEpatents

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  6. High capacity carbon dioxide sorbent

    DOEpatents

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  7. Photodecomposition of Carbonates on Mars

    NASA Technical Reports Server (NTRS)

    Quinn, R. C.; Zent, A. P.; McKay, C. P.

    2001-01-01

    We report on experimental investigations of the photo-induced decomposition of calcium carbonate in both a simulated martian atmosphere and under high vacuum. Additional information is contained in the original extended abstract.

  8. A comparison of carbon calculators

    SciTech Connect

    Padgett, J. Paul Steinemann, Anne C. Clarke, James H. Vandenbergh, Michael P.

    2008-02-15

    International attention to carbon dioxide emissions is turning to an individual's contribution, or 'carbon footprint.' Calculators that estimate an individual's CO{sub 2} emissions have become more prevalent on the internet. Even with similar inputs, however, these calculators can generate varying results, often by as much as several metric tons per annum per individual activity. This paper examines the similarities and differences among ten US-based calculators. Overall, the calculators lack consistency, especially for estimates of CO{sub 2} emissions from household electricity consumption. In addition, most calculators lack information about their methods and estimates, which impedes comparison and validation. Although carbon calculators can promote public awareness of carbon emissions from individual behavior, this paper reveals the need for improved consistency and transparency in the calculators.

  9. Carbon Fiber Risk Analysis: Conclusions

    NASA Technical Reports Server (NTRS)

    Huston, R. J.

    1979-01-01

    It was concluded that preliminary estimates indicate that the public risk due to accidental release of carbon fiber from air transport aircraft is small. It was also concluded that further work is required to increase confidence in these estimates.

  10. Increasing carbon nanotube forest density

    E-print Network

    McCarthy, Alexander P

    2014-01-01

    The outstanding mechanical, electrical, thermal, and morphological properties of individual carbon nanotubes (CNTs) open up exciting potential applications in a wide range of fields. One such application is replacing the ...

  11. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  12. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E. (Knoxville, TN); Masters, David R. (Knoxville, TN); Pfeiler, William A. (Norris, TN)

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  13. Lithographically defined microporous carbon structures

    SciTech Connect

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  14. Activated carbon to the rescue

    SciTech Connect

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  15. Carbon storage in Amazonian podzols

    NASA Astrophysics Data System (ADS)

    Montes, Celia; Lucas, Yves; Pereira, Osvaldo; Merdy, Patricia; Santin, Roberta; Ishida, Débora; du Gardin, Beryl; Melfi, Adolpho

    2014-05-01

    It has recently been discovered that Amazonian podzols may store much larger quantities of carbon than previously thought, particularly in their deep Bh horizons (over 13.6 Pg for Brazilian Amazonia alone [1]). Similarly high carbon stocks are likely to exist in similar climate/soil areas, mainly in Africa and in Borneo. Such carbon stocks raise the problem of their stability in response to changes in land use or climate. Any significant changes in vegetation cover would significantly alter the soil water dynamics, which is likely to affect organic matter turnover in soils. The direction of the change, however, is not clear and is likely to depend on the specific conditions of carbon storage and properties of the soils. It is reasonable to assume that the drying of the Bh horizons of equatorial podzols, which are generally saturated, will lead to an increase in C mineralization, although the extent of this increase has not yet been determined. These unknowns resulted in research programs, granted by the Brazilian FAPESP and the French Région PACA-ARCUS and ANR, dedicated improving estimates of the Amazonian podzol carbon stocks and to an estimate of its mineralisability. Eight test areas were determined from the analysis of remote sensing data in the larger Amazonian podzol region located in the High Rio Negro catchment and studied in detail. Despite the extreme difficulties in carrying out the field work (difficulties in reaching the study sites and extracting the soils), more than a hundred points were sampled. In all podzols the presence of a thick deep Bh was confirmed, sometimes to depths greater than 12 m. The Bh carbon was quantified, indicating that carbon stocks in these podzols are even higher than estimated recently [1]. References 1- Montes, C.R.; Lucas, Y.; Pereira, O.J.R.; Achard, R.; Grimaldi, M.; Mefli, A.J. Deep plant?derived carbon storage in Amazonian podzols. Biogeosciences, 8, 113?120, 2011.

  16. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  17. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    SciTech Connect

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  18. Recuperative supercritical carbon dioxide cycle

    DOEpatents

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  19. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  20. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  1. Kevlar and carbon composites compared

    SciTech Connect

    Demmler, A.W.

    1985-02-01

    Characteristics of advanced composites are investigated. The fibers considered are Kevlar and carbon. The greatest advantage of composites over metals is emphasized, and lies in their permitting designers to obtain properties in exactly the locations desired. Kevlar replaced S-glass on the Trident 2 missile, saving 800 lbs. and adding 800 miles to its range. Military aircraft builders find that advanced carbon composites more often than not win out over Kevlar.

  2. Carbon nanoscrolls by pyrolysis of a polymer

    NASA Astrophysics Data System (ADS)

    Yadav, Prasad; Warule, Sambhaji; Jog, Jyoti; Ogale, Satishchandra

    2012-12-01

    3D network of carbon nanoscrolls was synthesized starting from pyrolysis of poly(acrylic acid-co-maleic acid) sodium salt. It is a catalyst-free process where pyrolysis of polymer leads to formation of carbon form and sodium carbonate. Upon water soaking of pyrolysis product, the carbon form undergoes self-assembly to form carbon nanoscrolls. The interlayer distance between the walls of carbon nanoscroll was found to be 0.34 nm and the carbon nanoscrolls exhibited a surface area of 188 m2/g as measured by the BET method.

  3. Gravimetric Determination of Inorganic Carbon in Calcareous Soils Using the Carbonate-Meter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic carbon affects many important physical, chemical and microbiological soil properties. In calcareous soils, the inorganic carbon has to be measured and subtracted from the total carbon to obtain organic carbon. Our objective was to develop a gravimetric technique to quantify inorganic carbon ...

  4. Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying

    E-print Network

    Liu, Jie

    amounts of meso- pores and even macropores. Therefore we can design various porous carbon materialsFabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical August 2003) Activated carbon fiber/carbon aerogel (ACF/CA) composites were fabricated by gelling

  5. The significance of carbon-enriched dust for global carbon accounting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon stores amount to 54% of the terrestrial carbon pool and twice the atmospheric carbon pool, but soil organic carbon (SOC) can be transient. There is an ongoing debate about whether soils are a net source or sink of carbon, and understanding the role of aeolian processes in SOC erosion, tr...

  6. Protein carbon content evolves in response to carbon availability and may influence

    E-print Network

    Wagner, Andreas

    Protein carbon content evolves in response to carbon availability and may influence the fate that ancestral yeast strains preferentially express proteins with low carbon content during carbon limitation, relative to strains selected in the laboratory under carbon limitation. The likely reason

  7. Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets

    E-print Network

    Zhu, Yuntian T.

    by chem- ical vapor infiltration (CVI) of carbon source gases into fiber preforms. While CVI of carbon fasteners [1]. While the above applications are currently filled by traditional carbon fiber C/ C compositesStructural annealing of carbon coated aligned multi-walled carbon nanotube sheets Shaghayegh Faraji

  8. PERGAMON Carbon 39 (2001) 369373 Effect of carbon fiber grade on the electrical behavior of

    E-print Network

    Chung, Deborah D.L.

    2001-01-01

    PERGAMON Carbon 39 (2001) 369­373 Effect of carbon fiber grade on the electrical behavior of carbon 2000 Abstract Electrical conduction in cement reinforced by short carbon fibers below the percolation is decreased by increasing the fiber crystallinity, but is increased by using intercalated fibers. The carbon

  9. Comparison of protons, carbon and fullerene impacts on a carbon cylinder

    E-print Network

    Webb, Roger P.

    Comparison of protons, carbon and fullerene impacts on a carbon cylinder R.P. Webb *, I.H. Wilson between the impacts of protons, carbon atoms and fullerene molecules on an elongated strong of carbon; 887.15.K; 36.40 Keywords: Ion beams; Molecular dynamics simulation; Carbon; DNA; Fullerene 1

  10. Untangling the formation of the cyclic carbon trioxide isomer in low temperature carbon dioxide ices

    E-print Network

    Kaiser, Ralf I.

    Untangling the formation of the cyclic carbon trioxide isomer in low temperature carbon dioxide of the cyclic carbon trioxide isomer, CO3(X 1 A1), in carbon-dioxide-rich extraterrestrial ices and in the atmospheres of Earth and Mars were investigated experimentally and theoretically. Carbon dioxide ices were

  11. Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide

    E-print Network

    Wu, Jianzhong

    the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls

  12. Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON DIOXIDE1*2

    E-print Network

    commercial carbons and their gasification rates with carbon dioxide at a series of temperatures between 900 2' of the desired value. The carbon dioxide flow rate through the reactor was maintained constantMar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON

  13. University of Glasgow Carbon Management Programme Carbon Management Plan working with

    E-print Network

    Swain, Peter

    fully in the initiatives which will help us reduce our carbon footprint and combat climate changeUniversity of Glasgow Carbon Management Programme Carbon Management Plan working with Page 1 Carbon Management Programme Carbon Management Plan (CMP) Albert Young, 3 November 2009 #12;University of Glasgow

  14. Dynamics of the Neoproterozoic carbon cycle.

    PubMed

    Rothman, Daniel H; Hayes, John M; Summons, Roger E

    2003-07-01

    The existence of unusually large fluctuations in the Neoproterozoic (1,000-543 million years ago) carbon-isotopic record implies strong perturbations to the Earth's carbon cycle. To analyze these fluctuations, we examine records of both the isotopic content of carbonate carbon and the fractionation between carbonate and marine organic carbon. Together, these are inconsistent with conventional, steady-state models of the carbon cycle. The records can be well understood, however, as deriving from the nonsteady dynamics of two reactive pools of carbon. The lack of a steady state is traced to an unusually large oceanic reservoir of organic carbon. We suggest that the most significant of the Neoproterozoic negative carbon-isotopic excursions resulted from increased remineralization of this reservoir. The terminal event, at the Proterozoic-Cambrian boundary, signals the final diminution of the reservoir, a process that was likely initiated by evolutionary innovations that increased export of organic matter to the deep sea. PMID:12824461

  15. The Australian terrestrial carbon budget

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Raupach, M. R.; Briggs, P. R.; Canadell, J. G.; Davis, S. J.; Law, R. M.; Meyer, C. P.; Peters, G. P.; Pickett-Heaps, C.; Sherman, B.

    2012-09-01

    This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990-2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies being synthesised in RECCAP. In constructing the budget, we estimate the following component carbon fluxes: Net Primary Production (NPP); Net Ecosystem Production (NEP); fire; Land Use Change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 29 (1? error on mean) and 68 ± 35 Tg C yr-1 respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 31 ± 5 Tg C yr-1 and 18 ± 7 Tg C yr-1 respectively. The resultant Net Biome Production (NBP) of 31 ± 35 Tg C yr-1 offset fossil fuel emissions (95 ± 6 Tg C yr-1) by 32 ± 36%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009-2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  16. Carbon sequestration research and development

    SciTech Connect

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  17. Carbon-enhanced VRLA batteries.

    SciTech Connect

    Enos, David George; Hund, Thomas D.; Shane, Rod

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  18. Vertically aligned carbon based varactors

    NASA Astrophysics Data System (ADS)

    Ghavanini, Farzan A.; Enoksson, Peter; Bengtsson, Stefan; Lundgren, Per

    2011-07-01

    This paper gives an assessment of vertically aligned carbon based varactors and validates their potential for future applications. The varactors discussed here are nanoelectromechanical devices which are based on either vertically aligned carbon nanofibers or vertically aligned carbon nanotube arrays. A generic analytical model for parallel plate nanoelectromechanical varactors based on previous works is developed and is used to formulate a universal expression for their voltage-capacitance relation. Specific expressions for the nanofiber based and the nanotube based varactors are then derived separately from the generic model. This paper also provides a detailed review on the fabrication of carbon based varactors and pays special attention to the challenges in realizing such devices. Finally, the performance of the carbon based varactor is assessed in accordance with four criteria: the static capacitance, the tuning ratio, the quality factor, and the operating voltage. Although the reported performance is still far inferior to other varactor technologies, our prognosis which stems from the analytical model shows a promise of a high quality factor as well as a potential for high power handling for carbon based varactors.

  19. A Pentagon Based Carbon Sheet

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Shunhong; Zhou, Jian; Chen, Xiaoshuang; Kawazoe, Yoshiyuki; Jena, Puru; A international Team Collaboration

    2015-03-01

    A new two-dimensional (2D) meta-stable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration penta-graphene has an unusual negative Poisson's ratio (NPR) and ultra-high ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV - close to that of ZnO and GaN. Equally important, when rolled up, penta-graphene can form a pentagon-based nanotube. The resulting penta-carbon nanotubes are semiconducting regardless of their chirality. When stacked in different patterns, dynamically and thermally stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. The versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics. Peking University.

  20. Carbon nanotube: the inside story.

    PubMed

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described. PMID:20355364

  1. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water, activity and species diversity of soil biota, management of soil fertility and application of Ca-bearing amendments (e.g., lime, single and triple super phosphate, manure), and adoption of conservation-effective measures which trap alluvial and aeolian sediments. Even the low rate of formation of secondary carbonates at 2-5 kg C/ha/yr has implications to aggregation, and microbiological and regolith properties. The isotropic composition of secondary carbonates is a useful tool for reconstructing paleoecological conditions. Researchable priorities include: 1) assessment of the depth distribution of CO2 concentration in soil air and its spatial and temporal variation in relation to tillage systems, crop residue management, fertilizer and manuring, irrigation, cover cropping, agroforestry, etc., 2) understanding the effects of micro and meso-climate (e.g., rainfall, evapotranspiration, air and soil temperatures) on CO2 concentration in soil air, 3) determination of the relation between soil profile characteristics (texture, structure, horizonation, hydrology) and secondary carbonates at present and under paleoecological conditions, 4) establishing the relationship between SOC and SIC pools, 5) determination of the impacts of deforestation, biomass burning, wild fires, drought, inundation, etc., on SIC dynamics, and 6) evaluating the effects of secondary carbonates on soil aggregation and water retention.

  2. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect

    David P. Haack

    2009-04-08

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  3. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  4. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. (6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high ({approx}50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  5. Evidence for Carbonate Surface Complexation during Forsterite Carbonation in Wet Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Chen, Jeffrey; Benezeth, Pascale; Qafoku, Odeta; Ilton, Eugene S.; Washton, Nancy M.; Thompson, Christopher J.; Martin, Paul F.; McGrail, B. Peter; Rosso, Kevin M.; Felmy, Andrew R.; Schaef, Herbert T.

    2015-06-16

    Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and post-reaction samples were examined by ex situ techniques, including SEM, XPS, FIB-TEM, TGA-MS, and MAS-NMR. Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m2. Above this concentration and up to 76 µmol/m2, monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m2, crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, the implication of these results is that mineral trapping in scCO2 dominated fluids will be insignificant and limited to surface complexation unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

  6. Carbon dioxide sequestration by ex-situ mineral carbonation

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Turner, P.C.; and Walters, R.P.

    2000-01-01

    The process developed for carbon dioxide sequestration utilizes a slurry of water mixed with olivine- forsterite end member (Mg{sub 2}SiO{sub 4}), which is reacted with supercritical CO{sub 2} to produce magnesite (MgCO{sub 3}). Carbon dioxide is dissolved in water to form carbonic acid, which likely dissociates to H{sup +} and HCO{sub 3}{sup -}. The H{sup +} hydrolyzes the silicate mineral, freeing the cation (Mg{sup 2+}), which reacts with the HCO{sub 3}{sup -} to form the solid carbonate. Results of the baseline tests, conducted on ground products of the natural mineral, have demonstrated that the kinetics of the reaction are slow at ambient temperature (22 degrees C) and subcritical CO{sub 2} pressures (below 7.4 MPa). However, at elevated temperature and pressure, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant conversion to the carbonate occurs. Extent of reaction is roughly 90% within 24 h, at 185 degrees C and partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 11.6 MPa. Current studies suggest that reaction kinetics can be improved by pretreatment of the mineral, catalysis of the reaction, and/or solution modification. Subsequent tests are intended to examine these options, as well as other mineral groups.

  7. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    PubMed Central

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-01-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2?kg C m?2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21–49?g C m?2 year?1) than SOC (10–39?g C m?2 year?1) over 0–20?cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China. PMID:26091554

  8. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon.

    PubMed

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-01-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their (13)C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m(-2), which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m(-2) year(-1)) than SOC (10-39 g C m(-2) year(-1)) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China. PMID:26091554

  9. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2?kg C m-2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49?g C m-2 year-1) than SOC (10-39?g C m-2 year-1) over 0-20?cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  10. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization.

    PubMed

    Zhang, Weixin; Hendrix, Paul F; Dame, Lauren E; Burke, Roger A; Wu, Jianping; Neher, Deborah A; Li, Jianxiong; Shao, Yuanhu; Fu, Shenglei

    2013-01-01

    A recent review concluded that earthworm presence increases CO? emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO? emission nor in stabilized carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated 'carbon trap'. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO? emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink. PMID:24129390

  11. A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes

    E-print Network

    McNichol, Ann P., 1956-

    1986-01-01

    A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

  12. CARBON FIBER DATA BASE: DATA BASE REVIEW AND ASSESSMENT OF CARBON FIBER RELEASE INTO THE ENVIRONMENT

    EPA Science Inventory

    This study addressed the eventual disposal of carbon fiber composites in municipal waste streams. A survey of current literature presents the effects of fires on carbon fiber composites, the effects of airborne carbon fibers including incidents of electrical failures, application...

  13. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Weixin; Hendrix, Paul F.; Dame, Lauren E.; Burke, Roger A.; Wu, Jianping; Neher, Deborah A.; Li, Jianxiong; Shao, Yuanhu; Fu, Shenglei

    2013-10-01

    A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon would entirely reflect the earthworms’ contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated ‘carbon trap’. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO2 emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink.

  14. The Australian terrestrial carbon budget

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Raupach, M. R.; Briggs, P. R.; Canadell, J. G.; Davis, S. J.; Law, R. M.; Meyer, C. P.; Peters, G. P.; Pickett-Heaps, C.; Sherman, B.

    2013-02-01

    This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990-2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies. In constructing the budget, we estimate the following component carbon fluxes: net primary production (NPP); net ecosystem production (NEP); fire; land use change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). Major biospheric fluxes were derived using BIOS2 (Haverd et al., 2012), a fine-spatial-resolution (0.05°) offline modelling environment in which predictions of CABLE (Wang et al., 2011), a sophisticated land surface model with carbon cycle, are constrained by multiple observation types. The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 24 (1? error on mean) and 68 ± 15 TgC yr-1, respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 26 ± 4 TgC yr-1 and 18 ± 7 TgC yr-1, respectively. The resultant net biome production (NBP) is 36 ± 29 TgC yr-1, in which the largest contributions to uncertainty are NEP, fire and LUC. This NBP offset fossil fuel emissions (95 ± 6 TgC yr-1) by 38 ± 30%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009-2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.

  15. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  16. Analysis of Carbon/Carbon Fragments From the Columbia Tragedy

    NASA Technical Reports Server (NTRS)

    Tallant, David R.; Simpson, Regina L.; Jacobson, Nathan S.

    2005-01-01

    The extensive investigation following the Space Shuttle Orbiter Columbia accident of February 1, 2003 determined that hot gases entered the wing through a breach in the protective reinforced carbon/carbon (RCC) leading edge. In the current study, the exposed edges of the recovered RCC from the vicinity of the breach are examined with scanning electron microscopy and Raman spectroscopy. Electron microscopy of the exposed edges revealed regions of pointed carbon fibers, characteristic of exposure to high temperature oxidizing gases. The Raman technique relates the observed 1350 and 1580 to 1600 cm(-1) bands to graphitic dom ains and their corresponding temperatures of formation. Some of the regions showed evidence of exposure temperatures beyond 2700 ?C during the accident.

  17. The Megacities Carbon Project: measuring urban carbon emissions

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Kort, E. A.; Miller, C. E.

    2012-12-01

    Carbon emissions from cities represent the single largest human contribution to climate change. Robust verification of emission changes due to growth or stabilization policies requires that we establish measurement baselines today and begin monitoring representative megacities immediately. An observing system designed to monitor the localized enhancements ("urban domes") of carbon dioxide and methane associated with cities must include a tiered set of surface, airborne, and satellite sensors and a framework for integrating top-down (atmospheric) and bottom-up (activity) data. We present a vision, strategy, requirements, and roadmap for an international effort to assess directly the carbon emission trends of the world's megacities. We describe a new coordinated pilot project for the megacities of Los Angeles and Paris that leverages and extends established measurement infrastructure in those cities and techniques being developed in methodological studies of smaller cities.

  18. Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.

    2011-01-01

    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.

  19. Novel method for carbon nanofilament growth on carbon fibers

    SciTech Connect

    Phillips, Johathan; Luhrs, Claudia; Terani, Mehran; Al - Haik, Marwan; Garcia, Daniel; Taha, Mahmoud R

    2009-01-01

    Fiber reinforced structural composites such as fiber reinforced polymers (FRPs) have proven to be key materials for blast mitigation due to their enhanced mechanical performance. However, there is a need to further increase total energy absorption of the composites in order to retain structural integrity in high energy environments, for example, blast events. Research has shown that composite failure in high energy environments can be traced to their relatively low shear strength attributed to the limited bond strength between the matrix and the fibers. One area of focus for improving the strength of composite materials has been to create 'multi-scale' composites. The most common approach to date is to introduce carbon nanotubes into a more traditional composite consisting of epoxy with embedded micron scale fibers. The inclusion of carbon nanotubes (CNT) clearly toughens different matrices. Depositing CNT in brittle matrix increases stiffness by orders of magnitude. Currently, this approach to create multiscale composites is limited due to the difficulty of dispersing significant amounts of nanotubes. It has repeatedly been reported that phase separation occurs above relatively low weight percent loading (ca. 3%) due to the strong van der Waals forces between CNTs compared with that between CNT and polymer. Hence, the nanotubes tend to segregate and form inclusions. One means to prevent nanotube or nanofilament agglomeration is to anchor one end of the nanostructure, thereby creating a stable multi-phase structure. This is most easily done by literally growing the CNTs directly on micron scale fibers. Recently, CNT were grown on carbon fibers, both polyacrylonitrile- (PAN-) and pitch-based, by hot filament chemical vapor deposition (HFCVD) using H2 and CH4 as precursors. Nickel clusters were electrodeposited on the fiber surfaces to catalyze the growth and uniform CNT coatings were obtained on both the PAN- and pitch-based carbon fibers. Multiwalled CNTs with smooth walls and low impurity content were grown. Carbon nanofibers were also grown on a carbon fiber cloth using plasma enhanced chemical vapor deposition (CVD) from a mixture of acetylene and ammonia. In this case, a cobalt colloid was used to achieve a good coverage of nanofibers on carbon fibers in the cloth. Caveats to CNT growth include damage in the carbon fiber surface due to high-temperatures (>800 C). More recently, Qu et al. reported a new method for uniform deposition of CNT on carbon fibers. However, this method requires processing at 1100 C in the presence of oxygen and such high temperature is anticipated to deepen the damage in the carbon fibers. In the present work, multi-scale filaments (herein, linear carbon structures with multi-micron diameter are called 'fibers', all structures with sub-micron diameter are called 'filaments') were created with a low temperature (ca. 550 C) alternative to CVD growth of CNTs. Specifically, nano-scale filaments were rapidly generated (> 10 microns/hour) on commercial micron scale fibers via catalytic (Pd particles) growth from a fuel rich combustion environment at atmospheric pressure. This atmospheric pressure process, derived from the process called Graphitic Growth by Design (GSD), is rapid, the maximum temperature low enough (below 700 C) to avoid structural damage and the process inexpensive and readily scalable. In some cases, a significant and unexpected aspect of the process was the generation of 'three scale' materials. That is, materials with these three size characteristics were produced: (1) micrometer scale commercial PAN fibers, (2) a layer of 'long' sub-micrometer diameter scale carbon filaments, and (3) a dense layer of 'short' nanometer diameter filaments.

  20. Covalently functionalized carbon nanostructures and methods for their separation

    DOEpatents

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.